WO2013002552A2 - 시간-온도 지시계, 시간-온도 지시계의 제조방법, 시간-온도 지시계를 이용한 품질보증 시스템 및 품질보증 시스템을 이용한 품질보증 방법 - Google Patents

시간-온도 지시계, 시간-온도 지시계의 제조방법, 시간-온도 지시계를 이용한 품질보증 시스템 및 품질보증 시스템을 이용한 품질보증 방법 Download PDF

Info

Publication number
WO2013002552A2
WO2013002552A2 PCT/KR2012/005083 KR2012005083W WO2013002552A2 WO 2013002552 A2 WO2013002552 A2 WO 2013002552A2 KR 2012005083 W KR2012005083 W KR 2012005083W WO 2013002552 A2 WO2013002552 A2 WO 2013002552A2
Authority
WO
WIPO (PCT)
Prior art keywords
time
temperature indicator
code
data value
color
Prior art date
Application number
PCT/KR2012/005083
Other languages
English (en)
French (fr)
Other versions
WO2013002552A3 (ko
Inventor
이승주
정승원
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Priority to US14/127,311 priority Critical patent/US9476083B2/en
Publication of WO2013002552A2 publication Critical patent/WO2013002552A2/ko
Publication of WO2013002552A3 publication Critical patent/WO2013002552A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/229Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating time/temperature history
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Definitions

