WO2013005781A1 - 成膜装置 - Google Patents
成膜装置 Download PDFInfo
- Publication number
- WO2013005781A1 WO2013005781A1 PCT/JP2012/067123 JP2012067123W WO2013005781A1 WO 2013005781 A1 WO2013005781 A1 WO 2013005781A1 JP 2012067123 W JP2012067123 W JP 2012067123W WO 2013005781 A1 WO2013005781 A1 WO 2013005781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vapor
- vapor deposition
- valve
- transport pipe
- gas
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
Definitions
- Various aspects and embodiments of the present invention relate to a film forming apparatus for forming a film on a substrate.
- Patent Document 1 describes an organic material film forming apparatus.
- the apparatus described in Patent Document 1 transports vapors of organic materials generated by a plurality of vapor generation units to a vapor deposition head together with a transport gas.
- an organic material is formed on the substrate by the gas ejected from the vapor deposition head adhering to the substrate.
- the film forming process is stopped in order to lower the temperature of the vapor generating part when the vapor deposition material is replaced. Therefore, in this technical field, a film forming apparatus having a higher throughput of the film forming process is required.
- a film forming apparatus includes a vapor deposition head, a processing container, a plurality of vapor generation units, a transport pipe, and a plurality of storage containers.
- a vapor deposition head injects the gas containing the vapor
- the processing container defines a substrate facing the vapor deposition head and a processing chamber for accommodating the vapor deposition head.
- the plurality of vapor generation units generate vapor of the vapor deposition material, and include two or more vapor generation units that generate vapor of the same type of vapor deposition material.
- the transport pipe is heated by connecting a plurality of vapor generating units to the vapor deposition head.
- the plurality of storage containers can be individually decompressed, separated from the processing chamber, and separated from each other.
- the plurality of storage containers define a plurality of storage chambers that respectively store the plurality of steam generation units.
- the plurality of steam generation units are respectively stored in a plurality of storage chambers, and the plurality of storage chambers can be individually decompressed and separated from each other. Therefore, even if the temperature of the steam generation unit is decreased during replacement of the vapor deposition material in the steam generation unit, it is possible to suppress the decrease in the temperature from affecting the temperature of other steam generation units. Therefore, the throughput of the film forming process is increased.
- the film forming apparatus is a gas introduction path for supplying purge gas to the plurality of storage chambers, and the gas introduction path capable of individually controlling the supply of the purge gas to the plurality of storage chambers. Further, it may be provided. According to this embodiment, the temperature of the steam generation unit for exchanging the vapor deposition material can be lowered more quickly.
- the transport pipe may comprise a plurality of individual transport pipes and a common transport pipe.
- the plurality of individual transport pipes are respectively connected to the plurality of steam generation units and can extend in the plurality of storage chambers.
- the common transport pipe communicates with a plurality of individual transport pipes and extends in the processing chamber and can be connected to the vapor deposition head.
- the plurality of individual transport pipes extend in the plurality of accommodating chambers that can be depressurized, variation in the temperature distribution of each individual transport pipe can be reduced. Therefore, it is not necessary to raise the temperature of the individual transport pipe more than necessary in order to maintain the temperature of the individual transport pipe above the vaporization temperature of the vapor deposition material. As a result, quality deterioration of the vapor deposition material can be suppressed.
- the film forming apparatus is attached to each of a plurality of individual transport pipes and a common transport pipe, and may include a plurality of heating units that can be independently temperature controlled. According to this embodiment, since the processing chamber and the storage chamber are separated, the gas generated from the heating unit can be prevented from flowing into the processing chamber.
- the film forming apparatus may include a discharge pipe connected to a plurality of individual transport pipes and capable of individually discharging gases from a plurality of steam generation units.
- the generation of the gas containing the vapor can be started in the other steam generation unit, and the gas can be discharged to the discharge pipe.
- the film forming apparatus is a plurality of valves respectively attached to a plurality of individual transport pipes, and is capable of individually switching between passage and blocking of gas containing steam from a plurality of steam generation units.
- Multiple valves may be provided.
- a valve that can withstand a high temperature of 300 degrees or more may be used.
- the plurality of steam generators may include one or more steam generators that generate a vapor of the dopant material.
- the two or more steam generation units described above can generate the same type of host material vapor.
- the number of the two or more steam generation units may be larger than the number of the one or more steam generation units that generate the vapor of the dopant material.
- host materials are used in greater amounts than dopant materials. According to this embodiment, by increasing the number of the steam generation parts for the host material than the number of the steam generation parts for the dopant material, the host material is reduced in the amount of the dopant material while suppressing deterioration of the quality of the host material. Can be supplied in larger quantities.
- a film forming apparatus having a higher film forming process throughput is provided.
- FIG. 1 It is a figure which shows typically the film-forming apparatus which concerns on one Embodiment. It is a perspective view which shows the vapor deposition head which concerns on one Embodiment. It is a figure which shows an example of the completion state of the organic EL element which can be manufactured using the film-forming apparatus which concerns on one Embodiment. It is a figure which shows typically the gas supply source which concerns on one Embodiment. It is sectional drawing of the high temperature heat resistant valve which concerns on one Embodiment. It is a block diagram which shows the control part which concerns on one Embodiment. It is a figure which shows the flow of the process which the valve
- FIG. 6 is a diagram showing a state of first to third steam generation units according to an embodiment. It is a figure which shows typically the gas supply source which generate
- FIG. 1 is a diagram schematically showing a film forming apparatus according to an embodiment.
- FIG. 1 shows an XYZ orthogonal coordinate system.
- a film forming apparatus 10 shown in FIG. 1 includes a processing container 11 that defines a processing chamber 12 that houses a substrate S, and a stage 14 that holds the substrate S.
- One surface (film formation surface) of the substrate S faces downward in the vertical direction (Z direction), for example. That is, the film forming apparatus 10 is a face-down type film forming apparatus.
- the stage 14 may incorporate an electrostatic chuck that holds the substrate S.
- the film forming apparatus may be a type in which a gas containing vapor of a deposition material is blown onto the film forming surface facing upward, that is, a face-up type film forming apparatus.
- a vacuum pump 27 is connected to the processing container 11 via a tube 12g, and the inside of the processing chamber 12 can be decompressed by the vacuum pump 27.
- the film forming apparatus 10 includes a vapor deposition head 16c having a nozzle 18c for spraying a gas G containing vapor of vapor deposition material onto the substrate S.
- the film forming apparatus 10 may further include vapor deposition heads 16a, 16b, 16d, 16e, and 16f each having nozzles 18a, 18b, 18d, 18e, and 18f having the same structure as the nozzle 18c. From the nozzles 18a, 18b, 18d, 18e, and 18f, vapor deposition materials different from the vapor deposition material ejected from the nozzle 18c and different from each other may be ejected. Thereby, a plurality of types of films can be continuously deposited on the substrate S.
- the vapor deposition heads 16a to 16f are connected to gas supply sources 20a to 20f for supplying a gas containing vapor of the vapor deposition material, respectively.
- the gas G is supplied from the gas supply source 20c to the vapor deposition head 16c.
- circular injection ports are formed at the tips of the nozzles 18a to 18f.
- a gas containing a vapor deposition material is injected from the injection port.
- Shutters 17a to 17f capable of blocking the vapor deposition material may be disposed at positions facing the nozzles 18a to 18f, respectively. In FIG. 1, since the shutter 17c is open, the gas G ejected from the ejection port of the nozzle 18c reaches the substrate S.
- the shutters 17a, 17b, 17d, 17e, and 17f are closed, the gas ejected from the nozzles 18a, 18b, 18d, 18e, and 18f does not reach the substrate S.
- the shutters 17a to 17f rotate around a rotation axis along the Y direction, for example.
- the shutters 17a to 17f can be arranged on the ejection openings of the nozzles 18a to 18f and can be retracted from the ejection openings as necessary.
- the film forming apparatus 10 includes a driving device 22 that drives the stage 14 in the X direction that intersects the Y direction.
- the film forming apparatus 10 may further include a rail 24.
- the rail 24 is attached to the inner wall of the processing container 11.
- the stage 14 is connected to the rail 24 by, for example, a support portion 14a.
- the stage 14 and the support portion 14 a are moved by the drive device 22 so as to slide on the rail 24.
- the substrate S moves in the X direction relative to the nozzles 18a to 18f.
- the substrates S are sequentially arranged in the openings of the nozzles 18a to 18f.
- An arrow A in FIG. 1 indicates the moving direction of the stage 14.
- the processing container 11 of the film forming apparatus 10 includes gate valves 26a and 26b.
- the substrate S can be introduced into the processing chamber 12 through the gate valve 26 a formed in the processing container 11, and can be carried out of the processing chamber 12 through the gate valve 26 b formed in the processing container 11.
- FIG. 2 is a perspective view showing a vapor deposition head according to an embodiment.
- the vapor deposition head 16 c may have a plurality of injection ports 14 c in one embodiment. From the plurality of injection ports 14c, the gas supplied by the gas supply source 20c is injected to the center of the axis in the Z direction. These injection ports 14c can be arranged in a direction (Y direction) intersecting the moving direction (X direction) of the stage 14.
- the heater 15 is built in the vapor deposition head 16c. In one embodiment, the heater 15 heats the vapor deposition head 16c to a temperature at which the vapor deposition material supplied as vapor to the vapor deposition head 16c does not precipitate.
- FIG. 3 is a diagram illustrating an example of a completed state of an organic EL element that can be manufactured using the film forming apparatus according to an embodiment.
- the organic EL element D shown in FIG. 3 may include a substrate S, a first layer D1, a second layer D2, a third layer D3, a fourth layer D4, and a fifth layer D5.
- the substrate S is an optically transparent substrate such as a glass substrate.
- a first layer D1 is provided on one main surface of the substrate S.
- the first layer D1 can be used as an anode layer.
- the first layer D1 is an optically transparent electrode layer, and may be formed of a conductive material such as ITO (Indium Tin Oxide).
- the first layer D1 is formed by, for example, a sputtering method.
- the second layer D2, the third layer D3, and the fourth layer D4 are sequentially stacked on the first layer D1.
- the second layer D2, the third layer D3, and the fourth layer D4 are organic layers.
- the second layer D2 can be a hole injection layer.
- the third layer D3 is a layer including a light emitting layer, and may include, for example, a hole transport layer D3a, a blue light emitting layer D3b, a red light emitting layer D3c, and a green light emitting layer D3d.
- the fourth layer D4 may be an electron transport layer.
- the second layer D2, the third layer D3, and the fourth layer D4, which are organic layers, can be formed using the film forming apparatus 10.
- the second layer D2 can be made of, for example, TPD.
- the hole transport layer D3a can be made of, for example, ⁇ -NPD.
- the blue light emitting layer D3b can be made of, for example, TPD.
- the red light emitting layer D3c can be formed of, for example, DCJTB.
- the green light emitting layer D3d can be made of, for example, Alq3.
- the fourth layer D4 can be made of, for example, LiF.
- the fifth layer D5 is provided on the fourth layer D4.
- the fifth layer D5 is a cathode layer and can be made of, for example, Ag, Al, or the like.
- the fifth layer D5 can be formed by a sputtering method or the like.
- the element D having such a configuration can be further sealed with an insulating sealing film made of a material such as SiN formed by microwave plasma CVD or the like.
- FIG. 4 is a diagram schematically illustrating a gas supply source according to an embodiment.
- the gas supply source 20c includes transport pipes L11, L21, L31, transport pipes (individual transport pipes) L12, L22, L32, transport pipes (common transport pipe) L40, and first steam generation.
- the gas supply source 20c has three units U1, U2, and U3.
- the unit U1 includes a transport pipe L11, an individual transport pipe L12, a first steam generation unit 101, a first storage container 120, and a transport pipe L40.
- the unit U2 includes a transport pipe L21, an individual transport pipe L22, a second steam generation unit 201, a second storage container 220, and a transport pipe L40.
- the unit U3 includes a transport pipe L31, an individual transport pipe L32, a third steam generator 301, a third storage container 320, and a transport pipe L40.
- the first steam generation unit 101 is accommodated in a storage chamber R1 defined by the first storage container 120.
- the second and third steam generators 201 and 301 are accommodated in the accommodating chambers R2 and R3 defined by the second and third accommodating containers 220 and 320, respectively. That is, the first to third steam generation units 101 to 301 are individually accommodated in the accommodation chambers R1 to R3.
- the first steam generation unit 101 includes a steam generation chamber 103 defined by a partition wall 102.
- a container 104 in which a vapor deposition material X is placed is disposed in the steam generation chamber 103.
- the first steam generator 101 is provided with a heater 105.
- the heater 105 heats the vapor deposition material X put in the container 104.
- the container 104 is carried into the steam generation chamber 103 from the outside of the first storage container 120 and the first storage from the inside of the steam generation chamber 103 through the outlets provided in the partition wall 102 and the first storage container 120, respectively. Carrying out of the container 120 is possible.
- the second and third steam generation units 201 and 301 also include steam generation chambers 203 and 303 defined by partition walls 202 and 302, and heaters 205 and 305, respectively.
- containers 204 and 304 in which the vapor deposition material X is placed are also arranged in the second and third steam generation units 201 and 301. Also in the second and third vapor generation units 201 and 301, vapor containing the vapor deposition material X is generated from the vapor deposition material X.
- the containers 204 and 304 are carried into the steam generation chambers 203 and 303 from outside the second and third storage containers 220 and 320, and the second and third from the inside of the steam generation chambers 203 and 303. Carrying out of the storage containers 220 and 320 is possible.
- the vapor deposition material X disposed in each of the first to third vapor generation units 101, 201, 301 may be the same type of vapor deposition material.
- Transport pipes L11, L21, and L31 are connected to the first to third steam generation units 101, 201, and 301, respectively.
- the transport pipes L11, L21, and L31 transport argon gas as a carrier gas into the steam generation chambers 103, 203, and 303 of the first to third steam generation units 101, 201, and 301, respectively.
- another inert gas can be used instead of the argon gas.
- one end of the transport pipe L12, one end of L22, and one end of L32 are connected to the first to third steam generation units 101, 201, 301, respectively.
- the other end of the transport pipe L12, the other end of L22, and the other end of L32 are connected to the transport pipe L40.
- the transport pipes L12, L22, and L32 transport the argon gas introduced into the steam generation chambers 103, 203, and 303 and the vapor of the vapor deposition material X into the processing chamber 12.
- the transport pipe L40 transports the argon gas and the vapor of the vapor deposition material X transported into the processing chamber 12 by the transport pipes L12, 22, and 32 to the vapor deposition head 16c. That is, the vapor of the vapor deposition material X generated in the first to third vapor generation units 101, 201, 301 is transported to the vapor deposition head 16c together with the argon gas introduced into the vapor generation chambers 103, 203, 303.
- a valve V102, an adiabatic transport pipe 140, a valve V103, a first MFC (mass flow controller) 110, and a valve V104 are provided in order from the side near the first steam generation unit 101 in the transport pipe L11.
- the valves V102, V103, V104 are used for selectively blocking the flow of argon gas in the transport pipe L11.
- the first MFC 110 controls the flow rate of argon gas flowing through the transport pipe L11.
- the valve V102 and the heat insulating transport pipe 140 are provided in the transport pipe L11 in the first container 120.
- 115c is attached.
- the heaters 115a, 115b, and 115c can individually control the temperatures of the portions where the heaters are attached.
- the transport pipe L11 and the valve V102 can be heated in the storage chamber R1 by these heaters so that the argon gas has a temperature corresponding to the vaporization temperature of the vapor deposition material X.
- the heat insulating transport pipe 140 can suppress heat exchange between the transport pipe L11 outside the first storage container 120 and the transport pipe L11 in the first storage container 120. Therefore, the heat insulating transport pipe 140 has a thermal conductivity lower than that of the transport pipe L11.
- the transport pipe L11 can be made of stainless steel, and the heat insulating transport pipe 140 can be made of quartz.
- a heat insulating transport pipe 141 and a valve V101 are provided in the transport pipe L12 in order from the side close to the first steam generation unit 101.
- the valve V101 is provided in the transport pipe L12 in the processing chamber 12.
- the valve V101 is used to selectively shut off the supply of argon gas and vapor of the vapor deposition material X from the transport pipe L12 to the transport pipe L40.
- a heater (heating unit) 125a is included in each of the transport pipe L12 between the first steam generation unit 101 and the heat insulation transport pipe 141 and the transport pipe L12 between the heat insulation transport pipe 141 and the valve V101.
- a heater (heating unit) 125b is attached.
- the heaters 125a and 125b it is possible to individually control the temperatures of the portions to which these heaters are attached. Moreover, the transport pipe L12 can be heated by these heaters to a temperature at which the vapor deposition material X does not precipitate.
- the heat insulating transport pipe 141 is provided in the transport pipe L12 in the first container 120.
- the heat insulating transport pipe 141 can suppress heat exchange between the transport pipe L12 outside the first storage container 120 and the transport pipe L12 in the first storage container 120. Therefore, the heat insulating transport pipe 141 has a thermal conductivity lower than that of the transport pipe L12.
- the transport pipe L12 can be made of stainless steel, and the heat insulating transport pipe 141 can be made of quartz.
- a valve V202, an adiabatic transport pipe 240, a valve V203, a second MFC 210, and a valve V204 are provided in order from the side closer to the second steam generation unit 201 in the transport pipe L21. Is provided. Further, in the unit U2, the heater 215a, the heater 215b, the transport pipe L21 between the heat insulating transport pipe 240 and the valve V202, the valve V202, and the transport pipe L21 between the valve V202 and the second steam generation unit 201 are provided. Each heater 215c is provided.
- valve V202 The configuration and function of the valve V202, the adiabatic transport pipe 240, the valve V203, the second MFC 210, the valve V204, the heater 215a, the heater 215b, and the heater 215c are the valve V102, the adiabatic transport pipe 140, the valve V103, the first MFC 110, the valve V104,
- the functions and configurations of the heater 115a, heater 115b, and heater 115c are the same.
- the heat insulating transport pipe 241 and the valve V201 are provided in the transport pipe L22 in order from the side closer to the second steam generation unit 201. Further, in the unit U2, a heater (heating unit) 225a is added to the transport pipe L22 between the second steam generation unit 201 and the heat insulation transport pipe 241 and the transport pipe L22 between the heat insulation transport pipe 241 and the valve V201. And a heater (heating unit) 225b.
