WO2013004111A1 - 一种固定床和喷射浮动床与分离单元耦合的集成系统工艺 - Google Patents

一种固定床和喷射浮动床与分离单元耦合的集成系统工艺 Download PDF

Info

Publication number
WO2013004111A1
WO2013004111A1 PCT/CN2012/076045 CN2012076045W WO2013004111A1 WO 2013004111 A1 WO2013004111 A1 WO 2013004111A1 CN 2012076045 W CN2012076045 W CN 2012076045W WO 2013004111 A1 WO2013004111 A1 WO 2013004111A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
bed reactor
fixed bed
liquid
separation
Prior art date
Application number
PCT/CN2012/076045
Other languages
English (en)
French (fr)
Inventor
周政
张志炳
杨高东
龚雄辉
吴平铿
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US14/361,174 priority Critical patent/US9308468B2/en
Priority to EP12807318.6A priority patent/EP2745924B1/en
Publication of WO2013004111A1 publication Critical patent/WO2013004111A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/297Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00557Flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to an integrated system process in which a fixed bed and a spray floating bed are coupled to a separation unit. Background technique
  • a fixed bed reactor also known as a packed bed reactor, is a reactor packed with a solid catalyst or a solid reactant for achieving a heterogeneous reaction process.
  • Solids are usually in the form of granules that are stacked into a bed of a certain height (or thickness). The bed is stationary and the fluid reacts through the bed. It differs from fluidized bed reactors and moving bed reactors in that the solid particles are at rest.
  • the liquid-solid catalytic reaction in which the solid is a catalyst and the liquid is a reaction raw material is mainly realized by a fixed bed reactor, such as an esterification reaction, a hydration reaction, and the like.
  • the advantages of the fixed bed reactor are: 1 back mixing is small, the fluid can be in effective contact with the catalyst, and higher selectivity can be obtained when the reaction is accompanied by a series side reaction. 2 catalyst mechanical loss is small. 3 The structure is simple. 3 The reaction is stable. Disadvantages of fixed bed reactors are: 1 poor heat transfer. 2 The catalyst cannot be replaced during the operation. The reaction in which the catalyst needs frequent regeneration is generally not suitable. It is often replaced by a fluidized bed reactor or a moving bed reactor. 3 The reaction time is longer. 4 When it comes to oil-water two-phase materials, mixing is difficult and the reaction speed is limited.
  • the jet floating bed reactor is a new type of enhanced reactor. Its working principle is to use a high-speed mobile phase to entrain other phases, produce a vigorous stirring effect, promote close contact between the phases, and complete the reaction process quickly.
  • the spray floating bed reactor can thoroughly mix the reactants and the reactants with the catalyst, greatly enhance the mass and heat transfer rate, and improve the inside of the reactor.
  • the concentration and temperature distribution accelerate the reaction process, effectively suppress side reactions and increase reaction selectivity.
  • the spray floating bed reactor has many unique and excellent properties: 1 high mass transfer heat transfer efficiency; 2 high operating flexibility; 3 unit volume input power, and can greatly reduce energy consumption; 4 reactor structure is simple, no rigidity Mixing, suitable for hazardous reaction operations such as oxidative hydrogenation; 5 good sealing performance, especially suitable for high pressure reaction; 6 mixing effect and mass transfer rate are affected by the scale of the reactor is small, easy to scale up.
  • the industrial reaction separation and integration system is an integrated system composed of reaction equipment and separation equipment, and has certain defects.
  • a fixed bed reaction-separation integrated system a so-called reaction condensate column, such as an esterification reaction condensate column. Since it takes a long reaction time to achieve a higher conversion rate by using a fixed bed reactor, the residence time is longer and the equipment volume is larger.
  • reaction-separation integrated systems such as an oxidation system and an integrated system of hydrogenation reaction and separation unit, there is a problem that reaction and separation are difficult to couple with each other. Summary of the invention
  • the fixed bed reactor is coupled to a jet floating bed reactor, pre-reacted using a fixed bed reactor, and then passed to a jet floating bed reactor for intensive reaction.
  • the pre-reaction carried out in the fixed bed reactor shortens the reaction time in the enhanced injection reactor, reduces the breakage rate of the solid catalyst, and prolongs the service life of the solid catalyst; while the spray floating bed reactor can be used in a relatively short time
  • the conversion rate of the subsequent reaction is increased, and the energy consumption is low, which makes up for the shortcoming of the low conversion rate of the reaction time using the fixed bed reactor alone.
  • the phase separator can be used to separate the oil and water phases, and one phase containing the product enters the fine boring system for separation. Otherwise, the material directly enters the fine boring system, and the product is removed in time and will not be completely completed.
  • the reacted reactants are returned to the reaction unit to increase the conversion.
