WO2013004477A1 - Kühlbares dosiermodul - Google Patents

Kühlbares dosiermodul Download PDF

Info

Publication number
WO2013004477A1
WO2013004477A1 PCT/EP2012/061594 EP2012061594W WO2013004477A1 WO 2013004477 A1 WO2013004477 A1 WO 2013004477A1 EP 2012061594 W EP2012061594 W EP 2012061594W WO 2013004477 A1 WO2013004477 A1 WO 2013004477A1
Authority
WO
WIPO (PCT)
Prior art keywords
injector
valve housing
sleeve
dosing module
coolable
Prior art date
Application number
PCT/EP2012/061594
Other languages
English (en)
French (fr)
Inventor
Jochen Winkler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2013004477A1 publication Critical patent/WO2013004477A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/024Exhaust treating devices having provisions not otherwise provided for for cooling the device using a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/11Adding substances to exhaust gases the substance or part of the dosing system being cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a coolable dosing module, which is designed for injecting a fluid into the exhaust gas line of an internal combustion engine.
  • An object of the invention is to provide an improved water-cooled metering module for injecting a fluid into an exhaust line, which in particular is simple and inexpensive to produce.
  • a coolable metering module has an injector extending substantially in a longitudinal direction, a valve housing arranged in a partial region of the longitudinal extension of the injector around the circumference of the injector and a sleeve which in a partial region of the longitudinal extension of the injector around the circumference of the injector and of the injector Valve housing is arranged, that between the injector and the sleeve a suitable for receiving a coolant cooling volume is formed.
  • the sleeve also encloses the injector in a region of its longitudinal extent which is not enclosed by the valve housing, so that the cooling volume is at least partially delimited by the injector and thus in direct contact with coolant which has been introduced into the cooling volume.
  • Between the injector and the valve housing at least one sealing element is provided which is designed such that it closes and seals the cooling volume in a fluid-tight manner.
  • the cooling volume is limited by the injector itself and sealed fluid-tight by a seal between the injector and the valve housing allows good heat transfer from the injector to a coolant in the cooling volume, and the injector can be cooled particularly effectively become. Also can on an additional, inner boundary of the cooling volume, for example, by a second sleeve omitted.
  • An inventive injector is therefore simple and inexpensive to produce.
  • the sealing element which is arranged between the injector and the valve housing, is designed as a commercially available O-ring.
  • An O-ring provides an effective and reliable seal.
  • a first end of the sleeve is welded to the injector.
  • a second end of the sleeve is welded to a flange disposed about the circumference of the injector.
  • the flange is welded to the valve body. By welding the flange with the sleeve surrounding the injector, the cooling volume formed inside the sleeve is reliably sealed fluid-tight.
  • At least one coolant connection is formed in the flange.
  • a coolant connection makes it possible to transfer coolant into or out of the cooling volume.
  • at least two coolant ports are provided to allow for continuous flow of coolant through the cooling volume.
  • At least one high-pressure sealing element is arranged between the injector and the valve housing.
  • the valve housing is permanently connected to the injector.
  • the valve housing can in particular be welded or riveted to the injector.
  • a solid, permanent connection between the injector and the valve housing is particularly reliable and inexpensive to implement.
  • the aforementioned welded joints can be designed in particular as laser welds. Laser welding can be done with high precision exactly at the desired locations.
  • the welded joints of a metering module according to the invention have a reduced length in comparison to a conventional metering module, so that the costs for welding and the associated costs are reduced.
  • FIG. 1 shows a sectional view through a conventional water-cooled metering module
  • Figure 2 is a sectional view through a metering module according to the invention.
  • FIG. 1 shows a longitudinal section through a conventional water-cooled metering module 1.
  • Such a dosing module 1 has an injector 4 for injecting fluid into an exhaust gas line, not shown in FIG. 1, wherein the injector 4 extends substantially cylindrically about a longitudinal axis A.
  • an inner sleeve 6, likewise essentially in the form of a cylindrical pot, which has an opening in its lower end face, through which the injection-side end 4a of the injector extends to inject fluid from the injector 4 in the exhaust line, not shown.
  • an outer sleeve 9 is arranged, which is formed substantially in the form of a cylindrical pot rotationally symmetrical about the axis A.
  • the outer sleeve 9 has a larger diameter than the inner sleeve 6, so that between the inner sleeve 6 and the outer sleeve 9, an annular cooling volume 1 1 is formed, which is provided for receiving a cooling fluid, in particular cooling water.
  • the upper ends 6b, 9b of the inner sleeve 6 and the outer sleeve 9 are fluid-tightly interconnected by a disk-shaped rotary flange 10.
  • the lower end 9 a of the outer sleeve 9 is bent at a right angle downwards parallel to the axis A and, for example by welding, firmly connected to the outer periphery of the inner sleeve 6, so that the cooling volume 1 1, that between the inner sleeve 6 and the outer sleeve 9 is formed, is completed completely fluid-tight.
  • at least one fluid connection 14 is formed, which makes it possible to introduce cooling fluid, in particular cooling water, in the cooling volume 1 1 and / or to remove from this.
  • at least two fluid ports 14 are provided, which are operated as inflow and outflow to allow a continuous flow of cooling fluid through the cooling volume 11.
