EP3516319B1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP3516319B1
EP3516319B1 EP17755522.4A EP17755522A EP3516319B1 EP 3516319 B1 EP3516319 B1 EP 3516319B1 EP 17755522 A EP17755522 A EP 17755522A EP 3516319 B1 EP3516319 B1 EP 3516319B1
Authority
EP
European Patent Office
Prior art keywords
working medium
heat exchanger
edge
housing
ring seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17755522.4A
Other languages
English (en)
French (fr)
Other versions
EP3516319A1 (de
Inventor
Pramod Barhate
Simon HUND
Bernd Krämer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3516319A1 publication Critical patent/EP3516319A1/de
Application granted granted Critical
Publication of EP3516319B1 publication Critical patent/EP3516319B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • F28F9/0226Header boxes formed by sealing end plates into covers with resilient gaskets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/08Fastening; Joining by clamping or clipping
    • F28F2275/085Fastening; Joining by clamping or clipping with snap connection

Definitions

  • the present invention relates to a heat exchanger for media-separated cooling of a working medium by means of a cooling medium, with the features of the preamble of claim 1.
  • Such heat exchangers which can also be referred to as heat exchangers, are used, for example, in motor vehicles to cool a working medium of the vehicle, preferably an internal combustion engine of the vehicle. Comparatively high temperatures can occur on the side of the working medium to be cooled, for example in a charge air cooler or in an exhaust gas recirculation cooler or in an exhaust gas cooler. It is clear that the cooling of the working medium is accompanied by heating of the cooling medium, so that the respective heat exchanger can also be used for heating the cooling medium, which then corresponds to a working medium, by means of the working medium, which then corresponds to a heating medium.
  • a generic heat exchanger is for example from the WO 2014/006213 A1 known. It has a housing which has a housing jacket, a working medium inlet, a working medium outlet, a cooling medium inlet and a cooling medium outlet. The working medium and the cooling medium can thus be supplied to and removed from the housing. Furthermore, the heat exchanger has a heat exchanger block which is inserted into the housing and which has a front floor facing the working medium inlet and a rear floor facing away from the working medium inlet, as well as a plurality of working medium pipes for guiding the working medium. The working medium pipes penetrate the two trays and are also firmly and tightly connected to the two trays to form the heat exchanger block.
  • a working medium path leads from the working medium inlet inside through the working medium pipes to the working medium outlet. Also introduces Coolant path from the coolant inlet around the outside of the working medium pipes to the coolant outlet.
  • the heat transfer between the working medium flowing inside and the cooling medium flowing outside takes place via the walls of the working medium pipes.
  • the respective base has a circumferential edge which projects radially beyond the working medium tubes and which is axially supported in each case via an axially acting ring seal on a step of the housing which runs around the respective edge.
  • the jacket is formed from two half-shells which are arranged axially between the two bottoms of the heat exchanger block and are attached to one another.
  • the known heat exchanger thus has a housing that has at least four separate components that have to be assembled. Thus, the effort to implement the known heat exchanger is comparatively large.
  • the heat exchanger block outside the housing, in order to subsequently combine the finished heat exchanger block with the housing.
  • the production of the heat exchanger block outside the housing is of particular advantage, since the production of the heat exchanger block often has a high thermal This is accompanied by a load which, for example, cannot be realized in a plastic casing of the housing and / or requires good accessibility, which is not provided within the housing.
  • the working medium pipes must be led through the floors so that soldered connections or welded connections are used there.
  • very high temperatures may also be required for soldering, for example when brazing.
  • plastics and light metal alloys In order to be able to manufacture a heat exchanger as inexpensively as possible, it is necessary to use inexpensive materials, such as plastics and light metal alloys. However, these inexpensive materials cannot be used in all possible temperature ranges. Furthermore, plastics have a significantly lower coefficient of thermal conductivity than metals. In contrast, iron alloys, preferably steel, especially stainless steel, have a very high temperature resistance, but are then comparatively expensive. However, particularly in vehicle applications, the lowest possible weight for the heat exchanger is desirable.
  • a heat exchanger which is inserted laterally into the housing through a housing opening, the housing opening being bordered by an axially protruding projection on which locking lugs are formed radially on the outside.
  • the front bottom of the heat exchanger projects radially beyond the working medium pipe and forms a circumferential collar which has latching openings which match the latching lugs, engages around the projection and latches with the latching lugs in order to fix the heat exchanger to the housing.
  • a circumferential seal is arranged axially between the projection and the collar.
  • the present invention is concerned with the problem of specifying an improved or at least another embodiment for a heat exchanger of the type mentioned at the outset, which is distinguished on the one hand by inexpensive manufacture and on the other hand by increased functional reliability in the area of the ring seal.
  • the invention is based on the general idea of locking the heat exchanger block in the housing in such a way that axial contact and preferably axial pretension can be permanently ensured in the area of the ring seal.
  • the invention proposes realizing such a latching between the housing and the heat exchanger block in the area of the rear floor in order to axially prestress the first ring seal provided there, such that that the first ring seal bears axially biased both at the edge of the rear floor and at the associated step formed on the housing. This ensures the sealing function of the first ring seal at all expected temperatures and operating situations.
  • the housing expediently has at least one latching contour in the area of the step, which cooperates with a counter-latching contour of the rim on a rear side of the edge of the rear base facing away from the first ring seal.
  • the respective locking contour brings about an axial positioning of the edge on the housing.
  • this axial positioning causes the edge to be axially fixed to the housing, which prevents the edge from moving axially away from the step.
  • this axial positioning for the edge defines an axial position relative to the housing in which the first ring seal bears axially preloaded on the edge and on the step.
  • a plurality of latching contours are expediently provided, which are spaced apart from one another in the circumferential direction and which are arranged distributed along the edge. In this way, the axial fixation or axial positioning of the edge of the rear base on the housing is improved.
  • the respective latching contour can interact directly with the rear of the edge, in which case the rear of the edge itself forms the counter-latching contour together for all latching contours. This simplifies the manufacture of the rear floor.
  • the respective locking contour encompasses a radially outer outer edge of the edge.
  • the respective latching contour can expediently have a ramp on a side facing the working medium inlet.
  • the ramp makes it easier to drive over the respective locking contour through the edge of the rear floor, which precedes when the heat exchanger block is inserted into the housing.
  • an essentially radially oriented latching lug of the latching contour adjoining the ramp engages behind the respective counter-latching contour and thus secures the edge against axial pulling out of the housing against the direction of insertion.
  • the edge can be axially supported directly on the step with a front side facing the first ring seal.
  • the edge lies against the step in the direction of insertion and against the respective latching contour in the pull-out direction. This results in a particularly efficient axial positioning of the heat exchanger block within the housing.
  • the first ring seal can be configured, for example, as a plastic seal.
  • Plastic seals are characterized by a particularly high level of tightness.
  • the two bottoms of the heat exchanger block axially delimit the cooling medium path, so that the rear of the edge is directly exposed to the cooling medium and is cooled accordingly.
  • the first ring seal thus interacts with an actively cooled edge, which reduces the thermal load on the ring seal.
  • the step can expediently have a receiving groove into which the first ring seal is inserted axially. In this way, the axial compression of the first ring seal can be limited to an allowable or predetermined amount. Furthermore, with the aid of the receiving groove, an efficient radial fixation or positioning for the first ring seal is made possible.
  • the edge is supported axially on the step exclusively via the first ring seal.
  • This embodiment is characterized by a particularly simple geometry in the area of the step, which simplifies production.
  • the first ring seal is designed as a disk-shaped metal bead seal.
  • metal bead seals are not as tight as plastic seals, but have a significantly higher thermal resistance.
  • the working medium inlet can be integrally formed on a connecting flange which is a separate component with respect to the jacket and which is fastened to the jacket by means of a fastening.
  • the connecting flange can be a one-piece, integrally produced cast part. This makes it possible to manufacture the connecting flange and the jacket from different materials.
  • the jacket can be a plastic part, while the connecting flange is a metal part.
  • the front base also has a circumferential edge which projects radially beyond the working medium pipes and is arranged axially between an axial jacket end face of the jacket and an axial flange front side of the connecting flange, so that it in turn fixes the connecting flange on the jacket to the housing by means of fastening is fixed.
  • the edge of the front base expediently extends radially into the fastening so that it is integrated into this fastening.
  • the heat exchanger block is axially fixed to the housing in the region of the front base by the fastening between the connecting flange and the jacket. In the area of the rear floor, the heat exchanger block is axially fixed to the housing by the catch.
  • the coolant inlet and the coolant outlet as well as the respective locking contour and the step are expediently formed integrally on the jacket. This simplifies the manufacture of the housing. Furthermore, the jacket can be made in one piece or in one piece, in particular as an integral casting.
  • the heat exchanger can be designed in a U-current construction.
  • the working medium outlet is also integrally formed on the connection flange, while a deflection chamber is provided in the housing.
  • the working medium path now leads through at least one of the working medium pipes from the working medium inlet to the deflection chamber and through at least one other of the working medium pipes from the deflecting chamber to the working medium outlet.
  • the housing is closed in the region of the deflection chamber by a housing base which is expediently integrally formed on the casing. This gives the housing a particularly inexpensive construction, since it ultimately only comprises the connecting flange with working medium inlet and working medium outlet and the casing with the housing base, coolant inlet and coolant outlet.
  • the deflection chamber can be delimited directly by the jacket and the housing base or by a metal body which is inserted into the housing.
  • a metal body can be used above all if the housing in the area of the casing and housing base is made of plastic and the expected temperatures in the deflection chamber are still relatively high.
  • the heat exchanger is designed in an I-current design.
  • the working medium outlet is arranged axially opposite the working medium inlet and can also advantageously be integrally formed on the jacket.
  • the housing comprises only two components, namely the jacket with the working medium outlet, coolant inlet, coolant outlet and the connecting flange with the working medium inlet.
  • the finished heat exchanger block can then be inserted into the housing by axially inserting it into the jacket if there is no connecting flange on the jacket end face.
  • the heat exchanger block is inserted into the jacket until the rear floor preceding it when inserted is locked on the edge with the respective locking contour.
  • the connecting flange can then be attached to the jacket, which means that the heat exchanger block is also fixed in the area of the front floor.
  • an axially acting second ring seal can be provided axially between the edge of the front base and the jacket end face.
  • an axially acting third ring seal can be provided axially between the edge of the front base and the flange end face.
  • the second ring seal and the third ring seal can optionally be designed as a plastic seal or as a metal bead seal. In particular, it is thus possible to design the second ring seal and the third ring seal each as a plastic seal. Likewise, the second ring seal and the third ring seal can each be designed as a metal bead seal. It is also conceivable to design the second ring seal as a plastic seal, while the third ring seal is designed as a metal bead seal. Finally, it is also possible to design the second ring seal as a metal bead seal, while the third ring seal is designed as a plastic seal.
  • the heat exchanger block is made of an iron alloy
  • the jacket is made of an Plastic or made of a light alloy. Since the heat exchanger block can be finished outside of the housing in the heat exchanger presented here, the two floors and the working medium pipes can be joined at high temperatures, for example in order to solder or weld the working medium pipes to the floors.
  • the jacket can be produced as an inexpensive cast part made of plastic or light metal alloy and, depending on the degree of integration and depending on the design, form integrally with the coolant inlet, with the coolant outlet, the step and the respective locking contour.
  • the connection flange is provided, it can also be made of an iron alloy or a light metal alloy, depending on the thermal load to be expected from the hot working medium to be cooled. In the case of an exhaust gas cooler, the connection flange is preferably made of an iron alloy.
