WO2013004026A1 - 制备乙醇胺盐酸盐及联产品乙醇胺的方法 - Google Patents

制备乙醇胺盐酸盐及联产品乙醇胺的方法 Download PDF

Info

Publication number
WO2013004026A1
WO2013004026A1 PCT/CN2011/077243 CN2011077243W WO2013004026A1 WO 2013004026 A1 WO2013004026 A1 WO 2013004026A1 CN 2011077243 W CN2011077243 W CN 2011077243W WO 2013004026 A1 WO2013004026 A1 WO 2013004026A1
Authority
WO
WIPO (PCT)
Prior art keywords
tea
hcl
ethanolamine
product
reaction
Prior art date
Application number
PCT/CN2011/077243
Other languages
English (en)
French (fr)
Inventor
薛荔
薛守礼
薛芳
Original Assignee
Xue Li
Xue Shouli
Xue Fang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xue Li, Xue Shouli, Xue Fang filed Critical Xue Li
Publication of WO2013004026A1 publication Critical patent/WO2013004026A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/04Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reaction of ammonia or amines with olefin oxides or halohydrins

Definitions

  • the invention relates to a method for preparing a petrochemical raw material, in particular to a method for directly preparing an ethanolamine hydrochloride and a co-product ethanolamine by an addition reaction of a relatively inexpensive ammonium chloride with ethylene oxide.
  • Ethanolamine hydrochloride It is a generic term for monoethanolamine hydrochloride (MEA * HC1), diethanolamine hydrochloride (DEA * HC1), and triethanolamine hydrochloride (TEA * HC1). Its direct preparation method has not been reported in the literature.
  • the existing ethanolamine hydrochloride is generally obtained by using an ethanolamine product as a raw material for production, and is added dropwise to an equimolar concentrated hydrochloric acid to form a salt reaction, and then dehydrated under reduced pressure to obtain a temperature of 50 to 150 °C.
  • MEA * HC1 is an anionic surfactant, which is the raw material for the green chemical synthesis technology of polyamine products, and also the raw material for synthesizing taurine and piperazine products;
  • DEA * HC1 is a colorless or yellowish thick liquid for Surfactants, herbicides, dispersants and softeners are also the raw materials for the production of morpholine products.
  • TEA ⁇ HC1 is a chemical weapons raw material used to measure tin and antimony. It is also indispensable for softeners, synthetic resins, biochemical reagents, etc. Chemical materials.
  • the ethanolamine hydrochloride is further processed to obtain the co-product ethanolamine: monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA).
  • Ethanolamine is an important petrochemical raw material and has a wide range of applications. It is one of the important fine organic chemical raw materials, mainly used in the preparation of medicines, pesticides, as surfactants, polyurethane additives, air purifiers, rubber processing aids, Textile auxiliaries, cosmetics, antifreeze auxiliaries, cement accelerators, petroleum additives, leather softeners, lubricant anticorrosives, anti-carbon additives and chemical weapons.
  • Three homologues in the synthesis of ethanolamine can be obtained by high vacuum distillation.
  • the existing process generally performs the reaction in a tubular reactor at 8 MPa and 100 to 150 ° C; the separation technology uses high pressure steam as a heat source, mode heater heat transfer, and a special high-efficiency filler rectification device; High, it is likely to cause EO to self-polymerize to form a high polymer.
  • Ethanolamine products are heat-sensitive substances. Especially for TEA, the change in chromaticity and its series of side reactions and the formation of complex high-boiling substances have attracted the attention of scholars at home and abroad.
  • the above methods for producing ethanolamine products mainly have the following disadvantages: 1.
  • the reaction temperature is relatively high, the side reaction is increased, and the product quality and yield are affected; 2.
  • the energy consumption is high, and the production cost is increased; 3.
  • the ethanolamine hydrochloride is further prepared from ethanolamine.
  • the salt method can not meet the needs of the domestic market; 4, the separation technology is cumbersome, can not guarantee the product, especially the quality of TEA * HC1, TEA, 5, the production cost of the products involved is high, lack of market competitiveness. Therefore, in order to adapt to market demand, participate in international competition, improve production methods, optimize process conditions, and reduce production costs; process needs to improve reaction selectivity, increase the relative output of certain products, and increase product value.
  • the object of the present invention is to provide a high-quality, energy-saving and environmentally friendly method for preparing ethanolamine hydrochloride and co-product ethanolamine, which solves the problems of high reaction temperature, high side reaction, low efficiency, difficulty in dehydration and energy consumption in the prior art.
  • the reaction conditions are easier, the equipment investment is less, the cost is significantly reduced, and the by-product is salt, which can be recycled and comprehensively utilized.
  • the technical scheme adopted by the present invention is as follows:
  • the method for preparing the ethanolamine hydrochloride salt is as follows:
