WO2013002371A1 - Superfinishing method and superfinishing device - Google Patents

Superfinishing method and superfinishing device Download PDF

Info

Publication number
WO2013002371A1
WO2013002371A1 PCT/JP2012/066700 JP2012066700W WO2013002371A1 WO 2013002371 A1 WO2013002371 A1 WO 2013002371A1 JP 2012066700 W JP2012066700 W JP 2012066700W WO 2013002371 A1 WO2013002371 A1 WO 2013002371A1
Authority
WO
WIPO (PCT)
Prior art keywords
grindstone
component force
workpiece
superfinishing
detected
Prior art date
Application number
PCT/JP2012/066700
Other languages
French (fr)
Japanese (ja)
Inventor
大橋 一仁
孝 大西
眞也 塚本
晃平 東
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2013002371A1 publication Critical patent/WO2013002371A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • B24B19/06Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements for grinding races, e.g. roller races
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B35/00Machines or devices designed for superfinishing surfaces on work, i.e. by means of abrading blocks reciprocating with high frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/16Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/04Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces externally
    • B24B5/045Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces externally with the grinding wheel axis perpendicular to the workpiece axis

Definitions

  • the present invention relates to a superfinishing processing method and a superfinishing processing apparatus.
  • mirror finishing of industrial parts typified by bearings having raceway surfaces employs super-finishing processing in which grinding is performed by pressing a grindstone against a rotating workpiece while rocking.
  • super-finishing processing as represented by Patent Document 1, first, a “rough” process is performed in which abrasive grains are dropped to increase the grinding efficiency, and then the grindstone is clogged to generate a mirror surface. "Finish” processing. Switching from “rough” machining to “finishing” machining is done by lowering the rocking speed of the grindstone without changing the rotation speed of the workpiece, and the switching timing is generally determined by timer control. is there.
  • the state of the grindstone is determined based on the detection output of the force sensor, and the switching timing from “rough” processing to “finishing” processing is determined based on the determination.
  • the workpiece is supported by the backing plate and the shoe, and only the supporting force by the shoe is detected by the force sensor among the supporting force by the backing plate and the supporting force by the shoe.
  • the detection output is likely to be unstable due to the influence of the support force by the backing plate. Therefore, it is difficult to stably determine the state of the grindstone, and there is a possibility that the switching timing from the “rough” processing to the “finishing” processing becomes unstable.
  • the processing efficiency is high and the machining resistance is small compared to general abrasive grindstones represented by alumina and silicon carbide, so the state of the grindstone has changed.
  • the force changes little. Therefore, it is difficult to stably determine the state of the grindstone.
  • the method using the force sensor of patent document 2 is a method limited only to the bearing ring of a ball bearing.
  • an object of the present invention is to provide a superfinishing method and a superfinishing device that can obtain a stable machining state.
  • a workpiece is rotated, and the workpiece is pressed against the workpiece while the grindstone is swung in a direction perpendicular to the tangential direction of the rotation of the workpiece.
  • a main component force sensor for detecting a component force Q in a tangential direction of rotation of the workpiece of the force applied to the grindstone in a state of being pressed against the workpiece on the grindstone table that supports the grindstone.
  • a back component force sensor for detecting a component force P in the pressing direction of the grindstone of the force applied to the grindstone in a state of being pressed against the workpiece, and based on the component forces P and Q detected by each sensor The method of determining the machining state of the workpiece was adopted.
  • the tangential component force Q detected by the main component force sensor during the superfinishing process changes the machining resistance between the grindstone and the work piece according to the grindstone machining state. It exhibits a reaction according to the processing state of the grindstone.
  • the processing state of the grindstone is a state (cutting state) in which the blades are positively spontaneously generated by dropping off the abrasive grains. Thereafter, when shifting to the “finishing” process, the processing state of the grindstone shifts to a clogged state (polished state) through a semi-cut state.
  • the component force P in the pressing direction is determined by the pressing force against the grindstone, when the pressing force is set to be constant, a substantially constant value is indicated accordingly.
  • the component force (back component force) P in the pressing direction is a gutter that indicates a value corresponding to the grinding stone pressing force.
  • the tangential component force (main component force) Q generally has a characteristic of maintaining a constant ratio with respect to the back component force P according to the processing. Therefore, if the surface condition or the machining state of the grindstone does not change under the machining conditions, the machining component force ratio P / Q shows a constant value even if the pressing force is changed. Therefore, when the pressing force is set to be constant, the component force P shows a substantially constant value accordingly.
  • the component force Q in the tangential direction shows a change according to the processing state of the grindstone. Specifically, when “rough” machining is performed, the grindstone is self-generated, increasing the machining resistance, and the tangential component force Q takes a large value. Thereafter, when the process shifts to “finishing”, the self-generated blade is stopped and the grindstone is in a polished state, so that the machining resistance is reduced and the main component force Q is a small value. Therefore, if this is monitored, the processing state of the grindstone during the “rough” processing and “finishing” processing can be determined.
  • the grindstone table is provided with an air cylinder that presses the grindstone supported on the tip by advancing the rod against the workpiece, and the main wheel is disposed between the tip of the rod of the air cylinder to which the grindstone is attached and the grindstone.
  • a component force sensor and the back component force sensor can be arranged.
  • the processing state of the grindstone can be determined regardless of the method of supporting the workpiece. Therefore, the range of application of workpieces is wide.
  • an in-process gauge for detecting a reduction in the size of the workpiece caused by processing with a grindstone
  • a movement amount sensor for detecting a movement amount in the pressing direction of the grindstone due to a reduction in the size of the workpiece and wear of the grindstone. And adopting a method of determining the machining state of the workpiece based on the dimension reduction amount of the workpiece detected by the in-process gauge and the movement amount of the grindstone detected by the movement amount sensor. Can do.
  • the processing state of the grindstone becomes a state (cutting state) in which the blades are positively spontaneously generated by the removal of the abrasive grains. Therefore, the movement amount detected by the movement amount sensor increases (advances) at a constant speed, and the reduction amount of the finishing dimension detected by the in-process gauge decreases at a constant rate.
  • the processing state of the grindstone shifts to a clogged state (polished state) through a semi-cut state. For this reason, the movement amount detected by the movement amount sensor is constant, and the change in the finishing dimension detected by the in-process gauge is stagnant.
  • the dimension reduction amount detected by the in-process gauge and the movement amount detected by the movement amount sensor exhibit different characteristics, it is possible to discriminate between “rough” processing and “finishing” processing. Therefore, by combining the output characteristics of the movement amount sensor and the in-process gauge with the detection outputs of the main component force sensor and the back component force sensor, it is possible to improve the discrimination accuracy for switching from “rough” to “finish” processing.
  • the workpiece is rotated, and the grinding stone is pressed against the workpiece while swinging the grinding stone in a direction perpendicular to the tangential direction of the rotation of the workpiece, thereby super-finishing the workpiece.
  • a main component force sensor for detecting a component force Q in a tangential direction of rotation of the workpiece applied to the grindstone in a state of being pressed against the workpiece on the grindstone table that supports the grindstone;
  • a back component force sensor that detects a component force P in the pressing direction of the grindstone of the force applied to the grindstone in the applied state, and the superfinishing processing based on the component forces P and Q detected by each sensor The method of performing the control is adopted.
  • the grindstone table is provided with an air cylinder for pressing the grindstone supported at the tip by advancing the rod against the workpiece, and the main wheel is disposed between the tip of the rod of the air cylinder to which the grindstone is attached and the grindstone.
  • a component force sensor and the back component force sensor can be arranged.
  • the force applied to the grindstone can be detected, and the processing state of the grindstone can be determined regardless of the workpiece support method. Therefore, based on the determination, it is possible to obtain a more stable machining state by changing machining conditions such as the number of rotations of the workpiece, the rocking speed of the grindstone, and the pressing force of the grindstone.
  • the ratio P / of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor Processing conditions so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is increased when Q is sequentially calculated and the ratio P / Q is larger than a preset upper limit value. It is possible to adopt a control that changes.
  • the ratio P / Q is large. Becomes larger than a preset upper limit value.
  • the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is increased, that is, the maximum intersection formed by the trajectory of the abrasive grain generated on the workpiece surface and the traveling direction of the workpiece surface. Since the control for changing the machining conditions so as to increase the angle is executed, the self-generated blade of the grindstone is promoted, and the deterioration of the processing accuracy due to the lack of the self-generated blade of the grindstone can be prevented.
  • the ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor are sequentially calculated, and when the magnitude of the ratio P / Q becomes smaller than a preset lower limit value, the machining conditions are set so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece becomes small. Variable control can be employed.
  • the ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor Is calculated, and when the ratio P / Q becomes larger than a preset upper limit value, control is performed to change the machining conditions so as to increase the pressing force of the grindstone against the workpiece. Can do.
  • the main component force Q is reduced when the machining resistance is reduced due to a lack of self-generated blades of the grindstone, and as a result, the ratio P / Q is large. Becomes larger than a preset upper limit value.
  • the self-generated blade of the grindstone is promoted, and the deterioration of the processing accuracy due to the lack of the self-generated blade of the grindstone is prevented. Can do.
  • the ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor Is calculated, and when the magnitude of the ratio P / Q becomes smaller than a preset lower limit, a control is adopted that changes the machining conditions so as to reduce the pressing force of the grindstone against the workpiece. Can do.
  • the ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor Is calculated successively, and when the magnitude of the ratio P / Q becomes larger than a preset abnormality detection threshold, it is possible to adopt a control for determining that the clogged stone is extremely clogged. it can.
  • an in-process gauge for detecting a reduction in the size of the workpiece due to machining with a grindstone
  • a movement amount sensor for detecting a movement amount in the pressing direction of the grindstone due to a reduction in the size of the workpiece and wear of the grindstone And the superfinishing ratio can be calculated based on the dimensional reduction amount of the workpiece detected by the in-process gauge and the movement amount of the grindstone detected by the movement amount sensor.
  • the superfinishing ratio is the ratio of the amount of wear of the grindstone to the amount of reduction in the size of the workpiece, and greatly affects the machining cost.
  • a rocking load sensor for detecting a component force R in the rocking direction of the grindstone of the force applied to the grindstone pressed against the workpiece is further provided on the grindstone table that supports the grindstone, and the rocking load is provided.
  • the superfinishing process can be controlled based on the amplitude of the component force R detected by the sensor.
  • the magnitude of the component force R in the oscillating direction detected by the oscillating load sensor depends on the inertial force of the oscillating grindstone and the machining resistance acting between the grindstone and the workpiece, It exhibits sine wave vibration according to the rocking number of the grindstone.
  • the processing state of the grindstone is a state (cutting state) in which the abrasive grains are positively generated spontaneously by cutting off the abrasive grains
  • the processing resistance is increased because the grindstone is spontaneously bladed, and the component force in the oscillating direction
  • the amplitude of R increases.
  • the processing state of the grindstone is a polished state in which the self-generated blade is stopped
  • the processing resistance decreases and the amplitude of the component force R in the swinging direction decreases. Therefore, if the amplitude of the component force R in the swinging direction is monitored, it is possible to determine the machining state when performing “rough” machining and “finishing” machining, and based on this judgment, the rotational speed of the workpiece
  • a stable processing state can be obtained.
  • the magnitude of the amplitude of the component force R detected by the swing load sensor is larger than a preset lower limit width. In this case, it is possible to adopt a control for changing the machining condition so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece increases.
  • the amplitude of the component force R is smaller than the preset lower limit width when the machining resistance is reduced due to the lack of the self-generated blade of the grindstone during superfinishing. Get smaller.
  • the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is increased, that is, the maximum crossing angle formed by the abrasive locus generated on the workpiece surface and the traveling direction of the workpiece surface. Since the control to change the machining conditions is executed so that the grinding wheel becomes large, the self-generated blade of the grindstone is promoted, and the deterioration of the machining accuracy due to the lack of the self-generated blade of the grindstone can be prevented.
  • the magnitude of the amplitude of the component force R detected by the swing load sensor is larger than a preset upper limit width. Control that changes the machining conditions so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece becomes small when it becomes large can be employed.
  • the amplitude of the component force R is larger than the preset upper limit width. growing.
  • the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is reduced, that is, the maximum crossing angle formed by the abrasive locus generated on the workpiece surface and the traveling direction of the workpiece surface. Since the control is performed to change the machining conditions so as to decrease, the self-generated blade of the grindstone is suppressed, and the reduction of the superfinishing ratio due to the excessive self-generated blade of the grindstone can be prevented.
  • the amplitude of the component force R detected by the swing load sensor is smaller than a preset lower limit width.
  • the amplitude of the component force R is smaller than the preset lower limit width when the machining resistance is reduced due to the lack of the self-generated blade of the grindstone during superfinishing. Get smaller.
  • the self-generated blade of the grindstone is promoted, and the deterioration of the processing accuracy due to the lack of the self-generated blade of the grindstone is prevented. Can do.
  • the magnitude of the amplitude of the component force R detected by the swing load sensor is larger than a preset upper limit width.
  • a water-insoluble (oil-based) coolant excellent in lubricity and permeability is generally employed.
  • water-soluble coolant with poor lubricity and permeability it is possible to control the self-generated blade of the grindstone based on the detection signal of each sensor, so that a stable machining state can be obtained. Is possible.
  • Examples of the workpiece include an inner ring, an outer ring, and a rolling element of a bearing.
  • the super-finishing processing apparatus for performing the super-finishing processing method
  • the workpiece is rotated while the grindstone is swung in a direction perpendicular to the tangential direction of the rotation of the workpiece.
  • a superfinishing machine that presses the grindstone against the workpiece and superfinishing the workpiece, and a grinder mounted on the grindstone table that supports the grindstone, and the rotation of the workpiece with the force applied to the grindstone pressed against the workpiece
  • a main component sensor for detecting a component force Q in the tangential direction, and a component force P in the pressing direction of the grindstone applied to the grindstone that is attached to the grindstone table that supports the grindstone and is pressed against the workpiece.
  • a control device that controls the superfinishing process based on the component forces P and Q detected by the sensors.
  • the grindstone table includes an air cylinder that presses the grindstone supported at the tip by advancing the rod against the workpiece, and a main component force sensor between the tip of the rod of the air cylinder to which the grindstone is attached and the grindstone It can be set as the structure which provided the back component force sensor.
  • the control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is preset.
  • control can be performed to change the machining conditions so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is increased.
  • the control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is determined in advance.
  • it becomes smaller than the set lower limit value it is possible to perform a control for changing the machining conditions so that the ratio of the rocking number of the grindstone to the rotation speed of the workpiece becomes small.
  • the control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is determined in advance. When it becomes larger than the set upper limit value, it is possible to perform a control for changing the machining conditions so as to increase the pressing force of the grindstone against the workpiece.
  • the control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is determined in advance. When it becomes smaller than the set lower limit value, it is possible to perform a control for changing the machining conditions so as to reduce the pressing force of the grindstone against the workpiece.
  • an in-process gauge for detecting a reduction in the size of the workpiece caused by processing with a grindstone
  • a movement amount sensor for detecting a movement amount in the pressing direction of the grindstone due to a reduction in the size of the workpiece and wear of the grindstone.
  • the control device reduces the dimension of the workpiece based on the dimension reduction amount of the workpiece detected by the in-process gauge and the movement amount of the grindstone detected by the movement amount sensor.
  • the control device further includes a rocking load sensor for detecting a component force R in the rocking direction of the grindstone of the force applied to the grindstone pressed against the workpiece on the grindstone table that supports the grindstone. May employ a configuration in which the superfinishing process is controlled based on the amplitude of the component force R detected by the swing load sensor.
  • the superfinishing processing method and superfinishing processing device of the present invention are based on the component forces P and Q detected by the main component force sensor and the back component force sensor, and the rotational speed of the workpiece, the rocking number of the grindstone, By changing processing conditions such as pressing force, it is possible to obtain a stable processing state.
  • FIG. 1 and 2 are schematic views of a superfinishing apparatus for explaining the present invention.
  • FIG. 1 is a schematic diagram of the superfinishing machine
  • FIG. 2 is a block diagram of the control device 19.
  • the superfinishing apparatus includes a superfinishing machine and a control device 19. As shown in FIG. 1, the superfinishing machine includes a fixed center 1, a turner 2, a swing device 3, a grinding wheel base 4, an air cylinder 5, a main component force sensor 6a, a back component force sensor 6b, and a swing load sensor 6c. , A movement amount sensor 7, an in-process gauge 8, a grindstone 10, and a discharge nozzle 12.
  • the workpiece 9 supported by the fixed center 1 of the superfinishing machine is given a rotational force by the turner 2.
  • a grindstone base 4 that supports the grindstone 10 is attached to the rocking device 3.
  • the oscillating device 3 applies a driving force for reciprocating the grindstone table 4.
  • a main component force sensor 6a, a back component force sensor 6b, and a swing load sensor 6c are attached to a grindstone table 4 that is swung by the swing device 3 via an air cylinder 5, and the main component force sensor 6a,
  • the grindstone 10 is supported by the component force sensor 6b and the swing load sensor 6c.
  • the main component force sensor 6a, the back component force sensor 6b, and the swing load sensor 6c are provided between the tip of the rod 13 of the air cylinder 5 to which the grindstone 10 is attached and the grindstone 10.
  • the main component force sensor 6a detects the component force Q in the tangential direction of the rotation of the workpiece 9 out of the force applied to the grindstone 10 pressed against the workpiece 9.
  • the back component force sensor 6b detects the component force P in the pressing direction of the grindstone 10 out of the force applied to the grindstone 10 pressed against the workpiece 9.
  • the rocking load sensor 6 c detects a component force R in the rocking direction of the grindstone 10 out of the force applied to the grindstone 10 pressed against the workpiece 9.
  • a force sensor such as a load cell, a piezoelectric element (semiconductor (piezoresistive element) strain gauge, unimorph, bimorph) or the like can be used.
  • a piezoelectric element semiconductor (piezoresistive element) strain gauge, unimorph, bimorph) or the like
  • sensors 6a, 6b, and 6c can be provided as separate sensors, respectively, but may be an integrated three-axis type. In this embodiment, an integral unit is used.
  • a movement amount sensor 7 is attached to the rear end of the air cylinder 5 to detect the movement amount S of the grindstone 10.
  • a potentiometer can be used as the movement amount sensor 7, for example.
  • a non-contact type linear motion displacement meter using an optical type or a differential transformer may be used aiming at a drip-proof effect from a coolant which is a liquid.
  • the in-process gauge 8 is for detecting a dimensional change of the workpiece 9 during processing, and is arranged so that the stylus comes into contact with the workpiece 9 and measures the size of the workpiece 9 simultaneously with the processing. It is like that.
  • the coolant 11 has the performance of reducing the frictional force between the grindstone 10 and the workpiece 9 (lubricating action), discharging chips (cleaning action), and discharging processing heat (cooling action). And the coolant 11 arrange
  • the coolant used may be either water-insoluble or water-soluble.
  • FIG. 2 is a block diagram focusing on a signal (input) system obtained from the superfinishing machine of the control device 19 and a signal (output) system output to the superfinishing machine and external devices (dressing 25, grindstone exchanger 26). .
  • control device 19 includes an A / D conversion function 20a, a D / A conversion function 20b, an arithmetic processing function (CPU) 21, and an I / O interface 24.
  • the CPU 21 is connected to the main component force sensor 6a, the back component force sensor 6b, the swing load sensor 6c, the movement amount sensor 7 and the in-process gauge 8 provided on the superfinishing board via the A / D conversion function 20a.
  • the output of each of the three component forces P, Q, R output from the main component force sensor 6a, the back component force sensor 6b, and the swing load sensor 6c, and the measurement output S from the movement amount sensor 7 and the in-process gauge 8 Collect T.
  • the CPU 21 is connected to each inverter circuit 27 of the spindle motor 22 and the swing motor 23 of the superfinishing machine via the D / A conversion function 20b. At the same time, the CPU 21 is connected to the electropneumatic air regulator 28 of the air cylinder 5 through the D / A conversion function 20b. Therefore, the CPU 21 determines the processing state of the grindstone 10 based on the detection outputs of the main component force sensor 6a, the back component force sensor 6b, the swing load sensor 6c, the movement amount sensor 7 and the in-process gauge 8.
  • the spindle motor 22, the swing motor 23, and the air cylinder 5 are controlled to operate the rotational speed of the workpiece 9, the swing speed of the grindstone 10, and the pressure applied to the grindstone 10, and the machining conditions for the superfinishing processing are real-time. It comes to control with.
  • the CPU 21 is connected to the air cylinder 5 via the I / O interface 24. In this way, when an abnormality of the grindstone 10 is detected from the detection outputs of the main component force sensor 6a, the back component force sensor 6b, the swing load sensor 6c, the movement amount sensor 7 and the in-process gauge 8, the swing is stopped. Can be commanded to the air cylinder 5.
  • the CPU 21 can be connected to the external devices 25 and 26 via the I / O interface 24 to instruct maintenance operation of the grindstone 10.
  • the external devices are the dressing device 25 for sharpening and the grindstone changing device 26, both of which may be well known. Both devices 25 and 26 determine that the CPU 21 is necessary based on the detection outputs of the main component force sensor 6a, the back component force sensor 6b, the swing load sensor 6c, the movement amount sensor 7 and the in-process gauge 8. When the command is issued, the sharpening and replacement of the grindstone 10 are automatically performed.
  • the processing apparatus of the present application is configured, and next, super finishing used in the processing apparatus will be described.
  • the horizontal axis represents time transition
  • the vertical axis represents signal strength (grinding resistance).
  • the detection outputs of the main component force sensor 6a, the back component force sensor 6b, and the swing load sensor 6c are three axes (X axis, Y axis) of the main component force Q, the back component force P, and the swing load R, respectively. , Z-axis) direction component, and as shown in FIG. 5, a signal including the frequency resulting from the number of rotations of the workpiece 9 and the number of oscillations of the grindstone 10 is presented. Each signal varies according to the processing state of the grindstone 10.
  • FIG. 6 shows signal changes of the moving amount (grinding wheel wear amount) S of the grindstone 10 and the finish dimension reduction amount (stock amount: so-called “removing allowance”) T of the workpiece 9 of the in-process gauge 8.
  • the horizontal axis represents time transition
  • the vertical axis represents the amount of displacement.
  • the moving amount S of the grindstone 10 is constant (the forward movement of the rod 13 of the air cylinder 5 is stopped), and the finish.
  • the change in the dimension reduction amount T is also stagnant.
  • FIG. 7 shows a component force Q (so-called “main component force”) in the tangential direction of rotation of the workpiece 9 of the force applied to the grindstone 10 when machining is performed under the conditions set in FIG.
  • An example of measuring the component force P in the contact direction (so-called “back component force”) and its ratio P / Q is shown.
  • the horizontal axis of FIG. 7 indicates the time transition
  • the vertical axis indicates the magnitude of each component force and the ratio thereof.
  • the component force Q in the pressing direction is determined by the pressing force of the grindstone 10. From this, it can be seen that the condition of FIG. 4 shows a substantially constant value.
  • the component force Q in the pressing direction shows a change according to the grinding resistance between the workpiece 9 and the grindstone 10. Specifically, in the “rough” processing, the grindstone 10 spontaneously cuts and the grinding resistance increases. Therefore, the component force Q in the pressing direction takes a large value. Thereafter, during the “finishing” process, the self-generated blade stops and the grindstone 10 is polished. Therefore, the grinding resistance is reduced, and the component force Q in the pressing direction takes a small value.
  • the ratio P / Q (representing the load balance) shows a change according to the processing state of the grindstone 10 as shown in FIGS. That is, the ratio P / Q shows a gradual increase as shown in FIG. 7 (b) as the process shifts from “rough” to “finish”. In the case of the grindstone 10 having the same specifications, this ratio P / Q shows almost the same tendency regardless of which numerical value is set in the processing conditions of FIG. Therefore, the ratio P / Q is effective as an index for monitoring the processing efficiency and finishing accuracy in super finishing.
  • the grinding wheel wear amount which is the moving amount (advance amount) S of the grindstone 10 on the same time axis as FIG. 7, the finishing dimension reduction amount T of the workpiece 9, and the moving amount S of the grinding stone 10 and the finishing dimension reduction amount T.
  • the super-finishing ratio U is taken as the cumulative ratio. That is, the superfinishing ratio U is obtained by accumulating the “dimension reduction amount (removed volume)” detected by the in-process gauge 8 from the start of machining, and the movement amount S obtained by the movement amount sensor 7 (whetstone wear amount + workpiece). Only the grinding wheel wear amount is calculated from the dimensional reduction amount of the article 9 and is taken as a ratio with the cumulative amount from the start of machining.
  • the grinding wheel wear amount can be calculated by subtracting the “dimension reduction amount (removed volume)” detected by the in-process gauge 8 from the movement amount S.
  • the superfinishing ratio U is expressed by the ratio of the cumulative value of the amount of wear of the grinding wheel 10 from the start of machining and the finishing dimension reduction amount T. is there.
  • FIG. 9 shows a component force P in the pressing direction and a component force Q in the tangential direction and a ratio P / Q when the material of the workpiece 9 is adhered to the grindstone 10 (adhesion state). Shows changes. That is, the component force P in the pressing direction, the component force Q in the tangential direction, and the ratio P / Q follow a relatively gradual change in FIG. Then, the component force Q of the said tangential direction shows the tendency to fall instantaneously. As a result, the ratio P / Q increases rapidly as shown in FIG. Therefore, if a limit value (threshold value) is set for the ratio P / Q, the occurrence of adhesion can be detected.
  • a limit value threshold value
  • the main component force sensor 6a, the back component force sensor 6b, and the swing load sensor 6c on the grindstone base 4 that supports the grindstone 10, it is possible to discriminate from "rough” processing to "finishing” processing. Thus, it can be used for super-finishing using the grindstone table 4. Further, by providing the movement amount sensor 7 and the in-process gauge 8, it is possible to determine the finish. And it becomes possible to judge the processing state of the grindstone 10 comprehensively using those detected values, and the processing conditions (the number of rotations of the workpiece 9, the number of oscillations of the grindstone 10, and the pressing force of the grindstone 10). It is possible to always keep the super-finish ratio U optimally by operating it intentionally.
  • the machining apparatus includes the main shaft motor 22 and the swing motor 23 based on the outputs of the main component force sensor 6a, the back component force sensor 6b, the swing load sensor 6c, the movement amount sensor 7, and the in-process gauge 8. Then, the air cylinder 5 is controlled to change the machining conditions. That is, from FIG.
  • the detection output of the main component force sensor 6a and the back component force sensor 6b is the transition point from the processing start point A where the grindstone 10 and the workpiece 9 contact each other to “rough” processing ⁇ “finishing” processing. Fluctuates greatly. Therefore, switching from “rough” machining to “finishing” machining is determined from this variation, and switching control to “finishing” machining is performed.
  • the oscillating load sensor 6c receives the oscillating inertia and the machining resistance of the grindstone 10, and thus exhibits a sine wave vibration corresponding to the oscillating number. Therefore, in the “rough” process in which the grindstone 10 is crushed and dropped, the grindstone 10 is in a cutting state and the amplitude of the sine wave is increased.
  • the amplitude of the sine wave is reduced because the grindstone 10 is in a polished state. Therefore, if the determination is made by adding the detection output of the swing load sensor 6c to the detection output of the main component force sensor 6a and the back component force sensor 6b, the determination accuracy is improved. Therefore, even in the superabrasive grindstone, the determination of the transition from “rough” to “finishing” processing is ensured. For example, automatic switching control from “rough” processing to “finishing” processing can be easily controlled.
  • “coarse” machining and “finishing” machining can also be discriminated by the detection output of the movement amount sensor 7 and the in-process gauge 8. That is, as shown in FIG. 6, the movement amount S of the grindstone 10 detected by the movement amount sensor 7 advances at a constant speed because crushing or dropping occurs in “rough” processing. In the “finishing” process, the polishing state is stopped. Further, the processing characteristics of the finishing dimension reduction amount T of the workpiece 9 measured by the in-process gauge 8 change according to the moving amount (grinding wheel wear) S of the grindstone 10 as shown in FIG.
  • this machining cycle switching control can be realized by monitoring the dimension reduction amount T of the workpiece 9 based on the detection output of the in-process gauge 8.
  • the grinding wheel 10 is in a cutting state, and the grinding stone 10 at this time actively blades spontaneously. Then, the process proceeds to “finishing” processing (polished state). Then, the grindstone 10 gradually shifts from a semi-cut state to a clogged state. During this time, the two-way component forces Q and P detected by the main component force sensor 6a and the back component force sensor 6b are not as large as the component force (swing load) R in the swing direction detected by the swing load sensor 6c. A sinusoidal signal including a frequency of the same phase caused by the rotational speed of the workpiece 9 or the vibration frequency of the grindstone 10 is exhibited.
  • the fluctuation of the component force Q in the tangential direction and the component force P in the pressing direction due to the state change of the grindstone 10 is very small with respect to the amplitude included in the rotation speed or frequency component. Since the constant minute amplitude appearing in the waveform of the component force Q in the tangential direction and the component force P in the pressing direction has the same phase as the machining characteristics, the ratio P / Q cancels each other and has a relatively low amplitude. It becomes a direct current waveform. For this reason, the ratio P / Q can clearly show the change according to the processing state of the grindstone 10 as shown in FIGS. 7 (a), (b), and (c). Therefore, the machining process can be determined from the output change pattern. In addition, if the determination is made with the output change pattern as described above, the superfinishing can be performed by determining the processing state of the grindstone 10 regardless of the difference in surface roughness of the workpiece 9 before processing.
  • the dimension reduction amount T based on the detection output of the in-process gauge 8 and the movement amount S of the grindstone 10 based on the detection output of the movement amount sensor 7 from the start of machining.
  • FIG. 8 shows the superfinishing calculated from the transition of the movement amount S and dimension reduction amount T of the grindstone 10 when machining under the conditions set in FIG. 4 and the accumulated value of the movement amount S and dimension reduction amount T.
  • the ratio U is drawn.
  • the processing efficiency at the time of grinding in the cutting state is high, the initial gradient of the superfinishing ratio U at the initial stage of processing increases.
  • the rotational speed of the spindle motor 22 and the swing motor 23 of the grinding wheel base 4 are controlled so that the value of U becomes large.
  • the ratio P / Q and the superfinishing ratio U can be used for determining the finished state of the workpiece 9.
  • the grindstone 10 is polished and the ratio P / Q rises again, and the machining is completed when the set value is exceeded, stable machining quality can be obtained.
  • the workpiece 9 can be finished to a predetermined size.
  • the metal is attached to the grindstone 10 (attached). Occurs.
  • the ratio P / Q increases and the size reduction amount T decreases. Therefore, if the processing state of the grindstone 10 is monitored by combining the change in the ratio P / Q and the dimensional change of the dimensional reduction amount T detected by the in-process gauge 8, the occurrence of adhesion can be detected.
  • the air cylinder 5 is retracted via the I / O interface 24 in order to stop the processing.
  • the dressing device 25 connected as an external device via the I / O interface 24 is operated to perform dressing (sharpening) of the grindstone 10.
  • the air cylinder 5 is advanced to return to the finishing process and the work is continued.
  • the grindstone exchanging device 24 connected as an external device via the I / O interface 24 is operated to replace the grindstone 10 with a new one. To do.
  • the air cylinder 5 is advanced to return to the polishing process and the operation is continued.
  • operation can be continued stably.
  • the super-finishing ratio U can be changed by freely operating the processing efficiency
  • a water-soluble coolant can be used during processing as shown in FIG. That is, the ratio P / Q is sequentially calculated from the tangential component force Q detected by the main component sensor 6a and the pressing component component Q detected by the back component sensor 6b, and the calculated ratio P / Q is When the value changes below a preset lower limit value, the number of oscillations of the grindstone table 4 is increased or the number of rotations of the workpiece 9 is decreased to increase the machining efficiency.
  • the ratio P / Q is larger than the preset upper limit value, the number of oscillations of the grindstone table 4 is decreased or the number of rotations of the workpiece 9 is increased to lower the machining efficiency.
  • clogging due to adhesion or adhesion can be prevented in advance by changing the processing efficiency and arbitrarily setting the superfinishing ratio U and setting the limit value to the ratio P / Q.
  • the coolant 11 to be used is a water-soluble coolant that is clogged due to inferior cleanability and lubricity and is likely to cause adhesion, it is possible to set processing conditions that hardly cause these problems.
  • water-soluble coolant that is excellent in cooling performance and cost can be used in the superfinishing process, and as a result, the productivity can be improved by improving the quality of the superfinishing process and reducing the production cost. Further, even when a conventional water-insoluble coolant is employed, the machining efficiency can be optimally maintained by adopting the above-described machining control, which can contribute to a reduction in production cost.
  • the output P (back component force) of the back component force sensor 6b and the output Q (main component force) of the main component force sensor 6a are sequentially calculated. It is also possible to maintain optimum machining efficiency by feeding back to the machining conditions.
  • the processing state of the grindstone 10 is monitored to determine the processing state for each of “rough” processing and “finishing” processing, and can be maintained optimally, so switching from rough processing to finishing processing is automatically performed. Can be done. Moreover, since the processing state of the grindstone 10 can be monitored to detect adhesion of the grindstone 10, dressing and replacement of the grindstone 10 can be automatically performed. Furthermore, since the processing state of the grindstone 10 can be monitored and the processing efficiency can be kept constant, a good processing state can be maintained even with a water-soluble coolant that is inferior in lubricity and cleanability to a water-insoluble (oil-based) coolant.
  • Example 1 a specific example of the control method is shown as Example 1.
  • the processing apparatus includes a main shaft motor 22, a swing motor based on outputs from the main component force sensor 6 a, back component force sensor 6 b, swing load sensor 6 c, movement amount sensor 7, and in-process gauge 8. Control is performed to change the machining conditions by controlling the dynamic motor 23 and the air cylinder 5.
  • the control device 19 reads the component force Q detected by the main component force sensor 6a and the component force P detected by the back component force sensor 6b during the superfinishing process, and the back of the detected output P of the main component force sensor 6a.
  • the ratio P / Q of the component force P detected by the component force sensor is sequentially calculated. Then, for example, as shown in FIG. 7, the magnitude of the ratio P / Q is compared with a preset upper limit value Th1 or lower limit value Th2, and control is performed to prevent the superfinishing ratio from being lowered during processing.
  • the controller 19 calculates the ratio P / Q with respect to the rotational speed of the workpiece 9 when the preset ratio P / Q is larger than a preset upper limit value Th1 for determining whether the self-generated blade is insufficient.
  • the ratio of the number of oscillations of the grindstone 10 is increased, that is, the grain trajectory generated on the workpiece surface and the traveling direction of the workpiece surface (tangential direction of rotation of the workpiece).
  • the machining conditions are changed by controlling the spindle motor 22 and the swing motor 23 so that the maximum crossing angle is increased.
  • the control device 19 swings the grindstone 10 with respect to the rotational speed of the workpiece 9.
  • the machining conditions are changed by controlling the spindle motor 22 and the swinging motor 23 so that the ratio of the dynamic numbers becomes small, that is, the maximum crossing angle becomes small. In this way, by reducing the ratio of the rocking speed of the grindstone 10 to the rotational speed of the workpiece 9, the superfinishing ratio is prevented from being lowered due to excessive self-generated blades of the grindstone 10.
  • the control unit 19 does not reduce the ratio P / Q.
  • the air cylinder 5 is controlled so as to increase the pressing force against the control to change the machining conditions. This is because, during superfinishing, the grinding resistance is reduced due to a lack of self-generated blades of the grindstone 10 and the main component force Q is reduced, so that the ratio P / Q is set to an upper limit value Th1 set in advance. It is because it became larger.
  • the control device 19 does not increase the ratio P / Q.
  • the processing conditions are changed by controlling the air cylinder 5 so as to reduce the pressing force of the grindstone 10 against 9. This is because the main component force Q increases and the ratio P / Q is a preset lower limit because the cutting force increases due to excessive self-generated blades of the grindstone 10 during superfinishing. This is because the value is smaller than the value Th2. Therefore, by changing the machining conditions so that the pressing force of the grindstone 10 against the workpiece 9 is reduced, the superfinishing ratio is prevented from being lowered due to excessive self-generated blades of the grindstone 10.
  • control device 19 detects that the ratio P / Q to be sequentially calculated during the superfinishing process is larger than a preset abnormality detection threshold Th3 as shown in FIG. 9, for example. Then, it determines with the extreme clogging having generate
  • the control device 19 determines clogging, the control device 19 activates the dressing device 25 for dressing via the I / O interface 24. Then, the clogged grindstone 10 is sharpened using the activated dressing device 25. When the setting is finished, the control device 19 performs super finishing. When the productivity reduction due to dressing is disliked, the grindstone exchanging device 26 is activated via the I / O interface 24 and the grindstone 10 is exchanged. Thus, the maintenance operation is performed.
  • the control device 19 calculates the superfinishing ratio U from the detected values of the movement amount sensor 7 and the in-process gauge 8 during superfinishing, so that the calculated superfinishing ratio U becomes an optimum value.
  • the machining conditions are controlled by controlling the motor 22, the swing motor 23, and the air cylinder 5. That is, the superfinishing ratio U is obtained by accumulating the “dimension reduction amount (removed volume)” detected by the in-process gauge 8 from the start of machining, and the movement amount S obtained by the movement amount detection sensor 7 (whetstone wear amount + Only the grinding wheel wear amount is calculated from the dimension reduction amount of the workpiece 9 and is taken as a ratio with the cumulative amount from the start of machining.
  • the control device 19 samples and accumulates the detection output of the in-process cage 8 and the output of the movement amount detection sensor 7 at regular intervals, and calculates the superfinishing ratio U by taking the ratio of the accumulated values. In this way, the superfinishing ratio U is detected in real time. At this time, the grinding wheel wear amount is calculated by subtracting the “dimension reduction amount (removed volume)” detected by the in-process gauge 8 from the movement amount S, for example. Then, the machining conditions of the spindle motor 22, the swing motor 23, and the air cylinder 5 are controlled so as to approach the superfinishing ratio U set so that the cost of the finished dimension reduction amount and the wear amount of the grindstone 10 are harmonized. . By doing so, the processing cost can be reduced.
  • control device 19 determines the machining state by detecting the output of the rocking load sensor 6c. Based on the determination, the number of rotations of the workpiece 9, the number of rocking of the grindstone, and the pressing of the grindstone 10 are determined. A stable machining state is obtained by changing machining conditions such as force.
  • the control device 19 determines the shortage of the self-generated blade of the grindstone 10 and sets the amplitude lower limit value Th4 set in advance and the amplitude of the component force R detected by the swing load sensor 6c. Compare sequentially.
  • the amplitude of the component force R becomes smaller than a preset lower limit Th4 of the amplitude
  • the spindle motor 22 and the swing motor 23 are controlled.
  • the machining state is changed so that the ratio of the rocking speed of the grindstone 10 to the rotational speed of the workpiece 9 is increased, that is, the maximum crossing angle is increased.
  • the use of the swing load sensor 6c that can detect the state of the self-generated blade as described above prevents the superfinishing ratio U from being lowered.
  • the control device 19 determines the excess of the self-generated blade of the grindstone 10, and the magnitude of the amplitude of the component force R detected by the preset upper limit value Th5 and the swing load sensor 6c. Are compared sequentially.
  • the spindle motor 22 and the swing motor 23 are controlled to swing the grindstone 10 with respect to the rotational speed of the workpiece 9.
  • the machining conditions are changed so that the ratio of the numbers becomes smaller, that is, the maximum crossing angle becomes smaller.
  • the control device 19 sequentially compares the amplitude of the component force R detected by the swing load sensor 6c with a preset lower limit Th6 of the amplitude in order to determine whether the self-generated blade is insufficient.
  • Th6 the processing conditions are changed so as to increase the pressing force of the grindstone 10 against the workpiece 9 by controlling the air cylinder 5. If it does in this way, when processing resistance becomes small, since the self-generated blade of the grindstone 10 is accelerated
  • control device 19 sequentially compares the amplitude of the component force R detected by the swing load sensor 6c with an amplitude upper limit value Th7 set in advance in order to determine the excessive self-generated blade. Then, when the amplitude becomes larger than the upper limit value Th7, the processing conditions are changed so as to control the air cylinder 5 to reduce the pressing force of the grindstone 10 against the workpiece 9. In this way, when the processing resistance increases due to excessive self-generated blades of the grindstone 10, the pressing force of the grindstone 10 against the workpiece 9 is reduced, and the self-generated blades of the grindstone 10 are suppressed, and the grindstone 10 It is possible to suppress a decrease in the superfinishing ratio U due to excessive self-generated blades.
  • FIGS. 10A and 10B schematically show the processing.
  • FIG. 10A shows the super-finishing of the tapered inner ring 40
  • FIG. 10B shows the super-finishing of the outer ring 41.
  • reference numeral 14 denotes a shoe
  • 15 denotes a packing plate
  • 3 denotes a rocking device
  • 4 denotes a grindstone base
  • 5 denotes an air cylinder
  • 6a denotes a main component force sensor
  • 6b spine a case where the superfinishing of the present application is applied to a tapered roller bearing will be described.
  • FIGS. 10A and 10B schematically show the processing.
  • FIG. 10A shows the super-finishing of the tapered inner ring 40
  • FIG. 10B shows the super-finishing of the outer ring 41.
  • a force sensor, 6c swing load sensor, 7 is a potentiometer, and 8 is an in-process gauge.
  • the machining state of the grindstone 10 is determined regardless of the method of supporting the workpiece. Can be determined. Therefore, the range of application of workpieces is wide. Therefore, the present invention can be applied to super finishing of a workpiece supported by a chuck gripping type, a center supporting type, or the like. It can also be applied to super finishing of tapered rollers. Therefore, it is possible to provide a tapered roller bearing that uses these inner rings, outer rings, and tapered rollers to improve the quality and productivity of superfinishing.
  • Example 3 describes a machine part to which the present invention is applied.
  • 11 (a) to 11 (d) show typical bearings to which the present invention is applied and application locations in parts constituting the bearings.
  • FIG. 11A shows a ball bearing 50 in which a plurality of balls 53 are incorporated between an inner ring 51 and an outer ring 52.
  • 11 (b) and 11 (c) show a processing target portion 54 for performing the superfinishing of the present application in the ball bearing of FIG. 11 (a).
  • FIG. 11 (b) is provided on the outer periphery of the inner ring 51. The machining can be performed as shown in FIG. 10A on the raceway surface having an arcuate cross section.
  • FIG. 10A shows typical bearings to which the present invention is applied and application locations in parts constituting the bearings.
  • FIG. 11A shows a ball bearing 50 in which a plurality of balls 53 are incorporated between an inner ring 51 and an outer ring 52.
  • 11 (b) and 11 (c) show a processing
  • FIG. 10C shows a rolling surface provided on the inner periphery of the outer ring, and the processing may be as shown in FIG.
  • FIG. 11 (d) shows a machining target portion 54 for the “roller” 55 of the self-aligning roller bearing, and shows the outer periphery of the convex roller 55 having a convex outer diameter as the machining target portion 54. Is.

Abstract

Provided is a superfinishing method and superfinishing device with which stable processing conditions can be obtained. The grinding wheel head (4) of a superfinishing device in which a grindstone (10) supported on the grinding wheel head (4) is pressed, while oscillating, against a rotating workpiece (9) is provided with: a cutting force component sensor (6a) that detects a force component (Q) in a direction tangential to the rotating workpiece (9); a thrust force component sensor (6b) that detects a force component (P) in the direction of pressure; an oscillation load sensor (6c) that detects a force component (R) in the direction of grindstone (10) oscillation; a movement sensor (7) that detects the amount of movement in the direction in which the grindstone (10) is pressed; and an in-process gauge (8) that detects the size reduction of the workpiece (9). Processing conditions are assessed based on the output of the sensors (6a, 6b), which change as a result of "coarse finishing" → "superfinishing", and processing efficiency is improved by changing processing conditions (rotation rate, oscillation rate, pressing force).

Description

超仕上げ加工方法および超仕上げ加工装置Superfinishing method and superfinishing machine
 この発明は、超仕上げ加工方法および超仕上げ加工装置に関する。 The present invention relates to a superfinishing processing method and a superfinishing processing apparatus.
 一般的に、軌道面を有する軸受を代表とする産業用部品の鏡面仕上げには、回転中の工作物に砥石を揺動させながら押し当てて研削を行う超仕上げ加工が採用される。
 超仕上げ加工は、特許文献1で代表されるように、まず、砥粒を脱落させて研削効率を高くした「粗」加工を行ない、次に、砥石を目詰まり状態にして鏡面を生成する「仕上げ」加工を行なうものである。この「粗」加工から「仕上げ」加工への切り替えは、工作物の回転数は変えずに砥石の揺動数を下げることで行なわれ、その切り替えタイミングはタイマ制御で決定するのが一般的である。
In general, mirror finishing of industrial parts typified by bearings having raceway surfaces employs super-finishing processing in which grinding is performed by pressing a grindstone against a rotating workpiece while rocking.
In the super-finishing process, as represented by Patent Document 1, first, a “rough” process is performed in which abrasive grains are dropped to increase the grinding efficiency, and then the grindstone is clogged to generate a mirror surface. "Finish" processing. Switching from “rough” machining to “finishing” machining is done by lowering the rocking speed of the grindstone without changing the rotation speed of the workpiece, and the switching timing is generally determined by timer control. is there.
 また、タイマ制御以外の技術による超仕上げ加工の方法として、特許文献2に記載された力センサを用いたものがある。これは、環状の工作物の軸方向の端面を、超仕上げ盤の主軸と一体に回転するバッキングプレートで支持すると同時に、環状の工作物の内周面または外周面をシューで支持し、その工作物からシューにかかる力を検出する力センサを設け、その力センサの検出出力に基づいて砥石の加工状態を判定する。そして、その判定に基づいて、「粗」加工から「仕上げ」加工への切り替えタイミングや、「仕上げ」加工の終了タイミングを決定するというものである。 Also, as a superfinishing method using a technique other than the timer control, there is a method using a force sensor described in Patent Document 2. This is because the end face in the axial direction of the annular workpiece is supported by a backing plate that rotates integrally with the spindle of the superfinishing machine, and at the same time the inner or outer peripheral surface of the annular workpiece is supported by a shoe. A force sensor for detecting the force applied to the shoe from the object is provided, and the processing state of the grindstone is determined based on the detection output of the force sensor. Based on this determination, the switching timing from the “rough” machining to the “finishing” machining and the end timing of the “finishing” machining are determined.
特開平6-79616号公報JP-A-6-79616 特開2004-114279号公報JP 2004-114279 A
 しかしながら、特許文献1の加工方法では、「粗」加工を開始してから「仕上げ」加工に切り替えるまでの時間が予めタイマで設定されている。そのため、十分な加工精度を得ることができなかったり、加工効率が低下したりする問題があった。すなわち、加工前の工作物の面粗度にかかわらず「粗」加工の加工時間が一定なので、加工前の工作物の面粗度の大きさによっては、「粗」加工が終了した時点で工作物の面粗度が目標とする面粗度に達しておらず、その結果、「仕上げ」加工が終了したときに十分な加工精度を得ることができない恐れがある。そこで、十分な加工精度を確保するために、タイマで設定する「粗」加工の加工時間を長くすることが考えられるが、このようにすると「粗」加工の加工時間が必要以上となり、加工効率が低下する。 However, in the processing method of Patent Document 1, the time from the start of “rough” processing to the switching to “finishing” processing is set in advance by a timer. For this reason, there are problems that sufficient processing accuracy cannot be obtained and processing efficiency is lowered. In other words, the machining time for “rough” machining is constant regardless of the surface roughness of the workpiece before machining, so depending on the surface roughness of the workpiece before machining, The surface roughness of the object does not reach the target surface roughness, and as a result, there is a possibility that sufficient processing accuracy cannot be obtained when the “finishing” processing is completed. Therefore, in order to ensure sufficient machining accuracy, it may be possible to lengthen the machining time for the “rough” machining set by the timer. However, if this is done, the machining time for the “rough” machining will be longer than necessary and the machining efficiency will be increased. Decreases.
 また、何らかの不具合によって砥石が極度の目詰まり状態(凝着状態)になった場合、従来、その極度の目詰まり状態を検出する手段がなかったため、それ以後の加工は十分な取り代が得られず不良品が発生する恐れがあった。 In addition, when the grindstone is in an extremely clogged state (adhesion state) due to some trouble, there has been no means to detect the extremely clogged state, so that sufficient machining allowance can be obtained for subsequent processing. There was a risk of defective products.
 他方、特許文献2の方法では、力センサの検出出力に基づいて砥石の状態を判定し、その判定に基づいて「粗」加工から「仕上げ」加工への切り替えタイミングを決定する。しかしながら、この特許文献2の方法では、バッキンブプレートとシューで工作物を支持し、バッキンブプレートによる支持力とシューによる支持力のうちシューによる支持力のみを力センサで検出するので、力センサの検出出力が、バッキンブプレートによる支持力の影響を受けて不安定となりやすい。そのため、砥石の状態を安定して判定することが難しく、「粗」加工から「仕上げ」加工への切り替えタイミングが不安定となる恐れがある。特に、使用する砥石が超砥粒砥石である場合、アルミナ系、炭化ケイ素系に代表される一般の砥粒砥石に比べて加工効率が高く、加工抵抗が小さいことから、砥石の状態が変化したときの力の変化が小さい。そのため、砥石の状態を安定して判定することが難しい。
 また、特許文献2の力センサを用いた方法は、玉軸受の軌道輪のみに限定される方法である。
On the other hand, in the method of Patent Document 2, the state of the grindstone is determined based on the detection output of the force sensor, and the switching timing from “rough” processing to “finishing” processing is determined based on the determination. However, in the method of Patent Document 2, the workpiece is supported by the backing plate and the shoe, and only the supporting force by the shoe is detected by the force sensor among the supporting force by the backing plate and the supporting force by the shoe. The detection output is likely to be unstable due to the influence of the support force by the backing plate. Therefore, it is difficult to stably determine the state of the grindstone, and there is a possibility that the switching timing from the “rough” processing to the “finishing” processing becomes unstable. In particular, when the grindstone to be used is a superabrasive grindstone, the processing efficiency is high and the machining resistance is small compared to general abrasive grindstones represented by alumina and silicon carbide, so the state of the grindstone has changed. When the force changes little. Therefore, it is difficult to stably determine the state of the grindstone.
Moreover, the method using the force sensor of patent document 2 is a method limited only to the bearing ring of a ball bearing.
 そこで、この発明の課題は、安定した加工状態を得ることが可能な超仕上げ加工方法および超仕上げ加工装置を提供することである。 Therefore, an object of the present invention is to provide a superfinishing method and a superfinishing device that can obtain a stable machining state.
 上記の課題を解決するため、この発明では、工作物を回転させ、その工作物の回転の接線方向に対して直角な方向に砥石を揺動させながら前記工作物に砥石を押し当てて工作物の超仕上げ加工を行い、前記砥石を支持する砥石台に、前記工作物に押し当てられた状態の砥石にかかる力の工作物の回転の接線方向の分力Qを検出する主分力センサと、前記工作物に押し当てられた状態の砥石にかかる力の砥石の押し当て方向の分力Pを検出する背分力センサとを設け、その各センサで検出した前記分力P、Qに基づいて工作物の加工状態を判定するという方法を採用したのである。 In order to solve the above-described problems, in the present invention, a workpiece is rotated, and the workpiece is pressed against the workpiece while the grindstone is swung in a direction perpendicular to the tangential direction of the rotation of the workpiece. A main component force sensor for detecting a component force Q in a tangential direction of rotation of the workpiece of the force applied to the grindstone in a state of being pressed against the workpiece on the grindstone table that supports the grindstone. A back component force sensor for detecting a component force P in the pressing direction of the grindstone of the force applied to the grindstone in a state of being pressed against the workpiece, and based on the component forces P and Q detected by each sensor The method of determining the machining state of the workpiece was adopted.
 このようにすると、超仕上げ加工を行なっている間、主分力センサで検出される接線方向の分力Qは、砥石の加工状態によって砥石と工作物の間の加工抵抗が刻々と変化するため、砥石の加工状態に応じた反応を呈する。
 例えば、「粗」加工を行なっているとき、砥石の加工状態は、砥粒の脱落により積極的に自生発刃する状態(切削状態)である。その後、「仕上げ」加工へ移行すると、砥石の加工状態は、半切削状態を経て目詰まり状態(磨き状態)へ移行する。この間、押し当て方向の分力Pは、砥石への押し付け力で決定されるため、押し付け力を一定に設定した場合、これに応じてほぼ一定の値を示す。ここで、通常、押し当て方向の分力(背分力)Pは砥石押し付け力に応じた値を示す筈である。しかし、加工に応じて一般的に、接線方向の分力(主分力)Qは背分力Pに対して一定の割合を保持する特性がある。そのため加工条件において、砥石の表面状態あるいは加工状態が変化しなければ、押し付け力を変更しても加工分力比P/Qは一定値を示す。したがって、分力Pは、押し付け力を一定に設定した場合、これに応じて、ほぼ一定の値を示すのである。一方、接線方向の分力Qは、砥石の加工状態に応じた変化を示す。具体的には、「粗」加工を行なっているときは、砥石が自生発刃するため加工抵抗が大きくなり、接線方向の分力Qは大きな値をとる。その後、「仕上げ」加工へ移行したときは、自生発刃が停止し、砥石の加工状態が磨き状態となるため、加工抵抗が小さくなり、主分力Qは小さな値となる。したがって、これを監視すれば「粗」加工および「仕上げ」加工を行なっているときの砥石の加工状態を判定することができる。
In this way, the tangential component force Q detected by the main component force sensor during the superfinishing process changes the machining resistance between the grindstone and the work piece according to the grindstone machining state. It exhibits a reaction according to the processing state of the grindstone.
For example, when “rough” processing is performed, the processing state of the grindstone is a state (cutting state) in which the blades are positively spontaneously generated by dropping off the abrasive grains. Thereafter, when shifting to the “finishing” process, the processing state of the grindstone shifts to a clogged state (polished state) through a semi-cut state. During this time, since the component force P in the pressing direction is determined by the pressing force against the grindstone, when the pressing force is set to be constant, a substantially constant value is indicated accordingly. Here, normally, the component force (back component force) P in the pressing direction is a gutter that indicates a value corresponding to the grinding stone pressing force. However, the tangential component force (main component force) Q generally has a characteristic of maintaining a constant ratio with respect to the back component force P according to the processing. Therefore, if the surface condition or the machining state of the grindstone does not change under the machining conditions, the machining component force ratio P / Q shows a constant value even if the pressing force is changed. Therefore, when the pressing force is set to be constant, the component force P shows a substantially constant value accordingly. On the other hand, the component force Q in the tangential direction shows a change according to the processing state of the grindstone. Specifically, when “rough” machining is performed, the grindstone is self-generated, increasing the machining resistance, and the tangential component force Q takes a large value. Thereafter, when the process shifts to “finishing”, the self-generated blade is stopped and the grindstone is in a polished state, so that the machining resistance is reduced and the main component force Q is a small value. Therefore, if this is monitored, the processing state of the grindstone during the “rough” processing and “finishing” processing can be determined.
 このとき、前記砥石台を、ロッドを前進させて先端に支持した砥石を工作物に押し当てるエアシリンダを備えたものとし、その砥石を取り付けたエアシリンダのロッドの先端と砥石の間に前記主分力センサと前記背分力センサを配置することができる。 At this time, the grindstone table is provided with an air cylinder that presses the grindstone supported on the tip by advancing the rod against the workpiece, and the main wheel is disposed between the tip of the rod of the air cylinder to which the grindstone is attached and the grindstone. A component force sensor and the back component force sensor can be arranged.
 このようにすると、工作物を支持する部材にかかる力を検出するのではなく、砥石にかかる力を検出するので、工作物の支持方法にかかわらず、砥石の加工状態を判定することができる。そのため、工作物の適用範囲が広い。 In this case, since the force applied to the grindstone is detected instead of detecting the force applied to the member that supports the workpiece, the processing state of the grindstone can be determined regardless of the method of supporting the workpiece. Therefore, the range of application of workpieces is wide.
 また、砥石で加工することによる前記工作物の寸法減少量を検出するインプロセスゲージと、前記工作物の寸法減少と砥石の損耗とによる前記砥石の押し当て方向の移動量を検出する移動量センサとを設け、前記インプロセスゲージで検出した前記工作物の寸法減少量と、前記移動量センサで検出した前記砥石の移動量とに基づいて工作物の加工状態を判定するという方法を採用することができる。 Further, an in-process gauge for detecting a reduction in the size of the workpiece caused by processing with a grindstone, and a movement amount sensor for detecting a movement amount in the pressing direction of the grindstone due to a reduction in the size of the workpiece and wear of the grindstone. And adopting a method of determining the machining state of the workpiece based on the dimension reduction amount of the workpiece detected by the in-process gauge and the movement amount of the grindstone detected by the movement amount sensor. Can do.
 このようにすると、「粗」加工を行なっているとき、砥石の加工状態は、砥粒の脱落により積極的に自生発刃する状態(切削状態)となる。そのため、移動量センサが検出する移動量は一定速度で増加(前進)し、インプロセスゲージが検出する仕上げ寸法の減少量は、一定の割合で減少する。一方、「仕上げ」加工へ移行すると、砥石の加工状態は、半切削状態を経て目詰まり状態(磨き状態)へ移行する。そのため、移動量センサが検出する移動量は一定となり、インプロセスゲージが検出する仕上げ寸法の変化は停滞する。このようにインプロセスゲージの検出する寸法減少量と移動量センサで検出する移動量は異なった特性を呈するため、「粗」加工と「仕上げ」加工の判別ができる。したがって、移動量センサとインプロセスゲージの出力特性を前記主分力センサと背分力センサの検出出力と合わせれば、「粗」から「仕上げ」加工の切り替えの判別精度の向上が図れる。 In this way, when performing “rough” processing, the processing state of the grindstone becomes a state (cutting state) in which the blades are positively spontaneously generated by the removal of the abrasive grains. Therefore, the movement amount detected by the movement amount sensor increases (advances) at a constant speed, and the reduction amount of the finishing dimension detected by the in-process gauge decreases at a constant rate. On the other hand, when shifting to “finishing” processing, the processing state of the grindstone shifts to a clogged state (polished state) through a semi-cut state. For this reason, the movement amount detected by the movement amount sensor is constant, and the change in the finishing dimension detected by the in-process gauge is stagnant. As described above, since the dimension reduction amount detected by the in-process gauge and the movement amount detected by the movement amount sensor exhibit different characteristics, it is possible to discriminate between “rough” processing and “finishing” processing. Therefore, by combining the output characteristics of the movement amount sensor and the in-process gauge with the detection outputs of the main component force sensor and the back component force sensor, it is possible to improve the discrimination accuracy for switching from “rough” to “finish” processing.
 また、この発明では、工作物を回転させ、その工作物の回転の接線方向に対して直角な方向に砥石を揺動させながら前記工作物に砥石を押し当てて工作物の超仕上げ加工を行ない、前記砥石を支持する砥石台に、前記工作物に押し当てられた状態の砥石にかかる力の工作物の回転の接線方向の分力Qを検出する主分力センサと、前記工作物に押し当てられた状態の砥石にかかる力の砥石の押し当て方向の分力Pを検出する背分力センサとを設け、その各センサで検出した前記各分力P,Qに基づいて前記超仕上げ加工の制御を行なうという方法を採用したのである。 Further, in the present invention, the workpiece is rotated, and the grinding stone is pressed against the workpiece while swinging the grinding stone in a direction perpendicular to the tangential direction of the rotation of the workpiece, thereby super-finishing the workpiece. A main component force sensor for detecting a component force Q in a tangential direction of rotation of the workpiece applied to the grindstone in a state of being pressed against the workpiece on the grindstone table that supports the grindstone; A back component force sensor that detects a component force P in the pressing direction of the grindstone of the force applied to the grindstone in the applied state, and the superfinishing processing based on the component forces P and Q detected by each sensor The method of performing the control is adopted.
 このような方法を採用することにより、前記主分力センサおよび背分力センサで検出した各分力P,Qの変化に応じて加工条件を変化させ、安定した加工状態を得ることが可能となる。
 すなわち、先に述べたように、超仕上げ加工を行なっている間、押し当て方向の分力Pは、ほぼ一定の値を示す。一方、接線方向の分力Qは、「粗」加工を行なっているときは、加工抵抗が大きくなり、分力Qは大きな値をとる。その後、「仕上げ」加工へ移行したときは、自生発刃が停止し、加工抵抗が小さくなるため、主分力Qは小さな値となる。したがって、これを監視して「粗」加工および「仕上げ」加工を行なっているときの砥石の加工状態を判定することができるため、その判定に基づいて、工作物の回転数、砥石の揺動数、砥石の押し付け力などの加工条件を制御することで、安定した加工状態を得ることが可能となる。また、前記判定方法を用いることで、シューを用いる以外の加工や超砥粒砥石を用いた加工においても超仕上げ加工の制御を行うことができる。さらに、前記判定から異常が検出されれば、砥石の不具合も検出できる。
By adopting such a method, it is possible to obtain a stable machining state by changing machining conditions in accordance with changes in the component forces P and Q detected by the main component force sensor and the back component force sensor. Become.
That is, as described above, during super finishing, the component force P in the pressing direction shows a substantially constant value. On the other hand, the component force Q in the tangential direction has a large machining resistance when the “rough” machining is performed, and the component force Q takes a large value. Thereafter, when the process shifts to “finishing”, the self-generated blade stops and the machining resistance decreases, so the main component force Q becomes a small value. Therefore, it is possible to determine the processing state of the grindstone during the “rough” machining and the “finishing” machining by monitoring this, and based on the judgment, the rotational speed of the workpiece, the rocking of the grindstone By controlling the processing conditions such as the number and the pressing force of the grindstone, a stable processing state can be obtained. Further, by using the determination method, it is possible to control the superfinishing process even in a process other than using a shoe or a process using a superabrasive grindstone. Furthermore, if an abnormality is detected from the determination, a grindstone defect can also be detected.
 このとき、前記砥石台を、ロッドを前進させて先端に支持した砥石を工作物に押し当てるエアシリンダを備えたものとし、その砥石を取り付けたエアシリンダのロッドの先端と砥石の間に前記主分力センサと前記背分力センサを配置することができる。 At this time, the grindstone table is provided with an air cylinder for pressing the grindstone supported at the tip by advancing the rod against the workpiece, and the main wheel is disposed between the tip of the rod of the air cylinder to which the grindstone is attached and the grindstone. A component force sensor and the back component force sensor can be arranged.
 このようにすると、砥石にかかる力を検出して、工作物の支持方法にかかわらず、砥石の加工状態を判定することができる。そのため、その判定に基づいて、工作物の回転数、砥石の揺動数、砥石の押し付け力などの加工条件を変えることで、より安定した加工状態を得ることが可能となる。 In this way, the force applied to the grindstone can be detected, and the processing state of the grindstone can be determined regardless of the workpiece support method. Therefore, based on the determination, it is possible to obtain a more stable machining state by changing machining conditions such as the number of rotations of the workpiece, the rocking speed of the grindstone, and the pressing force of the grindstone.
 このとき、前記各分力P,Qに基づいて行なう前記超仕上げ加工の制御としては、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された上限値よりも大きくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が大きくなるよう加工条件を変化させる制御を採用することができる。 At this time, as the control of the superfinishing process performed based on the respective component forces P and Q, the ratio P / of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor. Processing conditions so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is increased when Q is sequentially calculated and the ratio P / Q is larger than a preset upper limit value. It is possible to adopt a control that changes.
 このようにすると、超仕上げ加工を行なっている間、砥石の自生発刃不足が原因で加工抵抗が小さくなったときに、主分力Qが小さくなり、その結果、比P/Qの大きさが予め設定された上限値よりも大きくなる。このとき、前記工作物の回転数に対する前記砥石の揺動数の比を大きくする、すなわち、工作物の被加工面に生じる砥粒軌跡と工作物の被加工面の進行方向とがなす最大交差角が大きくなるよう加工条件を変化させる制御が実行されるので、砥石の自生発刃が促進され、砥石の自生発刃不足による加工精度の低下を防止することができる。 In this way, during the superfinishing process, the main component force Q is reduced when the machining resistance is reduced due to a lack of self-generated blades of the grindstone, and as a result, the ratio P / Q is large. Becomes larger than a preset upper limit value. At this time, the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is increased, that is, the maximum intersection formed by the trajectory of the abrasive grain generated on the workpiece surface and the traveling direction of the workpiece surface. Since the control for changing the machining conditions so as to increase the angle is executed, the self-generated blade of the grindstone is promoted, and the deterioration of the processing accuracy due to the lack of the self-generated blade of the grindstone can be prevented.
 また、前記各分力P,Qに基づいて行なう前記超仕上げ加工の制御としては、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された下限値よりも小さくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が小さくなるよう加工条件を変化させる制御を採用することができる。 Further, as the super finishing process control based on the respective component forces P and Q, the ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor. Are sequentially calculated, and when the magnitude of the ratio P / Q becomes smaller than a preset lower limit value, the machining conditions are set so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece becomes small. Variable control can be employed.
 このようにすると、超仕上げ加工を行なっている間、砥石の自生発刃過剰が原因で加工抵抗が大きくなったときに、主分力Qが大きくなり、その結果、比P/Qの大きさが予め設定された下限値よりも小さくなる。このとき、前記工作物の回転数に対する前記砥石の揺動数の比を小さくする、すなわち、工作物の被加工面に生じる砥粒軌跡と工作物の被加工面の進行方向とがなす最大交差角が小さくなるよう加工条件を変化させる制御が実行されるので、砥石の自生発刃が抑制され、砥石の自生発刃過剰によって、前記工作物の寸法減少量に対する前記砥石の損耗量の比である、超仕上げ比の低下を防止することができる。 In this way, during the superfinishing process, when the machining resistance increases due to excessive self-generated blades of the grindstone, the main component force Q increases, and as a result, the ratio P / Q increases. Becomes smaller than a preset lower limit value. At this time, the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is reduced, that is, the maximum intersection formed by the locus of the abrasive grains generated on the workpiece surface and the traveling direction of the workpiece surface. Since control is performed to change the machining conditions so as to reduce the angle, the self-generated blade of the grindstone is suppressed, and due to the excessive self-generated blade of the grindstone, the ratio of the amount of wear of the grindstone to the amount of reduction in the size of the workpiece A reduction in the superfinishing ratio can be prevented.
 また、前記各分力P,Qに基づいて行なう前記超仕上げ加工の制御としては、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された上限値よりも大きくなったときに、前記工作物に対する砥石の押し付け力を大きくするよう加工条件を変化させる制御を採用することができる。 Further, as the super finishing process control based on the respective component forces P and Q, the ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor. Is calculated, and when the ratio P / Q becomes larger than a preset upper limit value, control is performed to change the machining conditions so as to increase the pressing force of the grindstone against the workpiece. Can do.
 このようにすると、超仕上げ加工を行なっている間、砥石の自生発刃不足が原因で加工抵抗が小さくなったときに、主分力Qが小さくなり、その結果、比P/Qの大きさが予め設定された上限値よりも大きくなる。このとき、工作物に対する砥石の押し付け力を大きくするよう加工条件を変化させる制御が実行されるので、砥石の自生発刃が促進され、砥石の自生発刃不足による加工精度の低下を防止することができる。 In this way, during the superfinishing process, the main component force Q is reduced when the machining resistance is reduced due to a lack of self-generated blades of the grindstone, and as a result, the ratio P / Q is large. Becomes larger than a preset upper limit value. At this time, since control is performed to change the processing conditions so as to increase the pressing force of the grindstone against the workpiece, the self-generated blade of the grindstone is promoted, and the deterioration of the processing accuracy due to the lack of the self-generated blade of the grindstone is prevented. Can do.
 また、前記各分力P,Qに基づいて行なう前記超仕上げ加工の制御としては、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された下限値よりも小さくなったときに、前記工作物に対する砥石の押し付け力を小さくするよう加工条件を変化させる制御を採用することができる。 Further, as the super finishing process control based on the respective component forces P and Q, the ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor. Is calculated, and when the magnitude of the ratio P / Q becomes smaller than a preset lower limit, a control is adopted that changes the machining conditions so as to reduce the pressing force of the grindstone against the workpiece. Can do.
 このようにすると、超仕上げ加工を行なっている間、砥石の自生発刃過剰が原因で加工抵抗が大きくなったときに、主分力Qが大きくなり、その結果、比P/Qの大きさが予め設定された下限値よりも小さくなる。このとき、工作物に対する砥石の押し付け力を小さくするよう加工条件を変化させる制御が実行されるので、砥石の自生発刃が抑制され、砥石の自生発刃過剰による超仕上げ比の低下を防止することができる。 In this way, during the superfinishing process, when the machining resistance increases due to excessive self-generated blades of the grindstone, the main component force Q increases, and as a result, the ratio P / Q increases. Becomes smaller than a preset lower limit value. At this time, since control is performed to change the processing conditions so as to reduce the pressing force of the grindstone against the workpiece, the self-generated blade of the grindstone is suppressed, and the reduction of the superfinishing ratio due to excessive self-generated blade of the grindstone is prevented. be able to.
 また、前記各分力P,Qに基づいて行なう前記超仕上げ加工の制御としては、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された異常検出しきい値よりも大きくなったときに、前記砥石に極度の目詰まりが発生したと判定する制御を採用することができる。 Further, as the super finishing process control based on the respective component forces P and Q, the ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor. Is calculated successively, and when the magnitude of the ratio P / Q becomes larger than a preset abnormality detection threshold, it is possible to adopt a control for determining that the clogged stone is extremely clogged. it can.
 このようにすると、超仕上げ加工を行なっている間、砥石に極度の目詰まりが発生したことが原因で加工抵抗が過小となったときに、主分力Qが過小となり、その結果、比P/Qの大きさが予め設定された異常検出しきい値よりも大きくなるので、砥石に極度の目詰まりが発生したと判定する制御が実行される。これにより、砥石の異常を早期に発見することが可能となり、砥石の目詰まりによる不良品の発生を防止することができる。 In this way, during the superfinishing process, when the machining resistance becomes too small due to the extreme clogging of the grindstone, the main component force Q becomes too small. As a result, the ratio P Since the magnitude of / Q becomes larger than a preset abnormality detection threshold value, control is performed to determine that extreme clogging has occurred in the grindstone. As a result, it is possible to detect the abnormality of the grindstone at an early stage, and it is possible to prevent the occurrence of defective products due to clogging of the grindstone.
 さらに、砥石で加工することによる前記工作物の寸法減少量を検出するインプロセスゲージと、前記工作物の寸法減少と砥石の損耗とによる前記砥石の押し当て方向の移動量を検出する移動量センサとを設け、前記インプロセスゲージで検出した前記工作物の寸法減少量と、前記移動量センサで検出した前記砥石の移動量とに基づいて、超仕上げ比を算出することができる。 Further, an in-process gauge for detecting a reduction in the size of the workpiece due to machining with a grindstone, and a movement amount sensor for detecting a movement amount in the pressing direction of the grindstone due to a reduction in the size of the workpiece and wear of the grindstone And the superfinishing ratio can be calculated based on the dimensional reduction amount of the workpiece detected by the in-process gauge and the movement amount of the grindstone detected by the movement amount sensor.
 このようにすると、超仕上げ加工を行なっているときに、その各時点での超仕上げ比をリアルタイムで知ることが可能となり、その結果、超仕上げ比を改善するためには、超仕上げ加工中のどの時点での加工条件を調整すればよいか把握することが容易となる。超仕上げ比は、工作物の寸法減少量に対する前記砥石の損耗量の比であり、加工コストに大きく関与する。 In this way, it is possible to know in real time the superfinishing ratio at each point in time when superfinishing is being performed. As a result, in order to improve the superfinishing ratio, It becomes easy to grasp at which point the processing conditions should be adjusted. The superfinishing ratio is the ratio of the amount of wear of the grindstone to the amount of reduction in the size of the workpiece, and greatly affects the machining cost.
 また、前記砥石を支持する砥石台に、前記工作物に押し当てられた状態の砥石にかかる力の砥石の揺動方向の分力Rを検出する揺動荷重センサを更に設け、その揺動荷重センサで検出した分力Rの振幅の大きさに基づいて前記超仕上げ加工の制御を行なうことができる。 In addition, a rocking load sensor for detecting a component force R in the rocking direction of the grindstone of the force applied to the grindstone pressed against the workpiece is further provided on the grindstone table that supports the grindstone, and the rocking load is provided. The superfinishing process can be controlled based on the amplitude of the component force R detected by the sensor.
 このようにすると、揺動荷重センサで検出される揺動方向の分力Rの大きさは、揺動する砥石の慣性力と、砥石と工作物の間に作用する加工抵抗とに依存し、砥石の揺動数に応じた正弦波振動を呈する。ここで、砥石の加工状態が、砥粒の脱落により積極的に自生発刃する状態(切削状態)であるときは、砥石が自生発刃するため加工抵抗が大きくなり、揺動方向の分力Rの振幅が大きくなる。一方、砥石の加工状態が、自生発刃が停止した磨き状態であるときは、加工抵抗が小さくなり、揺動方向の分力Rの振幅が小さくなる。そのため、揺動方向の分力Rの振幅を監視すれば「粗」加工および「仕上げ」加工を行なっているときの加工状態を判定することができ、その判定に基づいて、工作物の回転数、砥石の揺動数、砥石の押し付け力などの加工条件を変えることで、安定した加工状態を得ることが可能となる。 In this case, the magnitude of the component force R in the oscillating direction detected by the oscillating load sensor depends on the inertial force of the oscillating grindstone and the machining resistance acting between the grindstone and the workpiece, It exhibits sine wave vibration according to the rocking number of the grindstone. Here, when the processing state of the grindstone is a state (cutting state) in which the abrasive grains are positively generated spontaneously by cutting off the abrasive grains, the processing resistance is increased because the grindstone is spontaneously bladed, and the component force in the oscillating direction The amplitude of R increases. On the other hand, when the processing state of the grindstone is a polished state in which the self-generated blade is stopped, the processing resistance decreases and the amplitude of the component force R in the swinging direction decreases. Therefore, if the amplitude of the component force R in the swinging direction is monitored, it is possible to determine the machining state when performing “rough” machining and “finishing” machining, and based on this judgment, the rotational speed of the workpiece By changing the processing conditions such as the rocking number of the grindstone and the pressing force of the grindstone, a stable processing state can be obtained.
 このとき、前記分力Rの振幅の大きさに基づいて行なう前記超仕上げ加工の制御としては、前記揺動荷重センサで検出した分力Rの振幅の大きさが、予め設定された下限幅よりも小さくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が大きくなるよう加工条件を変化させる制御を採用することができる。 At this time, as the control of the super finishing performed based on the magnitude of the amplitude of the component force R, the magnitude of the amplitude of the component force R detected by the swing load sensor is larger than a preset lower limit width. In this case, it is possible to adopt a control for changing the machining condition so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece increases.
 このようにすると、超仕上げ加工を行なっている間、砥石の自生発刃不足が原因で加工抵抗が小さくなったときに、分力Rの振幅の大きさが、予め設定された下限幅よりも小さくなる。このとき、工作物の回転数に対する前記砥石の揺動数の比を大きくする、すなわち、工作物の被加工面に生じる砥粒軌跡と工作物の被加工面の進行方向とがなす最大交差角が大きくなるよう加工条件を変化させる制御が実行されるので、砥石の自生発刃が促進され、砥石の自生発刃不足による加工精度の低下を防止することができる。 In this way, the amplitude of the component force R is smaller than the preset lower limit width when the machining resistance is reduced due to the lack of the self-generated blade of the grindstone during superfinishing. Get smaller. At this time, the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is increased, that is, the maximum crossing angle formed by the abrasive locus generated on the workpiece surface and the traveling direction of the workpiece surface. Since the control to change the machining conditions is executed so that the grinding wheel becomes large, the self-generated blade of the grindstone is promoted, and the deterioration of the machining accuracy due to the lack of the self-generated blade of the grindstone can be prevented.
 また、前記分力Rの振幅の大きさに基づいて行なう前記超仕上げ加工の制御としては、前記揺動荷重センサで検出した分力Rの振幅の大きさが、予め設定された上限幅よりも大きくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が小さくなるよう加工条件を変化させる制御を採用することができる。 Further, as the control of the superfinishing process performed based on the magnitude of the amplitude of the component force R, the magnitude of the amplitude of the component force R detected by the swing load sensor is larger than a preset upper limit width. Control that changes the machining conditions so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece becomes small when it becomes large can be employed.
 このようにすると、超仕上げ加工を行なっている間、砥石の自生発刃過剰が原因で加工抵抗が大きくなったときに、分力Rの振幅の大きさが、予め設定された上限幅よりも大きくなる。このとき、工作物の回転数に対する前記砥石の揺動数の比を小さくする、すなわち、工作物の被加工面に生じる砥粒軌跡と工作物の被加工面の進行方向とがなす最大交差角が小さくなるよう加工条件を変化させる制御が実行されるので、砥石の自生発刃が抑制され、砥石の自生発刃過剰による超仕上げ比の低下を防止することができる。 In this way, during the superfinishing process, when the machining resistance increases due to excessive self-generated blades of the grindstone, the amplitude of the component force R is larger than the preset upper limit width. growing. At this time, the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is reduced, that is, the maximum crossing angle formed by the abrasive locus generated on the workpiece surface and the traveling direction of the workpiece surface. Since the control is performed to change the machining conditions so as to decrease, the self-generated blade of the grindstone is suppressed, and the reduction of the superfinishing ratio due to the excessive self-generated blade of the grindstone can be prevented.
 また、前記分力Rの振幅の大きさに基づいて行なう前記超仕上げ加工の制御としては、前記揺動荷重センサで検出した分力Rの振幅の大きさが、予め設定された下限幅よりも小さくなったときに、前記工作物に対する砥石の押し付け力を大きくするよう加工条件を変化させる制御を採用することができる。 In addition, as the super finishing process control based on the amplitude of the component force R, the amplitude of the component force R detected by the swing load sensor is smaller than a preset lower limit width. When it becomes smaller, it is possible to adopt a control for changing the machining conditions so as to increase the pressing force of the grindstone against the workpiece.
 このようにすると、超仕上げ加工を行なっている間、砥石の自生発刃不足が原因で加工抵抗が小さくなったときに、分力Rの振幅の大きさが、予め設定された下限幅よりも小さくなる。このとき、工作物に対する砥石の押し付け力を大きくするよう加工条件を変化させる制御が実行されるので、砥石の自生発刃が促進され、砥石の自生発刃不足による加工精度の低下を防止することができる。 In this way, the amplitude of the component force R is smaller than the preset lower limit width when the machining resistance is reduced due to the lack of the self-generated blade of the grindstone during superfinishing. Get smaller. At this time, since control is performed to change the processing conditions so as to increase the pressing force of the grindstone against the workpiece, the self-generated blade of the grindstone is promoted, and the deterioration of the processing accuracy due to the lack of the self-generated blade of the grindstone is prevented. Can do.
 また、前記分力Rの振幅の大きさに基づいて行なう前記超仕上げ加工の制御としては、前記揺動荷重センサで検出した分力Rの振幅の大きさが、予め設定された上限幅よりも大きくなったときに、前記工作物に対する砥石の押し付け力を小さくするよう加工条件を変化させる制御を採用することができる。 Further, as the control of the superfinishing process performed based on the magnitude of the amplitude of the component force R, the magnitude of the amplitude of the component force R detected by the swing load sensor is larger than a preset upper limit width. When it becomes larger, it is possible to adopt control for changing the machining conditions so as to reduce the pressing force of the grindstone against the workpiece.
 このようにすると、超仕上げ加工を行なっている間、砥石の自生発刃過剰が原因で加工抵抗が大きくなったときに、分力Rの振幅の大きさが、予め設定された上限幅よりも大きくなる。このとき、工作物に対する砥石の押し付け力を小さくするよう加工条件を変化させる制御が実行されるので、砥石の自生発刃が抑制され、砥石の自生発刃過剰による超仕上げ比の低下を防止することができる。 In this way, during the superfinishing process, when the machining resistance increases due to excessive self-generated blades of the grindstone, the amplitude of the component force R is larger than the preset upper limit width. growing. At this time, since control is performed to change the processing conditions so as to reduce the pressing force of the grindstone against the workpiece, the self-generated blade of the grindstone is suppressed, and the reduction of the superfinishing ratio due to excessive self-generated blade of the grindstone is prevented. be able to.
 超仕上げ加工を行なうとき、工作物と砥石の間に供給するクーラントとしては、一般に、潤滑性、浸透性に優れた不水溶性(油性)クーラントが採用されるが、本願発明の超仕上げ加工方法を採用する場合、潤滑性、浸透性の劣る水溶性クーラントを採用したとしても各センサの検出信号に基づいて砥石の自生発刃をコントロールすることが可能なため、安定した加工状態を得ることが可能である。 As the coolant supplied between the workpiece and the grindstone when superfinishing is performed, a water-insoluble (oil-based) coolant excellent in lubricity and permeability is generally employed. , Even if water-soluble coolant with poor lubricity and permeability is used, it is possible to control the self-generated blade of the grindstone based on the detection signal of each sensor, so that a stable machining state can be obtained. Is possible.
 前記工作物としては、例えば、軸受の内輪、外輪、転動体が挙げられる。 Examples of the workpiece include an inner ring, an outer ring, and a rolling element of a bearing.
 また、本願では、上記の超仕上げ加工方法を実施する超仕上げ加工装置として、工作物を回転させ、その工作物の回転の接線方向に対して直角な方向に砥石を揺動させながら前記工作物に砥石を押し当てて工作物の超仕上げ加工を行なう超仕上げ盤と、前記砥石を支持する砥石台に取り付けられ、前記工作物に押し当てられた状態の砥石にかかる力の工作物の回転の接線方向の分力Qを検出する主分力センサと、前記砥石を支持する砥石台に取り付けられ、前記工作物に押し当てられた状態の砥石にかかる力の砥石の押し当て方向の分力Pを検出する背分力センサと、その各センサで検出した前記各分力P、Qに基づいて前記超仕上げ加工の制御を行う制御装置を有する構成とすることができる。 Further, in the present application, as the super-finishing processing apparatus for performing the super-finishing processing method, the workpiece is rotated while the grindstone is swung in a direction perpendicular to the tangential direction of the rotation of the workpiece. A superfinishing machine that presses the grindstone against the workpiece and superfinishing the workpiece, and a grinder mounted on the grindstone table that supports the grindstone, and the rotation of the workpiece with the force applied to the grindstone pressed against the workpiece A main component sensor for detecting a component force Q in the tangential direction, and a component force P in the pressing direction of the grindstone applied to the grindstone that is attached to the grindstone table that supports the grindstone and is pressed against the workpiece. And a control device that controls the superfinishing process based on the component forces P and Q detected by the sensors.
 このとき、前記砥石台が、ロッドを前進させて先端に支持した砥石を工作物に押し当てるエアシリンダを備え、その砥石を取り付けたエアシリンダのロッドの先端と砥石の間に主分力センサと背分力センサを設けた構成とすることができる。 At this time, the grindstone table includes an air cylinder that presses the grindstone supported at the tip by advancing the rod against the workpiece, and a main component force sensor between the tip of the rod of the air cylinder to which the grindstone is attached and the grindstone It can be set as the structure which provided the back component force sensor.
 前記制御装置は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された上限値よりも大きくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が大きくなるよう加工条件を変化させる制御を行なう構成とすることができる。 The control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is preset. When the upper limit value is exceeded, control can be performed to change the machining conditions so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece is increased.
 また、前記制御装置は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された下限値よりも小さくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が小さくなるよう加工条件を変化させる制御を行なう構成とすることができる。 The control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is determined in advance. When it becomes smaller than the set lower limit value, it is possible to perform a control for changing the machining conditions so that the ratio of the rocking number of the grindstone to the rotation speed of the workpiece becomes small.
 また、前記制御装置は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された上限値よりも大きくなったときに、前記工作物に対する砥石の押し付け力を大きくするよう加工条件を変化させる制御を行なう構成とすることができる。 The control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is determined in advance. When it becomes larger than the set upper limit value, it is possible to perform a control for changing the machining conditions so as to increase the pressing force of the grindstone against the workpiece.
 また、前記制御装置は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された下限値よりも小さくなったときに、前記工作物に対する砥石の押し付け力を小さくするよう加工条件を変化させる制御を行なう構成とすることができる。 The control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor with respect to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is determined in advance. When it becomes smaller than the set lower limit value, it is possible to perform a control for changing the machining conditions so as to reduce the pressing force of the grindstone against the workpiece.
 また、砥石で加工することによる前記工作物の寸法減少量を検出するインプロセスゲージと、前記工作物の寸法減少と砥石の損耗とによる前記砥石の押し当て方向の移動量を検出する移動量センサとを更に有し、前記制御装置は、前記インプロセスゲージで検出した前記工作物の寸法減少量と、前記移動量センサで検出した前記砥石の移動量とに基づいて、前記工作物の寸法減少量に対する前記砥石の損耗量の比である超仕上げ比を算出するという構成を採用できる。さらに、前記砥石を支持する砥石台に、前記工作物に押し当てられた状態の砥石にかかる力の砥石の揺動方向の分力Rを検出する揺動荷重センサを更に有し、前記制御装置は、前記揺動荷重センサで検出した分力Rの振幅の大きさに基づいて前記超仕上げ加工の制御を行なう構成を採用することができる。 Further, an in-process gauge for detecting a reduction in the size of the workpiece caused by processing with a grindstone, and a movement amount sensor for detecting a movement amount in the pressing direction of the grindstone due to a reduction in the size of the workpiece and wear of the grindstone. And the control device reduces the dimension of the workpiece based on the dimension reduction amount of the workpiece detected by the in-process gauge and the movement amount of the grindstone detected by the movement amount sensor. A configuration in which a superfinishing ratio, which is a ratio of the wear amount of the grindstone to the amount, can be employed. The control device further includes a rocking load sensor for detecting a component force R in the rocking direction of the grindstone of the force applied to the grindstone pressed against the workpiece on the grindstone table that supports the grindstone. May employ a configuration in which the superfinishing process is controlled based on the amplitude of the component force R detected by the swing load sensor.
 また、前記工作物と砥石の間に水溶性クーラントを供給する吐出ノズルを有する構成を採用することができる。 Further, a configuration having a discharge nozzle for supplying water-soluble coolant between the workpiece and the grindstone can be adopted.
 この発明の超仕上げ加工方法および超仕上げ加工装置は、主分力センサおよび背分力センサで検出した各分力P,Qに基づいて、工作物の回転数、砥石の揺動数、砥石の押し付け力などの加工条件を変えることで、安定した加工状態を得ることが可能である。 The superfinishing processing method and superfinishing processing device of the present invention are based on the component forces P and Q detected by the main component force sensor and the back component force sensor, and the rotational speed of the workpiece, the rocking number of the grindstone, By changing processing conditions such as pressing force, it is possible to obtain a stable processing state.
実施形態の模式図Schematic diagram of the embodiment 実施形態のブロック図Block diagram of the embodiment (a)、(b)実施形態の作用説明図(A), (b) Action explanatory drawing of embodiment 実施形態の作用説明図Action explanatory diagram of the embodiment 実施形態の作用説明図Action explanatory diagram of the embodiment 実施形態の作用説明図Action explanatory diagram of the embodiment 実施形態の作用説明図Action explanatory diagram of the embodiment 実施形態の作用説明図Action explanatory diagram of the embodiment 実施形態の作用説明図Action explanatory diagram of the embodiment (a)、(b)実施例2の模式図(A), (b) Schematic diagram of Example 2 (a)~(d)実施例3の作用説明図(A)-(d) Action explanatory drawing of Example 3
 以下、この発明を実施するための形態を図面に基づいて説明する。
 図1、図2に本願発明を説明するための超仕上げ加工装置の概要図を示す。図1は、超仕上げ盤の概要図で、図2は、制御装置19のブロック図である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
1 and 2 are schematic views of a superfinishing apparatus for explaining the present invention. FIG. 1 is a schematic diagram of the superfinishing machine, and FIG. 2 is a block diagram of the control device 19.
 超仕上げ加工装置は、超仕上げ盤と制御装置19とから成る。
 超仕上げ盤は、図1に示すように、固定センター1、回し金2、揺動装置3、砥石台4、エアシリンダ5、主分力センサ6a、背分力センサ6b、揺動荷重センサ6c、移動量センサ7、インプロセスゲージ8、砥石10、吐出ノズル12で構成されている。
The superfinishing apparatus includes a superfinishing machine and a control device 19.
As shown in FIG. 1, the superfinishing machine includes a fixed center 1, a turner 2, a swing device 3, a grinding wheel base 4, an air cylinder 5, a main component force sensor 6a, a back component force sensor 6b, and a swing load sensor 6c. , A movement amount sensor 7, an in-process gauge 8, a grindstone 10, and a discharge nozzle 12.
 超仕上げ盤の固定センター1で支持された工作物9は、回し金2で回転力を与えられる。砥石10を支持する砥石台4は揺動装置3に取り付けられている。揺動装置3は、砥石台4に往復運動させる駆動力を付与する。この揺動装置3により揺動する砥石台4には、エアシリンダ5を介して主分力センサ6a、背分力センサ6b、揺動荷重センサ6cが取り付けられ、この主分力センサ6a、背分力センサ6b、揺動荷重センサ6cで砥石10が支持されている。具体的には、砥石10を取り付けたエアシリンダ5のロッド13の先端と砥石10の間に主分力センサ6a、背分力センサ6b、揺動荷重センサ6cを設けた構成となっている。
 ここで、前記主分力センサ6aは、工作物9に押し当てられた状態の砥石10にかかる力の内の工作物9の回転の接線方向の分力Qを検出する。
 背分力センサ6bは、工作物9に押し当てられた状態の砥石10にかかる力の内の砥石10の押し当て方向の分力Pを検出する。
 揺動荷重センサ6cは、工作物9に押し当てられた状態の砥石10にかかる力の内の砥石10の揺動方向の分力Rを検出する。
 これら、主分力センサ6a、背分力センサ6b、揺動荷重センサ6cは、例えば、ロードセルや圧電素子(半導体(ピエゾ抵抗素子)ひずみゲージ、ユニモルフ、バイモルフ)などの力センサを用いることができる。これらのセンサ6a、6b、6cは、それぞれ、別のセンサとして設けることもできるが、一体となった3軸式のものでも良い。この形態では、一体のものを使用している。
The workpiece 9 supported by the fixed center 1 of the superfinishing machine is given a rotational force by the turner 2. A grindstone base 4 that supports the grindstone 10 is attached to the rocking device 3. The oscillating device 3 applies a driving force for reciprocating the grindstone table 4. A main component force sensor 6a, a back component force sensor 6b, and a swing load sensor 6c are attached to a grindstone table 4 that is swung by the swing device 3 via an air cylinder 5, and the main component force sensor 6a, The grindstone 10 is supported by the component force sensor 6b and the swing load sensor 6c. Specifically, the main component force sensor 6a, the back component force sensor 6b, and the swing load sensor 6c are provided between the tip of the rod 13 of the air cylinder 5 to which the grindstone 10 is attached and the grindstone 10.
Here, the main component force sensor 6a detects the component force Q in the tangential direction of the rotation of the workpiece 9 out of the force applied to the grindstone 10 pressed against the workpiece 9.
The back component force sensor 6b detects the component force P in the pressing direction of the grindstone 10 out of the force applied to the grindstone 10 pressed against the workpiece 9.
The rocking load sensor 6 c detects a component force R in the rocking direction of the grindstone 10 out of the force applied to the grindstone 10 pressed against the workpiece 9.
As these main component force sensor 6a, back component force sensor 6b, and swing load sensor 6c, for example, a force sensor such as a load cell, a piezoelectric element (semiconductor (piezoresistive element) strain gauge, unimorph, bimorph) or the like can be used. . These sensors 6a, 6b, and 6c can be provided as separate sensors, respectively, but may be an integrated three-axis type. In this embodiment, an integral unit is used.
 また、エアシリンダ5の後端に移動量センサ7を取り付け、砥石10の移動量Sを検出する構成になっている。この場合、移動量センサ7としては、例えば、ポテンショメータを用いることができる。
 なお、このようなポテンショメータ以外にも、液体であるクーラントからの防滴効果を狙って光学式や差動トランスを用いた非接触型の直動変位計を使用しても構わない。
 インプロセスゲージ8は、加工中の工作物9の寸法変化を検出するためのもので、触針が工作物9に接触するように配置されており、工作物9の寸法を加工と同時に実測するようになっている。こうすることで、仕上げ寸法減少量Tと後述の砥石10の移動量Sから超仕上げ比Uを求められるようにしてある。
 クーラント11は、砥石10と工作物9の摩擦力の低減(潤滑作用),切粉の排出(洗浄作用)及び加工熱の排出(冷却作用)の性能を有するものである。そして、クーラント11は、図1のように、吐出ノズル12を工作物9の近傍に配置して加工点に供給する。この場合、使用するクーラントは不水溶性、あるいは水溶性のいずれのものでも構わない。
Further, a movement amount sensor 7 is attached to the rear end of the air cylinder 5 to detect the movement amount S of the grindstone 10. In this case, as the movement amount sensor 7, for example, a potentiometer can be used.
In addition to such a potentiometer, a non-contact type linear motion displacement meter using an optical type or a differential transformer may be used aiming at a drip-proof effect from a coolant which is a liquid.
The in-process gauge 8 is for detecting a dimensional change of the workpiece 9 during processing, and is arranged so that the stylus comes into contact with the workpiece 9 and measures the size of the workpiece 9 simultaneously with the processing. It is like that. By doing so, the superfinishing ratio U can be obtained from the finishing dimension reduction amount T and the movement amount S of the grindstone 10 described later.
The coolant 11 has the performance of reducing the frictional force between the grindstone 10 and the workpiece 9 (lubricating action), discharging chips (cleaning action), and discharging processing heat (cooling action). And the coolant 11 arrange | positions the discharge nozzle 12 in the vicinity of the workpiece 9, and supplies it to a processing point like FIG. In this case, the coolant used may be either water-insoluble or water-soluble.
 図2は、制御装置19の超仕上げ盤から得られる信号(入力)系と、超仕上げ盤及び外部装置(ドレッシング25、砥石交換機26)へ出力する信号(出力)系に着目したブロック図である。 FIG. 2 is a block diagram focusing on a signal (input) system obtained from the superfinishing machine of the control device 19 and a signal (output) system output to the superfinishing machine and external devices (dressing 25, grindstone exchanger 26). .
 すなわち、制御装置19は、A/D変換機能20a、D/A変換機能20b、演算処理機能(CPU)21、I/Oインターフェース24を備えている。
 CPU21は、A/D変換機能20aを介して超仕上げ盤に設けられた主分力センサ6a、背分力センサ6b、揺動荷重センサ6c、移動量センサ7及びインプロセスゲージ8と接続され、主分力センサ6a、背分力センサ6b、揺動荷重センサ6cから出力される3方向の各分力P、Q、Rの出力と、移動量センサ7及びインプロセスゲージ8からの測定出力S、Tを収集する。
 一方、CPU21は、D/A変換機能20bを介して超仕上げ盤の主軸モータ22と揺動モータ23の各インバータ回路27と接続されている。また同時に、CPU21は、D/A変換機能20bを介してエアシリンダ5の電空式のエアレギュレータ28と接続されている。このため、CPU21は、主分力センサ6a、背分力センサ6b、揺動荷重センサ6c、移動量センサ7及びインプロセスゲージ8の検出出力に基づいて、砥石10の加工状態を判定する。そして、主軸モータ22と揺動モータ23及びエアシリンダ5を制御して工作物9の回転数、砥石10の揺動数、砥石10への押し付け圧を操作し、超仕上げ加工の加工条件をリアルタイムで制御するようになっている。
 また、CPU21は、I/Oインターフェース24を介してエアシリンダ5と接続されている。こうすることで、主分力センサ6a、背分力センサ6b、揺動荷重センサ6c、移動量センサ7及びインプロセスゲージ8の検出出力から砥石10の異常を検出すると、揺動を中止させるための後退動作をエアシリンダ5へ指令できるようになっている。
 さらに、CPU21は、I/Oインターフェース24を介して外部機器25、26と接続して砥石10のメンテナンス動作を指令できるようになっている。
 ここで、外部機器は、目立て用のドレッシング装置25と砥石交換装置26で、どちらも周知のもので構わない。そして、両装置25,26は、CPU21が、前記主分力センサ6a、背分力センサ6b、揺動荷重センサ6c、移動量センサ7及びインプロセスゲージ8の検出出力に基づいて必要と判断して指令を発すると、砥石10の目立てと交換を自動で行うようになっている。
That is, the control device 19 includes an A / D conversion function 20a, a D / A conversion function 20b, an arithmetic processing function (CPU) 21, and an I / O interface 24.
The CPU 21 is connected to the main component force sensor 6a, the back component force sensor 6b, the swing load sensor 6c, the movement amount sensor 7 and the in-process gauge 8 provided on the superfinishing board via the A / D conversion function 20a. The output of each of the three component forces P, Q, R output from the main component force sensor 6a, the back component force sensor 6b, and the swing load sensor 6c, and the measurement output S from the movement amount sensor 7 and the in-process gauge 8 , Collect T.
On the other hand, the CPU 21 is connected to each inverter circuit 27 of the spindle motor 22 and the swing motor 23 of the superfinishing machine via the D / A conversion function 20b. At the same time, the CPU 21 is connected to the electropneumatic air regulator 28 of the air cylinder 5 through the D / A conversion function 20b. Therefore, the CPU 21 determines the processing state of the grindstone 10 based on the detection outputs of the main component force sensor 6a, the back component force sensor 6b, the swing load sensor 6c, the movement amount sensor 7 and the in-process gauge 8. Then, the spindle motor 22, the swing motor 23, and the air cylinder 5 are controlled to operate the rotational speed of the workpiece 9, the swing speed of the grindstone 10, and the pressure applied to the grindstone 10, and the machining conditions for the superfinishing processing are real-time. It comes to control with.
The CPU 21 is connected to the air cylinder 5 via the I / O interface 24. In this way, when an abnormality of the grindstone 10 is detected from the detection outputs of the main component force sensor 6a, the back component force sensor 6b, the swing load sensor 6c, the movement amount sensor 7 and the in-process gauge 8, the swing is stopped. Can be commanded to the air cylinder 5.
Further, the CPU 21 can be connected to the external devices 25 and 26 via the I / O interface 24 to instruct maintenance operation of the grindstone 10.
Here, the external devices are the dressing device 25 for sharpening and the grindstone changing device 26, both of which may be well known. Both devices 25 and 26 determine that the CPU 21 is necessary based on the detection outputs of the main component force sensor 6a, the back component force sensor 6b, the swing load sensor 6c, the movement amount sensor 7 and the in-process gauge 8. When the command is issued, the sharpening and replacement of the grindstone 10 are automatically performed.
 以上のように、本願の加工装置は構成されており、次に、前記加工装置で用いられる超仕上げ加工について述べる。 As described above, the processing apparatus of the present application is configured, and next, super finishing used in the processing apparatus will be described.
 まず、図3(a)に示すように、回転砥石30を使用する円筒研削加工を考える。この場合、図3(b)のように、工作物9は固定センター1と回し金2によって回転する。そして、回転砥石30で工作物9を研削加工する場合、固定センター1に取り付けられた歪みゲージ31a、31bで工作物9に作用する法線方向の背分力Pと、接線方向の研削主分力Qを計測することで、砥石10の負荷を数値化し、研削状態が推測可能である。 First, consider cylindrical grinding using a rotating grindstone 30 as shown in FIG. In this case, the workpiece 9 is rotated by the fixed center 1 and the turner 2 as shown in FIG. When the workpiece 9 is ground with the rotary grindstone 30, the normal back force P acting on the workpiece 9 with the strain gauges 31a and 31b attached to the fixed center 1 and the tangential grinding main portion By measuring the force Q, the load on the grindstone 10 can be digitized and the grinding state can be estimated.
 この概念から、次に、図1のように支持された円筒形状の工作物9に対し、図4で設定するような条件を与えた場合を考える。
 すなわち、主軸回転数を低く揺動数を高くし、最大交差角を大きくする「粗」条件と、逆に主軸回転数を高く揺動数を低くし、最大交差角を小さくする「仕上げ」条件を連続的に与えた場合、前記入力条件に対して砥石10が切削状態から磨き状態へ移行するのに応じて得られる各信号は其々変化する。その信号変化の例を図5に示す。
From this concept, next, consider a case where the conditions set in FIG. 4 are given to the cylindrical workpiece 9 supported as shown in FIG.
In other words, the “coarse” condition for lowering the spindle speed and increasing the swing speed and increasing the maximum crossing angle, and conversely the “finishing” condition for increasing the spindle speed and lowering the swing speed and reducing the maximum crossing angle. When the whetstone 10 is continuously given, each signal obtained as the grindstone 10 shifts from the cutting state to the polishing state with respect to the input condition changes. An example of the signal change is shown in FIG.
 図5は横軸を時間推移、縦軸を信号強度(研削抵抗)としたもので、加工開始後、「粗」加工から「仕上げ」加工への移行に応じて砥石10の状態が変化する。
 このとき、主分力センサ6a、背分力センサ6b、揺動荷重センサ6cの検出出力は、それぞれ、主分力Q、背分力P、揺動荷重Rの3軸(X軸、Y軸、Z軸)方向の分力となり、図5のように、工作物9の回転数、砥石10の揺動数に起因する周波数を包括した信号を呈する。また、各信号は各々砥石10の加工状態に応じて変動する。
In FIG. 5, the horizontal axis represents time transition, and the vertical axis represents signal strength (grinding resistance). After the machining starts, the state of the grindstone 10 changes in accordance with the transition from the “rough” machining to the “finishing” machining.
At this time, the detection outputs of the main component force sensor 6a, the back component force sensor 6b, and the swing load sensor 6c are three axes (X axis, Y axis) of the main component force Q, the back component force P, and the swing load R, respectively. , Z-axis) direction component, and as shown in FIG. 5, a signal including the frequency resulting from the number of rotations of the workpiece 9 and the number of oscillations of the grindstone 10 is presented. Each signal varies according to the processing state of the grindstone 10.
 図6に砥石10の移動量(砥石摩耗量)Sとインプロセスゲージ8の工作物9の仕上げ寸法減少量(stock amount:所謂「取り代」)Tの信号変化を示す。ここで、横軸は時間推移、縦軸は変位量である。
 この場合、「粗」条件の工程では、砥石10は破砕・脱落する。そのため、砥石10の移動量Sは一定速度で増加(前進)する。同時に、仕上げ寸法減少量Tも一定の割合で減少する。
 これに対して、「仕上げ」条件の工程では、砥石10の加工状態が磨き状態になるため、砥石10の移動量Sは一定になり(エアシリンダ5のロッド13の前進が停止する)、仕上げ寸法減少量Tの変化も停滞する。
FIG. 6 shows signal changes of the moving amount (grinding wheel wear amount) S of the grindstone 10 and the finish dimension reduction amount (stock amount: so-called “removing allowance”) T of the workpiece 9 of the in-process gauge 8. Here, the horizontal axis represents time transition, and the vertical axis represents the amount of displacement.
In this case, in the process of the “coarse” condition, the grindstone 10 is crushed and dropped. Therefore, the moving amount S of the grindstone 10 increases (advances) at a constant speed. At the same time, the finishing dimension reduction amount T also decreases at a constant rate.
On the other hand, in the process of the “finishing” condition, since the processing state of the grindstone 10 is polished, the moving amount S of the grindstone 10 is constant (the forward movement of the rod 13 of the air cylinder 5 is stopped), and the finish. The change in the dimension reduction amount T is also stagnant.
 図7に、図4で設定した条件で加工した場合の砥石10にかかる力の分力の工作物9の回転の接線方向の分力Q(所謂「主分力」)と、砥石10の押し当て方向の分力P(所謂「背分力」)及び、その比P/Qの測定例を示す。ここで、図7の横軸は時間推移、縦軸は各分力の大きさと、その比を示す。
 図7から、加工開始地点をAとした場合、「粗」加工(切削状態)においては、砥石10は積極的に自生発刃する。その後、「仕上げ」加工へ移行すると、砥石10は、半切削状態から目詰まり状態(磨き状態)へ移行する。
 ここで、この間の前記押し当て方向の分力Qと前記接線方向の分力Pに着目する。すると、前記接線方向の分力Pは、砥石10の押し付け力で決定される。このことから、図4の条件においては、ほぼ一定の値を示すことがわかる。
 このとき、前記押し当て方向の分力Qは、工作物9と砥石10の間の研削抵抗に応じた変化を示す。
 具体的には、「粗」加工では砥石10が自生発刃し、研削抵抗が大きくなる。そのため、前記押し当て方向の分力Qは大きな値をとる。その後、「仕上げ」加工間では自生発刃が停止し、砥石10が磨き状態となる。そのため研削抵抗が小さくなって前記押し当て方向の分力Qは小さな値をとる。その結果、比P/Q(荷重バランスを表す)は、図7(イ)~(ハ)のように、砥石10の加工状態に応じた変化を示す。
 すなわち、比P/Qは、「粗」から「仕上げ」加工へ移行するのに伴って、図7(ロ)のように、緩やかな上昇変化を示す。
 同じスペックの砥石10の場合、この比P/Qは、図4の加工条件において、いずれの数値が設定されていてもほぼ同じ傾向を示す。このことから、比P/Qは、超仕上げにおける加工効率、仕上がり精度を監視する指標として有効である。
FIG. 7 shows a component force Q (so-called “main component force”) in the tangential direction of rotation of the workpiece 9 of the force applied to the grindstone 10 when machining is performed under the conditions set in FIG. An example of measuring the component force P in the contact direction (so-called “back component force”) and its ratio P / Q is shown. Here, the horizontal axis of FIG. 7 indicates the time transition, and the vertical axis indicates the magnitude of each component force and the ratio thereof.
From FIG. 7, when the machining start point is A, the grindstone 10 actively and spontaneously blades in “rough” machining (cutting state). Thereafter, when shifting to the “finishing” process, the grindstone 10 shifts from a semi-cut state to a clogged state (polished state).
Here, attention is focused on the component force Q in the pressing direction and the component force P in the tangential direction during this period. Then, the component force P in the tangential direction is determined by the pressing force of the grindstone 10. From this, it can be seen that the condition of FIG. 4 shows a substantially constant value.
At this time, the component force Q in the pressing direction shows a change according to the grinding resistance between the workpiece 9 and the grindstone 10.
Specifically, in the “rough” processing, the grindstone 10 spontaneously cuts and the grinding resistance increases. Therefore, the component force Q in the pressing direction takes a large value. Thereafter, during the “finishing” process, the self-generated blade stops and the grindstone 10 is polished. Therefore, the grinding resistance is reduced, and the component force Q in the pressing direction takes a small value. As a result, the ratio P / Q (representing the load balance) shows a change according to the processing state of the grindstone 10 as shown in FIGS.
That is, the ratio P / Q shows a gradual increase as shown in FIG. 7 (b) as the process shifts from “rough” to “finish”.
In the case of the grindstone 10 having the same specifications, this ratio P / Q shows almost the same tendency regardless of which numerical value is set in the processing conditions of FIG. Therefore, the ratio P / Q is effective as an index for monitoring the processing efficiency and finishing accuracy in super finishing.
 図8は、図7と同じ時間軸における砥石10の移動量(前進量)Sである砥石損耗量と工作物9の仕上げ寸法減少量T、並びに砥石10の移動量Sと仕上げ寸法減少量Tとの累積比を取ったものを超仕上げ比Uとして示したものである。
 すなわち、超仕上げ比Uは、インプロセスゲージ8が検出する「寸法減少量(除去体積)」を加工開始時から累積したものと、移動量センサ7によって得られる移動量S(砥石損耗量+工作物9の寸法減少量)から砥石損耗量のみを算出して加工開始時から累積したものとの比を取ったものである。このとき、砥石損耗量は、移動量Sからインプロセスゲージ8が検出する「寸法減少量(除去体積)」を差し引けば算出できる。
 なお、本装置においては、インプロセスゲージ8で研削能率を求めるため、超仕上げ比Uを加工開始からの砥石10の損耗量と仕上げ寸法減少量Tとの累積値の比で表すこととしたのである。
8 shows the grinding wheel wear amount, which is the moving amount (advance amount) S of the grindstone 10 on the same time axis as FIG. 7, the finishing dimension reduction amount T of the workpiece 9, and the moving amount S of the grinding stone 10 and the finishing dimension reduction amount T. The super-finishing ratio U is taken as the cumulative ratio.
That is, the superfinishing ratio U is obtained by accumulating the “dimension reduction amount (removed volume)” detected by the in-process gauge 8 from the start of machining, and the movement amount S obtained by the movement amount sensor 7 (whetstone wear amount + workpiece). Only the grinding wheel wear amount is calculated from the dimensional reduction amount of the article 9 and is taken as a ratio with the cumulative amount from the start of machining. At this time, the grinding wheel wear amount can be calculated by subtracting the “dimension reduction amount (removed volume)” detected by the in-process gauge 8 from the movement amount S.
In the present apparatus, in order to obtain the grinding efficiency with the in-process gauge 8, the superfinishing ratio U is expressed by the ratio of the cumulative value of the amount of wear of the grinding wheel 10 from the start of machining and the finishing dimension reduction amount T. is there.
 図9に、砥石10に工作物9の材質が貼り付いた状態(凝着状態)が発生したときの前記押し当て方向の分力Pと前記接線方向の分力Q及び、その比P/Qの変化を示す。
 すなわち、前記押し当て方向の分力Pと接線方向の分力Q及び、その比P/Qは、図7においては、比較的緩やかな変化をたどるのに対し、図9の凝着した砥石10では、前記接線方向の分力Qが瞬時に低下する傾向を示す。その結果、比P/Qは、図9(ニ)のように、急激な上昇を呈する。そのため、比P/Qに限度値(しきい値)を設定すれば、凝着発生を検知することが可能である。
FIG. 9 shows a component force P in the pressing direction and a component force Q in the tangential direction and a ratio P / Q when the material of the workpiece 9 is adhered to the grindstone 10 (adhesion state). Shows changes.
That is, the component force P in the pressing direction, the component force Q in the tangential direction, and the ratio P / Q follow a relatively gradual change in FIG. Then, the component force Q of the said tangential direction shows the tendency to fall instantaneously. As a result, the ratio P / Q increases rapidly as shown in FIG. Therefore, if a limit value (threshold value) is set for the ratio P / Q, the occurrence of adhesion can be detected.
 このように、砥石10を支持する砥石台4に、主分力センサ6a、背分力センサ6b、揺動荷重センサ6cを設けることで、「粗」加工から「仕上げ」加工への判別が可能となり、砥石台4を使用する超仕上げ加工に用いることができる。
 また、移動量センサ7、インプロセスゲージ8を設けることで、仕上がりの判定もできる。そして、それらの検出値を用いて、砥石10の加工状態を総合的に判定することが可能となり、加工条件(工作物9の回転数、砥石10の揺動数、砥石10の押し付け力)を意図的に操作することで超仕上げ比Uを常時最適に保持することが可能になる。
 さらに、それらの検出値を用いることで、凝着に代表される研削異常を検知することが可能となり、研削異常を検出した場合は、後述のように、I/O回路によって外部機器を作動させて最適な加工状態を維持することも可能である。
 また、このように、超仕上げ比が任意に操作でき、かつ、目詰まり・凝着等の不具合を未然に防ぐことができるため、不水溶性クーラントに対して潤滑性、浸透性、洗浄性に劣るが、冷却性及びコストの点で勝る水溶性クーラントを使用しても良好な加工精度が得られる。
As described above, by providing the main component force sensor 6a, the back component force sensor 6b, and the swing load sensor 6c on the grindstone base 4 that supports the grindstone 10, it is possible to discriminate from "rough" processing to "finishing" processing. Thus, it can be used for super-finishing using the grindstone table 4.
Further, by providing the movement amount sensor 7 and the in-process gauge 8, it is possible to determine the finish. And it becomes possible to judge the processing state of the grindstone 10 comprehensively using those detected values, and the processing conditions (the number of rotations of the workpiece 9, the number of oscillations of the grindstone 10, and the pressing force of the grindstone 10). It is possible to always keep the super-finish ratio U optimally by operating it intentionally.
Furthermore, by using these detected values, it becomes possible to detect grinding abnormalities typified by adhesion. When a grinding abnormality is detected, an external device is operated by an I / O circuit as will be described later. It is also possible to maintain the optimum machining state.
In addition, in this way, the superfinishing ratio can be manipulated arbitrarily, and problems such as clogging and adhesion can be prevented in advance. Although it is inferior, good processing accuracy can be obtained even if a water-soluble coolant that is superior in terms of cooling performance and cost is used.
 次に、前記原理に基づく制御法について述べる。
 例えば、超仕上げ加工装置において、図1のように支持された円筒形状の工作物9に対して、図4のように「粗」、「仕上げ」の2条件を設定する。この場合、加工装置は、主分力センサ6a、背分力センサ6b、揺動荷重センサ6c、移動量センサ7、インプロセスゲージ8の各センサの出力に基づいて主軸モータ22、揺動モータ23、エアシリンダ5をコントロールして加工条件を変化させる制御を行う。
 すなわち、図5から、砥石10と工作物9が接触する加工開始点Aから「粗」加工→「仕上げ」加工への移行点で、主分力センサ6aと背分力センサ6bの検出出力は、大きく変動する。そのため、この変動から「粗」加工→「仕上げ」加工への切り替えを判定して「仕上げ」加工への切り替え制御を行う。
 このとき、揺動荷重センサ6cは、砥石10の揺動慣性と加工抵抗を受けるため、揺動数に応じた正弦波振動を呈する。そのため、砥石10が破砕・脱落する「粗」加工では、砥石10は切削状態になり、正弦波の振幅が大きくなる。一方、「仕上げ」加工では、砥石10が磨き状態になったことにより、正弦波の振幅が小さくなる。
 したがって、主分力センサ6aと背分力センサ6bの検出出力に、揺動荷重センサ6cの検出出力を加味して判定すれば判定確度が向上する。そのため、超砥粒砥石においても「粗」から「仕上げ」加工への移行の判定が確実になり、例えば、「粗」加工から「仕上げ」加工への自動切り替え制御も容易に制御できる。
Next, a control method based on the above principle will be described.
For example, in the superfinishing apparatus, two conditions of “rough” and “finishing” are set as shown in FIG. 4 for the cylindrical workpiece 9 supported as shown in FIG. In this case, the machining apparatus includes the main shaft motor 22 and the swing motor 23 based on the outputs of the main component force sensor 6a, the back component force sensor 6b, the swing load sensor 6c, the movement amount sensor 7, and the in-process gauge 8. Then, the air cylinder 5 is controlled to change the machining conditions.
That is, from FIG. 5, the detection output of the main component force sensor 6a and the back component force sensor 6b is the transition point from the processing start point A where the grindstone 10 and the workpiece 9 contact each other to “rough” processing → “finishing” processing. Fluctuates greatly. Therefore, switching from “rough” machining to “finishing” machining is determined from this variation, and switching control to “finishing” machining is performed.
At this time, the oscillating load sensor 6c receives the oscillating inertia and the machining resistance of the grindstone 10, and thus exhibits a sine wave vibration corresponding to the oscillating number. Therefore, in the “rough” process in which the grindstone 10 is crushed and dropped, the grindstone 10 is in a cutting state and the amplitude of the sine wave is increased. On the other hand, in the “finishing” process, the amplitude of the sine wave is reduced because the grindstone 10 is in a polished state.
Therefore, if the determination is made by adding the detection output of the swing load sensor 6c to the detection output of the main component force sensor 6a and the back component force sensor 6b, the determination accuracy is improved. Therefore, even in the superabrasive grindstone, the determination of the transition from “rough” to “finishing” processing is ensured. For example, automatic switching control from “rough” processing to “finishing” processing can be easily controlled.
 一方、移動量センサ7とインプロセスゲージ8の検出出力によっても「粗」加工と「仕上げ」加工の判別ができる。
 すなわち、移動量センサ7の検出する砥石10の移動量Sは、図6に示したように、「粗」加工では破砕や脱落を起こすため、一定速度で前進する。そして、「仕上げ」加工では、磨き状態になって停止する。
 また、インプロセスゲージ8の測定する工作物9の仕上げ寸法減少量Tの加工特性は、図6に示すように、砥石10の移動量(砥石摩耗)Sに応じた変化となる。
 したがって、移動量センサ7とインプロセスゲージ8の出力特性を前記主分力センサ6aと背分力センサ6bの検出出力と合わせれば、「粗」から「仕上げ」加工の切り替え制御の精度を向上できる。
On the other hand, “coarse” machining and “finishing” machining can also be discriminated by the detection output of the movement amount sensor 7 and the in-process gauge 8.
That is, as shown in FIG. 6, the movement amount S of the grindstone 10 detected by the movement amount sensor 7 advances at a constant speed because crushing or dropping occurs in “rough” processing. In the “finishing” process, the polishing state is stopped.
Further, the processing characteristics of the finishing dimension reduction amount T of the workpiece 9 measured by the in-process gauge 8 change according to the moving amount (grinding wheel wear) S of the grindstone 10 as shown in FIG.
Therefore, if the output characteristics of the movement amount sensor 7 and the in-process gauge 8 are combined with the detection outputs of the main component force sensor 6a and the back component force sensor 6b, the accuracy of switching control from “rough” to “finish” processing can be improved. .
 ここで、一般に、超仕上げ加工では、切削、半切削、研磨の3工程を規則正しく繰り返す加工サイクルが良好とされる。
 そのため、この加工サイクルの切り替え制御は、インプロセスゲージ8の検出出力に基づく工作物9の寸法減少量Tを監視すれば実現できる。
Here, in general, in the superfinishing process, a processing cycle in which three steps of cutting, semi-cutting, and polishing are regularly repeated is considered good.
Therefore, this machining cycle switching control can be realized by monitoring the dimension reduction amount T of the workpiece 9 based on the detection output of the in-process gauge 8.
 また、図7に示すように、加工開始地点Aから始まる「粗」加工の期間は、砥石10が切削状態であるため、このときの砥石10は積極的に自生発刃する。そして、その後、「仕上げ」加工(磨き状態)へ移行する。すると、砥石10は、半切削状態から目詰まり状態へ徐々に移行する。この間、主分力センサ6aと背分力センサ6bの検出する2方向の分力QとPは、揺動荷重センサ6cの検出する揺動方向の分力(揺動荷重)Rほどではないものの、工作物9の回転数、あるいは、砥石10の振動数に起因した同位相の周波数を包括した正弦波信号を呈す。
 因みに、砥石10の状態変化による前記接線方向の分力Qと、押し当て方向の分力Pの変動は、回転数または振動数成分に包括された振幅に対して微小である。
 この接線方向の分力Qと押し当て方向の分力Pの波形に現れる一定の微小な振幅は、加工特性と同じ位相であるため、比P/Qでは、互いに打ち消し合って比較的低振幅の直流波形となる。このため、比P/Qは、図7(イ)、(ロ)、(ハ)のように、砥石10の加工状態に応じた変化をハッキリと明示することができる。
 したがって、この出力変化のパターンから加工工程を判定することができる。また、このように、出力変化のパターンでもって判定すれば、工作物9の加工前の面粗度の違いに関わらず、砥石10の加工状態を判定して超仕上げ加工ができる。
Further, as shown in FIG. 7, during the “rough” machining period starting from the machining start point A, the grinding wheel 10 is in a cutting state, and the grinding stone 10 at this time actively blades spontaneously. Then, the process proceeds to “finishing” processing (polished state). Then, the grindstone 10 gradually shifts from a semi-cut state to a clogged state. During this time, the two-way component forces Q and P detected by the main component force sensor 6a and the back component force sensor 6b are not as large as the component force (swing load) R in the swing direction detected by the swing load sensor 6c. A sinusoidal signal including a frequency of the same phase caused by the rotational speed of the workpiece 9 or the vibration frequency of the grindstone 10 is exhibited.
Incidentally, the fluctuation of the component force Q in the tangential direction and the component force P in the pressing direction due to the state change of the grindstone 10 is very small with respect to the amplitude included in the rotation speed or frequency component.
Since the constant minute amplitude appearing in the waveform of the component force Q in the tangential direction and the component force P in the pressing direction has the same phase as the machining characteristics, the ratio P / Q cancels each other and has a relatively low amplitude. It becomes a direct current waveform. For this reason, the ratio P / Q can clearly show the change according to the processing state of the grindstone 10 as shown in FIGS. 7 (a), (b), and (c).
Therefore, the machining process can be determined from the output change pattern. In addition, if the determination is made with the output change pattern as described above, the superfinishing can be performed by determining the processing state of the grindstone 10 regardless of the difference in surface roughness of the workpiece 9 before processing.
 ところで、超仕上げ加工では、1つの加工サイクル中に加工効率が刻々と変動するため、超仕上げ比Uは一定の値にならない。また、超仕上げの工作物9の寸法減少量Tは、非常に微量であることから、超仕上げ比Uを求めることは容易ではない。
 さらに、「仕上げ」加工から加工の完了にかけては、砥石10の変化量はゼロに収束するため、回転砥石30を用いた研削加工で用いられる「研削比=工作物除去量/砥石損耗量」を時間軸に対して演算させても数値が発散してしまう恐れがある。
 そのため、先にも述べたように、超仕上げ比Uとして、インプロセスゲージ8の検出出力に基づく寸法減少量Tと、移動量センサ7の検出出力に基づく砥石10の移動量Sを加工開始から累積し、累積した寸法減少量Tと移動量Sとの比T/S(=寸法減少量T/移動量S)を算出して、その算出した比の時間軸に対する変化の傾向から、砥石10の加工状態を推定する。
By the way, in super finishing, since the processing efficiency fluctuates every moment during one processing cycle, the super finishing ratio U does not become a constant value. Further, since the dimension reduction amount T of the superfinished workpiece 9 is very small, it is not easy to obtain the superfinishing ratio U.
Furthermore, since the amount of change of the grindstone 10 converges to zero from the “finishing” process to the completion of the process, “grinding ratio = workpiece removal amount / whetstone wear amount” used in the grinding process using the rotating grindstone 30 is set. There is a possibility that the numerical value may diverge even if it is calculated with respect to the time axis.
Therefore, as described above, as the superfinishing ratio U, the dimension reduction amount T based on the detection output of the in-process gauge 8 and the movement amount S of the grindstone 10 based on the detection output of the movement amount sensor 7 from the start of machining. Accumulated, a ratio T / S (= dimension reduction amount T / movement amount S) between the accumulated dimension reduction amount T and the movement amount S is calculated, and the grindstone 10 is calculated from the tendency of the calculated ratio to change with respect to the time axis. Estimate the machining state.
 すなわち、図8は、図4で設定した条件で加工した際の砥石10の移動量Sと寸法減少量Tの推移と、その移動量Sと寸法減少量Tを累積した値から算出した超仕上げ比Uを描画したものである。
 図8から、加工開始直後のA点から始まる「粗」加工では、自生発刃と工作物除去が同時に進行するため、一次関数的な上昇をたどる。この結果から、切削状態の研削時の加工効率が高ければ、加工初期の超仕上げ比Uの初期勾配は大きくなる。
 このように、勾配が大きな加工条件が、超仕上げにおける加工効率を高くする条件となるため、Uの値が大きくなるよう主軸モータ22の回転数や砥石台4の揺動モータ23を制御する。
That is, FIG. 8 shows the superfinishing calculated from the transition of the movement amount S and dimension reduction amount T of the grindstone 10 when machining under the conditions set in FIG. 4 and the accumulated value of the movement amount S and dimension reduction amount T. The ratio U is drawn.
As shown in FIG. 8, in the “rough” machining starting from point A immediately after the machining starts, the self-generated blade and the workpiece removal proceed at the same time. From this result, if the processing efficiency at the time of grinding in the cutting state is high, the initial gradient of the superfinishing ratio U at the initial stage of processing increases.
As described above, since the machining condition with a large gradient is a condition for increasing the machining efficiency in super-finishing, the rotational speed of the spindle motor 22 and the swing motor 23 of the grinding wheel base 4 are controlled so that the value of U becomes large.
 したがって、比P/Q、超仕上げ比Uを制御装置19内で関連付ければ、工作物9の形状や砥石10のスペックに応じた最も高い加工効率が得られる加工条件が設定できる。
 そして、このような方法を採用すれば、従来、相当な工数を要するとされる加工条件の調整時間や調整時の加工不良を削減することが可能である。
Therefore, by associating the ratio P / Q and the superfinishing ratio U in the control device 19, it is possible to set a machining condition that can obtain the highest machining efficiency according to the shape of the workpiece 9 and the specifications of the grindstone 10.
If such a method is employed, it is possible to reduce processing time adjustment time and processing failure during adjustment, which conventionally requires considerable man-hours.
 また、このとき、比P/Qと超仕上げ比Uを、工作物9の仕上がり状態の判定に使用することができる。この場合は、砥石10が磨き状態になって再び比P/Qが上昇する時期を監視し、設定値を超えたところで加工を完了すれば、安定した加工品質が得られる。また、インプロセスゲージ8の検出出力が仕上がり寸法に達したときに加工を終えるようにすることで、工作物9を既定の寸法に仕上げることができる。 Further, at this time, the ratio P / Q and the superfinishing ratio U can be used for determining the finished state of the workpiece 9. In this case, when the grindstone 10 is polished and the ratio P / Q rises again, and the machining is completed when the set value is exceeded, stable machining quality can be obtained. Further, by finishing the processing when the detection output of the in-process gauge 8 reaches the finished size, the workpiece 9 can be finished to a predetermined size.
 一方、工作物9と砥石10が不適合の場合や工作物9と砥石10の加工条件が不適合の場合、またはクーラント11が不適合な場合は、砥石10に金属が貼り付いた(凝着した)状態が生じる。
 この場合、砥石10と工作物9は部分的に金属接触を起こすため、比P/Qが上昇し、寸法減少量Tが低下する。
 そのため、比P/Qの変化及び、インプロセスゲージ8が検出する寸法減少量Tの寸法変化を組み合わせて砥石10の加工状態を監視すれば、凝着の発生を検知することができる。
 このとき、凝着を検知した場合は、加工を中止するため、I/Oインターフェース24を介してエアシリンダ5を後退させる。次に、I/Oインターフェース24を介して外部機器として接続されたドレッシング装置25を作動して砥石10のドレッシング(目立て)を行う。次に、エアシリンダ5を前進させて仕上げ加工へ戻り作業を継続する。
 そして、その作業を継続した際に、凝着が改善しないことが検出された場合は、I/Oインターフェース24を介して外部機器として接続された砥石交換装置24を作動して新しい砥石10に交換する。交換後は、エアシリンダ5を前進させて研磨加工へ戻り、作業を継続する。このようにして、砥石10の異常に対応すれば、自動運転が安定して継続できる。
On the other hand, when the workpiece 9 and the grindstone 10 are incompatible, when the processing conditions of the workpiece 9 and the grindstone 10 are incompatible, or when the coolant 11 is incompatible, the metal is attached to the grindstone 10 (attached). Occurs.
In this case, since the grindstone 10 and the workpiece 9 partially make metal contact, the ratio P / Q increases and the size reduction amount T decreases.
Therefore, if the processing state of the grindstone 10 is monitored by combining the change in the ratio P / Q and the dimensional change of the dimensional reduction amount T detected by the in-process gauge 8, the occurrence of adhesion can be detected.
At this time, if adhesion is detected, the air cylinder 5 is retracted via the I / O interface 24 in order to stop the processing. Next, the dressing device 25 connected as an external device via the I / O interface 24 is operated to perform dressing (sharpening) of the grindstone 10. Next, the air cylinder 5 is advanced to return to the finishing process and the work is continued.
Then, when it is detected that the adhesion is not improved when the operation is continued, the grindstone exchanging device 24 connected as an external device via the I / O interface 24 is operated to replace the grindstone 10 with a new one. To do. After the replacement, the air cylinder 5 is advanced to return to the polishing process and the operation is continued. Thus, if it responds to abnormality of the grindstone 10, an automatic driving | operation can be continued stably.
 加えて、本願では、加工効率を自由に操作して超仕上げ比Uを変更することができるので、図1のように、加工時に水溶性クーラントを使用することができる。
 すなわち、主分力センサ6aの検出する接線方向の分力Qと背分力センサ6bの検出する押し当て方向の分力Qから比P/Qを逐次算出し、その算出した比P/Qが予め設定した下限値以下で推移すると、砥石台4の揺動数を多く、あるいは工作物9の回転数を小さくして加工効率を高くする。逆に、比P/Qが予め設定した上限値より大きくなると、砥石台4の揺動数を少なく、あるいは工作物9の回転数を多くして加工効率を低くする。
 このように加工効率を変えて超仕上げ比Uを任意に設定し、比P/Qに限度値を設定して制御することにより、凝着や凝着による目詰まりを未然に防ぐことができる。このため、使用するクーラント11が、洗浄性、潤滑性が劣るために目詰まり、凝着が発生しやすい水溶性クーラントであっても、これら不具合を発生させ難い加工条件が設定できる。
 したがって、 超仕上げ加工において、冷却性、コスト面で優れる水溶性クーラントを使用でき、結果的に超仕上げ加工の品質向上と生産コストの引き下げで生産性を向上させることができる。また、従来の不水溶性クーラントを採用する場合においても、前記の加工制御を採用することで加工能率を最適に維持できるため、生産コストの低減に寄与することが可能となる。
In addition, in the present application, since the super-finishing ratio U can be changed by freely operating the processing efficiency, a water-soluble coolant can be used during processing as shown in FIG.
That is, the ratio P / Q is sequentially calculated from the tangential component force Q detected by the main component sensor 6a and the pressing component component Q detected by the back component sensor 6b, and the calculated ratio P / Q is When the value changes below a preset lower limit value, the number of oscillations of the grindstone table 4 is increased or the number of rotations of the workpiece 9 is decreased to increase the machining efficiency. On the other hand, when the ratio P / Q is larger than the preset upper limit value, the number of oscillations of the grindstone table 4 is decreased or the number of rotations of the workpiece 9 is increased to lower the machining efficiency.
Thus, clogging due to adhesion or adhesion can be prevented in advance by changing the processing efficiency and arbitrarily setting the superfinishing ratio U and setting the limit value to the ratio P / Q. For this reason, even if the coolant 11 to be used is a water-soluble coolant that is clogged due to inferior cleanability and lubricity and is likely to cause adhesion, it is possible to set processing conditions that hardly cause these problems.
Therefore, water-soluble coolant that is excellent in cooling performance and cost can be used in the superfinishing process, and as a result, the productivity can be improved by improving the quality of the superfinishing process and reducing the production cost. Further, even when a conventional water-insoluble coolant is employed, the machining efficiency can be optimally maintained by adopting the above-described machining control, which can contribute to a reduction in production cost.
 なお、加工性能が劣る水溶性クーラントを使用して超仕上げ加工する際も、背分力センサ6bの出力P(背分力)および主分力センサ6aの出力Q(主分力)を逐次計算して加工条件にフィードバックすることで、最適な加工効率を維持することも可能である。 Even when super-finishing is performed using a water-soluble coolant with inferior machining performance, the output P (back component force) of the back component force sensor 6b and the output Q (main component force) of the main component force sensor 6a are sequentially calculated. It is also possible to maintain optimum machining efficiency by feeding back to the machining conditions.
 このように、砥石10の加工状態を監視して「粗」加工、「仕上げ」加工、各々に対し加工状態を判定し、最適に維持できるので、粗加工から仕上げ加工への切り替えを自動的に行うようにできる。
 また、砥石10の加工状態を監視して砥石10の凝着の検出もできるので、砥石10のドレッシングや交換も自動的に行うようにできる。
 さらに、砥石10の加工状態を監視して加工効率を一定に保てるので、不水溶性(油性)クーラント対して潤滑性、洗浄性に劣る水溶性クーラントにおいても良好な加工状態を維持できる。
In this way, the processing state of the grindstone 10 is monitored to determine the processing state for each of “rough” processing and “finishing” processing, and can be maintained optimally, so switching from rough processing to finishing processing is automatically performed. Can be done.
Moreover, since the processing state of the grindstone 10 can be monitored to detect adhesion of the grindstone 10, dressing and replacement of the grindstone 10 can be automatically performed.
Furthermore, since the processing state of the grindstone 10 can be monitored and the processing efficiency can be kept constant, a good processing state can be maintained even with a water-soluble coolant that is inferior in lubricity and cleanability to a water-insoluble (oil-based) coolant.
 以下、制御法の具体例を実施例1として示す。 Hereinafter, a specific example of the control method is shown as Example 1.
 この実施例1の加工装置は、前記主分力センサ6a、背分力センサ6b、揺動荷重センサ6c、移動量センサ7及びインプロセスゲージ8の各センサの出力に基づいて主軸モータ22、揺動モータ23、エアシリンダ5をコントロールして加工条件を変化させる制御を行う。 The processing apparatus according to the first embodiment includes a main shaft motor 22, a swing motor based on outputs from the main component force sensor 6 a, back component force sensor 6 b, swing load sensor 6 c, movement amount sensor 7, and in-process gauge 8. Control is performed to change the machining conditions by controlling the dynamic motor 23 and the air cylinder 5.
 例えば、制御装置19は、超仕上げ加工中の主分力センサ6aが検出する分力Qと背分力センサ6bが検出する分力Pを読み込んで、主分力センサ6aの検出出力Pに対する背分力センサで検出した分力Pの比P/Qを逐次算出する。
 そして、その比P/Qの大きさを、例えば図7に示すように、予め設定した上限値Th1または下限値Th2と比較して、加工中の超仕上げ比の低下を防止する制御を行う。
 具体的には、制御装置19は、算出する比P/Qが、予め設定した砥石10の自生発刃不足を判定する上限値Th1よりも大きくなったときに、前記工作物9の回転数に対する前記砥石10の揺動数の比が大きくなるように、すなわち、工作物の被加工面に生じる砥粒軌跡と工作物の被加工面の進行方向(工作物の回転の接線方向)とがなす最大交差角が大きくなるように主軸モータ22と揺動モータ23を制御して加工条件を変化させる。
 このように、工作物9の回転数に対する砥石10の揺動数の比を大きくすることにより、砥石10の自生発刃を促進し、砥石10の自生発刃不足による加工精度の低下を防止する。
 一方、制御装置19は、算出する比P/Qが、予め設定した砥石10の自生発刃過剰を判定する下限値Th2よりも小さくなったときは、工作物9の回転数に対する砥石10の揺動数の比が小さくなるように、すなわち、最大交差角が小さくなるように主軸モータ22と揺動モータ23を制御して加工条件を変化させる。
 このように、工作物9の回転数に対する砥石10の揺動数の比を小さくすることにより、砥石10の自生発刃過剰による超仕上げ比の低下を防止する。
For example, the control device 19 reads the component force Q detected by the main component force sensor 6a and the component force P detected by the back component force sensor 6b during the superfinishing process, and the back of the detected output P of the main component force sensor 6a. The ratio P / Q of the component force P detected by the component force sensor is sequentially calculated.
Then, for example, as shown in FIG. 7, the magnitude of the ratio P / Q is compared with a preset upper limit value Th1 or lower limit value Th2, and control is performed to prevent the superfinishing ratio from being lowered during processing.
Specifically, the controller 19 calculates the ratio P / Q with respect to the rotational speed of the workpiece 9 when the preset ratio P / Q is larger than a preset upper limit value Th1 for determining whether the self-generated blade is insufficient. The ratio of the number of oscillations of the grindstone 10 is increased, that is, the grain trajectory generated on the workpiece surface and the traveling direction of the workpiece surface (tangential direction of rotation of the workpiece). The machining conditions are changed by controlling the spindle motor 22 and the swing motor 23 so that the maximum crossing angle is increased.
In this way, by increasing the ratio of the rocking speed of the grindstone 10 to the rotational speed of the workpiece 9, the self-generated blade of the grindstone 10 is promoted, and a reduction in machining accuracy due to a lack of the self-generated blade of the grindstone 10 is prevented. .
On the other hand, when the calculated ratio P / Q is smaller than a preset lower limit Th2 for determining the excessive self-generated blade of the grindstone 10, the control device 19 swings the grindstone 10 with respect to the rotational speed of the workpiece 9. The machining conditions are changed by controlling the spindle motor 22 and the swinging motor 23 so that the ratio of the dynamic numbers becomes small, that is, the maximum crossing angle becomes small.
In this way, by reducing the ratio of the rocking speed of the grindstone 10 to the rotational speed of the workpiece 9, the superfinishing ratio is prevented from being lowered due to excessive self-generated blades of the grindstone 10.
 さらに、制御装置19は、先の比P/Qが上限値Th1よりも大きくなったときに、加工条件を変化させる制御を行っても、比P/Qが小さくならない場合は、前記工作物9に対する押し付け力を大きくするようにエアシリンダ5を制御して加工条件を変化させる制御を行う。
 これは、超仕上げ加工中に、砥石10の自生発刃不足で研削抵抗が小さくなり、主分力Qが小さくなったことが原因で比P/Qの大きさが予め設定された上限値Th1よりも大きくなったからである。そのため、工作物9に対する砥石10の押し付け力を大きくするように加工条件を変化させることにより、砥石10の自生発刃を促進し、砥石10の自生発刃不足による加工精度の低下を防止する。
Furthermore, when the ratio P / Q does not become small even if control is performed to change the machining conditions when the previous ratio P / Q becomes larger than the upper limit value Th1, the control unit 19 does not reduce the ratio P / Q. The air cylinder 5 is controlled so as to increase the pressing force against the control to change the machining conditions.
This is because, during superfinishing, the grinding resistance is reduced due to a lack of self-generated blades of the grindstone 10 and the main component force Q is reduced, so that the ratio P / Q is set to an upper limit value Th1 set in advance. It is because it became larger. Therefore, by changing the processing conditions so as to increase the pressing force of the grindstone 10 against the workpiece 9, the self-generated blade of the grindstone 10 is promoted, and the deterioration of the processing accuracy due to the lack of the self-generated blade of the grindstone 10 is prevented.
 また、同様に制御装置19は、先の比P/Qが下限値Th2よりも小さくなったときに、加工条件を変化させる制御を行っても、比P/Qが大きくならない場合は、工作物9に対する砥石10の押し付け力を小さくするようにエアシリンダ5を制御して加工条件を変化させる。
 これは、超仕上げ中に、砥石10の自生発刃過剰が原因で切削力が大きくなったことが原因で、主分力Qが大きくなり、比P/Qの大きさが予め設定された下限値Th2よりも小さくなったからである。そのため、工作物9に対する砥石10の押し付け力が小さくなるように加工条件を変更することにより、砥石10の自生発刃過剰による超仕上げ比の低下を防止する。
Similarly, if the ratio P / Q does not increase even if control is performed to change the machining condition when the previous ratio P / Q becomes smaller than the lower limit Th2, the control device 19 does not increase the ratio P / Q. The processing conditions are changed by controlling the air cylinder 5 so as to reduce the pressing force of the grindstone 10 against 9.
This is because the main component force Q increases and the ratio P / Q is a preset lower limit because the cutting force increases due to excessive self-generated blades of the grindstone 10 during superfinishing. This is because the value is smaller than the value Th2. Therefore, by changing the machining conditions so that the pressing force of the grindstone 10 against the workpiece 9 is reduced, the superfinishing ratio is prevented from being lowered due to excessive self-generated blades of the grindstone 10.
 また、制御装置19は、超仕上げ加工中に、逐次算出する比P/Qの大きさが、例えば図9に示すように、予め設定した異常検出しきい値Th3よりも大きくなったことを検出すると、砥石10に極度の目詰まりが発生したと判定する。
 これは、超仕上げ加工中に、砥石10に極度の目詰まりが発生したことが原因で加工抵抗が過小となったときに、主分力Qが過小となったからである。そのため、砥石10に極度の目詰まりが発生したと判定したのである。これにより、砥石10の異常を早期に発見することが可能となり、砥石10の目詰まりによる不良品の発生を防止することができる。
 また、このとき、制御装置19は、目詰まりを判定すると、I/Oインターフェース24を介して目立て用のドレッシング装置25を起動する。そして、起動したドレッシング装置25を用いて目詰まりした砥石10の目立てを行う。目立てが終わると、制御装置19は、超仕上げ加工を行う。ドレッシングによる生産性低下を嫌う場合は、I/Oインターフェース24を介して砥石交換装置26を起動し、砥石10を交換する。このように、メンテナンス動作を行うのである。
Further, the control device 19 detects that the ratio P / Q to be sequentially calculated during the superfinishing process is larger than a preset abnormality detection threshold Th3 as shown in FIG. 9, for example. Then, it determines with the extreme clogging having generate | occur | produced in the grindstone 10. FIG.
This is because the main component force Q is too low when the machining resistance is too low due to the extreme clogging of the grindstone 10 during superfinishing. For this reason, it is determined that the grindstone 10 is extremely clogged. Thereby, it becomes possible to discover the abnormality of the grindstone 10 at an early stage, and it is possible to prevent generation of defective products due to clogging of the grindstone 10.
At this time, if the control device 19 determines clogging, the control device 19 activates the dressing device 25 for dressing via the I / O interface 24. Then, the clogged grindstone 10 is sharpened using the activated dressing device 25. When the setting is finished, the control device 19 performs super finishing. When the productivity reduction due to dressing is disliked, the grindstone exchanging device 26 is activated via the I / O interface 24 and the grindstone 10 is exchanged. Thus, the maintenance operation is performed.
 同時に、制御装置19は、超仕上げ中に、移動量センサ7とインプロセスゲージ8の検出値から超仕上げ比Uを算出して、算出した超仕上げ比Uが最適な値になるように、主軸モータ22、揺動モータ23、エアシリンダ5をコントロールして加工条件を制御する。
 すなわち、超仕上げ比Uは、インプロセスゲージ8が検出する「寸法減少量(除去体積)」を加工開始時から累積したものと、移動量検出センサ7によって得られる移動量S(砥石損耗量+工作物9の寸法減少量)から砥石損耗量のみを算出して加工開始時から累積したものとの比を取ったものである。そのため、制御装置19は、インプロセスケージ8の検出出力と移動量検出センサ7の出力を一定時間ごとにサンプリングして累積し、累積した値の比を取って超仕上げ比Uを算出する。このようにすることで、超仕上げ比Uをリアルタイムで検出する。
 このとき、砥石損耗量は、例えば移動量Sからインプロセスゲージ8が検出する「寸法減少量(除去体積)」を差し引いて算出する。
 そして、仕上げ寸法減少量と砥石10の損耗量とのコストが調和するように設定された超仕上げ比Uに近づけるように、主軸モータ22、揺動モータ23、エアシリンダ5の加工条件を制御する。こうすることで、加工コストを低くすることもできる。
At the same time, the control device 19 calculates the superfinishing ratio U from the detected values of the movement amount sensor 7 and the in-process gauge 8 during superfinishing, so that the calculated superfinishing ratio U becomes an optimum value. The machining conditions are controlled by controlling the motor 22, the swing motor 23, and the air cylinder 5.
That is, the superfinishing ratio U is obtained by accumulating the “dimension reduction amount (removed volume)” detected by the in-process gauge 8 from the start of machining, and the movement amount S obtained by the movement amount detection sensor 7 (whetstone wear amount + Only the grinding wheel wear amount is calculated from the dimension reduction amount of the workpiece 9 and is taken as a ratio with the cumulative amount from the start of machining. Therefore, the control device 19 samples and accumulates the detection output of the in-process cage 8 and the output of the movement amount detection sensor 7 at regular intervals, and calculates the superfinishing ratio U by taking the ratio of the accumulated values. In this way, the superfinishing ratio U is detected in real time.
At this time, the grinding wheel wear amount is calculated by subtracting the “dimension reduction amount (removed volume)” detected by the in-process gauge 8 from the movement amount S, for example.
Then, the machining conditions of the spindle motor 22, the swing motor 23, and the air cylinder 5 are controlled so as to approach the superfinishing ratio U set so that the cost of the finished dimension reduction amount and the wear amount of the grindstone 10 are harmonized. . By doing so, the processing cost can be reduced.
 また、制御装置19は、揺動荷重センサ6cの出力を検出することにより、加工状態を判定しており、その判定に基づいて工作物9の回転数、砥石の揺動数、砥石10の押し付け力などの加工条件を変更することで安定した加工状態を得るようにしている。 Further, the control device 19 determines the machining state by detecting the output of the rocking load sensor 6c. Based on the determination, the number of rotations of the workpiece 9, the number of rocking of the grindstone, and the pressing of the grindstone 10 are determined. A stable machining state is obtained by changing machining conditions such as force.
 そのため、制御装置19は、図5のように、砥石10の自生発刃不足を判定するため、予め設定した振幅の下限値Th4と揺動荷重センサ6cで検出する分力Rの振幅の大きさと逐次比較する。そして、分力Rの振幅が予め設定した振幅の下限値Th4よりも小さくなった場合は、主軸モータ22と揺動モータ23を制御する。そして、工作物9の回転数に対する砥石10の揺動数の比が大きくなるように、すなわち、最大交差角が大きくなるように加工状態を変化させる。
 このように制御することで、砥石10の自生発刃不足が原因で研削抵抗が小さくなったときに、砥石10の自生発刃を促進して、砥石10の自生発刃不足による加工精度の低下を防止する。
Therefore, as shown in FIG. 5, the control device 19 determines the shortage of the self-generated blade of the grindstone 10 and sets the amplitude lower limit value Th4 set in advance and the amplitude of the component force R detected by the swing load sensor 6c. Compare sequentially. When the amplitude of the component force R becomes smaller than a preset lower limit Th4 of the amplitude, the spindle motor 22 and the swing motor 23 are controlled. Then, the machining state is changed so that the ratio of the rocking speed of the grindstone 10 to the rotational speed of the workpiece 9 is increased, that is, the maximum crossing angle is increased.
By controlling in this way, when the grinding resistance becomes small due to the lack of the self-generated blade of the grindstone 10, the self-generated blade of the grindstone 10 is promoted, and the processing accuracy is reduced due to the lack of the self-generated blade of the grindstone 10. To prevent.
 また、このように、自生発刃の状態を検出できる揺動荷重センサ6cを用いることで、超仕上げ比Uの低下も防止する。
 この場合、制御装置19は、図5のように、砥石10の自生発刃過剰を判定するために、予め設定した上限値Th5と揺動荷重センサ6cで検出する分力Rの振幅の大きさを逐次比較する。そして、分力Rの振幅が予め設定した振幅の上限値Th5よりも大きくなった場合は、主軸モータ22と揺動モータ23を制御して、前記工作物9の回転数に対する砥石10の揺動数の比が小さくなるように、すなわち、最大交差角が小さくなるように加工条件を変化させる。
 このようにすると、砥石10の自生発刃過剰が原因で抵抗が大きくなったときに、砥石10の自生発刃を抑制して、砥石10の自生発刃過剰による超仕上げ比Uの低下を防止できる。
In addition, the use of the swing load sensor 6c that can detect the state of the self-generated blade as described above prevents the superfinishing ratio U from being lowered.
In this case, as shown in FIG. 5, the control device 19 determines the excess of the self-generated blade of the grindstone 10, and the magnitude of the amplitude of the component force R detected by the preset upper limit value Th5 and the swing load sensor 6c. Are compared sequentially. When the amplitude of the component force R becomes larger than the preset upper limit value Th5 of the amplitude, the spindle motor 22 and the swing motor 23 are controlled to swing the grindstone 10 with respect to the rotational speed of the workpiece 9. The machining conditions are changed so that the ratio of the numbers becomes smaller, that is, the maximum crossing angle becomes smaller.
If it does in this way, when resistance becomes large because of the excessive self-generated blade of the grindstone 10, the self-generated blade of the grindstone 10 is suppressed, and the fall of the super finishing ratio U by the excessive self-generated blade of the grindstone 10 is prevented. it can.
 また、このとき、制御装置19は、前記揺動荷重センサ6cで検出した分力Rの振幅の大きさを、自生発刃不足の判定のため、予め設定した振幅の下限値Th6と逐次比較して、振幅の下限値Th6よりも小さくなったとき、エアシリンダ5を制御して工作物9に対する砥石10の押し付け力を大きくするように加工条件を変化させる。
 このようにすると、加工抵抗が小さくなったときに、砥石10の自生発刃が促進されるので、砥石10の自生発刃不足による加工精度の低下を防止できる。
Further, at this time, the control device 19 sequentially compares the amplitude of the component force R detected by the swing load sensor 6c with a preset lower limit Th6 of the amplitude in order to determine whether the self-generated blade is insufficient. When the amplitude becomes smaller than the lower limit value Th6, the processing conditions are changed so as to increase the pressing force of the grindstone 10 against the workpiece 9 by controlling the air cylinder 5.
If it does in this way, when processing resistance becomes small, since the self-generated blade of the grindstone 10 is accelerated | stimulated, the fall of the processing precision by the lack of the self-generated blade of the grindstone 10 can be prevented.
 また、逆に、制御装置19は、前記揺動荷重センサ6cで検出した分力Rの振幅の大きさを、自生発刃過剰を判定するために予め設定した振幅の上限値Th7と逐次比較して、振幅の上限値Th7よりも大きくなったとき、エアシリンダ5を制御して工作物9に対する砥石10の押し付け力を小さくするように加工条件を変更する。
 このようにすると、砥石10の自生発刃過剰が原因で加工抵抗が大きくなった時に、工作物9に対する砥石10の押し付け力が小さくなり、砥石10の自生発刃が抑制されて、砥石10の自生発刃過剰による超仕上げ比Uの低下を抑制することができる。
Conversely, the control device 19 sequentially compares the amplitude of the component force R detected by the swing load sensor 6c with an amplitude upper limit value Th7 set in advance in order to determine the excessive self-generated blade. Then, when the amplitude becomes larger than the upper limit value Th7, the processing conditions are changed so as to control the air cylinder 5 to reduce the pressing force of the grindstone 10 against the workpiece 9.
In this way, when the processing resistance increases due to excessive self-generated blades of the grindstone 10, the pressing force of the grindstone 10 against the workpiece 9 is reduced, and the self-generated blades of the grindstone 10 are suppressed, and the grindstone 10 It is possible to suppress a decrease in the superfinishing ratio U due to excessive self-generated blades.
 この実施例2では、本願の超仕上げ加工を円すいころ軸受に適用したものについて述べる。
 図10(a)、(b)にその加工を模式的に示した図を示す。ここで、図10(a)は円すいころ軸受の内輪40、図10(b)は外輪41の超仕上げ加工を示したものである。このようにセットすることで円すいころ軸受の超仕上げの品質と生産性を向上させることができる。
 ここで、図10(a)、(b)中の符号14はシュー、15はパッキングプレート、3は揺動装置、4は砥石台、5はエアシリンダ、6aは主分力センサ、6b背分力センサ、6c揺動荷重センサ、7はポテンショメータ、8はインプロセスゲージである。
 本願では、工作物(ここでは内輪40)を支持する部材にかかる力を検出するのではなく、砥石10にかかる力を検出するので、工作物の支持方法にかかわらず、砥石10の加工状態を判定することができる。そのため、工作物の適用範囲が広い。
 よって、チャック把持式、両センター支持式などで支持される工作物の超仕上げにも適用できる。また円すいころの超仕上げにも適用できる。
 したがって、これらの内輪、外輪、円すいころを用いて超仕上げ加工の品質と生産性を向上させた円すいころ軸受を提供できる。
In this second embodiment, a case where the superfinishing of the present application is applied to a tapered roller bearing will be described.
FIGS. 10A and 10B schematically show the processing. Here, FIG. 10A shows the super-finishing of the tapered inner ring 40 and FIG. 10B shows the super-finishing of the outer ring 41. By setting in this way, it is possible to improve the superfinishing quality and productivity of the tapered roller bearing.
10 (a) and 10 (b), reference numeral 14 denotes a shoe, 15 denotes a packing plate, 3 denotes a rocking device, 4 denotes a grindstone base, 5 denotes an air cylinder, 6a denotes a main component force sensor, and 6b spine. A force sensor, 6c swing load sensor, 7 is a potentiometer, and 8 is an in-process gauge.
In the present application, since the force applied to the grindstone 10 is detected instead of detecting the force applied to the member that supports the workpiece (in this case, the inner ring 40), the machining state of the grindstone 10 is determined regardless of the method of supporting the workpiece. Can be determined. Therefore, the range of application of workpieces is wide.
Therefore, the present invention can be applied to super finishing of a workpiece supported by a chuck gripping type, a center supporting type, or the like. It can also be applied to super finishing of tapered rollers.
Therefore, it is possible to provide a tapered roller bearing that uses these inner rings, outer rings, and tapered rollers to improve the quality and productivity of superfinishing.
 実施例3は、本発明を適用する機械部品について述べたものである。
 図11(a)~(d)に、本発明を適用する代表的な軸受と、軸受を構成する部品における適用箇所を示す。
 図11(a)は、玉軸受50で、内輪51と外輪52の間に複数の玉53を組み込んだものである。図11(b)、(c)は、図11(a)の玉軸受における本願の超仕上げ加工を行う加工対象箇所54を示すもので、同(b)は、内輪51の外周に設けられた断面円弧状の軌道面で、加工は図10(a)のようにして行うことができる。また、同図(c)は、外輪の内周に設けられた転動面であって、加工は図10(b)のようにすればよい。
 図11(d)は、自動調心ころ軸受の「ころ」55に対する加工対象箇所54を示すもので、加工対象箇所54として、外径が凸の曲率を持った凸面ころ55の外周を示したものである。
Example 3 describes a machine part to which the present invention is applied.
11 (a) to 11 (d) show typical bearings to which the present invention is applied and application locations in parts constituting the bearings.
FIG. 11A shows a ball bearing 50 in which a plurality of balls 53 are incorporated between an inner ring 51 and an outer ring 52. 11 (b) and 11 (c) show a processing target portion 54 for performing the superfinishing of the present application in the ball bearing of FIG. 11 (a). FIG. 11 (b) is provided on the outer periphery of the inner ring 51. The machining can be performed as shown in FIG. 10A on the raceway surface having an arcuate cross section. FIG. 10C shows a rolling surface provided on the inner periphery of the outer ring, and the processing may be as shown in FIG.
FIG. 11 (d) shows a machining target portion 54 for the “roller” 55 of the self-aligning roller bearing, and shows the outer periphery of the convex roller 55 having a convex outer diameter as the machining target portion 54. Is.
1 固定センター
2 回し金
3 揺動装置
4 砥石台
5 エアシリンダ
6a 主分力センサ
6b 背分力センサ
6c 揺動荷重センサ
7 移動量センサ
8 インプロセスゲージ
9 工作物
10 砥石
11 水溶性クーラント
12 吐出ノズル
13 ロッド
14 シュー
15 パッキングプレート
40 内輪
41 外輪
50 玉軸受
51 内輪
52 外輪
53 玉
54 加工対象箇所
55 ころ
P 分力
Q 分力
R 分力
S 移動量
T 仕上げ寸法減少量
U 超仕上げ比
DESCRIPTION OF SYMBOLS 1 Fixed center 2 Turner 3 Oscillating device 4 Grinding wheel base 5 Air cylinder 6a Main component force sensor 6b Back component force sensor 6c Oscillating load sensor 7 Movement amount sensor 8 In-process gauge 9 Workpiece 10 Grinding stone 11 Water-soluble coolant 12 Discharge Nozzle 13 Rod 14 Shoe 15 Packing plate 40 Inner ring 41 Outer ring 50 Ball bearing 51 Inner ring 52 Outer ring 53 Ball 54 Location to be processed 55 Roller P Component force Q Component force R Component force S Travel amount T Finish dimension reduction amount U Super finish ratio

Claims (27)

  1.  工作物を回転させ、その工作物の回転の接線方向に対して直角な方向に砥石を揺動させながら前記工作物に砥石を押し当てて工作物の超仕上げ加工を行い、前記砥石を支持する砥石台に、前記工作物に押し当てられた状態の砥石にかかる力の工作物の回転の接線方向の分力Qを検出する主分力センサと、前記工作物に押し当てられた状態の砥石にかかる力の砥石の押し当て方向の分力Pを検出する背分力センサとを設け、その各センサで検出した前記分力P、Qに基づいて工作物の加工状態を判定する超仕上げ加工方法。 Rotate the workpiece, press the grinding stone against the workpiece while swinging the grinding stone in a direction perpendicular to the tangential direction of the workpiece rotation, and superfinish the workpiece to support the grinding stone A main component force sensor for detecting a component force Q in a tangential direction of rotation of the workpiece applied to the grindstone in a state of being pressed against the workpiece, and a grindstone in a state of being pressed against the workpiece And a back component force sensor that detects a component force P in the pressing direction of the grindstone of the force applied to the grinding wheel, and superfinishing that determines the machining state of the workpiece based on the component forces P and Q detected by each sensor Method.
  2.  前記砥石台が、ロッドを前進させて先端に支持した砥石を工作物に押し当てるエアシリンダを備えたものであり、その砥石を取り付けたエアシリンダのロッドの先端と砥石の間に前記主分力センサと前記背分力センサを配置した請求項1に記載の超仕上げ加工方法。 The grindstone table includes an air cylinder that advances the rod and presses the grindstone supported at the tip against the workpiece, and the main component force between the tip of the rod of the air cylinder to which the grindstone is attached and the grindstone The superfinishing method according to claim 1, wherein a sensor and the back component force sensor are arranged.
  3.  砥石で加工することによる前記工作物の寸法減少量を検出するインプロセスゲージと、前記工作物の寸法減少と砥石の損耗とによる前記砥石の押し当て方向の移動量を検出する移動量センサとを設け、前記インプロセスゲージで検出した前記工作物の寸法減少量と、前記移動量センサで検出した前記砥石の移動量とに基づいて工作物の加工状態を判定する請求項1または2に記載の超仕上げ加工方法。 An in-process gauge for detecting a reduction in the size of the workpiece due to machining with a grindstone, and a movement amount sensor for detecting a movement amount in the pressing direction of the grindstone due to a reduction in the size of the workpiece and wear of the grindstone. 3. The machining state of the workpiece is determined based on a dimension reduction amount of the workpiece detected by the in-process gauge and a movement amount of the grindstone detected by the movement sensor. Super finishing method.
  4.  工作物を回転させ、その工作物の回転の接線方向に対して直角な方向に砥石を揺動させながら前記工作物に砥石を押し当てて工作物の超仕上げ加工を行ない、前記砥石を支持する砥石台に、前記工作物に押し当てられた状態の砥石にかかる力の工作物の回転の接線方向の分力Qを検出する主分力センサと、前記工作物に押し当てられた状態の砥石にかかる力の砥石の押し当て方向の分力Pを検出する背分力センサとを設け、その各センサで検出した前記各分力P,Qに基づいて前記超仕上げ加工の制御を行なう超仕上げ加工方法。 The workpiece is rotated, and the grinding wheel is pressed against the workpiece while swinging the grinding wheel in a direction perpendicular to the tangential direction of the rotation of the workpiece, thereby superfinishing the workpiece and supporting the grinding wheel. A main component force sensor for detecting a component force Q in a tangential direction of rotation of the workpiece applied to the grindstone in a state of being pressed against the workpiece, and a grindstone in a state of being pressed against the workpiece And a back component force sensor for detecting a component force P in the pressing direction of the grindstone of the force applied to the grinding wheel, and superfinishing for controlling the superfinishing process based on the component forces P and Q detected by each sensor. Processing method.
  5.  前記砥石台が、ロッドを前進させて先端に支持した砥石を工作物に押し当てるエアシリンダを備えたものであり、その砥石を取り付けたエアシリンダのロッドの先端と砥石の間に前記主分力センサと前記背分力センサを配置した請求項4に記載の超仕上げ加工方法。 The grindstone table includes an air cylinder that advances the rod and presses the grindstone supported at the tip against the workpiece, and the main component force between the tip of the rod of the air cylinder to which the grindstone is attached and the grindstone The superfinishing method according to claim 4, wherein a sensor and the back component force sensor are arranged.
  6.  前記各分力P,Qに基づいて行なう前記超仕上げ加工の制御は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された上限値よりも大きくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が大きくなるよう加工条件を変化させる制御である請求項4または5に記載の超仕上げ加工方法。 The control of the superfinishing process performed based on the respective component forces P and Q sequentially calculates the ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor. Then, when the magnitude of the ratio P / Q becomes larger than a preset upper limit value, the control is performed to change the machining condition so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece becomes large. The superfinishing method according to claim 4 or 5.
  7.  前記各分力P,Qに基づいて行なう前記超仕上げ加工の制御は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された下限値よりも小さくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が小さくなるよう加工条件を変化させる制御である請求項4から6のいずれかに記載の超仕上げ加工方法。 The control of the superfinishing process performed based on the respective component forces P and Q sequentially calculates the ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor. Then, when the magnitude of the ratio P / Q becomes smaller than a preset lower limit value, control is performed to change the machining conditions so that the ratio of the rocking speed of the grindstone to the rotational speed of the workpiece becomes small. The superfinishing method according to any one of claims 4 to 6.
  8.  前記各分力P,Qに基づいて行なう前記超仕上げ加工の制御は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された上限値よりも大きくなったときに、前記工作物に対する砥石の押し付け力を大きくするよう加工条件を変化させる制御である請求項4から7のいずれかに記載の超仕上げ加工方法。 The control of the superfinishing process performed based on the respective component forces P and Q sequentially calculates the ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor. In addition, when the magnitude of the ratio P / Q becomes larger than a preset upper limit value, control is performed to change the machining conditions so as to increase the pressing force of the grindstone against the workpiece. The superfinishing method according to any one of the above.
  9.  前記各分力P,Qに基づいて行なう前記超仕上げ加工の制御は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された下限値よりも小さくなったときに、前記工作物に対する砥石の押し付け力を小さくするよう加工条件を変化させる制御である請求項4から8のいずれかに記載の超仕上げ加工方法。 The control of the superfinishing process performed based on the respective component forces P and Q sequentially calculates the ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor. In addition, when the magnitude of the ratio P / Q becomes smaller than a preset lower limit value, control is performed to change the machining conditions so as to reduce the pressing force of the grindstone against the workpiece. The superfinishing method according to any one of the above.
  10.  前記各分力P,Qに基づいて行なう前記超仕上げ加工の制御は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された異常検出しきい値よりも大きくなったときに、前記砥石に極度の目詰まりが発生したと判定する制御である請求項4から9のいずれかに記載の超仕上げ加工方法。 The control of the superfinishing process performed based on the respective component forces P and Q sequentially calculates the ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor. The control according to any one of claims 4 to 9, wherein when the magnitude of the ratio P / Q becomes larger than a preset abnormality detection threshold, it is determined that an extreme clogging has occurred in the grindstone. The superfinishing method according to any one of the above.
  11.  砥石で加工することによる前記工作物の寸法減少量を検出するインプロセスゲージと、前記工作物の寸法減少と砥石の損耗とによる前記砥石の押し当て方向の移動量を検出する移動量センサとを設け、前記インプロセスゲージで検出した前記工作物の寸法減少量と、前記移動量センサで検出した前記砥石の移動量とに基づいて、前記工作物の寸法減少量に対する前記砥石の損耗量の比である超仕上げ比を算出する請求項4から10のいずれかに記載の超仕上げ加工方法。 An in-process gauge for detecting a reduction in the size of the workpiece due to machining with a grindstone, and a movement amount sensor for detecting a movement amount in the pressing direction of the grindstone due to a reduction in the size of the workpiece and wear of the grindstone. The ratio of the wear amount of the grinding wheel to the dimensional reduction amount of the workpiece based on the dimension reduction amount of the workpiece detected by the in-process gauge and the movement amount of the grinding wheel detected by the movement amount sensor. The superfinishing method according to any one of claims 4 to 10, wherein a superfinishing ratio is calculated.
  12.  前記砥石を支持する砥石台に、前記工作物に押し当てられた状態の砥石にかかる力の砥石の揺動方向の分力Rを検出する揺動荷重センサを更に設け、その揺動荷重センサで検出した分力Rの振幅の大きさに基づいて前記超仕上げ加工の制御を行なう請求項4から11のいずれかに記載の超仕上げ加工方法。 A wobble load sensor for detecting a component force R in a wobbling direction of the grindstone of the force applied to the whetstone pressed against the workpiece is further provided on the grindstone table that supports the whetstone. The superfinishing method according to any one of claims 4 to 11, wherein the superfinishing process is controlled based on the detected amplitude of the component force R.
  13.  前記分力Rの振幅の大きさに基づいて行なう前記超仕上げ加工の制御は、前記揺動荷重センサで検出した分力Rの振幅の大きさが、予め設定された下限幅よりも小さくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が大きくなるよう加工条件を変化させる制御である請求項12に記載の超仕上げ加工方法。 In the super finishing process control based on the amplitude of the component force R, the amplitude of the component force R detected by the swing load sensor is smaller than a preset lower limit width. 13. The superfinishing processing method according to claim 12, wherein the processing condition is controlled so that a ratio of a rocking speed of the grindstone to a rotational speed of the workpiece is increased.
  14.  前記分力Rの振幅の大きさに基づいて行なう前記超仕上げ加工の制御は、前記揺動荷重センサで検出した分力Rの振幅の大きさが、予め設定された上限幅よりも大きくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が小さくなるよう加工条件を変化させる制御である請求項12または13に記載の超仕上げ加工方法。 In the superfinishing control performed based on the amplitude of the component force R, the amplitude of the component force R detected by the swing load sensor is larger than a preset upper limit width. The superfinishing processing method according to claim 12 or 13, wherein control is performed to change a processing condition so that a ratio of a rocking speed of the grindstone to a rotational speed of the workpiece is small.
  15.  前記分力Rの振幅の大きさに基づいて行なう前記超仕上げ加工の制御は、前記揺動荷重センサで検出した分力Rの振幅の大きさが、予め設定された下限幅よりも小さくなったときに、前記工作物に対する砥石の押し付け力を大きくするよう加工条件を変化させる制御である請求項12から14のいずれかに記載の超仕上げ加工方法。 In the super finishing process control based on the amplitude of the component force R, the amplitude of the component force R detected by the swing load sensor is smaller than a preset lower limit width. The superfinishing method according to any one of claims 12 to 14, wherein the machining condition is controlled to increase the pressing force of the grindstone against the workpiece.
  16.  前記分力Rの振幅の大きさに基づいて行なう前記超仕上げ加工の制御は、前記揺動荷重センサで検出した分力Rの振幅の大きさが、予め設定された上限幅よりも大きくなったときに、前記工作物に対する砥石の押し付け力を小さくするよう加工条件を変化させる制御である請求項12から15のいずれかに記載の超仕上げ加工方法。 In the superfinishing control performed based on the amplitude of the component force R, the amplitude of the component force R detected by the swing load sensor is larger than a preset upper limit width. The superfinishing method according to any one of claims 12 to 15, wherein control is performed to change a machining condition so as to reduce a pressing force of a grindstone against the workpiece.
  17.  前記工作物と砥石の間に供給するクーラントとして水溶性クーラントを用いた請求項1から16のいずれかに記載の超仕上げ加工方法。 The superfinishing method according to any one of claims 1 to 16, wherein a water-soluble coolant is used as a coolant supplied between the workpiece and the grindstone.
  18.  前記工作物が、軸受の内輪、外輪、転動体のいずれかである請求項1から17のいずれかに記載の超仕上げ加工方法。 The superfinishing method according to any one of claims 1 to 17, wherein the workpiece is any one of an inner ring, an outer ring, and a rolling element of a bearing.
  19.  工作物を回転させ、その工作物の回転の接線方向に対して直角な方向に砥石を揺動させながら前記工作物に砥石を押し当てて工作物の超仕上げ加工を行なう超仕上げ盤と、
     前記砥石を支持する砥石台に取り付けられ、前記工作物に押し当てられた状態の砥石にかかる力の工作物の回転の接線方向の分力Qを検出する主分力センサと、
     前記砥石を支持する砥石台に取り付けられ、前記工作物に押し当てられた状態の砥石にかかる力の砥石の押し当て方向の分力Pを検出する背分力センサと、
     その各センサで検出した前記各分力P,Qに基づいて前記超仕上げ加工の制御を行なう制御装置を有する超仕上げ加工装置。
    A super finishing machine that rotates a workpiece and presses the grindstone against the workpiece while swinging the grindstone in a direction perpendicular to the tangential direction of the rotation of the workpiece;
    A main component force sensor that is attached to a grindstone table that supports the grindstone and that detects a component force Q in a tangential direction of rotation of the workpiece that is applied to the grindstone while being pressed against the workpiece;
    A back component force sensor that is attached to a grindstone table that supports the grindstone and that detects a component force P in the pushing direction of the grindstone of a force applied to the grindstone in a state of being pressed against the workpiece;
    A superfinishing apparatus having a control device for controlling the superfinishing process based on the component forces P and Q detected by the sensors.
  20.  前記砥石台が、ロッドを前進させて先端に支持した砥石を工作物に押し当てるエアシリンダを備えたものとし、その砥石を取り付けたエアシリンダのロッドの先端と砥石の間に主分力センサと背分力センサを設け、その各センサで検出した各分力P、Qに基づいて前記超仕上げ加工の制御を行なう制御装置を有する請求項19に記載の超仕上げ加工装置。 The grindstone table includes an air cylinder that advances the rod and presses the grindstone supported at the tip against the workpiece, and a main component force sensor between the tip of the rod of the air cylinder to which the grindstone is attached and the grindstone The superfinishing processing apparatus according to claim 19, further comprising a control device that includes a back component force sensor and controls the superfinishing processing based on the component forces P and Q detected by the sensors.
  21.  前記制御装置は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された上限値よりも大きくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が大きくなるよう加工条件を変化させる制御を行なう請求項19または20に記載の超仕上げ加工装置。 The control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is preset. 21. The superfinishing apparatus according to claim 19 or 20, wherein control is performed to change a machining condition so that a ratio of a rocking speed of the grindstone to a rotation speed of the workpiece increases when the upper limit is exceeded. .
  22.  前記制御装置は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された下限値よりも小さくなったときに、前記工作物の回転数に対する前記砥石の揺動数の比が小さくなるよう加工条件を変化させる制御を行なう請求項19から21のいずれかに記載の超仕上げ加工装置。 The control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is preset. The superposition according to any one of claims 19 to 21, wherein control is performed to change a machining condition so that a ratio of a rocking speed of the grindstone to a rotation speed of the workpiece becomes small when the lower limit is exceeded. Finishing device.
  23.  前記制御装置は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された上限値よりも大きくなったときに、前記工作物に対する砥石の押し付け力を大きくするよう加工条件を変化させる制御を行なう請求項19から22のいずれかに記載の超仕上げ加工装置。 The control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is preset. The superfinishing apparatus according to any one of claims 19 to 22, wherein control is performed to change a machining condition so as to increase a pressing force of a grindstone against the workpiece when the upper limit is exceeded.
  24.  前記制御装置は、前記主分力センサで検出した分力Qに対する前記背分力センサで検出した分力Pの比P/Qを逐次算出し、その比P/Qの大きさが予め設定された下限値よりも小さくなったときに、前記工作物に対する砥石の押し付け力を小さくするよう加工条件を変化させる制御を行なう請求項19から23のいずれかに記載の超仕上げ加工装置。 The control device sequentially calculates a ratio P / Q of the component force P detected by the back component force sensor to the component force Q detected by the main component force sensor, and the magnitude of the ratio P / Q is preset. The superfinishing apparatus according to any one of claims 19 to 23, wherein control is performed to change a machining condition so as to reduce a pressing force of a grindstone against the workpiece when the lower limit is exceeded.
  25.  砥石で加工することによる前記工作物の寸法減少量を検出するインプロセスゲージと、
     前記工作物の寸法減少と砥石の損耗とによる前記砥石の押し当て方向の移動量を検出する移動量センサとを更に有し、
     前記制御装置は、前記インプロセスゲージで検出した前記工作物の寸法減少量と、前記移動量センサで検出した前記砥石の移動量とに基づいて、前記工作物の寸法減少量に対する前記砥石の損耗量の比である超仕上げ比を算出する請求項19から24のいずれかに記載の超仕上げ加工装置。
    An in-process gauge for detecting a dimensional reduction amount of the workpiece by machining with a grindstone;
    A movement amount sensor for detecting a movement amount in the pressing direction of the grindstone due to a reduction in size of the workpiece and wear of the grindstone;
    The control device is configured to wear the grinding wheel with respect to the dimensional reduction amount of the workpiece based on the dimensional reduction amount of the workpiece detected by the in-process gauge and the movement amount of the grinding wheel detected by the movement amount sensor. The superfinishing apparatus according to any one of claims 19 to 24, wherein a superfinishing ratio that is a ratio of amounts is calculated.
  26.  前記砥石を支持する砥石台に、前記工作物に押し当てられた状態の砥石にかかる力の砥石の揺動方向の分力Rを検出する揺動荷重センサを更に有し、
     前記制御装置は、前記揺動荷重センサで検出した分力Rの振幅の大きさに基づいて前記超仕上げ加工の制御を行なう請求項19から25のいずれかに記載の超仕上げ加工装置。
    A wobble load sensor that detects a component force R in a wobbling direction of the grindstone of a force applied to the grindstone in a state of being pressed against the workpiece on the grindstone support that supports the whetstone;
    26. The superfinishing apparatus according to any one of claims 19 to 25, wherein the control apparatus controls the superfinishing process based on an amplitude of a component force R detected by the swing load sensor.
  27.  前記工作物と砥石の間に水溶性クーラントを供給する吐出ノズルを有する請求項19から26のいずれかに記載の超仕上げ加工装置。 The superfinishing apparatus according to any one of claims 19 to 26, further comprising a discharge nozzle that supplies water-soluble coolant between the workpiece and the grindstone.
PCT/JP2012/066700 2011-06-29 2012-06-29 Superfinishing method and superfinishing device WO2013002371A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-143707 2011-06-29
JP2011143707 2011-06-29
JP2012-145139 2012-06-28
JP2012145139A JP5926137B2 (en) 2011-06-29 2012-06-28 Superfinishing method and superfinishing machine

Publications (1)

Publication Number Publication Date
WO2013002371A1 true WO2013002371A1 (en) 2013-01-03

Family

ID=47424256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066700 WO2013002371A1 (en) 2011-06-29 2012-06-29 Superfinishing method and superfinishing device

Country Status (2)

Country Link
JP (1) JP5926137B2 (en)
WO (1) WO2013002371A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554779A (en) * 2012-01-17 2012-07-11 天津大学 Method for processing variable molding point rotating member with straight line-enveloped profile line as convex function
CN103481180A (en) * 2013-09-29 2014-01-01 黄彬 Bearing inner race rolling path screwed superfinishing machine
JP2014061554A (en) * 2012-09-19 2014-04-10 Noritake Co Ltd Super-finishing grinding wheel and super-finishing method using the same
DE102014203018A1 (en) * 2014-02-19 2015-08-20 Supfina Grieshaber Gmbh & Co. Kg Finish machining method and apparatus for finish machining
WO2023169884A1 (en) * 2022-03-07 2023-09-14 Nagel Maschinen- Und Werkzeugfabrik Gmbh Finishing method and finishing device for finish machining of rolling element raceways

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455188B2 (en) * 2015-01-30 2019-01-23 株式会社ジェイテクト Processing equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288169A (en) * 1988-09-24 1990-03-28 Toyoda Mach Works Ltd Numerical control grinder
JPH02256461A (en) * 1988-12-28 1990-10-17 Nagase Iron Works Co Ltd Abrasion detecting device for grindstone and abrasion detecting method
JPH0768458A (en) * 1993-09-02 1995-03-14 Hitachi Ltd Method for automatic copying of surface to be ground
JPH07148646A (en) * 1993-11-25 1995-06-13 Nagase Integrex:Kk Cutting machining device
JP2003205459A (en) * 2002-01-08 2003-07-22 Ricoh Co Ltd Polishing machining device and method
JP2004114279A (en) * 2002-09-30 2004-04-15 Koyo Seiko Co Ltd Super-finishing device for raceway ring of ball bearing
JP2004122255A (en) * 2002-09-30 2004-04-22 Asa Systems:Kk Polishing device and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246510A (en) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd Highly smooth grinding method for metal material, and highly smooth grinding device for metal material
JP4940904B2 (en) * 2006-11-15 2012-05-30 株式会社ジェイテクト Bulk quantity measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288169A (en) * 1988-09-24 1990-03-28 Toyoda Mach Works Ltd Numerical control grinder
JPH02256461A (en) * 1988-12-28 1990-10-17 Nagase Iron Works Co Ltd Abrasion detecting device for grindstone and abrasion detecting method
JPH0768458A (en) * 1993-09-02 1995-03-14 Hitachi Ltd Method for automatic copying of surface to be ground
JPH07148646A (en) * 1993-11-25 1995-06-13 Nagase Integrex:Kk Cutting machining device
JP2003205459A (en) * 2002-01-08 2003-07-22 Ricoh Co Ltd Polishing machining device and method
JP2004114279A (en) * 2002-09-30 2004-04-15 Koyo Seiko Co Ltd Super-finishing device for raceway ring of ball bearing
JP2004122255A (en) * 2002-09-30 2004-04-22 Asa Systems:Kk Polishing device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554779A (en) * 2012-01-17 2012-07-11 天津大学 Method for processing variable molding point rotating member with straight line-enveloped profile line as convex function
JP2014061554A (en) * 2012-09-19 2014-04-10 Noritake Co Ltd Super-finishing grinding wheel and super-finishing method using the same
CN103481180A (en) * 2013-09-29 2014-01-01 黄彬 Bearing inner race rolling path screwed superfinishing machine
DE102014203018A1 (en) * 2014-02-19 2015-08-20 Supfina Grieshaber Gmbh & Co. Kg Finish machining method and apparatus for finish machining
DE102014203018B4 (en) 2014-02-19 2024-03-21 Supfina Grieshaber Gmbh & Co. Kg Finishing method and device for finishing
WO2023169884A1 (en) * 2022-03-07 2023-09-14 Nagel Maschinen- Und Werkzeugfabrik Gmbh Finishing method and finishing device for finish machining of rolling element raceways

Also Published As

Publication number Publication date
JP5926137B2 (en) 2016-05-25
JP2013031915A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5926137B2 (en) Superfinishing method and superfinishing machine
JP5842830B2 (en) Grinding abnormality monitoring method and grinding abnormality monitoring apparatus
Denkena et al. Grinding with patterned grinding wheels
CN101842191A (en) Polishing device, and method for polishing a workpiece surface
KR101584265B1 (en) Lens spherical surface grinding method using dish-shaped grindstone
KR102542334B1 (en) Method and grinding machine for grinding grooved workpieces
Denkena et al. Enhanced grinding performance by means of patterned grinding wheels
KR102413618B1 (en) Method for shaping and finishing a workpiece
JP6617454B2 (en) Cutting apparatus and cutting method
Rascalha et al. Optimization of the dressing operation using load cells and the Taguchi method in the centerless grinding process
CN101474764B (en) Stepless speed change adjusting and controlling method for grinding wheel of grinding machine
CN107457703B (en) A kind of bronze boart boart wheel disc precise dressing method of the end surface full jumping better than 2 μm
Nadolny et al. Design of a device for precision shaping of grinding wheel macro-and micro-geometry
Derkx et al. Form crush dressing of diamond grinding wheels
JP2012161906A (en) Grinding abnormality monitoring method, and grinding abnormality monitoring device
Barbosa et al. The use of alternative coolant techniques to reduce the environmental impact in the use of water in through-feed centreless grinding
CN105548003B (en) The abrasive grain scratching that diamond cutter has non-ferrous metal test specimen in advance stops test method fastly
JP2014195862A (en) Method for truing rotary grindstone and grinding machine for performing the truing method
Khoshaim et al. ELID grinding with lapping kinematics
JP5821616B2 (en) Grinding abnormality monitoring method and grinding abnormality monitoring apparatus
JP2012168742A (en) Machining center provided with grindstone wear correction function
Ohnishi et al. Grinding
JP6561596B2 (en) Cutting apparatus and cutting method
JP2013158890A (en) Super finishing device, and super finishing method
JP2020114615A (en) Maintenance support device for machine tool and machine tool system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804523

Country of ref document: EP

Kind code of ref document: A1