  • the edge of the rear floor can lift off radially inwardly from the step at ambient temperature and bear axially inward on the step at operating temperature.
  • This can be achieved, for example, by appropriate shaping of the base in the area of the edge.
  • the edge of the rear floor can be inclined to the rear relative to a plane running perpendicular to the axial direction, that is to say directed away from the front floor.
  • the heat exchanger block expands axially more than the housing, as a result of which the above-mentioned inclination of the edge becomes less and less until the edge also comes into axial contact with the step radially on the inside at operating temperature.
  • edge of the rear bottom has an axial distance from the step radially on the inside, which is at ambient temperature is greater than at operating temperature. This means that the axial distance decreases with increasing temperature and in extreme cases can, but does not have to, be zero.
  • axial contact between the edge and the step can occur radially on the inside, while at lower temperatures, which can still be in the operating temperature range, such axial contact does not occur.
  • This can also be achieved by appropriate shaping of the rear floor in the area of the edge.
  • a heat exchanger 1 comprises a housing 2 and a heat exchanger block 3, which is located inside the housing 2 and therefore in FIG Fig. 1 is not visible.
  • the housing 2 has a housing jacket 4, a working medium inlet 5, a working medium outlet 6, a cooling medium inlet 7 and a cooling medium outlet 8.
  • the heat exchanger block 3 has a front floor 9 facing the working medium inlet 5 and a rear floor 10 facing away from the working medium inlet 5.
  • the heat exchanger block 3 has a plurality of working medium tubes 11 for guiding a working medium 12, the working medium tubes 11 leading axially through the two trays 9, 10 and being firmly and tightly connected to the two trays 9, 10.
  • the working medium inlet 5 comprises an associated inlet connector and has a fastening flange which is used to connect the heat exchanger 1 to a working medium line carrying the working medium, such as e.g. a charge air line, an exhaust gas recirculation line or an exhaust gas line.
  • the working medium outlet 6 here also has an associated outlet connector and a fastening flange, which is used to connect the heat exchanger 1 to the working medium line.
  • the coolant inlet 7 here comprises an associated inlet connection piece, which is used to connect the heat exchanger 1 to a cooling circuit carrying a coolant 13.
  • the cooling medium outlet 8 here also has an associated outlet connector, which is used to connect the heat exchanger 1 to the cooling circuit.
  • the heat exchanger 1 is used for media-separated cooling of the working medium 12 with the aid of a cooling medium 13.
  • a working medium 12 which in the Figures 1 and 2 is indicated by arrows, it can preferably be a gas, such as charge air, recirculated exhaust gas and exhaust gas.
  • the cooling medium 13 which in the Figures 1 and 2 is indicated by arrows, it can be a liquid, such as a cooling liquid of a cooling circuit of an internal combustion engine or a motor vehicle equipped with it.
  • a working medium path 14 indicated by arrows and a cooling medium path 15 likewise indicated by arrows are formed in the heat exchanger 1.
  • the working medium path 14 leads from the working medium inlet 5 inside through the working medium pipes 11 to the working medium outlet 6.
  • the coolant path 15 leads from the coolant inlet 7 outside around the working medium pipes 11 to the coolant outlet 8.
  • the working medium pipes 11 are each linear and parallel to one another and to the side arranged side by side, ie radially next to each other, with 11 spaces radially between adjacent working medium tubes 16 are formed, which are also traversed by the cooling medium 13 of the cooling medium path 15.
  • FIG. 2 it can further be seen that the working medium inlet 5 is expediently designed as a diffuser in order to distribute the working medium 12 supplied to the working medium pipes 11.
  • the rear base 10 has a circumferential edge region or edge 17 projecting radially beyond the working medium pipes 11.
  • the housing 2 has a circumferential step 18.
  • a first ring seal 19 is now arranged, which acts axially and thus seals the edge 17 with respect to the step 18.
  • the housing 2 now has at least one, but preferably a plurality of latching contours 20 in the region of this step 18.
  • the respective latching contour 20 interacts with a counter-latching contour 21 which is located on the edge 17, the latching contour 20 being axially supported on the counter-latching contour 21 on a rear side 22 of the rim 17 facing away from the first ring seal 19.
  • a latching 23 for axially fixing the edge 17 to the step 18 is created.
  • the latch 23 prevents the edge 17 from axially moving away from the step 18.
  • the catch 23 causes the edge 17 to be positioned relative to the step 18 in an axial position in which the first ring seal 19 bears axially pretensioned both on the step 18 and on the edge 17.
  • the heat exchanger block 3 is axially fixed in the region of the rear floor 10. Both measures make it possible to be able to manufacture the heat exchanger block 3 outside the housing 2.
  • a plurality of latching contours 20 are provided, these are spaced apart from one another in the circumferential direction and are distributed along the edge 17.
  • the circumferential direction runs with respect to a longitudinal central axis 24 of the housing 2, which defines the axial direction, which extends parallel to the longitudinal central axis 24.
  • the respective locking contour 20 preferably interacts directly with the rear side 22 of the edge 17, so that the edge 17 itself forms the counter-locking contour 21, specifically in the region of its radially outer outer edge. Accordingly, the locking contour 20 encompasses the edge 17 in the region of its outer edge.
  • the first ring seal 19 is shown in the usual manner in the relaxed state, so that the first ring seal 19 supposedly penetrates into the edge 17 or penetrates the edge 17. It is clear that, in reality, the first ring seal 19 lies axially against the edge 17, with a corresponding elastic deformation of the first ring seal 19 taking place.
  • the edge 17 is axially supported with its front side 25, which faces the first ring seal 19, directly on the step 18.
  • a receiving groove 26 is formed for the first ring seal 19 in step 18, in which the first ring seal 19 is inserted axially.
  • the first ring seal 19 is designed as a plastic seal.
  • the edge 17 is supported axially on the step 18 exclusively via the first ring seal 19.
  • the first ring seal 19 is designed as a disk-shaped metal bead seal. In this case, no receiving groove 26 is required.
  • Figure 5 shows an embodiment similar to in Figure 3 , in which the first ring seal 19 is designed as a plastic seal and is inserted into a receiving groove 26.
  • the variant of Figure 4 to be used in which the first ring seal 19 is designed as a metal bead seal and in which the receiving groove 26 can be dispensed with.
  • the peculiarity of the in Figure 5 The embodiment shown shows that the edge 17 is inclined with respect to a plane running perpendicular to the axial direction, so that at ambient temperature it only touches the step 18 radially on the outside, while it lifts radially on the inside from the step 18.
  • This situation is in Figure 5 shown with a solid line.
  • a broken line shows a situation that occurs at operating temperature.
  • the edge 17 now also axially lies radially on the inside of the step 18.
  • the edge 17 of the rear base 10 can have an axial distance 27 from the step 18 radially inside, which is greater at ambient temperature than at operating temperature.
  • the rear floor 10 in the embodiments of FIGS Figures 2 to 5 is spatially shaped in such a way that the edge 17 cooperating with the step 18 and the first ring seal 19 is axially offset from an area enclosed by the edge 17, which is firmly connected to the working medium pipes 11. This offset occurs at the rear floor 10 to the outside, that is to say axially away from the working medium pipes 11.
  • the working medium inlet 5 is integrally formed on a connecting flange 28, which represents a separate component with respect to the jacket 4.
  • the diffuser mentioned above is thus formed in the connecting flange 28.
  • This connecting flange 28 is fastened to the jacket 4 by means of a fastening 29.
  • the attachment 29 is here as a flange connection realized with several screw connections 30.
  • the front base 9 has a peripheral edge 31 which projects radially beyond the working medium tubes 11. This edge 31 is arranged axially between an axial jacket face 32 of the jacket 4 and an axial flange face 33. Furthermore, the edge 31 extends radially into the fastening 29.
  • the edge 31 of the front base 9 is integrated into the attachment 29, so that with the aid of the attachment 29 on the one hand the connecting flange 28 on the jacket 4 and on the other hand the heat exchanger block 3 are fixed to the housing 2.
  • FIG. 1 In the example of the Figures 1 and 2 is the heat exchanger 1 designed in I-current construction, which according to Figure 10 characterized in that the working medium outlet 6 is axially opposite the working medium inlet 5.
  • Figure 11 shows Figure 11 a heat exchanger 1 in a U-current design, which is characterized in that working medium inlet 5 and working medium outlet 6 are located at the same axial end of the housing 2 and axially opposite a deflection chamber 34.
  • the working medium outlet 6 is integrally formed on the jacket 4.
  • the jacket 4 merges into the working medium outlet 6 via a convergence region 35.
  • a collecting chamber 36 is formed in the convergence area 35, in which the partial flows of the working medium 12 which are passed through the separate working medium pipes 11 are recombined and flow together to the working medium outlet 6.
  • the working medium outlet 6 can also be integrally formed on the connection flange 28.
  • the housing 2 then contains the deflection chamber 34.
  • the working medium path 14 leads through at least one of the working medium pipes 11 from the working medium inlet 5 to the deflection chamber 34 and through at least one other of the working medium pipes 11 from the deflection chamber 34 to the working medium outlet 6.
  • the housing 2 is then in the region of the deflection chamber 34 closed by a housing base 37.
  • the housing base 37 is integrally formed on the casing 4.
  • the deflection chamber 34 can be delimited by a metal housing (not shown here) which is inserted into the housing 2 and lines the casing 4 and the housing base 37 towards the deflection chamber 34 and protects it from contact with the working medium 12.
  • an axially acting second ring seal 38 can be provided in the region of the front base 9 between the associated edge 31 and the jacket end face 32.
  • an axially acting third ring seal 39 can be provided axially between the edge 31 of the front base 9 and the flange end face 33.
  • the second ring seal 38 and the third ring seal 39 can be designed as a plastic seal or as a metal bead seal.
  • FIGS. 2 and 6 show an embodiment in which the second ring seal 38 is designed as a plastic seal and in which the third ring seal 39 is also designed as a plastic seal.
  • Figure 7 shows an embodiment in which the second ring seal 38 is designed as a metal bead seal and in which the third ring seal 39 is also designed as a metal bead seal.
  • Figure 8 shows an embodiment in which the second ring seal 38 is designed as a plastic seal, while the third ring seal 39 is designed as a metal bead seal.
  • Figure 9 an embodiment in which the second ring seal 38 is designed as a metal bead seal, while the third ring seal 39 is designed as a plastic seal.
  • the jacket end face 32 contains an associated receiving groove 40, in which the second ring seal 38 is inserted axially.
  • the flange end 33 contains a corresponding receiving groove 41, in which the third ring seal 39 is inserted axially.
  • the second ring seal 38 and the third ring seal 39 are also shown in FIGS Figures 2 and 6 to 9 each shown in the relaxed state, so that they seem to protrude into the edge 31 of the front base 9 or into the flange face 33. In reality, this is not the case, rather the second ring seal 38 and the third ring seal 39 are then elastically deformed in a corresponding manner and lie axially on the edge 31 or on the flange end face 33.
  • the front base 9 is three-dimensionally shaped such that the edge 31 is axially offset with respect to an inner region of the front base 9 which is bordered by the edge 31, the inner region is firmly connected to the working medium pipes 11.
  • the axial offset takes place inwards, that is in a direction facing the working medium pipes 11.
  • the metal bead seals shown are each formed by a metal disk which extends in a ring along the respective edge 17 or 31 and which has at least one axially projecting, closed circumferential sealing contour 42 which bears axially against the respective edge 17, 31 or on the flange end face 33 .
  • the respective sealing contour 42 is integrally formed on the metal disk in the manner of a bead by reshaping.
  • This sealing contour 42 can or several such sealing contours 42 can be arranged radially between an inner edge and an outer edge of the respective metal bead seal. In the examples shown here, only one such sealing contour 42 is formed on each metal bead seal, specifically by an S-shaped angled area on the inner edge.
  • the heat exchanger block 3 that is to say the bases 9, 10 and the working medium tubes 11, are each made of an iron alloy. Different iron alloys can also be used. As a result, the heat exchanger block 3 can have a high thermal resistance. Furthermore, the individual components of the heat exchanger block 3 can be joined outside the housing 2, that is to say in particular they can be welded or soldered.
  • the jacket 4 can be made of a plastic or a light metal alloy. The jacket 4 integrally has the locking contours 20 and the step 18. Furthermore, the jacket 4 preferably also has the coolant inlet 7 and the coolant outlet 8 integrally. In the I-current construction shown here, the working medium outlet 6 is optionally integrally formed on the jacket 4 with the transition region 35.
  • the connecting flange 28 is preferably made of a metal. Depending on the area of application of the heat exchanger 1, a light metal alloy or an iron alloy can also be used. In the I-current design, the working medium inlet 5 is integrally formed on the connecting flange 28. In the U-current design, the connection flange 28 can additionally have the working medium outlet 6.
  • the respective ring seal 19, 38, 39 runs in a ring-shaped manner in the circumferential direction, but can in principle have any cross section transverse to its direction of rotation.