- the configurations and functions of the adiabatic transport pipe 241, the valve V201, the heater 225a, and the heater 225b are the same as the configurations and functions of the adiabatic transport pipe 141, the valve V101, the heater 125a, and the heater 125b, respectively.
- a valve V302 similarly to the transport pipe L11, a valve V302, an adiabatic transport pipe 340, a valve V303, a third MFC 310, and a valve V304 are arranged in order from the side closer to the third steam generation unit 301 in the transport pipe L31. Is provided.
- a heater 315a, a heater 315b, a transport pipe L31 between the heat insulating transport pipe 340 and the valve V302, a valve V302, and a transport pipe L31 between the valve V302 and the third steam generation unit 301 are provided.
- a heater 315c is provided.
- valve V302 The configuration and function of the valve V302, the adiabatic transport pipe 340, the valve V303, the third MFC 310, the valve V304, the heater 315a, the heater 315b, and the heater 315c are the valve V102, the adiabatic transport pipe 140, the valve V103, the first MFC 110, the valve V104,
- the functions and configurations of the heater 115a, heater 115b, and heater 115c are the same.
- the transport pipe L32 is provided with an adiabatic transport pipe 341 and a valve V301 in order from the side closer to the third steam generation unit 301.
- a heater (heating unit) 325a and a heater (heating) are provided in the transport pipe L32 between the third steam generation unit 301 and the heat insulation transport pipe 341 and the transport pipe L32 between the heat insulation transport pipe 341 and the valve V301. Part) 325b is provided.
- the configurations and functions of the adiabatic transport pipe 341, the valve V301, the heater 325a, and the heater 325b are the same as the configurations and functions of the adiabatic transport pipe 141, the valve V101, the heater 125a, and the heater 125b, respectively.
- the transport pipe L40 common to the units U1 to U3 is provided with a heater (heating unit) 415 for heating the transport pipe L40.
- the heater 415 heats the transport pipe L40 to a temperature at which the vapor deposition material X that has become vapor does not precipitate.
- the heaters 125a-b, 225a-b, 325a-b, 415 can be controlled in temperature independently of each other.
- the gas supply source 20c is provided with a decompression mechanism 500 that decompresses the storage chambers R1 to R3. More specifically, the decompression mechanism 500 includes decompression pipes L501, L511, L521, and L531, valves V107, V207, and V307, a turbo molecular pump (TMP) 501, and a dry pump (DP) 502.
- the unit U1 includes a decompression pipe L511, a valve V107, and a common decompression pipe L501
- the unit U2 includes a decompression pipe L521, a valve V207, and a common decompression pipe L501
- the unit U3 includes a decompression pipe.
- L531, valve V307, and common decompression piping L501 are included.
- One end of the decompression pipe L511 is connected to the first storage container 120 so as to communicate with the storage chamber R1.
- one end of the decompression pipe L521 and one end of L531 are connected to the second and third storage containers 220 and 320, respectively, so as to communicate with the storage chambers R2 and R3.
- the other ends of the decompression pipes L511, L521, and L531 are connected to the decompression pipe L501.
- the decompression pipe L501 is connected to the turbo molecular pump 501 and the dry pump 502.
- the storage chamber R1 is decompressed via the decompression pipes L501 and L511, the accommodation chamber R2 is decompressed via the decompression pipes L501 and L521, and the decompression pipes L501 and L531 are used.
- the storage chamber R3 is decompressed.
- Valves V107, V207, and V307 are provided in the decompression pipes L511, L521, and L531, respectively.
- the storage chambers R1 to R3 can be selectively decompressed independently.
- the pressure in the storage chambers R1 to R3 it is possible to suppress moisture and the like from adhering to the vapor deposition material X in the first to third steam generation units 101, 201, and 301. Further, the heat insulating effect of the storage chambers R1 to R3 is improved.
- the film forming apparatus 10 may further include a QCM (Quartz Crystal Microbalance) sensor 30.
- the QCM sensor 30 can be installed in the vicinity of the substrate S disposed in the processing chamber 12.
- the QCM sensor 30 measures the amount of the vapor deposition material ejected from the vapor deposition head 16c.
- the film forming apparatus 10 may further include a gas discharge system (discharge pipe) 600.
- the gas discharge system 600 individually and selectively discharges the gas from the first to third steam generation units 101, 201, and 301 to the outside instead of the vapor deposition head 16c.
- the gas discharge system 600 includes discharge pipes L601, L611, L621, L631, valves V105, V205, V305, heat insulation pipes 142, 242, 342, and heaters 155a-c, 255a-c, 355a-c.
- the unit U1 includes a discharge pipe L611, a valve V105, a heat insulation pipe 142, heaters 155a, 155b and 155c, and a common discharge pipe L601.
- the unit U2 includes a discharge pipe L621, a valve V205, a heat insulation pipe 242 and a heater. 255a, 255b, 255c, and a common discharge pipe L601.
- the unit U3 includes a discharge pipe L631, a valve V305, a heat insulation pipe 342, heaters 355a, 355b, 355c, and a common discharge pipe L601. Yes.
- the discharge pipe L611 is branched from the transport pipe L12 between the heat insulating transport pipe 141 and the first steam generation unit 101.
- the discharge pipe L611 guides the argon gas and the vapor of the vapor deposition material X flowing through the transport pipe L12 to the outside of the first container 120, not the vapor deposition head 16c.
- the discharge pipes L621 and L631 are branched from the transport pipes L22 and L32, respectively.
- the discharge pipes L621 and L631 guide the argon gas flowing in the transport pipes L22 and L32 and the vapor of the vapor deposition material X to the outside of the second and third storage containers 220 and 320, not the vapor deposition head 16c.
- the discharge pipe L611 is connected to the discharge pipe L601 outside the first container 120.
- the discharge pipe L621 is connected to the discharge pipe L601 outside the second storage container 220.
- the discharge pipe L631 is connected to the discharge pipe L601 outside the third storage container 320.
- the discharge pipe L601 discharges the argon gas and the vapor of the vapor deposition material X guided outside the first to third storage containers 120, 220, and 320 to the outside of the film forming apparatus 10 instead of the vapor deposition head 16c.
- Valves V105, V205, and V305 are provided on the discharge pipes L611, L621, and L631, respectively.
- the gas from the first steam generation unit 101 can be selectively supplied to the vapor deposition head 16c via the transport pipes L12 and L40 or discharged via the discharge pipes L611 and L601. it can.
- the gas from the second steam generation unit 201 is selectively supplied to the vapor deposition head 16c via the transport pipes L22 and L40, or discharged via the discharge pipes L621 and L601. can do.
- the gas from the third steam generating unit 301 can be selectively supplied to the vapor deposition head 16c via the transport pipes L32 and L40 or discharged via the discharge pipes L631 and L601. .
- a heater 155a, a heater 155b, and 155c are provided in a discharge pipe L611, a valve V105, and a discharge pipe L611 between the valve V105 and the heat insulation pipe 142, respectively, between the transport pipe L12 and the valve V105. Is provided.
- a heater 255a, heaters 255b, and 255c are provided in a discharge pipe L621 between the transport pipe L22 and the valve V205, a valve V205, and a discharge pipe L621 between the valve V205 and the heat insulation pipe 242, respectively. Yes.
- a heater 355a, a heater 355b, and 355c are provided in the discharge pipe L631, the valve V305, and the discharge pipe L631 between the valve V305 and the heat insulation pipe 342, respectively, between the transport pipe 322 and the valve V305. It has been. With this configuration, it is possible to suppress the deposition material X from being deposited in each of the discharge pipes L611, L621, and L631 in the storage chambers R1, R2, and R3.
- a heat insulating pipe 142 is provided between the discharge pipe L611 outside the first storage container 120 and the discharge pipe L611 inside the first storage container 120.
- the heat insulating pipe 142 suppresses heat exchange between the discharge pipe L611 outside the first storage container 120 and the discharge pipe L611 inside the first storage container 120.
- a heat insulating pipe 242 is provided between the discharge pipe L621 outside the second storage container 220 and the discharge pipe L621 in the second storage container 220, and the heat insulation pipe 242 is connected to the second storage container 220. Heat exchange between the outer discharge pipe L621 and the discharge pipe L621 in the second container 220 is suppressed.
- a heat insulating pipe 342 is provided between the discharge pipe L 631 outside the third storage container 320 and the discharge pipe L 631 in the third storage container 320, and the heat insulation pipe 342 is connected to the third storage container 320. Heat exchange between the outer discharge pipe L631 and the discharge pipe L631 in the third storage container 320 is suppressed.
- the discharge pipes L611, 621, and 631 can be made of stainless steel, and the heat insulation pipes 142, 242, and 342 can be made of quartz.
- the film forming apparatus 10 may further include a gas introduction system (gas introduction path) 700 that introduces a purge gas into the storage chambers R1 to R3.
- the gas introduction system 700 includes introduction pipes L701, L711, L721, and L731, and valves V106, V206, and V306.
- Nitrogen gas may be introduced into the introduction pipe L701. In addition, it can replace with nitrogen gas and can also use other gas.
- One end of the introduction pipe L711 is connected to the first storage container 120 so as to communicate with the storage chamber R1. The other end of the introduction pipe L711 is connected to the introduction pipe L701.
- introduction pipes L721 and L731 are connected to the second and third storage containers 220 and 320, respectively, so as to communicate with the storage chambers R2 and R3.
- the other ends of the introduction pipes L721 and L731 are connected to the introduction pipe L701.
- the introduction pipes L711, L721, and L731 guide nitrogen gas flowing through the introduction pipe L701 into the storage chambers R1 to R3, respectively.
- the valves V106, V206, V306 are provided in the introduction pipes L711, L721, L731, respectively.
- the nitrogen gas flowing through the introduction pipe L701 can be selectively introduced into the storage chamber R1 via the introduction pipe L711 or blocked.
- the nitrogen gas flowing through the introduction pipe L701 can be selectively introduced into the storage chamber R2 via the introduction pipe L721 or blocked.
- the nitrogen gas flowing through the introduction pipe L701 can be selectively introduced into the storage chamber R3 via the introduction pipe L731 or blocked.
- high-temperature heat-resistant valves may be used as the valves V101, V102, and V105 provided in the transport pipes L12 and L11 and the discharge pipe L611 that are heated by a heater, respectively.
- high-temperature heat-resistant valves may be used as the valves V201, V202, and V205 provided in the transport pipes L22 and L21 and the discharge pipe L621 that are heated by the heater, respectively.
- high temperature heat resistant valves may be used as the valves V301, V302, V305 provided in the transport pipes L32, L31 and the discharge pipe L631 respectively heated by the heater.
- FIG. 5 is a cross-sectional view of a high temperature heat resistant valve according to an embodiment.
- the term “one end” is used as a term indicating the direction to indicate the direction in which the front member 901 is positioned with respect to the bonnet 902, and the term “other end” is used as a term indicating the opposite direction.
- a high temperature heat resistant valve Y shown in FIG. 5 has a cylindrical valve box 905.
- the valve box 905 includes a front member 901, a central bonnet 902, and a rear member 903.
- the valve box 905 is hollow.
- a valve body 910 is accommodated inside the valve box 905.
- a heater 950 for heating the high temperature heat resistant valve Y is embedded in the front member 901 and the bonnet 902.
- the valve body 910 includes a valve body head portion 910a, a valve body body portion 910b, a valve shaft 910c, and a bellows 925.
- the valve body head portion 910a and the valve body portion 910b are connected by a valve shaft 910c.
- the valve shaft 910c formed in a rod shape passes through the inner hole of the hollow valve body 910b.
- One end of the valve shaft 910c is fitted into a recess 910a1 provided at the center of the valve body head 910a.
- a forward path 900a1 and a return path 900a2 of the transport pipe are formed in the front member 901, a forward path 900a1 and a return path 900a2 of the transport pipe are formed.
- a valve seat surface 900a3 with which the valve body head portion 910a abuts is provided at the opening edge of the forward path 900a1 in the front member 901.
- the protrusion 910b1 provided on the outer peripheral surface of the valve body 910b on the rear member 903 side is inserted into an annular recess 905a1 provided on the inner peripheral surface of the bonnet 902.
- a space in which the valve body 910b can slide in the longitudinal direction is provided in the recess 905a1.
- a heat-resistant buffer member 915 is disposed in a space in which the valve body part 910b can slide in the recess 905a1.
- a metal gasket can be used as the buffer member 915.
- the buffer member 915 separates the reduced pressure environment on the front member 901 side and the atmospheric pressure environment on the rear member 903 side in the inner hole of the hollow bonnet 902.
- One end of the bellows 925 is welded to the valve body head 910a, and the other end of the bellows 925 is welded to the outer peripheral surface of the valve body body 910b.
- the rear member 903 includes a drive unit 930 that moves the valve shaft 910c in the axial direction of the valve shaft 910c.
- the drive unit 930 moves the valve shaft 910c to one end side, the valve body head portion 910a contacts the valve seat surface 900a3.
- the drive unit 930 moves the valve shaft 910c to the other end side, so that a gap is formed between the valve body head portion 910a and the valve seat surface 900a3.
- valve body 910 since the valve body part 910b and the valve body head part 910a are separated, the clearance (gap) between the valve body part 910b and the valve shaft 910c is controlled, so that the valve body part 910b can be opened and closed.
- the shift of the center position of the valve body 910 can be corrected.
- a play 910a2 is provided in the recess 910a1 of the valve body head portion 910a in a state where the valve shaft 910c is inserted. Thereby, the slight shift
- valve body head portion 910a can be brought into contact with the valve seat surface 900a3 of the front member 901 without deviation. For this reason, the adhesiveness of the valve body head part 910a and the valve seat surface 900a3 can be improved, and a leak can be prevented. Further, even if the high-temperature heat-resistant valve Y is used in a high-temperature state or a low-temperature state, the influence of the metal thermal expansion can be absorbed by the separation structure of the valve body 910. Thereby, the leak of the valve body part at the time of opening and closing can be prevented effectively.
- the high temperature heat resistant valve Y described above can be applied to the valves V101, V102, V105, V201, V202, V205, V301, V302, and V305.
- FIG. 6 is a block diagram illustrating a control unit according to an embodiment.
- the control unit 800 illustrated in FIG. 6 can be, for example, a computing device having a CPU (Central Processing Unit) and a memory.
- the control unit 800 includes an MFC control unit 810, a valve control unit 820, and a heater control unit 830.
- the MFC control unit 810 may control the first to third MFCs 110, 210, and 310 based on the measurement result of the QCM sensor 30. Specifically, the MFC control unit 810 sends a control signal for controlling the flow rate to the first to third MFCs 110, 210, and 310.
- the MFC control unit 810 controls the first to third MFCs 110, 210, 310 and the amount of argon gas flowing through the transport pipes L11, L21, L31. Increase.
- the MFC control unit 810 controls the first to third MFCs 110, 210, and 310, and flows the argon flowing through the transport pipes L11, L21, and L31. Reduce the amount of gas. As described above, the amount of the vapor deposition material ejected from the vapor deposition head 16c varies depending on the amount of argon gas supplied to the first to third vapor generation units 101, 201, and 301.
- the valve control unit 820 controls the opening and closing of the valves V101 to V107, V201 to V207, and V301 to V307. Specifically, the valve control unit 820 sends a control signal for controlling opening / closing of the valves to the valves V101 to V107, V201 to V207, and V301 to V307.
- the valve control unit 820 controls the valves V101, V102, V103, and V104 to an open state (distribution state).
- the valve control unit 820 controls the valves V101, V102, V103, and V104 to be closed (shut off state).
- the valve control unit 820 controls the valve V107 to be in an open state.
- the valve control unit 820 controls the valve V107 to be closed.
- valve control unit 820 controls the valve V105 to be in an open state.
- the valve control unit 820 controls the valve V105 to be closed.
- nitrogen gas is introduced into the storage chamber R1 via the gas introduction system 700
- the valve control unit 820 controls the valve V106 to be in an open state.
- the valve control unit 820 controls the valve V106 to be closed.
- valve control unit 820 controls the valves V201, V202, V203, and V204 to be in an open state.
- the valve control unit 820 controls the valves V201, V202, V203, and V204 to be closed.
- the valve control unit 820 controls the valve V207 to be in an open state.
- the valve control unit 820 controls the valve V207 to be closed.
- valve control unit 820 controls the valve V205 to be in an open state.
- the valve control unit 820 controls the valve V205 to be closed.
- nitrogen gas is introduced into the storage chamber R2 via the gas introduction system 700
- the valve control unit 820 controls the valve V206 to be in an open state.
- the valve controller 820 controls the valve V206 to be closed.
- valve control unit 820 controls the valves V301, V302, V303, and V304 to be in an open state.
- the valve control unit 820 controls the valves V301, V302, V303, and V304 to be closed.
- the valve control unit 820 controls the valve V307 to be in an open state.
- the valve control unit 820 controls the valve V307 to be closed.
- valve control unit 820 controls the valve V305 to be in an open state.
- the valve control unit 820 controls the valve V305 to be closed.
- nitrogen gas is introduced into the storage chamber R3 via the gas introduction system 700
- the valve control unit 820 controls the valve V306 to be in an open state.
- the valve control unit 820 controls the valve V306 to be closed.
- the heater controller 830 controls on / off (heated / non-heated) of the heaters 105, 205, and 305 provided in the first to third steam generators 101, 201, and 301. Specifically, the heater control unit 830 sends a control signal for controlling heater ON / OFF to the heaters 105, 205, and 305.
- the valve control unit 820 and the heater control unit 830 include a path for supplying the vapor generated by the first vapor generation unit 101 to the vapor deposition head 16c, and a path for supplying the vapor generated by the second vapor generation unit 201 to the vapor deposition head 16c.
- the path for supplying the vapor generated by the third vapor generation unit 301 to the vapor deposition head 16c is sequentially switched.
- valve control unit 820 and the heater control unit 830 always supply the vapor containing the vapor of the vapor deposition material X generated in any of the first to third vapor generation units 101, 201, 301 to the vapor deposition head 16c. As described above, each part is controlled.
- FIG. 7 is a diagram illustrating a flow of processing performed by the valve control unit and the heater control unit according to an embodiment.
- the horizontal axis represents the time axis
- the vertical axis represents the control state of the valves and heaters.
- FIG. 8 is a diagram showing the states of the first to third steam generation units according to one embodiment.
- the horizontal axis represents the time axis
- the vertical axis represents the temperature of each steam generating unit.
- the heater control unit 830 controls the heater 105 to a heated state (on) and the other heaters to a non-heated state (off).
- the valve control unit 820 controls the valves V102 to V105, V107, V207, and V307 to be in an open state, and controls the other valves to be in a closed state.