  • annular heat conducting bushes 8 Arranged around the circumference of the lower portion 4a of the injector 4 are annular heat conducting bushes 8 which define the space between the lower portion 4a of the injector 4 and the inner portion Fill in sleeve 6.
  • the blanketleitbuchsen 8 for example, contain graphite, have a good thermal conductivity and allow effective heat transfer between the lower portion 4 a of the injector 4 and a cooling fluid in the cooling volume 1 1.
  • a sealing element 13 is present, which defines a lower portion of the volume in the inner sleeve 6 in a fluid-tight manner from an upper region, which is located above the sealing element 13.
  • valve housing 12 Above the inner sleeve 6, a valve housing 12 is arranged, which is rotationally symmetrical about the axis A and also fixed by the rotary flange 10 at the upper end 6b of the inner sleeve 6.
  • valve housing 12 The upper end 12 b of the valve housing 12 is pressed by a spring clip, not shown in the figure 1 against a locking plate 15 which engages in the radial direction from the outside into the periphery of the injector 4 and the valve housing 12 is fixed to the injector 4.
  • FIG. 2 shows a sectional view through a coolable metering module 2 according to the invention.
  • a metering module 2 according to the invention also has an injector 4, which extends essentially along a longitudinal axis A.
  • a dosing module 2 according to the invention has no inner sleeve 6 which surrounds the lower region 4a of the injector 4.
  • the valve housing 12 extends from a region of the injector 4 above the flange 10 along the longitudinal extent of the injector 4 through an opening formed in the center of the flange 10 about the axis A and also surrounds a region 4c of the injector 4 is arranged below the flange 10.
  • a high-pressure sealing element 13 is arranged, which corresponds to the high-pressure sealing element 13, as it is used in a conventional dosing module 1.
  • a lower end 12 a of the valve housing 12 abuts against the circumference of the injector 4.
  • the contact region 5 between the valve housing 12 and the injector 4 is sealed fluid-tight by a sealing element 16.
  • sealing element 16 Since the sealing element 16 is not in a temperature-critical, but in a cooled area, it is easy and inexpensive, for example in the form of a commercial O-ring, feasible. Also, an elastic connection between the valve housing 12 and the injector 4 is realized by the sealing element 16, the mechanical stresses, as they can arise by different expansions of the injector 4 and the valve housing 12 at temperature changes can compensate.
  • a dosing module 2 according to the invention also has a sleeve 9 which has the function of the outer sleeve 9 of a conventional dosing module 1.
  • An upper end 9b of the sleeve 9 is welded to the flange 10 and a lower end 9a of the sleeve 9, which is angled parallel to the longitudinal axis A of the injector 4, is connected to the outer The circumference of the lower portion 4 a of the injector 4 is welded, so that within the sleeve 9, a fluid-tight cooling volume 1 1 is formed.
  • the cooling volume 1 1 is limited in the inner region about the longitudinal axis A of the injector 4 partially through the valve housing 12 and in a portion 4b by the injector 4 itself. Coolant which has been introduced into the cooling volume 1 1 by at least one fluid closure 14 formed in the flange 10 is thus in direct contact with the injector 4, at least in the partial area 4b of the longitudinal extension of the injector 4, whereby a particularly effective heat transfer between the injector 4 and the coolant 1 1 is ensured.
  • a metering module according to the invention can therefore be produced with reduced expenditure and in particular at reduced costs.
  • valve housing 12 In the region of the valve housing 12, which is guided through the central opening of the flange, the valve housing 12 with a collar 10 a, which is formed on an inner circumference of the opening of the flange 10, welded fluid-tight.
  • the flange 10 Since the flange 10 is fluid-tightly connected to the valve housing 12 and the sleeve 9 by welds, the accuracy requirements in the manufacture of the flange 10 relative to the flange 10 of a conventional dosing module 1 are reduced. Since the flange 10 can be manufactured with higher tolerances than the flange 10 of a conventional dosing module 1, the production costs for a dosing module 2 according to the invention can be further reduced.
  • the upper, 12 facing away from the sleeves end 12b of the valve housing 12 is fixed by means of a disc-shaped locking plate 15, which extends in the radial direction inwardly into a recess formed in the injector 4, the injector 4. Fixing takes place, for example, by clinching, crimping, welding, soldering, riveting or screwing.
  • a connector 18 On the locking plate 15 and a connector 18 is fixed, which extends substantially parallel to and rotationally symmetrical about the axis A.
  • a fluid channel 20 running along the axis A is formed, through which the injector 4 is supplied during operation with the fluid to be injected.
  • a sealing ring (O-ring) 22 seals the connection between the injector 4 and the connector 18 in a fluid-tight manner.
  • the invention therefore provides a water-cooled metering module 2 which can be produced with a few components that are simple and inexpensive to manufacture and that enables effective cooling of the injector 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Ein kühlbares Dosiermodul (2) hat einen sich im Wesentlichen in einer Längsrichtung erstreckenden Injektor (4); ein in einem Teilbereich der Längserstreckung des Injektors (4) um den Umfang des Injektors (4) angeordnetes Ventilgehäuse (12) und eine Hülse (9), die in einem Teilbereich der Längserstreckung des Injektors (4) so um den Umfang des Injektors (4) und des Ventilgehäuses (12) angeordnet ist, dass zwischen dem Injektor (4) und der Hülse (9) ein zur Aufnahme eines Kühlmittels geeignetes Kühlvolumen (11) ausgebildet ist. Die Hülse (9) umschließt den Injektor (4) auch in einem Teilbereich (4b) seiner Längserstreckung, der nicht von dem Ventilgehäuse (12) umschlossen ist, so dass das Kühlvolumen (11) wenigstens teilweise von dem Injektor (4) begrenzt wird. Zwischen dem Injektor (4) und dem Ventilgehäuse (12) ist wenigstens ein Dichtelement (16) vorgesehen, welches das Kühvolumen (11) fluiddicht abschließt.