Description

  • Die vorliegende Erfindung betrifft einen Wärmetauscher zum mediengetrennten Kühlen eines Arbeitsmediums mittels eines Kühlmediums, mit den Merkmalen des Oberbegriffs des Anspruchs 1.
  • Derartige Wärmetauscher, die auch als Wärmeübertrager bezeichnet werden können, kommen beispielsweise bei Kraftfahrzeugen zum Einsatz, um ein Arbeitsmedium des Fahrzeugs, vorzugsweise einer Brennkraftmaschine des Fahrzeugs, zu kühlen. Dabei können vergleichsweise hohe Temperaturen auf der Seite des zu kühlenden Arbeitsmediums auftreten, beispielsweise bei einem Ladeluftkühler oder bei einem Abgasrückführkühler oder bei einem Abgaskühler. Dabei ist klar, dass das Kühlen des Arbeitsmediums mit einer Erwärmung des Kühlmediums einhergeht, so dass der jeweilige Wärmetauscher auch zum mediengetrennten Erwärmen des Kühlmediums, das dann einem Arbeitsmedium entspricht, mittels des Arbeitsmediums, das dann einem Heizmedium entspricht, verwendet werden kann.
  • Ein gattungsgemäßer Wärmetauscher ist beispielsweise aus der WO 2014/006213 A1 bekannt. Er besitzt ein Gehäuse, das einen Gehäusemantel, einen Arbeitsmediumeinlass, einen Arbeitsmediumauslass, einen Kühlmediumeinlass und einen Kühlmediumauslass aufweist. Somit können dem Gehäuse das Arbeitsmedium und das Kühlmedium zugeführt und davon abgeführt werden. Ferner besitzt der Wärmetauscher einen Wärmetauscherblock, der in das Gehäuse eingesetzt ist und der einen dem Arbeitsmediumeinlass zugewandten vorderen Boden und einen vom Arbeitsmediumeinlass abgewandten hinteren Boden sowie mehrere Arbeitsmediumrohre zum Führen des Arbeitsmediums aufweist. Die Arbeitsmediumrohre durchsetzen dabei die beiden Böden und sind außerdem fest und dicht mit den beiden Böden verbunden, um den Wärmetauscherblock zu bilden. Im Wärmetauscher führt ein Arbeitsmediumpfad vom Arbeitsmediumeinlass innen durch die Arbeitsmediumrohre zum Arbeitsmediumauslass. Ferner führt ein Kühlmittelpfad vom Kühlmitteleinlass außen um die Arbeitsmediumrohre herum zum Kühlmittelauslass. Über die Wandungen der Arbeitsmediumrohre erfolgt die Wärmeübertragung zwischen dem innen strömenden Arbeitsmedium und dem außen strömenden Kühlmedium. Beim bekannten Wärmetauscher besitzt der jeweilige Boden einen radial über die Arbeitsmediumrohre überstehenden, umlaufenden Rand, der jeweils über eine axial wirkende Ringdichtung an einer entlang des jeweiligen Rands umlaufenden Stufe des Gehäuses axial abgestützt ist. Ferner ist beim bekannten Wärmetauscher der Mantel aus zwei Halbschalen gebildet, die axial zwischen den beiden Böden des Wärmetauscherblocks angeordnet und aneinander angesetzt sind. An diesen Mantel sind an die axialen Stirnseiten ein den Arbeitsmediumeinlass aufweisendes Einlassgehäuseteil bzw. ein den Arbeitsmediumauslass aufweisendes Auslassgehäuseteil angeschlossen, wobei in den jeweiligen Anschlussbereich der Rand des jeweiligen Bodens mit der zugehörigen Ringdichtung eingebunden ist. Dementsprechend ist die mit der jeweiligen Ringdichtung zusammenwirkende gehäuseseitige Stufe am Einlassgehäuseteil bzw. am Auslassgehäuseteil ausgebildet. Der bekannte Wärmetauscher besitzt somit ein Gehäuse, dass wenigstens vier separate Bauteile aufweist, die zusammengebaut werden müssen. Somit ist der Aufwand zur Realisierung des bekannten Wärmetauschers vergleichsweise groß.
  • Aus der DE 10 2013 221 932 A1 ist ein anderer Wärmetauscher bekannt, bei dem der Mantel einteilig ausgeführt ist, so dass der Wärmetauscherblock axial in den Mantel einsetzbar ist. Ferner ist bei diesem Wärmetauscher vorgesehen, in einen Einlassbereich des Mantels sowie in einen Auslassbereich des Mantels jeweils eine metallische Wand einzusetzen, um die thermische Belastung des aus Kunststoff hergestellten Mantels zu reduzieren.
  • Bei den beiden vorstehend genannten Wärmetauschern ist es möglich, den Wärmetauscherblock außerhalb des Gehäuses herzustellen, um anschließend den fertigen Wärmetauscherblock mit dem Gehäuse zu vereinen. Die Herstellung des Wärmetauscherblocks außerhalb des Gehäuses ist von besonderem Vorteil, da die Herstellung des Wärmetauscherblocks häufig mit einer hohen thermischen Belastung einhergeht, die beispielsweise in einem Kunststoffmantel des Gehäuses nicht realisierbar ist, und/oder eine gute Zugänglichkeit erfordert, die innerhalb des Gehäuses nicht gegeben ist. Beispielsweise müssen die Arbeitsmediumrohre durch die Böden dicht hindurchgeführt werden, so dass dort Lötverbindungen oder Schweißverbindungen zum Einsatz kommen. Je nach Einsatzzweck des Wärmetauschers können dabei auch für das Löten sehr hohe Temperaturen erforderlich sein, beispielsweise beim Hartlöten.
  • Aus der DE 10 2006 051 000 A1 ist ein anderer Wärmetauscher bekannt, bei dem der Wärmetauscherblock innerhalb des Mantels des Gehäuses fertiggestellt wird. Dabei muss beim Verschweißen oder Verlöten der Arbeitsmediumrohre mit dem jeweiligen Boden eine Kühlung des Mantels im Bereich des jeweiligen Bodens durchgeführt werden, um eine Beschädigung des Mantels zu verhindern. Mit anderen Worten, die Fertigung des Wärmetauscherblocks innerhalb des Gehäuses ist mit einem erhöhten Aufwand verbunden.
  • Um einen Wärmetauscher möglichst preiswert herstellen zu können, ist die Verwendung preiswerter Werkstoffe, wie zum Beispiel Kunststoffe und Leichtmetalllegierungen, erforderlich. Diese preiswerten Werkstoffe lassen sich jedoch nicht bei allen in Frage kommenden Temperaturbereichen einsetzen. Ferner besitzen Kunststoffe einen deutlich geringeren Wärmeleitkoeffizienten als Metalle. Im Unterschied dazu besitzen Eisenlegierungen, vorzugsweise Stahl, insbesondere Edelstahl, eine sehr hohe Temperaturbeständigkeit, sind dann jedoch vergleichsweise teuer. Allerdings ist insbesondere bei Fahrzeuganwendungen ein möglichst geringes Gewicht für den Wärmetauscher anzustreben.
  • Des Weiteren hat sich gezeigt, dass die Verwendung von axial wirkenden Ringdichtungen zwischen dem Rand des jeweiligen Bodens des Wärmetauscherblocks und der jeweiligen Stufe des Gehäuses problematisch ist, da sich Wärmetauscherblock und Gehäuse während des Betriebs des Wärmeübertragers aufgrund der unterschiedlichen Temperaturen und der gegebenenfalls unterschiedlichen Wärmedehnungskoeffizienten unterschiedlich ausdehnen. Dabei können sich Wärmetauscherblock und Gehäuse relativ zueinander im Bereich des jeweiligen Bodens axial so weit zueinander verstellen, dass die jeweilige Ringdichtung ihre Dichtfunktion nicht mehr erfüllen kann.
  • Aus der DE 10 2014 204 272 A1 ist ein Wärmetauscher bekannt, der durch eine Gehäuseöffnung seitlich in das Gehäuse eingesetzt ist, wobei die Gehäuseöffnung von einem axial abstehenden Vorsprung eingefasst ist, an dem radial außen Rastnasen ausgebildet sind. Der vordere Boden des Wärmetauschers steht radial über die Arbeitsmediumrohr über und bildet einen umlaufenden Kragen, der zu den Rastnasen passende Rastöffnungen aufweist, den Vorsprung umgreift und mit den Rastnasen verrastet, um den Wärmetauscher am Gehäuse zu fixieren. Ferner ist axial zwischen dem Vorsprung und dem Kragen eine umlaufende Dichtung angeordnet.
  • Die vorliegende Erfindung beschäftigt sich mit dem Problem, für einen Wärmetauscher der eingangs genannten Art eine verbesserte oder zumindest eine andere Ausführungsform anzugeben, die sich einerseits durch eine preiswerte Herstellbarkeit und andererseits durch eine erhöhte Funktionssicherheit im Bereich der Ringdichtung auszeichnet.
  • Dieses Problem wird erfindungsgemäß durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung beruht auf dem allgemeinen Gedanken, den Wärmetauscherblock im Gehäuse zu verrasten, derart, dass im Bereich der Ringdichtung ein axialer Kontakt und vorzugsweise eine axiale Vorspannung dauerhaft gewährleistet werden kann. Im Einzelnen schlägt die Erfindung vor, eine derartige Verrastung zwischen Gehäuse und Wärmetauscherblock im Bereich des hinteren Bodens zu realisieren, um die dort vorgesehene erste Ringdichtung axial vorzuspannen, derart, dass die erste Ringdichtung sowohl am Rand des hinteren Bodens als auch an der zugehörigen, am Gehäuse ausgebildeten Stufe axial vorgespannt anliegt. Somit ist die Dichtfunktion der ersten Ringdichtung bei allen zu erwartenden Temperaturen und Betriebssituationen gewährleistet.
  • Zweckmäßig weist das Gehäuse im Bereich der Stufe hierzu wenigstens eine Rastkontur auf, die an einer von der ersten Ringdichtung abgewandten Rückseite des Rands des hinteren Bodens mit einer Gegenrastkontur des Rands zusammenwirkt. Die jeweilige Rastkontur bewirkt dabei eine axiale Positionierung des Rands am Gehäuse. Diese axiale Positionierung bewirkt einerseits eine axiale Fixierung des Rands am Gehäuse, die den Rand an einer von der Stufe weg gerichteten Axialbewegung hindert. Andererseits definiert diese axiale Positionierung für den Rand eine Axialposition relativ zum Gehäuse, in der die erste Ringdichtung am Rand und an der Stufe axial vorgespannt anliegt.
  • Zweckmäßig sind mehrere Rastkonturen vorgesehen, die in der Umfangsrichtung voneinander beabstandet sind und die entlang des Rands verteilt angeordnet sind. Auf diese Weise wird die axiale Fixierung bzw. axiale Positionierung des Rands des hinteren Bodens am Gehäuse verbessert.