- the heater 105 is in a heated state
- the vapor of the vapor deposition material X starts to be generated in the first vapor generation unit 101.
- the valves V102 to V105 are in the open state
- the vapor of the vapor deposition material X generated in the first vapor generation unit 101 is transported by the argon gas and discharged from the gas discharge system 600.
- a sufficient amount of vapor may not be generated. For this reason, the steam immediately after the start of heating is discharged from the gas discharge system 600.
- the valves V107, V207, and V307 are in the open state, the inside of the storage chambers R1 to R3 is decompressed.
- the valve control unit 820 controls the valve V101 to be open and controls the valve V105 to be closed.
- steam of the vapor deposition material X generated in the 1st vapor generation part 101 is conveyed to the vapor deposition head 16c by argon gas, and is injected toward the board
- the valve V105 By controlling the valve V105 to be in a closed state, the discharge of the gas in the first steam generation unit 101 through the gas discharge system 600 is stopped.
- the heater control unit 830 controls the heater 205 to a heated state (ON) at a time t3 that is a predetermined time before the vapor deposition material X in the first vapor generation unit 101 is reduced by evaporation and the replacement time is reached.
- the valve control unit 820 controls the valves V202 to V205 to be in an open state.
- the remaining amount of the vapor deposition material X in the first vapor generation unit 101 can be estimated based on the elapsed time from the start of heating of the vapor deposition material X, or can be measured using a laser beam or the like. .
- valves V202 to V205 are in the open state, the vapor of the vapor deposition material X generated in the second vapor generation unit 201 is transported by the argon gas and discharged from the gas discharge system 600. Since the heating of the vapor deposition material X in the second vapor generation unit 201 is started immediately before use, the vapor deposition material X can be prevented from being deteriorated by heating.
- the valve control unit 820 controls the valves V101 to V104, V107, and V205 to be closed, and the valves V106 and V201 to be closed. Control to open state.
- the heater control unit 830 controls the heater 105 to a non-heated state (off).
- Nitrogen gas is introduced into the storage chamber R1 of the first steam generation unit 101 by controlling the valve V106 to be in the open state. Thereby, the temperature of the 1st steam generation part 101 can be reduced rapidly. After the temperature in the first steam generation unit 101 decreases, the container 104 is taken out, and the container 104 in which a new vapor deposition material X is placed is carried into the first steam generation unit 101.
- the heater control unit 830 controls the heater 305 to be in a heated state (ON) at a time t5 that is a predetermined time before the vapor deposition material X in the second steam generation unit 201 is reduced due to evaporation and the replacement time is reached.
- the valve control unit 820 controls the valves V302 to V305 to the open state. Since the valves V302 to V305 are in the open state, the vapor of the vapor deposition material X generated in the third vapor generation unit 301 is transported by the argon gas and discharged from the gas discharge system 600.
- the valve control unit 820 controls the valves V201 to V204, V207, and V305 to be closed and the valves V206 and V301 to be closed. Control to open state.
- the heater control unit 830 controls the heater 205 to a non-heated state (off).
- Nitrogen gas is introduced into the storage chamber R2 of the second steam generation unit 201 by controlling the valve V206 to be in the open state. Thereby, the temperature of the 2nd steam generation part 201 can be reduced rapidly. After the temperature in the second steam generation unit 201 is lowered, the container 204 is taken out, and the container 204 containing the new vapor deposition material X is carried into the second steam generation unit 201.
- the heater control unit 830 controls the heater 105 to be in a heated state (ON) at a time t7 that is a predetermined time before the vapor deposition material X in the third steam generation unit 301 is reduced due to evaporation and the replacement time is reached.
- the valve control unit 820 controls the valves V102 to V105 and 107 to the open state and controls the valve V106 to the closed state. Since the valves V102 to V105 are in the open state, the vapor of the vapor deposition material X generated in the first vapor generation unit 101 is transported by the argon gas and discharged from the gas discharge system 600.
- the valve control unit 820 controls the valves V301 to V304, V307, and V105 to be closed, and the valves V306 and V101 are closed. Control to open state.
- the heater control unit 830 controls the heater 305 to a non-heated state (off).
- Nitrogen gas is introduced into the storage chamber R3 of the third steam generation unit 301 by controlling the valve V306 to be in the open state. Thereby, the temperature of the 3rd steam generation part 301 can be reduced rapidly. After the temperature in the 3rd steam generation part 301 falls, the container 304 is taken out and the container 304 in which the new vapor deposition material X was put in is carried in in the 3rd steam generation part 301.
- FIG. 1 Nitrogen gas is introduced into the storage chamber R3 of the third steam generation unit 301 by controlling the valve V306 to be in the open state. Thereby, the temperature of the 3rd steam generation part 301 can be reduced rapidly. After the temperature in the 3rd steam generation part 301 falls, the container 304 is taken out and the container 304 in which the new vapor deposition material X was put in is carried in in the 3rd steam generation part 301.
- valve control unit 820 and the heater control unit 830 repeatedly perform the processing after time t2.
- the gas supply source 20c will be representatively described with reference to the drawings of the gas supply source 20c.
- the first to third vapor generating units 101, 201, and 301 that generate vapors of the same vapor deposition material X are connected to the vapor deposition head 16c. Accordingly, in the gas supply source 20c, even when the vapor deposition material X of one vapor generation unit is exchanged, the gas containing the vapor of the vapor deposition material X is supplied from the other vapor generation unit to the vapor deposition head 16c. Can do. Therefore, according to the film forming apparatus 10, the throughput can be increased.
- the first to third steam generation units 101, 201, and 301 of the gas supply source 20c can be individually decompressed and stored in storage chambers R1 to R3 that are separated from each other. Therefore, for example, even if the temperature of the first steam generation unit 101 is decreased during the exchange of the vapor deposition material X of the first steam generation unit 101, the decrease in the temperature is the temperature of the second and third steam generation units 201 and 301. Can be suppressed. Therefore, the throughput of the film forming process is increased. Moreover, since it can suppress that the temperature influences the 2nd, 3rd steam generation parts 201 and 301 during use of the 1st steam generation part 101, it can control degradation of vapor deposition material X by prolonged heating. it can.
- heat transfer from the vapor deposition head 16c to the vapor generation chambers 103, 203, and 303 can be further suppressed, so that deterioration of the vapor deposition material X can be suppressed. .
- a gas introduction system 700 that can individually control the supply of nitrogen gas to the storage chambers R1 to R3 can be provided. As a result, the temperatures of the first to third steam generation units 101, 201, and 301 for exchanging the vapor deposition material X can be lowered more quickly.
- the transport pipes L12, L22, and L32 are connected to the first to third steam generation units 101, 201, and 301, respectively, and extend in the storage chambers R1 to R3, respectively.
- the transport pipe L40 communicates with the transport pipes L12, L22, L32 and extends in the processing chamber and is connected to the vapor deposition head 16c.
- the transport pipes L12, L22, and L32 extend into the accommodating chambers R1 to R3 that can be decompressed, fluctuations in the temperature of the transport pipes L12, L22, and L32 can be suppressed.
- the deposition of the vapor deposition material X in the transport pipes L12, L22, L32 can be suppressed.
- the quality deterioration of the vapor deposition material X can be suppressed.
- the heaters 115a to c, 125a to b, 155a to c, 215a to c, 225a in the storage chambers R1 to R3 are separated. .., 255a to c, 315a to c, 325a to b, and 355a to c can be prevented from flowing into the processing chamber 12.
- the second steam generation unit In 201 since the gas discharge system 600 connected to the transport pipes L12, L22, and L32 is provided, for example, before the vapor deposition material X is replaced in the first steam generation unit 101, the second steam generation unit In 201, the generation of the gas containing the vapor of the vapor deposition material X can be started, and the gas can be discharged to the gas discharge system 600.
- the vapor generating unit that supplies gas to the vapor deposition head 16c can be efficiently switched from the first vapor generating unit 101 where the vapor deposition material X is exchanged to the second vapor generating unit 201.
- valves V101, V102, V105, V201, V202, V205, V301, V302, V305 for example, switching between passage and shutoff of high temperature gas such as 300 degrees or more is switched. be able to.
- FIG. 9 is a diagram schematically illustrating a gas supply source that generates a vapor of a dopant material and a vapor of a host material according to an embodiment.
- the gas supply source 20c shown in FIG. 9 has a unit U4 including a fourth steam generation unit 401 added to the gas supply source 20c described with reference to FIG.
- the gas supply source 20c further includes transport pipes L41 and L42, a fourth steam generation unit 401, and a fourth storage container 420.
- the fourth steam generation unit 401 is accommodated in a storage chamber R4 defined by the fourth storage container 420.
- the fourth steam generation unit 401 includes a steam generation chamber 403 defined by a partition wall 402.
- a container 404 in which the vapor deposition material Z is placed is disposed.
- the fourth steam generation unit 401 is provided with a heater 405.
- the heater 405 heats the vapor deposition material Z placed in the container 404. Thereby, in the 4th vapor generation part 401, the vapor
- the configuration of the transport pipes L41 and L42 is the same as the configuration of the transport pipes L11 and L12.
- the configuration of the valve V402, the heat insulating transport pipe 440, the valve V403, the fourth MFC 410, the valve V404, and the heaters 415a to 415c provided in the transport pipe L41 is the same as that of the valve V102 and the heat insulating transport pipe 140 provided in the transport pipe L11.
- the configurations of the valve V103, the first MFC 110, the valve V104, and the heaters 115a to 115c are the same.
- the configuration of the heat insulating transport pipe 441, the valve V401, and the heaters (heating units) 425a to 425b provided in the transport pipe L42 is the same as that of the heat insulating transport pipe 141, the valve V101, and the heaters 125a to 125b provided in the transport pipe L12. It is the same as that of the structure.
- the configurations of the discharge pipe L641, the valve V405, the heat insulation pipe 442, and the heaters 455a to c provided in the discharge pipe L641 are the same as the configurations of the discharge pipe L611, the valve V105, the heat insulation pipe 142, and the heaters 155a to 155c. is there.
- the configuration of the introduction pipe L741 and the valve V406 provided in the introduction pipe L741 is the same as the configuration of the introduction pipe L711 and the valve V106. Further, the configuration of the decompression pipe L541 and the valve V407 provided in the decompression pipe L541 is the same as the configuration of the decompression pipe L511 and the valve V107.
- the same type of host material is used for the vapor deposition material X disposed in the first to third steam generation units 101, 201, and 301.
- a dopant material is used for the vapor deposition material Z disposed in the fourth vapor generation unit 401.
- the QCM sensor 30a may be arranged in the accommodation room R4.
- the vapor of the vapor deposition material Z flowing through the transport pipe L42 is applied to the QCM sensor 30a, and the amount of the vapor deposition material Z is measured by the QCM sensor 30a.
- the fourth MFC 410 can control the flow rate of the argon gas sent to the fourth steam generation unit 401.
- the vapor deposition material X in the first to third steam generation units 101, 201, 301 is sequentially replaced as in the above-described embodiment.
- the gas supply source 20c includes a fourth vapor generating unit 401 that generates a vapor of a dopant material, and first to third vapor generating units 101, 201, and 301 that generate a vapor of the same type of host material.
- the host material is used in a larger amount than the dopant material. Therefore, by increasing the number of steam generating parts for the host material than the number of steam generating parts for the dopant material, the host material is supplied in a larger amount than the amount of the dopant material while suppressing deterioration in the quality of the host material. can do.
- one or more vapor generation units that generate the vapor of the dopant material may be provided. Also in this case, the number of vapor generating parts that generate the vapor of the host material can be made larger than the number of vapor generating parts that generate the vapor of the dopant material.
- FIG. 10 is a diagram schematically illustrating a gas supply source according to an embodiment. 10 is different from the gas supply source 20c described with reference to FIG. 4 in that the heat exchangers 160, 260, 360, the discharge pipes L612, L622, L632, and the valves V108, V208 are used.
- the heat exchanger 160 is provided between the heat insulating transport pipe 140 and the valve V102 in the transport pipe L11 in the unit U1.
- the heat exchanger 160 heats the argon gas flowing in the transport pipe L11 so that the argon gas supplied to the first steam generation unit 101 has a temperature corresponding to the vaporization temperature of the vapor deposition material X.
- FIG. 11 is a diagram illustrating a schematic configuration of a heat exchanger according to an embodiment.
- FIG. 12 is a cross-sectional view illustrating a state in which the heat exchanger according to the embodiment is inserted into the heater.
- the heat exchanger 160 includes dispersion units 161 and 162 and a plurality of thin tubes 163.
- the dispersion part 161 has a disk shape and is connected to the end of the transport pipe L11 extending from the heat insulating transport pipe 140.
- the dispersion part 162 has a disk shape and is connected to the end of the transport pipe L11 extending from the valve V102.
- the dispersion part 161 and the dispersion part 162 are arranged with a predetermined distance from each other with their disk surfaces facing each other.
- the plurality of thin tubes 163 connect the disk surfaces of the dispersion part 161 and the dispersion part 162, respectively.
- the plurality of thin tubes 163 are arranged in parallel to each other.
- the sum of the cross-sectional areas of the plurality of thin tubes 163 is smaller than the cross-sectional area of the transport pipe L11.
- the dispersion parts 161 and 162 and the thin tube 163 can be made of stainless steel, for example. In FIG. 11, four thin tubes 163 are shown, but the number of thin tubes 163 is not limited to this.
- the heat exchanger 160 is covered with a heater 165 (heating unit).
- the heater 165 heats the argon gas flowing through the dispersing units 161 and 162 and the plurality of thin tubes 163.
- the heater 165 may include a copper block 168 and a heater unit 167.
- the copper block 168 can be arranged to cover the entire heat exchanger 160.
- the heater unit 167 may be a heating element that is arranged in a plurality at predetermined positions in the copper block 168. When the heater unit 167 generates heat, the entire copper block 168 is heated, and the heat exchanger 160 inserted in the copper block 168 is heated.
- the heater 165 heats the argon gas so that the argon gas supplied to the first vapor generating unit 101 has a temperature corresponding to the vaporization temperature of the vapor deposition material X.
- the heat exchanger 160 is provided with a temperature sensor 166 that measures the temperature of the gas contact surface in the narrow tube 163. As this temperature sensor, for example, a thermocouple can be used.
- the surface 168a on the heat exchanger 160 side of the copper block 168 and the surface 160a on the copper block 168 side of the heat exchanger 160 are black bodies.
- the heat exchanger 160 can be efficiently heated by the radiant heat generated in the copper block 168 of the heater 165.
- This black body can use a known material, and can be formed by plating, thermal spraying, or the like. Moreover, you may make it uneven by surface treatment instead of a black body. Thereby, the heat exchanger 160 can be efficiently heated by the radiant heat generated in the copper block 168 of the heater 165.
- the surface of the pipe and the inner surface of the heater may be a black body or may be uneven by surface treatment.
- the discharge pipe L612 connects the transport pipe L11 between the heat exchanger 160 and the valve V102 and the discharge pipe L611 between the valve V105 and the heat insulation pipe 142 in the unit U1.
- the valve V108 is provided in the discharge pipe L612.
- the heater 135a is attached to a transport pipe L11 between the heat insulating transport pipe 140 and the valve V103.
- the heater 135b is attached to the valve V103.
- the heater 135c is attached to the transport pipe L11 between the valve V103 and the first MFC 110. These heaters 135a to 135c can heat the transport pipe L11 between the first MFC 110 and the adiabatic transport pipe 140 to evaporate the water in the transport pipe L11.
- the heat exchanger 260 has the same configuration as the heat exchanger 160, and is provided between the heat insulating transport pipe 240 and the valve V202 in the transport pipe L21 in the unit U2. Similarly to the discharge pipe L612, the discharge pipe L622 connects the transport pipe L21 between the heat exchanger 260 and the valve V202 and the discharge pipe L621 between the valve V205 and the heat insulation pipe 242 in the unit U2.
- the valve V208 is provided in the discharge pipe L622.
- the heater 235a is attached to a transport pipe L21 between the heat insulating transport pipe 240 and the valve V203.
- the heater 235b is attached to the valve V203.
- the heater 235c is attached to the transport pipe L21 between the valve V203 and the second MFC 210. These heaters 235a to 235c can heat the transport pipe L21 between the second MFC 210 and the adiabatic transport pipe 240 to evaporate water in the transport pipe L21.
- the heat exchanger 360 has the same configuration as the heat exchanger 160, and is provided between the heat insulating transport pipe 340 and the valve V302 in the transport pipe L31 in the unit U3.
- the discharge pipe L632 connects the transport pipe L31 between the heat exchanger 360 and the valve V302 and the discharge pipe L631 between the valve V305 and the heat insulation pipe 342 in the unit U3.
- the valve V308 is provided in the discharge pipe L632.
- the heater 335a is attached to a transport pipe L31 between the heat insulating transport pipe 340 and the valve V303.
- the heater 335b is attached to the valve V303.
- the heater 335c is attached to a transport pipe L31 between the valve V303 and the third MFC 310. These heaters 335a to 335c can heat the transport pipe L31 between the third MFC 310 and the adiabatic transport pipe 340 to evaporate moisture in the transport pipe L31.
- the heater control unit 830 further controls the temperatures of the heaters 165 that heat the heat exchanger 160 and the heaters provided in the heat exchangers 260 and 360, respectively.
- the heater control unit 830 can control the temperature of the heater 165 based on the measurement result by the temperature sensor 166.
- the heater control unit 830 can control the temperature of the heaters provided in the heat exchangers 260 and 360, respectively, based on the measurement results of the temperature sensors provided in the heat exchangers 260 and 360, respectively. .
- FIG. 13 is a diagram illustrating a flow of processing performed by the valve control unit and the heater control unit according to an embodiment.
- the horizontal axis represents the time axis
- the vertical axis represents the control state of the valves and heaters.
- the control for starting the process of transporting the vapor generated in the vapor generation unit to the vapor deposition head 16c is the same as in the case of unit U1, and thus the description thereof is omitted.
- the heater control unit 830 controls the heater 165 (low temperature control) so that the temperature in the thin tube 163 can be evaporated (for example, 200 degrees).
- the heaters 135a, 135b, and 135c are also controlled to be at a temperature (as an example, 200 degrees) at which moisture in the transport pipe L11 can be evaporated.
- the valve control unit 820 controls the valves V104, V103, and V108 to be in an open state and controls other valves to be in a closed state. Thereby, the gas, moisture, etc. in the transport pipe L11 are transported by the argon gas and discharged from the gas discharge system 600.
