WO2013008772A1 - パルスレーザ発振器及びパルスレーザ発振制御方法 - Google Patents

パルスレーザ発振器及びパルスレーザ発振制御方法 Download PDF

Info

Publication number
WO2013008772A1
WO2013008772A1 PCT/JP2012/067446 JP2012067446W WO2013008772A1 WO 2013008772 A1 WO2013008772 A1 WO 2013008772A1 JP 2012067446 W JP2012067446 W JP 2012067446W WO 2013008772 A1 WO2013008772 A1 WO 2013008772A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electro
pulse laser
pockels cell
light
Prior art date
Application number
PCT/JP2012/067446
Other languages
English (en)
French (fr)
Inventor
梶山 康一
水村 通伸
哲也 木口
大助 石井
良勝 柳川
政美 滝本
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011153283A external-priority patent/JP5853332B2/ja
Priority claimed from JP2011155735A external-priority patent/JP5923885B2/ja
Priority claimed from JP2011155734A external-priority patent/JP5923884B2/ja
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020137032394A priority Critical patent/KR101915628B1/ko
Priority to CN201280030065.XA priority patent/CN103636083B/zh
Publication of WO2013008772A1 publication Critical patent/WO2013008772A1/ja
Priority to US14/151,176 priority patent/US9054494B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA

Definitions

  • the present invention relates to a pulse laser oscillator including an electro-optical element that polarizes light according to an applied voltage, and a pulse laser oscillation control method, and more particularly, to change a voltage applied to an electro-optical element over time, and
  • the present invention relates to a pulse laser oscillator and a pulse laser oscillation control method capable of extending the pulse width of light and reducing the peak energy of output pulse laser light.
  • a conventional pulse laser oscillator has a laser medium, an excitation light source that excites the laser medium, and a resonator that reciprocates and amplifies the light emitted by the laser medium to obtain pulsed laser light.
  • Q-switch oscillation with a Q mirror element and a cavity dump element placed between the resonators with a reflectance mirror and a low reflectance mirror on the other side, and the laser beam is completely confined in the resonator
  • the energy stored in the resonator is instantaneously externalized by causing the cavity dump element to continue to operate and perform the cavity dump near the peak level of the pulsed laser light accumulated in the resonator.
  • There are some which are configured to be taken out for example, see Patent Document 1).
  • the energy accumulated in the resonator is instantaneously extracted outside, so that the peak energy of the output pulse laser light becomes too large, and the object irradiated with the laser is There was a risk of damage.
  • the problem to be solved by the present invention that addresses such problems is that a pulse laser oscillator and a pulse laser that can reduce the peak energy of the output pulse laser light by extending the pulse width. It is to provide an oscillation control method.
  • a pulse laser oscillator includes a first electro-optic element that polarizes light according to an applied voltage, a voltage applied to the first electro-optic element, and a voltage applied to the first electro-optic element.
  • a plurality of the first electro-optical elements may be provided, and the voltage value applied to each of the plurality of first electro-optical elements may be changed over time.
  • the voltage control device changes a change rate of a voltage value applied to the first electro-optic element in a stepwise manner.
  • two first electro-optical elements may be provided, and voltages opposite to each other may be applied to the two first electro-optical elements by the voltage control device.
  • the electro-optical element is a Pockels cell, and it is preferable that a ⁇ / 4 wavelength plate is further provided.
  • a laser attenuator including a second electro-optical element to be controlled, and a control unit that controls an applied voltage value and an application timing to the second electro-optical element.
  • the second electro-optical element may be a Pockels cell.
  • a plurality of the Pockels cells may be arranged in series.
  • the laser attenuator is provided on the downstream side of an optical amplifier provided on the optical path of the laser light.
  • the pulse laser oscillation control method is a laser oscillation control method for controlling the oscillation of laser light by changing the voltage applied to the first electro-optic element that polarizes light in accordance with the applied voltage.
  • the voltage value applied to the first electro-optic element is changed over time to control the pulse width of the laser beam.
  • a plurality of the first electro-optical elements may be provided, and the voltage value applied to each of the plurality of first electro-optical elements may be changed over time.
  • two first electro-optical elements may be provided, and voltages opposite to each other may be applied to the two first electro-optical elements by the voltage control device.
  • the pulse width of the laser light it is possible to control the pulse width of the laser light by changing the voltage value applied to the first electro-optic element with time by the voltage control device. Therefore, it is possible to extend the pulse width of the output pulsed laser beam and reduce the peak energy of the pulsed laser beam. Further, since the pulse width can be extended without using a beam splitter that splits the laser light or a mirror for the delay optical system, the pulse laser oscillator can be formed in a compact manner. Further, when the pulse laser oscillator is used, it is not necessary to adjust the beam splitter and the mirror for the delay optical system, so that the work for using the pulse laser oscillator becomes easy.
  • FIG. 1 is a diagram showing a first embodiment of a pulse laser oscillator according to the present invention.
  • This pulse laser oscillator generates a giant pulse by a Q-switch method that generates a giant pulse by switching the Q value (energy stored in the optical resonator 3 described later / energy lost outside the optical resonator 3).
  • a YAG laser that includes a YAG rod 1, a flash lamp 2, an optical resonator 3, a polarizer 4, a ⁇ / 4 wavelength plate 5, a Pockels cell 6, and a voltage controller 7.
  • the YAG rod 1 emits light when irradiated with light from a flash lamp 2 to be described later, and amplifies the emitted light by stimulated emission. As shown in FIG. It is a solid laser medium that emits light. Instead of the YAG rod 1, other laser media such as an Nd: YAG rod or an Er: YAG rod may be used.
  • a flash lamp 2 is provided on a side surface of the YAG rod 1 (upper side of the YAG rod 1 in FIG. 1).
  • the flash lamp 2 irradiates the YAG rod 1 with light and starts emission of light from the YAG rod 1.
  • a xenon flash lamp or a laser diode is used.
  • a front mirror 3a and a rear mirror 3b are provided on the left and right sides of the YAG rod 1 in FIG.
  • the front mirror 3a and the rear mirror 3b reciprocate the light emitted from the YAG rod 1 between the two mirrors.
  • the front mirror 3a and the rear mirror 3b cause stimulated emission in the YAG rod 1.
  • An optical resonator 3 for amplifying coherent light is configured.
  • the front mirror 3a is a partial transmission mirror that transmits a part of incident light, and is installed on the side where the laser light on the optical axis L of the light emitted from the YAG rod 1 is emitted. A part of the laser light instantaneously amplified by the Q switch method is taken out from the optical resonator 3 through the front mirror 3a.
  • the rear mirror 3b is a total reflection mirror provided on the optical axis L opposite to the front mirror 3a with the YAG rod 1 in between, and reciprocates light on the optical axis L with the front mirror 3a.
  • a polarizer 4 On the optical axis L between the rear mirror 3b and the YAG rod 1, a polarizer 4 is provided.
  • the polarizer 4 reflects only s-polarized light, which is a polarized light component perpendicular to the incident surface, in the incident light, and transmits only p-polarized light, which is a polarized light component parallel to the incident surface.
  • the polarizer plays the role of a shutter in the Q-switch method.
  • the material of the polarizer 4 is glass or plastic, and the polarizer 4 is inclined with respect to the optical axis L so that the incident angle ⁇ of incident light becomes a Brewster angle at which the reflectance of p-polarized light becomes zero.
  • a plurality of polarizers 4 may be provided.
  • the polarizer 4 only needs to transmit either s-polarized light or p-polarized light.
  • a polarizer such as a polarizing prism or a polarizing filter may be used.
  • the terms s-polarized light and p-polarized light used in the following description refer to s-polarized light and p-polarized light for the polarizer 4.
  • a ⁇ / 4 wavelength plate 5 is provided between the polarizer 4 and the rear mirror 3b.
  • the ⁇ / 4 wave plate 5 generates a phase difference of 90 ° ( ⁇ / 2) in the polarization component of incident light, thereby converting linearly polarized light (s-polarized light or p-polarized light) into circularly polarized light and circularly polarized light into linearly polarized light.
  • the light is converted into polarized light, and is provided on the optical axis L on the left side of the polarizer 4 as shown in FIG.
  • the p-polarized light emitted from the YAG rod 1 and transmitted through the polarizer 4 is converted into circularly polarized light by the ⁇ / 4 wavelength plate 5.
  • a Pockels cell 6 is provided between the ⁇ / 4 wavelength plate 5 and the rear mirror 3b.
  • the Pockels cell 6 is a first electro-optic element that polarizes light according to an applied voltage, and is provided on the optical axis L on the left side of the ⁇ / 4 wavelength plate 5 as shown in FIG. ing.
  • the Pockels cell 6 does not polarize light when no voltage is applied, but polarizes light when a voltage is applied, and the degree of polarization depends on the applied voltage.
  • the voltage controller 7 is electrically connected to the Pockels cell 6.
  • the voltage control device 7 applies a voltage to the Pockels cell 6 and controls the voltage to be applied, and includes a voltage application circuit 7a and a control circuit 7b.
  • the voltage application circuit 7 a applies a voltage to the Pockels cell 6 and is electrically connected to the Pockels cell 6. This voltage application circuit 7a controls the application of voltage to the Pockels cell 6 by the voltage application circuit 7a, thereby changing the degree of polarization of the light incident on the Pockels cell 6 and controlling the oscillation of the laser light.
  • a circuit 7b is connected.
  • the control circuit 7b sends a signal to the voltage application circuit 7a to control the voltage application circuit 7a so that the applied voltage to the Pockels cell 6 becomes 0V.
  • the flash lamp 2 emits light and the YAG rod 1 is irradiated with light, some atoms in the YAG rod 1 are excited, and light is emitted from the YAG rod 1 along the optical axis L. As shown in FIG.
  • the light emitted from the YAG rod 1 in the direction of the polarizer 4 enters the polarizer 4 at an incident angle ⁇ that is a Brewster angle.
  • that is a Brewster angle.
  • p-polarized light is transmitted through the polarizer 4
  • s-polarized light and circular (or elliptical) polarized light are reflected by the polarizer 4 and travel outward of the optical axis L.
  • the p-polarized light transmitted through the polarizer 4 is incident on the ⁇ / 4 wavelength plate 5 to generate a phase difference of 90 ° ( ⁇ / 2), is converted into circularly polarized light, and is incident on the Pockels cell 6.
  • the incident light since no voltage is applied to the Pockels cell 6, the incident light is transmitted without being polarized. Therefore, the circularly polarized light incident on the Pockels cell 6 passes through the Pockels cell 6 as circularly polarized light, is reflected by the rear mirror 3b, and is transmitted through the Pockels cell 6 again, as shown in FIG. 5 is incident.
  • the light emitted from the YAG rod 1 is reflected by the polarizer 4 and does not enter the YAG rod 1 again. Does not occur, and the oscillation of the pulse laser is suppressed.
  • control is performed.
  • the voltage applied by the voltage application circuit 7a to the Pockels cell 6 is changed by the circuit 7b.
  • the Pockels cell 6 functions as the ⁇ / 4 wavelength plate 5.
  • the light emitted from the YAG rod 1 in the direction of the arrow A is converted into p-polarized light by the polarizer 4 as in the above-mentioned voltage non-application state, as shown in FIG. , Converted into circularly polarized light by the ⁇ / 4 wavelength plate 5 and incident on the Pockels cell 6.
  • the Pockels cell 6 functions as the ⁇ / 4 wavelength plate 5 as described above, the light incident on the Pockels cell 6 generates a phase difference of 90 ° ( ⁇ / 2) and is s-polarized (that is, the YAG rod 1 And the p-polarized light that has been transmitted through the polarizer 4 is converted into a phase shifted by 180 ° ( ⁇ ).
  • This s-polarized light is reflected by the rear mirror 3b, is incident on the Pockels cell 6 again, further causes a phase difference of 90 °, and is circularly polarized (that is, p-polarized light that has been emitted from the YAG rod 1 and transmitted through the polarizer 4) Is shifted to 270 ° (3 ⁇ / 2).
  • This circularly polarized light is incident on the ⁇ / 4 wave plate 5, further generates a phase difference of 90 °, and has a phase difference of 360 ° with p-polarized light (that is, p-polarized light emitted from the YAG rod 1 and transmitted through the polarizer 4). (2 ⁇ ) shifted state).
  • the p-polarized light is incident on the polarizer 4 at an incident angle ⁇ that is a Brewster angle and is transmitted through the polarizer 4.
  • the light transmitted through the polarizer 4 is incident from the left side of the YAG rod 1 in FIG. 2, causes stimulated emission in the YAG rod 1, is emitted from the right side of the YAG rod 1 in FIG. 2, is reflected by the front mirror 3a,