  • Bei einer anderen Ausführungsform kann die jeweilige Rastkontur unmittelbar mit der Rückseite des Rands zusammenwirken, wobei dann die Rückseite des Rands selbst die Gegenrastkontur gemeinsam für alle Rastkonturen bildet. Hierdurch vereinfacht sich die Herstellung des hinteren Bodens. Insbesondere umgreift die jeweilige Rastkontur dabei eine radial außen liegende Außenkante des Rands.
  • Zweckmäßig kann die jeweilige Rastkontur an einer dem Arbeitsmediumeinlass zugewandten Seite eine Rampe aufweisen. Die Rampe erleichtert beim axialen Einsetzen des Wärmetauscherblocks das Überfahren der jeweiligen Rastkontur durch den Rand des hinteren Bodens, der beim Einsetzen des Wärmetauscherblocks in das Gehäuse vorangeht. Nach dem Überfahren der Rampe hintergreift eine im Wesentlichen radial orientierte, an die Rampe anschließende Rastnase der Rastkontur die jeweilige Gegenrastkontur und sichert so den Rand gegen ein axiales Herausziehen aus dem Gehäuse entgegen der Einsetzrichtung.
  • Bei einer weiteren Ausführungsform kann sich der Rand mit einer der ersten Ringdichtung zugewandten Vorderseite unmittelbar an der Stufe axial abstützen. Somit liegt der Rand in der Einsetzrichtung an der Stufe und in der Auszugsrichtung an der jeweiligen Rastkontur an. Hierdurch wird eine besonders effiziente axiale Positionierung des Wärmetauscherblocks innerhalb des Gehäuses erzielt.
  • Die erste Ringdichtung kann beispielsweise als Kunststoffdichtung ausgestaltet sein. Kunststoffdichtungen zeichnen sich durch eine besonders hohe Dichtigkeit aus. Die beiden Böden des Wärmetauscherblocks begrenzen den Kühlmediumpfad axial, so dass die Rückseite des Rands unmittelbar dem Kühlmedium ausgesetzt und dementsprechend gekühlt ist. Die erste Ringdichtung wirkt somit mit einem aktiv gekühlten Rand zusammen, wodurch die thermische Belastung der Ringdichtung reduziert ist.
  • Sofern die erste Ringdichtung als Kunststoffdichtung ausgestaltet ist, kann die Stufe zweckmäßig eine Aufnahmenut aufweisen, in welche die erste Ringdichtung axial eingesetzt ist. Auf diese Weise kann die axiale Verpressung der ersten Ringdichtung auf ein zulässiges bzw. vorbestimmtes Maß begrenzt werden. Ferner wird mit Hilfe der Aufnahmenut eine effiziente radiale Fixierung bzw. Positionierung für die erste Ringdichtung ermöglicht.
  • Bei einer anderen Ausführungsform kann vorgesehen sein, dass sich der Rand ausschließlich über die erste Ringdichtung an der Stufe axial abstützt. Diese Ausführungsform zeichnet sich durch eine besonders einfache Geometrie im Bereich der Stufe aus, was die Herstellung vereinfacht.
  • Eine andere Ausführungsform sieht vor, dass die erste Ringdichtung als scheibenförmige Metallsickendichtung ausgestaltet ist. Derartige Metallsickendichtungen sind zwar nicht so dicht wie Kunststoffdichtungen, besitzen jedoch eine deutlich höhere thermische Beständigkeit.
  • Gemäß einer anderen vorteilhaften Ausführungsform kann der Arbeitsmediumeinlass integral an einem Anschlussflansch ausgebildet sein, der bezüglich des Mantels ein separates Bauteil ist und der am Mantel mittels einer Befestigung befestigt ist. Beim Anschlussflansch kann es sich um ein einstückiges, integral hergestelltes Gussteil handeln. Hierdurch ist es möglich, den Anschlussflansch und den Mantel aus unterschiedlichen Materialien herzustellen. Beispielsweise kann der Mantel ein Kunststoffteil sein, während der Anschlussflansch ein Metallteil ist. Der vordere Boden weist ebenfalls einen radial über die Arbeitsmediumrohre überstehenden, umlaufenden Rand auf, der axial zwischen einer axialen Mantelstirnseite des Mantels und einer axialen Flanschstirnseite des Anschlussflansches angeordnet ist, so dass er mit der mittels der Befestigung erzielten Fixierung des Anschlussflansches am Mantel seinerseits am Gehäuse fixiert ist. Zweckmäßig erstreckt sich der Rand des vorderen Bodens radial bis in die Befestigung hinein, so dass er in diese Befestigung eingebunden ist. Auf diese Weise ist der Wärmetauscherblock im Bereich des vorderen Bodens durch die Befestigung zwischen Anschlussflansch und Mantel am Gehäuse axial fixiert. Im Bereich des hinteren Bodens ist der Wärmetauscherblock durch die Verrastung am Gehäuse axial fixiert.
  • Zweckmäßig sind der Kühlmitteleinlass und der Kühlmittelauslass sowie die jeweilige Rastkontur und die Stufe integral am Mantel ausgeformt. Hierdurch vereinfacht sich die Herstellung des Gehäuses. Ferner kann der Mantel einteilig bzw. einstückig hergestellt sein, insbesondere als integrales Gussteil.
  • Bei einer anderen Ausführungsform kann der Wärmetauscher in U-Strom-Bauweise ausgestaltet sein. In diesem Fall ist auch der Arbeitsmediumauslass integral am Anschlussflansch ausgeformt, während im Gehäuse eine Umlenkkammer vorgesehen ist. Der Arbeitsmediumpfad führt nun durch wenigstens eines der Arbeitsmediumrohre vom Arbeitsmediumeinlass zur Umlenkkammer und durch wenigstens ein anderes der Arbeitsmediumrohre von der Umlenkkammer zum Arbeitsmediumauslass. Ferner ist das Gehäuse im Bereich der Umlenkkammer durch einen Gehäuseboden verschlossen, der zweckmäßig integral am Mantel ausgeformt ist. Hierdurch erhält das Gehäuse einen besonders preiswert herstellbaren Aufbau, da es letztlich nur den Anschlussflansch mit Arbeitsmediumeinlass und Arbeitsmediumauslass sowie den Mantel mit Gehäuseboden, Kühlmitteleinlass und Kühlmittelauslass umfasst. Die Umlenkkammer kann direkt durch den Mantel und den Gehäuseboden begrenzt sein oder durch einen Metallkörper begrenzt sein, der in das Gehäuse eingesetzt ist. Ein derartiger Metallkörper kann vor allem dann zum Einsatz kommen, wenn das Gehäuse im Bereich des Mantels und Gehäuseboden aus Kunststoff hergestellt ist und die erwarteten Temperaturen in der Umlenkkammer noch relativ hoch sind.
  • Besonders vorteilhaft ist jedoch eine alternative Ausführungsform, bei der der Wärmetauscher in I-Strom-Bauweise ausgestaltet ist. In diesem Fall ist der Arbeitsmediumauslass dem Arbeitsmediumeinlass axial gegenüberliegend angeordnet und kann ferner zweckmäßig integral am Mantel ausgeformt sein. Auch bei dieser Bauweise umfasst das Gehäuse in einer vorteilhaften Ausführungsform nur zwei Bestandteile, nämlich den Mantel mit Arbeitsmediumauslass, Kühlmitteleinlass, Kühlmittelauslass und den Anschlussflansch mit Arbeitsmediumeinlass. Bemerkenswert ist, dass der hier vorgestellte Wärmetauscher sowohl bei der U-Strom-Bauweise als auch bei der I-Strom-Bauweise eine Herstellung des Wärmetauscherblocks außerhalb des Gehäuses ermöglicht, was die Herstellung des Wärmetauscherblocks erheblich vereinfacht. Der fertiggestellte Wärmetauscherblock kann dann in das Gehäuse eingesetzt werden, indem er bei fehlendem Anschlussflansch an der Mantelstirnseite in den Mantel axial eingeführt wird. Dabei wird der Wärmetauscherblock so weit in den Mantel eingeführt bis der beim Einführen vorangehende hintere Boden randseitig mit der jeweiligen Rastkontur verrastet. Anschließend kann der Anschlussflansch am Mantel befestigt werden, wodurch der Wärmetauscherblock auch im Bereich des vorderen Bodens randseitig fixiert wird.
  • Gemäß einer vorteilhaften Weiterbildung kann axial zwischen dem Rand des vorderen Bodens und der Mantelstirnseite eine axial wirkende zweite Ringdichtung vorgesehen sein. Zusätzlich oder alternativ kann axial zwischen dem Rand des vorderen Bodens und der Flanschstirnseite eine axial wirkende dritte Ringdichtung vorgesehen sein. Dabei können die zweite Ringdichtung und die dritte Ringdichtung wahlweise als Kunststoffdichtung oder als Metallsickendichtung ausgestaltet sein. Insbesondere ist es somit möglich, die zweite Ringdichtung und die dritte Ringdichtung jeweils als Kunststoffdichtung auszuführen. Ebenso können die zweite Ringdichtung und die dritte Ringdichtung jeweils als Metallsickendichtung ausgeführt sein. Ebenso ist denkbar, die zweite Ringdichtung als Kunststoffdichtung auszuführen, während die dritte Ringdichtung als Metallsickendichtung ausgeführt ist. Schließlich ist es ebenso möglich, die zweite Ringdichtung als Metallsickendichtung auszuführen, während die dritte Ringdichtung als Kunststoffdichtung ausgeführt ist.
  • Besonders vorteilhaft ist eine Ausführungsform, bei welcher der Wärmetauscherblock aus einer Eisenlegierung hergestellt ist, während der Mantel aus einem Kunststoff oder aus einer Leichtmetalllegierung hergestellt ist. Da sich bei dem hier vorgestellten Wärmetauscher der Wärmetauscherblock außerhalb des Gehäuses fertigstellen lässt, lassen sich die beiden Böden und die Arbeitsmediumrohre bei optimaler Zugänglichkeit auch mit hohen Temperaturen fügen, beispielsweise um die Arbeitsmediumrohre mit den Böden zu verlöten oder zu verschweißen. Der Mantel kann als preiswertes Gussteil aus Kunststoff oder Leichtmetalllegierung hergestellt werden und dabei je nach Integrationsgrad und je nach Bauform mit dem Kühlmitteleinlass, mit dem Kühlmittelauslass, der Stufe und der jeweiligen Rastkontur integral ausformen. Sofern der vorstehend genannte Anschlussflansch vorgesehen ist, kann dieser ebenfalls aus einer Eisenlegierung oder aus einer Leichtmetalllegierung hergestellt sein je nach der zu erwartenden thermischen Belastung durch das zu kühlende heiße Arbeitsmedium. Bei einem Abgaskühler ist der Anschlussflansch vorzugsweise aus einer Eisenlegierung hergestellt.