  • the present invention is a time-temperature indicator in the form of a two-dimensional code that changes color or shape according to time and temperature conditions, a manufacturing method of a time-temperature indicator, a quality assurance system using a time-temperature indicator and a quality assurance system It is about a method.
  • the quality of many products sold to consumers has a range of environmental conditions, and the value of the products is deteriorated due to deterioration or the like at inappropriate temperature conditions exceeding those conditions.
  • the expiration date has been written on the packaging material, but it is impossible to accurately determine the condition of the product by entering the expiration date.
  • the state of perishable products generally correlates not only with time but also with conditions such as temperature.
  • the expiration date of the expiration date can be easily operated, which is insufficient to give sufficient confidence to the consumer consuming the product.
  • QR Quality Response
  • a finder pattern is disposed at the corner of the corner, so that it can be recognized in any direction through 360 degrees, and in the case of version 40, up to 23,648 bits of information can be recorded.
  • QR codes are displayed on signs, newspaper articles, etc., and are used to convey information.
  • the present invention provides a time-temperature indicator, a method of manufacturing the same, and a time-temperature indicator to promptly and accurately determine whether or not the product is exposed to a temperature or time condition outside the permitted range in response to the above-described demand. It provides a quality assurance system and a quality assurance method using the same.
  • the present invention includes a substrate having a nanobead containing an microorganism producing an acidic biological product using a nutrient and a substrate having an adhesive layer and a cover film having a fixed water activity (Aw) for activation of the microorganism. It provides a time-temperature indicator, characterized in that.
  • the present invention a) Lactobacillus genus ( Lactobacillus ), Leuconostoc genus and Weissella genus any one of the genus Lactobacillus ( Lactobacillus ) to produce a lactic acid using the nutrients, and the lactic acid bacteria Mixing the indicator indicating the color change by using the immobilizing lactic acid bacteria and the immobilizing substance to fix the indicator, and the nutrient component; b) spraying the mixed material in a calcium salt solution or a strontium salt solution, and then leaving the mixture to obtain nanobeads in a gel state; c) applying and immobilizing nanobeads containing the diffusible biological product producing microorganisms in a single particle layer on the surface of the substrate with the adhesive layer using air spray; And d) contacting the nanobeads with a cover film consisting of a polypropylene film, an adhesive, and a water-soluble gel comprising a saturated salt material to maintain a water activity
  • the present invention also provides a time-temperature indicator;
  • a terminal having a camera module for photographing the two-dimensional code, a code recognition unit for decoding the image of the photographed two-dimensional code, and a communication module for transmitting code data from which the two-dimensional code is decoded;
  • a color judgment DB including the color information of the color change of the time-temperature indicator or the product information DB of the product to which the time-temperature indicator is attached. It provides a quality assurance system using a time-temperature indicator, characterized in that it comprises a central server for transmitting the color information or the product information corresponding to the code data to the terminal.
  • the present invention comprises the steps of: a) generating an image of the two-dimensional code formed in the time-temperature indicator of claim 2 using a camera module provided in the terminal; b) decoding the generated image of the two-dimensional code, and transmitting the coded data of the decoded two-dimensional code to a central server; c) the code data in the central server having a color determination DB including color information on the color change of the time-temperature indicator and a product information DB containing product information on the product with the time-temperature indicator; Retrieving the color information or the product information corresponding to the; And d) transmitting the extracted color information or the product information to the terminal.
  • FIG. 1 is a perspective view of a time-temperature indicator in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1.
  • FIG. 3 is a diagram illustrating that a two-dimensional code formed by nanobeads is modified.
  • FIGS. 4 and 5 are flowcharts illustrating a manufacturing process of a time-temperature indicator according to a preferred embodiment of the present invention.
  • FIG. 6 is a diagram schematically illustrating a quality assurance system using a time-temperature indicator according to a preferred embodiment of the present invention.
  • FIG. 7 is a block diagram of a terminal and a central server.
  • FIG. 8 is a flowchart illustrating a quality assurance method using a quality assurance system according to a preferred embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a screen on which color information is output.
  • the present invention generates two-dimensional codes using microbial time-temperature indicators (MTTIs) that change color in a time- and temperature-dependent manner, and uses them to quickly check product quality. .
  • MTTIs microbial time-temperature indicators
  • Two-dimensional codes can be generated by immobilizing pH indicators, microorganisms, and nutrients to nano-sized, which can be restricted by the naked eye or a predetermined terminal at any place from the production stage to the end consumer. It can be used as a tamper-proof label formatted to recognize food deteriorated by exposure to time or temperature above the range.
  • FIG. 1 is a perspective view of a time-temperature indicator according to a preferred embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1.
  • time-temperature indicator 100 according to a preferred embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • Time-temperature indicator 100 includes a nanobead 110, the substrate 120 and the cover film 130.
  • the nanobead 110 contains microorganisms that generate lactic acid using nutrients, indicators indicating color change by the lactic acid generated, immobilization materials for fixing the microorganisms and the indicators, and the nutrients.
  • the microorganism may be any one of the lactic acid bacteria of the genus Lactobacillus ( Lactobacillus ), Leuconostoc ( Weissella ) genus.
  • the cold-cooled lactic acid bacteria are inactivated at a temperature of 5 ° C or lower, and gradually activated in a range of 5-15 ° C. Therefore, when the time-temperature indicator 100 using the above-mentioned cold-acting lactic acid bacteria is applied to a product such as a medicine or a food that should be stored and distributed in a state of maintaining freshness at a low temperature, the storage and distribution state of the product. You can check exactly.
  • the pH indicator may use an acid-based reagent whose color is changed by the lactic acid (lactic acid) generated by the above-mentioned cold-acting lactic acid bacteria using nutrients. If it does not affect microorganisms, any type of acid-based reagent may be used. You may.
  • any one or two or more selected from alginic acid, agar, carrageenan and polyacrylamide may be used.
  • Such nanobeads 110 are preferably formed with a diameter of 10 ⁇ 35nm.
  • the substrate 120 has an adhesive layer 122 on the surface on which the nanobeads 110 will be applied.
  • the adhesive layer 122 provided on the substrate 120 may be formed by crosslinking a first polymer having a butadiene skeleton portion and a second polymer different from the first polymer in the presence of an organic peroxide.
  • the substrate 120 may be formed of metal, nonferrous metal, ceramic, plastic, and paper.
  • the cover film 130 is made of a water-soluble gel containing a polypropylene film, an adhesive, and a saturated salt material.
  • the cover film 130 maintains water activity of 0.98 or more and serves to provide water when the time-temperature hysteresis clock 100 is activated.
  • the nanobead 110 which is bonded to the surface of the substrate 120 by the adhesive layer 122, forms on the surface of the substrate 120 to form a portion of the two-dimensional code or a portion of the two-dimensional code as shown in FIG. 1.
  • To a single particle layer That is, by using the nanobead 110 as a kind of ink to form a portion of the two-dimensional code or two-dimensional code on the surface of the substrate 120.
  • the two-dimensional code formed by the nanobead 110 is made recognizable through code recognition means.
  • the two-dimensional code is a two-dimensional code such as QR code, micro QR code, PDF417 code, Data Matrix code, Maxi code, veri code, cadablock code, aztec code, calla code, BP04 State code and Postnet code. Can be done.
  • the two-dimensional code formed by the nanobead 110 is a QR code or a micro QR code.
  • FIG. 3 is a diagram illustrating that a two-dimensional code formed by nanobeads is modified.
  • the two-dimensional code formed using the nanobead 110 changes color or contrast of the nanobead 110 when the microbe departs from a predetermined time or temperature condition in which the microbe remains inactive.
  • the shape will also change.
  • the time-temperature indicator 100 is out of time or temperature conditions When exposed to, the color or contrast of the nanobead 110 is changed so that the QR code of Figure 3 (a) is transformed into a QR code having a different shape from the beginning as shown in Figure 3 (b).
  • the time-temperature indicator 100 will have a form of a QR code label printed with a QR code having a variable code shape.
  • the QR code before and after the transformation has a different data value, by using it can easily grasp the product status information and distribution process information over time.
  • FIG. 4A to 4C are flowcharts illustrating a process of manufacturing a time-temperature indicator according to a preferred embodiment of the present invention
  • FIG. 5 is a view for explaining fixing nanoparticles to a substrate by a single particle layer.
  • microorganisms that generate lactic acid using nutrients that is, Lactobacillus ( Lactobacillus ) genus, Leuconostoc genus and Wincella ( Weissella ) is mixed with any one microorganism of the genus Lactobacillus and the indicator showing the color change by the Lactobacillus lactic acid bacteria and the immobilized lactic acid bacteria and the immobilizing substances and nutrients for fixing the indicator (S110).
  • the indicator is a pH indicator
  • the immobilization material may be used sodium alginate salt solution.
  • the cold-acting lactic acid bacteria can be mixed as in step S110 after a high concentration culture process.
  • the process of culturing the high-temperature lactobacillus can be carried out as shown in Figure 4b.
  • the erophilic lactic acid bacteria and CaCO 3 are immobilized with alginic acid and incubated for 45 to 50 hours at a temperature of 22 to 27 ° C. in an MRS broth medium (S10).
  • the lactic acid bacteria are recovered by centrifugation and the recovered cholophilic lactic acid bacteria are first suspended in peptone water (S20).
  • the MS medium contains 15% to 20% of CaCO 3 beads immobilized with alginic acid and the like, and the smaller the size of the CaCO 3 beads, the more preferable for high concentration culture.
  • step S20 centrifuged and recovered the cold-acting lactic acid bacteria suspended in peptone water, and the recovered cold-acting lactic acid bacteria are secondarily suspended in 2-3% saline (S30).
  • step S20 and step S30 it is possible to clean the cold-cooled lactic acid bacteria, it is possible to remove the polysaccharides generated by the cold-cooled lactic acid bacteria.
  • the mixed material is sprayed into a calcium salt solution or a strontium salt solution as an immobilizing agent and left at 0-5 ° C. for 1 to 3 hours to obtain a gel nanobead 110 (S120).
  • the nanobeads 110 generated as described above have no color interference due to colony associated with microbial growth, and have a diameter of 10 to 35 nm.