  • the coupling of the fixed bed and the jet floating bed to the entire system of the separation unit can significantly reduce energy consumption and save costs.
  • An integrated system process for coupling a fixed bed and a jet floating bed to a separation unit comprising the steps of:
  • Step 1 Add the fresh reaction liquid required for the reaction from the pipeline 1 to the intermediate material storage tank V-1 (the reaction here includes all the reactions suitable for the fixed bed reactor), and pass the material through the valve F with the raw material transfer pump P-1. -1, after the flow meter FM-1 and the heat exchanger E-1 are heated, they are quantitatively conveyed by the pipe 3 to the fixed bed reactor R-1 for pre-reaction.
  • the reaction material passes through the fixed bed reactor R1 at one time and is collected by the intermediate buffer tank V-2.
  • the fixed bed reactor is filled with the solid catalyst required for the reaction, and the height and thickness thereof are determined by the specific treatment amount and the required residence time. Decide Step 2.
  • the material pre-reacted in the intermediate buffer tank V-2 through the fixed bed reactor is injected by the material transfer pump P-2 through the valve F-3, the flow meter FM-2 and the heat exchanger E-2.
  • the intensive reaction is carried out in a floating bed reactor R-2.
  • the spray floating bed reactor system consists of a reactor main body R-2, a fluid transfer pump P-3, a flow meter FM-3, a heat exchanger E-3, and an injector J- 1 and the corresponding pipeline and valve composition, the fluid in the reactor R-2 is pumped out by the fluid transfer pump P-3, and heated to the desired reaction through the valve F-4, the flow meter FM-3 and the heat exchanger E-3.
  • After the temperature is input into the ejector J-1 by the pipe 7, it is injected into the reactor R-2 to perform a cycle strengthening reaction, and the specific size of the jet floating bed reactor R-2 is determined by the material handling amount and the residence time;
  • Step 3 After the reaction is carried out for a period of time, sampling and analysis is performed from the sampling port 16. When the product reaches the required concentration requirement, the material is discharged from the pipe 9 or the pipe 10, and when the liquid phase of the discharge is layered, the material is passed through the liquid. Flowmeter FM-4, heat exchanger E-4 and valve F-5 are separated by pipe 9 into phase separator V-4, and the upper oil phase liquid enters buffer tank V-5 from pipe 11; When not stratified, the material passes through the valve F-6 and directly enters the buffer tank V-5 from the pipeline 10;
  • Step 4 When the liquid phase of the discharge is stratified, it is divided into two phases of oil and water in the phase separator V-4, and the liquid phase containing no product is transported by the pipeline 13 through the liquid transfer pump P-4 from the pipeline 14 to In the raw material storage tank V-1, the liquid phase containing the product in the intermediate buffer tank V-5 is taken out by the liquid transfer pump P-5, and heated through the valve F-9, the liquid flow meter FM-5 and the heat exchanger E-5. After a certain temperature, the pipeline 12 enters the subsequent separation system for separation; when the liquid phase of the discharge does not stratify, the product containing the product enters through the liquid flow meter FM-4, the heat exchanger E-4 and the valve F-6. In the intermediate buffer tank V-5, after being pumped out by the liquid transfer pump P-5 through the valve F-9, the flow meter FM-5 and the heat exchanger E-5 to a certain temperature, the pipe 12 enters the separation system T-1. Perform subsequent separation;
  • Step 5 After the separation of the material entering the separation system T-1, the product is separated from the unreacted material, and the product is collected, and the unreacted material is sent back to the intermediate storage tank V-1 for preparation for the next round. cycle.
  • the separation system described in step 4 may be a packed distillation column or a plate type distillation column.
  • the present invention complements and optimizes the process of an integrated system of conventional single type reactors and separation unit couplings, where the reaction system comprises all systems that can be reacted using a fixed bed reactor.
  • the reaction material is pre-reacted through a fixed bed reactor, and then enters the spray floating bed reactor for strengthening reaction, and the reacted material is transported to the separation system according to the stratification of the material after the reaction. Subsequent separation, after the unreacted materials are returned to the raw material intermediate tank, continue to participate in the reaction as a raw material.
  • the fixed bed and the spray floating bed are coupled with the separation unit to form a more efficient multi-type reactor-separation integrated system, which effectively shortens the reaction time, reduces the process energy consumption, and reduces the damage of the solid catalyst. Rate, extending the life of the catalyst.