  • the YAG rod 1 passes from the right side to the left side in FIG. Thereafter, the light reciprocates in the optical resonator 3 in the same procedure, and a part of the coherent light amplified by stimulated emission is output as a laser in the direction of arrow B from the front mirror 3a.
  • FIG. 3 is a graph showing an example of the relationship between the change in the voltage applied to the Pockels cell 6 and the output energy of the output pulsed laser beam.
  • the peak energy of the pulse laser beam is increased. Is about 13.0 mJ and the pulse width is about 10 ns.
  • FIG. 4 is a graph showing another example of the relationship between the change in the voltage applied to the Pockels cell 6 and the output energy of the output pulsed laser beam.
  • the voltage applied by the voltage application circuit 7a to the Pockels cell 6 is gradually changed from about 0V to about ⁇ 3000V by about 800 ns from the embodiment shown in FIG. 3 by the control circuit 7b.
  • the peak energy of the pulse laser beam is about 0.6 mJ, and the pulse width is about 70 ns.
  • the pulse width of the pulse laser beam can be extended and the peak energy can be reduced.
  • FIG. 5 is a graph showing still another example of the relationship between the change in the voltage applied to the Pockels cell 6 and the output energy of the output pulsed laser beam.
  • the control circuit 7b changes the voltage applied to the Pockels cell 6 by the control circuit 7b from about 0V to about -1500V in about 300ns, and then from about -1500V to about -4500V for another 600ns. It is changed with.
  • the voltage change rate changes once between a change in voltage from about 0 V to about -1500 V and a change in voltage from about -1500 V to about -4500 V. That is, the slope of the voltage graph at about ⁇ 1500 V in FIG. 5 changes.
  • a peak can be generated after the point C (hereinafter referred to as “control point”) C where the voltage change rate is changed by the control circuit 7b.
  • the first peak energy of the pulse laser beam is about 0.5 to 0.6 mJ
  • the second peak energy is about 0.5 to 0.6 mJ
  • the pulse width is about 150 ns. Yes.
  • control circuit 7b gradually changes the rate of change of the voltage applied to the Pockels cell 6 by the voltage application circuit 7a, thereby extending the pulse width of the output pulsed laser beam and increasing the peak of the pulsed laser beam. Energy can be reduced.
  • the rate of change of the voltage applied by the voltage application circuit 7a and the number of control points C may be determined according to the required pulse width and output energy. Further, instead of using the ⁇ / 4 wavelength plate 5, instead of the Pockels cell 6, a first electro-optical element that functions as a ⁇ / 2 wavelength plate in accordance with the application of a voltage may be used.
  • FIG. 6 is a diagram showing a second embodiment of the pulse laser oscillator according to the present invention.
  • a first Pockels cell 6a and a second Pockels cell 6b are provided between the ⁇ / 4 wave plate 5 and the rear mirror 3b.
  • These two Pockels cells 6a and 6b are first electro-optic elements that polarize light according to an applied voltage.
  • the optical axis L on the left side of the ⁇ / 4 wavelength plate 5 is used.
  • the first Pockels cell 6a and the second Pockels cell 6b are provided in this order from the ⁇ / 4 wavelength plate 5 side. These two Pockels cells 6a and 6b do not polarize light when no voltage is applied, but polarize light when voltage is applied, and the degree of polarization depends on the applied voltage.
  • the voltage controller 7 is electrically connected to the first Pockels cell 6a and the second Pockels cell 6b.
  • the voltage control device 7 applies a voltage to each of the first Pockels cell 6a and the second Pockels cell 6b and controls the voltage to be applied.
  • the voltage control device 7 includes a first voltage application circuit 8a and a second voltage application circuit 8b. And a first control circuit 9a and a second control circuit 9b.
  • the first voltage application circuit 8a applies a voltage to the first Pockels cell 6a, and is electrically connected to the first Pockels cell 6a.
  • this first voltage application circuit 8a by controlling the application of voltage to the first Pockels cell 6a by the first voltage application circuit 8a, the degree of polarization of light incident on the first Pockels cell 6a is changed, A first control circuit 9a that controls the oscillation of the laser beam is connected.
  • the second voltage application circuit 8b applies a voltage to the second Pockels cell 6b and is electrically connected to the second Pockels cell 6b.
  • the second voltage application circuit 8b changes the degree of polarization of light incident on the second Pockels cell 6b by controlling the application of voltage to the second Pockels cell 6b by the second voltage application circuit 8b.
  • a second control circuit 9b that controls the oscillation of the laser beam is connected.
  • the pulse laser is oscillated by the pulse laser oscillator
  • the first control circuit 9a and the second control circuit 9b send signals to the first voltage application circuit 8a and the second voltage application circuit 8b, respectively, and the first Pockels cell
  • the voltage applied to 6a and the second Pockels cell 6b is controlled to be 0V.
  • the flash lamp 2 emits light and the YAG rod 1 is irradiated with light, some atoms in the YAG rod 1 are excited, and light is emitted from the YAG rod 1 along the optical axis L. As shown in FIG.
  • the light emitted from the YAG rod 1 in the direction of the polarizer 4 enters the polarizer 4 at an incident angle ⁇ that is a Brewster angle.
  • that is a Brewster angle.
  • p-polarized light is transmitted through the polarizer 4
  • s-polarized light and circular (or elliptical) polarized light are reflected by the polarizer 4 and travel outward of the optical axis L.
  • the p-polarized light transmitted through the polarizer 4 is incident on the ⁇ / 4 wavelength plate 5 to generate a phase difference of 90 ° ( ⁇ / 2), is converted into circularly polarized light, and is incident on the first Pockels cell 6a.
  • the incident light since no voltage is applied to the first Pockels cell 6a, the incident light is transmitted without being polarized. Therefore, the circularly polarized light incident on the first Pockels cell 6a passes through the first Pockels cell 6a as circularly polarized light as shown in FIG.
  • the transmitted circularly polarized light passes through the second Pockels cell 6b in the same manner as described above, remains circularly polarized, is reflected by the rear mirror 3b, passes through the second Pockels cell 6b and the first Pockels cell 6a again, and is a ⁇ / 4 wavelength plate. 5 is incident.
  • the first control circuit 9a and the second control circuit 9b change the voltages applied to the first Pockels cell 6a and the second Pockels cell 6b by the first voltage application circuit 8a and the second voltage application circuit 8b.
  • the first Pockels cell 6a and the second Pockels cell 6b are applied with voltages.
  • the light is polarized in response to.
  • the two Pockels cells 6a and 6b When a predetermined voltage is applied to each of these two Pockels cells 6a and 6b, the two Pockels cells 6a and 6b function as a ⁇ / 4 wavelength plate as a whole. At this time, the magnitude, direction and change timing of the voltage applied to the two Pockels cells 6a and 6b may be controlled to be the same by the first control circuit 9a and the second control circuit 9b. May also be controlled differently.
  • the light emitted from the YAG rod 1 in the direction of the polarizer 4 (the direction of the arrow A) is as shown in FIG.
  • the polarizer 4 As in the non-applied state, only p-polarized light is transmitted through the polarizer 4, and s-polarized light and circular (elliptical) polarized light are reflected by the polarizer 4.
  • the p-polarized light transmitted through the polarizer 4 is converted into circularly-polarized light by the ⁇ / 4 wave plate 5 and enters the first Pockels cell 6a and the second Pockels cell 6b.
  • the circularly polarized light incident on the first Pockels cell 6a and the second Pockels cell 6b has a function as a ⁇ / 4 wavelength plate because the first Pockels cell 6a and the second Pockels cell 6b function as a whole by applying a voltage.
  • the phase difference of 90 ° ( ⁇ / 2) is generated by transmitting through the two Pockels cells 6a and 6b, and the phase of the s-polarized light (that is, the p-polarized light emitted from the YAG rod 1 and transmitted through the polarizer 4 is 180 °). ( ⁇ ) shifted state).
  • the s-polarized light is reflected by the rear mirror 3b, and is incident on the second Pockels cell 6b and the first Pockels cell 6a again. Further, a phase difference of 90 ° is generated, and circularly polarized light (that is, emitted from the YAG rod 1)
  • the transmitted p-polarized light is converted to a phase shifted by 270 ° (3 ⁇ / 2).
  • This circularly polarized light is incident on the ⁇ / 4 wave plate 5, further generates a phase difference of 90 °, and has a phase difference of 360 ° with p-polarized light (that is, p-polarized light emitted from the YAG rod 1 and transmitted through the polarizer 4). (2 ⁇ ) shifted state).
  • the p-polarized light is incident on the polarizer 4 at an incident angle ⁇ that is a Brewster angle and is transmitted through the polarizer 4.
  • the light transmitted through the polarizer 4 is incident from the left side of the YAG rod 1 in FIG. 2, causes stimulated emission in the YAG rod 1, is emitted from the right side of the YAG rod 1 in FIG. 2, is reflected by the front mirror 3a,
  • the YAG rod 1 passes from the right side to the left side in FIG. Thereafter, the light reciprocates in the optical resonator 3 in the same procedure, and a part of the coherent light amplified by stimulated emission is output as a laser in the direction of arrow B from the front mirror 3a.
  • the voltage that the first voltage application circuit 8a applies to the first Pockels cell 6a (no voltage is applied to the second Pockels cell 6b) by the first control circuit 9a is about 0V as shown in FIG.
  • the peak energy of the pulse laser beam is about 13.0 mJ and the pulse width is about 10 ns.
  • the total voltage applied to the first Pockels cell 6a by the first voltage application circuit 8a by the first control circuit 9a is about 800 ns from about 0V to about ⁇ 3000V as shown in FIG.
  • the peak energy of the pulse laser beam is about 0.6 mJ and the pulse width is about 70 ns.
  • the first control circuit 9a changes the voltage applied to the first Pockels cell 6a by the first voltage application circuit 8a from about 0V to about ⁇ 1500V in about 300ns, about The voltage may be further changed from ⁇ 1500 V to about ⁇ 4500 V in 600 ns.
  • the voltage change rate changes once between a change in voltage from about 0V to about -1500V and a change in voltage from about -1500V to about -4500V. That is, the slope of the voltage graph at about ⁇ 1500 V in FIG. 5 changes.
  • the first peak energy of the pulse laser beam is about 0.5 to 0.6 mJ
  • the second peak energy is about 0.5 to 0.6 mJ
  • the pulse width is about 150 ns. Yes.
  • the first control circuit 9a gradually changes the rate of change of the voltage applied to the first Pockels cell 6a by the first voltage application circuit 8a, thereby extending the pulse width of the output pulse laser beam.
  • the peak energy of the pulse laser beam can be reduced.
  • a voltage is applied only to the second Pockels cell 6b (no voltage is applied to the first Pockels cell 6a).
  • a voltage is applied to both the first Pockels cell 6a and the second Pockels cell 6b.
  • the change rate of the voltage applied to the first Pockels cell 6a and the second Pockels cell 6b by the first voltage application circuit 8a and the second voltage application circuit 8b is stepwise by the first control circuit 9a and the second control circuit 9b.
  • the pulse width of the output pulsed laser beam can be extended, and the peak energy of the pulsed laser beam can be reduced.
  • the number of the control points C may be arbitrarily determined according to the desired pulse width and peak energy.
  • FIG. 8 is a graph schematically showing control of voltages to the two Pockels cells 6a and 6b.
  • the voltage applied to the first Pockels cell 6a is controlled by the first control circuit 9a
  • the voltage applied to the second Pockels cell 6b is controlled by the second control circuit 9b.
  • the timing for applying a voltage to these two Pockels cells 6a and 6b can be shifted.
  • the voltage control for shifting the timing of applying the voltages to the two Pockels cells 6a and 6b is performed by using two Pockels cells 6a and 6b as a whole as shown in FIG. This is equivalent to voltage control (one control point C) in which the rate of change of the total applied voltage to 6b is changed once stepwise.
  • the pulse of the pulse laser beam to be output is the same as when the rate of change of the voltage applied to one Pockels cell is changed stepwise.
  • the width can be extended and the peak energy of the pulsed laser beam can be reduced.