  • Bei einer anderen Ausführungsform kann der Rand des hinteren Bodens bei Umgebungstemperatur radial innen von der Stufe axial abheben und bei Betriebstemperatur radial innen an der Stufe axial anliegen. Dies kann beispielsweise durch eine entsprechende Formgebung des Bodens im Bereich des Rands realisiert werden. Beispielsweise kann der Rand des hinteren Bodens gegenüber einer senkrecht zur Axialrichtung verlaufenden Ebene nach hinten, also vom vorderen Boden weggerichtet, geneigt sein. Während des Betriebs des Wärmetauschers dehnt sich der Wärmetauscherblock axial stärker aus als das Gehäuse, wodurch die vorstehend genannte Neigung des Rands immer geringer wird bis der Rand bei Betriebstemperatur auch radial innen an der Stufe axial zur Anlage kommt.
  • Ebenso ist eine Ausführungsform denkbar, bei welcher der Rand des hinteren Bodens radial innen einen Axialabstand von der Stufe aufweist, der bei Umgebungstemperatur größer ist als bei Betriebstemperatur. Das bedeutet, dass der besagte Axialabstand mit zunehmender Temperatur abnimmt und im Extremfall den Wert Null annehmen kann, jedoch nicht muss. Somit kann es bei hohen Temperaturen, insbesondere im oberen Bereich der möglichen Betriebstemperaturen, radial innen zu einem axialen Kontakt zwischen dem Rand und der Stufe kommen, während bei niedrigeren Temperaturen, die noch im Betriebstemperaturbereich liegen können, ein solcher Axialkontakt unterbleibt. Auch dies kann durch eine entsprechende Formgebung des hinteren Bodens im Bereich des Rands realisiert werden.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.
  • Es zeigen, jeweils schematisch,
  • Fig. 1
    eine isometrische Ansicht eines Wärmetauschers,
    Fig. 2
    einen Axialschnitt des Wärmetauschers,
    Fig. 3
    ein vergrößertes Detail III aus Fig. 2,
    Fig. 4 - 5
    jeweils eine Detailansicht wie in Fig. 3, jedoch bei anderen Ausführungsformen,
    Fig. 6
    ein vergrößertes Detail VI aus Fig. 2,
    Fig. 7 - 9
    jeweils eine Detailansicht wie in Fig. 6, jedoch bei anderen Ausführungsformen,
    Fig. 10
    eine stark vereinfachte Prinzipdarstellung eines Wärmetauschers in I-Strom-Bauweise,
    Fig. 11
    eine stark vereinfachte Prinzipdarstellung eines Wärmetauschers in U-Strom-Bauweise.
  • Entsprechend den Figuren 1 und 2 umfasst ein Wärmetauscher 1 ein Gehäuse 2 und einen Wärmetauscherblock 3, der sich im Inneren des Gehäuses 2 befindet und daher in Fig. 1 nicht sichtbar ist. Das Gehäuse 2 weist einen Gehäusemantel 4, einen Arbeitsmediumeinlass 5, einen Arbeitsmediumauslass 6, einen Kühlmediumeinlass 7 und einen Kühlmediumauslass 8 auf. Der Wärmetauscherblock 3 weist einen dem Arbeitsmediumeinlass 5 zugewandten vorderen Boden 9 und einen vom Arbeitsmediumeinlass 5 abgewandten hinteren Boden 10 auf. Ferner weist der Wärmetauscherblock 3 mehrere Arbeitsmediumrohre 11 zum Führen eines Arbeitsmediums 12 auf, wobei die Arbeitsmediumrohre 11 durch die beiden Böden 9, 10 axial hindurchführen und fest sowie dicht mit den beiden Böden 9, 10 verbunden sind.
  • Bei dem hier vorgestellten Beispiel umfasst der Arbeitsmediumeinlass 5 einen zugehörigen Einlassstutzen und weist einen Befestigungsflansch auf, der zum Anschließen des Wärmeübertragers 1 an eine das Arbeitsmedium führende Arbeitsmediumleitung dient, wie z.B. eine Ladeluftleitung, eine Abgasrückführleitung oder eine Abgasleitung. Auch der Arbeitsmediumauslass 6 weist hier einen zugehörigen Auslassstutzen sowie einen Befestigungsflansch auf, der zum Anschließen des Wärmetauschers 1 an die Arbeitsmediumleitung dient. Der Kühlmediumeinlass 7 umfasst hier einen zugehörigen Einlassstutzen, der zum Anschließen des Wärmetauschers 1 an einen ein Kühlmittel 13 führenden Kühlkreis dient. Schließlich weist hier auch der Kühlmediumauslass 8 einen zugehörigen Auslassstutzen auf, der zum Anschließen des Wärmetauschers 1 an den Kühlkreis dient.
  • Der Wärmetauscher 1 dient zum mediengetrennten Kühlen des Arbeitsmediums 12 mit Hilfe eines Kühlmediums 13. Beim Arbeitsmedium 12, das in den Figuren 1 und 2 durch Pfeile angedeutet ist, kann es sich vorzugsweise um ein Gas handeln, wie zum Beispiel Ladeluft, rückgeführtes Abgas und Abgas. Beim Kühlmedium 13, das in den Figuren 1 und 2 durch Pfeile angedeutet ist, kann es sich um eine Flüssigkeit handeln, wie zum Beispiel eine Kühlflüssigkeit eines Kühlkreises einer Brennkraftmaschine bzw. eines damit ausgestatteten Kraftfahrzeugs. Für die mediengetrennte und wärmeübertragende Kopplung sind im Wärmetauscher 1 ein durch Pfeile angedeuteter Arbeitsmediumpfad 14 und ein ebenfalls durch Pfeile angedeuteter Kühlmediumpfad 15 ausgebildet. Der Arbeitsmediumpfad 14 führt dabei vom Arbeitsmediumeinlass 5 innen durch die Arbeitsmediumrohre 11 hindurch zum Arbeitsmediumauslass 6. Der Kühlmittelpfad 15 führt vom Kühlmitteleinlass 7 außen um die Arbeitsmediumrohre 11 herum zum Kühlmittelauslass 8. Die Arbeitsmediumrohre 11 sind im gezeigten Beispiel jeweils geradlinig ausgestaltet und parallel zueinander sowie Seite an Seite, also radial nebeneinander angeordnet, wobei radial zwischen benachbarten Arbeitsmediumrohren 11 Zwischenräume 16 ausgebildet sind, die ebenfalls vom Kühlmedium 13 des Kühlmediumpfads 15 durchströmt sind.
  • Figur 2 lässt sich weiter entnehmen, dass der Arbeitsmediumeinlass 5 zweckmäßig als Diffusor ausgestaltet ist, um das zugeführte Arbeitsmedium 12 auf die Arbeitsmediumrohre 11 zu verteilen.
  • Gemäß den Figuren 2 bis 5 besitzt der hintere Boden 10 einen radial über die Arbeitsmediumrohre 11 überstehenden, umlaufenden Randbereich oder Rand 17. Entlang des Rands 17 besitzt das Gehäuse 2 eine umlaufende Stufe 18. Axial zwischen dem Rand 17 und der Stufe 18 ist nun eine erste Ringdichtung 19 angeordnet, die axial wirkt und somit den Rand 17 gegenüber der Stufe 18 dichtet. Das Gehäuse 2 weist nun im Bereich dieser Stufe 18 zumindest eine, vorzugsweise jedoch mehrere Rastkonturen 20 auf. Die jeweilige Rastkontur 20 wirkt dabei mit einer Gegenrastkontur 21 zusammen, die sich am Rand 17 befindet, wobei sich die Rastkontur 20 an einer von der ersten Ringdichtung 19 abgewandten Rückseite 22 des Rands 17 an der Gegenrastkontur 21 axial abstützt. Allgemein wird mit Hilfe der jeweiligen Rastkontur 20 eine Verrastung 23 zum axialen Fixieren des Rands 17 an der Stufe 18 geschaffen. Die Verrastung 23 hindert den Rand 17 an einer von der Stufe 18 weg gerichteten Axialbewegung. Ferner bewirkt die Verrastung 23 eine Positionierung des Rands 17 relativ zur Stufe 18 in einer Axialposition, in welcher die erste Ringdichtung 19 sowohl an der Stufe 18 als auch an dem Rand 17 axial vorgespannt anliegt. Zusammengefasst bedeutet dies, dass durch die ringförmig umlaufende Stufe 18 eine axiale Positionierung des Wärmetauscherblocks 3 im Gehäuse 2 realisiert wird. Mit Hilfe der Verrastung 23 wird eine axiale Fixierung des Wärmetauscherblocks 3 im Bereich des hinteren Bodens 10 realisiert. Beide Maßnahmen ermöglichen es, den Wärmetauscherblock 3 außerhalb des Gehäuses 2 herstellen zu können.
  • Sofern wie hier mehrere Rastkonturen 20 vorgesehen sind, sind diese in der Umfangsrichtung voneinander beabstandet und entlang des Rands 17 verteilt angeordnet. Die Umfangsrichtung läuft dabei bezüglich einer Längsmittelachse 24 des Gehäuses 2 um, welche die Axialrichtung definiert, die sich parallel zur Längsmittelachse 24 erstreckt.
  • Wie sich insbesondere den vergrößerten Ansichten der Figuren 3 bis 5 entnehmen lässt, wirkt die jeweilige Rastkontur 20 bevorzugt unmittelbar mit der Rückseite 22 des Rands 17 zusammen, so dass der Rand 17 selbst die Gegenrastkontur 21 bildet, und zwar im Bereich seiner radial außen liegenden Außenkante. Dementsprechend umgreift die Rastkontur 20 den Rand 17 im Bereich seiner Außenkante.
  • In den Figuren 2 bis 5 ist die erste Ringdichtung 19 in üblicher Weise im entspannten Zustand dargestellt, so dass die erste Ringdichtung 19 vermeintlich in den Rand 17 eindringt bzw. den Rand 17 durchsetzt. Es ist klar, dass in der Realität stattdessen die erste Ringdichtung 19 axial am Rand 17 anliegt, wobei eine entsprechende elastische Verformung der ersten Ringdichtung 19 erfolgt.
  • Im Beispiel der Figur 3 stützt sich der Rand 17 mit seiner Vorderseite 25, die der ersten Ringdichtung 19 zugewandt ist, unmittelbar an der Stufe 18 axial ab. In diesem Fall ist für die erste Ringdichtung 19 in der Stufe 18 eine Aufnahmenut 26 ausgebildet, in welche die erste Ringdichtung 19 axial eingesetzt ist. Im Beispiel der Figur 3 ist die erste Ringdichtung 19 als Kunststoffdichtung ausgestaltet.
  • Im Beispiel der Figur 4 stützt sich der Rand 17 ausschließlich über die erste Ringdichtung 19 an der Stufe 18 axial ab. In diesem Fall ist die erste Ringdichtung 19 als scheibenförmige Metallsickendichtung ausgestaltet. In diesem Fall ist keine Aufnahmenut 26 erforderlich.
  • Figur 5 zeigt eine Ausführungsform ähnlich wie in Figur 3, bei der die erste Ringdichtung 19 als Kunststoffdichtung ausgestaltet ist und in eine Aufnahmenut 26 eingesetzt ist. Ebenso ist jedoch denkbar, auch hier die Variante der Figur 4 anzuwenden, bei der die erste Ringdichtung 19 als Metallsickendichtung ausgestaltet ist und bei der auf die Aufnahmenut 26 verzichtet werden kann. Die Besonderheit der in Figur 5 gezeigten Ausführungsform besteht darin, dass der Rand 17 gegenüber einer senkrecht zur Axialrichtung verlaufenden Ebene geneigt ist, so dass er bei Umgebungstemperatur die Stufe 18 nur radial außen berührt, während er radial innen von der Stufe 18 abhebt. Diese Situation ist in Figur 5 mit durchgezogener Linie dargestellt. Gleichzeitig ist mit unterbrochener Linie eine Situation dargestellt, die sich bei Betriebstemperatur einstellt. Bei Betriebstemperatur liegt der Rand 17 nunmehr auch radial innen an der Stufe 18 axial an. Allgemein kann der Rand 17 des hinteren Bodens 10 radial innen einen Axialabstand 27 von der Stufe 18 aufweisen, der bei Umgebungstemperatur größer ist als bei Betriebstemperatur.