  • the integrated system of the invention has the following advantages: (1) the material is pre-reacted by the fixed bed reactor first, because it is one pass, no need to carry out multiple cycles, so the time is shorter and the energy consumption is lower; (2) The pre-reacted material is again introduced into the spray floating bed reactor for strengthening reaction, which can effectively shorten the reaction time, reduce the breakage rate of the solid catalyst, and prolong the service life of the catalyst; (3) The fixed bed reaction is carried out throughout the process. The reaction system coupled with the jet floating bed reactor is further coupled with the subsequent separation system to make the process more intensive, the reaction time is greatly shortened, and the process energy consumption is further reduced.
  • Figure 1 is a schematic flow chart of the process of the present invention. among them:
  • R-1 is a fixed bed reactor
  • R-2 is a jet floating bed reactor
  • Pl, P-2, P-3, P-4, P-5 are fluid transfer pumps
  • Vl is a raw material intermediate storage tank
  • V- 2 is the product intermediate storage tank
  • V-3 is the liquid-solid separation tank
  • V-4 is the phase separation unit
  • Fl, F-2, F-3, F-4, F-5, F-6, F-7, F-8, F-9 are valves
  • E-1, E-2, E-3, E-4, E-5 are heat exchangers
  • FM-1, FM-2, FM-3, FM-4, FM-5 are liquid flow meters
  • Tl is the subsequent separation system
  • 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 are pipes
  • 15 is The drain port
  • 16 is the sampling port.
  • Example 1 The coupling system process of the present invention produces 3000 tons/year of dihydromyrcenol
  • the fixed bed-jet floating bed-separation system coupling system process and operation steps are as shown in FIG.
  • the system is mainly composed of a reaction system coupled with a fixed bed reactor and a jet floating bed reactor, and a subsequent fine boring system, a phase separator and an intermediate storage tank. Metering and control instruments and piping are provided between the equipment.
  • a certain ratio (mass ratio: dihydromyrcene: water: solvent 1: 1:2, solvent is dioxane) of dihydro myrcene hydration reaction raw material from raw material intermediate storage tank V-1 by liquid transfer pump P-1 passes through valve F-1 and flow meter FM-1 After heating with the heat exchanger El, the pipe 3 enters the fixed bed reactor R-1 for reaction, and the fixed bed reactor R-1 is charged with the catalyst D72 (the catalyst D72 is produced by the Nankai University Catalyst Factory, the same below), and the filling volume is 5 m 3 , the aspect ratio is 2: 1, the reaction temperature is 110 ° C, the fresh raw material passes through the fixed bed reactor R-1 once (residence time 30 min), the yield of dihydromyrcenol (wt%) is 5%, After collecting this material in the intermediate buffer tank V-2, it is taken out by the liquid transfer pump P-2, and enters the jet floating bed reactor R through the pipe 5 through the valve F-3, the flow meter FM-2 and the heat
  • Intensification reaction was carried out in -2, the volume of the sprayed floating bed reactor was 4 m 3 , and the aspect ratio was 1.3: 1, and 7 kg of catalyst D72 was suspended in the spray floating bed reactor, and sampled and analyzed by sampling port 16 as dihydro laurel
  • the pipe 8 enters the phase separator V-4 through the pipe F-5 flow meter FM-4 and the heat exchanger E-4 through the pipe 9 to perform phase separation, and the oil phase enters the buffer tank.
  • V-5 is passed from the liquid delivery pump P-5 through the valve F-9, the flow meter FM-5 and the heat exchanger E-5, and then the pipe 12 enters the separation system T-1.
  • the separation system T-1 is a packed column, and after separation, dihydromyrcenol having a purity of 98% is obtained, and the unreacted raw material is returned to the intermediate storage tank V-1 together with the fresh material as a raw material to react again.
  • the energy consumption is reduced by 28% compared to the conventional coupling process.
  • Example 2 The coupling system process of the present invention produces 5,000 tons/year of terpineol
  • wet catalyst Amberlyst 15 wet catalyst Amberlyst 15 by American Rohm and Haas company, the same below
  • the process and operation steps of coupling the reaction system coupled with the fixed bed and the spray floating bed to the fine boring system are shown in FIG.
  • the system consists primarily of fixed bed reactors, jet floating bed reactors, subsequent separation systems, and intermediate storage tanks. Metering and control instruments and piping are provided between the equipment.
  • the method of operation is as in Example 3.
  • the pipeline 3 enters the fixed bed reactor R-1 for reaction, and the fixed bed reactor R-1 is filled with the dry catalyst ⁇ 72.
  • the fixed bed reactor R1 has a packing volume of 6 m 3 and an aspect ratio of 2:1, and is equipped with a water dividing device for water separation, and the reaction temperature is 85 °C. After the fresh raw material passes through the fixed bed reactor R1 once (the residence time is 45 min), the yield of acetic acid ethanol is 14%.
  • the pipeline 12 enters the separation system T-1 for subsequent separation, and the separation system T-1 is a packed tower, after separation Ethyl acetate having a purity of 99.4% was obtained, and the unreacted raw material was returned to the intermediate storage tank V-1 and reacted again as a raw material together with the fresh material.
  • the energy consumption is reduced by 41% compared to the conventional coupling process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