  • the first control circuit 9a and the second control circuit 9b do not need to change the rate of change of the voltage applied to the first Pockels cell 6a and the second Pockels cell 6b step by step, so that the control is easy. is there. Therefore, a control circuit having a simple structure can be used.
  • the change rate of the applied voltage may be changed stepwise while shifting the timing of applying the voltage to the first Pockels cell 6a and the second Pockels cell 6b.
  • the voltage control for changing the change rate of the applied voltage stepwise while shifting the timing of applying the voltage to the two Pockels cells 6a and 6b is performed as the whole of the two Pockels cells 6a and 6b. It is equivalent to voltage control in which the rate of change of voltage as shown in FIG. 9B is changed three times stepwise (three control points C) for either one Pockels cell 6a or second Pockels cell 6b. is there.
  • the voltage is applied only to one of the Pockels cells to function as a ⁇ / 4 wavelength plate. Therefore, by applying a voltage lower than the voltage required for the two Pockels cells 6a and 6b, the two Pockels cells 6a and 6b can function as a ⁇ / 4 wavelength plate as a whole.
  • both the first Pockels cell 6a and the second Pockels cell 6b are Pockels cells that function as ⁇ / 4 wavelength plates by applying a voltage of 3.6 kV
  • the voltage is applied to only one Pockels cell.
  • first Pockels cell 6a and the second Pockels cell 6b voltages in opposite directions may be applied to the first Pockels cell 6a and the second Pockels cell 6b.
  • the peak energy of the first peak P1 is about 0.6 mJ
  • the two Pockels cells 6a the first round of peak energy of the peak P 2 when a voltage is applied to the opposite directions to each other by shifting the timing of changing the voltage to 6b is about 0.2 mJ. That is, the first peak energy can be reduced by applying voltages in opposite directions while shifting the timing of changing the voltage.
  • the first Pockels cell 6a and the second Pockels cell 6b are Pockels cells that function as ⁇ / 4 wavelength plates by applying a voltage, but these two Pockels cells 6a and 6b Any device that functions as a ⁇ / 4 wavelength plate as a whole by application may be used.
  • a Pockels cell that functions as a ⁇ / 2 wavelength plate by application of a voltage, or an electro-optical element other than a Pockels cell may be used.
  • a voltage applied to the other Pockels cell is changed in a state where a predetermined voltage is applied to one Pockels cell to function as a ⁇ / 4 wavelength plate, or a predetermined voltage is applied to the two Pockels cells 6a and 6b as a whole.
  • the oscillation of the pulsed laser may be controlled by functioning as a ⁇ / 2 wavelength plate by applying. In this case, the ⁇ / 4 wavelength plate 5 becomes unnecessary, and the number of parts of the pulse laser can be reduced.
  • the voltage value applied to the first electro-optic element by the voltage control device can be changed over time to control the pulse width of the laser light. it can. Therefore, it is possible to extend the pulse width of the output pulsed laser beam and reduce the peak energy of the pulsed laser beam.
  • the pulse width can be extended without using a beam splitter that splits the laser light or a mirror for the delay optical system, the pulse laser oscillator can be formed compactly.
  • the pulse laser oscillator when used, it is not necessary to adjust the beam splitter and the mirror for the delay optical system, so that the work for using the pulse laser oscillator becomes easy.
  • FIG. 12 is a plan view showing a pulse laser oscillator according to a third embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and different parts from the first embodiment will be described.
  • the resonator 3, the optical amplifier 11, and the laser attenuator 12 are arranged in this order from the upstream to the downstream in the traveling direction of the laser light.
  • the resonator 3 has the same function as the resonator in the first embodiment, and is a laser medium that generates laser light when excited by a flash lamp (not shown) between the front mirror 3a and the rear mirror 3b.
  • a flash lamp not shown
  • a polarizer 4 disposed behind the ND: YAG rod 1 and comprising a polarizer 4, a ⁇ / 4 wave plate 5 and a Pockels cell 6 as a polarizing element.
  • the voltage applied to the Pockels cell 6 can be controlled by the control means (not shown) in the same manner as in the first embodiment, so that the pulse width of the pulse laser beam can be expanded.
  • the optical amplifier 11 amplifies and outputs the pulse energy of the laser light, and for example, an ND: YAG rod is used.
  • the laser attenuator 12 selectively reduces energy for a specific time in one pulse of laser light.
  • a specific configuration example of the laser attenuator 12 includes first and second polarizing beam splitters 13a and 13b serving as polarizing elements arranged in a crossed Nicol configuration on the optical path of the laser beam, Laser light that is arranged between the first and second polarizing beam splitters 13a and 13b so that the optical axis forms 45 ° with respect to incident linearly polarized light (for example, P-polarized light), and passes through the inside by application of voltage.
  • the Pockels cell 14 as a second electro-optical element that rotates the plane of polarization of the light, and the control unit 15 that controls the voltage value and the application timing applied to the Pockels cell 14 are provided.
  • the Pockels cell 14 used in the third embodiment can obtain the effect of a ⁇ / 4 wave plate by applying a voltage of up to ⁇ 3.6 kV, and the third and fourth Pockels cells 14a and 14b are connected to each other. By arranging them in series and controlling the applied voltage in parallel at a maximum of ⁇ 3.6 kV, the combination of the third and fourth Pockels cells 14a and 14b can achieve the effect of a ⁇ / 2 wavelength plate.
  • the applied voltage of the third and fourth Pockels cells 14a and 14b is changed, for example, from 0 kV to -3.6 kV, the light transmittance of the laser attenuator 12 changes from 0% to 100%. Become.
  • reference numeral 16 denotes a second polarizer
  • reference numeral 17 denotes a beam expander that expands the diameter of the laser beam
  • reference numeral 18 denotes a reflection mirror.
  • the operation of the laser attenuator 12 in the operation of the third embodiment configured as described above will be described.
  • a voltage of ⁇ 3.6 kV is applied to the third and fourth Pockels cells 14a and 14b of the laser attenuator 12, respectively.
  • the laser light incident on the laser attenuator 12 first has a polarization surface parallel to the incident surface with respect to the reflection surface 19a on the reflection surface 19a of the first polarization beam splitter 13a and is transmitted through the reflection surface 19a.
  • the light is separated into linearly polarized light (p-polarized light) and linearly polarized light (s-polarized light) that has a polarization plane perpendicular to the incident surface and is reflected by the reflection surface 19a.
  • the p-polarized light transmitted through the first polarizing beam splitter 13a is incident on the third Pockels cell 14a.
  • the third Pockels cell 14a is applied with a voltage of -3.6 kV and exhibits the effect of a ⁇ / 4 wavelength plate. Therefore, the p-polarized laser light incident on the third Pockels cell 14a has a 90 ° phase difference while passing through the third Pockels cell 14a, and becomes circularly polarized light, and exits the third Pockels cell 14a.
  • the circularly polarized light is incident on the fourth Pockels cell 14b.
  • the fourth Pockels cell 14b since the voltage of -3.6 kV is also applied to the fourth Pockels cell 14b, the fourth Pockels cell 14b exhibits the effect of a ⁇ / 4 wavelength plate. Accordingly, the circularly polarized laser light incident on the fourth Pockels cell 14b has a phase difference of 90 ° while passing through the inside of the fourth Pockels cell 14b.
  • the p-polarized light transmitted through the first polarizing beam splitter 13a is incident on the second polarizing beam splitter 13b after the polarization plane is rotated by 90 ° by the third and fourth Pockels cells 14a and 14b.
  • the reflecting surfaces 19a, 19b of the polarizing beam splitters 13a, 13b are in a relationship of 90 ° rotation with respect to each other. Accordingly, the linearly polarized light incident on the second polarizing beam splitter 13b has a p-polarized relationship with respect to the reflecting surface 19b of the second polarizing beam splitter 13b, and passes through the reflecting surface 19b.
  • the polarization plane of the linearly polarized light passing through the Pockels cells 14 is not rotated, so that the p-polarized light transmitted through the first polarization beam splitter 13a is The light enters the second polarizing beam splitter 13b as it is.
  • the p-polarized light since the p-polarized light has an s-polarized relationship with respect to the reflecting surface 19b of the second polarizing beam splitter 13b, the p-polarized light is reflected by, for example, the front side (or the back side) in FIG.
  • the laser attenuator 12 is not emitted by being absorbed by a light-absorbing material (not shown).
  • the applied voltage of the third and fourth Pockels cells 14a and 14b is appropriately changed between 0 kV and ⁇ 3.6 kV, and the polarization plane of the linearly polarized light passing through the Pockels cell 14 is rotated. It is possible to adjust the energy intensity of the laser beam output from the laser attenuator 12 between 0% and 100% by taking out the polarization component having the p-polarization relationship with respect to the reflection surface 19b of the polarization beam splitter 13b. It becomes.
  • the pulse laser oscillator of the present invention is capable of extending the pulse width of laser light generated, for example, as shown in FIG. 4 or FIG. 5 when the voltage applied to the Pockels cell 6 of the Q switch 10 is gradually reduced. is there.
  • the long pulse laser beam generated in this way emits excessive pulse energy at a specific time, for example, when amorphous silicon on a semiconductor substrate is annealed to become polysilicon. There was a possibility that uniform annealing could not be performed.
  • the pulse laser oscillator of the present invention by controlling the applied voltage value and the application timing of the laser attenuator 12 to the Pockels cell 14, the pulse energy of a specific time in one pulse of laser light is selectively reduced, This is intended to make the laser energy within one pulse substantially constant.
  • the operation of the laser attenuator 12 will be described.
  • the applied voltage to the third and fourth Pockels cells 14a and 14b within the time tn is set to ⁇ 1.8 kV, and after the time tn has elapsed, the voltage is controlled to ⁇ 3.6 kV.
  • the transmittance of the laser light transmitted through the laser attenuator 3 is reduced to 50% within the first time tn, and the transmittance becomes 100% after the time tn has elapsed.
  • the laser intensity within the first time tn is reduced by 50%, and the original intensity of the laser intensity after the elapse of time tn is maintained as it is. .
  • the laser intensity within one pulse becomes substantially constant as shown in FIG.
  • the third embodiment it is possible to selectively reduce excessive energy in a specific time in a long pulse laser beam. Therefore, substantially constant energy can be obtained over the entire pulse width. Thereby, when the laser beam is used for processing, it is possible to prevent excessive energy from being concentrated locally and causing damage such as burnout to the workpiece.
  • the laser attenuator 12 is provided with the third and fourth Pockels cells 14a and 14b has been described.
  • the electric power that exhibits the effect of the ⁇ / 2 wavelength plate by applying a voltage is described.
  • One optical element may be used.
  • the laser attenuator 12 is provided on the downstream side of the optical amplifier 11 in the third embodiment.
  • the present invention is not limited to this and may be provided on the upstream side of the optical amplifier 11. .
  • the laser attenuator 12 is preferably provided on the downstream side of the optical amplifier 11 as in the third embodiment. Or you may provide the laser attenuator 12 so that the energy of the laser beam which inject
  • the pulse laser oscillator of the present invention may be used for any laser processing such as drilling as well as annealing.
  • Pockels cell (first electro-optic element) 6a ... 1st Pockels cell 6b ... 2nd Pockels cell 7 ... Voltage controller 11 ...
  • Optical amplifier 12 Laser attenuator 13a ... 1st polarization beam splitter (polarization element) 13b ... Second polarization beam splitter (polarization element) 14 ... Pockels cell (second electro-optic element) 14a ... the third Pockels cell 14b ... the fourth Pockels cell