Description

Beschreibung Titel
Kühlbares Dosiermodul Stand der Technik:
Die Erfindung betrifft ein kühlbares Dosiermodul, das zum Einspritzen eines Fluids in den Abgasstrang eines Verbrennungsmotors ausgebildet ist.
Es ist bekannt, den Abgasen eines Verbrennungsmotors, insbesondere eines Dieselmotors, mit Hilfe eines Dosiermoduls ein Fluid, insbesondere eine wässrige Harnstofflösung, beizufügen, um in den Abgasen vorhandene Schadstoffe, insbesondere Stickoxide (NOx), zu reduzieren. Ein derartiges System zur Reduktion von Stickoxiden wird beispielsweise in US 5,522,218 beschrieben.
Wenn das Dosiermodul in Bereichen mit hoher Umgebungstemperatur, z. B. abgasnah, in der Nähe des Motors und/oder in verkleideten Bereichen, verbaut wird, ist eine passive Kühlung durch die Umgebungsluft nicht mehr ausreichend. Um ein Überhitzen des Dosiermoduls zu verhindern, muss daher eine aktive Wasserkühlung implementiert werden.
Bei den bisher bekannten wassergekühlten Dosiermodulen wird mit Hilfe eines Alu-Druckgusskörpers dafür gesorgt, dass die hohen Temperaturen des Abgasstrangs keinen schädigenden Einfluss auf das Dosiermodul haben. Druckgusskörper haben sowohl funktionale als auch kommerzielle Nachteile, da ihre Kühlwirkung und chemische Beständigkeit begrenzt und die Herstellung teuer ist. Offenbarung der Erfindung:
Eine Aufgabe der Erfindung ist es, ein verbessertes wassergekühltes Dosiermodul zum Einspritzen eines Fluids in einen Abgasstrang bereitzustellen, das insbesondere einfach und kostengünstig herzustellen ist.
Die Aufgabe wird durch ein kühlbares Dosiermodul nach dem unabhängigen Patentanspruch 1 gelöst. Die abhängigen Patentansprüche beschreiben vorteilhafte Ausgestaltungen eines erfindungsgemäßen Dosiermoduls.
Ein erfindungsgemäßes kühlbares Dosiermodul hat einen sich im Wesentlichen in einer Längsrichtung erstreckenden Injektor, ein in einem Teilbereich der Längserstreckung des Injektors um den Umfang des Injektors angeordnetes Ventilgehäuse und eine Hülse , die in einem Teilbereich der Längserstreckung des Injektors so um den Umfang des Injektors und des Ventilgehäuses angeordnet ist, dass zwischen dem Injektor und der Hülse ein zur Aufnahme eines Kühlmittels geeignetes Kühlvolumen ausgebildet ist. Die Hülse umschließt den Injektor auch in einem Bereich seiner Längserstreckung, der nicht von dem Ventilgehäuse umschlossen ist, so dass das Kühlvolumen wenigstens teilweise von dem Injektor begrenzt wird und so in direktem Kontakt mit Kühlmittel steht, das in das Kühlvolumen eingebracht worden ist. Zwischen dem Injektor und dem Ventilgehäuse ist wenigstens ein Dichtelement vorgesehen, das derart ausgebildet ist, dass es das Kühlvolumen fluiddicht abschließt und abdichtet.
Dadurch, dass das Kühlvolumen von dem Injektor selbst begrenzt und durch eine zwischen dem Injektor und dem Ventilgehäuse angeodne- te Dichtung fluiddicht abgedichtet wird, wird eine gute Wärmeübetra- gung von dem Injektor an ein Kühlmittel im Kühlvolumen ermöglicht, und der Injektor kann besonders effektiv gekühlt werden. Auch kann auf eine zusätzliche, innere Begrenzung des Kühlvolumens, z.B. durch eine zweite Hülse, verzichtet werden. Ein erfindungsgemäßer Injektor ist daher einfach und kostengünstig herstellbar.
In einer Ausführungsform ist das Dichtelement, das zwischen dem Injektor und dem Ventilgehäuse angeordnet ist, als handelsüblicher O- Ring ausgebildet ist. Ein O-Ring stellt eine effektive und zuverlässige Dichtung zur Verfügung.
In einer Ausführungsform ist ein erstes Ende der Hülse mit den Injektor verschweißt. Durch Verschweißen wird eine zuverlässig dichte Verbindung zwischen der Hülse und dem Injektor geschaffen.
In einer Ausführungsform ist ein zweites Ende der Hülse mit einem Flansch verschweißt, der um den Umfang des Injektors angeordnet ist. Durch Verschweißen der Hülse mit einem den Injektor umgebenden Flansch wird das innerhalb der Hülse ausgebildete Kühlvolumen zuverlässig fluiddicht abgedichtet.
In einer Ausführungsform ist der Flansch mit dem Ventilgehäuse verschweißt. Durch Verschweißen des Flansches mit der den Injektor umgebenden Hülse wird das innerhalb der Hülse ausgebildete Kühlvolumen zuverlässig fluiddicht abgedichtet.
In einer Ausführungsform ist in dem Flansch wenigstens eine Kühlmit- telanschluss ausgebildet. Ein Kühlmittelanschluss ermöglicht es, Kühlmittel in das Kühlvolumen ein- bzw. aus diesem abzuführen. Vorzugsweise sind wenigstens zwei Kühlmittelanschlüsse vorgesehen, um eine kontinuierliche Kühlmittelströmung durch das Kühlvolumen zu ermöglichen.
In einer Ausführungsform ist zwischen dem Injektor und dem Ventilgehäuse wenigstens ein Hochdruck-Dichtelement angeordnet. In einer Ausführungsform ist das Ventilgehäuse unlösbar mit dem Injektor verbunden. Dazu kann das Ventilgehäuse insbesondere mit dem Injektor verschweißt oder vernietet sein. Eine feste, unlösbare Verbindung zwischen dem Injektor und dem Ventilgehäuse ist besonders zuverlässig und kostengünstig realisierbar.
Die genannten Schweißverbindungen können insbesondere als Laser-Schweißungen ausgebildet sein. Laser-Schweißungen können mit hoher Präzision exakt an den gewünschten Stellen vorgenommen werden. Die Schweißverbindungen eines erfindungsgemäßen Dosiermoduls haben im Vergleich zu einem herkömmlichen Dosiermodul eine reduzierte Länge, so dass der Aufwand für das Verschweißen und die damit verbundenen Kosten reduziert werden.
Die Erfindung wird im Folgenden anhand der beiliegenden Figuren näher erläutert. Dabei zeigt:
Figur 1 eine Schnittansicht durch ein herkömmliches wassergekühltes Dosiermodul; und
Figur 2 eine Schnittansicht durch ein erfindungsgemäßes Dosiermodul.
Figur 1 zeigt einen Längsschnitt durch ein herkömmliches wassergekühltes Dosiermodul 1 .
Ein derartiges Dosiermodul 1 weist einen Injektor 4 zum Einspritzen von Fluid in einen in der Figur 1 nicht gezeigten Abgasstrang auf, wobei sich der Injektor 4 im Wesentlichen zylinderförmig um eine Längsachse A erstreckt. Um einen in der Figur 1 unten dargestellten, einspritzseitigen Bereich 4a des Injektors 4 ist eine ebenfalls im Wesentlichen in der Form eines zylindrischen Topfes ausgebildete innere Hülse 6 vorgesehen, die in ihrer unteren Stirnseite eine Öffnung aufweist, durch die sich das einspritzseitige Ende 4a des Injektors erstreckt, um Fluid aus dem Injektor 4 in den nicht gezeigten Abgasstrang einzuspritzen.
Um den Umfang der inneren Hülse 6 ist eine äußere Hülse 9 angeordnet, die im Wesentlichen in Form eines zylinderförmigen Topfes rotationssymmetrisch um die Achse A ausgebildet ist. Dabei hat die äußere Hülse 9 einen größeren Durchmesser als die innere Hülse 6, so dass zwischen der inneren Hülse 6 und der äußeren Hülse 9 ein ringförmiges Kühlvolumen 1 1 ausgebildet ist, das zur Aufnahme eines kühlenden Fluids, insbesondere Kühlwasser, vorgesehen ist.
Die oberen Enden 6b, 9b der inneren Hülse 6 und der äußeren Hülse 9 sind durch einen scheibenförmigen Drehflansch 10 fluiddicht miteinander verbunden. Das untere Ende 9a der äußeren Hülse 9 ist in einem rechten Winkel nach unten parallel zur Achse A abgebogen und, zum Beispiel durch Verschweißen, fest mit dem äußeren Umfang der inneren Hülse 6 verbunden, so dass das Kühlvolumen 1 1 , das zwischen der inneren Hülse 6 und der äußeren Hülse 9 ausgebildet ist, vollständig fluiddicht abgeschlossen ist. In dem Drehflansch 10 ist wenigstens ein Fluidanschluss 14 ausgebildet, der es ermöglicht, Kühlfluid, insbesondere Kühlwasser, in das Kühlvolumen 1 1 einzubringen und/oder aus diesem zu entnehmen. Vorzugsweise sind wenigstens zwei Fluidanschlüsse 14 vorgesehen, die als Zufluss und Ab- fluss betrieben werden, um eine kontinuierliche Strömung von Kühlfluid durch das Kühlvolumen 1 1 zu ermöglichen.
Um den Umfang des unteren Bereichs 4a des Injektors 4 sind ringförmig ausgebildete Wärmeleitbuchsen 8 angeordnet, die den Raum zwischen dem unteren Bereich 4a des Injektors 4 und der inneren Hülse 6 ausfüllen. Die Wärmeleitbuchsen 8, die beispielsweise Graphit enthalten, haben eine gute Wärmeleitfähigkeit und ermöglichen eine effektive Wärmeübertragung zwischen dem unteren Bereich 4a des Injektors 4 und einem Kühlfluid im Kühlvolumen 1 1 .
Oberhalb der Wärmeleitbuchsen 8 ist ein Dichtelement 13 vorhanden, welches einen unteren Bereich des Volumens in der inneren Hülse 6 fluiddicht von einem oberen Bereich, der sich oberhalb des Dichtelements 13 befindet, abgrenzt.
Oberhalb der inneren Hülse 6 ist ein Ventilgehäuse 12 angeordnet, das rotationssymmetrisch um die Achse A ausgebildet und ebenfalls durch den Drehflansch 10 am oberen Ende 6b der inneren Hülse 6 fixiert ist.
Das obere Ende 12b des Ventilgehäuses 12 wird durch einen in der Figur 1 nicht gezeigten Federclip gegen ein Sicherungsblech 15 gedrückt, das in radialer Richtung von außen in den Umfang des Injektors 4 eingreift und das Ventilgehäuse 12 am Injektor 4 fixiert.
Figur 2 zeigt eine Schnittansicht durch ein erfindungsgemäßes kühlbares Dosiermodul 2. Auch ein erfindungsgemäßes Dosiermodul 2 weist einen Injektor 4 auf, der sich im Wesentlichen entlang einer Längsachse A erstreckt.
Diejenigen Merkmale, die mit den in der Figur 1 gezeigten Merkmalen übereinstimmen sind, sind mit den gleichen Bezugszeichen bezeichnet und werde nicht erneut um Detail beschrieben. Statt dessen wird auf die Beschreibung der Figur 1 verwiesen.
Im Gegensatz zu einem herkömmlichen Dosiermodul 1 , wie es in der Figur 1 gezeigt ist, weist ein erfindungsgemäßes Dosiermodul 2 keine innere Hülse 6 auf, die den unteren Bereich 4a des Injektors 4 umgibt. In einem erfindungsgemäßen Dosiermodul 2 erstreckt sich das Ventilgehäuse 12 von einem Bereich des Injektors 4 oberhalb des Flansches 10 entlang der Längserstreckung des Injektors 4 durch eine im Zentrum des Flansches 10 um die Achse A ausgebildete Öffnung und umgibt auch einen Bereich 4c des Injektors 4, der unterhalb des Flansches 10 angeordnet ist.
Zwischen dem äußeren Umfang des Injektors 4 und dem inneren Umfang des Ventilgehäuses 12 ist ein Hochdruck-Dichtelement 13 angeordnet, das dem Hochdruck-Dichtelement 13 entspricht, wie es auch in einem herkömmlichen Dosiermodul 1 verwendet wird.
Ein unteres Ende 12a des Ventilgehäuses 12 legt sich an den Umfang des Injektors 4 an. Dabei ist der Kontaktbereich 5 zwischen dem Ventilgehäuse 12 und dem Injektor 4 durch ein Dichtelement 16 fluid- dicht abgedichtet.
Da sich das Dichtelement 16 nicht in einem temperaturkritischen, sondern in einem gekühlten Bereich befindet, ist es einfach und kostengünstig, beispielsweise in der Form eines handelsüblichen O-Ringes, realisierbar. Auch wird durch das Dichtelement 16 eine elastische Verbindung zwischen dem Ventilgehäuse 12 und dem Injektor 4 realisiert, die mechanische Spannungen, wie sie durch unterschiedliche Ausdehnungen des Injektors 4 und des Ventilgehäuses 12 bei bei Temperaturänderungen entstehen können, ausgleichen kann.
Ein erfindungsgemäßes Dosiermodul 2 weist auch eine Hülse 9 auf, welche die Funktion der äußeren Hülse 9 eines herkömmlichen Dosiermoduls 1 hat. Ein oberes Ende 9b der Hülse 9 ist mit dem Flansch 10 verschweißt und ein unteres Ende 9a der Hülse 9, das parallel zur Längsachse A des Injektors 4 abgewinkelt ist, ist mit dem äußeren Umfang des unteren Bereichs 4a des Injektors 4 verschweißt, so dass innerhalb der Hülse 9 ein fluiddichtes Kühlvolumen 1 1 ausgebildet ist.
Das Kühlvolumen 1 1 wird im inneren Bereich um die Längsachse A des Injektors 4 teilweise durch das Ventilgehäuse 12 und in einem Teilbereich 4b durch den Injektor 4 selbst begrenzt. Kühlmittel, das durch wenigstens einen in dem Flansch 10 ausgebildeten Flui- danschluss 14 in das Kühlvolumen 1 1 eingebracht worden ist, steht so wenigstens in dem Teilbereich 4b der Längserstreckung des Injektors 4 in direktem Kontakt mit dem Injektor 4, wodurch eine besonders effektive Wärmeübertragung zwischen dem Injektor 4 und dem Kühlmittel 1 1 gewährleistet ist.
Auf eine innere Hülse 6 und Wärmeleitbuchsen 8 zur Wärmeübertragung zwischen dem Kühlmittel und dem Injektor 4, wie sie in einem herkömmlichen Dosiermodul 1 verwendet werden, kann erfindungsgemäß verzichtet werden. Ein erfindungsgemäßes Dosiermodul kann daher mit reduziertem Aufwand und insbesondere mit reduzierten Kosten hergestellt werden.
Im Bereich des Ventilgehäuses 12, der durch die zentrale Öffnung des Flansches geführt ist, ist das Ventilgehäuse 12 mit einem Kragen 10a, der an einem inneren Umfang der Öffnung des Flansches 10 ausgebildet ist, fluiddicht verschweißt.
Da der Flansch 10 mit dem Ventilgehäuse 12 und der Hülse 9 durch Schweißverbindungen fluiddicht verbunden wird, sind die Anforderungen an die Genauigkeit bei der Herstellung des Flansches 10 gegenüber dem Flansch 10 eines herkömmlichen Dosiermoduls 1 reduziert. Da der Flansch 10 mit höheren Toleranzen als der Flansch 10 eines herkömmlichen Dosiermoduls 1 hergestellt werden kann, können die Herstellungskosten für ein erfindungsgemäßes Dosiermodul 2 weiter reduziert werden. Das obere, von der Hülsen 9 abgewandte Ende 12b des Ventilgehäuses 12 ist mit Hilfe eines scheibenförmigen Sicherungsblechs 15, das sich in radialer Richtung nach innen in eine in dem Injektor 4 ausgebildete Ausnehmung erstreckt, am Injektor 4 fixiert. Die Fixierung erfolgt beispielsweise durch Clinchen, Bördeln, Schweißen, Löten, Nieten oder Schrauben.
An dem Sicherungsblech 15 ist auch ein Anschlussstück 18 fixiert, das sich im Wesentlichen parallel zur und rotationssymmetrisch um die Achse A erstreckt. In dem Anschlussstück 18 ist ein entlang der Achse A verlaufender Fluidkanal 20 ausgebildet, durch den dem Injektor 4 im Betrieb das einzuspritzende Fluid zugeführt wird. Ein Dichtungsring (O-Ring) 22 dichtet die Verbindung zwischen dem Injektor 4 und dem Anschlussstück 18 fluiddicht ab.
Die Erfindung stellt daher ein wassergekühltes Dosiermodul 2 zur Verfügung, das mit wenigen, einfach und kostengünstig zu fertigenden Bauteilen herstellbar ist und eine effektive Kühlung des Injektors 4 ermöglicht.

Claims

Patentansprüche
1 . Kühlbares Dosiermodul (2) mit
einem sich im Wesentlichen in einer Längsrichtung erstreckenden Injektor (4);
einem in einem Teilbereich der Längserstreckung des Injektors (4) um den Umfang des Injektors (4) angeordneten Ventilgehäuse (12); einer Hülse (9), die in einem Teilbereich der Längserstreckung des Injektors (4) so um den Umfang des Injektors (4) und des Ventilgehäuses (12) angeordnet ist, dass zwischen dem Injektor (4) und der Hülse (9) ein zur Aufnahme eines Kühlmittels geeignetes Kühlvolumen (1 1 ) ausgebildet ist,
dadurch gekennzeichnet, dass
die Hülse (9) den Injektor (4) auch in einem Teilbereich (4b) seiner Längserstreckung umschließt, der nicht von dem Ventilgehäuse (12) umschlossen ist,
das Kühlvolumen (1 1 ) wenigstens teilweise von dem Injektor (4) begrenzt wird und
zwischen dem Injektor (4) und dem Ventilgehäuse (12) wenigstens ein Dichtelement (16) vorgesehen ist, um das Kühvolumen (1 1 ) fluid- dicht abzuschließen.
2. Kühlbares Dosiermodul (2) nach Anspruch 1 , wobei das Dichtelement (16) als O-Ring ausgebildet ist.
3. Kühlbares Dosiermodul (2) nach einer der vorangehenden Ansprüche, wobei ein erstes Ende (9a) der Hülse (9) mit den Injektor (4) verschweißt ist.
4. Kühlbares Dosiermodul (2) nach einer der vorangehenden Ansprüche, wobei ein zweites Ende (9b) der Hülse (9) mit einem Flansch (10) verschweißt ist, der um den Umfang des Injektors (4) angeordnet ist.
5. Kühlbares Dosiermodul (2) nach Anspruch 4, wobei der Flansch (10) mit dem Ventilgehäuse (12) verschweißt ist.
6. Kühlbares Dosiermodul (2) nach Anspruch 4 oder 5, wobei in dem Flansch (10) wenigstens ein Kühlmittelanschluss (14) ausgebildet ist.
7. Kühlbares Dosiermodul (2) nach einer der vorangehenden Ansprüche, wobei zwischen dem Injektor (4) und dem Ventilgehäuse (12) wenigstens ein Hochdruck-Dichtelement (13) angeordnet ist.
8. Kühlbares Dosiermodul (2) nach einer der vorangehenden Ansprüche, wobei das Ventilgehäuse (12) unlösbar mit dem Injektor (4) verbunden ist.
9. Kühlbares Dosiermodul (2) nach Anspruch 8, wobei das Ventilgehäuse (12) mit dem Injektor (4) verschweißt ist.
10. Kühlbares Dosiermodul (2) nach Anspruch 8, wobei das Ventilgehäuse (12) mit dem Injektor (4) vernietet ist.
PCT/EP2012/061594 2011-07-01 2012-06-18 Kühlbares dosiermodul WO2013004477A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011078504A DE102011078504A1 (de) 2011-07-01 2011-07-01 Kühlbares Dosiermodul
DE102011078504.3 2011-07-01

Publications (1)

Publication Number Publication Date
WO2013004477A1 true WO2013004477A1 (de) 2013-01-10

Family

ID=46320968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/061594 WO2013004477A1 (de) 2011-07-01 2012-06-18 Kühlbares dosiermodul

Country Status (2)

Country Link
DE (1) DE102011078504A1 (de)
WO (1) WO2013004477A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2788597A1 (de) * 2011-12-07 2014-10-15 Emitec Gesellschaft für Emissionstechnologie mbH Einspritzvorrichtung zur zugabe eines flüssigen additivs
GB2539888A (en) * 2015-06-29 2017-01-04 Delphi Int Operations Luxembourg Sarl Reductant injector cooling system
CN108350786A (zh) * 2015-11-04 2018-07-31 罗伯特·博世有限公司 用于将流体计量到排气管路中的喷射器组件
WO2024088885A1 (en) * 2022-10-27 2024-05-02 Phinia Delphi Luxembourg Sarl Doser for injecting a liquid into an exhaust system of a combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140054394A1 (en) * 2012-08-27 2014-02-27 Continental Automotive Systems Us, Inc. Reductant delivery unit for automotive selective catalytic reduction systems - active cooling
DE102013205309A1 (de) 2013-03-26 2014-10-02 Robert Bosch Gmbh Vorrichtung zum Zumessen von Fluid
DE102013211684A1 (de) * 2013-06-20 2014-12-24 Robert Bosch Gmbh Kühlkörper für Einspritzventil
CN105240096B (zh) * 2015-11-24 2018-04-13 天津星洁汽车排放控制系统有限公司 一种scr系统中的尿素水溶液喷嘴冷却结构
US9890680B1 (en) * 2016-11-09 2018-02-13 Continental Automotive Systems, Inc. Low-cost, thermally controlled inlet reductant dosing unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH152348A (de) * 1930-12-20 1932-01-31 Dinner Heinrich Brennstoffeinspritzvorrichtung mit gekühltem Einspritzorgan.
US5522218A (en) 1994-08-23 1996-06-04 Caterpillar Inc. Combustion exhaust purification system and method
US20060016176A1 (en) * 2004-07-23 2006-01-26 Hilden David L Diesel exhaust aftertreatment device regeneration system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH152348A (de) * 1930-12-20 1932-01-31 Dinner Heinrich Brennstoffeinspritzvorrichtung mit gekühltem Einspritzorgan.
US5522218A (en) 1994-08-23 1996-06-04 Caterpillar Inc. Combustion exhaust purification system and method
US20060016176A1 (en) * 2004-07-23 2006-01-26 Hilden David L Diesel exhaust aftertreatment device regeneration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2788597A1 (de) * 2011-12-07 2014-10-15 Emitec Gesellschaft für Emissionstechnologie mbH Einspritzvorrichtung zur zugabe eines flüssigen additivs
GB2539888A (en) * 2015-06-29 2017-01-04 Delphi Int Operations Luxembourg Sarl Reductant injector cooling system
CN108350786A (zh) * 2015-11-04 2018-07-31 罗伯特·博世有限公司 用于将流体计量到排气管路中的喷射器组件
US10677132B2 (en) 2015-11-04 2020-06-09 Robert Bosch Gmbh Injector assembly for metering a fluid into an exhaust line
WO2024088885A1 (en) * 2022-10-27 2024-05-02 Phinia Delphi Luxembourg Sarl Doser for injecting a liquid into an exhaust system of a combustion engine

Also Published As

Publication number Publication date
DE102011078504A1 (de) 2013-01-03

Similar Documents

Publication Publication Date Title
WO2013004477A1 (de) Kühlbares dosiermodul
EP2627880B1 (de) Halterung für einen injektor
EP2724000B1 (de) Kühlbares dosiermodul
EP2475853B1 (de) Fördervorrichtung für ein reduktionsmittel
DE112012002573B4 (de) Druck-Wirbelstrom-Injektor mit verminderter Strömungsänderung und Rücklauf
DE102008055190B4 (de) Montageaufbau für ein Einspritzventil
EP3011154B1 (de) Kühlkörper für einspritzventil
WO2009003562A1 (de) Saugrohr für eine brennkraftmaschine
WO2007048603A2 (de) Wärmetauscher, verfahren zur herstellung eines wärmetauschers
WO2013068526A1 (de) Kraftstoffeinspritzanlage und vorheizeinrichtung
DE102014108074A1 (de) Heizmodul und Tanksystem
EP2900949B1 (de) Temperaturrobustes dosiermodul
DE102010051656A1 (de) Halterung für einen Injektor
EP3516319B1 (de) Wärmetauscher
DE102012214480A1 (de) Wärmetauscheranordnung
DE10041579A1 (de) Ventilanordnung mit Doppelklappe und Wärmebrücke für ein Abgasrückführungssystem und Verfahren zu deren Betrieb
DE102010030920A1 (de) Ventil für ein flüssiges Medium
DE102010040003A1 (de) Kühlsystem für Dosiervorrichtungen
DE102009047334A1 (de) Tank mit mindestens einem elektrischen Heizelement und Abgasvorrichtung für eine Brennkraftmaschine mit elektrisch beheizbarem Tank
DE102009040930A1 (de) Heizbarer Flüssigkeitsbehälter aus Kunststoffmaterial und Verfahren zu seiner Herstellung
DE102010048284A1 (de) Halterung für einen Injektor
DE102006053804B4 (de) Flanschverbindung
DE19838588A1 (de) Verbindungsschelle einer Rohrverbindung zwischen einem Sammler eines Kraftfahrzeugwärmetauschers und einer äußeren Rohrleitung für das innere Wärmetauschfluid
DE112018003017T5 (de) Wärmeisolierte dosierungseinheit für reduktionsmittel mit hermetischer abdichtung
DE102011081145A1 (de) Vorrichtung zum Befestigen eines Injektors an einem Abgasstrang

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12728520

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12728520

Country of ref document: EP

Kind code of ref document: A1