WO2013004133A1 - 一种谐振控制方法 - Google Patents
一种谐振控制方法 Download PDFInfo
- Publication number
- WO2013004133A1 WO2013004133A1 PCT/CN2012/077458 CN2012077458W WO2013004133A1 WO 2013004133 A1 WO2013004133 A1 WO 2013004133A1 CN 2012077458 W CN2012077458 W CN 2012077458W WO 2013004133 A1 WO2013004133 A1 WO 2013004133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control method
- control
- resonant
- signal
- phase correction
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4815—Resonant converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the invention relates to a resonance control method, in particular to a method for realizing control of output harmonic current of a converter by adding a resonance control loop, which is applied to a control device in a power electronic converter system.
- the traditional harmonic control method is to add an LC filter. This kind of scheme has limited compensation capability. It is necessary to consider the grid parameters during design and is not flexible enough.
- APF Active Power Filter
- APF Active Power Filter
- this scheme is less expensive due to its high cost.
- the basic idea of APF is to extract harmonic currents, and then The opposite compensation current is output, and finally harmonic suppression at the grid point is achieved.
- the extraction of harmonic current requires a complicated control algorithm.
- the compensation control strategy is difficult to implement and requires precise control parameters and control timing. If the design deviation occurs, it will cause false compensation.
- a primary object of the present invention is to provide a resonance control method that achieves control of a particular subharmonic current output by a high power converter to ensure proper operation of the power system equipment.
- a resonance control method includes using a resonant regulator to perform a static-free adjustment of a specific frequency signal in an AC coordinate system and a phase correction link to correct a closed-loop feedback property.
- the design method of the above phase correction link is to respectively calculate the delay time of each link of the control system, including: the phase delay between the feedback signal and the output signal, the sampling hold delay in the actual system and the delay of the space vector modulation algorithm.
- the present invention directly implements the power electronic converter under the AC system by using the resonant control loop.
- the static difference adjustment eliminates the coordinate transformation algorithm; and uses the characteristics of the resonant regulator, combined with the phase correction link, to form a resonant control loop, which is applied to the power electronic harmonic control, according to the number of harmonics to be eliminated, targeted
- the phase delay points are designed to eliminate the specific subharmonics generated by the controllable rectifier bridge, and the specific subharmonic current output of the high power converter is controlled.
- FIG. 1 is a control block diagram of a resonant control loop of the present invention
- Figure 2 is a bode diagram of the resonant regulator of the present invention.
- the present invention provides a resonance control method, which is a phase correction link that uses a resonant regulator and corrects the closed-loop feedback property, wherein, as shown in FIG. 2, the resonant regulator is substantially a DC PI ( Proportional integration)
- the application of the regulator in the AC system through the infinite amplification of the input specific harmonics, provides no static control in the closed-loop control.
- H DC ( s) K p + ⁇ - s
- ⁇ is the proportional coefficient
- ⁇ is the integral coefficient
- ⁇ ' ⁇ is the frequency domain variable; is the angular frequency.
- the transfer function under the discrete system is designed by using MATLAB tool. Take the 5th harmonic as an example: The design parameters are
- FIG. 1 it is a control block diagram of the resonant control loop formed by the present invention, wherein REF , i p .
- REF is a converter output current reference value, and if a specific subharmonic is required to be suppressed to 0, Set the R ⁇ , ⁇ layer to 0, i a ,
- the feedback signal is a current signal
- the output signal is a voltage signal. Due to the existence of the output filter reactor, there is a phase delay of /2 for the voltage and current signals. In addition, there are certain delays in the sample-and-hold and space vector modulation algorithms in the actual system, which need to be compensated by the phase correction link.
- phase correction link design method is illustrated by taking the 5th resonant control loop as an example.
- the entire system consists of feedback, PI regulator, phase correction link and output to form a closed loop to achieve specific subharmonic control.