本发明涉及一种固定床和喷射浮动床与分离单元耦合的集成系统工艺,目的是提供一种更为高效的多类型反应器——分离集成新工艺及装置。本发明采用将所需反应的物料分别经过固定床反应器预反应和喷射浮动床反应器强化反应后进入后续分离系统分离,未被反应的物料将返回原料中间储罐与新鲜物料混合后作为原料继续反应。在此过程中,首先将物料一次经过固定床反应器,经过预反应后的物料达到一定的转化率,之后再次进入喷射浮动床反应器中进行强化反应,当产物达到所需的浓度时,进入后续分离装置进行分离。整个过程中,将固定床反应器、喷射浮动床反应器及后续分离系统相耦合,流程更集约,反应时间大大缩短,过程能耗进一步降低。

Description

一种固定床和喷射浮动床与分离单元耦合的集成系统工艺 发明领域
本发明涉及一种固定床和喷射浮动床与分离单元耦合而成的集成系统工艺。 背景技术
固定床反应器又称填充床反应器, 装填有固体催化剂或固体反应物用以 实现多相反应过程的一种反应器。 固体物通常呈颗粒状, 堆积成一定高度 (或厚度) 的床层。 床层静止不动, 流体通过床层进行反应。 它与流化床 反应器及移动床反应器的区别在于固体颗粒处于静止状态。 目前工业上对 固体为催化剂, 液体为反应原料的液固催化反应主要利用固定床反应器来 实现, 如酯化反应、 水合反应等。
固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触, 当 反应伴有串联副反应时可得较高选择性。 ②催化剂机械损耗小。 ③结构简 单。 ③反应稳定。 固定床反应器的缺点是: ①传热差。 ②操作过程中催化剂 不能更换, 催化剂需要频繁再生的反应一般不宜使用, 常代之以流化床反 应器或移动床反应器。 ③反应时间较长。 ④涉及油水两相物料时, 混合困难, 反应速度受限。
喷射浮动床反应器是一种新型的强化反应器, 它的工作原理是利用高速 流动相去卷吸其它相, 产生剧烈搅拌效果, 促使各相密切接触,并快速完成反应 过程。 在以固体为催化剂, 液体为反应原料的液固催化反应中, 喷射浮动床 反应器可使反应物之间及反应物与催化剂之间充分混合,大幅强化质量与热量传 递速率, 改善反应器内的浓度和温度分布, 加快反应进程, 有效抑制副反应和提 高反应选择性。
喷射浮动床反应器有许多独特优异的性能: ①传质传热效率高;②操作弹性 高; ③单位体积输入功率大, 并可大幅降低能耗; ④反应器结构简单, 无刚性搅 拌, 适合于氧化加氢等危险性反应操作; ⑤密封性能好, 尤其适用于高压反应; ⑥混合效果和传质速率受反应器规模的影响程度小, 易于工程放大。
目前,工业上的反应分离集成系统是由反应设备与分离设备有机组成的集成 系统, 存在着一定的缺陷。如固定床反应-分离集成系统, 即所谓的反应精熘塔, 如酯化反应精熘塔。由于利用固定床反应器反应要达到一较高转化率需要较长的 反应时间, 所以停留时间较长, 设备体积较大。而对于其它反应-分离集成系统, 如氧化反应和加氢反应与分离单元组成的集成系统,则存在反应与分离难以相互 耦合的问题。 发明内容
本发明的目的是提供一种固定床和喷射浮动床与分离单元耦合而成的集成 系统。如附图一所示。在反应阶段,将固定床反应器与喷射浮动床反应器相耦合, 利用固定床反应器进行预反应,然后进入喷射浮动床反应器进行强化反应。在固 定床反应器中进行的预反应缩短了强化喷射反应器内的反应时间,降低了固体催 化剂的破损率, 延长了固体催化剂的使用寿命; 而喷射浮动床反应器可在相对较 短的时间内提高后续反应的转化率, 且能耗低,这又弥补了单纯使用固定床反应 器的反应时间长转化率低的不足。若反应器流出的物料会分层, 则可利用分相器 分出油水两相,含产物的一相进入精熘系统进行分离, 否则物料直接进入精熘系 统,及时移走产物并将未完全反应的反应物返回反应单元以提高转化率。固定床 和喷射浮动床与分离单元全系统的耦合可大幅降低能耗, 节约成本。
本发明的目的可通过以下技术解决方案来实现:
一种固定床和喷射浮动床与分离单元耦合的集成系统工艺, 它包括下列步 骤:
步骤 1. 将反应所需的新鲜反应料液由管道 1输入中间物料储罐 V-1 (这里 的反应包括适合固定床反应器的所有反应), 用原料输送泵 P-1将物料经过阀门 F-1 , 流量计 FM-1和换热器 E-1加热后, 由管道 3定量地输送到固定床反应器 R-1 中进行预反应。 反应物料一次通过固定床反应器 R-l, 并由中间缓冲罐 V-2 收集, 固定床反应器中由反应所需的固体催化剂填充,其高度与粗细程度由具体 的处理量及所需的停留时间决定; 步骤 2. 将中间缓冲罐 V-2中经过固定床反应器预反应的物料用物料输送泵 P-2经过阀门 F-3、 流量计 FM-2和换热器 E-2由管道 5输入喷射浮动床反应器 R-2中进行强化反应,喷射浮动床反应器系统由反应器主体 R-2、流体输送泵 P-3、 流量计 FM-3、 换热器 E-3、 喷射器 J-1及相应的管道和阀门组成, 由流体输送泵 P-3将反应器 R-2中的流体抽出, 经过阀门 F-4、流量计 FM-3及换热器 E-3加热 到所需反应温度后由管道 7输入喷射器 J-1后, 射入反应器 R-2中进行循环强化 反应, 喷射浮动床反应器 R-2的具体尺寸由物料处理量及停留时间决定;
步骤 3. 反应进行一段时间后, 由取样口 16进行取样分析, 当产物达到所需 的浓度要求时, 由管道 9或者管道 10出料, 当出料的液相分层时, 将物料经过 液体流量计 FM-4、 换热器 E-4及阀门 F-5由管道 9进入分相器 V-4进行分相, 上层油相液体由管道 11进入缓冲罐 V-5; 当出料的液体不分层时则物料经过阀 门 F-6由管道 10直接进入缓冲罐 V-5;
步骤 4. 当出料的液相分层时, 则在分相器 V-4中分为油水两相, 不含产物 的液相层由管道 13经过液体输送泵 P-4由管道 14输送到原料储罐 V-1中, 中间 缓冲罐 V-5中含有产品的液相由液体输送泵 P-5抽出, 经过阀门 F-9、 液体流量 计 FM-5及换热器 E-5加热到一定温度后, 由管道 12进入后续分离系统进行分 离; 当出料的液相不分层时, 则含产物的物料经过液体流量计 FM-4、换热器 E-4 及阀门 F-6进入中间缓冲罐 V-5中, 由液体输送泵 P-5抽出经过阀门 F-9、 流量 计 FM-5及换热器 E-5加热到一定温度后,由管道 12进入分离系统 T-1中进行后 续分离;
步骤 5. 进入分离系统 T-1 的物料经过分离后, 产物和未反应的物料分开, 将产物收集,而未反应的物料则被输送返回到原料中间储罐 V-1中准备进行下一 轮循环。
上述的集成系统工艺,步骤 4所述的分离系统可以是填料蒸熘塔或板式蒸熘 塔。
本发明对传统的单一类型反应器和分离单元耦合组成的集成系统的工艺进 行了补充和优化, 这里的反应体系包含所有可用固定床反应器进行反应的体系。 将反应物料经过固定床反应器进行预反应,然后进入喷射浮动床反应器中进行强 化反应后,根据反应后物料的分层情况,将反应后的物料输送到分离系统中进行 后续分离, 过程中未被反应的物料被返回到原料中间罐后, 作为原料继续参加反 应。整个过程中, 将固定床和喷射浮动床与分离单元相耦合, 形成了更加高效的 多类型反应器-分离集成系统, 有效缩短了反应时间, 降低了过程能耗, 同时降 低了固体催化剂的破损率, 延长了催化剂的使用寿命。
本发明的集成系统具有以下优点:(1 )先用固定床反应器将物料进行预反应, 由于是一次通过, 不需要进行多次循环, 所以时间较短, 能耗较低; (2)将经过 了预反应的物料再次进入喷射浮动床反应器中进行强化反应,可有效缩短反应时 间, 降低了固体催化剂的破损率, 延长了催化剂的使用寿命; (3 ) 整个过程中, 将固定床反应器和喷射浮动床反应器耦合而成的反应系统与后续分离系统进一 步耦合, 使流程更集约, 反应时间大为缩短, 过程能耗得到进一步降低。 附图说明
图 1为本发明工艺的流程示意图。 其中:
R-1为固定床反应器, R-2为喷射浮动床反应器, P-l、 P-2、 P-3、 P-4、 P-5 为流体输送泵, V-l为原料中间储罐, V-2、 V-5为产物中间储罐, V-3为液固分 离罐, V-4为分相器, F-l、 F-2、 F-3、 F-4、 F-5、 F-6、 F-7、 F-8、 F-9为阀门, E-1 , E-2、 E-3、 E-4、 E-5 为换热器, FM-1、 FM-2、 FM-3、 FM-4、 FM-5 为液 体流量计, T-l为后续分离系统, 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14为管道, 15为排液口, 16为取样口。
具体实施方式 以下通过实施例进一步说明本发明。
实施例 1 : 本发明的耦合系统工艺生产 3000吨 /年二氢月桂烯醇
固定床-喷射浮动床-分离系统耦合系统工艺及操作步骤如附图 1所示。 该系统主 要由固定床反应器和喷射浮动床反应器耦合而成的反应系统与后续精熘系统、分 相器和中间储罐等装置组成。在各设备间设有计量和控制仪表以及管道。将一定 配比 (质量比: 二氢月桂烯: 水: 溶剂 =1 : 1 :2, 溶剂为二氧六环) 的二氢月桂烯 水合反应原料从原料中间储罐 V-1由液体输送泵 P-1经过阀门 F-1和流量计 FM-1 和换热器 E-l加热后由管道 3进入固定床反应器 R-1进行反应, 固定床反应器 R-1装填催化剂 D72 (催化剂 D72由南开大学催化剂厂生产, 下同), 装填容积 为 5m3, 高径比为 2: 1, 反应温度为 110°C, 新鲜原料一次经过固定床反应器 R-1 后 (停留时间 30min), 二氢月桂烯醇 (wt%) 的收率为 5%, 将此物料收集于中 间缓冲罐 V-2后, 由液体输送泵 P-2抽出, 经过阀门 F-3、 流量计 FM-2和换热 器 E-2由管道 5进入喷射浮动床反应器 R-2中进行强化反应,喷射浮动床反应器 的体积为 4m3, 高径比为 1.3 : 1, 喷射浮动床反应器中悬浮有 7kg催化剂 D72, 由取样口 16进行取样分析, 当二氢月桂烯醇达到所需浓度 18%时, 由管道 8经 过阀门 F-5流量计 FM-4和换热器 E-4由管道 9进入分相器 V-4中进行分相, 油 相进入缓冲罐 V-5由液体输送泵 P-5经过阀门 F-9、 流量计 FM-5和换热器 E-5 后由管道 12进入分离系统 T-1进行后续分离, 分离系统 T-1为填料塔, 分离后 得到纯度为 98%的二氢月桂烯醇, 而未反应的原料则返回到原料中间储罐 V-1 与新鲜物料一同作为原料再次进行反应。采用本发明的耦合系统工艺, 能耗较传 统耦合工艺降低了 28%。 实施例 2: 本发明的耦合系统工艺生产 5000吨 /年松油醇
操作方法如实施例 1。 将一定配比的松节油水合反应原料 (质量比: 松节油:水: 溶剂 =1 : 1 : 2, 溶剂为异丙醇) 从原料中间储罐 V-1由液体输送泵 P-1经过阀门 F-1和流量计 FM-1和换热器 E-1加热后由管道 3进入固定床反应器 R-1进行反 应, 固定床反应器 R-1装填湿型催化剂 Amberlyst 15 (湿型催化剂 Amberlyst 15 由美国罗门哈斯公司提供, 下同) , 装填容积为 7m3, 高径比为 2: 1, 反应温度 为 75 °C, 新鲜原料一次经过固定床反应器 R-1后 (停留时间 30min), 松油醇的 收率为 7%, 将此物料收集于中间缓冲罐 V-2后, 由液体输送泵 P-2抽出, 经过 阀门 F-3、 流量计 FM-2和换热器 E-2由管道 5进入喷射浮动床反应器 R-2中进 行强化反应, 喷射浮动床反应器的体积为 4.5m3, 高径比为 1.3 : 1, 喷射浮动床反 应器中悬浮有 8kg湿型催化剂 Amberlyst 15, 由取样口 16进行取样分析, 当松 油醇达到所需浓度 22.8%时, 由管道 8经过阀门 F-5流量计 FM-4和换热器 E-4 由管道 9进入分相器 V-4中进行分相, 油相进入缓冲罐 V-5由液体输送泵 P-5经 过阀门 F-9、 流量计 FM-5和换热器 E-5后由管道 12进入分离系统 T-1进行后续 分离, 分离系统 T-l为筛板塔, 分离后得到纯度为 98.5%的松油醇, 而未被反应 的原料则返回到原料中间储罐 V-1与新鲜物料一同作为原料再次进行反应。采用 本发明的耦合系统工艺, 能耗较传统耦合工艺降低了 30%。 实施例 3: 本发明的耦合系统工艺生产 6000吨 /年醋酸正丁酯
固定床和喷射浮动床耦合而成的反应系统与精熘系统耦合的工艺及操作步骤如 附图一所示。该系统主要由固定床反应器、 喷射浮动床反应器、后续分离系统和 中间储罐等装置组成。在各设备间设有计量和控制仪表以及管道。将一定配比醋 酸和正丁醇(物质的量之比为: 醋酸:正丁醇 =1 : 1 )从原料中间储罐 V-1由液体输 送泵 P-1经过阀门 F-1和流量计 FM-1和换热器 E-1加热后由管道 3进入固定床 反应器 R-1进行反应, 固定床反应器 R-1装填干型催化剂 Amberlyst 15 (干型催 化剂 Amberlyst l 5 由美国罗门哈斯公司提供) , 固定床反应器 R-1的装填容积 为 5m3, 高径比为 2: 1, 装有分水装置, 反应温度为 100°C。 新鲜原料一次经过 固定床反应器 R-1后 (停留时间为 40min), 醋酸正丁醇的理论收率为 12%, 将 此物料收集于中间缓冲罐 V-2后, 由液体输送泵 P-2抽出, 经过阀门 F-3、 流量 计 FM-2和换热器 E-2由管道 5进入喷射浮动床反应器 R-2中进行强化反应, 喷 射浮动床反应器的体积为 4m3,高径比为 1.3 : 1,喷射浮动床反应器中悬浮有 10kg 干型催化剂 Amberlyst 15。 由取样口 16进行取样分析, 当醋酸正丁酯收率达到 为 78%时, 由管道 8经过流量计 FM-4、换热器 E-4和阀门 F-6由管道 11进入缓 冲罐 V-5, 由液体输送泵 P-5经过阀门 F-9、流量计 FM-5和换热器 E-5后由管道 12进入分离系统 T-1进行后续分离, 分离系统 T-1为浮阀塔板塔, 分离后得到纯 度为 99%的醋酸正丁酯,而未被反应的原料则返回到原料中间储罐 V-1与新鲜物 料一同作为原料再次进行反应。采用本发明的耦合系统工艺, 能耗较传统耦合工 艺降低了 34%。 实施例 4: 耦合强化系统生产 8000吨 /年醋酸乙酯
操作方法如实施例 3。 将一定配比醋酸和乙醇 (醋酸: 乙醇 =1 :2 ) 从原料中间储 罐 V-1由液体输送泵 P-1经过阀门 F-1和流量计 FM-1和换热器 E-1加热后由管 道 3进入固定床反应器 R-1进行反应, 固定床反应器 R-1装填干型催化剂 Ό72, 固定床反应器 R-l的装填容积为 6m3, 高径比为 2: 1, 装有分水装置进行分水, 反应温度为 85°C。新鲜原料一次经过固定床反应器 R-l后(停留时间为 45min), 醋酸乙醇的收率为 14%, 将此物料收集于中间缓冲罐 V-2后, 由液体输送泵 P-2 抽出, 经过阀门 F-3、 流量计 FM-2和换热器 E-2由管道 5进入喷射浮动床反应 器 R-2中进行强化反应, 喷射浮动床反应器的体积为 4.5m3, 高径比为 1.25: 1, 喷射浮动床反应器中悬浮有 12kg干型催化剂 D72。 由取样口 16进行取样分析, 当醋酸乙酯达到浓度为 81%时, 由管道 8经过流量计 FM-4、 换热器 E-4和阀门 F-6由管道 11进入缓冲罐 V-5, 由液体输送泵 P-5经过阀门 F-9、 流量计 FM-5 和换热器 E-5后由管道 12进入分离系统 T-1进行后续分离, 分离系统 T-1为填 料塔, 分离后得到纯度为 99.4%的醋酸乙酯, 而未被反应的原料则返回到原料中 间储罐 V-1与新鲜物料一同作为原料再次进行反应。 采用本发明的耦合系统工 艺, 能耗较传统耦合工艺降低了 41%。

Claims

1. 一种固定床和喷射浮动床与分离单元耦合的集成系统工艺, 其特征是它 包括下列步骤:
步骤 1. 将反应所需的新鲜反应料液由管道 (1 ) 输入中间物料储罐 (V-l ), 用原料输送泵 (P-1 ) 将物料经过阀门 (F-l ), 流量计 (FM-1 ) 和换热器 (E-1 ) 加热后, 由管道(3 )定量地输送到固定床反应器(R-1 ) 中进行预反应, 反应物 料一次通过固定床反应器 (R-l ), 并由中间缓冲罐 (V-2) 收集, 固定床反应器 中由反应所需的固体催化剂填充,其高度与粗细程度由具体的处理量及所需的停 留时间决定;
步骤 2. 将中间缓冲罐(V-2)中经过固定床反应器预反应的物料用物料输送 泵 (P-2) 经过阀门 (F-3 )、 流量计 (FM-2)和换热器 (E-2)由管道 (5)输入喷射浮 动床反应器 (R-2)中进行强化反应, 喷射浮动床反应器系统由反应器主体 (R-2)、 流体输送泵 (P-3)、流量计 (FM-3)、 换热器 (E-3)、 喷射器 (J-1)及相应的管道和阀门 组成, 由流体输送泵 (P-3)将反应器 (R-2)中的流体抽出, 经过阀门 (F-4)、 流量计 (FM-3)及换热器 (E-3)加热到所需反应温度后由管道 (7)输入喷射器 (J-1)后, 射入 反应器 (R-2)中进行循环强化反应, 喷射浮动床反应器 (R-2)的具体尺寸由物料处 理量及停留时间决定;
步骤 3. 反应进行一段时间后, 由取样口(16)进行取样分析, 当产物达到所 需的浓度要求时, 由管道 (9)或者管道 (10)出料, 当出料的液相分层时, 将物料经 过液体流量计 (FM-4)、换热器 (E-4)及阀门(F-)5由管道 (9)进入分相器 (V-4)进行分 相, 上层油相液体由管道 (11)进入缓冲罐 (V-5); 当出料的液体不分层时则物料经 过阀门 (F-6)由管道 (10)直接进入缓冲罐 (V-5);
步骤 4. 当出料的液相分层时, 则在分相器 (V-4)中分为油水两相, 不含产物 的液相层由管道 (13)经过液体输送泵 (P-4)由管道 (14)输送到原料储罐 (V-1)中, 中 间缓冲罐 (V-5)中含有产品的液相由液体输送泵 (P-5)抽出, 经过阀门 F-9、 液体流 量计 (FM-5)及换热器 (E-5)加热到一定温度后, 由管道 (12)进入后续分离系统进行 分离; 当出料的液相不分层时, 则含产物的物料经过液体流量计 (FM-4)、 换热器 (E-4)及阀门 (F-6)进入中间缓冲罐 (V-5)中, 由液体输送泵 (P-5)抽出经过阀门 (F-9)、 流量计 (FM-5)及换热器 (E-5)加热到一定温度后, 由管道 (12)进入分离系统 (T-1)中 进行后续分离;
步骤 5. 进入分离系统 (T-1)的物料经过分离后, 产物和未反应的物料分开, 将产物收集, 而未反应的物料则被输送返回到原料中间储罐 (V-1)中准备进行下 一轮循环。
2. 根据权利要求 1和 2所述的集成系统工艺, 其特征是: 步骤 4所述的分 离系统是填料蒸熘塔或板式蒸熘塔。
PCT/CN2012/076045 2011-07-07 2012-05-25 一种固定床和喷射浮动床与分离单元耦合的集成系统工艺 WO2013004111A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/361,174 US9308468B2 (en) 2011-07-07 2012-05-25 Integrated system technique for coupling fixed bed and jet fluidized bed to separator unit
EP12807318.6A EP2745924B1 (en) 2011-07-07 2012-05-25 Integrated process for coupling fixed bed and jet floating bed to separator unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101892765 2011-07-07
CN2011101892765A CN102294204B (zh) 2011-07-07 2011-07-07 一种固定床和喷射浮动床与分离单元耦合的集成系统工艺

Publications (1)

Publication Number Publication Date
WO2013004111A1 true WO2013004111A1 (zh) 2013-01-10

Family

ID=45355021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076045 WO2013004111A1 (zh) 2011-07-07 2012-05-25 一种固定床和喷射浮动床与分离单元耦合的集成系统工艺

Country Status (4)

Country Link
US (1) US9308468B2 (zh)
EP (1) EP2745924B1 (zh)
CN (1) CN102294204B (zh)
WO (1) WO2013004111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308468B2 (en) 2011-07-07 2016-04-12 Nanjing University Integrated system technique for coupling fixed bed and jet fluidized bed to separator unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964215B (zh) * 2012-11-30 2015-07-08 南京运华立太能源科技有限公司 二氢月桂烯醇生产方法
CN105218803B (zh) * 2015-09-01 2017-03-08 南京大学 一种连续化合成聚碳酸亚丙酯多元醇的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062689A1 (en) * 2000-02-22 2001-08-30 Exxonmobil Chemical Patents Inc. Conversion of oxygenate to olefins with staged injection of oxygenate
WO2003070873A2 (de) * 2002-02-19 2003-08-28 HöFer Bioreact GmbH Kultivierungsverfahren für mikroorganismen und bioreaktor
CN101684064A (zh) * 2009-07-21 2010-03-31 厦门中坤化学有限公司 一种二氢月桂烯水合反应生产二氢月桂烯醇的绿色工艺
US20100242361A1 (en) * 2009-03-31 2010-09-30 Vail Timothy E Fluidized beds having membrane walls and methods of fluidizing
CN102294204A (zh) * 2011-07-07 2011-12-28 南京大学 一种固定床和喷射浮动床与分离单元耦合的集成系统工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036648C (zh) * 1994-07-16 1997-12-10 广西大学 连续催化精馏生产醋酸正丁酯的方法及设备
AU2001286241A1 (en) * 2000-09-26 2002-04-08 Showa Denko K K Process for producing lower aliphatic carboxylic acid ester
US7005555B2 (en) * 2003-06-25 2006-02-28 Exxonmobil Chemical Patents Inc. Process for separating and recycling oxygenate(s) to an oxygenate-to-olefin reactor
US20050038304A1 (en) * 2003-08-15 2005-02-17 Van Egmond Cor F. Integrating a methanol to olefin reaction system with a steam cracking system
CN101525263A (zh) * 2008-03-03 2009-09-09 艾博特(厦门)设备工程有限公司 一种连续回收芳香族羧酸制造中未反应的芳香烃的方法
CN101684065B (zh) * 2009-07-21 2013-04-17 厦门中坤化学有限公司 一种高效节能的连续化生产二氢月桂烯醇的工艺
CN102070401B (zh) * 2011-01-27 2013-12-04 南京大学 由生物乙醇水溶液制取无水乙醇的节能工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062689A1 (en) * 2000-02-22 2001-08-30 Exxonmobil Chemical Patents Inc. Conversion of oxygenate to olefins with staged injection of oxygenate
WO2003070873A2 (de) * 2002-02-19 2003-08-28 HöFer Bioreact GmbH Kultivierungsverfahren für mikroorganismen und bioreaktor
US20100242361A1 (en) * 2009-03-31 2010-09-30 Vail Timothy E Fluidized beds having membrane walls and methods of fluidizing
CN101684064A (zh) * 2009-07-21 2010-03-31 厦门中坤化学有限公司 一种二氢月桂烯水合反应生产二氢月桂烯醇的绿色工艺
CN102294204A (zh) * 2011-07-07 2011-12-28 南京大学 一种固定床和喷射浮动床与分离单元耦合的集成系统工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2745924A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308468B2 (en) 2011-07-07 2016-04-12 Nanjing University Integrated system technique for coupling fixed bed and jet fluidized bed to separator unit

Also Published As

Publication number Publication date
US9308468B2 (en) 2016-04-12
EP2745924A1 (en) 2014-06-25
EP2745924B1 (en) 2018-04-25
EP2745924A4 (en) 2015-06-17
CN102294204B (zh) 2013-07-10
US20140336407A1 (en) 2014-11-13
CN102294204A (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
CN101379017B (zh) 丙烯醛的制备方法
RU2760675C1 (ru) Улучшенные реакционная система с встроенным средством для создания межфазных микроповерхностей и способ для получения терефталевой кислоты с использованием параксилола
WO2011120374A1 (zh) 一种多相催化塔式碰撞流反应器
CN103449699B (zh) 一种有机质连续热水解处理装置和方法
CN105080433B (zh) 一种新型板式轴向反应器
WO2013004111A1 (zh) 一种固定床和喷射浮动床与分离单元耦合的集成系统工艺
CN103007862A (zh) 一种乙炔羰基化法合成丙烯酸及酯的气液搅拌反应器
CN102464532B (zh) 低碳烯烃的制备方法
CN106278836A (zh) 中等浓度甲醛与甲缩醛合成聚甲氧基二甲醚的装置和方法
CN109456303A (zh) 微通道反应器连续合成硫酸乙烯酯和硫酸4-甲基乙烯酯的方法
CN102068945B (zh) 用于甲缩醛分离提纯的反应精馏装置和方法
CN115430368A (zh) 一种羰基化浆态气液混合制备丁辛醇的系统及工艺
CN102399133B (zh) 间接水合法由环戊烯制备环戊醇的方法
CN110947348A (zh) 一种微通道连续化臭氧氧化装置
CN109293525B (zh) 一种微通道反应器及利用该微通道反应器制备n-烷氧基草酰丙氨酸酯的方法
CN103896977A (zh) 一种生产乙烯基烷氧基硅烷的方法及其设备
CN210449120U (zh) 一种循环式微通道氯化反应装置
CN102344328B (zh) 一种使用移动床技术将甲醇转化为丙烯的半连续方法
CN101219920A (zh) 采用分子筛催化剂的乙醇脱水工艺
CN105859501A (zh) 一种溶剂再生的制乙烯的反应系统及方法
CN113150021B (zh) 一种采用微通道反应器合成三氟化硼络合物的方法
CN202808647U (zh) 粗甲醇合成系统
CN203625267U (zh) 一种氨肟化反应装置
CN107417497A (zh) 丙烯水合法联产异丙醇和二异丙醚生产装置
CN210994350U (zh) 仲丁醇脱氢制甲乙酮反应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012807318

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14361174

Country of ref document: US