- the heater control unit 830 controls the heater 105 to be in a heated state (ON), and the argon gas supplied to the first steam generation unit 101 is vapor deposited on the heater 165 that heats the heat exchanger 160.
- Control high temperature control
- the heater 105 is controlled to be in a heated state at time t2, but may be controlled in advance to a heated state.
- the valve control unit 820 controls the valve V108 to be closed and controls the valves V102 and V105 to be open.
- the heater 105 When the heater 105 is in a heated state, the vapor of the vapor deposition material X starts to be generated in the first vapor generation unit 101. Since the valves V102 to V105 are in the open state, the vapor of the vapor deposition material X generated in the first vapor generation unit 101 is transported by the argon gas and discharged from the gas discharge system 600. Immediately after the heating of the vapor deposition material X, a sufficient amount of vapor may not be generated. For this reason, the steam immediately after the start of heating is discharged from the gas discharge system 600.
- the valve control unit 820 controls the valve V101 to be opened and the valve V105 to be closed. Thereby, the vapor
- the processing after time t3 in FIG. 13 is the same as the processing after time t2 described with reference to FIG.
- the argon gas heated to the temperature corresponding to the vaporization temperature of the vapor deposition material X in the heat exchangers 160, 260, and 360 is the first to third steam generation units. 101, 201, and 301, respectively.
- the argon gas supplied into the first to third steam generation units 101, 201, 301 may cause the first to third steam generation units 101, 201, 301 to be cooled or overheated.
- a more suitable gas containing the vapor of the vapor deposition material X can be supplied to the vapor deposition head 16c.
- the water in the transport pipe L11 can be evaporated by heating the transport pipe L11 with the heaters 135a, 135b, and 135c, and the water in the transport pipe L11 can be more reliably removed. Can do.
- the water in the transport pipes L21 and L31 can be more reliably removed by heating the transport pipes L21 and L31 by the heaters 235a to 235c and 335a to 335c, respectively.
- the gas generated in each of the units U1 to U3 is guided to the vapor deposition head 16c through one transport pipe L40.
- the same type of host material vapor is used.
- Unit U1, U2 capable of generating and unit U3 capable of generating vapor of dopant material, the vapor of host material generated in unit U1, U2 is connected to the same deposition head by respective transport pipes,
- the dopant material vapor generated in U3 may be connected to another vapor deposition head by another transport pipe, and vapor from the two vapor deposition heads may be mixed on the substrate S (not shown).
- a heater can be provided for each transport pipe connecting each unit U1 to U3 and each vapor deposition head.
- temperature control can be performed independently for each transport pipe.
- the temperature of the transport pipe can be controlled according to the vapor deposition material used in each of the units U1 to U3, and deterioration of the quality of the gas containing the vapor deposition material can be suppressed.
- all of the gas supply sources 20a to 20f are provided with a plurality of steam generation units as described with reference to FIGS. 4, 9, and 10, but the gas supply sources 20a to 20f It suffices that at least one gas supply source of 20f includes a plurality of steam generation units. Further, the number of steam generation units provided in the gas supply source is not limited to three or four as described with reference to FIGS. 4, 9, and 10, and may be two or more. .
- FIG. 14 is a diagram schematically illustrating a partial configuration of a film forming apparatus according to another embodiment.
- FIG. 14 shows the processing container 11, the unit U1, and the vapor deposition head 16c.
- the film forming apparatus 10B shown in FIG. 14 one or more portions from the steam generation unit 101 to the opening of the nozzle 18c of the head 16c, that is, one or more portions having a surface in contact with the gas containing the organic material vapor, A separate heater is installed.
- the surface in contact with the gas is referred to as “gas contact surface”.
- the separate heater may be attached to the 1 or more part which has a gas contact surface from the connection part with respect to the transport pipe L12 to the heat insulation piping 142.
- an individual heater may be attached to one or more parts which have a gas contact surface to carrier gas from a connection part with steam generation part 101 to heat insulation transport pipe 140. Each part to which an individual heater is attached can be separated from the other part by a connection part with the other part.
- the film forming apparatus 10B shown in FIG. 14 includes a temperature sensor (for example, a thermocouple) in each part so as to measure the temperature of the gas contact surface of each part to which individual heaters are attached.
- the temperature value measured by the temperature sensor is sent to the control unit Cont.
- the control part Cont Based on the temperature value, the control part Cont sends a control signal for controlling the set temperature of the heater of each part to the heater of each part so that the temperature of the gas contact surface of each part falls within a predetermined temperature range.
- the predetermined temperature range is not less than the evaporation temperature of the organic material (deposition material X) and not less than the evaporation temperature plus 30 ° C.
- FIG. 14 shows only unit U1 among the plurality of units, but units U2 to U4 also have individual heaters and temperature sensors as in unit U1 shown in FIG. The set temperature of the heater may be controlled.
- a specific description will be given with reference to FIG.
- each part from the heat insulating transport pipe 140 and the heat insulating pipe 142 to the vapor deposition head 16c is accommodated in the processing container 11.
- Heaters 115a, 115b, and 115c are attached to the transport pipe L11 between the heat insulating transport pipe 140 and the valve V102, the valve V102, and the transport pipe L11 between the valve V102 and the steam generation unit 101, respectively.
- a temperature sensor S1 is attached to the transport pipe L11 between the heat insulating transport pipe 140 and the valve V102 in order to measure the temperature of the gas contact surface.
- a temperature sensor S2 is attached to the valve V102 in order to measure the temperature of the gas contact surface.
- a temperature sensor S3 is attached to the transport pipe L11 between the valve V102 and the steam generation unit 101 in order to measure the temperature of the gas contact surface.
- a temperature sensor S4 is attached to the partition wall 102 of the steam generation unit 101 in order to measure the temperature of the inner surface of the partition wall 102, that is, the gas contact surface.
- the heater 125a, the heater 125b, and the heater 101 are respectively attached to the transport pipe L12 between the heat insulation transport pipe 141 and the steam generation unit 125a, the transport pipe L12 between the heat insulation transport pipe 141 and the valve V101, and the valve V101.
- a temperature sensor S5 for measuring the temperature of the gas contact surface of the transport pipe L12 is attached to the transport pipe L12 between the heat insulating transport pipe 141 and the steam generation unit 125a.
- a temperature sensor S6 is attached to the transport pipe L12 between the heat insulating transport pipe 141 and the valve V101 in order to measure the temperature of the gas contact surface of the transport pipe L12. Further, a temperature sensor S7 is attached to the valve V101 in order to measure the temperature of the gas contact surface of the valve V101.
- the heater 415 is attached to the transport pipe L40.
- a temperature sensor S8 is attached to the transport pipe L40 in order to measure the temperature of the gas contact surface.
- the vapor deposition head 16c is provided with a heater 15.
- a temperature sensor S9 is attached to the vapor deposition head 16c in order to measure the temperature of the gas contact surface inside the head 16c. Further, in order to measure the temperature of the gas contact surface near the opening of the nozzle 16c, a temperature sensor S10 is attached to the vapor deposition head 16c.
- Heaters 155a, 155b, and 155c are attached to the discharge pipe L601 between the transport pipe L12 and the valve V105, the valve V105, and the discharge pipe L601 between the valve V105 and the heat insulation pipe 142, respectively.
- a temperature sensor S11 for measuring the temperature of the gas contact surface of the discharge pipe L601 is attached to the discharge pipe L601 between the transport pipe L12 and the valve V105.
- a temperature sensor S12 is attached to the valve V105 in order to measure the temperature of the gas contact surface of the valve V105.
- a temperature sensor S13 is attached to the discharge pipe L601 between the valve V105 and the heat insulation pipe 142 in order to measure the temperature of the gas contact surface of the discharge pipe L601.
- the temperature sensors S1 to S13 can detect heat at the respective tip portions.
- the tip portions of the temperature sensors S1 to S13 are embedded in the walls that provide the gas contact surface in the corresponding piping and valves so that they do not directly contact the gas and are located in the vicinity of the gas contact surface. .
- the temperature values measured by these temperature sensors S1 to S13 are sent to the control unit Cont. Based on the measured temperature value, the controller Cont controls the heaters 115a, 115b, 115c, 105, 125a, 125b, H101, 415, 15, 155a so that the gas contact surface of each part is within the predetermined temperature range described above.
- a control signal for controlling the set temperatures of 155b and 155c is transmitted.