  • the cover film 130 having a fixed water activity (Aw) is in contact with the nanobeads 110, moisture is rapidly absorbed into the nanobeads 110, and thus, the refractory lactic acid bacteria are highly sensitive to temperature. It can react and it is possible to generate lactic acid efficiently. Therefore, the color change difference of the time-temperature indicator 100 can be easily confirmed, and more accurate data can be obtained.
  • the gel nano beads 110 obtained are fixed to the surface of the substrate 120 having the adhesive layer 122 (S130).
  • step S130 is performed in the order shown in Figure 4c, first to prepare a colloidal solution containing the nanobead 110 (S132).
  • the colloidal solution is prepared by mixing the nanobead 110 in a volatile solvent or a nonvolatile solvent.
  • the prepared colloidal solution is sprayed onto the surface of the substrate 120 having the adhesive layer 122 in a high pressure gas state using an air spray nozzle (S134).
  • the nanobead 110 is bonded to the surface of the adhesive layer 122 to form a single particle layer (S136) .
  • the solvent of the dispersed colloidal solution is nonvolatile, the solvent is bonded to the surface of the adhesive layer 122 by drying under mild conditions using conventional drying means such as evaporation under reduced pressure, lyophilization and the like.
  • Nanobead 110 and substrate 120 are strongly bonded by adhesive layer 122 and exhibit significant resistance to being washed or separated.
  • Nanobead 110 is to form a two-dimensional code recognizable by the code recognition means, preferably to form a QR code or a micro QR code.
  • the amount of microorganisms forming the two-dimensional code of the time-temperature indicator 100 is preferably 10 3 ⁇ 10 7 CFU / g.
  • FIG. 6 is a view schematically showing a quality assurance system according to a preferred embodiment of the present invention
  • Figure 7 is a block diagram of a terminal and a central server.
  • the quality assurance system 10 using the time-temperature indicator includes a time-temperature indicator 100, a terminal 200 for recognizing a two-dimensional code, and a central server 300.
  • time-temperature indicator 100 is printed with the two-dimensional code formed using the nanobead 110 as described above.
  • the terminal 200 recognizes and decodes the two-dimensional code formed in the time-temperature indicator 100, and transmits the code data of the decoded two-dimensional code to the central server 300, which may be implemented by a mobile phone or a smartphone. Can be.
  • the terminal 200 includes a camera module 210, a code recognition unit 220, a communication module 230, and a display unit 240.
  • the camera module 210 takes a 2D code and generates a digitized image.
  • the camera module 210 may be implemented as a digital photographing apparatus having an image sensor such as a charge-coupled device (CCD) sensor or a complementary metal-oxide semiconductor (CMOS) sensor.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide semiconductor
  • the code recognition unit 220 generates code data by decoding the image of the two-dimensional code generated by the camera module 210.
  • the code data may have a data structure as shown in Table 1 below.
  • section A is an identifier field
  • section B is a DB type field
  • section C is a serial number field
  • section D is a text data field.
  • the identifier field is for determining whether the two-dimensional code is intended to be decoded by the code recognition unit 220
  • the DB type field is a color determination DB provided in the central server 300
  • the serial number field is for selecting either one of the 320 and the product information DB 330, and the color number field or the product information corresponding to the data value assigned by the selected color determination DB 320 or the product information DB 330. It is to withdraw.
  • the text data field is decoded by the code recognition unit 220 to output information in the form of text to the display unit 240 of the terminal 200.
  • the code recognition unit 220 determines whether the data value assigned to the identifier field is the same as the previously stored identification data value, and if the data value assigned to the identifier field is the same as the identification data value, the DB type field and the serial number field. Obtain the data value assigned to.
  • the code recognizing unit 220 obtains an upper bit of the decoded code data, that is, the data value of the identifier field, and determines whether the code recognizing unit coincides with the identification data value previously stored in the code recognizing unit 220.
  • the code recognition unit 220 may determine the data value of the identifier field by acquiring the upper three bits.
  • the code data is displayed in a 24-bit data structure for better understanding, but the QR code of version 40 can store 23,648 bits of information. Therefore, the remaining bits except the upper bits corresponding to the identifier field, the DB type field, and the serial number field can be utilized as text data fields.
  • the communication module 230 transmits the code data in which two-dimensional codes are decoded to the central server 300 by using a wired or wireless communication method, or receives color information or product information to be described later from the central server 300. .
  • the communication module 230 may be implemented as a CDMA adapter or a Wi-Fi (Wireless Lan) adapter according to ieee 801.11g or 11n standard, and attempts to communicate data through a mobile communication network or through Wi-Fi. Performs communication with a content server through a wireless Internet connection.
  • a url for accessing the central server 300 may be stored in advance in the code recognition unit 220 of the terminal 200.
  • the display unit 240 displays text information, color information, or product information corresponding to the text data field on the screen, and may be implemented by ordinary display means.
  • the central server 300 includes a DB selector 310, a color determination DB 320, a product information DB 330, and an information transmitter 340.
  • the DB selector 310 receives code data from the communication module 230 and selects a DB corresponding to the data value assigned to the DB type field from the color determination DB 320 and the product information DB 330. To perform.
  • the DB selector 310 includes a receiver (not shown) for receiving code data.
  • the color judgment DB 320 stores the color information on the color change of the time-temperature indicator 100
  • the product information DB 330 stores the product information on the product to which the time-temperature indicator 100 is attached.
  • the information transmitter 340 retrieves color information or product information corresponding to the data value assigned to the serial number field in the DB selected by the DB selector 310 and transmits the color information or product information to the terminal 100.
  • the information transmitter 340 may include a CDMA adapter or a Wi-Fi (Wireless Lan) adapter according to the ieee 801.11g or 11n standard, as the communication module 230.
  • a CDMA adapter or a Wi-Fi (Wireless Lan) adapter according to the ieee 801.11g or 11n standard, as the communication module 230.
  • Wi-Fi Wireless Lan
  • FIG. 8 is a flowchart illustrating a quality assurance method using a quality assurance system according to a preferred embodiment of the present invention.
  • the camera module 210 generates an image of photographing the two-dimensional code of the time-temperature indicator 100 attached to the product or the product packaging (S210).
  • the code recognition unit 220 decodes the generated two-dimensional code image (S220), and determines whether the data value of the identifier field constituting the code data from which the two-dimensional code is decoded is equal to a previously stored identification data value. (S230).
  • the communication module 230 selects a DB provided in the central server 300 with the data value of the DB type field and the serial number field included in the code data. The transmission to the unit 310 (S240).
  • the DB selector 310 selects a DB having a data value corresponding to the data value of the received DB type field among the color determination DB 320 and the product information DB 330 to which a predetermined data value is assigned in advance.
  • the DB selecting unit 310 first determines whether the data value of the DB type field corresponds to the data value assigned to the color determination DB 320 (S250), and determines that both data values are the same.
  • the information transmitter 340 retrieves color information corresponding to the data value of the serial number field from the color determination DB 320 (S260) and transmits the extracted color information to the terminal 200 (S290).
  • the terminal 200 outputs color information received through the communication module 230 on the screen through the display unit 240.
  • the DB selector 310 may assign the data value of the DB type field to the product information DB 320. It is determined whether or not it corresponds to the value (S270), and if it is determined that both data values are the same as each other, the information transmitter 340 retrieves the product information corresponding to the data value of the serial number field in the product information DB 320 ( S280) The extracted product information is transmitted to the terminal 200 (S290).
  • the central server 300 includes a DB storing both color information and product information to which data values are assigned, and searches for information corresponding to data values assigned to a specific section of code data to the terminal 200. It may be equipped to transmit.
  • the data value of the DB type field in which the two-dimensional code in the normal state is decoded corresponds to the product information DB 330 so that the consumer of the product having a constant freshness is maintained. To know the information of the product.
  • the data value of the DB type field in which the 2D code whose shape is changed according to time or temperature conditions is decoded corresponds to the color determination DB 320, thereby warning the consumer about the possibility of product deterioration. Allows you to deliver a message or provide information to help consumers decide whether to buy a product.
  • FIG. 9 is a diagram illustrating an example of a screen on which color information is output.
  • the color information may be configured as a reference table that allows a consumer to determine the color of the time-temperature indicator 100 that is gradually discolored.
  • the color information may be implemented as an image in which the remaining shelf life of the time-temperature indicator 100 and the remaining shelf life thereof are displayed.
  • the image of the color information is photographed by a terminal of the same type as the terminal 200 that photographed the two-dimensional code to prevent the appearance of color changes by the terminal model difference.
  • the product information may include a web page url, a product type code, etc., including a product description of a product on which the time-temperature indicator 100 is attached.
  • the time-temperature indicator according to the embodiment of the present invention has an advantage of effectively expressing a clear, continuous and irreversible change to temperature change, and having no toxicity. In addition, there is an advantage that the manufacturing cost is low enough so as not to affect the food sales price economically.
  • the present invention is to monitor the time-temperature history information using a two-dimensional code, such as a QR code (Quick Response Code), and if the freshness is an important quality indicator of the product, or exposed to undesirable environmental temperature, It can be applied to products requiring cold-chain distribution to be removed.
  • a two-dimensional code such as a QR code (Quick Response Code)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Business, Economics & Management (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 시간 및 온도 조건에 따라 색상 또는 모양이 변화하는 2차원 코드 형태의 시간-온도 지시계, 시간-온도 지시계의 제조방법, 시간-온도 지시계를 이용한 품질보증 시스템 및 품질보증 시스템을 이용한 품질보증 방법에 관한 것이다. 본 발명은 영양성분을 이용하여 유산을 생성시키는 미생물과, 생성된 상기 유산에 의해 색상변화를 나타내는 지시약, 상기 미생물과 상기 지시약을 고정시키는 고정화 물질, 및 상기 영양성분 등을 함유하는 나노비드; 접착제 층을 구비한 기재; 및 상기 미생물과 상기 기재 층에 접촉됨으로써 상기 나노비드를 활성화시키는 고정된 수분활성도(water activity: Aw)를 가지는 커버 필름을 포함하는 것을 특징으로 하는 시간-온도 지시계를 제공한다. 본 발명의 실시예에 따르면 제품이 허용된 범위 이외의 온도 또는 시간 조건에 노출되어 부패가 진행되었는지 여부를 신속하고 정확하게 확인할 수 있다는 장점이 있다.

Description

시간-온도 지시계, 시간-온도 지시계의 제조방법, 시간-온도 지시계를 이용한 품질보증 시스템 및 품질보증 시스템을 이용한 품질보증 방법
본 발명은 시간 및 온도 조건에 따라 색상 또는 모양이 변화하는 2차원 코드 형태의 시간-온도 지시계, 시간-온도 지시계의 제조방법, 시간-온도 지시계를 이용한 품질보증 시스템 및 품질보증 시스템을 이용한 품질보증 방법에 관한 것이다.
소비자에게 판매하는 수많은 제품의 품질은 환경 조건의 범위가 있고, 그 조건을 넘는 부적당한 온도 조건에서는 변질 등으로 인하여 제품의 가치가 떨어진다.
예를 들어, 식품은 적절한 온도 범위 내에서 보관 및 유통되지 않으면 부패하게 되고, 특정 조제약과 같은 냉장 운송을 필요로 하는 제품은 허용가능한 온도 범위를 넘는 환경에 노출되면 예상되는 기능을 수행 또는 전달할 수 없게 된다. 또한, 미생물 오염에 민감한 식품들은 바람직하지 않은 온도에 노출하면 미생물 성장으로 인해 먹을 수 없게 된다.
따라서, 부패하기 쉬운 물질을 제품에 사용하는 경우에는 물질의 수명 및 현재 사용 가능한 상태인지 여부를 확인하는 것이 중요하다.
이를 위해 지금까지는 포장재에 유효 기간 만료일을 기입하였으나, 유효 기간 만료일을 기입하는 것으로는 제품의 상태를 정확히 판단하는 것이 불가능하다. 특히, 부패하기 쉬운 제품의 상태는 일반적으로 시간뿐만 아니라 온도와 같은 조건에도 큰 상관관계가 있다.
또한, 유효 기간 만료일은 용이하게 조작하는 것이 가능하여 제품을 소비하는 소비자에게 충분한 신뢰를 주기에는 부족하다.
한편, QR(Quick Response)코드는 1994년에 덴소 웨이브가 개발한 것으로, 작은 정사각형의 점을 가로, 세로 같은 수만큼 병렬시킨 매트릭스형 2차원 코드이며,한변에 21개 내지 177개(버전 40)가 나열된 것까지 다양한 버전이 있다.
또한, 바코드와 달리 코너의 모서리에는 파인더 패턴이 배치되어 있어서 360도 어느 방향에서도 인식가능하며 버전 40의 경우 최대 23,648비트의 정보를 기록할 수 있다. 이러한 QR코드는 간판이나 신문기사 등에 표시되어 정보를 전달하는 용도로 활용되고 있다.
아직까지, 제품이 제조 또는 포장되는 순간부터 최종 목적지에 도달할 때까지 바람직하지 않은 환경에 노출되어 있는 품목을 자동으로 추적 및 규명하는데 이용가능한 방법은 전무한 실정이다.
따라서, 온도의 환경적인 변화를 감지하고, 잠재적으로 위험하게 여겨지는 레벨의 안정성 또는 유용성이 있는 제품을 식별하는 방안이 요구되고 있다.
본 발명은 상기한 요구에 부응하여 제품이 허용된 범위 이외의 온도 또는 시간 조건에 노출되어 부패가 진행되었는지 여부를 신속하고 정확하게 확인할 수 있도록 하는 시간-온도 지시계와 그 제조방법 및 시간-온도 지시계를 이용한 품질보증 시스템과 이를 이용한 품질보증 방법을 제공한다.
본 발명은 영양성분을 이용하여 산성의 생물학적 산물을 생산하는 미생물을 함유하는 나노비드와 접착제 층을 구비한 기재와 미생물의 활성화를 위한 고정된 수분활성도(water activity: Aw)를 가지는 커버필름을 포함하는 것을 특징으로 하는 시간-온도 지시계를 제공한다.
또한, 본 발명은 a) 영양성분을 이용하여 유산을 생성시키는 락토바실루스(Lactobacillus)속, 류코노스톡(Leuconostoc)속 및 와이셀라(Weissella)속 중 어느 하나의 호냉성 유산균과, 상기 호냉성 유산균에 의해 색상변화를 나타내는 지시약과, 상기 호냉성 유산균과 상기 지시약을 고정시키는 고정화 물질, 및 상기 영양성분 등을 혼합하는 단계; b) 상기 혼합된 물질을 칼슘염 용액 또는 스트론튬염 용액에 분무한 후 방치하여 겔 상태의 나노비드를 수득하는 단계; c) 공기 분사를 이용하여 접착제 층을 구비한 기재의 표면에 상기 확산성의 생물학적 산물 생산 미생물을 함유한 나노비드를 단일 입자층으로 도포하여 고정시키는 단계; 및 d) 폴리프로필렌필름, 접착제 및 포화염물질을 포함하는 수용성 겔로 이루어져 0.98 이상의 수분활성도를 유지하는 커버필름을 상기 나노비드에 접촉시키는 단계를 포함하는 것을 특징으로 하는 시간-온도 지시계의 제조방법을 제공한다.
또한, 본 발명은 상기 시간-온도 지시계; 상기 2차원 코드를 촬영하는 카메라모듈과, 촬영된 상기 2차원 코드의 이미지를 디코딩하는 코드인식부와, 상기 2차원 코드가 디코딩된 코드데이터를 전송하는 통신모듈이 구비된 단말기; 및 상기 단말기로부터 상기 코드데이터를 수신하고, 상기 시간-온도 지시계의 색상변화에 대한 색상정보를 포함하는 색판정DB 또는 상기 시간-온도 지시계가 부착된 제품에 대한 제품정보를 포함하는 제품정보DB로부터 상기 코드데이터에 대응되는 상기 색상정보 또는 상기 제품정보를 상기 단말기로 전송하는 중앙서버를 포함하는 것을 특징으로 하는 시간-온도 지시계를 이용한 품질보증 시스템을 제공한다.
또한, 본 발명은 a) 단말기에 구비된 카메라모듈을 이용하여 제2 항의 시간-온도 지시계에 형성된 상기 2차원 코드의 이미지를 생성하는 단계; b) 생성된 상기 2차원 코드의 이미지를 디코딩하고, 디코딩된 상기 2차원 코드의 코드데이터를 중앙 서버로 송신하는 단계; c) 상기 시간-온도 지시계의 색상변화에 대한 색상정보를 포함하는 색판정DB와 상기 시간-온도 지시계가 부착된 제품에 대한 제품정보를 포함하는 제품정보DB를 구비하는 상기 중앙서버에서 상기 코드데이터에 대응되는 상기 색상정보 또는 상기 제품정보를 인출하는 단계; 및 d) 인출된 상기 색상정보 또는 상기 제품정보를 상기 단말기로 전송하는 단계를 포함하는 것을 특징으로 하는 품질보증 시스템을 이용한 품질보증 방법을 제공한다.
본 발명의 실시예에 따르면 제품이 허용된 범위 이외의 온도 또는 시간 조건에 노출되어 부패가 진행되었는지 여부를 신속하고 정확하게 확인할 수 있다는 장점이 있다.
또한, 제품을 구매하는 소비자에게 제품의 유통과정에 대한 신뢰를 줄 수 있다는 효과가 있다.
도 1은 본 발명의 바람직한 실시예에 따른 시간-온도 지시계의 사시도이다.
도 2는 도 1의 A-A' 단면도이다.
도 3은 나노비드에 의해 형성된 2차원 코드가 변형되는 것을 예시적으로 나타낸 도면이다.
도 4와 도 5는 본 발명의 바람직한 실시예에 따른 시간-온도 지시계의 제조과정을 나타낸 순서도이다.
도 6은 본 발명의 바람직한 실시예에 따른 시간-온도 지시계를 이용한 품질보증 시스템을 개략적으로 도시한 도면이다.
도 7은 단말기와 중앙 서버의 블럭도이다.
도 8은 본 발명의 바람직한 실시예에 따른 품질보증 시스템을 이용한 품질보증 방법을 설명하기 위한 순서도이다.
도 9는 색상정보가 출력된 화면의 예를 나타낸 도면이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세하게 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 첨가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 실시될 수 있음은 물론이다.
본 발명은 시간 및 온도 의존 방식으로 색이 변하는 미생물형 시간-온도 지시계(MTTIs: Microbial Time-Temperature Indicators)를 이용하여 2차원 코드를 생성하고, 이를 이용하여 제품의 품질을 신속하게 확인할 수 있도록 한다.
2차원 코드는 pH 지시약과 미생물 및 영양성분 등을 나노 크기로 고정화함으로써 생성할 수 있는데, 이러한 2차원 코드는 생산 단계에서부터 최종 소비자에게 도달될 때까지 어느 장소에서나 육안 또는 소정의 단말기를 이용하여 제한범위 이상의 시간 또는 온도에 노출되어 변질된 식품을 인식하도록 포맷된 탬퍼-프루프(tamper-proof) 라벨로 이용될 수 있다.
도 1은 본 발명의 바람직한 실시예에 따른 시간-온도 지시계의 사시도이고, 도 2는 도 1의 A-A' 단면도이다.
이하, 도 1 및 도 2를 참고하여 본 발명의 바람직한 실시예에 따른 시간-온도 지시계(100)를 설명한다.
본 발명의 바람직한 실시예에 따른 시간-온도 지시계(100)는 나노비드(110), 기재(120) 및 커버필름 (130)을 포함한다.
나노비드(110)는 영양성분을 이용하여 유산을 생성시키는 미생물과, 생성된 상기 유산에 의해 색상변화를 나타내는 지시약, 상기 미생물과 상기 지시약을 고정시키는 고정화 물질, 및 상기 영양성분 등을 함유한다.
여기서, 상기 미생물은 락토바실루스(Lactobacillus)속, 류코노스톡(Leuconostoc)속 및 와이셀라(Weissella)속의 호냉성 유산균 중에서 어느 하나를 이용할 수 있다.
상기의 호냉성 유산균들은 5℃ 이하의 온도에서 비활성화 상태를 유지하고, 5~15℃의 범위에서 점진적으로 활성화된다. 따라서, 저온의 온도 조건에서 신선도를 유지한 상태로 보관 및 유통이 이루어져야 하는 의약품이나 식품과 같은 제품에 상기의 호냉성 유산균들을 이용한 시간-온도 지시계(100)를 적용할 경우 제품의 보관 및 유통 상태를 정확하게 체크할 수 있게 된다.
pH 지시약은 상기의 호냉성 유산균이 영양성분을 이용하여 생성하는 유산(젖산)에 의해 색상이 변화하는 산염기지시약을 이용할 수 있으며, 미생물에 영향을 미치지 않는 것이라면 어떠한 종류의 산염기지식약을 이용하여도 무방하다.
미생물과 지시약 및 영양성분 등을 고정시키는 고정화 물질은 알긴산, 한천, 카라기난 및 폴리아크릴아미드 중에서 선택되는 어느 하나 또는 둘 이상이 혼합된 물질을 이용할 수 있다.
이러한 나노비드(110)는 직경이 10~35㎚로 형성하는 것이 바람직하다.
이와 같이 초미립 상태의 나노비드(110)에 활성화를 위한 고정된 수분활성도(water activity: Aw)를 가지는 커버 필름(130)을 접촉시키면, 커버 필름(130)의 수분이 미생물에 접촉하게 되고, 미생물의 생육에 의하여 유산이 생산된다. 따라서, pH 저하에 의하여 색변화가 현저하게 나타나며, 이에 따라 시간-온도 지시계(100)에 의한 더욱 정밀한 데이터를 얻을 수 있게 된다.
기재(120)는 나노비드(110)가 도포될 표면에 접착제 층(122)을 구비한다.
여기서, 기재(120)에 구비되는 접착제 층(122)은 부타디엔 골격 부분을 갖는 제1 중합체 및 제1 중합체와는 상이한 제2 중합체를 유기 퍼옥사이드의 존재 하에 가교결합시킴으로써 형성할 수 있다.
기재(120)는 금속, 비철금속, 세라믹, 프라스틱 및 종이의 재질로 형성할 수 있다.
커버필름(130)은 폴리프로필렌필름, 접착제 및 포화염물질을 함유한 수용성 겔로 이루어지는 것으로, 0.98 이상의 수분활성도를 유지하여 시간-온도 이력지시계(100) 활성화 시 수분을 제공하는 역할을 한다.
접착제 층(122)에 의해 기재(120)의 표면에 결합되는 나노비드(110)는 도 1에 도시된 바와 같이 2차원 코드의 형태 또는 2차원 코드의 일 부분을 이루도록 기재(120)의 표면상에 단일 입자층으로 도포된다. 즉, 나노비드(110)를 일종의 잉크와 같이 활용하여 2차원 코드 또는 2차원 코드의 일 부분을 기재(120)의 표면에 형성하는 것이다.
나노비드(110)에 의해 형성된 2차원 코드는 코드인식수단을 통해 인식가능하도록 이루어진다. 예를 들어, 상기 2차원 코드는 QR 코드, 마이크로 QR 코드, PDF417 코드, Data Matrix 코드, Maxi 코드, veri 코드, cadablock 코드, aztec 코드,calula 코드, BP04 State 코드 및 Postnet 코드 등의 2차원 코드로 이루어질 수 있다.
바람직하게 나노비드(110)에 의해 형성되는 2차원 코드는 QR코드 또는 마이크로 QR 코드로 한다.
도 3은 나노비드에 의해 형성된 2차원 코드가 변형되는 것을 예시적으로 나타낸 도면이다.
나노비드(110)를 이용하여 형성한 2차원 코드는 미생물이 비활성화 상태를 유지하는 소정의 시간 또는 온도 조건을 벗어날 경우 나노비드(110)의 색상 또는 명암이 변화되기 때문에 결과적으로 상기 2차원 코드의 모양도 변형되게 된다.
예를 들어, 나노비드(110)를 이용하여 도 3의 (a)와 같이 기재(120) 상에 QR코드의 일부분을 형성한 이후, 시간-온도 지시계(100)가 시간 또는 온도 조건을 벗어난 환경에 노출되면, 나노비드(110)의 색상 또는 명암이 변하여 도 3 (a)의 QR코드가 도 3의 (b)와 같이 처음과 다른 모양을 갖는 QR코드로 변형되는 것이다.
다시 말해, 본 발명의 바람직한 실시예에 따른 시간-온도 지시계(100)는 코드의 모양이 가변적인 QR코드가 인쇄된 QR코드라벨의 형태를 가지게 되는 것이다.
변형 전과 변형 후의 QR코드는 서로 다른 데이터값을 가지게 되며, 이를 이용하여 시간의 흐름에 따른 제품의 상태정보 및 유통과정과 관련된 정보를 용이하게 파악할 수 있게 된다.
도 4a 내지 도 4c는 본 발명의 바람직한 실시예에 따른 시간-온도 지시계의 제조과정을 나타낸 순서도이고, 도 5는 기재에 나노비드를 단일 입자층으로 고정하는 것을 설명하기 위한 도면이다.
이하, 도 4a 내지 도 5를 참고하여 본 발명의 바람직한 실시예에 따른 시간-온도 지시계를 제조하는 방법을 설명한다.
본 발명의 바람직한 실시예에 따른 시간-온도 지시계(100)를 제조하기 위해서는 먼저, 영양성분을 이용하여 유산을 생성시키는 미생물, 즉 락토바실루스(Lactobacillus)속, 류코노스톡(Leuconostoc)속 및 와이셀라(Weissella)속의 호냉성 유산균 중 어느 하나의 미생물과 상기 호냉성 유산균에 의해 색상변화를 나타내는 지시약 및 상기 호냉성 유산균과 상기 지시약을 고정시키는 고정화 물질 및 영양물질 등을 혼합한다(S110).
여기서, 지시약은 pH지시약이며, 고정화물질은 알긴산나트륨 염 용액을 이용할 수 있다.
한편, 호냉성 유산균은 고농도 배양과정을 거친 후 S110 단계와 같이 혼합하는 것이 가능하다. 호냉성 유산균을 고농도 배양하는 과정은 도 4b에 도시된 바와 같이 수행할 수 있다.
이에 대해 구체적으로 설명하면, 먼저, 호냉성 유산균과 CaCO3를 알긴산으로 고정화시켜 엠알에스(MRS broth) 배지에서 22~27℃의 온도로 45~50시간 배양한 후(S10), 배지로부터 호냉성 유산균을 원심분리하여 회수하고 회수된 호냉성 유산균을 펩톤수에 1차 현탁한다(S20).
여기서, 상기 엠알에스 배지는 알긴산 등으로 고정화된 CaCO3 비드(bead)를 15~20% 함유하며, CaCO3 비드의 크기는 작을수록 고농도 배양에 바람직하다.
S20 단계 이후에는, 펩톤수에 현탁된 호냉성 유산균을 다시 원심분리하여 회수하고, 회수된 호냉성 유산균을 2~3% 식염수에 2차 현탁한다(S30).
S20 단계 및 S30 단계를 통해 호냉성 유산균을 깨끗하게 세척할 수 있으며, 호냉성 유산균이 생성한 다당류들을 제거할 수 있게 된다.
마지막으로, 식염수에 현탁된 호냉성 유산균을 원심분리하여 회수하는(S40) 과정을 거쳐 호냉성 유산균을 배양 및 회수할 수 있다.
상기와 같이 호냉성 유산균을 배양하는 것이 가능하기 때문에 균체를 획득하는 것이 용이하고, 시간-온도 지시계(100)를 제조하는 데 소요되는 비용을 절감할 수 있는 것이다.
S110 단계 이후에는 혼합된 물질을 고정화제인 칼슘염 용액 또는 스트론튬염 용액에 분무한 후 0~5℃에서 1~3시간 방치하여 겔 상태의 나노비드(110)를 수득한다(S120).
이와 같이 생성된 나노비드(110)는 미생물 생육과 관련된 집락(colony)에 의한 색 간섭이 없으며, 10~35㎚의 직경을 가지게 된다. 이러한 나노비드(110)에 고정된 수분활성도(water activity: Aw)를 가지는 커버 필름(130)을 접촉시키면 수분이 매우 신속하게 나노비드(110) 내부로 흡습되어 호냉성 유산균이 온도에 매우 감도 높게 반응할 수 있어 효율적으로 유산을 생성하는 것이 가능하다. 따라서, 시간-온도 지시계(100)의 색 변화 차이를 용이하게 확인할 수 있으며, 더욱 정밀한 데이터를 얻을 수 있게 된다.
S120 단계 이후에는, 수득한 겔 상태의 나노비드(110)를 접착제 층(122)을 가지는 기재(120)의 표면에 고정시킨다(S130).
구체적으로 S130 단계는 도 4c에 도시한 순서에 따라 수행되는데, 먼저 나노비드(110)를 함유한 콜로이드 용액을 제조한다(S132). 상기 콜로이드 용액은 휘발성 용매 또는 비휘발성 용매에 나노비드(110)를 혼합하여 제조한다.
이후, 제조된 콜로이드 용액을 에어스프레이 노즐을 이용하여 고압의 기체상태로 접착제 층(122)을 가지는 기재(120)의 표면에 분사한다(S134).
접착제 층(122)에 분산된 콜로이드 용액 중에서 상기 휘발성 용매가 공기중에서 휘발되면 도 5에 도시된 바와 같이 나노비드(110)가 접착제 층(122)의 표면에 결합되어 단일 입자층을 이루게 된다(S136).
이때, 분산된 콜로이드 용액의 용매가 비휘발성인 경우 용매는 감압증발, 동결건조 등과 같은 통상의 건조 수단을 이용하여 온화한 조건하에서 건조시킴으로써 접착제 층(122)의 표면에 결합시킨다.
나노비드(110)와 기재(120)는 접착제 층(122)에 의해 강하게 결합되어 씻겨지거나 분리되는 것에 대해 상당한 저항력을 나타낸다.
나노비드(110)는 코드인식수단에 의해 인식 가능한 2차원 코드의 형태를 이루도록 하며, 바람직하게는 QR코드 또는 마이크로 QR 코드의 형태를 이루도록 한다. 이때, 시간-온도 지시계(100)의 2차원 코드를 이루는 미생물의 양은 103 ~ 107 CFU/g 인 것이 바람직하다.
도 6은 본 발명의 바람직한 실시예에 따른 품질보증 시스템을 개략적으로 도시한 도면이고, 도 7은 단말기와 중앙 서버의 블럭도이다.
이하, 도 6 및 도 7을 참고하여 본 발명의 바람직한 실시예에 따른 시간-온도 지시계를 이용한 품질보증 시스템(10)을 설명한다.
본 발명의 바람직한 실시예에 따른 시간-온도 지시계를 이용한 품질보증 시스템(10)은 시간-온도 지시계(100), 2차원 코드를 인식하기 위한 단말기(200) 및 중앙 서버(300)를 포함한다.
여기서, 시간-온도 지시계(100)는 상술한 바와 같이 나노비드(110)를 이용하여 형성한 2차원 코드가 인자된다.
단말기(200)는 시간-온도 지시계(100)에 형성된 2차원 코드를 인식 및 디코딩하고, 디코딩된 2차원 코드의 코드데이터를 중앙 서버(300)로 전송하는 것으로,핸드폰이나 스마트폰 등으로 구현될 수 있다.
구체적으로 단말기(200)는 카메라 모듈(210), 코드인식부(220), 통신모듈(230) 및 표시부(240)를 구비한다.
카메라 모듈(210)은 2차원 코드를 촬영하여 디지털화된 이미지를 생성하는 역할을 한다. 이러한 카메라 모듈(210)은 CCD(Charge-Coupled Device) 센서 또는 CMOS(Complementary metal-oxide semiconductor) 센서와 같은 이미지 센서를 구비한 디지털 촬영장치로 구현될 수 있다.
코드인식부(220)는 카메라 모듈(210)에 의해 생성된 2차원 코드의 이미지를 디코딩하여 코드데이터를 생성한다.
이때, 상기 코드데이터는 하기 [표 1]에 나타낸 바와 같은 데이터 구조를 갖도록 할 수 있다.
표 1
Figure PCTKR2012005083-appb-T000001
여기서, A구간은 식별자 필드, B구간은 DB종류 필드, C구간은 시리얼넘버 필드이며, D구간은 텍스트 데이터 필드이다.
코드데이터의 구조를 설명하면, 식별자 필드는 2차원 코드가 코드인식부(220)에 의하여 디코딩 되도록 의도된 것인지 여부를 판단하기 위한 것이고, DB종류 필드는 중앙 서버(300)에 구비된 색판정DB(320) 및 제품정보DB(330) 중 어느 하나를 선택하기 위한 것이며, 시리얼넘버 필드는 선택된 색판정DB(320) 또는 제품정보DB(330)에서 할당된 데이터값에 대응되는 색상정보 또는 제품정보를 인출하기 위한 것이다.
또한, 텍스트 데이터 필드는 코드인식부(220)에 의해 디코딩되어 단말기(200)의 표시부(240)에 텍스트의 형태로 정보를 출력하기 위한 것이다.
코드인식부(220)는 식별자 필드에 할당된 데이터값이 미리 저장된 식별 데이터값과 동일한지 여부를 판단하고, 식별자 필드에 할당된 데이터값이 식별 데이터값과 동일하면, DB종류 필드와 시리얼넘버 필드에 할당된 데이터값을 획득한다.
구체적으로 설명하면, 코드인식부(220)는 디코딩된 코드데이터의 상위 비트 즉, 식별자 필드의 데이터값을 획득하여 코드인식부(220)에 미리 저장된 식별 데이터값과 일치하는지 여부를 판단한다.
[표 1]에서는 식별자 비트로 3비트를 할당하고 있으며, 이 경우 코드인식부(220)는 상위 3비트를 획득함으로써 식별자 필드의 데이터값을 판단할 수 있다.
이때, 식별 데이터와 식별자 필드에 할당된 데이터값이 일치할 경우 [표 1]에서의 B 및 C 구간으로 표시된 DB종류 필드 및 시리얼넘버 필드에 대한 처리가 가능해진다.
[표 1]의 예에서, 상위 3비트의 식별자 필드의 데이터값이 식별 데이터값과 일치할 경우, 이후의 10비트가 DB종류 필드 및 시리얼넘버 필드를 나타냄을 확정할 수 있기 때문이다.
한편, [표 1]에서는 이해를 돕기 위해 코드데이터를 24비트의 데이터 구조로 표시하였으나, 버전 40인 QR 코드의 경우 23,648비트의 정보를 저장할 수 있다. 따라서, 식별자 필드, DB종류 필드 및 시리얼넘버 필드에 해당하는 상위 비트를 제외한 나머지 비트는 텍스트 데이터 필드로 활용하는 것이 가능하다.
통신모듈(230)은 유무선 통신방식을 이용하여 2차원 코드가 디코딩된 상기 코드데이터를 중앙 서버(300)로 전송하거나, 중앙 서버(300)로부터 후술할 색삭정보 또는 제품정보를 수신하는 기능을 한다.
예를 들어, 통신모듈(230)은 CDMA 어댑터 또는 ieee 801.11g 또는 11n 규격에 의한 Wi-Fi(Wireless Lan) 어댑터로 구현될 수 있으며, 이동통신망을 통해 데이터통신을 시도하거나, Wi-Fi를 통한 무선인터넷 접속을 통해 컨텐츠 서버와의 통신을 수행한다. 이때, 중앙 서버(300)에 접속하기 위한 url 등은 단말기(200)의 코드인식부(220)에 미리 저장될 수 있다.
표시부(240)는 상기한 바와 같이 텍스트 데이터 필드에 해당하는 텍스트 정보나 색상정보 또는 제품정보를 화면상에 표시하는 것으로, 통상의 디스플레이 수단으로 구현할 수 있다.
중앙 서버(300)는 DB선택부(310), 색판정DB(320), 제품정보DB(330) 및 정보송신부(340)를 포함한다.
DB선택부(310)는 통신모듈(230)로부터 코드데이터를 전송받고, 색판정DB(320) 및 제품정보DB(330) 중에서 DB종류 필드에 할당된 데이터값과 대응되는 DB를 선택하는 기능을 수행한다.
이러한 DB선택부(310)는 코드데이터를 수신하기 위한 수신부(미도시)를 구비한다.
색판정DB(320)에는 시간-온도 지시계(100)의 색상변화에 대한 색상정보가 저장되고, 제품정보DB(330)에는 시간-온도 지시계(100)가 부착된 제품에 대한 제품정보가 저장된다.
정보송신부(340)는 DB선택부(310)에 의해 선택된 DB에서 시리얼넘버 필드에 할당된 데이터값에 대응되는 색상정보 또는 제품정보를 해당 DB에서 검색하여 단말기(100)로 송신한다.
이러한 정보송신부(340)는 통신모듈(230)과 같이 CDMA 어댑터 또는 ieee 801.11g 또는 11n 규격에 의한 Wi-Fi(Wireless Lan) 어댑터를 구비할 수 있다.
도 8은 본 발명의 바람직한 실시예에 따른 품질보증 시스템을 이용한 품질보증 방법을 설명하기 위한 순서도이다.
이하, 도 8을 참고하여 상기 품질보증 시스템(10)을 이용한 품질보증 방법을 설명한다.
먼저, 카메라모듈(210)은 제품 또는 제품의 포장에 부착된 시간-온도 지시계(100)의 2차원 코드를 촬영한 이미지를 생성한다(S210).
코드인식부(220)는 생성된 상기 2차원 코드의 이미지를 디코딩하고(S220), 2차원 코드가 디코딩된 코드데이터를 구성하는 식별자 필드의 데이터값이 미리 저장된 식별 데이터값과 동일한지 여부를 판단한다(S230).
이때, 식별자 필드의 데이터값이 식별 데이터값과 동일하면, 통신모듈(230)은 코드데이터에 포함되는 DB종류 필드의 데이터값과 시리얼넘버 필드의 데이터값을 중앙 서버(300)에 구비된 DB선택부(310)로 송신한다(S240).
DB선택부(310)는 미리 소정의 데이터값이 각각 할당된 색판정DB(320) 및 제품정보DB(330) 중에서 수신한 DB종류 필드의 데이터값에 대응되는 데이터값을 갖는 DB를 선택한다.
예를 들어, DB선택부(310)는 먼저 DB종류 필드의 데이터값이 색판정DB(320)에 할당된 데이터값과 대응되는지 여부를 판단하고(S250), 양자의 데이터값이 서로 동일한 것으로 판단하면 정보송신부(340)는 색판정DB(320)에서 시리얼넘버필드의 데이터값에 대응되는 색상정보를 인출하여(S260) 인출된 색상정보를 단말기(200)로 전송한다(S290).
단말기(200)는 통신모듈(230)을 통해 수신한 색상정보를 표시부(240)를 통해 화면상에 출력한다.
만약, S250 단계에서 DB종류 필드의 데이터값이 색판정DB(320)의 데이터값과 대응되지 않으면, DB선택부(310)는 DB종류 필드의 데이터값이 제품정보DB(320)에 할당된 데이터값과 대응되는지 여부를 판단하고(S270), 양자의 데이터값이 서로 동일한 것으로 판단하면 정보송신부(340)는 제품정보DB(320)에서 시리얼넘버필드의 데이터값에 대응되는 제품정보를 인출하여(S280) 인출된 제품정보를 단말기(200)로 전송한다(S290).
도시하지는 않았으나, 중앙 서버(300)는 데이터값이 할당된 색상정보와 제품정보가 모두 저장된 DB를 구비하고, 코드데이터의 특정 구간에 할당된 데이터값에 대응되는 정보를 검색하여 단말기(200)로 송신하도록 구비될 수도 있다.
한편, 도 3의 (a)에 도시된 바와 같이 정상 상태의 2차원 코드가 디코딩된 DB종류 필드의 데이터값은 제품정보DB(330)에 대응되도록 하여, 일정한 신선도가 유지되고 있는 제품에 대해서는 소비자가 해당 제품의 정보를 알 수 있도록 하고.
도 3의 (b)와 같이 시간 또는 온도 조건에 따라 모양이 변화된 2차원 코드가 디코딩된 DB종류 필드의 데이터값은 색판정DB(320)에 대응되도록 하여, 소비자에게 제품의 변질가능성에 대한 경고메시지를 전달하거나, 소비자가 제품의 구매여부를 판단하기 위한 정보를 제공할 수 있도록 한다.
도 9는 색상정보가 출력된 화면의 예를 나타낸 도면이다.
색상정보는 소비자가 시간-온도 지시계(100)가 점차적으로 변색되어 나타나는 색상에 대한 판단을 할 수 있도록 하는 기준표와 같이 구성할 수 있다.
예를 들어, 색상정보는 도 9에 도시된 바와 같이 시간-온도 지시계(100)의 변색과정과 함께 이에 대한 잔여유통기한이 표기된 이미지로 구현될 수 있다.
바람직하게 상기 색상정보의 이미지는 2차원 코드를 촬영한 단말기(200)와 동일한 기종의 단말기로 촬영된 것을 구비하여 단말기 기종 차이에 의해 색상이 변질되어 나타나는 것을 방지한다.
제품정보는 시간-온도 지시계(100)가 부착된 제품의 제품 설명이 포함된 웹 페이지 url, 제품종류코드 등으로 이루어질 수 있다.
본 발명의 실시예에 따른 시간-온도 지시계는 온도변화에 대해 분명하고 연속적이면서 비가역적인 변화를 효과적으로 표현하고, 독성이 없다는 장점이 있다. 또한, 식품판매 가격에 큰 영향을 주지 않을 정도로 제조원가가 저렴하여 경제적이라는 장점이 있다.
본 발명은 QR코드(Quick Response Code)와 같은 2차원 코드를 이용하여 시간-온도 이력 정보를 모니터링하기 위한 것으로, 신선도가 제품의 중요한 품질 지표이거나, 바람직하지 않은 환경 온도에 노출된 경우 유통 금지 또는 제거를 원하는 콜드-체인(cold-chain) 유통이 요구되는 제품에 적용할 수 있다.
또한, 이에 더하여 콜드-체인(cold-chain) 유통 중 파손되어 미생물 2차 오염 가능성이 증가되고 품질이 저하된 제품에 대하여 제조업자, 가공업자, 유통업자, 위생 당국 및 소비자에게 주의를 주는 것에 도움을 주고, 그와 같은 사건에 관한 유용한 이력 데이터를 제공할 수 있어 매우 유용한 것이다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구 범위에 의해서 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (17)

  1. 영양성분을 이용하여 유산을 생성시키는 미생물과, 생성된 상기 유산에 의해 색상변화를 나타내는 지시약, 상기 미생물과 상기 지시약을 고정시키는 고정화 물질, 및 상기 영양성분 등을 함유하는 나노비드;
    접착제 층을 구비한 기재; 및
    상기 나노비드에 접촉되어 상기 미생물을 활성화시키는 고정된 수분활성도를 가지는 커버 필름을 포함하는 것을 특징으로 하는 시간-온도 지시계.
  2. 제1 항에 있어서,
    상기 나노비드는
    2차원 코드의 형태를 이루도록 상기 기재의 접착제 층에 결합되고, 시간 또는 온도의 변화에 따라 색상 또는 명암이 변화되어 상기 2차원 코드의 모양을 변형시키는 것을 특징으로 하는 시간-온도 지시계.
  3. 제1 항에 있어서,
    상기 미생물은 락토바실루스(Lactobacillus)속, 류코노스톡(Leuconostoc)속 및 와이셀라(Weissella)속 중 어느 하나의 호냉성 유산균인 것을 특징으로 하는 시간-온도 지시계.
  4. 제1 항에 있어서,
    상기 고정화 물질은 알긴산, 한천, 카라기난 및 폴리아크릴아미드 중 어느 하나를 포함하는 것을 특징으로 하는 시간-온도 지시계.
  5. 제1 항에 있어서,
    상기 접착제 층은 부타디엔 골격 부분을 갖는 제1 중합체 및 제1 중합체와는 상이한 제2 중합체를 유기 퍼옥사이드의 존재 하에서 가교결합시킴으로써 형성되는 것을 특징으로 하는 시간-온도 지시계.
  6. 제1 항에 있어서,
    상기 나노비드는 직경이 10~35㎚로 형성된 것을 특징으로 하는 시간-온도 지시계.
  7. a) 영양성분을 이용하여 유산을 생성시키는 락토바실루스(Lactobacillus)속, 류코노스톡(Leuconostoc)속 및 와이셀라(Weissella)속 중 어느 하나의 호냉성 유산균과, 상기 호냉성 유산균에 의해 색상변화를 나타내는 지시약과, 상기 호냉성 유산균과 상기 지시약을 고정시키는 고정화 물질, 및 상기 영양성분 등을 혼합하는 단계;
    b) 상기 혼합된 물질을 칼슘염 용액 또는 스트론튬염 용액에 분무한 후 방치하여 겔 상태의 나노비드를 수득하는 단계;
    c) 수득한 상기 나노비드를 접착제 층이 구비된 기재에 고정시키는 단계; 및
    d) 폴리프로필렌필름, 접착제 및 포화염물질을 포함하는 수용성 겔로 이루어져 0.98 이상의 수분활성도를 유지하는 커버필름을 상기 나노비드에 접촉시키는 단계를 포함하는 것을 특징으로 하는 시간-온도 지시계의 제조방법.
  8. 제7 항에 있어서,
    상기 c) 단계에서 상기 나노비드를 상기 기재에 고정시키는 것은,
    코드인식수단에 의해 인식 가능한 2차원 코드의 형태를 이루도록 상기 나노비드를 상기 기재의 접착제 층에 고정시키는 것을 특징으로 하는 시간-온도 지시계의 제조방법.
  9. 제7 항에 있어서,
    상기 c) 단계는,
    c1) 상기 겔 상태의 나노비드에 휘발성 용매 또는 비휘발성 용매를 혼합하여 콜로이드 용액을 제조하는 단계;
    c2) 제조된 상기 콜로이드 용액을 에어스프레이 노즐을 이용하여 접착제 층이 구비된 기재에 분사하는 단계; 및
    c3) 분사된 상기 콜로이드 용액 중의 상기 용매를 휘발 또는 증발시켜 상기 나노비드를 상기 접착제 층에 단일 입자층으로 고정시키는 단계를 포함하는 것을 특징으로 하는 시간-온도 지시계의 제조방법.
  10. 제7 항에 있어서,
    상기 a) 단계 이전의 단계로
    상기 호냉성 유산균과 CaCO3를 알긴산으로 고정화시켜 엠알에스(MRS broth) 배지에서 배양하는 단계;
    상기 배지로부터 상기 호냉성 유산균을 원심분리하여 회수하고, 회수된 상기 호냉성 유산균을 펩톤수에 현탁하는 단계;
    상기 펩톤수에 현탁된 상기 호냉성 유산균을 원심분리하여 회수하고, 회수된 상기 호냉성 유산균을 2~3% 식염수에 현탁하는 단계; 및
    상기 식염수에 현탁된 상기 호냉성 유산균을 원심분리하여 회수하는 단계를 더 포함하는 것을 특징으로 하는 시간-온도 지시계의 제조방법.
  11. 제2 항의 시간-온도 지시계;
    상기 2차원 코드를 촬영하는 카메라모듈과, 촬영된 상기 2차원 코드의 이미지를 디코딩하는 코드인식부와, 상기 2차원 코드가 디코딩된 코드데이터를 전송하는 통신모듈이 구비된 단말기; 및
    상기 단말기로부터 상기 코드데이터를 수신하고, 상기 시간-온도 지시계의 색상변화에 대한 색상정보를 포함하는 색판정DB 또는 상기 시간-온도 지시계가 부착된 제품에 대한 제품정보를 포함하는 제품정보DB로부터 상기 코드데이터에 대응되는 상기 색상정보 또는 상기 제품정보를 상기 단말기로 전송하는 중앙서버를 포함하는 것을 특징으로 하는 시간-온도 지시계를 이용한 품질보증 시스템.
  12. 제11 항에 있어서,
    상기 코드데이터는 상기 2차원 코드가 상기 코드인식부에 의하여 디코딩 되도록 의도된 것인지 여부를 판단하기 위한 식별자 필드와, 상기 색판정DB 및 상기 제품정보DB 중 어느 하나를 선택하기 위한 DB종류 필드, 및 선택된 상기 색판정DB 또는 상기 제품정보DB에서 할당된 데이터값에 대응되는 색상정보 또는 제품정보를 인출하기 위한 시리얼넘버 필드로 이루어지고,
    상기 코드인식부는 상기 식별자 필드에 할당된 데이터값이 미리 저장된 식별 데이터값과 동일한지 여부를 판단하여 상기 식별자 필드에 할당된 데이터값이 상기 식별 데이터값과 동일하면 상기 DB종류 필드와 상기 시리얼넘버 필드에 할당된 데이터값을 획득하는 것을 특징으로 하는 시간-온도 지시계를 이용한 품질보증 시스템.
  13. 제12 항에 있어서,
    상기 중앙 서버는
    상기 색판정DB 및 상기 제품정보DB 중에서 상기 DB종류 필드에 할당된 데이터값과 대응되는 DB를 선택하는 DB선택부와,
    상기 DB선택부에 의해 선택된 DB에서 상기 시리얼넘버 필드에 할당된 데이터값에 대응되는 색상정보 또는 제품정보를 상기 단말기로 송신하는 정보송신부를 포함하는 것을 특징으로 하는 시간-온도 지시계를 이용한 품질보증 시스템.
  14. a) 단말기에 구비된 카메라모듈을 이용하여 제2 항의 시간-온도 지시계에 형성된 상기 2차원 코드의 이미지를 생성하는 단계;
    b) 생성된 상기 2차원 코드의 이미지를 디코딩하고, 디코딩된 상기 2차원 코드의 코드데이터를 중앙 서버로 송신하는 단계;
    c) 상기 시간-온도 지시계의 색상변화에 대한 색상정보를 포함하는 색판정DB와 상기 시간-온도 지시계가 부착된 제품에 대한 제품정보를 포함하는 제품정보DB를 구비하는 상기 중앙서버에서 상기 코드데이터에 대응되는 상기 색상정보 또는 상기 제품정보를 인출하는 단계; 및
    d) 인출된 상기 색상정보 또는 상기 제품정보를 상기 단말기로 전송하는 단계를 포함하는 것을 특징으로 하는 품질보증 시스템을 이용한 품질보증 방법.
  15. 제14 항에 있어서,
    상기 b) 단계는
    b1) 생성된 상기 2차원 코드의 이미지를 디코딩하는 단계;
    b2) 상기 2차원 코드가 디코딩된 코드데이터를 이루는 식별자 필드의 데이터값이 미리 저장된 식별 데이터값과 동일한지 여부를 판단하는 단계; 및
    b3) 상기 식별자 필드의 데이터값이 상기 식별 데이터값과 동일하면, 상기 코드데이터에 포함되는 DB종류 필드의 데이터값과 시리얼넘버 필드의 데이터값을 중앙 서버로 송신하는 단계로 이루어지는 것을 특징으로 하는 품질보증 시스템을 이용한 품질보증 방법.
  16. 제15 항에 있어서,
    상기 c) 단계는
    c1) 상기 색판정DB 및 상기 제품정보DB 중에서 수신한 상기 DB종류 필드의 데이터값에 대응되는 DB를 선택하는 단계; 및
    c2) 선택된 상기 색판정DB 또는 상기 제품정보DB에서 상기 시리얼넘버 필드의 데이터값과 대응되는 색상정보 또는 제품정보를 인출하는 단계로 이루어지는 것을 특징으로 하는 시간-온도 지시계를 이용한 품질보증 시스템을 이용한 품질보증 방법.
  17. 제16 항에 있어서,
    정상 상태의 상기 2차원 코드가 디코딩된 상기 DB종류 필드의 데이터값은 상기 제품정보DB에 대응되고,
    시간 또는 온도 조건에 따라 모양이 변화된 상기 2차원 코드가 디코딩된 DB종류 필드의 데이터값은 상기 색판정DB에 대응되는 것을 특징으로 하는 품질보증 시스템을 이용한 품질보증 방법.
PCT/KR2012/005083 2011-06-28 2012-06-27 시간-온도 지시계, 시간-온도 지시계의 제조방법, 시간-온도 지시계를 이용한 품질보증 시스템 및 품질보증 시스템을 이용한 품질보증 방법 WO2013002552A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/127,311 US9476083B2 (en) 2011-06-28 2012-06-27 Time-temperature indicator, method for manufacturing the time-temperature indicator, quality guarantee system using the time-temperature indicator, and quality guarantee method using the quality guarantee system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0063075 2011-06-28
KR1020110063075A KR101247642B1 (ko) 2011-06-28 2011-06-28 시간-온도 지시계, 시간-온도 지시계의 제조방법, 시간-온도 지시계를 이용한 품질보증 시스템 및 품질보증 시스템을 이용한 품질보증 방법

Publications (2)

Publication Number Publication Date
WO2013002552A2 true WO2013002552A2 (ko) 2013-01-03
WO2013002552A3 WO2013002552A3 (ko) 2013-02-28

Family

ID=47424662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005083 WO2013002552A2 (ko) 2011-06-28 2012-06-27 시간-온도 지시계, 시간-온도 지시계의 제조방법, 시간-온도 지시계를 이용한 품질보증 시스템 및 품질보증 시스템을 이용한 품질보증 방법

Country Status (3)

Country Link
US (1) US9476083B2 (ko)
KR (1) KR101247642B1 (ko)
WO (1) WO2013002552A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106754238A (zh) * 2016-11-21 2017-05-31 临沂大学 一种微生物样本处理系统
US10318781B2 (en) 2015-03-30 2019-06-11 Temptime Corporation Two dimensional barcode with dynamic environmental data system, method, and apparatus
US10546172B2 (en) 2015-03-30 2020-01-28 Temptime Corporation Two dimensional barcode with dynamic environmental data system, method, and apparatus
US11734539B2 (en) 2021-04-05 2023-08-22 Temptime Corporation Dynamic optical property windows in indicia with sensors

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150062079A (ko) * 2013-11-28 2015-06-05 재단법인 아산사회복지재단 육안식별이 가능한 현장검사장치의 검사결과 관리 시스템 및 검사결과 관리 애플리케이션의 제어 방법
KR101477030B1 (ko) * 2014-06-09 2014-12-30 한윤석 저장물질의 신선도 체크용 외부온도감지 선택적 용해 유산균 분리막 기능성 라벨
DE102014117482A1 (de) * 2014-11-28 2016-06-02 Netzgesellschaft Düsseldorf Mbh Verpackung für ein Lebensmittelprodukt
KR20180062894A (ko) * 2016-12-01 2018-06-11 주식회사 이에스애니 컨테이너의 온도 관리 방법, 이를 수행하는 시스템 및 온도 분포 획득 장치
US10121027B2 (en) 2017-02-16 2018-11-06 International Business Machines Corporation Dynamic quick response code branding
DE102017213638A1 (de) * 2017-08-07 2019-02-07 Siemens Aktiengesellschaft Marker
EP3870018A1 (en) 2018-10-23 2021-09-01 Ecolab USA, Inc. Verification of cleaning processes with electronically readable coded coupon
US10599964B1 (en) * 2019-01-15 2020-03-24 Capital One Services, Llc System and method for transmitting financial information via color matrix code
EP3996929A1 (en) 2019-07-08 2022-05-18 Pasqui, Valentina Monitoring system for perishable products
KR102443112B1 (ko) 2020-09-11 2022-09-15 동국대학교 산학협력단 산양삼 이력 관리 장치 및 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270724B1 (en) * 1996-01-11 2001-08-07 California South Pacific Investors Detection of contaminants in food
US7157048B2 (en) * 1993-05-19 2007-01-02 Sira Technologies, Inc. Detection of contaminants
JP2007525664A (ja) * 2004-02-09 2007-09-06 サン・ケミカル・コーポレーション 時間温度インジケーター(tti)システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834547B2 (ja) 2003-09-17 2011-12-14 エスエー クリオログ 製品が使用または消費される状態にあるかどうかを決める方法と考案物
JP2005127759A (ja) 2003-10-22 2005-05-19 Yokohama Kokusai Bio Kenkyusho:Kk pH指示薬を利用した糖質の検出方法
JP2006288361A (ja) 2005-04-09 2006-10-26 Toru Ueda 稲藁・廃木材等の農林業系廃棄物からの生分解性プラスチック製造用コハク酸生産方法及び装置
FR2899684B1 (fr) 2006-04-11 2008-07-04 Cryolog Sa Sa Temoin de franchissement de temperature pour un produit devant etre conserve a une temperature donnee et procede de fabrication associe
US8033715B2 (en) * 2007-11-08 2011-10-11 Illinois Institute Of Technology Nanoparticle based thermal history indicators
KR100963687B1 (ko) 2009-07-23 2010-06-15 김희구 유-헬스케어 광의료 스마트 마사지기 및 이를 이용한 마사지 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157048B2 (en) * 1993-05-19 2007-01-02 Sira Technologies, Inc. Detection of contaminants
US6270724B1 (en) * 1996-01-11 2001-08-07 California South Pacific Investors Detection of contaminants in food
JP2007525664A (ja) * 2004-02-09 2007-09-06 サン・ケミカル・コーポレーション 時間温度インジケーター(tti)システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VAIKOUSI, H. ET AL.: 'Development of microbial time/temperature indicator prototype for monitoring the microbiological quality of chilled foods' APPLIED AND ENVIRONMENTAL MICROBIOLOGY vol. 74, no. 10, May 2008, pages 3242 - 3250 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10318781B2 (en) 2015-03-30 2019-06-11 Temptime Corporation Two dimensional barcode with dynamic environmental data system, method, and apparatus
US10546172B2 (en) 2015-03-30 2020-01-28 Temptime Corporation Two dimensional barcode with dynamic environmental data system, method, and apparatus
US11182579B2 (en) 2015-03-30 2021-11-23 Temptime Corporation Two dimensional barcode with dynamic environmental data system, method, and apparatus
US11455483B2 (en) 2015-03-30 2022-09-27 Temptime Corporation Two dimensional barcode with dynamic environmental data system, method, and apparatus
CN106754238A (zh) * 2016-11-21 2017-05-31 临沂大学 一种微生物样本处理系统
US11734539B2 (en) 2021-04-05 2023-08-22 Temptime Corporation Dynamic optical property windows in indicia with sensors

Also Published As

Publication number Publication date
KR20130007057A (ko) 2013-01-18
US20140127738A1 (en) 2014-05-08
WO2013002552A3 (ko) 2013-02-28
KR101247642B1 (ko) 2013-04-01
US9476083B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
WO2013002552A2 (ko) 시간-온도 지시계, 시간-온도 지시계의 제조방법, 시간-온도 지시계를 이용한 품질보증 시스템 및 품질보증 시스템을 이용한 품질보증 방법
CN110618116B (zh) 一种可视化检测肉类新鲜度智能指示标签的制备方法及应用
Morsy et al. Development and validation of a colorimetric sensor array for fish spoilage monitoring
AU712226B2 (en) Method and composition for detecting bacterial contamination in food products
US7244583B2 (en) Device for detecting bacterial contamination and method of use
Otles et al. Intelligent food packaging
US10330603B1 (en) Mass produced, low cost, portable test kit for the detection and identification of chemical and biological agents
US20130209615A1 (en) System for providing food expiration date information using tti and method for providing food expiration date information using the same
EP2057275A2 (en) Array for rapid detection of a microorganism
WO2016182103A1 (ko) 검체운송관리를 위한 스마트 태그, 이를 이용한 검체운송상자 및 검체운송관리시스템
CN107167566A (zh) 基于物联网的食品安全检测系统
EP1356081B1 (en) Method for detecting listeria monocytogenes
AU2001296211A1 (en) A device for detecting bacterial contamination and method of use
JPH0367599A (ja) サルモネラ菌識別用の分離媒体
KR101909702B1 (ko) 유해물질 검지용 필름형 색 변환 센서
US20150241412A1 (en) Self-assembled nanostructured sensors and methods thereof
CN208424583U (zh) 一种产品检测设备
WO2018093222A1 (ko) 색상 변화로 대상물질의 농도를 측정하기 위한 센서, 이를 포함하는 센싱 시스템 및 센서의 제작 방법
CN111405050A (zh) 一种基于区块链技术的智能监测平台
WO2021096466A2 (en) Apparatus and usage methods for early warning and real time diagnosis of biological agents in air
EP3378242A1 (en) Method for providing service in wireless network and electronic device thereof
WO2017131062A1 (ja) 黄色ブドウ球菌を検出するための培地及び該培地を有する黄色ブドウ球菌検出シート、並びにそれらを用いる黄色ブドウ球菌の検出方法
CN108600650A (zh) 一种产品检测信息传送方法和产品检测设备
WO2013115478A1 (ko) 세균 검출용 식품 포장 키트
JP6733324B2 (ja) 黄色ブドウ球菌を検出するための培地及び該培地を有する黄色ブドウ球菌検出シート、並びにそれらを用いる黄色ブドウ球菌の検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14127311

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804450

Country of ref document: EP

Kind code of ref document: A2