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

 本発明は、印加された電圧に応じて光を偏光する第1の電気光学素子と、前記第1の電気光学素子に電圧を印加するとともに電圧を制御する電圧制御装置とを備えたパルスレーザ発振器であって、前記電圧制御装置によって前記第1の電気光学素子に印加する電圧値を経時的に変化させ、レーザ光のパルス幅を制御するものである。

Description

パルスレーザ発振器及びパルスレーザ発振制御方法
 本発明は、印加された電圧に応じて光を偏光する電気光学素子を備えたパルスレーザ発振器及びパルスレーザ発振制御方法に関し、詳しくは、電気光学素子に印加する電圧を経時的に変化させ、レーザ光のパルス幅を伸長し、出力されるパルスレーザ光のピークエネルギーを低下させることができるパルスレーザ発振器及びパルスレーザ発振制御方法に係るものである。
 従来のパルスレーザ発振器として、レーザ媒質、これを励起する励起用光源及びレーザ媒質が放射した光を往復増幅する共振器を有してパルスレーザ光を得る構成であって、レーザ媒質の片側に高反射率ミラーを、他方側に低反射率ミラーを配設してなる共振器間にQスイッチ素子及びキャビティダンプ素子を配設し、レーザ光を共振器内に完全に閉じ込めた状態でQスイッチ発振を行わせ、共振器内に蓄積されたパルスレーザ光のピークレベル近傍で、続けてキャビティダンプ素子を動作させてキャビティダンプを行なわせることにより、共振器内部に蓄積されたエネルギーを瞬間的に外部に取り出すように構成されたものがあった(例えば特許文献1参照)。
特開2003-69118号公報
 しかし、従来のパルスレーザ発振器においては、共振器内部に蓄積されたエネルギーが瞬間的に外部に取り出されるため、出力されるパルスレーザ光のピークエネルギーが大きくなりすぎ、レーザが照射される対象物を損傷するおそれがあった。
 そこで、このような問題点に対処し、本発明が解決しようとする課題は、パルス幅を伸長することにより、出力されるパルスレーザ光のピークエネルギーを低下させることができるパルスレーザ発振器及びパルスレーザ発振制御方法を提供することにある。
 上記課題を解決するために、本発明によるパルスレーザ発振器は、印加された電圧に応じて光を偏光する第1の電気光学素子と、前記第1の電気光学素子に電圧を印加するとともに電圧を制御する電圧制御装置とを備えたパルスレーザ発振器であって、前記電圧制御装置によって前記第1の電気光学素子に印加する電圧値を経時的に変化させ、レーザ光のパルス幅を制御するものである。
 この場合、前記第1の電気光学素子は複数備えられ、該複数の第1の電気光学素子の個々に印加する電圧値をそれぞれ経時的に変化させてもよい。
 好ましくは、前記電圧制御装置は、前記第1の電気光学素子に印加する電圧値の変化率を段階的に変化させるのが望ましい。
 また、前記第1の電気光学素子を2つ備え、前記電圧制御装置によって、前記2つの第1の電気光学素子にそれぞれ互いに反対向きの電圧を印加してもよい。
 さらに、前記電気光学素子はポッケルスセルであり、さらにλ/4波長板を備えるとよい。
 さらにまた、前記レーザ光の光路上には、クロスニコルに配置された二つの偏光素子と、前記二つの偏光素子の間に配置され、電圧の印加により内部を通過するレーザ光の偏光面を回転させる第2の電気光学素子と、前記第2の電気光学素子に対する印加電圧値及び印加タイミングを制御する制御部と、を含むレーザ用アッテネータがさらに備えられてもよい。
 この場合、前記第2の電気光学素子は、ポッケルスセルであるとよい。
 また、前記ポッケルスセルは、複数個が直列に並べて配置されていてもよい。
 好ましくは、前記レーザ用アッテネータは、前記レーザ光の光路上に設けられた光増幅器の下流側に備えられるのがよい。
 そして、本発明によるパルスレーザ発振制御方法は、印加された電圧に応じて光を偏光する第1の電気光学素子に印加する電圧を変化させることにより、レーザ光の発振を制御するレーザ発振制御方法において、前記第1の電気光学素子に印加する電圧値を経時的に変化させ、レーザ光のパルス幅を制御するものである。
 この場合、前記第1の電気光学素子は複数備えられ、該複数の第1の電気光学素子の個々に印加する電圧値をそれぞれ経時的に変化させてもよい。
 好ましくは、前記第1の電気光学素子に印加する電圧値の変化率を段階的に変化させるのが望ましい。
 また、前記第1の電気光学素子を2つ備え、前記電圧制御装置によって、前記2つの第1の電気光学素子にそれぞれ互いに反対向きの電圧を印加してもよい。
 本発明によれば、電圧制御装置によって第1の電気光学素子に印加する電圧値を経時的に変化させて、レーザ光のパルス幅を制御することができる。したがって、出力されるパルスレーザ光のパルス幅を伸長させると共に、パルスレーザ光のピークエネルギーを低下させることができる。
 また、レーザ光を分光するビームスプリッタや、遅延光学系のためのミラーを使用せずにパルス幅を伸長させることができるため、パルスレーザ発振器をコンパクトに形成することができる。
 さらに、パルスレーザ発振器を使用する際に、上記ビームスプリッタや、遅延光学系のためのミラーを調整する必要がないため、パルスレーザ発振器を使用するための作業が容易になる。
本発明によるパルスレーザ発振器の第1の実施形態における電圧非印加状態を示す概略図である。 上記第1の実施形態における電圧印加状態を示す概略図である。 上記第1の実施形態のポッケルスセルに印加する電圧の変化と、出力されるパルスレーザ光の出力エネルギーの関係の一例を示すグラフである。 図3に記載の関係の他の例を示すグラフである。 図3及び図4に記載の関係のさらに他の例を示すグラフである。 本発明によるパルスレーザ発振器の第2の実施形態における電圧非印加状態を示す概略図である。 上記第2の実施形態における電圧印加状態を示す概略図である。 上記第2の実施形態の2つのポッケルスセルへの電圧の制御を模式的に示すグラフであり、(a)は2つのポッケルスセルにそれぞれ電圧を印加する制御、(b)は(a)時における2つのポッケルスセルのトータル印加電圧を示すグラフである。 図8に記載の電圧の制御の他の例を示すグラフである。 上記第2の実施形態のポッケルスセルに印加する電圧と、パルスレーザ光の出力エネルギーの関係の一例を示すグラフであり、(a)は1つのポッケルスセルにのみ電圧を印加する場合、(b)は2つのポッケルスセルに同一方向に電圧を印加する場合を示すグラフである。 上記第2の実施形態の2つのポッケルスセルに同一方向に電圧を印加した場合と、反対方向に電圧を印加した場合と、に出力されるパルスレーザ光の出力エネルギーを比較するグラフである。 本発明によるパルスレーザ発振器の第3の実施形態を示す平面図である。 上記第3の実施形態のレーザ用アッテネータの一構成例を示す平面図である。 上記レーザ用アッテネータによる1パルスのレーザ光における特定時間のエネルギーが選択的に低減される様子を示す説明図であり、(a)は低減前の状態を示し、(b)は低減後の状態を示す。 上記レーザ用アッテネータによる1パルスのレーザ光における特定時間のエネルギーを選択的に低減するための電圧制御について示す説明図であり、(a)は、印加電圧の時間変化を示し、(b)はそのときの透過率の時間変化を示す。
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるパルスレーザ発振器の第1の実施形態を示す図である。このパルスレーザ発振器は、Q値(後述する光共振器3内に蓄えられたエネルギー/光共振器3の外部に失われるエネルギー)を切り替えることによりジャイアントパルスを発生させるQスイッチ法によりジャイアントパルスを発生させるYAGレーザであって、YAGロッド1と、フラッシュランプ2と、光共振器3と、ポラライザー4と、λ/4波長板5と、ポッケルスセル6と、電圧制御装置7と、を備える。
 上記YAGロッド1は、後述するフラッシュランプ2から光に照射されることにより光を放出し、放出した光を誘導放出により増幅させるものであって、図1に示すように、光軸Lに沿って光を放出する固体のレーザ媒質である。このYAGロッド1のかわりに、Nd:YAGロッドやEr:YAGロッドなどの他のレーザ媒質を使用してもよい。
 YAGロッド1の側面(図1におけるYAGロッド1の上側)にはフラッシュランプ2が設けられている。このフラッシュランプ2は、YAGロッド1に光を照射して、YAGロッド1からの光の放出を開始させるものであり、例えばキセノンフラッシュランプやレーザダイオードが使用される。
 図1におけるYAGロッド1の左右の両側方には、フロントミラー3a及びリアミラー3bが設けられている。このフロントミラー3a及びリアミラー3bは、YAGロッド1から放出された光を2枚のミラー間で往復させるものであり、フロントミラー3aとリアミラー3bとによって、YAGロッド1内で誘導放出を生じさせてコヒーレントな光を増幅させる光共振器3を構成している。
 上記フロントミラー3aは、入射光の一部を透過させる部分透過ミラーであって、YAGロッド1から放出される光の光軸L上のレーザ光が放出される側に設置される。Qスイッチ法により瞬間的に増幅されたレーザ光の一部が、このフロントミラー3aを通じて光共振器3内から取り出される。
 また、上記リアミラー3bは、YAGロッド1を間にしてフロントミラー3aと反対側の光軸L上に設けられた全反射ミラーであり、フロントミラー3aとの間で光軸L上の光を往復させる。
 上記リアミラー3bとYAGロッド1との間の光軸L上には、ポラライザー4が設けられている。このポラライザー4は、入射光のうち、入射面に対して垂直な偏光成分であるs偏光を反射することにより、入射面に対して平行な偏光成分であるp偏光だけを透過させるものであって、Qスイッチ法におけるシャッターの役割を果たす偏光子である。ポラライザー4の材質は、ガラスやプラスチックであり、入射光の入射角θが、p偏光の反射率が0になるブリュースター角となるように光軸Lに対して傾いて設置されている。このポラライザー4は、複数設けられてもよい。また、ポラライザー4は、s偏光又はp偏光のいずれか一方のみを透過させるものであればよく、上記のものの他にも、例えば偏光プリズムや偏光フィルタ等の偏光子を使用してもよい。
 なお、以下の説明で使用するs偏光及びp偏光という語は、このポラライザー4に対するs偏光及びp偏光を指すものとする。
 上記ポラライザー4とリアミラー3bとの間には、λ/4波長板5が設けられている。このλ/4波長板5は、入射光の偏光成分に90°(π/2)の位相差を生じさせることにより、直線偏光(上記s偏光又はp偏光)を円偏光に、円偏光を直線偏光に変換するものであって、図1に示すように、ポラライザー4の左側の光軸L上に設けられている。YAGロッド1から放出され、ポラライザー4を透過したp偏光は、このλ/4波長板5により円偏光に変換される。
 上記λ/4波長板5とリアミラー3bとの間には、ポッケルスセル6が設けられている。このポッケルスセル6は、印加された電圧に応じて光を偏光する第1の電気光学素子であって、図1に示すように、λ/4波長板5の左側の光軸L上に設けられている。ポッケルスセル6は、電圧が印加されていない状態では光を偏光しないが、電圧が印加されると光を偏光し、その偏光の度合いは印加電圧に依存する。
 上記ポッケルスセル6には、電圧制御装置7が電気的に接続されている。電圧制御装置7は、ポッケルスセル6に電圧を印加するとともに印加する電圧を制御するものであって、電圧印加回路7aと、制御回路7bとからなる。
 電圧印加回路7aは、ポッケルスセル6に電圧を印加するものであって、ポッケルスセル6に電気的に接続されている。この電圧印加回路7aには、電圧印加回路7aによるポッケルスセル6への電圧の印加を制御することで、ポッケルスセル6に入射した光の偏光の度合いを変化させ、レーザ光の発振を制御する制御回路7bが接続されている。
 次に、このように構成されたパルスレーザ発振器の動作及びパルスレーザ発振制御方法について、図1~図5を参照して説明する。
 このパルスレーザ発振器によりパルスレーザを発振する際、まず、制御回路7bは、電圧印加回路7aに信号を送り、ポッケルスセル6への印加電圧が0Vとなるように電圧印加回路7aを制御する。この状態で、フラッシュランプ2が発光し、YAGロッド1に光を照射すると、YAGロッド1内の一部の原子が励起状態となり、YAGロッド1から光軸Lに沿って光が放出される。YAGロッド1からポラライザー4の方向(矢印Aの方向)に放出された光は、図1に示すように、ブリュースター角となる入射角θでポラライザー4に入射する。入射した光のうち、p偏光はポラライザー4を透過し、s偏光及び円(又は楕円)偏光はポラライザー4により反射されて光軸Lの外方へ進む。
 ポラライザー4を透過したp偏光は、λ/4波長板5に入射して90°(π/2)の位相差を生じ、円偏光に変換され、ポッケルスセル6に入射する。ここで、ポッケルスセル6には電圧が印加されていないため、入射光を偏光せずに透過させる。したがって、ポッケルスセル6に入射した上記円偏光は、図1に示すように、円偏光のままポッケルスセル6を透過し、リアミラー3bに反射され、再度ポッケルスセル6を透過し、λ/4波長板5に入射する。
 円偏光がλ/4波長板5に入射すると、さらに90°(π/2)の位相差を生じ、s偏光(すなわち、YAGロッド1から放出され、ポラライザー4を透過したp偏光とは、位相が180°(π)ずれた状態)に変換され、ポラライザー4にブリュースター角となる入射角θで入射する。ポラライザー4は上述の通り、s偏光を反射する機能を備えるため、入射したs偏光はポラライザー4に反射されて光軸Lの外方へ進む。
 このように、ポッケルスセル6に電圧を印加しない状態においては、YAGロッド1から放出された光はポラライザー4により反射されてしまい、再びYAGロッド1に入射しないため、光共振器3内での共振が発生せず、パルスレーザの発振が抑制される。
 次に、YAGロッド1内の励起された原子の数が、パルスレーザ光として出力したいエネルギーに必要な量となる(反転分布が十分大きくなる)まで上記の電圧非印加状態を維持した後、制御回路7bによって電圧印加回路7aがポッケルスセル6に印加する電圧を変化させる。電圧印加回路7aによってポッケルスセル6に所定の電圧が印加されると、ポッケルスセル6はλ/4波長板5として機能する。
 ポッケルスセル6に電圧が印加された状態において、YAGロッド1から矢印Aの方向に放出された光は、図2に示すように、上記電圧非印加状態と同様、ポラライザー4によりp偏光に変換され、λ/4波長板5により円偏光に変換され、ポッケルスセル6に入射する。ポッケルスセル6に入射した光は、上記の通りポッケルスセル6がλ/4波長板5として機能しているため、90°(π/2)の位相差を生じ、s偏光(すなわち、YAGロッド1から放出され、ポラライザー4を透過したp偏光とは、位相が180°(π)ずれた状態)に変換される。