  • Bemerkenswert ist außerdem, dass der hintere Boden 10 bei den Ausführungsformen der Figuren 2 bis 5 räumlich so geformt ist, dass der mit der Stufe 18 und der ersten Ringdichtung 19 zusammenwirkende Rand 17 axial versetzt ist zu einem vom Rand 17 eingefassten Bereich, der mit den Arbeitsmediumrohren 11 fest verbunden ist. Dieser Versatz erfolgt beim hinteren Boden 10 nach außen, also axial weggerichtet von den Arbeitsmediumrohren 11.
  • Entsprechend den Figuren 1 und 2 ist der Arbeitsmediumeinlass 5 integral an einem Anschlussflansch 28 ausgeformt, der bezüglich des Mantels 4 ein separates Bauteil repräsentiert. Im Beispiel ist somit der weiter oben genannte Diffusor im Anschlussflansch 28 ausgebildet. Dieser Anschlussflansch 28 ist mittels einer Befestigung 29 am Mantel 4 befestigt. Die Befestigung 29 ist hier als Flanschverbindung mit mehreren Verschraubungen 30 realisiert. Gemäß den Figuren 2 und 6 bis 9 weist der vordere Boden 9 einen radial über die Arbeitsmediumrohre 11 überstehenden, umlaufenden Rand 31 auf. Dieser Rand 31 ist axial zwischen einer axialen Mantelstirnseite 32 des Mantels 4 und einer axialen Flanschstirnseite 33 angeordnet. Ferner erstreckt sich der Rand 31 radial bis in die Befestigung 29 hinein. Hierdurch ist der Rand 31 des vorderen Bodens 9 in die Befestigung 29 eingebunden, so dass mit Hilfe der Befestigung 29 einerseits der Anschlussflansch 28 am Mantel 4 und andererseits der Wärmetauscherblock 3 am Gehäuse 2 fixiert werden.
  • Während der Arbeitsmediumeinlass 5 in den Anschlussflansch 28 integriert ist, sind der Kühlmitteleinlass 7 und der Kühlmittelauslass 8 sowie die Rastkonturen 20 und die Stufe 18 in dem Mantel 4 integriert.
  • Im Beispiel der Figuren 1 und 2 ist der Wärmetauscher 1 in I-Strom-Bauweise ausgestaltet, die sich gemäß Figur 10 dadurch charakterisiert, dass der Arbeitsmediumauslass 6 dem Arbeitsmediumeinlass 5 axial gegenüberliegt. Im Unterschied dazu zeigt Figur 11 einen Wärmetauscher 1 in U-Strom-Bauweise, die sich dadurch charakterisiert, dass sich Arbeitsmediumeinlass 5 und Arbeitsmediumauslass 6 an demselben axialen Ende des Gehäuses 2 befinden und dabei einer Umlenkkammer 34 axial gegenüberliegen.
  • Im Beispiel der Figuren 1 und 2, bei dem der Wärmetauscher 1 in der I-Strom-Bauweise ausgestaltet ist, ist außerdem vorgesehen, dass der Arbeitsmediumauslass 6 am Mantel 4 integral ausgeformt ist. Dabei geht der Mantel 4 über einen Konvergenzbereich 35 in den Arbeitsmediumauslass 6 über. Im Konvergenzbereich 35 ist eine Sammelkammer 36 ausgebildet, in der die durch die separaten Arbeitsmediumrohre 11 geführten Teilströme des Arbeitsmediums 12 wieder vereint werden und gemeinsam dem Arbeitsmediumauslass 6 zuströmen. Wird dagegen der Wärmetauscher 1 in der U-Strom-Bauweise ausgestaltet, kann gemäß einer bevorzugten Ausführungsform der Arbeitsmediumauslass 6 ebenfalls integral am Anschlussflansch 28 ausgeformt sein. Das Gehäuse 2 enthält dann die Umlenkkammer 34. Der Arbeitsmediumpfad 14 führt durch wenigstens eines der Arbeitsmediumrohre 11 vom Arbeitsmediumeinlass 5 zur Umlenkkammer 34 und durch wenigstens ein anderes der Arbeitsmediumrohre 11 von der Umlenkkammer 34 zum Arbeitsmediumauslass 6. Das Gehäuse 2 ist dann im Bereich der Umlenkkammer 34 durch einen Gehäuseboden 37 verschlossen. Der Gehäuseboden 37 ist bei einer bevorzugten Ausführungsform integral am Mantel 4 ausgeformt. Die Umlenkkammer 34 kann durch ein hier nicht gezeigtes Metallgehäuse begrenz sein, das in das Gehäuse 2 eingesetzt ist und den Mantel 4 sowie den Gehäuseboden 37 zur Umlenkkammer 34 hin auskleidet und vor einem Kontakt mit dem Arbeitsmedium 12 schützt.
  • Gemäß den Figuren 2 und 6 bis 9 kann im Bereich des vorderen Bodens 9 zwischen dem zugehörigen Rand 31 und der Mantelstirnseite 32 eine axial wirkende zweite Ringdichtung 38 vorgesehen sein. Ferner kann axial zwischen dem Rand 31 des vorderen Bodens 9 und der Flanschstirnseite 33 eine axial wirkende dritte Ringdichtung 39 vorgesehen sein. Die zweite Ringdichtung 38 und die dritte Ringdichtung 39 können als Kunststoffdichtung oder als Metallsickendichtung ausgestaltet sein.
  • Die Figuren 2 und 6 zeigen dabei eine Ausführungsform, bei der die zweite Ringdichtung 38 als Kunststoffdichtung ausgestaltet ist und bei der die dritte Ringdichtung 39 ebenfalls als Kunststoffdichtung ausgestaltet ist.
  • Figur 7 zeigt dagegen eine Ausführungsform, bei der die zweite Ringdichtung 38 als Metallsickendichtung ausgestaltet ist und bei der die dritte Ringdichtung 39 ebenfalls als Metallsickendichtung ausgestaltet ist.
  • Figur 8 zeigt dagegen eine Ausführungsform, bei der die zweite Ringdichtung 38 als Kunststoffdichtung ausgestaltet ist, während die dritte Ringdichtung 39 als Metallsickendichtung ausgestaltet ist.
  • Schließlich zeigt Figur 9 eine Ausführungsform, bei der die zweite Ringdichtung 38 als Metallsickendichtung ausgestaltet ist, während die dritte Ringdichtung 39 als Kunststoffdichtung ausgestaltet ist.
  • Sofern die zweite Ringdichtung 38 wie in den Beispielen der Figuren 2, 6 und 8 als Kunststoffdichtung ausgestaltet ist, enthält die Mantelstirnseite 32 eine zugehörige Aufnahmenut 40, in welche die zweite Ringdichtung 38 axial eingesetzt ist. Sofern die dritte Ringdichtung 39 wie in den Figuren 2, 6 und 9 als Kunststoffdichtung ausgestaltet ist, enthält die Flanschstirnseite 33 eine entsprechende Aufnahmenut 41, in welche die dritte Ringdichtung 39 axial eingesetzt ist.
  • Auch die zweite Ringdichtung 38 und die dritte Ringdichtung 39 sind in den Figuren 2 und 6 bis 9 jeweils im entspannten Zustand dargestellt, so dass sie scheinbar in den Rand 31 des vorderen Bodens 9 bzw. in die Flanschstirnseite 33 hineinragen. In Realität ist dies nicht der Fall, vielmehr sind die zweite Ringdichtung 38 und die dritte Ringdichtung 39 dann auf entsprechende Weise elastisch verformt und liegen axial am Rand 31 bzw. an der Flanschstirnseite 33 an.
  • Bemerkenswert ist ferner, dass der vordere Boden 9 dreidimensional geformt ist, derart, dass der Rand 31 gegenüber einem vom Rand 31 ringförmig eingefassten inneren Bereich des vorderen Bodens 9 axial versetzt ist, wobei der innere Bereich fest mit den Arbeitsmediumrohren 11 verbunden ist. Der axiale Versatz erfolgt dabei nach innen, also in einer den Arbeitsmediumrohren 11 zugewandten Richtung.
  • Die in den Fig. 4 und 7 bis 9 gezeigten Metallsickendichtungen sind jeweils durch eine Metallscheibe gebildet, die sich ringförmig entlang des jeweiligen Rands 17 bzw. 31 erstreckt und die wenigstens eine axial abstehende, geschlossen umlaufende Dichtkontur 42 aufweist, die vorgespannt am jeweiligen Rand 17, 31 bzw. an der Flanschstirnseite 33 axial anliegt. Die jeweilige Dichtkontur 42 ist dabei nach Art einer Sicke durch Umformung integral an der Metallscheibe ausgebildet. Diese Dichtkontur 42 kann oder mehrere solche Dichtkonturen 42 können dabei radial zwischen einer Innenkante und einer Außenkante der jeweiligen Metallsickendichtung angeordnet sein. In den hier gezeigten Beispielen ist an jeder Metallsickendichtung jeweils nur eine einzige solche Dichtkontur 42 ausgebildet, und zwar jeweils durch einen S-förmig abgewinkelten Bereich an der Innenkante.
  • Bevorzugt ist nunmehr eine Ausführungsform, bei welcher der Wärmetauscherblock 3, also die Böden 9, 10 und die Arbeitsmediumrohre 11 jeweils aus einer Eisenlegierung hergestellt sind. Dabei können durchaus auch unterschiedliche Eisenlegierungen zum Einsatz kommen. Hierdurch kann der Wärmetauscherblock 3 eine hohe thermische Beständigkeit besitzen. Ferner lassen sich die einzelnen Komponenten des Wärmetauscherblocks 3 außerhalb des Gehäuses 2 fügen, also insbesondere schweißen oder löten. Im Unterschied dazu kann der Mantel 4 aus einem Kunststoff oder aus einer Leichtmetalllegierung hergestellt sein. Der Mantel 4 weist dabei integral die Rastkonturen 20 und die Stufe 18 auf. Ferner weist der Mantel 4 vorzugsweise auch den Kühlmitteleinlass 7 und den Kühlmittelauslass 8 integral auf. Bei der hier gezeigten I-Strom-Bauweise ist am Mantel 4 außerdem der Arbeitsmediumauslass 6 gegebenenfalls mit dem Übergangsbereich 35 integral ausgeformt.
  • Der Anschlussflansch 28 ist bevorzugt aus einem Metall hergestellt. Dabei kann je nach Anwendungsbereich des Wärmetauschers 1 eine Leichtmetalllegierung oder ebenfalls eine Eisenlegierung zum Einsatz kommen. Am Anschlussflansch 28 ist bei der I-Strom-Bauweise der Arbeitsmediumeinlass 5 integral ausgeformt. Bei der U-Strom-Bauweise kann der Anschlussflansch 28 zusätzlich den Arbeitsmediumauslass 6 aufweisen.
  • Die jeweilige Ringdichtung 19, 38, 39 läuft in der Umfangsrichtung ringförmig geschlossen um, kann jedoch quer zu ihrer Umlaufrichtung grundsätzlich jeden beliebigen Querschnitt besitzen.