- each heater (102, L12, V101, L40) for transporting a gas containing vapor of an organic material to the vapor deposition head 16c and the vapor deposition head 16c are provided with individual heaters 105, 125a, 125b, H101, 415, 15 is provided. That is, an individual heater is provided in each part that provides a gas contact surface for the gas containing the vapor of the organic material from the vapor generation unit 101 to the opening of the nozzle 18c of the vapor deposition head 16c. The temperatures of these gas contact surfaces are individually measured by the temperature sensors S4 to S10.
- the respective parts that transport the gas containing the vapor of the organic material to the vapor deposition head 16c and the gas contact surface of the vapor deposition head 16c are within the predetermined temperature range described above.
- the temperature set values of the heaters 105, 125a, 125b, H101, 415, and 15 are controlled. Therefore, the gas containing the vapor of the organic material can be cooled to prevent the organic material from being deposited on the gas contact surface, and the deterioration of the organic material can be prevented.
- the discharge pipe L611 and the valve V105 are also provided with individual heaters and temperature sensors, so that the temperature of the gas contact surfaces of the discharge pipe L611 and the valve V105 is within a predetermined temperature range.
- the set temperature is controlled. Therefore, it is possible to prevent the organic material from being deposited on the gas contact surfaces of the discharge pipe L611 and the valve V105.
- the carrier gas transport pipe L11 and the valve V102 accommodated in the processing container 11 are also provided with individual heaters and temperature sensors, and the gas contact between the transport pipe L11 and the valve V102 is performed.
- the set temperature of the heater is controlled so that the surface temperature falls within a predetermined temperature range. Accordingly, it is possible to prevent a gas having a temperature lower than the evaporation temperature of the organic material or a gas having a temperature capable of deteriorating the organic material from being sent to the steam generation unit 101 and the downstream thereof. As a result, the gas containing the vapor of the organic material is cooled to prevent the organic material from being deposited on the gas contact surface, and deterioration of the organic material can be prevented.
- the unit U1 and the vapor deposition head 16c are accommodated in the same processing container 11, but the units U2 to U4 may also be accommodated in the same processing container 11.
- the number of heaters and temperature sensors provided in each part described above is merely an example, and the number of heaters and temperature sensors provided in each part may be any number. That is, the number of heaters and the number of temperature sensors provided in each part and the arrangement position thereof can be adjusted so that the temperature of the gas contact surface is maintained within the predetermined temperature range described above.
- an individual heater and a temperature sensor may be attached to each of the small sections obtained by further dividing each part.
- each part where the individual heater and the temperature sensor are provided is separated from the other part with a connection part with respect to the other part as a boundary.
- the boundary between the portions where the individual heaters and the temperature sensor are provided can be arbitrarily set so that the gas contact surface is maintained in a desired temperature range.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
Abstract
一実施形態の成膜装置は、蒸着ヘッド、処理容器、複数の蒸気発生部、輸送管、及び、複数の収容容器を備えている。蒸着ヘッドは、蒸着材料の蒸気を含むガスを噴射する。処理容器は、蒸着ヘッドに対面する基板及び該蒸着ヘッドを収容する処理室を画成する。複数の蒸気発生部は、蒸着材料の蒸気を発生する複数の蒸気発生部であって、同種の蒸着材料の蒸気を発生する二以上の蒸気発生部を含む。輸送管は、加熱可能であり、複数の蒸気発生部を蒸着ヘッドに接続する。複数の収容容器は、個別に減圧可能であり、処理室から分離されており且つ互いに分離された複数の収容室であって、複数の蒸気発生部をそれぞれ収容する該複数の収容室を画成する。
Description
本発明の種々の側面及び実施形態は、基板を成膜する成膜装置に関するものである。
特許文献1には、有機材料の成膜装置が記載されている。特許文献1に記載された装置は、複数の蒸気発生部で発生した有機材料の蒸気を輸送ガスと共に蒸着ヘッドへ輸送している。この装置では、蒸着ヘッドから噴射されたガスが基板に付着することにより、基板上に有機材料が成膜される。
上述したような成膜装置では、蒸着材料の交換時に、蒸気発生部の温度を低下させるために成膜プロセスが停止される。従って、当該技術分野においては、成膜プロセスのスループットがより高い成膜装置が要請されている。
本発明の一側面に係る成膜装置は、蒸着ヘッド、処理容器、複数の蒸気発生部、輸送管、複数の収容容器、を備える。蒸着ヘッドは、蒸着材料の蒸気を含むガスを噴射する。処理容器は、蒸着ヘッドに対面する基板及び該蒸着ヘッドを収容する処理室を画成する。複数の蒸気発生部は、蒸着材料の蒸気を発生するものであり、同種の蒸着材料の蒸気を発生する二以上の蒸気発生部を含む。輸送管は、複数の蒸気発生部を蒸着ヘッドに接続し、加熱される。複数の収容容器は、個別に減圧可能であり、処理室から分離されており且つ互いに分離されている。また、複数の収容容器は、複数の蒸気発生部をそれぞれ収容する複数の収容室を画成する。
この成膜装置では、同種の蒸着材料の蒸気を発生する二以上の蒸気発生部が蒸着ヘッドに接続されている。従って、一つの蒸気発生部において蒸着材料を交換している期間であっても、他の蒸気発生部から蒸着ヘッドに蒸気を含むガスを供給することができる。故に、この成膜装置によれば、スループットが高められる。
また、複数の蒸気発生部は複数の収容室にそれぞれ収容されており、当該複数の収容室は個別に減圧可能であり且つ互いに分離されている。従って、蒸気発生部における蒸着材料の交換時に当該蒸気発生部の温度を低下させても、当該温度の低下が他の蒸気発生部の温度に影響することを抑制することができる。故に、成膜プロセスのスループットが高められる。
一実施形態においては、成膜装置は、複数の収容室にパージガスを供給するためのガス導入路であり、該複数の収容室への該パージガスの供給を個別に制御可能な該ガス導入路を更に備えてもよい。この実施形態によれば、蒸着材料の交換を行う蒸気発生部の温度をより早く低下させることができる。
一実施形態においては、輸送管が、複数の個別輸送管、及び共通輸送管を備え得る。複数の個別輸送管は、複数の蒸気発生部にそれぞれ接続されており複数の収容室においてそれぞれ延在し得る。共通輸送管は、複数の個別輸送管に連通し且つ処理室内において延在して蒸着ヘッドに接続し得る。この実施形態によれば、減圧可能な収容室内に個別輸送管が延在しているので、個別輸送管の温度の変動を抑制することができる。その結果、個別輸送管内における蒸着材料の析出を抑制することができる。また、複数の個別輸送管は、減圧可能な複数の収容室内においてそれぞれ延在しているので、各個別輸送管の温度分布の変動を低減することができる。従って、蒸着材料の気化温度以上に個別輸送管の温度を維持するために個別輸送管の温度を必要以上に高める必要がなくなる。その結果、蒸着材料の品質劣化を抑制することができる。
一実施形態においては、成膜装置は、複数の個別輸送管、及び、共通輸送管にそれぞれ取り付けられており、独立して温度制御可能な複数の加熱部を備え得る。この実施形態によれば、処理室と収容室とが分離されているので、加熱部から発生するガスが処理室内に流入することを抑制し得る。
一実施形態においては、成膜装置は、複数の個別輸送管に接続する排出管であって、複数の蒸気発生部からのガスを個別に排出可能な該排出管を備え得る。この実施形態によれば、蒸気発生部における蒸着材料の交換前に、他の蒸気発生部において蒸気を含むガスの生成を開始して、当該ガスを排出管に排出しておくことができる。その結果、蒸着ヘッドにガスを供給する蒸気発生部を、蒸着材料の交換が行われる蒸気発生部から、他の蒸気発生部に効率的に切り替えることが可能である。
一実施形態においては、成膜装置は、複数の個別輸送管にそれぞれ取り付けられた複数のバルブであって、複数の蒸気発生部からの蒸気を含むガスの通過又は遮断を個別に切り替え可能な該複数のバルブを備え得る。このように、例えば、300度以上といった高温に耐え得るバルブが用いられてもよい。
一実施形態においては、複数の蒸気発生部は、ドーパント材料の蒸気を発生する一以上の蒸気発生部を含み得る。上述した二以上の蒸気発生部は、同種のホスト材料の蒸気を発生し得る。また、当該二以上の蒸気発生部の数は、ドーパント材料の蒸気を発生する一以上の蒸気発生部の数より多くてもよい。一般的に、ホスト材料はドーパント材料より多量に使用される。この実施形態によれば、ドーパント材料用の蒸気発生部の数よりホスト材料用の蒸気発生部の数を多くすることで、ホスト材料の品質低下を抑制しつつ、当該ホスト材料をドーパント材料の量よりも多量に供給することができる。
以上説明したように、本発明の種々の側面及び実施形態によれば、成膜プロセスのスループットがより高い成膜装置が提供される。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
図1は、一実施形態に係る成膜装置を模式的に示す図である。図1には、XYZ直交座標系が示されている。図1に示す成膜装置10は、基板Sを収容する処理室12を画成する処理容器11と、基板Sを保持するステージ14とを備える。基板Sの一方の面(成膜面)は例えば鉛直方向(Z方向)において下を向いている。即ち、成膜装置10はフェースダウン型の成膜装置である。ステージ14は、基板Sを保持する静電チャックを内蔵してもよい。なお、別の実施形態においては、成膜装置は、上に向いた成膜面に蒸着材料の蒸気を含むガスを吹き付ける型、即ち、フェースアップ型の成膜装置であってもよい。処理容器11には、管12gを介して真空ポンプ27が接続されており、当該真空ポンプ27により、処理室12内を減圧することができる。
成膜装置10は、蒸着材料の蒸気を含むガスGを基板Sに噴き付けるノズル18cを有する蒸着ヘッド16cを備える。成膜装置10は、更に、ノズル18cと同様の構造を有するノズル18a,18b,18d,18e,18fをそれぞれ有する蒸着ヘッド16a,16b,16d,16e,16fを備えてもよい。ノズル18a,18b,18d,18e,18fからは、ノズル18cから噴き出される蒸着材料とは別の蒸着材料であって、かつ、互いに異なる蒸着材料を噴き出してもよい。これにより、基板S上に複数種類の膜を連続的に蒸着させることができる。
蒸着ヘッド16a~16fには、蒸着材料の蒸気を含むガスを供給するガス供給源20a~20fがそれぞれ接続されている。例えば、ガス供給源20cからは、ガスGが蒸着ヘッド16cに供給される。ノズル18a~18fの先端には例えば円形の噴射口が形成されている。当該噴射口から蒸着材料を含むガスが噴射される。ノズル18a~18fの噴射口との対面位置には、蒸着材料を遮断可能なシャッター17a~17fがそれぞれ配置されてもよい。図1において、シャッター17cが開いているので、ノズル18cの噴射口から噴き出されるガスGは基板Sに到達する。シャッター17a,17b,17d,17e,17fは閉じているので、ノズル18a,18b,18d,18e,18fの噴射口から噴き出されるガスは基板Sに到達しない。シャッター17a~17fは、例えばY方向に沿った回転軸を中心に回転する。これにより、シャッター17a~17fを、必要に応じてノズル18a~18fの噴射口上に配置したり当該噴射口上から退避させたりすることができる。
成膜装置10は、Y方向と交差するX方向にステージ14を駆動する駆動装置22を備える。また、成膜装置10は、レール24を更に備え得る。レール24は処理容器11の内壁に取り付けられている。ステージ14は、例えば支持部14aによってレール24に接続されている。ステージ14及び支持部14aは、駆動装置22によってレール24上をスライドするように移動する。これにより、ノズル18a~18fに対して相対的に基板SがX方向に移動する。基板Sは、X方向に移動することによって、ノズル18a~18fの開口に順番に対面配置されることとなる。図1における矢印Aはステージ14の移動方向を示している。また、成膜装置10の処理容器11は、ゲートバルブ26a及び26bを有している。基板Sは、処理容器11に形成されたゲートバルブ26aを通って処理室12内に導入可能であり、処理容器11に形成されたゲートバルブ26bを通って処理室12外に搬出可能である。
図2は、一実施形態に係る蒸着ヘッドを示す斜視図である。図2に示すように、蒸着ヘッド16cは、一実施形態においては、複数の噴射口14cを有し得る。複数の噴射口14cからは、ガス供給源20cによって供給されたガスがZ方向の軸線中心に噴射される。これら噴射口14cは、ステージ14の移動方向(X方向)に交差する方向(Y方向)に配列され得る。
また、蒸着ヘッド16cには、ヒータ15が内蔵されている。一実施形態においては、ヒータ15は、蒸着ヘッド16cに蒸気として供給された蒸着材料が析出することがない温度まで、蒸着ヘッド16cを加熱する。
図3は、一実施形態に係る成膜装置を用いて製造され得る有機EL素子の完成状態の一例を示す図である。図3に示す有機EL素子Dは、基板S、第1層D1、第2層D2、第3層D3、第4層D4、及び、第5層D5を備え得る。基板Sは、ガラス基板のような光学的に透明な基板である。
基板Sの一主面上には、第1層D1が設けられている。第1層D1は、陽極層として用いられ得る。この第1層D1は、光学的に透明な電極層であり、例えば、ITO(Indium Tin Oxide)のような導電性材料により構成され得る。第1層D1は、例えば、スパッタリング法により形成される。
第1層D1上には、第2層D2、第3層D3、及び第4層D4が順に積層されている。第2層D2、第3層D3、及び第4層D4は、有機層である。第2層D2は、ホール注入層で有り得る。第3層D3は、発光層を含む層であり、例えば、ホール輸送層D3a、青発光層D3b、赤発光層D3c、緑発光層D3dを含み得る。また、第4層D4は、電子輸送層であり得る。有機層である第2層D2、第3層D3、及び第4層D4を、成膜装置10を用いて形成し得る。
第2層D2は、例えば、TPD等により構成され得る。ホール輸送層D3aは、例えば、α-NPD等により構成され得る。青発光層D3bは、例えば、TPD等により構成され得る。赤発光層D3cは、例えば、DCJTB等により構成され得る。緑発光層D3dは、例えば、Alq3等により構成され得る。第4層D4は、例えば、LiF等により構成され得る。
第4層D4上には、第5層D5が設けられている。第5層D5は、陰極層であり、例えば、Ag、Al等により構成され得る。第5層D5は、スパッタリング法等により形成され得る。このような構成の素子Dは、更に、マイクロ波プラズマCVD等により形成されるSiNといった材料の絶縁性の封止膜によって封止され得る。
次に、ガス供給源20a~20fの詳細について説明する。なお、ガス供給源20a~20fは同様の構成を有し得るので、以下の説明においては、ガス供給源20cについて説明し、他のガス供給源についての説明を割愛する。図4は、一実施形態に係るガス供給源を模式的に示す図である。図4に示すように、ガス供給源20cは、輸送管L11,L21,L31と、輸送管(個別輸送管)L12,L22,L32と、輸送管(共通輸送管)L40と、第1蒸気発生部101と、第2蒸気発生部201と、第3蒸気発生部301と、第1収容容器120と、第2収容容器220と、第3収容容器320と、を備える。
また、ガス供給源20cは、三つのユニットU1、U2、及びU3を有している。ユニットU1は、輸送管L11、個別輸送管L12、第1蒸気発生部101、第1収容容器120、及び輸送管L40を含んでいる。ユニットU2は、輸送管L21、個別輸送管L22、第2蒸気発生部201、第2収容容器220、及び輸送管L40を含んでいる。ユニットU3は、輸送管L31、個別輸送管L32、第3蒸気発生部301、第3収容容器320、及び輸送管L40を含んでいる。
第1蒸気発生部101は、第1収容容器120によって画成される収容室R1内に収容される。同様に、第2、第3蒸気発生部201,301は、第2、第3収容容器220,320によって画成される収容室R2,R3にそれぞれ収容される。即ち、第1~第3蒸気発生部101~301は、収容室R1~R3内にそれぞれ独立して収容される。
第1蒸気発生部101は、隔壁102によって画成される蒸気発生室103を備える。蒸気発生室103内には、蒸着材料Xが入れられた容器104が配置される。第1蒸気発生部101には、ヒータ105が設けられている。ヒータ105は、容器104に入れられた蒸着材料Xを加熱する。これにより、第1蒸気発生部101内において、蒸着材料Xから当該蒸着材料Xを含む蒸気が発生する。容器104は、隔壁102及び第1収容容器120にそれぞれ設けられた取り出し口を介して、第1収容容器120外から蒸気発生室103内への搬入、及び、蒸気発生室103内から第1収容容器120外への搬出が可能となっている。
第2、第3蒸気発生部201,301も、第1蒸気発生部101と同様に、隔壁202,302によって画成される蒸気発生室203,303と、ヒータ205,305と、をそれぞれ備える。また、第2、第3蒸気発生部201,301内にも、蒸着材料Xが入れられた容器204,304が配置される。第2、第3蒸気発生部201,301内においても、蒸着材料Xから当該蒸着材料Xを含む蒸気が発生する。容器204,304は、容器104と同様に、第2、第3収容容器220,320外から蒸気発生室203,303内への搬入、及び、蒸気発生室203,303内から第2,第3収容容器220,320外への搬出がそれぞれ可能となっている。第1~第3蒸気発生部101,201,301内にそれぞれ配置される蒸着材料Xは、同種の蒸着材料であり得る。
第1~第3蒸気発生部101,201,301には、輸送管L11,L21,L31がそれぞれ接続されている。輸送管L11,L21,L31は、キャリアガスとしてアルゴンガスを第1~第3蒸気発生部101,201,301の蒸気発生室103,203,303内にそれぞれ輸送する。なお、アルゴンガスに替えて、他の不活性ガスを用いることもできる。また、第1~第3蒸気発生部101,201,301には、輸送管L12の一端,L22の一端,L32の一端がそれぞれ接続されている。輸送管L12の他端,L22の他端,L32の他端は、輸送管L40に接続されている。輸送管L12,L22,L32は、蒸気発生室103,203,303内に導入されたアルゴンガス、及び蒸着材料Xの蒸気を、処理室12内に輸送する。輸送管L40は、輸送管L12,22,32によって処理室12内に輸送されたアルゴンガス及び蒸着材料Xの蒸気を、蒸着ヘッド16cに輸送する。即ち、第1~第3蒸気発生部101,201,301で発生した蒸着材料Xの蒸気は、蒸気発生室103,203,303内に導入されたアルゴンガスと共に蒸着ヘッド16cへ輸送される。
ユニットU1においては、輸送管L11に、第1蒸気発生部101に近い側から順に、バルブV102、断熱輸送管140、バルブV103、第1MFC(マスフローコントローラ)110、及びバルブV104が設けられている。バルブV102,V103,V104は、輸送管L11内のアルゴンガスの流れを選択的に遮断するために用いられる。第1MFC 110は、輸送管L11内を流れるアルゴンガスの流量を制御する。