- the above embodiments are only for explaining the technical idea of the present invention, and the scope of protection of the present invention is not limited thereto. Any changes made based on the technical solutions according to the technical idea of the present invention fall within the protection scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Ac-Ac Conversion (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
一种谐振控制方法,包括采用谐振调节器在交流坐标系下对特定频率信号进行无静差调节和采用相位校正环节对闭环反馈性质进行校正。该控制方法可实现对大功率变流器输出的特定次谐波电流的控制,确保电力系统设备的正常运行。
Description
一种谐振控制方法
技术领域
本发明涉及一种谐振控制方法, 特别指一种通过加入谐振控制环的方法来实现变流 器输出谐波电流控制的方法, 应用于电力电子变流器系统中的控制装置。
背景技术
谐波的存在对电力系统造成不利影响, 影响电力系统设备的正常运行, 而电力电子 设备或一些非线性负荷是电力系统谐波的主要来源。 因此, 国家制定相关标准对电力电 子设备产生的谐波提出严格要求。
传统的谐波治理方法是加装 LC滤波器的方案, 这种方案补偿能力有限, 设计时需 考虑电网参数, 不够灵活。 APF (有源电力滤波器) 是目前实现谐波电流补偿的研究热 点, 然而, 这种方案由于成本过高, 应用较少; 另夕卜, APF的基本思路是将谐波电流提 取出来, 然后输出相反的补偿电流, 最终实现并网点处谐波抑制。 而谐波电流的提取需 要复杂的控制算法, 补偿控制策略实现难度大, 需要精确的控制参数和控制时序, 如设 计出现偏差将造成误补偿。
基于以上分析, 本发明人试图对电力电子变流器中的谐波进行有效消除, 本案由此 产生。
发明内容
本发明的主要目的, 在于提供一种谐振控制方法, 其可实现对大功率变流器输出的 特定次谐波电流的控制, 确保电力系统设备的正常运行。
为了达成上述目的, 本发明所采用的技术方案是:
一种谐振控制方法, 包括采用谐振调节器在交流坐标系下对特定频率信号进行无静 差调节和采用相位校正环节对闭环反馈性质进行校正。
上述谐振调节器的传递函数为:
S + 0)
其中, 是比例系数, 是积分系数, = ^是频域变量, 是角频率。
上述相位校正环节的设计方法是分别计算控制系统各环节的延时时间, 包含: 反馈 信号和输出信号之间的相位延时, 实际系统中采样保持延时和空间矢量调制算法延时。 采用上述方案后, 本发明采用谐振控制环直接实现在交流系统下对电力电子变流器的无
静差调节, 省去了坐标变换算法; 并利用谐振调节器的特性, 结合相位校正环节, 构成 谐振控制环, 将其应用于电力电子谐波控制, 根据要消除的谐波次数, 有针对性地设计 相位延时点数, 从而消除由可控整流桥产生的特定次谐波, 实现对大功率变流器输出的 特定次谐波电流的控制。 附图说明
图 1是本发明构成谐振控制环的控制框图;
图 2是本发明中谐振调节器的 bode图。
具体实施方式
以下将结合附图对本发明的技术方案进行详细说明。
如图 1所示, 本发明提供一种谐振控制方法, 是指采用谐振调节器和对闭环反馈性 质进行校正的相位校正环节, 其中, 配合图 2所示, 谐振调节器实质上是直流 PI (比例 积分) 调节器在交流系统中的应用, 通过对输入特定次数谐波的无限放大, 起到在闭环 控制中的无静差控制。
假定直流 PI的传递函数为:
HDC ( s) = Kp + ^- s
其中, ^是比例系数, ^是积分系数, = ^'ω是频域变量; 是角频率。
根据传递函数, 利用 MATLAB工具设计离散系统下的传递函数, 以 5次谐波为例: 设计参数为
« = 5*100^- , 开关周期7 = l/3000s 利用 c2d函数 (c2d函数是 matlab 自带功能函数, 功能是将连续系统下的传递函数 模型转换成离散系统下的传递函数模型) 可得 5次谐振调节器离散化传递函数: rr ( , 0.000312z - 0.000312
AC ( z ) = -Ί
AC , ζ2 -1.732ζ + 1
并绘制 bode图如图 2所示。从图中可以看出, 谐振调节器在 w = 5* 10() r频率点下为 接近无限大增益, 这样的特性使得谐振调节器能够对特定频率实现无静差控制。 再请参考图 1所示,是本发明所构成的谐振控制环的控制框图,其中, REF、 ip.REF 为变流器输出电流参考值,如要求将特定次谐波抑制为 0,可将 R^、 ^層置为 0, ia、
^为变流器输出电流反馈值。 参考值与反馈值相减得到误差信号, 误差信号经特定次谐 振调节器 (设计方法如上), 再经过相位校正环节, 得到输出电压参考信号 .„和^.„。 其中相位校正环节的作用是调整控制系统输出与反馈之间的相位差。
反馈信号为电流信号, 输出信号为电压信号。 由于输出滤波电抗器的存在, 造成电 压、 电流信号存在 /2的相位延时, 除此之外, 实际系统中采样保持和空间矢量调制算 法均存在一定延时, 需要通过相位校正环节进行补偿。
以 5次谐振控制环为例说明相位校正环节设计方法。
分别计算控制系统各环节延时时间: 开关周期7 = 1/3000, 对于 5次谐波来说,
/5 = 250, Γ5 = 1/ 250。 电压、 电流信号存在 /2的相位延时, 对于 5次谐波来说造成的实际延时为:
T 4 对于 PWM调制方式来说, 采样环节和调制环节共造成 7^。y2 = 1.57;延时; 造成总延时为 Tdelay = Tddayl + Tdelay2 .
因此, 在 5次谐振控制环中需要补偿该延时, 实现交流系统相位校正。
整个系统由反馈、 PI调节器、相位校正环节和输出构成闭环, 实现特定次谐波控制。 以上实施例仅为说明本发明的技术思想, 不能以此限定本发明的保护范围, 凡是按 照本发明提出的技术思想, 在技术方案基础上所做的任何改动, 均落入本发明保护范围 之内。
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110188475.4 | 2011-07-06 | ||
CN2011101884754A CN102868285A (zh) | 2011-07-06 | 2011-07-06 | 一种谐振控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013004133A1 true WO2013004133A1 (zh) | 2013-01-10 |
Family
ID=47436503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/077458 WO2013004133A1 (zh) | 2011-07-06 | 2012-06-25 | 一种谐振控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102868285A (zh) |
WO (1) | WO2013004133A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109617437A (zh) * | 2018-12-14 | 2019-04-12 | 天津大学 | 一种三相并网变流器电流环预测谐振控制器的设计方法 |
US10658919B1 (en) | 2019-02-25 | 2020-05-19 | Hamilton Sundstrand Corporation | Harmonic regulator with loop delay compensation |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219745B (zh) * | 2013-04-19 | 2014-12-03 | 浙江埃菲生能源科技有限公司 | 一种基于正交正弦波提取器的并网逆变控制算法 |
CN108493937B (zh) * | 2018-03-12 | 2021-10-08 | 深圳市英威腾电气股份有限公司 | 抑制并网逆变器电网背景谐波的方法、装置及控制系统 |
CN111313732B (zh) * | 2020-02-25 | 2020-12-08 | 浙江大学 | 一种正负双边频域不对称下差异化相位校正的谐振控制方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101030705A (zh) * | 2006-12-31 | 2007-09-05 | 湖南大学 | 混合型有源滤波器的电流跟踪控制方法 |
CN101842956A (zh) * | 2007-02-22 | 2010-09-22 | 弗吉尼亚科技知识产权有限公司 | 通用功率调节系统的控制系统和方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101534065B (zh) * | 2009-04-20 | 2010-12-01 | 浙江大学 | 一种并网三相电压源变换器的不对称直接功率控制方法 |
CN101950968B (zh) * | 2010-10-22 | 2012-12-19 | 湖南大学 | 一种基于半桥结构的铁路功率调节器的控制方法 |
-
2011
- 2011-07-06 CN CN2011101884754A patent/CN102868285A/zh active Pending
-
2012
- 2012-06-25 WO PCT/CN2012/077458 patent/WO2013004133A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101030705A (zh) * | 2006-12-31 | 2007-09-05 | 湖南大学 | 混合型有源滤波器的电流跟踪控制方法 |
CN101842956A (zh) * | 2007-02-22 | 2010-09-22 | 弗吉尼亚科技知识产权有限公司 | 通用功率调节系统的控制系统和方法 |
Non-Patent Citations (2)
Title |
---|
CHEN, XIAOYUN ET AL.: "Current control of inverter based on proportional resonant and harmonic compensation", CHINESE JOURNAL OF POWER SOURCES, vol. 34, no. 7, July 2010 (2010-07-01), pages 691 - 695 * |
HU, WENHUA ET AL.: "Novel AC PI Regulator and Its Applications on Inverter Power Source", ELECTRIC DRIVE, vol. 40, no. 1, January 2010 (2010-01-01), pages 38 - 42 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109617437A (zh) * | 2018-12-14 | 2019-04-12 | 天津大学 | 一种三相并网变流器电流环预测谐振控制器的设计方法 |