Claims (15)

  1. Wärmetauscher zum mediengetrennten Kühlen eines Arbeitsmediums (12) mittels eines Kühlmediums (13),
    - mit einem Gehäuse (2), das einen Gehäusemantel (4), einen Arbeitsmediumeinlass (5), einen Arbeitsmediumauslass (6), einen Kühlmediumeinlass (7) und einen Kühlmediumauslass (8) aufweist,
    - mit einem Wärmetauscherblock (3), der in das Innere des Gehäuses (2) eingesetzt ist und der einen dem Arbeitsmediumeinlass (5) zugewandten vorderen Boden (9) und einen vom Arbeitsmediumeinlass (5) abgewandten hinteren Boden (10) sowie mehrere Arbeitsmediumrohre (11) zum Führen des Arbeitsmediums (12) aufweist, welche die beiden Böden (9, 10) durchsetzen und fest mit den beiden Böden (9, 10) verbunden sind,
    - wobei ein Arbeitsmediumpfad (14) vom Arbeitsmediumeinlass (5) innen durch die Arbeitsmediumrohre (11) hindurch zum Arbeitsmediumauslass (6) führt,
    - wobei ein Kühlmittelpfad (15) vom Kühlmitteleinlass (7) außen um die Arbeitsmediumrohre (11) herum zum Kühlmittelauslass (8) führt,
    - wobei axial zwischen einem radial über die Arbeitsmediumrohre (11) überstehenden, umlaufenden Rand (17) des hinteren Bodens (10) und einer entlang des Rands (17) umlaufenden Stufe (18) des Gehäuses (2) eine axial wirkende erste Ringdichtung (19) angeordnet ist,
    dadurch gekennzeichnet,
    dass das Gehäuse (2) in seinem Inneren im Bereich der Stufe (18) wenigstens eine Rastkontur (20) aufweist, die an einer von der ersten Ringdichtung (19) abgewandten Rückseite (22) des Rands (17) mit einer Gegenrastkontur (21) des Rands (17) zusammenwirkt.
  2. Wärmetauscher nach Anspruch 1,
    dadurch gekennzeichnet,
    dass mehrere Rastkonturen (20) vorgesehen sind, die in der Umfangsrichtung voneinander beabstandet entlang des Rands (17) verteilt angeordnet sind.
  3. Wärmetauscher nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die jeweilige Rastkontur (20) unmittelbar mit der Rückseite (22) des Rands (17) als Gegenrastkontur (21) zusammenwirkt.
  4. Wärmetauscher nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass sich der Rand (17) mit einer der ersten Ringdichtung (19) zugewandten Vorderseite (25) unmittelbar an der Stufe (18) axial abstützt.
  5. Wärmetauscher nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass die erste Ringdichtung (19) als Kunststoffdichtung ausgestaltet ist.
  6. Wärmetauscher nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Stufe (18) eine Aufnahmenut (26) aufweist, in welche die erste Ringdichtung (19) eingesetzt ist.
  7. Wärmetauscher nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass sich der Rand (17) nur über die erste Ringdichtung (19) an der Stufe (18) axial abstützt.
  8. Wärmetauscher nach einem der Ansprüche 1 bis 3 und 7,
    dadurch gekennzeichnet,
    dass die erste Ringdichtung (19) als scheibenförmige Metallsickendichtung ausgestaltet ist.
  9. Wärmetauscher nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    - dass der Arbeitsmediumeinlass (5) integral an einem Anschlussflansch (28) ausgebildet ist, der bezüglich des Mantels (4) ein separates Bauteil ist und der am Mantel (4) mittels einer Befestigung (29) befestigt ist,
    - dass der vordere Boden (9) einen radial über die Arbeitsmediumrohre (11) überstehenden, umlaufenden Rand (31) aufweist, der axial zwischen einer axialen Mantelstirnseite (32) des Mantels (4) und einer axialen Flanschstirnseite (33) des Anschlussflansches (28) angeordnet ist und der in die Befestigung (29) eingebunden sein kann.
  10. Wärmetauscher nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass der Kühlmediumeinlass (7) und der Kühlmediumauslass (8) sowie die jeweilige Rastkontur (20) und die Stufe (18) integral am Mantel (4) ausgeformt sind.
  11. Wärmetauscher nach den Ansprüchen 9 und 10,
    dadurch gekennzeichnet,
    - dass der Wärmetauscher (1) in U-Strom-Bauweise ausgestaltet ist,
    - dass der Arbeitsmediumauslass (6) integral am Anschlussflansch (28) ausgeformt ist,
    - dass im Gehäuse (2) eine Umlenkkammer (34) vorgesehen ist,
    - dass der Arbeitsmediumpfad (14) durch wenigstens ein Arbeitsmediumrohr (11) vom Arbeitsmediumeinlass (5) zur Umlenkkammer (34) führt und durch wenigstens ein anderes Arbeitsmediumrohr (11) von der Umlenkkammer (34) zum Arbeitsmediumauslass (6) führt,
    - dass das Gehäuse (2) im Bereich der Umlenkkammer (34) durch einen Gehäuseboden (37) verschlossen ist, der integral am Mantel (4) ausgeformt ist.
  12. Wärmetauscher nach den Ansprüchen 9 und 10,
    dadurch gekennzeichnet,
    - dass der Wärmetauscher (1) in I-Strom-Bauweise ausgestaltet ist,
    - dass der Arbeitsmediumauslass (6) dem Arbeitsmediumeinlass (5) axial gegenüberliegt und integral am Mantel (4) ausgeformt ist.
  13. Wärmetauscher nach einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet,
    - dass axial zwischen dem Rand (31) des vorderen Bodens (9) und der Mantelstirnseite (32) eine axial wirkende zweite Ringdichtung (38) vorgesehen ist,
    - dass axial zwischen dem Rand (31) des vorderen Bodens (9) und der Flanschstirnseite (33) eine axial wirkende dritte Ringdichtung (39) vorgesehen ist.
  14. Wärmetauscher nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet,
    - dass der Wärmetauscherblock (3) aus einer Eisenlegierung hergestellt ist,
    - dass der Mantel (4) aus einem Kunststoff oder aus einer Leichtmetalllegierung hergestellt ist.
  15. Wärmetauscher nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet,
    dass der Rand (17) gegenüber einer senkrecht zur Axialrichtung verlaufenden Ebene geneigt ist, so dass er bei Umgebungstemperatur die Stufe (18) nur radial außen berührt, während er radial innen von der Stufe (18) abhebt.
EP17755522.4A 2016-09-26 2017-08-24 Wärmetauscher Active EP3516319B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201631032705 2016-09-26
PCT/EP2017/071269 WO2018054643A1 (de) 2016-09-26 2017-08-24 Wärmetauscher

Publications (2)

Publication Number Publication Date
EP3516319A1 EP3516319A1 (de) 2019-07-31
EP3516319B1 true EP3516319B1 (de) 2020-07-22

Family

ID=59686971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17755522.4A Active EP3516319B1 (de) 2016-09-26 2017-08-24 Wärmetauscher

Country Status (3)

Country Link
EP (1) EP3516319B1 (de)
CN (1) CN109791033A (de)
WO (1) WO2018054643A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564613A1 (de) * 2018-05-03 2019-11-06 Mann+Hummel GmbH Wärmetauscher, luftansaugsystem mit einem wärmetauscher und verfahren zur montage eines wärmetauschers
DE102018211807A1 (de) * 2018-07-16 2020-01-16 Mahle International Gmbh Abgasrückführ-Anordnung für eine Brennkraftmaschine
CN113566614A (zh) * 2020-04-28 2021-10-29 杭州科百特科技有限公司 一种换热设备及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051000A1 (de) 2005-10-26 2007-07-12 Behr Gmbh & Co. Kg Wärmetauscher, Verfahren zur Herstellung eines Wärmetauschers
DE202007019617U1 (de) * 2006-01-23 2014-07-22 Behr Gmbh & Co. Kg Wärmetauscher
EP2041419B1 (de) * 2006-07-06 2016-09-07 MAHLE Behr GmbH & Co. KG Abgaskühler, insbesondere für ein kraftfahrzeug
DE102009000263B4 (de) * 2009-01-15 2016-09-08 Halla Visteon Climate Control Corporation Wärmetauscher für den Abgasstrang eines Kraftfahrzeugs mit verbessertem Temperaturausgleich im Kühlmittel
DE102012211857A1 (de) 2012-07-06 2014-01-09 Behr Gmbh & Co. Kg Wärmeübertrager
DE102013205316A1 (de) * 2013-03-26 2014-10-02 Behr Gmbh & Co. Kg Frischluftanlage
DE102014204272A1 (de) * 2013-04-25 2014-10-30 MAHLE Behr GmbH & Co. KG Wärmeübertrager
DE102013221932A1 (de) 2013-10-29 2015-04-30 MAHLE Behr GmbH & Co. KG Wärmetauscher und Verfahren zur Herstellung eines Wärmetauschers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN109791033A (zh) 2019-05-21
EP3516319A1 (de) 2019-07-31
WO2018054643A1 (de) 2018-03-29

Similar Documents

Publication Publication Date Title
EP1998017B1 (de) Abgaswärmetauscher
EP2129988B1 (de) Wärmetauscher, abgasrückführsystem, ladeluftzuführsystem und verwendung des wärmetauschers
WO2007048603A2 (de) Wärmetauscher, verfahren zur herstellung eines wärmetauschers
DE102006051000A1 (de) Wärmetauscher, Verfahren zur Herstellung eines Wärmetauschers
EP3516319B1 (de) Wärmetauscher
EP3105525B1 (de) Ladeluftkühler für eine frischluftanlage einer brennkraftmaschine
DE102007024630A1 (de) Wärmetauscher, insbesondere Ladeluftkühler oder Abgaskühler für eine Brennkraftmaschine eines Kraftfahrzeuges und dessen Herstellungsverfahren
DE102009020306A1 (de) Wärmetauscher und Verfahren zum Zusammenbau
DE102005045103B3 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
DE102008002746A1 (de) Wärmetauscher für den Abgasstrang eines Kraftfahrzeugs, Verfahren zur Herstellung eines Wärmetauschers sowie Montagewerkzeug hierzu
EP2494179A1 (de) Abgaswärmetauscher
DE102008001659A1 (de) Abgaswärmetauscher mit integrierter Montageschnittstelle
DE112018000302T5 (de) Rohr-zu-sammler-gleitverbindung für einen luftgekühlten ladeluftkühler
WO2014009360A2 (de) Frischluftversorgungseinrichtung und herstellungsverfahren
EP1288603B1 (de) Abgaswärmeübertrager
DE102005045098B4 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
EP2998686A2 (de) Wärmeübertrager
DE102009055931A1 (de) Wärmeübertragungsvorrichtung sowie Wärmeübertragungsvorproduktanordnung und Verfahren zur Herstellung einer derartigen Wärmeübertragungsvorrichtung
DE102016200634A1 (de) Wärmeübertrager
DE102010025030B4 (de) Wärmetauscher für einen Verbrennungsmotor
EP2961957B1 (de) Frischluftanlage
DE102008061673B4 (de) Anordnung zur fluidischen Verbindung eines Innengehäuses mit einem nach außen führenden Rohrstutzen
DE102010054508A1 (de) Abgasrückführvorrichtung für eine Verbrennungskraftmaschine
DE102013109925A1 (de) Abgaswärmetauscher
EP3026317A1 (de) Verbindungsstück für fluidführende Rohre

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200406

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006344

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201029

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006344

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200824

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200824

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017006344

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210824

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1293802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220824