バルブV102及び断熱輸送管140は、第1収容容器120内における輸送管L11に設けられている。ユニットU1においては、断熱輸送管140とバルブV102との間の輸送管L11、バルブV102、及び、バルブV102と第1蒸気発生部101との間の輸送管L11にそれぞれ、ヒータ115a、115b、及び115cが取り付けられている。ヒータ115a、115b、及び115cにより、これらヒータが取り付けられた部分の温度を個別に制御することが可能である。また、これらヒータにより、アルゴンガスが蒸着材料Xの気化温度に対応する温度となるよう、収容室R1内において輸送管L11及びバルブV102を加熱することができる。
また、断熱輸送管140は、第1収容容器120外の輸送管L11と第1収容容器120内の輸送管L11との間での熱交換を抑制することができる。そのため、断熱輸送管140は、輸送管L11の熱伝導率よりも低い熱伝導率を有している。例えば、輸送管L11は、ステンレス製であり、断熱輸送管140は、石英製であり得る。
ユニットU1においては、輸送管L12に、第1蒸気発生部101に近い側から順に、断熱輸送管141、及びバルブV101が設けられている。バルブV101は、処理室12内において輸送管L12に設けられている。バルブV101は、輸送管L12から輸送管L40へのアルゴンガス及び蒸着材料Xの蒸気の供給を選択的に遮断するために用いられる。ユニットU1においては、第1蒸気発生部101と断熱輸送管141との間の輸送管L12、及び、断熱輸送管141とバルブV101との間の輸送管L12にはそれぞれ、ヒータ(加熱部)125a及びヒータ(加熱部)125bが取り付けられている。ヒータ125a及びヒータ125bにより、これらヒータが取り付けられた部分の温度を個別に制御することが可能である。また、これらヒータにより、蒸着材料Xが析出することがない温度まで輸送管L12を加熱することができる。
また、断熱輸送管141は、第1収容容器120内において輸送管L12に設けられている。断熱輸送管141は、第1収容容器120外の輸送管L12と第1収容容器120内の輸送管L12との間での熱交換を抑制し得る。そのため、断熱輸送管141は、輸送管L12の熱伝導率よりも低い熱伝導率を有している。例えば、輸送管L12は、ステンレス製であり、断熱輸送管141は、石英製であり得る。
また、ユニットU2においては、輸送管L21に、輸送管L11と同様に、第2蒸気発生部201に近い側から順に、バルブV202、断熱輸送管240、バルブV203、第2MFC 210、及びバルブV204が設けられている。また、ユニットU2においては、断熱輸送管240とバルブV202との間の輸送管L21、バルブV202、及び、バルブV202と第2蒸気発生部201の間の輸送管L21に、ヒータ215a、ヒータ215b、ヒータ215cがそれぞれ設けられている。バルブV202、断熱輸送管240、バルブV203、第2MFC 210、バルブV204、ヒータ215a、ヒータ215b、ヒータ215cの構成及び機能は、バルブV102、断熱輸送管140、バルブV103、第1MFC 110、バルブV104、ヒータ115a、ヒータ115b、ヒータ115cの機能及び構成と、それぞれ同様である。
また、ユニットU2においては、輸送管L22に、輸送管L12と同様に、第2蒸気発生部201に近い側から順に、断熱輸送管241、及びバルブV201が設けられている。また、ユニットU2においては、第2蒸気発生部201と断熱輸送管241との間の輸送管L22、及び、断熱輸送管241とバルブV201との間の輸送管L22に、ヒータ(加熱部)225a及びヒータ(加熱部)225bがそれぞれ設けられている。断熱輸送管241、バルブV201、ヒータ225a、ヒータ225bの構成及び機能は、断熱輸送管141、バルブV101、ヒータ125a、ヒータ125bの構成及び機能とそれぞれ同様である。
また、ユニットU3においては、輸送管L31に、輸送管L11と同様に、第3蒸気発生部301に近い側から順に、バルブV302、断熱輸送管340、バルブV303、第3MFC 310、及びバルブV304が設けられている。また、ユニットU3においては、断熱輸送管340とバルブV302との間の輸送管L31、バルブV302、及び、バルブV302と第3蒸気発生部301の間の輸送管L31に、ヒータ315a、ヒータ315b、ヒータ315cがそれぞれ設けられている。バルブV302、断熱輸送管340、バルブV303、第3MFC 310、バルブV304、ヒータ315a、ヒータ315b、ヒータ315cの構成及び機能は、バルブV102、断熱輸送管140、バルブV103、第1MFC 110、バルブV104、ヒータ115a、ヒータ115b、ヒータ115cの機能及び構成と、それぞれ同様である。
また、ユニットU3においては、輸送管L32に、輸送管L32と同様に、第3蒸気発生部301に近い側から順に、断熱輸送管341、及びバルブV301が設けられている。また、第3蒸気発生部301と断熱輸送管341との間の輸送管L32、及び、断熱輸送管341とバルブV301との間の輸送管L32には、ヒータ(加熱部)325a及びヒータ(加熱部)325bがそれぞれ設けられている。断熱輸送管341、バルブV301、ヒータ325a、ヒータ325bの構成及び機能は、断熱輸送管141、バルブV101、ヒータ125a、ヒータ125bの構成及び機能とそれぞれ同様である。
ユニットU1~U3に共通の輸送管L40には、当該輸送管L40を加熱するヒータ(加熱部)415が設けられている。ヒータ415は、蒸気となった蒸着材料Xが析出することがない温度まで、輸送管L40を加熱する。ヒータ125a~b,225a~b,325a~b,415は、互いに独立して温度制御が可能となっている。
また、ガス供給源20cには、収容室R1~R3を減圧する減圧機構500が備えられている。より詳細には、減圧機構500は、減圧配管L501,L511,L521,L531、バルブV107,V207,V307、ターボ分子ポンプ(TMP)501、及びドライポンプ(DP)502を備える。ユニットU1は、減圧配管L511、バルブV107、及び共通の減圧配管L501を含んでおり、ユニットU2は、減圧配管L521、バルブV207、及び共通の減圧配管L501を含んでおり、ユニットU3は、減圧配管L531、バルブV307、及び共通の減圧配管L501を含んでいる。
減圧配管L511の一端は、収容室R1と連通するように第1収容容器120に接続される。同様に、減圧配管L521の一端,L531の一端は、収容室R2,R3と連通するように第2、第3収容容器220,320にそれぞれ接続される。減圧配管L511、L521、及びL531のそれぞれの他端は、減圧配管L501に接続される。この減圧配管L501は、ターボ分子ポンプ501及びドライポンプ502に接続されている。ターボ分子ポンプ501及びドライポンプ502の吸引作用により、減圧配管L501,L511を介して収容室R1が減圧され、減圧配管L501,L521を介して収容室R2が減圧され、減圧配管L501,L531を介して収容室R3が減圧される。
バルブV107,V207,V307は、減圧配管L511,L521,L531にそれぞれ設けられる。バルブV107,V207,V307の開閉により、収容室R1~R3を独立して選択的に減圧することが可能である。収容室R1~R3内を減圧することで、第1~第3蒸気発生部101,201,301内の蒸着材料Xに水分等が付着することが抑制され得る。また、収容室R1~R3の断熱効果が向上される。
一実施形態においては、成膜装置10は、QCM(Quartz Crystal Microbalance)センサ30を更に備え得る。QCMセンサ30は、処理室12内に配置される基板Sの近傍に設置され得る。QCMセンサ30は、蒸着ヘッド16cから噴き出された蒸着材料の量を測定する。
また、一実施形態においては、成膜装置10は、ガス排出系統(排出管)600を更に備え得る。ガス排出系統600は、第1~第3蒸気発生部101,201,301からのガスを個別に且つ選択的に、蒸着ヘッド16cではなく外部へ排出する。具体的には、ガス排出系統600は、排出配管L601,L611,L621,L631、バルブV105,V205,V305、断熱配管142,242,342、及びヒータ155a~c,255a~c,355a~cを備える。ユニットU1は、排出配管L611、バルブV105、断熱配管142、ヒータ155a,155b,155c、及び、共通の排出配管L601を含んでおり、ユニットU2は、排出配管L621、バルブV205、断熱配管242、ヒータ255a,255b,255c、及び、共通の排出配管L601を含んでおり、ユニットU3は、排出配管L631、バルブV305、断熱配管342、ヒータ355a,355b,355c、及び、共通の排出配管L601を含んでいる。
排出配管L611は、断熱輸送管141と第1蒸気発生部101との間において輸送管L12から分岐されている。排出配管L611は、輸送管L12内を流れるアルゴンガスや蒸着材料Xの蒸気を、蒸着ヘッド16cではなく第1収容容器120外に導く。排出配管L611と同様に、排出配管L621,L631は、輸送管L22,L32からそれぞれ分岐されている。排出配管L621,L631は、輸送管L22,L32内を流れるアルゴンガスや蒸着材料Xの蒸気を、蒸着ヘッド16cではなく第2、第3収容容器220,320外にそれぞれ導く。
排出配管L611は、第1収容容器120外において排出配管L601に接続されている。同様に、排出配管L621は、第2収容容器220外において排出配管L601に接続されている。また、同様に、排出配管L631は、第3収容容器320外において排出配管L601に接続されている。排出配管L601は、第1~第3収容容器120,220,320外に導かれたアルゴンガスや蒸着材料Xの蒸気を、蒸着ヘッド16cではなく成膜装置10の外部に排出する。
排出配管L611,L621,L631には、バルブV105,V205,V305がそれぞれ設けられている。バルブV105の開閉により、第1蒸気発生部101からのガスを、選択的に、輸送管L12及びL40を介して蒸着ヘッド16cに供給し、又は、排出配管L611及びL601を介して排出することができる。同様に、バルブV205の開閉により、第2蒸気発生部201からのガスを、選択的に、輸送管L22及びL40を介して蒸着ヘッド16cに供給し、又は、排出配管L621及びL601を介して排出することができる。また、同様に、第3蒸気発生部301からのガスを、選択的に、輸送管L32及びL40を介して蒸着ヘッド16cに供給し、又は、排出配管L631及びL601を介して排出することができる。
成膜装置10では、輸送管L12とバルブV105との間の排出配管L611、バルブV105、及び、バルブV105と断熱配管142との間の排出配管L611に、ヒータ155a、ヒータ155b、及び155cがそれぞれ設けられている。同様に、輸送管L22とバルブV205との間の排出配管L621、バルブV205、及び、バルブV205と断熱配管242との間の排出配管L621に、ヒータ255a、ヒータ255b、及び255cがそれぞれ設けられている。また、同様に、輸送管322とバルブV305との間の排出配管L631、バルブV305、及び、バルブV305と断熱配管342との間の排出配管L631に、ヒータ355a、ヒータ355b、及び355cがそれぞれ設けられている。かかる構成により収容室R1、R2、R3において排出配管L611、L621、L631の内部それぞれに、蒸着材料Xが析出することを抑制し得る。
また、第1収容容器120外の排出配管L611と第1収容容器120内の排出配管L611との間には、断熱配管142が設けられている。断熱配管142は、第1収容容器120外の排出配管L611と第1収容容器120内の排出配管L611との間での熱交換を抑制する。同様に、第2収容容器220外の排出配管L621と第2収容容器220内の排出配管L621との間には、断熱配管242が設けられており、当該断熱配管242は、第2収容容器220外の排出配管L621と第2収容容器220内の排出配管L621との間での熱交換を抑制する。同様に、第3収容容器320外の排出配管L631と第3収容容器320内の排出配管L631との間には、断熱配管342が設けられており、当該断熱配管342は、第3収容容器320外の排出配管L631と第3収容容器320内の排出配管L631との間での熱交換を抑制する。例えば、排出配管L611、621、及び631はステンレス製であり、断熱配管142,242,342は、石英製であり得る。
また、一実施形態においては、成膜装置10は、収容室R1~R3内にパージガスを導入するガス導入系統(ガス導入路)700を更に備え得る。このガス導入系統700は、導入配管L701,L711,L721,L731、及びバルブV106,V206,V306を備える。導入配管L701には、窒素ガス(パージガス)が導入され得る。なお、窒素ガスに替えて、他のガスを用いることもできる。導入配管L711の一端は、収容室R1と連通するように第1収容容器120に接続される。導入配管L711の他端は導入配管L701に接続される。同様に、導入配管L721,L731の一端は、収容室R2,R3と連通するように第2、第3収容容器220,320にそれぞれ接続される。導入配管L721,L731の他端は、導入配管L701に接続される。
導入配管L711,L721,L731は、導入配管L701を流れる窒素ガスを収容室R1~R3内にそれぞれ導く。バルブV106,V206,V306は、導入配管L711,L721,L731にそれぞれ設けられる。バルブV106の開閉により、導入配管L701を流れる窒素ガスを、選択的に、導入配管L711を介して収容室R1内に導入するか、又は遮断することができる。同様に、バルブV206の開閉により、導入配管L701を流れる窒素ガスを、選択的に、導入配管L721を介して収容室R2内に導入するか、又は遮断することができる。同様に、バルブV306の開閉により、導入配管L701を流れる窒素ガスを、選択的に、導入配管L731を介して収容室R3内に導入するか、又は遮断することができる。
また、一実施形態においては、ヒータによって加熱される輸送管L12,L11、排出配管L611にそれぞれ設けられるバルブV101,V102,V105として、高温耐熱バルブを用いてもよい。同様に、ヒータによって加熱される輸送管L22,L21、排出配管L621にそれぞれ設けられるバルブV201,V202,V205として、高温耐熱バルブを用いてもよい。同様に、ヒータによって加熱される輸送管L32,L31、排出配管L631にそれぞれ設けられるバルブV301,V302,V305として、高温耐熱バルブを用いてもよい。
高温耐熱バルブの一実施形態について説明する。図5は、一実施形態に係る高温耐熱バルブの断面図である。以下の説明では、方向を示す用語として、ボンネット902に対して前方部材901が位置する方向を示すため「一端」との語を用い、その反対方向を示す用語として「他端」との語を用いる。図5に示す高温耐熱バルブYは、円筒状の弁箱905を有している。弁箱905は、前方部材901、中央のボンネット902、及び後方部材903を有している。弁箱905は中空になっている。弁箱905の内部に弁体910が収容されている。高温耐熱バルブYを加熱するためのヒータ950が、前方部材901及びボンネット902に埋設されている。
弁体910は、弁体頭部910aと、弁体身部910bと、弁軸910cと、ベローズ925と、を備えている。弁体頭部910aと弁体身部910bとは、弁軸910cにより連結されている。具体的には、棒状に形成された弁軸910cは、中空の弁体身部910bの内孔を貫通している。弁軸910cの一端が弁体頭部910aの中央に設けられた凹部910a1に嵌め込まれている。前方部材901には、輸送管の往路900a1及び復路900a2が形成されている。また、前方部材901内における往路900a1の開口縁に、弁体頭部910aが当接される弁座面900a3が設けられている。
弁体身部910bの後方部材903側の外周面に設けられた突出部910b1は、ボンネット902の内周面に設けられた環状の凹部905a1に挿入されている。凹部905a1に突出部910b1が挿入された状態において、弁体身部910bがその長手方向に摺動可能な空間が凹部905a1内に設けられている。凹部905a1内における弁体身部910bが摺動可能な空間には、耐熱性の緩衝部材915が配置される。緩衝部材915として、例えば、金属製ガスケットを用いることができる。緩衝部材915は、中空のボンネット902の内孔における前方部材901側の減圧環境と、後方部材903側の大気圧環境とを分離する。
ベローズ925の一端は弁体頭部910aに溶接され、ベローズ925の他端は弁体身部910bの他端側の外周面に溶接されている。
後方部材903は、弁軸910cを当該弁軸910cの軸方向に移動させる駆動部930を備える。駆動部930が弁軸910cを一端側に移動させることで、弁体頭部910aが弁座面900a3に当接する。反対に、駆動部930が弁軸910cを他端側に移動させることで、弁体頭部910aと弁座面900a3との間に隙間が形成される。
この弁体910では、弁体身部910bと弁体頭部910aとが分離されているので、弁体身部910bと弁軸910cとのクリアランス(隙間)を制御することにより、開閉動作時の弁体910の中心位置のずれを補正することができる。また、弁体頭部910aの凹部910a1には、弁軸910cが挿入された状態で遊び910a2が設けられている。これにより、弁体頭部910aの軸の軸方向の微少なずれを調整することができる。これにより、弁体頭部910aを、前方部材901の弁座面900a3に偏りなく当接させることができる。このため、弁体頭部910aと弁座面900a3との密着性を高め、リークを防ぐことができる。また、高温耐熱バルブYを高温状態或いは低温状態にて使用することで金属の熱膨張の影響が生じたとしても、弁体910の分離構造によりその影響を吸収できる。これにより、開閉時の弁体部分のリークを効果的に防ぐことができる。
上述した高温耐熱バルブYを、バルブV101,V102,V105,V201,V202,V205,V301,V302,V305に適用し得る。
また、ガス供給源20cは、各バルブV101,V102,…,第1~第3MFC 110~310、ヒータ105,205,305を制御する制御部を備える。図6は、一実施形態に係る制御部を示すブロック図である。図6に示す制御部800は、例えば、CPU(中央処理装置)及びメモリを有する計算装置であり得る。制御部800は、MFC制御部810、バルブ制御部820、及びヒータ制御部830を備える。
一実施形態においては、MFC制御部810は、QCMセンサ30の測定結果に基づいて、第1~第3MFC 110,210,310の制御を行ってもよい。具体的には、MFC制御部810は、第1~第3MFC 110,210,310に対し、流量を制御するための制御信号を送出する。蒸着ヘッド16cから噴き出された蒸着材料の量が少ない場合、MFC制御部810は、第1~第3MFC 110,210,310を制御して、輸送管L11,L21,L31を流れるアルゴンガスの量を増加させる。反対に、蒸着ヘッド16cから噴き出された蒸着材料の量が多い場合、MFC制御部810は、第1~第3MFC 110,210,310を制御して、輸送管L11,L21,L31を流れるアルゴンガスの量を減少させる。このように、蒸着ヘッド16cから噴き出される蒸着材料の量は、第1~第3蒸気発生部101,201,301に供給されるアルゴンガスの量によって増減する。
バルブ制御部820は、バルブV101~V107,V201~V207,及びV301~V307の開閉を制御する。具体的には、バルブ制御部820は、バルブV101~V107,V201~V207,及びV301~V307に対し、バルブの開閉を制御する制御信号を送出する。
第1蒸気発生部101で発生した蒸着材料Xの蒸気を蒸着ヘッド16cへ輸送する場合、バルブ制御部820は、バルブV101,V102,V103,V104を開状態(流通状態)に制御する。第1蒸気発生部101内の蒸着材料Xを交換する場合、バルブ制御部820は、バルブV101,V102,V103,V104を閉状態(遮断状態)に制御する。収容室R1内を減圧する場合、バルブ制御部820は、バルブV107を開状態に制御する。一方、収容室R1内を減圧しない場合、バルブ制御部820は、バルブV107を閉状態に制御する。蒸気発生室103内のアルゴンガスや蒸気をガス排出系統600を介して排出する場合、バルブ制御部820は、バルブV105を開状態に制御する。一方、蒸気発生室103内のアルゴンガスや蒸気を排出しない場合、バルブ制御部820は、バルブV105を閉状態に制御する。収容室R1内にガス導入系統700を介して窒素ガスを導入する場合、バルブ制御部820は、バルブV106を開状態に制御する。一方、収容室R1内に窒素ガスを導入しない場合、バルブ制御部820は、バルブV106を閉状態に制御する。
同様に、第2蒸気発生部201で発生した蒸着材料Xの蒸気を蒸着ヘッド16cへ輸送する場合、バルブ制御部820は、バルブV201,V202,V203,V204を開状態に制御する。第2蒸気発生部201内の蒸着材料Xを交換する場合、バルブ制御部820は、バルブV201,V202,V203,V204を閉状態に制御する。収容室R2内を減圧する場合、バルブ制御部820は、バルブV207を開状態に制御する。一方、収容室R2内を減圧しない場合、バルブ制御部820は、バルブV207を閉状態に制御する。蒸気発生室203内のアルゴンガスや蒸気をガス排出系統600を介して排出する場合、バルブ制御部820は、バルブV205を開状態に制御する。一方、蒸気発生室203内のアルゴンガスや蒸気を排出しない場合、バルブ制御部820は、バルブV205を閉状態に制御する。収容室R2内にガス導入系統700を介して窒素ガスを導入する場合、バルブ制御部820は、バルブV206を開状態に制御する。一方、収容室R2内に窒素ガスを導入しない場合、バルブ制御部820は、バルブV206を閉状態に制御する。
同様に、第3蒸気発生部301で発生した蒸着材料Xの蒸気を蒸着ヘッド16cへ輸送する場合、バルブ制御部820は、バルブV301,V302,V303,V304を開状態に制御する。第3蒸気発生部301内の蒸着材料Xを交換する場合、バルブ制御部820は、バルブV301,V302,V303,V304を閉状態に制御する。収容室R3内を減圧する場合、バルブ制御部820は、バルブV307を開状態に制御する。一方、収容室R3内を減圧しない場合、バルブ制御部820は、バルブV307を閉状態に制御する。蒸気発生室303内のアルゴンガスや蒸気をガス排出系統600を介して排出する場合、バルブ制御部820は、バルブV305を開状態に制御する。一方、蒸気発生室303内のアルゴンガスや蒸気を排出しない場合、バルブ制御部820は、バルブV305を閉状態に制御する。収容室R3内にガス導入系統700を介して窒素ガスを導入する場合、バルブ制御部820は、バルブV306を開状態に制御する。一方、収容室R3内に窒素ガスを導入しない場合、バルブ制御部820は、バルブV306を閉状態に制御する。
ヒータ制御部830は、第1~第3蒸気発生部101,201,301に備えられたヒータ105,205,305のオン/オフ(加熱状態/非加熱状態)を制御する。具体的には、ヒータ制御部830は、ヒータ105,205,305に対し、ヒータのオン/オフを制御する制御信号を送出する。