 このs偏光はリアミラー3bにより反射され、再度ポッケルスセル6に入射し、さらに90°の位相差を生じ、円偏光(すなわち、YAGロッド1から放出され、ポラライザー4を透過したp偏光とは、位相が270°(3π/2)ずれた状態)に変換される。この円偏光は、λ/4波長板5に入射し、さらに90°の位相差を生じ、p偏光(すなわち、YAGロッド1から放出され、ポラライザー4を透過したp偏光とは、位相が360°(2π)ずれた状態)に変換される。
 このp偏光は、ポラライザー4にブリュースター角となる入射角θで入射し、ポラライザー4を透過する。ポラライザー4を透過した光は、図2におけるYAGロッド1の左側から入射し、YAGロッド1内で誘導放出を生じさせ、図2におけるYAGロッド1の右側から放出され、フロントミラー3aに反射され、YAGロッド1を図2における右側から左側に通過する。以下、同様の手順で光共振器3内を光が往復し、誘導放出により増幅されたコヒーレントな光の一部がフロントミラー3aから矢印Bの方向にレーザとして出力される。
 図3は、ポッケルスセル6に印加する電圧の変化と、出力されるパルスレーザ光の出力エネルギーの関係の一例を示すグラフである。本発明によるパルスレーザ発振器の実施形態において、制御回路7bによって、電圧印加回路7aがポッケルスセル6に印加する電圧を、約0Vから約-4000Vまで約100nsで変化させると、パルスレーザ光のピークエネルギーが約13.0mJ、パルス幅が約10nsとなっている。
 また、図4は、ポッケルスセル6に印加する電圧の変化と、出力されるパルスレーザ光の出力エネルギーの関係の他の例を示すグラフである。本実施例においては、制御回路7bによって、電圧印加回路7aがポッケルスセル6に印加する電圧を、約0Vから約-3000Vまで約800nsで上記図3に示す実施例より緩やかに変化させており、パルスレーザ光のピークエネルギーが約0.6mJ、パルス幅が約70nsとなっている。このように、電圧印加回路7aにより印加する電圧の変化率を、制御回路7bによって小さくすることにより、パルスレーザ光のパルス幅を伸長させ、ピークエネルギーを低下させることができる。
 さらに、図5は、ポッケルスセル6に印加する電圧の変化と、出力されるパルスレーザ光の出力エネルギーの関係のさらに他の例を示すグラフである。本実施例においては、制御回路7bによって、電圧印加回路7aがポッケルスセル6に印加する電圧を、約0Vから約-1500Vまで約300nsで変化させた後、約-1500Vから約-4500Vまでさらに600nsで変化させている。
 図5に示すように、約0Vから約-1500Vまでの電圧の変化と、約-1500Vから約-4500Vまでの電圧の変化との間では、電圧の変化率が1回変化している。すなわち、図5における約-1500V前後での電圧のグラフの勾配が変化している。このように、電圧の変化率を段階的に変化させると、制御回路7bによって電圧の変化率を変化させる点(以下「制御点」という。)Cの後にもピークを生じさせることができる。本実施例においては、パルスレーザ光の第1のピークエネルギーが約0.5~0.6mJ、第2のピークエネルギーも同様に約0.5~0.6mJ、パルス幅が約150nsとなっている。このように、制御回路7bによって電圧印加回路7aがポッケルスセル6に印加する電圧の変化率を段階的に変化させることにより、出力されるパルスレーザ光のパルス幅を伸長させ、パルスレーザ光のピークエネルギーを低下させることができる。
 なお、電圧印加回路7aにより印加する電圧の変化率及び制御点Cの数は、必要なパルス幅及び出力エネルギーに応じて定めればよい。また、λ/4波長板5を使用せず、ポッケルスセル6にかえて、電圧の印加に応じてλ/2波長板として機能する第1の電気光学素子を使用することとしてもよい。
 図6は本発明によるパルスレーザ発振器の第2の実施形態を示す図である。ここでは、第1の実施形態と同じ構成要素には同一の符号を付して、第1の実施形態と異なる部分について説明する。
 この第2の実施形態において、λ/4波長板5とリアミラー3bとの間には、第1ポッケルスセル6aと第2ポッケルスセル6bとが設けられている。これら2つのポッケルスセル6a,6bは、印加された電圧に応じて光を偏光する第1の電気光学素子であって、図6に示すように、λ/4波長板5の左側の光軸L上に、λ/4波長板5側から第1ポッケルスセル6a、第2ポッケルスセル6bの順に設けられている。これら2つのポッケルスセル6a,6bは、電圧を印加されていない状態では光を偏光しないが、電圧を印加されると光を偏光し、その偏光の度合いは印加電圧に依存する。
 上記第1ポッケルスセル6a及び第2ポッケルスセル6bには、電圧制御装置7が電気的に接続されている。電圧制御装置7は、第1ポッケルスセル6a及び第2ポッケルスセル6bの個々に電圧を印加するとともに印加する電圧を制御するものであって、第1電圧印加回路8aと、第2電圧印加回路8bと、第1制御回路9aと、第2制御回路9bとからなる。
 第1電圧印加回路8aは、第1ポッケルスセル6aに電圧を印加するものであって、第1ポッケルスセル6aに電気的に接続されている。この第1電圧印加回路8aには、第1電圧印加回路8aによる第1ポッケルスセル6aへの電圧の印加を制御することで、第1ポッケルスセル6aに入射した光の偏光の度合いを変化させ、レーザ光の発振を制御する第1制御回路9aが接続されている。
 第2電圧印加回路8bは、第2ポッケルスセル6bに電圧を印加するものであって、第2ポッケルスセル6bに電気的に接続されている。この第2電圧印加回路8bには、第2電圧印加回路8bによる第2ポッケルスセル6bへの電圧の印加を制御することで、第2ポッケルスセル6bに入射した光の偏光の度合いを変化させ、レーザ光の発振を制御する第2制御回路9bが接続されている。
 次に、このように構成されたパルスレーザ発振器の第2の実施形態の動作及びパルスレーザ発振制御方法について説明する。
 このパルスレーザ発振器によりパルスレーザを発振する際、まず、第1制御回路9a及び第2制御回路9bは、第1電圧印加回路8a及び第2電圧印加回路8bにそれぞれ信号を送り、第1ポッケルスセル6a及び第2ポッケルスセル6bへの印加電圧が0Vとなるように制御する。この状態で、フラッシュランプ2が発光し、YAGロッド1に光を照射すると、YAGロッド1内の一部の原子が励起状態となり、YAGロッド1から光軸Lに沿って光が放出される。YAGロッド1からポラライザー4の方向(矢印Aの方向)に放出された光は、図6に示すように、ブリュースター角となる入射角θでポラライザー4に入射する。入射した光のうち、p偏光はポラライザー4を透過し、s偏光及び円(又は楕円)偏光はポラライザー4により反射されて光軸Lの外方へ進む。
 ポラライザー4を透過したp偏光は、λ/4波長板5に入射して90°(π/2)の位相差を生じ、円偏光に変換され、第1ポッケルスセル6aに入射する。ここで、第1ポッケルスセル6aには電圧が印加されていないため、入射光を偏光せずに透過させる。したがって、第1ポッケルスセル6aに入射した上記円偏光は、図1に示すように、円偏光のまま第1ポッケルスセル6aを透過する。透過した円偏光は第2ポッケルスセル6bについても上記と同様に円偏光のまま透過し、リアミラー3bで反射され、再度第2ポッケルスセル6b及び第1ポッケルスセル6aを透過し、λ/4波長板5に入射する。
 円偏光がλ/4波長板5に入射すると、さらに90°(π/2)の位相差を生じ、s偏光(すなわち、YAGロッド1から放出され、ポラライザー4を透過したp偏光とは、位相が180°(π)ずれた状態)に変換され、ポラライザー4にブリュースター角となる入射角θで入射する。ポラライザー4は上述の通り、s偏光を反射する機能を備えるため、入射したs偏光はポラライザー4に反射されて光軸Lの外方へ進む。
 このように、第1ポッケルスセル6a及び第2ポッケルスセル6bに電圧を印加しない状態においては、YAGロッド1から放出された光はポラライザー4により反射されてしまい、再びYAGロッド1に入射しないため、光共振器3内での共振が発生せず、パルスレーザの発振が抑制される。
 次に、YAGロッド1内の励起された原子の数が、パルスレーザ光として出力したいエネルギーに必要な量となる(反転分布が十分大きくなる)まで上記の電圧非印加状態を維持した後、第1制御回路9a及び第2制御回路9bによって、第1電圧印加回路8a及び第2電圧印加回路8bが第1ポッケルスセル6a及び第2ポッケルスセル6bに印加する電圧を変化させる。第1電圧印加回路8a及び第2電圧印加回路8bによって、第1ポッケルスセル6a及び第2ポッケルスセル6bに電圧が印加されると、第1ポッケルスセル6a及び第2ポッケルスセル6bは印加された電圧に応じて光を偏光する。これら2つのポッケルスセル6a,6bにそれぞれ所定の電圧を印加すると、2つのポッケルスセル6a,6bは全体としてλ/4波長板として機能する。このとき、上記2つのポッケルスセル6a,6bに印加する電圧の大きさ、方向、及び変化させるタイミングは、第1制御回路9a及び第2制御回路9bによって、同一になるように制御されてもよく、また異なるように制御されてもよい。
 第1ポッケルスセル6a及び第2ポッケルスセル6bに電圧が印加された状態において、YAGロッド1からポラライザー4の方向(矢印Aの方向)に放出された光は、図7に示すように、上記電圧非印加状態と同様、p偏光のみポラライザー4を透過し、s偏光及び円(楕円)偏光は、ポラライザー4に反射される。ポラライザー4を透過したp偏光は、λ/4波長板5により円偏光に変換され、第1ポッケルスセル6a及び第2ポッケルスセル6bに入射する。第1ポッケルスセル6a及び第2ポッケルスセル6bに入射した円偏光は、電圧の印加により第1ポッケルスセル6a及び第2ポッケルスセル6bが全体としてλ/4波長板として機能しているため、これら2つのポッケルスセル6a,6bを透過することで90°(π/2)の位相差を生じ、s偏光(すなわち、YAGロッド1から放出され、ポラライザー4を透過したp偏光とは、位相が180°(π)ずれた状態)に変換される。
 このs偏光はリアミラー3bにより反射され、再度第2ポッケルスセル6b及び第1ポッケルスセル6aに入射し、さらに90°の位相差を生じ、円偏光(すなわち、YAGロッド1から放出され、ポラライザー4を透過したp偏光とは、位相が270°(3π/2)ずれた状態)に変換される。この円偏光は、λ/4波長板5に入射し、さらに90°の位相差を生じ、p偏光(すなわち、YAGロッド1から放出され、ポラライザー4を透過したp偏光とは、位相が360°(2π)ずれた状態)に変換される。
 このp偏光は、ポラライザー4にブリュースター角となる入射角θで入射し、ポラライザー4を透過する。ポラライザー4を透過した光は、図2におけるYAGロッド1の左側から入射し、YAGロッド1内で誘導放出を生じさせ、図2におけるYAGロッド1の右側から放出され、フロントミラー3aに反射され、YAGロッド1を図2における右側から左側に通過する。以下、同様の手順で光共振器3内を光が往復し、誘導放出により増幅されたコヒーレントな光の一部がフロントミラー3aから矢印Bの方向にレーザとして出力される。
 ここで、第1制御回路9aによって、第1電圧印加回路8aが第1ポッケルスセル6aに印加する電圧のみ(第2ポッケルスセル6bには電圧を印加しない)を、図3に示すように約0Vから約-4000Vまで約100nsで変化させると、パルスレーザ光のピークエネルギーが約13.0mJ、パルス幅が約10nsとなる。
 また、第1制御回路9aによって、第1電圧印加回路8aが第1ポッケルスセル6aに印加する電圧の合計を、図4に示すように約0Vから約-3000Vまで約800nsで図3に示す実施例より緩やかに変化させると、パルスレーザ光のピークエネルギーが約0.6mJ、パルス幅が約70nsとなる。このように、第1電圧印加回路8aにより印加する電圧の変化率を、第1制御回路9aによって小さくすることにより、パルスレーザ光のパルス幅を伸長させ、ピークエネルギーを低下させることができる。これは、第2ポッケルスセル6bにのみ電圧を印加する(第1ポッケルスセル6aには電圧を印加しない)場合においても同様である。また、第1ポッケルスセル6a及び第2ポッケルスセル6bの両方に電圧を印加する場合であっても同様である。すなわち、第1制御回路9a及び第2制御回路9bによって、第1ポッケルスセル6a及び第2ポッケルスセル6bに印加する電圧を変化させることにより、出力されるパルスレーザ光のパルス幅を伸長させ、パルスレーザ光のピークエネルギーを低下させることができる。
 さらに、図5に示すように、第1制御回路9aによって、第1電圧印加回路8aが第1ポッケルスセル6aに印加する電圧を、約0Vから約-1500Vまで約300nsで変化させた後、約-1500Vから約-4500Vまでさらに600nsで変化させてもよい。
 図5においては、約0Vから約-1500Vまでの電圧の変化と、約-1500Vから約-4500Vまでの電圧の変化との間で電圧の変化率が1回変化している。すなわち、図5における約-1500V前後での電圧のグラフの勾配が変化している。このように、電圧の変化率を段階的に変化させると、第1制御回路9aによって電圧の変化率を変化させる制御点Cの後にもピークを生じさせることができる。本実施例においては、パルスレーザ光の第1のピークエネルギーが約0.5~0.6mJ、第2のピークエネルギーも同様に約0.5~0.6mJ、パルス幅が約150nsとなっている。
 このように、第1制御回路9aによって第1電圧印加回路8aが第1ポッケルスセル6aに印加する電圧の変化率を段階的に変化させることにより、出力されるパルスレーザ光のパルス幅を伸長させ、パルスレーザ光のピークエネルギーを低下させることができる。これは、第2ポッケルスセル6bにのみ電圧を印加する(第1ポッケルスセル6aには電圧を印加しない)場合においても同様である。また、第1ポッケルスセル6a及び第2ポッケルスセル6bの両方に電圧を印加する場合であっても同様である。すなわち、第1制御回路9a及び第2制御回路9bによって、第1電圧印加回路8a及び第2電圧印加回路8bが第1ポッケルスセル6a及び第2ポッケルスセル6bに印加する電圧の変化率を段階的に変化させることにより、出力されるパルスレーザ光のパルス幅を伸長させ、パルスレーザ光のピークエネルギーを低下させることができる。
 なお、上記制御点Cの数は、所望のパルス幅及びピークエネルギーに応じて任意に決定すればよい。
 図8は、2つのポッケルスセル6a,6bへの電圧の制御を模式的に示すグラフである。図8(a)に示すように、第1制御回路9aによって第1ポッケルスセル6aに印加する電圧を制御し、第2制御回路9bによって第2ポッケルスセル6bに印加する電圧を制御することによって、これら2つのポッケルスセル6a,6bに電圧を印加するタイミングをずらすことができる。このように、2つのポッケルスセル6a,6bに電圧を印加するタイミングをずらす電圧の制御は、2つのポッケルスセル6a,6b全体として、図8(b)に示すような、2つのポッケルスセル6a,6bへのトータル印加電圧の変化率を段階的に1回変化させる(制御点Cが1つの)電圧の制御と等価である。すなわち、2つのポッケルスセル6a,6bに電圧を印加するタイミングをずらすことによって、一方のポッケルスセルに印加する電圧の変化率を段階的に変化させた場合と同様、出力されるパルスレーザ光のパルス幅を伸長させ、パルスレーザ光のピークエネルギーを低下させることができる。この際、第1制御回路9a及び第2制御回路9bは、第1ポッケルスセル6a及び第2ポッケルスセル6bに印加する電圧の変化率をそれぞれ段階的に変化させる必要がないため、制御が容易である。したがって、簡単な構造の制御回路を使用することができる。
 また、図9(a)に示すように、第1ポッケルスセル6a及び第2ポッケルスセル6bに電圧を印加するタイミングをずらしつつ、印加する電圧の変化率をそれぞれ段階的に変化させてもよい。このように、2つのポッケルスセル6a,6bに電圧を印加するタイミングをずらしつつ、印加する電圧の変化率をそれぞれ段階的に変化させる電圧の制御は、2つのポッケルスセル6a,6b全体として、第1ポッケルスセル6a又は第2ポッケルスセル6bのいずれか一方に対する、図9(b)のような電圧の変化率を段階的に3回変化させる(制御点Cが3つ)電圧の制御と等価である。
 図10及び図11で示したように、2つのポッケルスセル6a,6bに互いに同じ向きの電圧を印加する場合には、一方のポッケルスセルにのみ電圧を印加してλ/4波長板として機能させるために必要な電圧より低い電圧を2つのポッケルスセル6a,6bにそれぞれ印加することで、2つのポッケルスセル6a,6b全体としてλ/4波長板として機能させることができる。
 例えば、第1ポッケルスセル6a及び第2ポッケルスセル6bがともに、3.6kVの電圧を印加することでλ/4波長板として機能するポッケルスセルであった場合、いずれか一方のポッケルスセルにのみ電圧を印加して(他方には電圧を印加しないで)、パルスレーザ光の出力エネルギーを100%得るためには、電圧を印加する一方のポッケルスセルをλ/4波長板として機能させる必要があるため、図10(a)に示すように、3.6kVの電圧を印加する必要がある。これに対して、2つのポッケルスセル6a,6bに互いに同じ向きのかつ同じ大きさの電圧を印加して、パルスレーザ光の出力エネルギーを100%得るためには、2つのポッケルスセル6a,6b全体としてλ/4波長板として機能させればよいので、図10(b)に示すように、1.8kVの電圧を印加するだけでよい。すなわち、2つのポッケルスセル6a,6bに互いに同じ向きの電圧を印加する場合には、パルスレーザ光の出力エネルギーを100%得るために必要な電圧を低下させることができる。
 さらに、第1ポッケルスセル6a及び第2ポッケルスセル6bに、互いに反対向きの電圧を印加してもよい。図11に示すように、2つのポッケルスセル6a,6bに同一方向に電圧を印加した場合の第1回目のピークPのピークエネルギーは約0.6mJであるのに対し、2つのポッケルスセル6a,6bに電圧を変化させるタイミングをずらして互いに反対向きの電圧を印加した場合の第1回目のピークPのピークエネルギーは約0.2mJである。すなわち、電圧を変化さえるタイミングをずらして互いに反対向きの電圧を印加すると、第1回目のピークエネルギーを低下させることができる。
 なお、上記実施形態において、第1ポッケルスセル6a及び第2ポッケルスセル6bは、電圧の印加によりλ/4波長板として機能するポッケルスセルを用いたが、これら2つのポッケルスセル6a,6bは電圧の印加により全体としてλ/4波長板として機能するものであればよく、例えば電圧の印加によりλ/2波長板として機能するポッケルスセルや、ポッケルスセル以外の電気光学素子を使用することとしてもよい。
 また、一方のポッケルスセルに所定の電圧を印加してλ/4波長板として機能させた状態で他方のポッケルスセルに印加する電圧を変化させたり、2つのポッケルスセル6a,6b全体として所定の電圧を印加することによりλ/2波長板として機能させることによって、パルスレーザの発振を制御することとしてもよい。この場合、λ/4波長板5が不要となり、パルスレーザの部品点数を減少させることができる。
 このように、上記第1及び第2の実施形態によれば、電圧制御装置によって第1の電気光学素子に印加する電圧値を経時的に変化させて、レーザ光のパルス幅を制御することができる。したがって、出力されるパルスレーザ光のパルス幅を伸長させると共に、パルスレーザ光のピークエネルギーを低下させることができる。
 また、レーザ光を分光するビームスプリッタや、遅延光学系のためのミラーを使用せずにパルス幅を伸長させることができるため、パルスレーザ発振器をコンパクトに形成することができる。
 さらに、パルスレーザ発振器を使用する際に、上記ビームスプリッタや、遅延光学系のためのミラーを調整する必要がないため、パルスレーザ発振器を使用するための作業が容易になる。
 そして、電気光学素子に印加する電圧の変化率を段階的に変化させることにより、パルス幅のより長いロングパルスのレーザ光を発生させることができると共に、パルスレーザ光のピークエネルギーをより低下させることができる。
 図12は本発明によるパルスレーザ発振器の第3の実施形態を示す平面図である。ここでは、第1の実施形態と同じ構成要素には同一の符号を付し、第1の実施形態と異なる部分について説明する。
 この第3の実施形態は、共振器3と、光増幅器11と、レーザ用アッテネータ12と、をレーザ光の進行方向上流から下流に向かってこの順に配置して備えている。
 上記共振器3は、上記第1の実施形態における共振器と同じ機能を有するものであり、フロントミラー3a及びリアミラー3bの間に、図示省略のフラッシュランプによって励起されてレーザ光を発生するレーザ媒質としての例えばND:YAGロッド1と、該ND:YAGロッド1の後方に配置され、偏光素子としてのポラライザー4、λ/4波長板5及びポッケルスセル6から成るQスイッチ10と、を備えて構成されている。
 この場合、上記ポッケルスセル6に対する印加電圧を、図示省略の制御手段により上記第1の実施形態と同様に制御して、パルスレーザ光のパルス幅を拡大することができる。
 上記光増幅器11は、レーザ光のパルスエネルギーを増幅して出力するもので、例えばND:YAGロッドが使用される。
 また、上記レーザ用アッテネータ12は、1パルスのレーザ光における特定時間のエネルギーを選択的に低減するものである。
 上記レーザ用アッテネータ12の具体的構成例は、図13に示すように、レーザ光の光路上にクロスニコルに配置された偏光素子としての第1及び第2の偏光ビームスプリッタ13a,13bと、該第1及び第2の偏光ビームスプリッタ13a,13bの間に、入射する直線偏光(例えばP偏光)に対して光学軸が45°を成すように配置され、電圧の印加により内部を通過するレーザ光の偏光面を回転させる第2の電気光学素子としてのポッケルスセル14と、該ポッケルスセル14に対する印加電圧値及び印加タイミングを制御する制御部15と、を備えたものである。
 本第3の実施形態において使用するポッケルスセル14は、一例として最大-3.6kVの電圧印加によりλ/4波長板の効果が得られるものであり、第3及び第4ポッケルスセル14a,14bを直列に並べて配置すると共に印加電圧を最大-3.6kVで並列制御することによって、第3及び第4ポッケルスセル14a,14bの組合せでλ/2波長板の効果が得られるようになっている。この場合、第3及び第4ポッケルスセル14a,14bの印加電圧を、例えば0kV~-3.6kVまで変化させたとき、レーザ用アッテネータ12の光透過率は0%~100%まで変化することになる。
 なお、図12において、符号16は、第2のポラライザーであり、符号17は、レーザビームの径を拡張するビームエキスパンダであり、符号18は、反射ミラーである。
 次に、このように構成された第3の実施形態の動作で、特にレーザ用アッテネータ12の動作について説明する。
 先ず、レーザ用アッテネータ12がレーザ光の100%を透過させる場合について説明する。この場合、レーザ用アッテネータ12の第3及び第4ポッケルスセル14a,14bには、夫々-3.6kVの電圧が印加される。
 このとき、レーザ用アッテネータ12に入射したレーザ光は、先ず、第1の偏光ビームスプリッタ13aの反射面19aにおいて、該反射面19aに対する入射面に平行な偏光面を有し反射面19aを透過する直線偏光(p偏光)と、上記入射面に垂直な偏光面を有し上記反射面19aで反射される直線偏光(s偏光)とに分離される。
 第1の偏光ビームスプリッタ13aを透過したp偏光は、第3ポッケルスセル14aに入射する。この場合、第3ポッケルスセル14aは、-3.6kVの電圧が印加されてλ/4波長板の効果を発揮している。したがって、第3ポッケルスセル14aに入射したp偏光のレーザ光は、第3ポッケルスセル14aを通過中に90°の位相差が生じて円偏光となって第3ポッケルスセル14aを射出する。
 続いて、上記円偏光は、第4ポッケルスセル14bに入射する。このとき第4ポッケルスセル14bにも-3.6kVの電圧が印加されているので、第4ポッケルスセル14bは、λ/4波長板の効果を発揮する。したがって、該第4ポッケルスセル14bに入射した円偏光のレーザ光は、第4ポッケルスセル14bの内部を通過中にさらに90°の位相差が生じることになる。これにより、第1の偏光ビームスプリッタ13aを透過したp偏光は、第3及び第4ポッケルスセル14a,14bにより偏光面が90°回転されて第2の偏光ビームスプリッタ13bに入射することになる。
 ここで、第1の偏光ビームスプリッタ13aと第2の偏光ビームスプリッタ13bとは、クロスニコルの関係に配置されているので、各偏光ビームスプリッタ13a,13bの反射面19a,19bは、光軸を中心に互いに90°回転した関係にある。従って、第2の偏光ビームスプリッタ13bに入射する直線偏光は、第2の偏光ビームスプリッタ13bの反射面19bに対してはp偏光の関係となり、該反射面19bを透過していく。
 一方、第3及び第4ポッケルスセル14a,14bに電圧を印加しないときには、該ポッケルスセル14を通過する直線偏光の偏光面は回転されないので、第1の偏光ビームスプリッタ13aを透過したp偏光は、そのまま第2の偏光ビームスプリッタ13bに入射する。この場合、上記p偏光は、第2の偏光ビームスプリッタ13bの反射面19bに対しては、s偏光の関係になるので、該反射面19bで図13の例えば手前側(又は奥側)に反射されて図示省略の光吸収材に吸収されレーザ用アッテネータ12を射出しない。
 このように、第3及び第4ポッケルスセル14a,14bの印加電圧を0kV~-3.6kVの間で適宜変化させて、ポッケルスセル14を通過する直線偏光の偏光面を回転させ、第2の偏光ビームスプリッタ13bの反射面19bに対してp偏光の関係を成す偏光成分を取り出すことにより、レーザ用アッテネータ12を出力するレーザ光のエネルギー強度を0%~100%の間で調整することが可能となる。
 ところで、本発明のパルスレーザ発振器は、Qスイッチ10のポッケルスセル6に対する印加電圧を漸減制御すると、例えば図4又は図5に示すように発生するレーザ光のパルス幅を伸長することができるものである。しかしながら、このようにして生成されたロングパルスのレーザ光は、特定時間に過大なパルスエネルギーを放出するものであるため、例えば半導体基板のアモルファスシリコンをアニール処理してポリシリコン化しようとする場合に、均一なアニール処理ができないおそれがあった。
 そこで本発明のパルスレーザ発振器においては、レーザ用アッテネータ12のポッケルスセル14に対する印加電圧値及び印加タイミングを制御することにより、1パルスのレーザ光における特定時間のパルスエネルギーを選択的に低減して、1パルス内のレーザエネルギーを略一定にしようとするものである。以下、レーザ用アッテネータ12の上記動作を説明する。
 レーザ用アッテネータ12に、例えば図14(a)に示すような時間tn内に過大なパルスエネルギーを放出するロングパルスのレーザ光が入力する場合、例えばこのパルスエネルギーを50%低減しようとするときには、図15(a)に示すように、時間tn内の第3及び第4ポッケルスセル14a,14bへの印加電圧を-1.8kVとし、時間tn経過後は、-3.6kVに制御する。
 これにより、図15(b)に示すように、最初の時間tn内にレーザ用アッテネータ3を透過するレーザ光の透過率が50%に低減され、時間tn経過後は、透過率が100%となる。したがって、図14(a)に示すロングパルスのレーザ光は、最初の時間tn内のレーザ強度が50%低減され、時間tn経過後のレーザ強度は、元の強度がそのまま維持されることになる。その結果、図14(b)に示すように1パルス内のレーザ強度が略一定になる。
 このように、第3の実施形態によれば、ロングパルスのレーザ光における特定時間の過大なエネルギーを選択的に低減することができる。したがって、パルス幅全体に亘って略一定のエネルギーが得られるようにすることができる。これにより、該レーザ光を加工に使用したとき、局所的に過大なエネルギーが集中して、加工物に焼損等のダメージを与えるのを防止することができる。
 なお、上記第3の実施形態においては、レーザ用アッテネータ12が第3及び第4ポッケルスセル14a,14bを備えた場合について説明したが、電圧の印加によりλ/2波長板の効果を発揮する電気光学素子であれば一つであってもよい。
 また、上記第3の実施形態においては、レーザ用アッテネータ12を光増幅器11の下流側に設けた場合について説明したが、本発明はこれに限られず、光増幅器11の上流側に設けてもよい。ただし、光増幅器11の上流側に設けた場合には、選択された特定時間内の低減されたレーザエネルギーと共にノイズも後段の光増幅器11により増幅されるため、S/Nが悪くなる可能性がある。したがって、上記第3の実施形態のようにレーザ用アッテネータ12は、光増幅器11の下流側に設けるのが好ましい。又は、パルスレーザ発振器を射出したレーザ光のエネルギーを低減し得るようにレーザ用アッテネータ12を設けてもよい。
 そして、本発明のパルスレーザ発振器は、アニール処理のみならず、穴あけ加工等、如何なるレーザ加工に使用してもよい。
 5…λ/4波長板
 6…ポッケルスセル(第1の電気光学素子)
 6a…第1ポッケルスセル
 6b…第2ポッケルスセル
 7…電圧制御装置
 11…光増幅器
 12…レーザ用アッテネータ
 13a…第1の偏光ビームスプリッタ(偏光素子)
 13b…第2の偏光ビームスプリッタ(偏光素子)
 14…ポッケルスセル(第2の電気光学素子)
 14a…第3ポッケルスセル
 14b…第4ポッケルスセル

Claims (13)

  1.  印加された電圧に応じて光を偏光する第1の電気光学素子と、前記第1の電気光学素子に電圧を印加するとともに電圧を制御する電圧制御装置とを備えたパルスレーザ発振器であって、
     前記電圧制御装置によって前記第1の電気光学素子に印加する電圧値を経時的に変化させ、レーザ光のパルス幅を制御することを特徴とするパルスレーザ発振器。
  2.  前記第1の電気光学素子は複数備えられ、該複数の第1の電気光学素子の個々に印加する電圧値をそれぞれ経時的に変化させることを特徴とする請求項1に記載のパルスレーザ発振器。
  3.  前記電圧制御装置は、前記第1の電気光学素子に印加する電圧値の変化率を段階的に変化させることを特徴とする請求項1に記載のパルスレーザ発振器。
  4.  前記第1の電気光学素子を2つ備え、前記電圧制御装置によって、前記2つの第1の電気光学素子にそれぞれ互いに反対向きの電圧を印加することを特徴とする請求項2に記載のパルスレーザ発振器。
  5.  前記第1の電気光学素子はポッケルスセルであり、さらにλ/4波長板を備えたことを特徴とする請求項1に記載のパルスレーザ発振器。
  6.  前記レーザ光の光路上には、クロスニコルに配置された二つの偏光素子と、前記二つの偏光素子の間に配置され、電圧の印加により内部を通過するレーザ光の偏光面を回転させる第2の電気光学素子と、前記第2の電気光学素子に対する印加電圧値及び印加タイミングを制御する制御部と、を含むレーザ用アッテネータがさらに備えられていることを特徴とする請求項1に記載のパルスレーザ発振器。
  7.  前記第2の電気光学素子は、ポッケルスセルであることを特徴とする請求項6に記載のパルスレーザ発振器。
  8.  前記ポッケルスセルは、複数個が直列に並べて配置されていることを特徴とする請求項7に記載のパルスレーザ発振器。
  9.  前記レーザ用アッテネータは、前記レーザ光の光路上に設けられた光増幅器の下流側に備えられたことを特徴とする請求項6に記載のパルスレーザ発振器。
  10.  印加された電圧に応じて光を偏光する第1の電気光学素子に印加する電圧を変化させることにより、レーザ光の発振を制御するレーザ発振制御方法において、
     前記第1の電気光学素子に印加する電圧値を経時的に変化させ、レーザ光のパルス幅を制御することを特徴とするパルスレーザ発振制御方法。
  11.  前記第1の電気光学素子は複数備えられ、該複数の第1の電気光学素子の個々に印加する電圧値をそれぞれ経時的に変化させることを特徴とする請求項10に記載のパルスレーザ発振制御方法。
  12.  前記第1の電気光学素子に印加する電圧値の変化率を段階的に変化させることを特徴とする請求項10に記載のパルスレーザ発振制御方法。
  13.  前記第1の電気光学素子を2つ備え、前記電圧制御装置によって、前記2つの第1の電気光学素子にそれぞれ互いに反対向きの電圧を印加することを特徴とする請求項11に記載のパルスレーザ発振制御方法。
     
PCT/JP2012/067446 2011-07-11 2012-07-09 パルスレーザ発振器及びパルスレーザ発振制御方法 WO2013008772A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137032394A KR101915628B1 (ko) 2011-07-11 2012-07-09 펄스 레이저 발진기 및 펄스 레이저 발진 제어 방법
CN201280030065.XA CN103636083B (zh) 2011-07-11 2012-07-09 脉冲激光振荡器以及脉冲激光振荡控制方法
US14/151,176 US9054494B2 (en) 2011-07-11 2014-01-09 Pulsed laser oscillator and method for controlling pulsed laser oscillation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-153283 2011-07-11
JP2011153283A JP5853332B2 (ja) 2011-07-11 2011-07-11 レーザ用アッテネータ及びレーザ発生装置
JP2011155735A JP5923885B2 (ja) 2011-07-14 2011-07-14 パルスレーザ発振器及びパルスレーザ発振制御方法
JP2011-155735 2011-07-14
JP2011-155734 2011-07-14
JP2011155734A JP5923884B2 (ja) 2011-07-14 2011-07-14 パルスレーザ発振器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/151,176 Continuation US9054494B2 (en) 2011-07-11 2014-01-09 Pulsed laser oscillator and method for controlling pulsed laser oscillation

Publications (1)

Publication Number Publication Date
WO2013008772A1 true WO2013008772A1 (ja) 2013-01-17

Family

ID=47506058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067446 WO2013008772A1 (ja) 2011-07-11 2012-07-09 パルスレーザ発振器及びパルスレーザ発振制御方法

Country Status (5)

Country Link
US (1) US9054494B2 (ja)
KR (1) KR101915628B1 (ja)
CN (1) CN103636083B (ja)
TW (1) TWI555291B (ja)
WO (1) WO2013008772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064520A1 (ja) * 2013-10-31 2015-05-07 富士フイルム株式会社 レーザ装置、及び光音響計測装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900500B (zh) * 2014-03-03 2018-08-14 上海微电子装备(集团)股份有限公司 一种同步扫描激光退火装置
JP6296927B2 (ja) * 2014-07-03 2018-03-20 キヤノン株式会社 被検体情報取得装置およびレーザー装置
EP3018774A1 (en) * 2014-11-04 2016-05-11 High Q Laser GmbH Method for generating a burst mode by means of switching a Pockels cell
KR101855307B1 (ko) * 2015-10-07 2018-05-09 주식회사 이오테크닉스 레이저 마킹 시스템 및 이를 이용한 레이저 마킹 방법
CN115241726A (zh) * 2016-03-21 2022-10-25 鲁美斯Be有限公司 激光系统中的脉冲削波器
CN105762637B (zh) * 2016-04-18 2018-12-25 长春理工大学 一种改善调q性能的调q激光器
CN108963746B (zh) * 2017-05-24 2020-06-26 中国科学院理化技术研究所 激光器的使用方法、脉宽可调的激光器及其使用方法
CN108767629B (zh) * 2018-03-26 2020-11-10 中国科学院上海光学精密机械研究所 大能量有源多程啁啾脉冲展宽器
CN110006828B (zh) * 2019-04-26 2021-04-23 哈尔滨工业大学 一种改进光声光谱痕量气体传感器性能的装置及方法
CN110364921B (zh) * 2019-07-09 2020-12-01 大族激光科技产业集团股份有限公司 激光脉冲控制系统及激光脉冲控制方法
CN111864517B (zh) * 2020-07-29 2023-04-18 中国科学院长春光学精密机械与物理研究所 一种激光脉冲波形净化方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335959A (ja) * 1994-06-07 1995-12-22 Toshiba Corp レーザー光位相変調器
JPH09181375A (ja) * 1995-12-27 1997-07-11 Toshiba Corp パルスガスレーザ装置
JPH11514109A (ja) * 1997-06-03 1999-11-30 エルディティ ゲーエムベーハー ウント シーオー.レーザー―ディスプレー―テクノロギー カーゲー 光束の強度変調のための装置及びその製造方法及び光束の強度変調のための方法及び該装置の使用法
JP2000124528A (ja) * 1998-10-12 2000-04-28 Mitsubishi Electric Corp レーザ装置、多段増幅レーザ装置およびこれらを用いたレーザ加工装置
JP2001308426A (ja) * 2000-04-20 2001-11-02 Mitsubishi Heavy Ind Ltd パルスレーザ発振方法及び発振装置
JP2002311401A (ja) * 2001-04-12 2002-10-23 Tdk Corp 光制御装置
JP2003518440A (ja) * 1999-12-28 2003-06-10 ジーエスアイ ルモニクス インコーポレイテッド 標的材を処理するエネルギー効率に優れたレーザーベースの方法およびシステム
JP2004291010A (ja) * 2003-03-26 2004-10-21 Sumitomo Heavy Ind Ltd レーザ加工装置及びレーザ加工方法
WO2006026143A2 (en) * 2004-09-02 2006-03-09 Coherent , Inc. Apparatus for modifying co2 slab laser pulses
JP2007503125A (ja) * 2003-08-19 2007-02-15 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 特別形態のパワープロファイルでレーザパルスを用いるリンク処理の方法及びレーザシステム。
JP2010222240A (ja) * 2009-02-27 2010-10-07 Nagaoka Univ Of Technology 光変調材料およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351579B1 (en) * 1998-02-27 2002-02-26 The Regents Of The University Of California Optical fiber switch
JP2003069118A (ja) 2001-08-29 2003-03-07 Mitsubishi Heavy Ind Ltd レーザ加工装置
US7016107B2 (en) * 2004-01-20 2006-03-21 Spectra Physics, Inc. Low-gain regenerative amplifier system
JP5002808B2 (ja) 2006-03-07 2012-08-15 国立大学法人北海道大学 レーザ加工装置及びレーザ加工方法
JP2009285721A (ja) 2008-05-30 2009-12-10 Sunx Ltd レーザ加工装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335959A (ja) * 1994-06-07 1995-12-22 Toshiba Corp レーザー光位相変調器
JPH09181375A (ja) * 1995-12-27 1997-07-11 Toshiba Corp パルスガスレーザ装置
JPH11514109A (ja) * 1997-06-03 1999-11-30 エルディティ ゲーエムベーハー ウント シーオー.レーザー―ディスプレー―テクノロギー カーゲー 光束の強度変調のための装置及びその製造方法及び光束の強度変調のための方法及び該装置の使用法
JP2000124528A (ja) * 1998-10-12 2000-04-28 Mitsubishi Electric Corp レーザ装置、多段増幅レーザ装置およびこれらを用いたレーザ加工装置
JP2003518440A (ja) * 1999-12-28 2003-06-10 ジーエスアイ ルモニクス インコーポレイテッド 標的材を処理するエネルギー効率に優れたレーザーベースの方法およびシステム
JP2001308426A (ja) * 2000-04-20 2001-11-02 Mitsubishi Heavy Ind Ltd パルスレーザ発振方法及び発振装置
JP2002311401A (ja) * 2001-04-12 2002-10-23 Tdk Corp 光制御装置
JP2004291010A (ja) * 2003-03-26 2004-10-21 Sumitomo Heavy Ind Ltd レーザ加工装置及びレーザ加工方法
JP2007503125A (ja) * 2003-08-19 2007-02-15 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 特別形態のパワープロファイルでレーザパルスを用いるリンク処理の方法及びレーザシステム。
WO2006026143A2 (en) * 2004-09-02 2006-03-09 Coherent , Inc. Apparatus for modifying co2 slab laser pulses
JP2010222240A (ja) * 2009-02-27 2010-10-07 Nagaoka Univ Of Technology 光変調材料およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064520A1 (ja) * 2013-10-31 2015-05-07 富士フイルム株式会社 レーザ装置、及び光音響計測装置
JP2015111660A (ja) * 2013-10-31 2015-06-18 富士フイルム株式会社 レーザ装置、及び光音響計測装置
US10243317B2 (en) 2013-10-31 2019-03-26 Fujifilm Corporation Laser device and photoacoustic measurement device

Also Published As

Publication number Publication date
TWI555291B (zh) 2016-10-21
US9054494B2 (en) 2015-06-09
CN103636083B (zh) 2019-04-19
US20140126591A1 (en) 2014-05-08
TW201320513A (zh) 2013-05-16
KR101915628B1 (ko) 2018-11-06
KR20140033089A (ko) 2014-03-17
CN103636083A (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2013008772A1 (ja) パルスレーザ発振器及びパルスレーザ発振制御方法
US8374206B2 (en) Combining multiple laser beams to form high repetition rate, high average power polarized laser beam
US9306370B2 (en) Regenerative optical amplifier for short pulsed lasers, a laser source and a laser workstation
JP6309032B2 (ja) レーザ光源装置及びレーザパルス光生成方法
US8514899B2 (en) Laser system and laser light generation method
WO2015122374A2 (ja) レーザ光源装置及びレーザパルス光生成方法
KR100767622B1 (ko) 멀티 파장 및 멀티 펄스폭 발진 레이저 시스템
JP2015510270A (ja) パルスごとのエネルギーが低減された光学増幅器システム及びパルスレーザ
JP5853332B2 (ja) レーザ用アッテネータ及びレーザ発生装置
JP4328832B2 (ja) 光再生増幅器
KR20190004238A (ko) 레이저 시스템
JP6338879B2 (ja) レーザ光源装置
JP2001308426A (ja) パルスレーザ発振方法及び発振装置
JP6588707B2 (ja) レーザ光源装置及びレーザパルス光生成方法
US10288981B2 (en) Laser light-source apparatus and laser pulse light generating method
JP5923885B2 (ja) パルスレーザ発振器及びパルスレーザ発振制御方法
JP5923884B2 (ja) パルスレーザ発振器
JP2008153323A (ja) レーザ発振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137032394

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810722

Country of ref document: EP

Kind code of ref document: A1