CN109617437B (zh) * | 2018-12-14 | 2020-09-11 | 天津大学 | 一种三相并网变流器电流环预测谐振控制器的设计方法 |
US10658919B1 (en) | 2019-02-25 | 2020-05-19 | Hamilton Sundstrand Corporation | Harmonic regulator with loop delay compensation |
Also Published As
Publication number | Publication date |
---|---|
CN102868285A (zh) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI657649B (zh) | 功率因數校正電路、控制方法和控制器 | |
JP5810470B2 (ja) | 分散型発電インターフェース | |
Li et al. | PLL-less robust active and reactive power controller for single phase grid-connected inverter with LCL filter | |
WO2013004133A1 (zh) | 一种谐振控制方法 | |
CN110729752B (zh) | 一种并网逆变器并联系统的输出阻抗重塑方法 | |
CN104836232A (zh) | 一种有源电力滤波器的频率宽范围自适应重复控制方法 | |
CN111327213A (zh) | 并联三相电压型pwm变流器中抑制零序环流的控制方法 | |
CN105186906B (zh) | 三相lcl型光伏并网逆变器控制方法 | |
CN115347616B (zh) | 一种新能源并网逆变器的阻尼互济控制方法 | |
CN114865633A (zh) | 一种自适应准pr有源阻尼低频率谐波抑制方法 | |
CN113629984A (zh) | 一种基于双环电流控制策略的三相lcl型sapf参数设计方法 | |
CN110266017B (zh) | 一种lcl型有源电力滤波器混合状态反馈虚拟阻尼控制方法 | |
CN112103970B (zh) | 一种并网变流器间谐波振荡抑制方法及装置 | |
Esteban et al. | Nonlinear control for a DC–DC converter with dual active bridges in a DC microgrid | |
Wang et al. | Analysis and design of voltage feedforward for stability and power quality of grid-tied inverter | |
Yadav et al. | Robust control for improving performance of grid-synchronized solar PV-BES-wind based microgrid | |
Long et al. | Passivity-based partial Sequential Model Predictive control of T-type grid-connected converters with Dynamic Damping Injection | |
Fantino et al. | Current controller for a bidirectional boost input stage equipped with an LCL (inductance–capacitance–inductance) filter | |
JP2004120820A (ja) | 電力変換装置 | |
Msigwa et al. | Control algorithm for shunt active power filter using synchronous reference frame theory | |
CN103595278A (zh) | 太阳能发电系统网侧变换器功率平衡谐振控制方法 | |
CN108134391A (zh) | 一种用于电网电压波形畸变的三相pwm整流器的控制方法 | |
Ende et al. | Robust control of the three-phase voltage-source PWM rectifier using EKF load current observer | |
Lyu et al. | Simplified controller design method for digitally controlled LCL-type PWM converter with multi-resonant quasi-PR controller and capacitor-current-feedback active damping | |
JP4989499B2 (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12808195 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12808195 Country of ref document: EP Kind code of ref document: A1 |