次に、バルブ制御部820及びヒータ制御部830における処理の流れについて説明する。バルブ制御部820及びヒータ制御部830は、第1蒸気発生部101で発生した蒸気を蒸着ヘッド16cに供給する経路と、第2蒸気発生部201で発生した蒸気を蒸着ヘッド16cに供給する経路と、第3蒸気発生部301で発生した蒸気を蒸着ヘッド16cに供給する経路と、を順次切り替える。即ち、バルブ制御部820及びヒータ制御部830は、第1~第3蒸気発生部101,201,301の何れかで発生した蒸着材料Xの蒸気を含むガスが、常時、蒸着ヘッド16cに供給されるように、各部の制御を行う。
図7は、一実施形態に係るバルブ制御部及びヒータ制御部が行う処理の流れを示す図である。図7においては、横軸に時間軸をとり、縦軸にバルブやヒータの制御状態を示している。また、図8は、一実施形態に係る第1~第3蒸気発生部の状態を示す図である。図8においては、横軸に時間軸をとり、縦軸に各蒸気発生部の温度を示している。まず、時刻t1においてヒータ制御部830は、ヒータ105を加熱状態(オン)に制御し、他のヒータは非加熱状態(オフ)に制御する。また、時刻t1においてバルブ制御部820は、バルブV102~V105,V107,V207,V307を開状態に制御し、他のバルブを閉状態に制御する。ヒータ105が加熱状態となることで、第1蒸気発生部101内で蒸着材料Xの蒸気が発生し始める。バルブV102~105が開状態であるため、第1蒸気発生部101内で発生した蒸着材料Xの蒸気がアルゴンガスによって輸送されてガス排出系統600から排出される。蒸着材料Xの加熱開始直後は、十分な量の蒸気が発生していない等の場合があり得る。このため、加熱開始直後の蒸気をガス排出系統600から排出する。また、バルブV107,V207,V307が開状態であるため、収容室R1~R3内が減圧される。
第1蒸気発生部101内の蒸着材料Xが所望の温度まで加熱された時刻t2において、バルブ制御部820は、バルブV101を開状態に制御し、バルブV105を閉状態に制御する。これにより、第1蒸気発生部101内で発生した蒸着材料Xの蒸気がアルゴンガスによって蒸着ヘッド16cへ輸送され、蒸着ヘッド16cから基板Sへ向けて噴射される。バルブV105が閉状態に制御されることで、ガス排出系統600を介した第1蒸気発生部101内のガスの排出が停止される。
第1蒸気発生部101内の蒸着材料Xが蒸発により少なくなり交換時期となるよりも所定時間前の時刻t3において、ヒータ制御部830はヒータ205を加熱状態(オン)に制御する。また、時刻t3においてバルブ制御部820は、バルブV202~V205を開状態に制御する。一実施形態においては、第1蒸気発生部101内の蒸着材料Xの残り量を、蒸着材料Xの加熱開始からの経過時間に基づいて推測したり、レーザ光線等を用いて測定したりし得る。バルブV202~V205が開状態であるため、第2蒸気発生部201内で発生した蒸着材料Xの蒸気がアルゴンガスによって輸送されてガス排出系統600から排出される。使用する直前に第2蒸気発生部201内の蒸着材料Xの加熱を開始するため、加熱による蒸着材料Xの劣化が防止しされ得る。
第1蒸気発生部101内の蒸着材料Xが蒸発により少なくなり交換時期となる時刻t4において、バルブ制御部820は、バルブV101~V104,V107,V205を閉状態に制御し、バルブV106,V201を開状態に制御する。また、時刻t4においてヒータ制御部830は、ヒータ105を非加熱状態(オフ)に制御する。バルブV201が開状態に制御され、バルブV101が閉状態に制御されることで、第2蒸気発生部201で発生した蒸着材料Xの蒸気がアルゴンガスによって蒸着ヘッド16cへ輸送される。バルブV106が開状態に制御されることで、第1蒸気発生部101の収容室R1内に窒素ガスが導入される。これにより、第1蒸気発生部101の温度をすばやく低下させ得る。第1蒸気発生部101内の温度が低下した後、容器104を取り出し、新たな蒸着材料Xが入れられた容器104を第1蒸気発生部101内に搬入する。
第2蒸気発生部201内の蒸着材料Xが蒸発により少なくなり交換時期となるよりも所定時間前の時刻t5において、ヒータ制御部830はヒータ305を加熱状態(オン)に制御する。また、時刻t5においてバルブ制御部820は、バルブV302~V305を開状態に制御する。バルブV302~V305が開状態であるため、第3蒸気発生部301内で発生した蒸着材料Xの蒸気がアルゴンガスによって輸送されてガス排出系統600から排出される。
第2蒸気発生部201内の蒸着材料Xが蒸発により少なくなり交換時期となる時刻t6において、バルブ制御部820は、バルブV201~V204,V207,V305を閉状態に制御し、バルブV206,V301を開状態に制御する。また、時刻t6においてヒータ制御部830は、ヒータ205を非加熱状態(オフ)に制御する。バルブV301が開状態に制御され、バルブV201が閉状態に制御されることで、第3蒸気発生部301で発生した蒸着材料Xの蒸気がアルゴンガスによって蒸着ヘッド16cへ輸送される。バルブV206が開状態に制御されることで、第2蒸気発生部201の収容室R2内に窒素ガスが導入される。これにより、第2蒸気発生部201の温度をすばやく低下させ得る。第2蒸気発生部201内の温度が低下した後、容器204を取り出し、新たな蒸着材料Xが入れられた容器204を第2蒸気発生部201内に搬入する。
第3蒸気発生部301内の蒸着材料Xが蒸発により少なくなり交換時期となるよりも所定時間前の時刻t7において、ヒータ制御部830はヒータ105を加熱状態(オン)に制御する。また、時刻t7においてバルブ制御部820は、バルブV102~V105,107を開状態に制御し、バルブV106を閉状態に制御する。バルブV102~V105が開状態であるため、第1蒸気発生部101内で発生した蒸着材料Xの蒸気がアルゴンガスによって輸送されてガス排出系統600から排出される。
第3蒸気発生部301内の蒸着材料Xが蒸発により少なくなり交換時期となる時刻t8において、バルブ制御部820は、バルブV301~V304,V307,V105を閉状態に制御し、バルブV306,V101を開状態に制御する。また、時刻t8においてヒータ制御部830は、ヒータ305を非加熱状態(オフ)に制御する。バルブV101が開状態に制御され、バルブV301が閉状態に制御されることで、第1蒸気発生部101で発生した蒸着材料Xの蒸気がアルゴンガスによって蒸着ヘッド16cへ輸送される。バルブV306が開状態に制御されることで、第3蒸気発生部301の収容室R3内に窒素ガスが導入される。これにより、第3蒸気発生部301の温度をすばやく低下させ得る。第3蒸気発生部301内の温度が低下した後、容器304を取り出し、新たな蒸着材料Xが入れられた容器304を第3蒸気発生部301内に搬入する。
時刻t8以降において、バルブ制御部820及びヒータ制御部830は、上述した時刻t2以降の処理を繰り返し行う。
以下、成膜装置の作用効果について説明する。以下において、ガス供給源20a~20fの構成について言及する場合、ガス供給源20cを代表させ、ガス供給源20cの図面参照符号を用いて説明する。上述の成膜装置10では、同種の蒸着材料Xの蒸気を発生する第1~第3蒸気発生部101,201,301が蒸着ヘッド16cに接続されている。従って、ガス供給源20cにおいて、一つの蒸気発生部の蒸着材料Xを交換している期間であっても、他の蒸気発生部から蒸着ヘッド16cに蒸着材料Xの蒸気を含むガスを供給することができる。故に、この成膜装置10によれば、スループットが高められる。
また、ガス供給源20cの第1~第3蒸気発生部101,201,301は、個別に減圧可能であり互いに分離された収容室R1~R3にそれぞれ収容されている。従って、例えば、第1蒸気発生部101の蒸着材料Xの交換時に当該第1蒸気発生部101の温度を低下させても、当該温度の低下が第2、第3蒸気発生部201,301の温度に影響することを抑制することができる。故に、成膜プロセスのスループットが高められる。また、第1蒸気発生部101を使用中にその温度が第2、第3蒸気発生部201,301に影響することを抑制できるので、長時間の加熱による蒸着材料Xの劣化を抑制することができる。更に、断熱輸送管141,241,341を備えると、蒸着ヘッド16cから蒸気発生室103,203,303への伝熱をより抑制することができるので、蒸着材料Xの劣化を抑制することができる。
また、一実施形態においては、収容室R1~R3への窒素ガスの供給を個別に制御可能なガス導入系統700を備え得る。これにより、蒸着材料Xの交換を行う第1~第3蒸気発生部101,201,301の温度をより早く低下させることができる。
また、一実施形態においては、輸送管L12,L22,L32は、第1~第3蒸気発生部101,201,301にそれぞれ接続されており収容室R1~R3においてそれぞれ延在する。輸送管L40は、輸送管L12,L22,L32に連通し且つ処理室内において延在して蒸着ヘッド16cに接続する。このように、減圧可能な収容室R1~R3内に輸送管L12,L22,L32が延在しているので、輸送管L12,L22,L32の温度の変動を抑制することができる。その結果、輸送管L12,L22,L32内における蒸着材料Xの析出を抑制することができる。また、輸送管L12,L22,L32の温度を必要以上に高める必要がないので、蒸着材料Xの品質劣化を抑制することができる。
また、一実施形態においては、処理室12と収容室R1~R3とが分離されているので、収容室R1~R3内のヒータ115a~c,125a~b,155a~c,215a~c,225a~b,255a~c,315a~c,325a~b,355a~cから発生するガスが処理室12内に流入することを抑制し得る。
また、一実施形態においては、輸送管L12,L22,L32に接続するガス排出系統600を備えているので、例えば、第1蒸気発生部101における蒸着材料Xの交換前に、第2蒸気発生部201において蒸着材料Xの蒸気を含むガスの生成を開始して、当該ガスをガス排出系統600に排出しておくことができる。その結果、例えば、蒸着ヘッド16cにガスを供給する蒸気発生部を、蒸着材料Xの交換が行われる第1蒸気発生部101から、第2蒸気発生部201に効率的に切り替えることが可能である。
また、一実施形態においては、バルブV101,V102,V105,V201,V202,V205,V301,V302,V305として高温耐熱バルブを用いることで、例えば、300度以上といった高温のガスの通過又遮断を切り替えることができる。
また、一実施形態においては、一つのガス供給源に設けられた複数の蒸気発生部において、異なる蒸着材料の蒸気を発生させてもよい。図9は、一実施形態に係るドーパント材料の蒸気とホスト材料の蒸気とを発生させるガス供給源を模式的に示す図である。なお、図9に示すガス供給源20cは、図4を用いて説明したガス供給源20cに対して第4蒸気発生部401を含むユニットU4が追加されている。以下、新たに追加された構成、即ちユニットU4についてのみ説明する。ガス供給源20cは、輸送管L41,L42と、第4蒸気発生部401と、第4収容容器420と、を更に備える。
第4蒸気発生部401は、第4収容容器420によって画成される収容室R4内に収容される。第4蒸気発生部401は、隔壁402によって画成される蒸気発生室403を備える。蒸気発生室403内には、蒸着材料Zが入れられた容器404が配置される。第4蒸気発生部401には、ヒータ405が設けられている。ヒータ405は、容器404に入れられた蒸着材料Zを加熱する。これにより、第4蒸気発生部401内において、蒸着材料Zから当該蒸着材料Zを含む蒸気が発生する。
輸送管L41,L42の構成は、輸送管L11,L12の構成と同様である。また、輸送管L41に設けられたバルブV402、断熱輸送管440、バルブV403、第4MFC 410、バルブV404、及びヒータ415a~cの構成は、輸送管L11に設けられたバルブV102、断熱輸送管140、バルブV103、第1MFC 110、バルブV104、及びヒータ115a~cの構成と同様である。また、輸送管L42に設けられた断熱輸送管441、バルブV401、及びヒータ(加熱部)425a~bの構成は、輸送管L12に設けられた断熱輸送管141、バルブV101、及びヒータ125a~bの構成と同様である。また、排出配管L641、排出配管L641に設けられたバルブV405、断熱配管442、及びヒータ455a~cの構成は、排出配管L611、バルブV105、断熱配管142、及びヒータ155a~cの構成と同様である。また、導入配管L741、及び、導入配管L741に設けられたバルブV406の構成は、導入配管L711、及び、バルブV106の構成と同様である。また、減圧配管L541、及び、減圧配管L541に設けられたバルブV407の構成は、減圧配管L511、及び、バルブV107の構成と同様である。
第1~第3蒸気発生部101,201,301内に配置される蒸着材料Xには、同種のホスト材料が用いられる。第4蒸気発生部401内に配置される蒸着材料Zには、ドーパント材料が用いられる。
なお、一実施形態においては、収容室R4内にQCMセンサ30aを配置してもよい。この場合、輸送管L42を流れる蒸着材料Zの蒸気をQCMセンサ30aに当て、QCMセンサ30aによって蒸着材料Zの量を測定する。この測定結果に基づいて、第4MFC 410は第4蒸気発生部401に送るアルゴンガスの流量を制御し得る。
第1~第3蒸気発生部101,201,301内の蒸着材料Xは、上述の実施形態のように、順次交換される。
この一実施形態においては、ガス供給源20cが、ドーパント材料の蒸気を発生する第4蒸気発生部401と、同種のホスト材料の蒸気を発生する第1~第3蒸気発生部101,201,301とを備え得る。ホスト材料はドーパント材料より多量に使用される。従って、ドーパント材料用の蒸気発生部の数よりホスト材料用の蒸気発生部の数を多くすることで、ホスト材料の品質低下を抑制しつつ、当該ホスト材料をドーパント材料の量よりも多量に供給することができる。
なお、図9を用いて説明した実施形態において、ドーパント材料の蒸気を発生する蒸気発生部は一以上であってもよい。この場合にも、ホスト材料の蒸気を発生する蒸気発生部の数は、ドーパント材料の蒸気を発生する蒸気発生部の数より多くすることができる。
また、一実施形態においては、ガス供給源20a~20fに設けられた蒸気発生部に、熱交換器で加熱されたアルゴンガスを供給してもよい。以下、ガス供給源20a~20fのうちガス供給源20cを代表させて、熱交換器で加熱されたアルゴンガスを供給する構成を説明する。図10は、一実施形態に係るガス供給源を模式的に示す図である。なお、図10に示すガス供給源20cは、図4を用いて説明したガス供給源20cに対して、熱交換器160,260,360と、排出配管L612,L622,L632と、バルブV108,V208,V308と、ヒータ(加熱部)135a,135b,135cと、ヒータ(加熱部)235a,235b,235cと、ヒータ(加熱部)335a,335b,335cと、を更に備える。以下、新たに追加された構成のみ説明する。
熱交換器160は、ユニットU1において、輸送管L11における断熱輸送管140とバルブV102との間に設けられている。熱交換器160は、第1蒸気発生部101に供給されるアルゴンガスが蒸着材料Xの気化温度に対応する温度となるよう、輸送管L11内を流れるアルゴンガスを加熱する。
熱交換器160の構成の詳細について説明する。図11は、一実施形態に係る熱交換器の概略構成を示す図である。図12は、一実施形態に係る熱交換器をヒータに挿入した状態を示す断面図である。図11に示すように、熱交換器160は、分散部161,162と、複数の細管163と、を備えている。分散部161は、円盤状を成し、断熱輸送管140から延びる輸送管L11の端部に接続されている。分散部162は、円盤状を成し、バルブV102から延びる輸送管L11の端部に接続されている。分散部161及び分散部162は、互いに円盤面を対向させて所定距離を離して配置される。複数の細管163は、それぞれ、分散部161及び分散部162の円盤面同士を接続している。複数の細管163は、互いに並列に配置されている。複数の細管163の断面積の合計は、輸送管L11の断面積よりも小さくなっている。分散部161,162及び細管163は、例えば、ステンレス製であり得る。図11では、細管163を4本示しているが、細管163の本数はこれに限定されない。
ところで、ガスフロー蒸着装置では、大気中に有機材料を保管した場合等に、有機材料に水分が付着することがあり、水分が材料容器側から熱交換器側の1次輸送管に逆拡散した場合、1次側輸送管の方が温度が低いため、水分が付着するおそれがある。1次側の輸送管に水分が付着した場合、この付着した水分がガスフロー蒸着処理の際に、更に高い温度設定で加熱されて再蒸発して基板まで搬送される結果、有機材料の成膜性能の劣化を招くおそれがある。そこで、複数の細管163の断面積の合計を、輸送管L11の断面積よりも小さくすることで、アルゴンガスの流入側の圧力と流出側の圧力との間で差圧が生じる。これにより、第1蒸気発生部101内で発生した水分が第1MFC 110側へ向けて逆流することを抑制し得る。
図12に示すように、熱交換器160は、ヒータ165(加熱部)によって覆われる。ヒータ165は、分散部161,162、及び複数の細管163を流通するアルゴンガスを加熱する。ヒータ165は、例えば、銅ブロック168と、ヒータ部167とを含んで構成され得る。銅ブロック168は、熱交換器160全体を覆うように配置され得る。ヒータ部167は、銅ブロック168内の所定位置に複数配置される発熱体であり得る。ヒータ部167が発熱することで、銅ブロック168全体が加熱され、銅ブロック168に挿入された熱交換器160が加熱される。ヒータ165は、第1蒸気発生部101に供給されるアルゴンガスが蒸着材料Xの気化温度に対応する温度となるよう、アルゴンガスを加熱する。また、熱交換器160には、細管163におけるガス接触面の温度を測定する温度センサ166が設けられている。この温度センサとして、例えば、熱電対を用いることができる。
また、例えば、銅ブロック168の熱交換器160側の表面168a、及び、熱交換器160の銅ブロック168側の表面160aは、黒体となっている。これにより、ヒータ165の銅ブロック168で発生する輻射熱によって、効率よく熱交換器160を加熱することができる。この黒体は既知の材料を使うことができ、メッキ、溶射等によって、形成することができる。また、黒体の変わりに、表面処理により凸凹にしてもよい。これにより、ヒータ165の銅ブロック168で発生する輻射熱によって、効率よく熱交換器160を加熱することができる。なお、他の配管及びヒータについても、配管の表面、及び、ヒータの内面(配管と対向する面)を、黒体としてもよいし、表面処理により凸凹にしてもよい。
図10に示すように、排出配管L612は、ユニットU1において、熱交換器160及びバルブV102間の輸送管L11と、バルブV105及び断熱配管142間の排出配管L611とを接続している。バルブV108は、排出配管L612に設けられている。
ヒータ135aは、断熱輸送管140とバルブV103との間の輸送管L11に取り付けられている。ヒータ135bは、バルブV103に取り付けられている。ヒータ135cは、バルブV103と第1MFC 110との間の輸送管L11に取り付けられている。これらのヒータ135a~135cは、第1MFC 110と断熱輸送管140との間の輸送管L11を加熱し、輸送管L11内の水分を蒸発させ得る。
熱交換器260は、熱交換器160と同じ構成であり、ユニットU2において、輸送管L21における断熱輸送管240とバルブV202との間に設けられている。排出配管L622は、排出配管L612と同様に、ユニットU2において、熱交換器260及びバルブV202間の輸送管L21と、バルブV205及び断熱配管242間の排出配管L621とを接続している。バルブV208は、排出配管L622に設けられている。
ヒータ235aは、断熱輸送管240とバルブV203との間の輸送管L21に取り付けられている。ヒータ235bは、バルブV203に取り付けられている。ヒータ235cは、バルブV203と第2MFC 210との間の輸送管L21に取り付けられている。これらのヒータ235a~235cは、第2MFC 210と断熱輸送管240との間の輸送管L21を加熱し、輸送管L21内の水分を蒸発させ得る。
熱交換器360は、熱交換器160と同じ構成であり、ユニットU3において、輸送管L31における断熱輸送管340とバルブV302との間に設けられている。排出配管L632は、排出配管L612と同様に、ユニットU3において、熱交換器360及びバルブV302間の輸送管L31と、バルブV305及び断熱配管342間の排出配管L631とを接続している。バルブV308は、排出配管L632に設けられている。
ヒータ335aは、断熱輸送管340とバルブV303との間の輸送管L31に取り付けられている。ヒータ335bは、バルブV303に取り付けられている。ヒータ335cは、バルブV303と第3MFC 310との間の輸送管L31に取り付けられている。これらのヒータ335a~335cは、第3MFC 310と断熱輸送管340との間の輸送管L31を加熱し、輸送管L31内の水分を蒸発させ得る。
図6に示すバルブ制御部820は、更に、バルブV108,V208,V308の開閉を制御する。ヒータ制御部830は、更に、熱交換器160を加熱するヒータ165、及び、熱交換器260,360にそれぞれ設けられたヒータの温度を制御する。ヒータ制御部830は、ヒータ165の温度の制御を、温度センサ166による測定結果に基づいて行うことができる。同様に、ヒータ制御部830は、熱交換器260,360にそれぞれ設けられたヒータの温度の制御を、熱交換器260,360にそれぞれ設けられた温度センサによる測定結果に基づいて行うことができる。
次に、ユニットU1において、第1蒸気発生部101で発生した蒸着材料Xの蒸気を蒸着ヘッド16cへ輸送する処理を開始する場合に、バルブ制御部820及びヒータ制御部830が行う制御について説明する。図13は、一実施形態に係るバルブ制御部及びヒータ制御部が行う処理の流れを示す図である。図13においては、横軸に時間軸をとり、縦軸にバルブやヒータの制御状態を示している。なお、ここでは、図4を用いて説明したガス供給源20cに対してバルブ制御部820及びヒータ制御部830が行う処理と異なる部分についてのみ説明する。また、ユニットU2,3において、蒸気発生部で発生した蒸気を蒸着ヘッド16cへ輸送する処理を開始する制御は、ユニットU1の場合と同様であるため、説明を省略する。
図13に示すように、時刻t1においてヒータ制御部830は、細管163内の水分を蒸発させることができる温度(一例として、200度)となるように、ヒータ165を制御(低温制御)する。このとき、ヒータ135a,135b,135cも、輸送管L11内の水分を蒸発させることができる温度(一例として、200度)となるように制御される。また、時刻t1においてバルブ制御部820は、バルブV104,V103,V108を開状態に制御し、他のバルブを閉状態に制御する。これにより、輸送管L11内の気体や水分等が、アルゴンガスによって輸送されてガス排出系統600から排出される。
次に、時刻t2においてヒータ制御部830は、ヒータ105を加熱状態(オン)に制御すると共に、熱交換器160を加熱するヒータ165を、第1蒸気発生部101に供給されるアルゴンガスが蒸着材料Xの気化温度に対応する温度(一例として、400度)となるように制御(高温制御)する。ここでは、一例として、時刻t2において、ヒータ105を加熱状態に制御するものとしたが、予め加熱状態に制御しておくこともできる。また、時刻t2においてバルブ制御部820は、バルブV108を閉状態に制御すると共に、バルブV102,V105を開状態に制御する。ヒータ105が加熱状態となることで、第1蒸気発生部101内で蒸着材料Xの蒸気が発生し始める。バルブV102~105が開状態であるため、第1蒸気発生部101内で発生した蒸着材料Xの蒸気がアルゴンガスによって輸送されてガス排出系統600から排出される。蒸着材料Xの加熱開始直後は、十分な量の蒸気が発生していない等の場合があり得る。このため、加熱開始直後の蒸気をガス排出系統600から排出する。