  • Step 3 After recovering methanol from the washing liquid, it is combined with the filtrate, and the remaining raw material EO is again introduced under stirring, and the temperature is gradually increased to 70 to 100 ° C after the temperature is controlled. After the reaction is completed, the EO recovery is removed, and the water is removed to room temperature under reduced pressure, and ethanol is filtered. Wash, drain, dry to obtain TEA, * HCL; After the ethanol in the washing liquid is recovered, the washing liquid and the filtrate are combined to obtain an aqueous solution of DEA ⁇ HC1, and DEA ⁇ HC1 is obtained after removing water.
  • the TEA, HCl prepared by the above method is dissolved in methanol or water as a solvent, and then decolorized and filtered by carbonization.
  • the filtrate is recovered by methanol, and then cooled and crystallized, and dried by filtration to obtain white TEA, *HC1 product.
  • the method for preparing the co-product ethanolamine by using the above ethanolamine hydrochloride is as follows: The MEA ⁇ HC1 obtained is added to an equivalent 30% aqueous sodium hydroxide solution in portions, and the MEA is released under stirring at 60 ° C. The aqueous solution is dehydrated after removing water, controlled at 70 to 72 ° C, and fractionated under vacuum at 12 mm H g , and the fraction is obtained as MEA product.
  • the method for preparing the co-product ethanolamine by using the above ethanolamine hydrochloride is as follows: in the obtained aqueous solution of DEA-HC1, the equivalent sodium hydroxide is added in portions under stirring, and the DEA is released at 100 ° C. The aqueous solution is dehydrated after removing water, controlled at 139 ⁇ 141 °C, and fractionated under vacuum of 10 mmHg. The fraction is DEA product.
  • the method for preparing the co-product ethanolamine by using the above ethanolamine hydrochloride is as follows: the obtained TEA, ⁇ HCl is added to an equivalent amount of sodium methoxide methanol solution in portions, and the TEA is released under stirring at 60 ° C. The methanol solution is filtered to remove sodium chloride, and the methanol is recovered. Then, the mixture is controlled at 149 to 151 ° C and vacuumed at 2 mmH g to fractionate the fraction, which is a TEA product.
  • the advantages and positive effects of the present invention are: Since the present invention is designed for the urgent need of MEA*HC1, TEA ⁇ HCl and high quality TEA and DEA in some industries, it is easy to implement.
  • the method uses ammonium chloride as a raw material, reacts with EO at 50-60 ° C, adjusts the appropriate ratio to synthesize MEA. HC1 and part of DEA. HC1, and separates MEA * HC1 by differential filtration of its physical properties. Thereafter, the filtrate is continuously added to EO, and the reaction pressure must be such that vaporization of EO at the reaction temperature can be prevented, and the reaction temperature can be raised to 100 ° C to maximize the conversion of TEA - HCl.
  • TEA * HC1 can be added to the equivalent of sodium methoxide methanol solution under anhydrous conditions. In the methanol solution of TEA, it can be fractionated to obtain TEA under certain conditions.
  • the present invention has the following features:
  • EO and ammonium chloride addition reaction temperature is relatively low, equipment requirements are not high, less investment; low reaction temperature also avoids EO self-polymerization to produce high boilers;
  • the water in the present invention is not only one of the catalysts but also a solvent, but it is used in a small amount and can be recycled. As long as continuous production, the main aqueous filtrate can be recycled, and it is not necessary to newly increase the water, thereby avoiding dehydration.
  • This process increases energy consumption and achieves the purpose of energy saving; in particular, the process can produce TEA, HC1 and TEA with good product quality and high added value, and the product is particularly economical; Due to the high temperature, the decomposition of TEA leads to the formation of colored products to ensure product quality. 7.
  • the only by-product of this process is salt, which can be recycled and comprehensively utilized, in line with green chemical technology.
  • Step 3 After recovering methanol from the washing liquid, it is combined with the filtrate, and the remaining raw material EO is again introduced under stirring, and the temperature is gradually increased to 70 to 100 ° C after the temperature is controlled. After the reaction is completed, the EO recovery is removed, and the water is removed to room temperature under reduced pressure, and ethanol is filtered. Wash, drain, dry to obtain TEA, * HCL; After the ethanol in the washing liquid is recovered, the washing liquid and the filtrate are combined to obtain an aqueous solution of DEA ⁇ HC1, and DEA ⁇ HC1 is obtained after removing water.
  • the above method is used to prepare TEA, * HC1 is dissolved in methanol or water as a solvent, and then decolorized and filtered by carbonization. After recovering methanol from the filtrate, it is cooled and crystallized, and dried by filtration to obtain white TEA, *HC1 product.
  • the method for preparing the co-product ethanolamine by using the above ethanolamine hydrochloride is as follows: The above MEA ⁇ HC1 obtained is added to an equivalent 30% aqueous sodium hydroxide solution in portions, and the MEA is released under stirring at 60 ° C. The aqueous solution is dehydrated after removing water, controlled at 70 ⁇ 72 ° C, and fractionated under vacuum of 12 mmH g . The fraction is obtained as MEA product.
  • the method for preparing the co-product ethanolamine by using the above ethanolamine hydrochloride is as follows: In the obtained aqueous solution of DEA-HC1, the equivalent sodium hydroxide is added in portions under stirring, and the aqueous solution of DEA is released at 100 ° C. After removing water, the salt is removed, and the fraction is distilled under the control of 139 ⁇ 141 °C and vacuum lOmmHg. The fraction is the DEA product.
  • the method for preparing the co-product ethanolamine by using the above ethanolamine hydrochloride is as follows: The above-mentioned TEA, ⁇ HCl is added in portions to an equivalent amount of sodium methoxide methanol solution, and TEA methanol is released under stirring at 60 ° C The solution is filtered to remove sodium chloride, and the methanol is recovered, and then fractionated by controlling at 149 to 151 ° C under vacuum of 2 mmH g , and the fraction is a TEA product.
  • Example 1 Simultaneous preparation of mono-, di-, and triethanolamine hydrochloride
  • the methanol is recovered from the washing liquid, it is combined with the filtrate obtained in the reaction vessel, and the remaining 264 g (total amount of 468 g) is injected into the reactor, and the temperature is gradually controlled to control at 70 ° C to 100 ° C until the reaction is completed. Exclude unreacted EO recovery, then blow nitrogen into the kettle to remove the residual amount, dehydrate the water until there is crystallization, filter to room temperature, drain, a small amount of ethanol, and dry to obtain industrial grade TEA * HC1 About 297 grams, yield 40%.
  • HC1 with a content of about 95%, which can be put on the market.
  • the above-mentioned industrial grade TEA ⁇ HC1 is heated and dissolved in methanol as a solvent, and activated carbon is filtered. After recovering methanol from the filtrate, the crystals are cooled and filtered to obtain a white crystal reagent grade TEA « HC1.
  • the product quality meets the reagent standard.
  • the filtrate and washing liquid are combined and used for the next batch of feed.
  • the TEA ⁇ HC1 obtained in Example 3 is about 100 g, which is dissolved in water, decolorized and filtered by carbonization. After recovering methanol from the filtrate, it is cooled to room temperature and crystallized and filtered. A small amount of ethanol is rinsed and dried to obtain reagent grade TEA ⁇ HC1. The quality meets the reagent standards.
  • Example 3 The final combined filtrate and washing solution of Example 3 were concentrated under reduced pressure to remove water. After removing about one-half of the amount of water, the insoluble matter was filtered off at room temperature, and the filtrate was further decompressed to remove water.
  • DEA * HC1 with a thick liquid content of about 95%, adding equivalent sodium hydroxide in a batch with stirring, freeing DEA at 100 °C, filtering out NaCl, distilling under reduced pressure, controlling 139 ⁇ 141 °C, vacuum
  • the fraction of lOmmHg is 99% DEA, and the product quality meets the standard.
  • Example 4 The 178 g of MEA ⁇ HC1 obtained in Example 4 was added to an equivalent amount of 30% aqueous solution of sodium hydroxide, and the mixture was gradually heated to dissolve and dissolve the MEA, concentrated to remove water, and filtered to remove sodium chloride, followed by decompression. Distillation, control vacuum 12mmHg, take the 70 ⁇ 72 °C distillate, which is MEA, the product quality meets the standard.
  • Example 2 Approximately 100 g of the reagent grade TEA-HC1 obtained in Example 1 was added to a methanol solution containing an equivalent amount of sodium methoxide in portions, and the mixture was refluxed and neutralized for 1 hour with stirring, then cooled to room temperature, filtered to remove salts, and methanol was recovered.
  • the molecular distillation technique is used to control the fraction at 100 ° C, which is TEA, and the content is not less than 99.5%.
  • the present invention can separately produce TEA, HC1 and TEA with good product quality and high added value according to the following steps, and the specific operation steps are as follows.
  • Example 9 The mixture of the combined solutions of Example 9 was stirred and 214 g of ammonium chloride was added thereto, and 468 g of EO was gradually injected. The following operation of Example 9 gave a theoretical amount of TEA ⁇ HC1. Adding it to a methanol solution containing equivalent sodium methoxide for 1 hour to obtain a methanol solution of TEA, filtering to room temperature, removing the salt, recovering methanol, and then cutting the fraction of 149 to 151 ° C under vacuum of 2 mmHg, the content is about 99% of 579 grams of TEA, yield 97%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供一种制备乙醇胺盐酸盐及联产品乙醇胺的方法。它采用氯化铵为原料,与EO进行加成反应,调整适当配比先合成MEA·HCL和部分DEA·HCL,利用其物理性质的差别,将MEA·HCL分离出来。之后将滤液继续加入EO,密闭反应釜,控制升温逐渐反应,并使反应压力必须达到能够防止该反应温度下EO的气化,反应温度可升至100℃左右,使TEA·HCL转化率最大化。降至室温过滤,干燥得TEA·HCL;洗液与滤液合并去水后,得DEA·HCl。根据市场需要又可将乙醇胺盐酸盐在氢氧化钠或甲醇钠存在下,分别游离得到MEA、DEA和TEA。

Description

制备乙醇胺盐酸盐及联产品乙醇胺的方法
【技术领域】
本发明涉及一种石油化工原料的制备方法, 特别是一种由相对价格便宜的氯化铵与环 氧乙烷进行加成反应直接制备乙醇胺盐酸盐及联产品乙醇胺的方法。
【背景技术】
乙醇胺盐酸盐。 是一乙醇胺盐酸盐 (MEA * HC1)、 二乙醇胺盐酸盐 (DEA * HC1)、 三 乙醇胺盐酸盐(TEA * HC1) 的总称, 它的直接制备方法尚未见到文献报导。 现有乙醇胺盐 酸盐一般是采用乙醇胺类产品作为生产原料,分别滴加到等摩尔的浓盐酸内进行成盐反应, 然后减压脱水, 控制温度为 50〜150°C而得。其中 MEA * HC1为阴离子表面活性剂, 是多胺 类产品绿色化工合成技术的原料, 也是合成牛磺酸、 哌嗪类产品的原料; DEA * HC1 为无 色或微黄色浓稠液体, 用于表面活性剂、 除草剂、 分散剂和柔软剂, 也是吗啉系列产品生 产原料; TEA · HC1 是化学武器原料, 用于测量锡和锑, 也是软化剂、 合成树脂、 生化试 剂等不可或缺的化学原料。 乙醇胺盐酸盐经进一步加工, 即可得到联产品乙醇胺: 一乙醇 胺 (MEA)、 二乙醇胺 (DEA)、 三乙醇胺 (TEA) 共三种。
自 1945年以来, 随着环氧乙烷(EO)工业的发展, 当今世界合成乙醇胺普遍采用 EO 和过量氨的反应路线 (详见 "乙醇胺的反应与分离技术"《化学工业》 2009年第 27卷第 6 期 46-49页 )。 乙醇胺是重要的石油化工原料, 具有广泛的用途, 作为重要的精细有机化 工原料之一, 主要用于制备医药、 农药, 用作表面活性剂、 聚氨酯助剂、 空气净化剂、 橡 胶加工助剂、 纺织助剂、 化妆品、 防冻液助剂、 水泥促凝剂、 石油添加剂、 皮革软化剂、 润滑油抗腐蚀剂、 防积碳添加剂和化学武器等领域。 合成乙醇胺中的三种同系物, 经高真 空蒸馏可分别得到。 现有工艺一般是在 8Mpa和 100〜150°C条件下管式反应器内进行反应; 分离技术采用高压蒸汽做热源, 模式加热器传热, 特殊高效填料的精馏装置; 工艺过程相 对温度较高, 很可能引起 EO 自聚形成高聚物。 乙醇胺产品属于热敏性物质, TEA尤其如 此, 表现在色度的变化及其所引起的一系列副反应以及结构复杂的高沸物产生, 已经引起 国内外学者的注意。如授权公告号为 CN1264807C的"一种生产三乙醇胺产品的方法"、 授 权公告号为 CN1195731C的 "纯化三乙醇胺的方法"、授权公告号为 CN101014563B的 "制 备三乙醇胺的方法"均有报导。
上述生产乙醇胺产品的方法主要存在以下不足: 1、 反应温度相对较高 , 副反应增多, 影响产品质量和收率; 2、 能耗高, 加大生产成本; 3、 由乙醇胺进一步制备乙醇胺盐酸盐 的方法不能满足国内市场需要; 4、 分离技术繁琐, 不能保障产品, 特别是 TEA * HC1 、 TEA的质量, 5、 所涉及产品生产成本偏高, 缺乏市场竞争力。 因此为了适应市场需求, 参与国际竞争, 要改进生产方法, 优化工艺条件, 降低生产 成本; 工艺过程需要提高反应选择性, 增加某些产品的相对产量, 以提高产品价值。
【发明内容】
本发明的目的就是提供一种优质、 节能、 环保的制备乙醇胺盐酸盐及联产品乙醇胺的 方法, 它解决了现有技术存在的反应温度高 , 副反应多, 效率低、 脱水困难、 能耗高等问 题, 其反应条件较易, 设备投资少, 显著降低成本, 副产品是食盐, 可以回收综合利用。
本发明所采用的技术方案是: 该制备乙醇胺盐酸盐的方法操作步骤如下:
步骤一、 按摩尔比为水:氯化铵: EO=2.100: 1: ( 1.135-2.66), 选取原料; 步骤二、 将原料水、 氯化铵加入反应釜内, 再分两次加入原料 EO, 首次加入原料 EO 总量的 28%, 控制 50〜60°C进行密闭加成反应, 待釜压为零, 即反应完毕, 釜内通入氮气 吹除残余原料 EO;减压去水室温下过滤,甲醇洗、抽干、控温 50°C真空干燥得 MEA -HCL;
步骤三、洗液回收甲醇后与滤液合并, 搅拌下再次通入余下的原料 EO, 控制升温逐渐 反应至 70〜100°C ; 反应完毕排除 EO回收之后, 减压去水降至室温过滤, 乙醇洗、 抽干, 干燥得 TEA, * HCL; 洗液中乙醇回收后, 洗液与滤液合并, 得 DEA · HC1的水溶液, 去水 后得 DEA · HC1。
将上述方法制得的所述 TEA, · HCl以甲醇或水作溶剂, 加热溶解后加炭脱色过滤, 滤 液回收甲醇后, 冷却结晶析出, 过滤干燥后得白色 TEA, * HC1产品。
利用上述乙醇胺盐酸盐制备联产品乙醇胺的方法, 其操作步骤如下: 将制得的所述 MEA · HC1分次加入到当量的 30%氢氧化钠水溶液中, 于 60°C搅拌下游离出 MEA的水溶 液, 去水后除盐, 控制 70〜72°C、 真空 12mmHg下分馏, 馏分即得 MEA产品。
利用上述乙醇胺盐酸盐制备联产品乙醇胺的方法, 其操作步骤如下: 将制得的所述 DEA - HC1的水溶液中, 搅拌下分次加入当量的氢氧化钠, 于 100°C游离出 DEA的水溶液, 去水后除盐, 控制 139〜141 °C、 真空 lOmmHg下分馏, 馏分即为 DEA产品。
利用上述乙醇胺盐酸盐制备联产品乙醇胺的方法, 其操作步骤如下: 将制得的所述 TEA, · HCl分次加入到当量的甲醇钠甲醇溶液中, 于 60°C搅拌下游离出 TEA的甲醇溶液, 滤除氯化钠, 回收甲醇, 之后控制 149〜151 °C、 真空 2mmHg下分馏, 馏分即为 TEA产品。
本发明具有的优点及积极效果是: 由于本发明是针对当前某些行业对 MEA * HC1、 TEA · HCl及质量较高的 TEA、 DEA的急需而设计, 所以很容易实施。 该方法采用氯化铵 为原料, 与 EO于 50〜60°C反应, 调整适当配比先合成 MEA . HC1和部分 DEA . HC1, 利 用其物理性质的差别过滤将 MEA * HC1分离出来。 之后将滤液继续加入 EO, 并使反应压 力必须达到能够防止该反应温度下 EO的气化, 反应温度可升至 100 °C, 使 TEA - HCl转化 率最大化。根据市场需要又可将 TEA * HC1在 无水条件下, 加入到当量的甲醇钠甲醇溶液 中, 游离得 TEA的甲醇溶液, 在一定条件下可分馏得 TEA。
因此, 本发明具有以下特点:
一、 采用碱厂副产工业级氯化铵代替液氨, 成本约降低三成, 且氯化铵组分中氯化氢 也派上用场, 用以形成乙醇胺的盐酸盐;
二、 EO与氯化铵加成反应温度相对较低, 设备要求不高, 投资少; 反应温度低也避免 EO自聚产生高沸物;
三、 整个反应过程在均相下进行。 很快生成液态的 DEA * HC1可作为溶剂, 因液态的 DEA · HC1与其它先后生成的 MEA · HCL和 TEA, · HC1均含有相同的官能团, 即羟基 [一 OH], 故其不仅可以互溶, 而且能够利用其物理特性差异较大而各自分离;
四、 分离技术制备 TEA时, 控制 150°C进行, 使 TEA这一更为热敏性物质可防止其 进一步产生副反应及其变色问题;
五、 原工艺由于存在大量水, 乙醇胺中脱水是非常困难。 常见的化合物中属水的汽化 热最高 (539.6卡 /克), 因此使得正个生产 50%以上的能耗花在脱水这道工序上; 另外在粗 馏、 精馏和不断循环蒸发过程也增加能耗。 而本发明中的水则既是催化剂之一, 也是溶剂, 但其用量少, 且可以循环使用, 只要连续生产, 其主要含水的滤液就可以循环使用, 不必新 增加用水, 从而避免了因脱水这一过程而增加能耗, 达到节能的目的; 特别要指出的是本 工艺可以单独生产出产品质量好, 附加值较高的 TEA, · HC1和 TEA, 产品尤为经济; 六、 本工艺可避免因高温使 TEA,分解导致有色产物的生成, 确保产品质量; 七、 本工艺唯一副产品是食盐, 可以回收综合利用, 符合绿色化工技术。
【具体实施方式】
以下根据具体实施例详细说明本发明的内容。 该制备乙醇胺盐酸盐的方法操作步骤如 下:
步骤一、 按摩尔比为水:氯化铵: EO=2.100: 1: ( 1.135-2.66), 选取原料; 步骤二、 将原料水、 氯化铵加入反应釜内, 再分两次加入原料 EO, 首次加入原料 EO 总量的 28%, 控制 50〜60°C进行密闭加成反应, 待釜压为零, 即反应完毕, 釜内通入氮气 吹除残余原料 EO;减压去水室温下过滤,甲醇洗、抽干、控温 50°C真空干燥得 MEA -HCL;
步骤三、洗液回收甲醇后与滤液合并, 搅拌下再次通入余下的原料 EO, 控制升温逐渐 反应至 70〜100°C ; 反应完毕排除 EO回收之后, 减压去水降至室温过滤, 乙醇洗、 抽干, 干燥得 TEA,* HCL; 洗液中乙醇回收后, 洗液与滤液合并, 得 DEA · HC1的水溶液, 去水 后得 DEA · HC1。
将上述方法制得 TEA, * HC1以甲醇或水作溶剂, 加热溶解后加炭脱色过滤, 滤液回收 甲醇后, 冷却结晶析出, 过滤干燥后得白色 TEA, * HC1产品。 利用上述乙醇胺盐酸盐制备联产品乙醇胺的方法, 其操作步骤如下: 将制得的上述 MEA · HC1分次加入到当量的 30%氢氧化钠水溶液中, 于 60°C搅拌下游离出 MEA的水溶 液, 去水后除盐, 控制 70〜72°C、 真空 12mmHg下分馏, 馏分即得 MEA产品。
利用上述乙醇胺盐酸盐制备联产品乙醇胺的方法, 其操作步骤如下: 将制得的上述 DEA -HC1的水溶液中, 搅拌下分次加入当量的氢氧化钠, 于 100°C游离出 DEA的水溶液, 去水后除盐, 控制 139〜141 °C、 真空 lOmmHg下分馏, 馏分即为 DEA产品。
利用上述乙醇胺盐酸盐制备联产品乙醇胺的方法, 其操作步骤如下: 将制得的上述 TEA, · HCl分次加入到当量的甲醇钠甲醇溶液中, 于 60°C搅拌下游离出 TEA的甲醇溶液, 滤除氯化钠, 回收甲醇, 之后控制 149〜151 °C、 真空 2mmHg下分馏, 馏分即为 TEA产品。 实施例 1 同时制备一、 二、 三乙醇胺盐酸盐
将 214克 (4摩尔) 氯化铵混溶于 150ml水, 于反应釜内搅拌下首次加入 204克 EO, 逐渐升温反应至 50〜60°C, 待釜压为零, 反应结束。 釜内再通入氮气吹净残余原料 EO。 减压去水降至室温折晶过滤, 少量甲醇洗, 抽干, 控温 50°C真空干燥得 195 克工业级 MEA . HC1, 收率 50%左右。
洗液回收甲醇后与上得滤液合并, 于反应釜内搅拌下, 再将余下的 264克 (总用量为 468克) EO注入, 逐渐升温控制在 70°C〜100°C反应, 直至反应结束, 排除未反应的 EO回 收, 釜内再吹入氮气除掉其残余量, 减压去水至有结晶析出, 降至室温下过滤、 抽干, 少 量乙醇淋洗, 干燥得工业级 TEA * HC1约 297克, 收率 40%。
洗液中乙醇回收后与滤液合并, 得 DEA · HC1水溶液, 将其去水后得含量 95%左右的 工业级 DEA . HC1, 可以投放市场。
根据需要将上述所得工业级 TEA · HC1, 以甲醇为溶剂加热溶解, 加活性炭滤过, 滤 液回收甲醇后, 冷却结晶, 过滤干燥后得到白色结晶的试剂级 TEA « HC1, 产品质量符合 试剂标准。
实施例 2 制备工业级一乙醇胺盐酸盐
将 214克 (4摩尔) 氯化铵混溶于 150ml水, 于反应釜内入 200克 EO, 逐渐升温反应 至 50〜60°C, 待釜压为零, 反应结束, 釜内再通入氮气吹净残余原料 EO, 减压去水, 降 至室温折晶过滤, 少量水洗抽干干燥得 234克工业级 MEA · HC1, 收率 60%左右。
上得滤液、 洗液合并, 待下批投料用。
实施例 3 制备工业级三乙醇胺盐酸盐
将 214克氯化铵混溶于上批合并的滤液与洗液中, 并分次注入 530克 EO进行加成反 应, 逐渐升温, 在 70°C〜100°C反应, 反应釜压力控制在 0.3Mpa, 后期压力开始逐渐下降, 直至不再下降时止, 反应结束, 排除过量 EO回收, 釜内再吹入氮气除掉残余原料 EO, 减 压去水, 降温析晶, 过滤、 少量乙醇淋洗, 抽干, 干燥得工业级 TEA * HC1约 668克, 收 率 90%。 洗液回收乙醇后与上得滤液合并, 备用。
实施例 4 制备试剂级三乙醇胺盐酸盐
将例 3中所得 TEA · HC1约 100克, 将其热溶解于水中, 加炭脱色过滤, 滤液回收甲 醇后, 降至室温结晶析出过滤, 少量乙醇淋洗, 干燥得试剂级 TEA · HC1, 产品质量符合 试剂标准。
实施例 5 利用上述三乙醇胺盐酸盐制备联产品三乙醇胺
取例 3中所得 TEA · HC1约 200克, 分次加入含有当量甲醇钠的甲醇溶液中搅拌下回 流中和反应 1小时, 然后降至室温游离出 TEA, 除盐, 回收甲醇, 之后蒸馏, 控制 149〜151 。C、 真空 2mmHg下, 减压分馏后得含量约 99%TEA, 在密闭容器内闭光存储, 产品质量 符合标准。
实施例 6 利用上述二乙醇胺盐酸盐制备联产品二乙醇胺
将例 3最后合并的滤液和洗液, 减压浓縮去水, 约除去二分之一量水后, 降至室温过 滤除不溶物, 滤液继续减压去水, 水基本除净得微黄色浓稠液体含量约 95%的 DEA * HC1, 搅拌下分次加入当量的氢氧化钠, 于 100°C中和反应游离出 DEA, 滤除 NaCl, 减压蒸馏, 控制 139〜141 °C、 真空 lOmmHg的馏分为含量 99%的 DEA, 产品质量符合标准。
实施例 7 利用上述一乙醇胺盐酸盐制备联产品一乙醇胺
取例 4 中所得 178克 MEA · HC1分次加入到当量的氢氧化钠量的 30%水溶液中, 边 搅拌逐渐升温溶解游离出 MEA, 浓縮去水, 降温滤除氯化钠, 之后减压蒸馏, 控制真空 12mmHg、 接取 70〜72°C左右馏分, 即为 MEA, 产品质量符合标准。
实施例 8 利用上述三乙醇胺盐酸盐制备联产品三乙醇胺
取例 1中所得试剂级 TEA -HC1约 100克, 分次加入到含有当量甲醇钠的甲醇溶液中, 搅拌下回流中和反应 1小时, 然后降至室温冷却, 过滤除盐, 回收甲醇, 之后采用分子蒸 馏技术, 控制 100°C条件下的馏分, 即为 TEA, 含量不低于 99.5%。
本发明还可以根据实际需要, 按以下步骤单独生产出产品质量好, 附加值较高的 TEA, · HC1和 TEA, 具体操作步骤如下。
实施例 9
将 214克氯化铵, 于反应釜内搅拌下混溶于 150ml水中, 逐渐注入 468克 EO, 进行加 成反应, 温度可控制在 100°C, 压力 0. 3MPa, 直到釜内压力不降时止, 反应完毕, 回收 过量 EO, 釜内再吹入氮气除掉残余原料 EO, 之后减压去水至有结晶析出, 降至室温下过 滤, 少量乙醇漂洗, 抽干、 干燥得 594克 TEA · HC1, 收率 80%。 洗液回收乙醇后与滤液 及浓縮水合并成混合液, 转下批投料用。 实施例 10
将例 9中合并成的混合液搅拌下加入 214克氯化铵, 逐渐注入 468克 EO, 以下操作同例 9 得接近理论量的 TEA · HC1。 将其加入含有当量甲醇钠的甲醇溶液中回流 1小时, 得 TEA 的甲醇溶液, 降至室温过滤, 除盐, 回收甲醇, 之后真空 2mmHg下, 截取 149〜151 °C馏分, 即得含量约为 99%的 579克 TEA, 收率 97%。

Claims

权 利 要 求
1、 一种制备乙醇胺盐酸盐的方法, 其特征在于操作步骤如下:
步骤一、 按摩尔比为水:氯化铵: EO=2.100: 1: ( 1.135-2.66), 选取原料; 步骤二、将原料水、氯化铵加入反应釜内, 再分两次加入原料 E0, 首次加入原料 EO 总量的 28%, 控制 50〜60°C进行密闭加成反应, 待釜压为零, 即反应完毕, 釜内通入氮 气吹除残余原料 EO ; 减压去水室温下过滤, 甲醇洗、 抽干、 控温 50 °C真空干燥得 MEA · HCL;
步骤三、 洗液回收甲醇后与滤液合并, 搅拌下再次通入余下的原料 EO, 控制升温逐 渐反应至 70〜100°C ; 反应完毕排除 EO回收之后, 减压去水降至室温过滤, 乙醇洗、 抽 干, 干燥得 TEA, * HCL; 洗液中乙醇回收后, 洗液与滤液合并, 得 DEA * HC1的水溶液, 去水后得 DEA · HCL
2、 根据权利要求 1 所述制备乙醇胺盐酸盐的方法, 其特征在于: 将制得的所述 TEA, * HCL以甲醇或水作溶剂, 加热溶解后加炭脱色过滤, 滤液回收甲醇后, 冷却结晶 析出, 过滤干燥后得白色 TEA, · HCL产品。
3、 一种利用权利要求 1所述乙醇胺盐酸盐制备联产品乙醇胺的方法, 其特征在于操 作步骤如下: 将制得的所述 MEA * HCL 分次加入到当量的 30%氢氧化钠水溶液中, 于 60°C搅拌下游离出 MEA的水溶液, 去水后除盐, 控制 70〜72°C、 真空 12mmHg下分馏, 馏分即得 MEA产品。
4、 一种利用权利要求 1所述乙醇胺盐酸盐制备联产品乙醇胺的方法, 其特征在于操 作步骤如下: 将制得的所述 DEA · HC1的水溶液中, 搅拌下分次加入当量的氢氧化钠, 于 100 °C游离出 DEA的水溶液, 去水后除盐, 控制 139〜141 °C、 真空 lOmmHg下分馏, 馏 分即为 DEA产品。
5、 一种利用权利要求 1所述乙醇胺盐酸盐制备联产品乙醇胺的方法, 其特征在于操 作步骤如下: 将制得的所述 TEA, * HCL分次加入到当量的甲醇钠甲醇溶液中, 于 60°C搅 拌下游离出 TEA的甲醇溶液, 滤除氯化钠, 回收甲醇, 之后控制 149〜151 °C、真空 2mmHg 下分馏, 馏分即为 TEA产品。
PCT/CN2011/077243 2011-07-05 2011-07-18 制备乙醇胺盐酸盐及联产品乙醇胺的方法 WO2013004026A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110185493.7 2011-07-05
CN 201110185493 CN102304055B (zh) 2011-07-05 2011-07-05 制备乙醇胺盐酸盐及联产品乙醇胺的方法

Publications (1)

Publication Number Publication Date
WO2013004026A1 true WO2013004026A1 (zh) 2013-01-10

Family

ID=45377996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077243 WO2013004026A1 (zh) 2011-07-05 2011-07-18 制备乙醇胺盐酸盐及联产品乙醇胺的方法

Country Status (2)

Country Link
CN (1) CN102304055B (zh)
WO (1) WO2013004026A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659608B (zh) * 2012-04-28 2016-02-24 薛荔 制备新丙醇胺的方法
CN105218385A (zh) * 2014-07-04 2016-01-06 沈阳斯特朗外加剂有限公司 一种异丙醇胺的制备方法
CN104710124B (zh) * 2015-02-03 2017-06-06 辽宁鑫隆科技有限公司 利用工业废酸和铵盐制备水泥助磨剂及其方法
CN106116202B (zh) * 2016-06-17 2019-01-25 同济大学 含有废弃植物油的高性能水泥助磨剂及其制备与使用方法
CN108484258A (zh) * 2018-04-03 2018-09-04 金华市野泉园艺技术有限公司 海滨木槿复合肥的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2186392A (en) * 1937-06-14 1940-01-09 Shell Dev Production of ammono alcohols
JPH06247910A (ja) * 1993-02-22 1994-09-06 Mitsui Toatsu Chem Inc アルカノールアミン類の製造方法
CN1195731C (zh) * 1998-12-01 2005-04-06 巴斯福股份公司 纯化三乙醇胺的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613290A (zh) * 2009-05-12 2009-12-30 嘉兴金燕化工有限公司 乙醇胺生产方法的改进

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2186392A (en) * 1937-06-14 1940-01-09 Shell Dev Production of ammono alcohols
JPH06247910A (ja) * 1993-02-22 1994-09-06 Mitsui Toatsu Chem Inc アルカノールアミン類の製造方法
CN1195731C (zh) * 1998-12-01 2005-04-06 巴斯福股份公司 纯化三乙醇胺的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MA, HONGLIANG ET AL.: "Trial production of high content triethanolamine (reagent grade)", LIAONING CHEMICAL INDUSTRY, vol. 5, 1982, pages 8 - 10 *
MATHEUS, T.D.G. ET AL.: "Bipolar membrane electrodialysis for the alkalinizatiion of ethanolamine salts", JOURNAL OF MEMBRANE SCIENCE, vol. 378, 20 May 2011 (2011-05-20), pages 415 - 424 *

Also Published As

Publication number Publication date
CN102304055B (zh) 2013-10-16
CN102304055A (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2013004026A1 (zh) 制备乙醇胺盐酸盐及联产品乙醇胺的方法
WO2018121042A1 (zh) 一种高品质精己二胺的生产方法
CN105585501B (zh) 乙二胺生产方法
CN104177250A (zh) 一种由乙醇酸甲酯生产乙醇酸的工艺
CN111320572B (zh) 一种取代吡啶的制备方法
CN106631684A (zh) 一种用乙酸仲丁酯水解制备仲丁醇的方法
CN106631699A (zh) 一种制备仲丁醇的方法
CN110252395A (zh) 一种用于制备高纯度牛磺酸的催化剂及其应用
CN102452934B (zh) 一种乙酸仲丁酯的制备方法
CN110818573B (zh) 一种3,3’-二氯-4,4’-二氨基二苯基甲烷的制备方法
CN106631689A (zh) 一种仲丁醇的制备方法
CN106518620B (zh) 一种制备仲丁醇的方法及装置
CN105585503B (zh) 以乙醇胺和液氨为原料生产乙二胺的方法
CN103254101A (zh) 制备氨基甲酸甲酯的方法及设备
CN101307019B (zh) N-氨基-3-氮杂双环[3,3,0]辛烷盐酸盐的制备方法
CN104230941B (zh) 三乙烯二胺的生产方法
CN111320571B (zh) 一种制备4-二甲氨基吡啶的方法
CN102976939B (zh) 丙酸酯的制备方法
CN103319383B (zh) 一种对甲砜基苯甲酸的制备方法
CN113042051A (zh) 一种碳掺杂铜催化剂及其制备方法与它的用途
CN102115431B (zh) 2,2-二乙氧基乙醇的合成方法
CN112574007B (zh) 一种新型环己亚胺类离子液体及催化柠檬酸丁酯和双酚f合成的方法
CN110590580A (zh) 增产一乙醇胺和二乙醇胺的方法
CN102659608B (zh) 制备新丙醇胺的方法
CN102311362A (zh) 肼乙酸乙酯盐酸盐的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205 DATED 26-05-2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11869050

Country of ref document: EP

Kind code of ref document: A1