第1蒸気発生部101内の蒸着材料Xが所望の温度まで加熱された時刻t3において、バルブ制御部820は、バルブV101を開状態に制御し、バルブV105を閉状態に制御する。これにより、第1蒸気発生部101内で発生した蒸着材料Xの蒸気がアルゴンガスによって蒸着ヘッド16cへ輸送される。図13における時刻t3以降の処理は、図7を用いて説明した時刻t2以降の処理と同様である。
このように、一実施形態に係るガス供給源20cでは、熱交換器160,260,360において蒸着材料Xの気化温度に対応する温度に加熱されたアルゴンガスが、第1~第3蒸気発生部101,201,301内にそれぞれ供給される。これにより、第1~第3蒸気発生部101,201,301内に供給されたアルゴンガスによって第1~第3蒸気発生部101,201,301内が冷やされたり、加熱され過ぎたりすることが抑制され、蒸着材料Xの蒸気を含むより好適なガスを蒸着ヘッド16cに供給し得る。
また、一実施形態においては、ヒータ135a,135b,135cによって輸送管L11を加熱することで、輸送管L11内の水分を蒸発させることができ、輸送管L11内の水分をより確実に除去することができる。同様に、ヒータ235a~235c,335a~335cによって輸送管L21,L31をそれぞれ加熱することで、輸送管L21,L31内の水分をより確実に除去することができる。
なお、一実施形態に係るガス供給源20cにおいては、各ユニットU1~U3で生成されたガスを一つの輸送管L40によって蒸着ヘッド16cに導くものとしたが、例えば、同種のホスト材料の蒸気を発生し得るユニットU1、U2と、ドーパント材料の蒸気を発生し得るユニットU3とを備え、ユニットU1、U2で生成されたホスト材料の蒸気は、それぞれの輸送管によって同一の蒸着ヘッドに接続され、U3で生成されたドーパント材料の蒸気は他の輸送管によって別の蒸着ヘッドに接続され、2つの蒸着ヘッドからの蒸気が基板S上で混合されるように構成してもよい(図示せず)。また、各ユニットU1~U3と各蒸着ヘッドとを接続する輸送管毎に、それぞれヒータを設けることもできる。この場合には、輸送管毎に独立して温度制御を行うことができる。これにより、各ユニットU1~U3において用いる蒸着材料に応じて輸送管の温度を制御することができ、蒸着材料を含むガスの品質の劣化等を抑制し得る。
なお、上記各実施形態では、ガス供給源20a~20fの全てが、図4,図9,図10を用いて説明したように複数の蒸気発生部を備えるものとしたが、ガス供給源20a~20fのうち少なくとも一つのガス供給源が複数の蒸気発生部を備えていればよい。また、ガス供給源に設けられる蒸気発生部の数も、図4、図9,図10を用いて説明したように3つ或いは4つに限定されるものではなく、2つ以上であればよい。
以下、更に別の実施形態について説明する。図14は、別の実施形態に係る成膜装置の一部の構成を模式的に示す図である。図14には、処理容器11、ユニットU1、及び、蒸着ヘッド16cが示されている。図14に示す成膜装置10Bでは、蒸気発生部101からヘッド16cのノズル18cの開口までの一以上の部分、即ち、有機材料の蒸気を含むガスに接触する面を有する一以上の部分に、個別のヒータが取り付けられている。以下の説明では、ガスに接触する面のことを、「ガス接触面」という。また、一実施形態においては、輸送管L12に対する接続部から断熱配管142までのガス接触面を有する一以上の部分に、個別のヒータが取り付けられていてもよい。また、一実施形態においては、蒸気発生部101との接続部から断熱輸送管140までのキャリアガスに対するガス接触面を有する一以上の部分に個別のヒータが取り付けられていてもよい。個別のヒータが取り付けられている各部は、他の部分との接続部により当該他の部分から区分けされ得る。
図14に示す成膜装置10Bは、個別のヒータが取り付けられた各部のガス接触面の温度を測定するよう、当該各部に温度センサ(例えば、熱電対)を備えている。成膜装置10Bでは、温度センサで測定された温度値が制御部Contに送られる。制御部Contは、当該温度値に基づいて、各部のガス接触面の温度が所定の温度範囲内の温度となるよう、各部のヒータの設定温度を制御する制御信号を各部のヒータに送出する。一実施形態においては、所定の温度範囲は、有機材料(蒸着材料X)の蒸発温度以上、且つ、当該蒸発温度プラス30℃以下である。なお、図14には、複数のユニットのうちユニットU1のみが示されているが、ユニットU2~U4も、図14に示すユニットU1と同様に個別のヒータ及び温度センサを有し、制御部によってヒータの設定温度が制御されてもよい。以下、図14に従って具体的に説明する。
成膜装置10Bでは、断熱輸送管140及び断熱配管142から蒸着ヘッド16cまでの各部が処理容器11内に収容されている。断熱輸送管140とバルブV102との間の輸送管L11、バルブV102、バルブV102と蒸気発生部101との間の輸送管L11のそれぞれには、ヒータ115a、115b、115cが取り付けられている。断熱輸送管140とバルブV102との間の輸送管L11には、そのガス接触面の温度を測定するために温度センサS1が取り付けられている。バルブV102には、そのガス接触面の温度を測定するために、温度センサS2が取り付けられている。また、バルブV102と蒸気発生部101との間の輸送管L11には、そのガス接触面の温度を測定するために、温度センサS3が取り付けられている。
蒸気発生部101の隔壁102には、当該隔壁102の内面、即ち、ガス接触面の温度を測定するために温度センサS4が取り付けられている。断熱輸送管141と蒸気発生部125aとの間の輸送管L12、断熱輸送管141とバルブV101との間の輸送管L12、バルブV101には、ヒータ125a、ヒータ125b、ヒータ101がそれぞれ取り付けられている。断熱輸送管141と蒸気発生部125aとの間の輸送管L12には、当該輸送管L12のガス接触面の温度を測定するための温度センサS5が取り付けられている。断熱輸送管141とバルブV101との間の輸送管L12には、当該輸送管L12のガス接触面の温度を測定するために温度センサS6が取り付けられている。また、バルブV101には、当該バルブV101のガス接触面の温度を測定するために、温度センサS7が取り付けられている。
輸送管L40には、ヒータ415が取り付けられている。この輸送管L40には、そのガス接触面の温度を測定するために、温度センサS8が取り付けられている。また、蒸着ヘッド16cにはヒータ15が設けられている。蒸着ヘッド16cには、当該ヘッド16cの内部におけるガス接触面の温度を測定するために、温度センサS9が取り付けられている。また、ノズル16cの開口付近のガス接触面の温度を測定するために、蒸着ヘッド16cには、温度センサS10が取り付けられている。
輸送管L12とバルブV105との間の排出配管L601、バルブV105、バルブV105と断熱配管142との間の排出配管L601には、ヒータ155a、155b、155cがそれぞれ取り付けられている。輸送管L12とバルブV105との間の排出配管L601には、当該排出配管L601のガス接触面の温度を測定するための温度センサS11が取り付けられている。バルブV105には、当該バルブV105のガス接触面の温度を測定するために、温度センサS12が取り付けられている。また、バルブV105と断熱配管142との間の排出配管L601には、当該排出配管L601のガス接触面の温度を測定するために、温度センサS13が取り付けられている。
温度センサS1~S13はそれぞれの先端部分において熱を検知することができる。温度センサS1~S13の先端部分は、ガスに直接接することがなく、且つ、ガス接触面の近傍に位置するよう、対応の配管及びバルブにおいてガス接触面を提供する壁の内部に埋め込まれている。これら温度センサS1~S13によって測定された温度値は、制御部Contに送られる。制御部Contは、測定された温度値に基づいて、各部のガス接触面が上述した所定の温度範囲となるよう、ヒータ115a、115b、115c、105、125a、125b、H101、415、15、155a、155b、155cの設定温度を制御する制御信号を送出する。
成膜装置10Bでは、有機材料の蒸気を含むガスを蒸着ヘッド16cに輸送する各部(102、L12、V101、L40)、及び蒸着ヘッド16cに、個別のヒータ105、125a、125b、H101、415、15が設けられている。即ち、蒸気発生部101から蒸着ヘッド16cのノズル18cの開口までの有機材料の蒸気を含むガスに対するガス接触面を提供する各部に、個別のヒータが設けられている。これらのガス接触面の温度は、個別に温度センサS4~S10によってそれぞれ測定される。また、これらセンサS4~S10によって測定された温度値に基づいて、有機材料の蒸気を含むガスを蒸着ヘッド16cに輸送する各部及び蒸着ヘッド16cのガス接触面が、上述した所定の温度範囲となるよう、ヒータ105、125a、125b、H101、415、15の温度設定値がそれぞれ制御される。したがって、有機材料の蒸気を含むガスが冷却されて有機材料がガス接触面に堆積することが防止され、また、有機材料の劣化が防止され得る。
また、成膜装置10Bでは、排出配管L611及びバルブV105にも、個別のヒータ及び温度センサが設けられており、排出配管L611及びバルブV105のガス接触面の温度が所定の温度範囲となるようヒータの設定温度が制御される。したがって、排出配管L611及びバルブV105のガス接触面に有機材料が堆積することも防止され得る。
また、成膜装置10Bでは、処理容器11内に収容されたキャリアガス用の輸送管L11及びバルブV102にも個別のヒータ及び温度センサが設けられており、当該輸送管L11及びバルブV102のガス接触面の温度が所定の温度範囲となるようヒータの設定温度が制御される。したがって、有機材料の蒸発温度より小さい温度のガス、又は、有機材料を劣化させ得る温度のガスが、蒸気発生部101及びその下流に送り込まれることが防止され得る。その結果、有機材料の蒸気を含むガスが冷却されて有機材料がガス接触面に堆積することが防止され、また、有機材料の劣化が防止され得る。
なお、成膜装置10Bでは、ユニットU1と蒸着ヘッド16cが同一の処理容器11内に収容されているが、ユニットU2~U4も同様に同一の処理容器11内に収容されていてもよい。また、上述した各部に設けられるヒータ及び温度センサの個数は、単なる例示であり、各部に設けられるヒータ及び温度センサの個数は任意の個数であってもよい。即ち、上述した所定の温度範囲にガス接触面の温度が維持されるよう、各部に設けられるヒータの個数及び温度センサの個数、及びそれらの配置位置は調整され得る。例えば、各部を更に分割した小区画のそれぞれに個別のヒータ及び温度センサが取り付けられていてもよい。また、上述した実施形態では、個別のヒータ及び温度センサが設けられる各部は、他の部分に対する接続部を境界として、当該他の部分から区分けされている。しかしながら、ガス接触面が所望の温度範囲に維持されるよう、個別のヒータ及び温度センサが設けられる部分同士の境界は任意に設定され得る。
10…成膜装置、11…処理容器、12…処理室、16a~16f…蒸着ヘッド、20a~20f…ガス供給源、101,201,301,401…第1~第4蒸気発生部、120,220,320,420…第1~第4収容容器、125a,125b,225a,225b,325a,325b,415,415a,415b…ヒータ(加熱部)、600…ガス排出系統(排出管)、700…ガス導入系統(ガス導入路)、L12,L22,L32,L42…輸送管(個別輸送管)、L40…輸送管(共通輸送管)、V101,V201,V301,V401…バルブ、S…基板。
Claims (7)
- 蒸着材料の蒸気を含むガスを噴射する蒸着ヘッドと、
前記蒸着ヘッドに対面する基板及び該蒸着ヘッドを収容する処理室を画成する処理容器と、
蒸着材料の蒸気を発生する複数の蒸気発生部であって、同種の蒸着材料の蒸気を発生する二以上の蒸気発生部を含む該複数の蒸気発生部と、
前記複数の蒸気発生部を前記蒸着ヘッドに接続する加熱可能な輸送管と、
個別に減圧可能であり、前記処理室から分離されており且つ互いに分離された複数の収容室であって、前記複数の蒸気発生部をそれぞれ収容する該複数の収容室を画成する複数の収容容器と、
を備える成膜装置。 - 前記複数の収容室にパージガスを供給するためのガス導入路であり、該複数の収容室への該パージガスの供給を個別に制御可能な該ガス導入路を更に備える、請求項1に記載の成膜装置。
- 前記輸送管は、前記複数の蒸気発生部にそれぞれ接続されており前記複数の収容室においてそれぞれ延在する複数の個別輸送管と、前記複数の個別輸送管に連通し且つ前記処理室内において延在して前記蒸着ヘッドに接続する共通輸送管と、を含む、請求項1又は2に記載の成膜装置。
- 前記複数の個別輸送管、及び、前記共通輸送管にそれぞれ取り付けられており、独立して温度制御可能な複数の加熱部を更に備える、請求項3に記載の成膜装置。
- 前記複数の個別輸送管に接続する排出管であって、前記複数の蒸気発生部からのガスを個別に排出可能な該排出管を更に備える、請求項3又は4に記載の成膜装置。
- 前記複数の個別輸送管にそれぞれ取り付けられた複数のバルブであって、前記複数の蒸気発生部からの蒸気を含むガスの通過又は遮断を個別に切り替え可能な該複数のバルブを更に備える、請求項3~5の何れか一項に記載の成膜装置。
- 前記複数の蒸気発生部は、ドーパント材料の蒸気を発生する一以上の蒸気発生部を更に含み、
前記二以上の蒸気発生部は、同種のホスト材料の蒸気を発生し、該二以上の蒸気発生部の数は、前記ドーパント材料の蒸気を発生する前記一以上の蒸気発生部の数より多い、請求項1~6の何れか一項に記載の成膜装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011149195 | 2011-07-05 | ||
JP2011-149195 | 2011-07-05 | ||
JP2011-277382 | 2011-12-19 | ||
JP2011277382 | 2011-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013005781A1 true WO2013005781A1 (ja) | 2013-01-10 |
Family
ID=47437128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067123 WO2013005781A1 (ja) | 2011-07-05 | 2012-07-04 | 成膜装置 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201321535A (ja) |
WO (1) | WO2013005781A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019201434A1 (en) * | 2018-04-18 | 2019-10-24 | Applied Materials, Inc. | Evaporation source for deposition of evaporated material on a substrate, deposition apparatus, method for measuring a vapor pressure of evaporated material, and method for determining an evaporation rate of an evaporated material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109355627A (zh) * | 2018-11-28 | 2019-02-19 | 北京铂阳顶荣光伏科技有限公司 | 镀膜装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004183096A (ja) * | 2002-12-05 | 2004-07-02 | Samsung Electronics Co Ltd | 排気経路におけるパウダ生成を防止できる原子層蒸着装置 |
JP2005050747A (ja) * | 2003-07-31 | 2005-02-24 | Ulvac Japan Ltd | 蒸着源、成膜装置、及び成膜方法 |
JP2006009107A (ja) * | 2004-06-28 | 2006-01-12 | Hitachi Zosen Corp | 蒸発装置、蒸着装置および蒸着装置における蒸発装置の切替方法 |
JP2006274284A (ja) * | 2005-03-28 | 2006-10-12 | Hitachi Zosen Corp | 蒸発材料の流量制御装置および蒸着装置 |
WO2007135870A1 (ja) * | 2006-05-19 | 2007-11-29 | Ulvac, Inc. | 有機蒸着材料用蒸着装置、有機薄膜の製造方法 |
JP2010031324A (ja) * | 2008-07-29 | 2010-02-12 | Tokyo Electron Ltd | 蒸着源ユニット、蒸着方法、蒸着源ユニットの制御装置および成膜装置 |
-
2012
- 2012-07-04 WO PCT/JP2012/067123 patent/WO2013005781A1/ja active Application Filing
- 2012-07-04 TW TW101124061A patent/TW201321535A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004183096A (ja) * | 2002-12-05 | 2004-07-02 | Samsung Electronics Co Ltd | 排気経路におけるパウダ生成を防止できる原子層蒸着装置 |
JP2005050747A (ja) * | 2003-07-31 | 2005-02-24 | Ulvac Japan Ltd | 蒸着源、成膜装置、及び成膜方法 |
JP2006009107A (ja) * | 2004-06-28 | 2006-01-12 | Hitachi Zosen Corp | 蒸発装置、蒸着装置および蒸着装置における蒸発装置の切替方法 |
JP2006274284A (ja) * | 2005-03-28 | 2006-10-12 | Hitachi Zosen Corp | 蒸発材料の流量制御装置および蒸着装置 |
WO2007135870A1 (ja) * | 2006-05-19 | 2007-11-29 | Ulvac, Inc. | 有機蒸着材料用蒸着装置、有機薄膜の製造方法 |
JP2010031324A (ja) * | 2008-07-29 | 2010-02-12 | Tokyo Electron Ltd | 蒸着源ユニット、蒸着方法、蒸着源ユニットの制御装置および成膜装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019201434A1 (en) * | 2018-04-18 | 2019-10-24 | Applied Materials, Inc. | Evaporation source for deposition of evaporated material on a substrate, deposition apparatus, method for measuring a vapor pressure of evaporated material, and method for determining an evaporation rate of an evaporated material |
Also Published As
Publication number | Publication date |
---|---|
TW201321535A (zh) | 2013-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6639580B2 (ja) | 蒸発器、堆積アレンジメント、堆積装置及びこれらを操作する方法 | |
JP5506147B2 (ja) | 成膜装置及び成膜方法 | |
JP5036264B2 (ja) | 真空蒸着装置 | |
JP5551336B2 (ja) | Oledの製造における有機材料の制御可能な供給 | |
US20100092665A1 (en) | Evaporating apparatus, apparatus for controlling evaporating apparatus, method for controlling evaporating apparatus and method for using evaporating apparatus | |
JP2011256427A (ja) | 真空蒸着装置における蒸着材料の蒸発、昇華方法および真空蒸着用るつぼ装置 | |
JP2007314881A (ja) | 薄膜形成用蒸着装置 | |
JP6647202B2 (ja) | 堆積アレンジメント、堆積装置、及びこれらの操作方法 | |
JP2010196082A (ja) | 真空蒸着装置 | |
TW200907082A (en) | Deposition source unit, deposition apparatus and temperature control apparatus for deposition source unit | |
JP5936394B2 (ja) | 蒸着装置 | |
TWI429772B (zh) | A vapor deposition apparatus, a vapor deposition method, and a memory medium of a memory program | |
WO2013122059A1 (ja) | 成膜装置 | |
TW201842224A (zh) | 鍍膜裝置以及用於在真空下於基板上進行反應性氣相沉積的方法 | |
WO2013005781A1 (ja) | 成膜装置 | |
JP5328134B2 (ja) | 蒸着装置及び有機エレクトロルミネッセンス素子の製造方法 | |
JP6207319B2 (ja) | 真空蒸着装置 | |
KR20140060236A (ko) | 성막 장치 | |
JPWO2009101953A1 (ja) | 蒸気発生装置、蒸着装置 | |
WO2013122058A1 (ja) | 蒸着ヘッド及び蒸着装置 | |
US20120285380A1 (en) | Constant volume closure valve for vapor phase deposition source | |
JP2009228090A (ja) | 蒸着装置及び蒸着源 | |
JP5460773B2 (ja) | 成膜装置及び成膜方法 | |
WO2013111833A1 (ja) | 成膜装置及び成膜方法 | |
WO2012127982A1 (ja) | 成膜装置、成膜方法、有機発光素子の製造方法、及び有機発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12807989 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12807989 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |