WO2013002217A1 - 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置 - Google Patents

化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置 Download PDF

Info

Publication number
WO2013002217A1
WO2013002217A1 PCT/JP2012/066276 JP2012066276W WO2013002217A1 WO 2013002217 A1 WO2013002217 A1 WO 2013002217A1 JP 2012066276 W JP2012066276 W JP 2012066276W WO 2013002217 A1 WO2013002217 A1 WO 2013002217A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
semiconductor layer
group
organic
field effect
Prior art date
Application number
PCT/JP2012/066276
Other languages
English (en)
French (fr)
Inventor
哲二 伊藤
青森 繁
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011142970A external-priority patent/JP2014177403A/ja
Priority claimed from JP2011253846A external-priority patent/JP2014177405A/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013002217A1 publication Critical patent/WO2013002217A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/92Naphthofurans; Hydrogenated naphthofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel compound, a field effect transistor using the compound and a production method thereof, a solar cell using the compound, an organic light emitting device, a composition for an organic semiconductor layer of a field effect transistor, and an organic semiconductor of a solar cell.
  • the present invention relates to a layer composition, a composition for a carrier transport layer of an organic light emitting device, an array for a display device, and a display device.
  • Patent Document 1 discloses using pentacene for a semiconductor layer of an organic semiconductor device.
  • Patent Document 2 discloses poly (3-octylthiophene) as a polymer organic semiconductor used for a semiconductor layer of a field effect transistor.
  • Patent Documents 1 and 2 are easily oxidized and unstable in the air atmosphere, the characteristics of the semiconductor device using these materials are likely to deteriorate.
  • pentacene disclosed in Cited Document 1 has a low ionization potential and is easily oxidized in the atmosphere as described below, resulting in a decrease in electrical characteristics.
  • the present invention has been made in view of the above circumstances, and it is an object to provide a novel compound that is highly stable in an air atmosphere and is suitable as an organic semiconductor material, and a semiconductor device and a display device using the compound.
  • One embodiment of the present invention provides a compound represented by the following general formula (1).
  • R 1 to R 4 each independently have a hydrogen atom, a halogen atom, a hydroxyl group, a mercapto group, a nitro group, an amino group, an aromatic group having no substituent, or a substituent.
  • the compound according to one embodiment of the present invention may be a compound in which R 1 to R 4 are hydrogen atoms.
  • another aspect of the present invention provides a field effect transistor comprising an organic semiconductor layer containing the compound.
  • the field effect transistor according to another aspect of the present invention includes a gate electrode, a gate insulating film, a source electrode, a drain electrode, and an organic semiconductor layer, and the organic semiconductor layer is connected to the gate electrode through the gate insulating film.
  • the field effect transistor may be provided so as to face each other, and the source electrode and the drain electrode may be provided in contact with the organic semiconductor layer.
  • a field effect transistor includes a gate electrode, a gate insulating film, a source electrode, a drain electrode, and an organic semiconductor layer, and the organic semiconductor layer is connected to the gate electrode through the gate insulating film.
  • the organic semiconductor layer may be provided so as to cover the source electrode and the drain electrode.
  • the organic semiconductor layer may be formed by depositing the compound.
  • the organic semiconductor layer may be formed by applying a composition containing the compound.
  • Still another embodiment of the present invention is a method for producing a field effect transistor including an organic semiconductor layer containing the compound, and any of an immersion method, a coating method, and a printing method using the composition containing the compound.
  • Forming the organic semiconductor layer, and the composition includes at least one selected from toluene, chlorobenzene, dichlorobenzene, trichlorobenzene, dichloromethane, and chloroform.
  • Still another embodiment of the present invention provides a solar cell including an organic semiconductor layer containing the compound.
  • the organic semiconductor layer may be formed by depositing the compound.
  • the organic semiconductor layer may be formed by applying a composition containing the compound.
  • Still another aspect of the present invention is a solar cell including an organic semiconductor layer including a p-type semiconductor material and an n-type semiconductor material, and at least one of the p-type semiconductor material and the n-type semiconductor material includes the compound. I will provide a.
  • Still another aspect of the present invention provides an organic light emitting device including a carrier transport layer containing the compound.
  • the carrier transport layer may be formed by depositing the compound.
  • the carrier transport layer may be formed by applying a composition containing the compound.
  • Still another embodiment of the present invention provides a composition for an organic semiconductor layer of a field effect transistor comprising the above compound.
  • Still another embodiment of the present invention provides a composition for an organic semiconductor layer of a solar cell containing the above compound.
  • Still another embodiment of the present invention includes a p-type semiconductor material and an n-type semiconductor material, wherein at least one of the p-type semiconductor material and the n-type semiconductor material includes the compound.
  • a composition is provided.
  • Still another embodiment of the present invention provides a composition for a carrier transport layer of an organic light emitting device comprising the compound.
  • Still another embodiment of the present invention provides an array for a display device comprising the field effect transistor as a switching element.
  • an image signal output unit that generates and outputs an image signal
  • a drive unit that generates a current or a voltage based on the image signal, and light emission by the generated current or voltage.
  • a light emitting unit wherein the light emitting unit is the organic light emitting element.
  • FIG. 1 It is a schematic sectional drawing which illustrates the principal part of the field effect transistor which concerns on 6th embodiment. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect
  • FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG. It is a schematic sectional drawing for demonstrating the manufacturing method of the field effect transistor shown in FIG
  • FIG. 3 is an enlarged plan view illustrating the main part of the array for display devices according to the present invention.
  • FIG. 19B is a cross-sectional view taken along line C-C ′ of FIG. 18B illustrating the main part of the display device array according to the present invention.
  • FIG. 19 is a cross-sectional view taken along the line D-D ′ of FIG.
  • FIG. 11 is an equivalent circuit diagram of one pixel illustrating the main part of the display device according to the invention.
  • FIG. 11 is a plan view of one pixel illustrating the main part of the display device according to the invention.
  • FIG. 2 is a graph showing the results of measurement of absorption intensity immediately after solution preparation and after one month of standing for the solution of compound (1-1) in Example 1.
  • FIG. 3 is a graph showing the results of measurement of absorption intensity immediately after solution preparation and one month after standing for the solution of compound (1-2) in Example 1.
  • R 1 to R 4 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a mercapto group, a nitro group, an amino group, or an optionally substituted aromatic group, alkoxy group, aromatic An oxy group, an alkyl-substituted amino group, an aromatic-substituted amino group, an acyl group, or an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a and b each independently represent an integer of 0 to 3. c and d Each independently represents an integer of 0 to 6. When there are a plurality of R 1 to R 4 , they may be the same or different.
  • each of R 1 to R 4 independently represents a hydrogen atom, a halogen atom, a hydroxyl group, a mercapto group, a nitro group, an amino group, or an aromatic group, alkoxy group, or aromatic group that may have a substituent.
  • the aliphatic hydrocarbon group for R 1 to R 4 may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group, and may be any of linear, branched, and cyclic.
  • the linear or branched saturated aliphatic hydrocarbon group may have 1 to 20 carbon atoms, and may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, or an n-butyl group.
  • the linear or branched unsaturated aliphatic hydrocarbon group may have 2 to 20 carbon atoms, and may be a vinyl group (ethenyl group), an allyl group (2-propenyl group), or a 1-propenyl group.
  • a single bond (C—C) between one or more carbon atoms is present. Examples thereof include those substituted by double bonds (C ⁇ C) or triple bonds (C ⁇ C) which are unsaturated bonds, and the number and position of unsaturated bonds are not particularly limited.
  • the cyclic aliphatic hydrocarbon group may have 3 to 20 carbon atoms, and may be monocyclic or polycyclic.
  • Examples of the cyclic saturated aliphatic hydrocarbon group (cycloalkyl group) include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, tricyclodecyl group, adamantyl Group, tetracyclododecyl group, isobornyl group, norbornyl group and the like.
  • cyclic unsaturated aliphatic hydrocarbon group a double bond (C—C) between one or more carbon atoms in the cyclic saturated aliphatic hydrocarbon group is an unsaturated bond ( Examples include those substituted with C ⁇ C) or triple bonds (C ⁇ C), and the number and position of unsaturated bonds are not particularly limited.
  • the aromatic group in R 1 to R 4 may be monocyclic or polycyclic, and may be any of an aromatic hydrocarbon group (aryl group) and an aromatic heterocyclic group (heteroaryl group).
  • aryl group examples include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 2,6-dimethylphenyl group, and a 2,4,6-trimethylphenyl group.
  • the heteroaryl group in R 1 to R 18 is not particularly limited as long as it has a heteroatom as an atom constituting an aromatic ring.
  • the heteroatom include a nitrogen atom, an oxygen atom, a sulfur atom, and a selenium atom. Etc. can be exemplified.
  • Preferred examples of the heteroaryl group include a pyridyl group, a furyl group, a thienyl group, a benzothienyl group, a thienothienyl group, and a selenothienyl group.
  • the alkoxy group in R 1 ⁇ R 4, a methoxy group, an ethoxy group, n- propoxy group, n- butoxy group, R 1 said alkyl group in ⁇ R 4 can be exemplified is a monovalent group bonded to an oxygen atom .
  • the aromatic oxy group (aryloxy group and heteroaryloxy group) in R 1 to R 4 includes a phenoxy group, 1-naphthoxy group, 2-naphthoxy group, etc., and the aromatic group in R 1 to R 4 is an oxygen atom
  • bonded with can be illustrated.
  • Examples of the alkyl-substituted amino group in R 1 to R 4 include a monovalent group in which one or two hydrogen atoms of the amino group (—NH 2 ) are substituted with an alkyl group. This is the same as the alkyl group in R 1 to R 4 . And in the case of the amino group (dialkylamino group) by which two hydrogen atoms were substituted by the alkyl group, these two alkyl groups may mutually be same or different.
  • the aromatic-substituted amino group (aryl-substituted amino group and heteroaryl-substituted amino group) in R 1 to R 4 is a group in which one or two hydrogen atoms of an amino group (—NH 2 ) are substituted with an aromatic group.
  • the aromatic group at this time is the same as the aromatic group in R 1 to R 4 .
  • these two aromatic groups may be the same as or different from each other.
  • these two aromatic groups may be a combination of an aryl group and a heteroaryl group.
  • the acyl group in R 1 to R 4 is a group obtained by removing one or more hydroxyl groups (—OH) from an oxo acid, and the oxo acid is preferably a carboxylic acid, and an alkyl group or an aromatic group is A monovalent group bonded to a carbonyl group (—C ( ⁇ O) —) can be exemplified.
  • the alkyl group and aromatic group at this time are the same as the alkyl group and aromatic group in R 1 to R 4 .
  • Examples of the halogen atom in R 1 to R 4 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the aromatic group, alkoxy group, aromatic oxy group, alkyl-substituted amino group, aromatic-substituted amino group, acyl group, and aliphatic hydrocarbon group having 1 to 20 carbon atoms in R 1 to R 4 are one or more.
  • a hydrogen atom may be substituted with a substituent, or all hydrogen atoms may be substituted with a substituent.
  • preferred substituents of the aliphatic hydrocarbon group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; mercapto group; nitro group; amino group; alkoxy group; Alkyl substituted amino group; aromatic substituted amino group; acyl group and the like.
  • an alkyl group can be illustrated.
  • the position and number of hydrogen atoms substituted with the substituent are not particularly limited. When there are a plurality of substituents, the plurality of substituents may be the same as or different from each other. That is, all the substituents may be the same, all the substituents may be different, or only some of the substituents may be different.
  • the alkoxy group as the substituent in R 1 ⁇ R 4 an aromatic group, an alkyl-substituted amino group, an aromatic-substituted amino group, acyl group and alkyl group, like those described as R 1 ⁇ R 4 of the respective It is.
  • R 1 and R 2 are each preferably a hydrogen atom.
  • R 1 and R 2 are each preferably a hydrogen atom.
  • the steric repulsion between the two ⁇ -brazan skeletons is suppressed, and the carbon atoms between these skeletons are bonded to each other. Since the twisting of the molecule with the bond (CC) as an axis is suppressed, the ⁇ -electron conjugated system spreads more widely throughout the molecule of the compound (1).
  • each is independent, and each may be the same or different. That is, when a is 3, all R 1 may be the same, all R 1 may be different, or only one R 1 may be different.
  • the compound (1) those represented by the following formulas (1-1) and (1-2) are particularly preferable. That is, in the general formula (1), it is particularly preferable that all of R 1 to R 4 are hydrogen atoms.
  • Compound (1) is stable even in an air atmosphere, such as high oxidation resistance. Therefore, as described later, it is particularly suitable as an organic semiconductor material for organic electronic devices (semiconductor devices) such as field effect transistors, solar cells, and organic light emitting elements.
  • the high oxidation resistance of the compound (1) is presumed to be due to a decrease in the HOMO level by using a main skeleton as a bi ( ⁇ -brazan) skeleton.
  • the compound (1) has a large ⁇ -electron conjugated system in the molecule, and when an organic thin film is formed, it is presumed that a large intermolecular interaction is expressed with an adjacent molecule, and the carrier mobility is high. .
  • Compound (1) includes, for example, a compound represented by the following general formula (1a) (hereinafter abbreviated as compound (1a)) and a compound represented by the following general formula (1b) (hereinafter referred to as compound (1b)). And a process of synthesizing compound (1) (hereinafter abbreviated as compound (1) synthesis process).
  • R 1 to R 4 are the same as above; Y 1 and Y 2 are each independently a halogen atom, a trifluoromethylsulfonyloxy group or a general formula “—B (OX) 2 (wherein X Is a hydrogen atom or an alkyl group, and two Xs may be the same or different from each other. When two Xs are both alkyl groups, these two Xs may be bonded to each other to form a ring. And when one of Y 1 and Y 2 is a group represented by the general formula “—B (OX) 2 ”, the other is a halogen atom.)
  • R 1 ⁇ R 4 are the same as R 1 ⁇ R 4 in the formula (1).
  • Y 1 and Y 2 are each independently a halogen atom, a trifluoromethylsulfonyloxy group (CF 3 S ( ⁇ O) 2 —O—) or a general formula “—B (OX) 2 (wherein X Is a hydrogen atom or an alkyl group, and two Xs may be the same or different from each other. When two Xs are both alkyl groups, these two Xs may be bonded to each other to form a ring.
  • Y 1 and Y 2 when one of Y 1 and Y 2 is a group represented by the general formula “—B (OX) 2 ”, the other is a halogen atom.
  • the halogen atom in Y 1 and Y 2 is preferably a chlorine atom, a bromine atom or an iodine atom.
  • the alkyl group in X is preferably linear or branched, and preferably has 1 to 6 carbon atoms. When two Xs are both alkyl groups, these two Xs are bonded to each other, the two Xs, the oxygen atom to which the two Xs are bonded, and the oxygen atom are bonded to each other.
  • the boron atom may form a ring, and such a ring may be monocyclic or polycyclic.
  • Y 1 and Y 2 are both halogen atoms, and a homocoupling reaction (Ullmann reaction) is performed in the presence of metallic copper.
  • a homocoupling reaction Ullmann reaction
  • Y 1 and Y 2 are both trifluoromethylsulfonyloxy groups, and compound (1) can be synthesized by conducting a homocoupling reaction in the presence of metallic zinc, nickel compound or the like.
  • one of Y 1 and Y 2 is a group represented by the general formula “—B (OX) 2 ” and the other is Compound (1) can be synthesized by performing a cross-coupling reaction (Suzuki-Miyaura coupling reaction) in the presence of a metal catalyst such as a palladium compound or a nickel compound as a halogen atom.
  • the compound (1a) When a synthetic product is used as the compound (1a), for example, as shown in the Examples described later, the corresponding 1-naphthols and dihalogenated benzenes are reacted in the presence of a palladium catalyst, and the compound (1a) Compound (1a) can be produced by a method having a step of synthesizing. Compound (1b) can also be produced by the same method.
  • the reaction conditions in the synthesis step of compound (1) may be adjusted so as to maximize the amount of compound (1) produced, but examples include conditions for reacting at 60 to 100 ° C. for 5 to 36 hours.
  • the reaction may be performed using a solvent or may be performed without a solvent.
  • a solvent will not be specifically limited if it does not react with the raw material to be used. Further, the reaction is preferably performed in an inert gas atmosphere.
  • the amount of these compounds used is preferably such that the molar ratio of compound (1a): compound (1b) is 7: 3 to 3: 7. .
  • the amount of the metal catalyst used is preferably 0.5 mol% to 5 mol%, for example, based on the total amount of the compounds (1a) and (1b), and a ligand, base, etc. can be used in combination according to a conventional method. preferable.
  • post-treatment refers to operations such as filtration, concentration, extraction, dehydration, and pH adjustment, and any one of these operations may be performed alone or in combination of two or more.
  • Removal of compound (1) after the synthesis step of compound (1) may be performed by operations such as concentration, crystallization, column chromatography, sublimation purification under reduced pressure, and column chromatography, crystallization as necessary.
  • the purification may be performed by repeating operations such as extraction and stirring and washing of the crystals with a solvent one or more times.
  • the structures of the compounds (1a) and (1b), the compound (1) and the like can be confirmed by a known method such as nuclear magnetic resonance spectroscopy ( 1 H-NMR, 13 C-NMR).
  • composition for organic thin film The compound (1) is suitable for forming an organic thin film.
  • the composition for organic thin film containing the compound (1) and an organic solvent is used for forming an organic thin film constituting the organic semiconductor layer, carrier transport layer and the like shown below.
  • composition for Organic Semiconductor Layer of Field Effect Transistor includes the compound (1).
  • the compound (1) is a hydrophobic group, for example, a part or all of R 1 to R 4 is an aromatic group or an aliphatic hydrocarbon group, or a group having these groups. Thereby, the solubility with respect to an organic solvent becomes higher. Therefore, the composition for organic semiconductor layers of this embodiment in which compound (1) is dissolved in a solvent can be easily prepared. Further, by using such a composition, the organic semiconductor layer of the field effect transistor can be formed by a simple method such as a dipping method, a coating method, or a printing method.
  • the organic semiconductor layer can be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like, but by simply forming a film without using a vacuum device or the like as described above, The manufacturing cost of the field effect transistor can be greatly reduced.
  • composition for an organic semiconductor layer of the present embodiment preferably contains a hydrocarbon such as toluene as a solvent component; and a halogenated hydrocarbon such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, or trichlorobenzene.
  • a hydrocarbon such as toluene as a solvent component
  • a halogenated hydrocarbon such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, or trichlorobenzene.
  • composition for an organic semiconductor layer may contain only the compound (1) in addition to the solvent component, or may contain a component other than the compound (1).
  • the ratio of the compound (1) to all components other than the solvent component is preferably 90% by mass or more, and more preferably 100% by mass (including only the compound (1)).
  • the compound (1) contained in the composition for organic semiconductor layers may be one kind or two or more kinds. In the case of two or more kinds, the combination and ratio may be appropriately set according to the purpose.
  • the content of the compound (1) is preferably 0.2% by mass to 5% by mass.
  • composition for organic semiconductor layer of solar cell includes the compound (1), and the organic of the above-described field effect transistor except that the use is different. It is the same as the composition for semiconductor layers.
  • the composition for an organic semiconductor layer of this embodiment in which the compound (1) is dissolved in a solvent can be easily prepared, and the organic semiconductor layer of a solar cell can be formed by a simple method by using such a composition. .
  • the composition for organic semiconductor layers according to the present embodiment includes a p-type semiconductor material and an n-type semiconductor material, and at least one of the p-type semiconductor material and the n-type semiconductor material includes the compound (1).
  • Such a composition is for forming an organic semiconductor layer of a bulk heterojunction solar cell, and the composition for an organic semiconductor layer of the present embodiment in which the compound (1) is dissolved in a solvent can be easily prepared. Therefore, the organic semiconductor layer of a solar cell can be formed by a simple method, similar to the composition for an organic semiconductor layer of the field effect transistor.
  • the organic semiconductor layer of the solar cell can be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like, but it can be easily formed without using a vacuum device or the like as described above. Thereby, the manufacturing cost of a solar cell can be reduced significantly.
  • At least one of the p-type semiconductor material and the n-type semiconductor material may be composed only of the compound (1), or may include components other than the compound (1).
  • the ratio of the compound (1) to the semiconductor material is preferably 90% by mass or more, and more preferably 100% by mass (consisting only of the compound (1)).
  • the compound (1) contained in the semiconductor material may be one kind or two or more kinds. In the case of two or more kinds, the combination and ratio may be appropriately set according to the purpose.
  • n-type semiconductor material other than the compound (1) examples include those exemplified as the material of the n-type semiconductor layer in the solar cell described later.
  • fullerene; [6,6] -phenyl C61 is preferable.
  • fullerene derivatives such as butyric acid methyl ester (PCBM); fluorinated phthalocyanines in which one or more hydrogen atoms constituting the phthalimide ring are substituted with fluorine atoms. In the fluorinated phthalocyanine, all hydrogen atoms constituting the phthalimide ring may be substituted with fluorine atoms.
  • composition for an organic semiconductor layer preferably contains a hydrocarbon such as toluene as a solvent component; and a halogenated hydrocarbon such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, or trichlorobenzene.
  • a hydrocarbon such as toluene as a solvent component
  • a halogenated hydrocarbon such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, or trichlorobenzene.
  • the content of the p-type semiconductor material is preferably 0.2% by mass to 5% by mass.
  • the content of the n-type semiconductor material is preferably 0.2% by mass to 5% by mass.
  • composition for carrier transport layer of the organic light-emitting device includes the compound (1), and the above-described field effect transistor except that the use is different It is the same as that of the composition for organic-semiconductor layers.
  • the carrier transport layer composition of the present embodiment in which the compound (1) is dissolved in a solvent can be easily prepared. By using such a composition, the carrier transport layer of the organic light emitting device can be formed by a simple method. it can.
  • the field effect transistor according to the present embodiment includes an organic semiconductor layer containing the compound (1). And it can be set as the structure similar to the conventional field effect transistor except having provided this organic-semiconductor layer.
  • the compound (1) is mainly used as a p-type semiconductor.
  • R 1 to R 18 is a fluorine atom, or an electron withdrawing group such as a group having a fluorine atom.
  • the compound (1) can also function as an n-type semiconductor.
  • FIG. 1 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the first embodiment.
  • the field effect transistor 1 ⁇ / b> A shown here is schematically configured by laminating a gate electrode 12, a gate insulating film 13, a source electrode 14, a drain electrode 15, and an organic semiconductor layer 16 on a substrate 11. More specifically, the gate electrode 12 is provided on a part of the substrate 11, and the gate insulating film 13 is provided on the substrate 11 so as to cover the gate electrode 12.
  • a source electrode 14 and a drain electrode 15 are provided apart from each other on the gate insulating film 13, and an organic semiconductor layer 16 is provided on the gate insulating film 13 so as to cover the source electrode 14 and the drain electrode 15. It has been.
  • the organic semiconductor layer 16 is provided so as to face the gate electrode 12 with the gate insulating film 13 interposed therebetween.
  • the arrangement form of the organic semiconductor layer 16 is not limited to the one shown here, and the gate electrode 12 is provided at least in a region between the source electrode 14 and the drain electrode 15 provided apart from each other via the gate insulating film 13. It suffices to be provided so as to face each other.
  • Examples of the field effect transistor in which the organic semiconductor layer 16 is arranged in this way include those provided in the organic semiconductor device 42 in FIG. 18 of a display device array described later.
  • the field effect transistor 1A has a bottom-gate / bottom-contact transistor structure.
  • the material of the substrate 11 can be appropriately selected according to the configuration and performance of the device.
  • glass for example, glass; quartz; silicon single crystal; polycrystalline silicon; amorphous silicon; high insulating properties such as polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polytetrafluoroethylene Examples thereof include molecular compounds.
  • the substrate 11 may have a single layer structure made of one kind of material, or may have a multiple layer structure in which two or more kinds of materials are laminated.
  • the material of the gate electrode 12 is not particularly limited, and may be one normally used in the field related to the present embodiment.
  • low resistance metals such as gold, platinum, silver, copper, aluminum, tantalum, and doped silicon; 3,4-polyethylenedioxythiophene (hereinafter abbreviated as PEDOT) / polystyrene sulfonate (hereinafter, referred to as “PETOT”)
  • PEDOT 3,4-polyethylenedioxythiophene
  • PET polystyrene sulfonate
  • organic conductors such as PSS).
  • the work function is the highest occupied molecular orbital (HOMO) level of the composition for the organic semiconductor layer as the material of the source electrode 14 and the drain electrode 15.
  • HOMO highest occupied molecular orbital
  • the material of the source electrode 14 and the drain electrode 15 is such that these work functions are close to the lowest unoccupied molecular orbital (LUMO: Low Unoccupied Molecular Orbital) level. It can be illustrated.
  • Materials whose work function is close to the HOMO level of the composition for organic semiconductor layers include metals having a relatively high work function such as gold, platinum, silver, or alloys containing one or more of these; indium tin oxide (ITO) And transparent oxide conductors such as zinc oxide (ZnO); organic conductors such as PEDOT / PSS.
  • metals having a relatively high work function such as gold, platinum, silver, or alloys containing one or more of these
  • ITO indium tin oxide
  • ZnO zinc oxide
  • organic conductors such as PEDOT / PSS.
  • Examples of materials having a work function close to the LUMO level of the composition for organic semiconductor layers include metals having a relatively low work function such as aluminum, titanium, alkali metals, or alloys containing one or more of these.
  • Examples of the alkali metal include lithium, sodium, and potassium.
  • the source electrode 14 and the drain electrode 15 may be formed on the gate insulating film 13 through an adhesion layer (not shown).
  • adhesion layer examples include chromium.
  • the thicknesses of the gate electrode 12, the source electrode 14, and the drain electrode 15 are not particularly limited as long as they are normal transistor thicknesses, and are preferably adjusted as appropriate according to the purpose.
  • the material is a metal, it is preferably 30 nm to 200 nm.
  • These electrodes can be formed, for example, by vapor deposition, sputtering, coating, or the like depending on the material.
  • the surface energy of the electrode surface can be reduced. it can.
  • the crystal growth or crystal arrangement of the organic semiconductor material on the electrode surface, or the wettability of the organic semiconductor material to the electrode can be improved.
  • the surface of the gold electrode is preferably surface modified with alkanethiol or the like.
  • the material of the gate insulating film 13 is preferably a material having a high dielectric constant and is unlikely to generate pinholes or the like when forming a thin film. Since the dielectric constant is high, the threshold value of the field effect transistor can be further reduced. In addition, by reducing pinholes and the like when forming a thin film, a function effect of the gate insulating film 13 is suppressed and a field effect transistor with better characteristics can be obtained.
  • examples of such a film include inorganic insulating films such as silicon oxide films, silicon nitride films, tantalum pentoxide films, and aluminum oxide films; organic insulating films such as polyimide films, parylene films, and polyvinylphenol films.
  • the film thickness of the gate insulating film 13 is preferably set so that the capacitance per unit area is large. Further, by reducing the film thickness, the threshold voltage of the field effect transistor can be further reduced.
  • the film thickness of the gate insulating film 13 is preferably adjusted as appropriate according to the relative dielectric constant, insulation, etc. of the material, and is preferably 50 nm to 300 nm, for example. By doing so, the capacitance per unit area can be increased, and the threshold voltage of the field effect transistor can be reduced.
  • the gate insulating film 13 can be formed by, for example, vapor deposition, sputtering, coating, or the like depending on the material.
  • the gate insulating film 13 is a silicon oxide film, a silicon nitride film or the like
  • the surface in contact with the organic semiconductor layer 16 is preferably treated with a silane coupling agent or the like.
  • the organic semiconductor layer 16 includes the compound (1).
  • the composition for an organic semiconductor layer may be formed by a low-cost thin film forming method such as a dipping method, a coating method, or a printing method, and a compound ( 1) may be formed by vapor deposition.
  • the film thickness of the organic semiconductor layer 16 is preferably 5 nm to 500 nm.
  • the compound (1) has high oxidation resistance. Therefore, the organic semiconductor layer 16 containing the compound (1) is stable in the air atmosphere.
  • a protective film may be further provided on at least the organic semiconductor layer 16.
  • the organic semiconductor layer 16 can be protected from oxygen, moisture, etc., so that the field effect transistor 1A exhibits more stable semiconductor characteristics.
  • a field effect transistor 1A ′ shown in FIG. 2 is obtained by covering the entire surface of the organic semiconductor layer 16 with a protective film 17 in the field effect transistor shown in FIG.
  • the protective film 17 may be either an organic film or an inorganic film.
  • the material of the organic film polyparylene (paraxylylene polymer); epoxy resin; acrylic resin; polyparaxylene; polyperfluoroolefin, polyperfluoroether, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, etc.
  • fluorine-based polymer polyimide and the like.
  • Examples of the material of the inorganic film include metal nitride, metal oxide, carbon, silicon and the like.
  • nitrides such as SiN, AlN and GaN; oxides such as SiO 2 , Al 2 O 3 , Ta 2 O 5 , ZnO and GeO; oxynitrides such as SiON; carbonitrides such as SiCN Etc.
  • the protective film 17 may have either a single layer structure or a multilayer structure.
  • FIG. 3 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the second embodiment.
  • the field effect transistor 1B shown here is shown in FIG. 1 except that the surface modification layer 18 is provided on the surface of the source electrode 14 and the drain electrode 15 and the organic semiconductor layer 16 is in contact with the surface modification layer 18. This is the same as the field effect transistor 1A shown.
  • the surface modification layer 18 can be formed by, for example, causing a surface modifier to act on the surfaces of the source electrode 14 and the drain electrode 15 and may be composed of either an organic molecule or an inorganic molecule.
  • preferable surface modifiers in this case include alkylthiols such as dodecanethiol, but are not limited thereto.
  • the surface modification layer 18 By providing the surface modification layer 18, the surface energy of the source electrode 14 and the drain electrode 15 can be reduced. Thereby, the crystal growth or crystal arrangement of the organic semiconductor material on the surface of these electrodes, or the wettability of the organic semiconductor material to these electrodes can be improved. As a result, the film quality of the organic semiconductor layer 16 becomes more uniform, and the above effect is obtained particularly when the organic semiconductor layer 16 is formed by applying the composition for organic semiconductor layer.
  • FIG. 3 shows an example in which the surface modification layer 18 is provided on the surfaces of the source electrode 14 and the drain electrode 15, the position where the surface modification layer is provided is not limited to this.
  • a surface modification layer may be separately provided on the gate insulating film 13.
  • a surface modification layer 18 is provided on a portion of the gate insulating film 13 where the source electrode 14 and the drain electrode 15 are not provided in the field effect transistor shown in FIG.
  • the organic semiconductor layer 16 is in contact with the surface modification layer 18.
  • the film quality of the organic semiconductor layer 16 becomes more uniform as in the field effect transistor 1B for the field effect transistor 1A.
  • the effect of reducing interface traps and improving adhesion can be obtained.
  • Examples of the surface modifier for forming the surface modification layer 18 include hexamethyldisilazane (HMDS), octyltrichlorosilane (OTS), and octadecyl as long as they are used for an oxide-based gate insulating film.
  • Examples include silane-based materials such as trichlorosilane (ODS), 7-octenyltrichlorosilane (VTS), tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FTS), benzyltrichlorosilane (BTS), and the like. However, it is not limited to these.
  • FIG. 5 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the third embodiment.
  • the field effect transistor 1 ⁇ / b> C shown here is schematically configured by laminating a gate electrode 12, a gate insulating film 13, an organic semiconductor layer 16, a source electrode 14 and a drain electrode 15 on a substrate 11. More specifically, the gate electrode 12 is provided on a part of the substrate 11. Further, a gate insulating film 13 is provided on the substrate 11 so as to cover the gate electrode 12, and an organic semiconductor layer 16 is provided on the gate insulating film 13. A source electrode 14 and a drain electrode 15 are provided on the organic semiconductor layer 16 so as to be separated from each other. The organic semiconductor layer 16 is provided so as to face the gate electrode 12 with the gate insulating film 13 interposed therebetween.
  • the field effect transistor 1C has a top contact type transistor structure.
  • the film quality of the organic semiconductor layer 16 may be affected by a layer (underlying layer) immediately below the organic semiconductor layer 16.
  • a layer underlying layer
  • the organic semiconductor layer 16 is affected by the gate insulating film 13, the source electrode 14 and the drain electrode 15 in contact therewith. In response, there is a possibility that the film quality will change at the site in contact with each.
  • the organic semiconductor layer 16 is entirely formed on the gate insulating film 13, so that the organic semiconductor The film quality of the layer 16 becomes more uniform, and the field effect transistor exhibits more stable semiconductor characteristics.
  • the source electrode 14 and the drain electrode 15 are formed on the organic semiconductor layer 16, so that, for example, a gate is formed during manufacture. It is possible to reduce damage to the insulating film 13 and generation of residues. As a result, the interface between the gate insulating film 13 and the organic semiconductor layer 16 can be in a better state.
  • the field effect transistor 1C is the same as the field effect transistor 1A except that the stacking order of the source electrode 14, the drain electrode 15, and the organic semiconductor layer 16 is different. Therefore, for example, a protective film may be provided on the organic semiconductor layer 16 so as to cover the source electrode 14 and the drain electrode 15.
  • FIG. 6 is a schematic cross-sectional view illustrating the main part of the field effect transistor according to the fourth embodiment.
  • the field effect transistor 1D shown here is the same as the field effect transistor 1C shown in FIG. 5 except that the surface modification layer 18 is provided on the surface of the gate insulating film 13. That is, in the field effect transistor 1 ⁇ / b> D, the organic semiconductor layer 16 is in contact with the surface modification layer 18. By doing in this way, the film quality of the organic-semiconductor layer 16 can be made more uniform similarly to the field effect transistor 1B with respect to the field effect transistor 1A. In addition, the effect of reducing interface traps and improving adhesion can be obtained.
  • the surface modification layer 18 is the same as that in FIG.
  • the field effect transistor according to the present embodiment is not limited to the one shown in FIGS. 1 to 6, and a part of these configurations may be changed. For example, the following are mentioned.
  • the organic semiconductor layer 16 is provided on the substrate 11, and the source electrode 14 and the drain electrode 15 are provided on the organic semiconductor layer 16 so as to be separated from each other, and the source electrode 14 and the drain electrode are provided.
  • II As illustrated in FIG.
  • the source electrode 14 and the drain electrode 15 are provided separately on the substrate 11, and the organic semiconductor layer 16 is formed on the substrate 11 so as to cover the source electrode 14 and the drain electrode 15.
  • the field effect transistor since the organic semiconductor layer is stable in the air atmosphere, the field effect transistor can operate stably for a long period of time in the air atmosphere as well.
  • the field effect transistor according to the above-described embodiment can be manufactured by, for example, the following method. First, a method for manufacturing the field effect transistor 1A shown in FIG. 1 will be described. 9A to 9E are schematic cross-sectional views for explaining a method for manufacturing the field effect transistor 1A.
  • a film made of the material constituting the gate electrode 12 is formed on the substrate 11, and the film is formed into a desired pattern by photolithography and etching. As shown in FIG. A gate electrode 12 is formed.
  • An example of the film formation method is a sputtering method.
  • a gate insulating film 13 is formed on the substrate 11 so as to cover the gate electrode 12.
  • An example of a method for forming the gate insulating film 13 is a sputtering method.
  • a photoresist film 90 having a predetermined pattern as shown in FIG. 9C.
  • the photoresist film 90 is for forming the source electrode 14 and the drain electrode 15 and has openings corresponding to these shapes.
  • a metal film made of the material of the source electrode 14 and the drain electrode 15 is formed on the gate insulating film 13 so as to cover the photoresist film 90, and the photoresist film 90 is removed, as shown in FIG. 9D. Then, the source electrode 14 and the drain electrode 15 are formed at predetermined positions on the gate insulating film 13.
  • an adhesion layer (not shown) is formed on the gate insulating film 13 so as to cover the photoresist film 90, and the metal film is formed on the adhesion layer.
  • the material for the adhesion layer include metals such as chromium.
  • An example of a method for forming the metal film and the adhesion layer is a vacuum deposition method.
  • An example of a method for removing the photoresist film 90 is a lift-off method in which the substrate 11 is immersed in an organic solvent such as acetone.
  • an organic semiconductor layer 16 is formed on the gate insulating film 13 so as to cover the source electrode 14 and the drain electrode 15.
  • the organic semiconductor layer 16 may be formed by placing the composition for an organic semiconductor layer of the above-described field effect transistor containing the compound (1) on the gate insulating film 13 and further removing the solvent by drying as necessary. Can be formed.
  • the method for forming the organic semiconductor layer 16 using the composition includes immersion method; coating method such as casting method and spin coating method; ink jet method, microcontact printing method, reverse offset printing method, flexographic printing method, and lithographic printing. And printing methods such as intaglio printing.
  • the organic semiconductor layer 16 may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like.
  • the field effect transistor 1A shown in FIG. 1 is obtained.
  • the protective film 17 is further formed on the organic semiconductor layer 16 to obtain the field effect transistor 1A 'shown in FIG.
  • 10A to 10F are schematic cross-sectional views for explaining a method of manufacturing the field effect transistor 1B.
  • a source electrode 14 and a drain electrode 15 are formed at predetermined positions on the gate insulating film 13 as shown in FIGS. 10A to 10D by a method similar to the method described with reference to FIGS. 9A to 9D.
  • a surface modifying layer 18 is formed by applying a surface modifying agent to the surfaces of the source electrode 14 and the drain electrode 15.
  • an organic semiconductor layer 16 is formed on the gate insulating film 13 so as to cover the surface-modified source electrode 14 and drain electrode 15.
  • the formation method of the organic semiconductor layer 16 is the same as that of the field effect transistor 1A.
  • the field effect transistor 1B shown in FIG. 3 is obtained.
  • a protective film may be further formed on the organic semiconductor layer 16.
  • the source electrode 14 and the drain electrode 15 are not provided on the gate insulating film 13 instead of the surfaces of the source electrode 14 and the drain electrode 15 in FIG. 10E. It can be manufactured by the same method as the method for manufacturing the field effect transistor 1B except that the surface modifying layer 18 is formed by applying a surface modifier to the site.
  • 11A to 11D are schematic cross-sectional views for explaining a method for manufacturing the field effect transistor 1C.
  • a film made of a material constituting the gate electrode 12 is formed on the substrate 11, and the film is formed into a desired pattern by photolithography and etching. As shown in FIG. A gate electrode 12 is formed.
  • An example of the film formation method is a sputtering method.
  • a gate insulating film 13 is formed on the substrate 11 so as to cover the gate electrode 12.
  • An example of a method for forming the gate insulating film 13 is a sputtering method.
  • an organic semiconductor layer 16 is formed on the gate insulating film 13.
  • the organic semiconductor layer 16 can be formed, for example, by placing the composition for an organic semiconductor layer containing the compound (1) on the gate insulating film 13 and further removing the solvent by drying as necessary.
  • the method for forming the organic semiconductor layer 16 using the composition includes immersion method; coating method such as casting method and spin coating method; ink jet method, microcontact printing method, reverse offset printing method, flexographic printing method, and lithographic printing. And printing methods such as intaglio printing.
  • the organic semiconductor layer 16 may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like.
  • the temperature of the substrate greatly affects the characteristics of the device.
  • the molecules that have reached the substrate surface by vapor deposition are cohered as they are, and tend to become an amorphous film.
  • the substrate is above a certain temperature, the molecules diffuse on the surface, and they stay at a more stable position and nucleate and grow a thin film. That is, as the substrate temperature rises during vapor deposition, surface diffusion of molecules is promoted, crystal nuclei grow and become larger, crystallinity improves, and device characteristics can be improved.
  • the source electrode 14 and the drain electrode 15 are formed on the organic semiconductor layer 16 by a vacuum deposition method or the like through a metal mask (not shown) having a predetermined opening.
  • a field effect transistor 1C shown in FIG. 5 is obtained.
  • a protective film may be further formed on the organic semiconductor layer 16 so as to cover the source electrode 14 and the drain electrode 15.
  • 12A to 12D are schematic cross-sectional views for explaining a method of manufacturing the field effect transistor 1D.
  • a gate electrode 12 is formed at a predetermined location on the substrate 11 by a method similar to the method described with reference to FIG. 11A, as shown in FIG. 12A.
  • a gate insulating film 13 is formed on the substrate 11 so as to cover the gate electrode 12.
  • An example of a method for forming the gate insulating film 13 is a sputtering method.
  • the surface modifier layer 18 is formed by applying a surface modifier to the surface of the gate insulating film 13.
  • the surface modification layer 18 is formed by a method of bringing the vapor of the surface modifier into contact with the surface of the gate insulating film 13, a method of immersing the substrate 11 on which the gate insulating film 13 is formed in a solution containing the surface modifier, and a surface modifier.
  • the solution can be formed by, for example, applying the solution containing the solution to the surface of the gate insulating film 13 by spin coating.
  • the organic semiconductor layer 16 is formed on the surface modification layer 18.
  • the organic semiconductor layer 16 can be formed by a method similar to the method described with reference to FIG. 11C.
  • the film quality of the organic semiconductor layer 16 becomes more uniform.
  • the source electrode 14 and the drain electrode 15 are formed on the organic semiconductor layer 16.
  • the source electrode 14 and the drain electrode 15 can be formed by a method similar to the method described with reference to FIG. 11D.
  • the field effect transistor 1D shown in FIG. 6 is obtained.
  • a protective film may be further formed on the organic semiconductor layer 16 so as to cover the source electrode 14 and the drain electrode 15.
  • the solar cell according to this embodiment includes an organic semiconductor layer containing the compound (1). And it can be set as the structure similar to the conventional solar cell except having provided this organic-semiconductor layer.
  • the compound (1) is mainly used as a p-type semiconductor.
  • R 1 to R 18 is a fluorine atom or has an electron withdrawing property. Is a high group, the compound (1) can also function as an n-type semiconductor.
  • FIG. 13 is a schematic cross-sectional view illustrating the main part of the solar cell according to this embodiment.
  • an anode electrode 22, a p-type semiconductor layer 24, an n-type semiconductor layer 25, and a cathode electrode 23 are laminated in this order on a glass substrate 21, and is schematically configured. That is, a pair of electrodes including an anode electrode 22 and a cathode electrode 23 and a pn junction p-type semiconductor layer 24 and an n-type semiconductor layer 25 sandwiched between the pair of electrodes are provided on the glass substrate 21. It is what was done.
  • the p-type semiconductor layer 24 contains the compound (1).
  • it may be formed by a low-cost thin film forming method such as a dipping method, a coating method, or a printing method using the above-described p-type semiconductor layer composition.
  • (1) may be formed by vapor deposition.
  • the film thickness of the p-type semiconductor layer 24 is preferably 5 nm to 500 nm.
  • the compound (1) has high oxidation resistance. Therefore, the p-type semiconductor layer 24 containing the compound (1) is stable in the air atmosphere.
  • Examples of the material of the n-type semiconductor layer 25 include fullerenes, fullerene derivatives, and fluorinated phthalocyanines exemplified for the n-type semiconductor material.
  • the film thickness of the n-type semiconductor layer 25 is preferably 5 nm to 500 nm.
  • Examples of the material of the anode electrode 22 include ITO, which is a transparent electrode, and PEDOT / PSS, which is an organic conductor.
  • the film thickness of the anode electrode 22 is preferably 10 nm to 500 nm.
  • Examples of the material of the cathode electrode 23 include silver and aluminum.
  • the film thickness of the cathode electrode 23 is preferably 10 nm to 500 nm.
  • the solar cell according to this embodiment includes an organic semiconductor layer including a p-type semiconductor material and an n-type semiconductor material, and at least one of the p-type semiconductor material and the n-type semiconductor material includes the compound (1). Including. That is, it is a so-called bulk heterojunction organic thin film solar cell.
  • FIG. 14 is a schematic cross-sectional view illustrating the main part of such a solar cell. In the solar cell 2B shown here, an anode electrode 22, an organic semiconductor layer 26, and a cathode electrode 23 are laminated in this order on a glass substrate 21, and is roughly configured.
  • a pair of electrodes composed of an anode electrode 22 and a cathode electrode 23 and an organic semiconductor layer 26 sandwiched between the pair of electrodes are provided on the glass substrate 21, a pair of electrodes composed of an anode electrode 22 and a cathode electrode 23 and an organic semiconductor layer 26 sandwiched between the pair of electrodes are provided.
  • the organic semiconductor layer 26 can be formed by the same method as in the case of the p-type semiconductor layer 24 in the solar cell 2A, for example, using the composition for an organic semiconductor layer of the solar cell.
  • the solar cell since the organic semiconductor layer is stable in the air atmosphere, the solar cell can operate stably over a long period of time in the air atmosphere as well.
  • the solar cell according to this embodiment can be manufactured, for example, by the following method.
  • 15A to 15D are schematic cross-sectional views for explaining a method for manufacturing the solar cell 2A.
  • the anode electrode 22 is formed on the glass substrate 21. Examples of the method for forming the anode electrode 22 include a sputtering method.
  • a p-type semiconductor layer 24 is formed on the anode electrode 22.
  • the p-type semiconductor layer 24 can be formed, for example, by placing the above-mentioned composition for a p-type semiconductor layer containing the compound (1) on the anode electrode 22 and further removing the solvent by drying as necessary.
  • the method for forming the p-type semiconductor layer 24 using the composition is the same as the method for forming the organic semiconductor layer using the composition for an organic semiconductor layer at the time of manufacturing the field effect transistor.
  • Examples thereof include a coating method such as a spin coating method; a printing method such as an inkjet method, a microcontact printing method, a reverse offset printing method, a flexographic printing method, a lithographic printing method, and an intaglio printing method.
  • the p-type semiconductor layer 24 may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like.
  • an n-type semiconductor layer 25 is formed on the p-type semiconductor layer 24.
  • An example of a method for forming the n-type semiconductor layer 25 is a vacuum deposition method.
  • the cathode electrode 23 is formed on the n-type semiconductor layer 25.
  • An example of a method for forming the cathode electrode 23 is a vacuum vapor deposition method.
  • the p-type semiconductor layer 24 has been described as including the compound (1). However, when the compound (1) is not included, the p-type semiconductor layer 24 may be a known one. .
  • the n-type semiconductor layer 25 has been described as being made of a known material. However, the n-type semiconductor layer 25 in this case may include the compound (1).
  • the p-type semiconductor layer 24 containing can be formed by the same method.
  • the organic light emitting device includes a carrier transport layer containing the compound (1). And it can be set as the structure similar to the conventional organic light emitting element except having provided this carrier transport layer.
  • the compound (1) is mainly used as a p-type semiconductor (a material for a hole transport layer).
  • R 1 to R 18 are fluorine atoms, or in the case of a group having a high electron-withdrawing property such as having a fluorine atom, the compound (1) can also function as an n-type semiconductor (material for an electron transport layer).
  • FIG. 16 is a schematic cross-sectional view illustrating the main part of the organic light emitting device according to the invention.
  • the organic light emitting element 3A shown here is schematically configured by laminating an anode electrode 32, an organic electroluminescence (hereinafter abbreviated as organic EL) portion 34, and a cathode electrode 33 in this order on a glass substrate 31. That is, a pair of electrodes including an anode electrode 32 and a cathode electrode 33 and an organic EL portion 34 sandwiched between the pair of electrodes are provided on the glass substrate 31.
  • organic EL organic electroluminescence
  • the anode electrode 32 and the cathode electrode 33 are the same as the anode electrode and the cathode electrode in the solar cell, respectively.
  • a hole injection layer 34a, a hole transport layer 34b, a light emitting layer 34c, an electron transport layer 34d, and an electron injection layer 34e are laminated in this order from the anode electrode 32 side to the cathode electrode 33 side. It is roughly structured.
  • the hole injection layer 34a, the hole transport layer 34b, the light emitting layer 34c, the electron transport layer 34d, and the electron injection layer 34e may each have a single layer structure or a multilayer structure.
  • the hole transport layer 34b contains the compound (1).
  • the carrier (hole) transport layer composition may be formed by a low-cost thin film forming method such as an immersion method, a coating method, or a printing method.
  • the compound (1) may be formed by vapor deposition.
  • the thickness of the hole transport layer 34b is preferably 5 nm to 500 nm. As described above, the compound (1) has high oxidation resistance. Therefore, the hole transport layer 34b containing the compound (1) is stable in the air atmosphere.
  • the hole injection / transport material may be a known material for organic EL or organic photoconductor.
  • Preferred hole injecting and transporting materials include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 3 ) and inorganic p-type semiconductor materials; polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA) 3,4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinylcarbazole (PVCz), poly (p-phenylene vinylene) (PPV), Examples thereof include a polymer material such as poly (p-naphthalene vinylene) (PNV).
  • a hole injection transport material applied to the hole injection layer 34a from a viewpoint of performing injection and transport of holes from the anode electrode more efficiently, a hole injection transport material applied to the hole transport layer 34b is used.
  • a material having a low energy level of the highest occupied molecular orbital (HOMO) is preferable.
  • the film thickness of the hole injection layer 34a is preferably 1 nm to 500 nm.
  • the material of the light emitting layer 34c may be a known material for organic EL and can be classified into, for example, a low molecular light emitting material and a polymer light emitting material.
  • Preferred examples of the low-molecular light-emitting material include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi); 5-methyl-2- [2- [4- Oxadiazole compounds such as (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenylyl) -4-phenyl-5-tert-butylphenyl-1,2,4 A triazole derivative such as triazole (TAZ); a styrylbenzene compound such as 1,4-bis (2-methylstyryl) benzene; a fluorenone derivative; a carbazole such as 4,4′-N, N′-dicarbazol-biphen
  • phosphorescent materials such as tris (2-phenylpyridine) iridium (Ir (PPY) 3
  • Ir (PPY) 3 iridium
  • Preferred examples of the polymer light-emitting material include polyphenylene vinylene derivatives such as poly (2-decyloxy-1,4-phenylene) (DO-PPP); polyspiro derivatives such as poly (9,9-dioctylfluorene) (PDAF). Etc. can be illustrated.
  • the thickness of the light emitting layer 34c is preferably 5 nm to 500 nm.
  • the electron injection / transport material may be a known material for organic EL or organic photoconductor.
  • Preferred electron injecting and transporting materials include inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives, (8 Examples thereof include low-molecular materials such as -hydroxyquinoline aluminum) (A1q 3 ); polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS).
  • inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone
  • examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ); oxides such as lithium oxide (Li 2 O) and the like.
  • the electron injection / transport material applied to the electron injection layer 34e is at least unoccupied than the electron injection / transport material applied to the electron transport layer 34d from the viewpoint of more efficiently injecting and transporting electrons from the cathode electrode.
  • a material having a high energy level of molecular orbital (LUMO) is preferable.
  • the electron injecting and transporting material applied to the electron transporting layer 34d is preferably a material having higher electron mobility than the electron injecting and transporting material applied to the electron injecting layer 34e.
  • the film thickness of the electron transport layer 34d is preferably 5 nm to 500 nm.
  • the film thickness of the electron injection layer 34e is preferably 0.1 nm to 100 nm.
  • the organic light emitting device is not limited to the one shown in FIG. 16, and a part of the configuration may be changed.
  • the structure of the organic EL unit 34 as follows can be given.
  • An organic EL part in which a hole injection layer, a hole transport layer, a light emitting layer, a hole prevention layer, and an electron transport layer are laminated in this order from the anode electrode 32 side to the cathode electrode 33 side.
  • An organic EL portion in which a hole injection layer, a hole transport layer, a light emitting layer, a hole prevention layer, an electron transport layer, and an electron injection layer are laminated in this order from the anode electrode 32 side to the cathode electrode 33 side.
  • the hole prevention layer and the electron prevention layer may be known for organic EL.
  • the organic light-emitting device can operate stably over a long period of time in the air atmosphere because the hole transport layer is stable in the air atmosphere.
  • the organic light emitting device according to this embodiment can be manufactured by, for example, the following method.
  • 17A to 17G are schematic cross-sectional views for explaining a method for manufacturing the organic light emitting device 3A.
  • an anode electrode 32 is formed on a glass substrate 31.
  • An example of a method for forming the anode electrode 32 is a sputtering method.
  • a hole injection layer 34 a is formed on the anode electrode 32.
  • a spin coating method can be exemplified.
  • a hole transport layer 34b is formed on the hole injection layer 34a.
  • the hole transport layer 34b is formed by placing the above-described carrier (hole) transport layer composition containing the compound (1) on the hole injection layer 34a, and further removing the solvent by drying as necessary. Can be formed.
  • the method for forming the hole transport layer 34b using the composition for the hole transport layer is the same as the method for forming the organic semiconductor layer using the composition for the organic semiconductor layer during the production of the field effect transistor.
  • the hole transport layer 34b may be formed by vapor-depositing the compound (1) by a vacuum vapor deposition method or the like.
  • a light emitting layer 34c is formed on the hole transport layer 34b.
  • An example of a method for forming the light emitting layer 34c is a vacuum deposition method.
  • an electron transport layer 34d is formed on the light emitting layer 34c.
  • An example of a method for forming the electron transport layer 34d is a vacuum deposition method.
  • an electron injection layer 34e is formed on the electron transport layer 34d.
  • a vacuum deposition method can be exemplified.
  • the cathode electrode 33 is formed on the electron injection layer 34e.
  • a vacuum deposition method can be exemplified. By performing the above steps, an organic light emitting device 3A shown in FIG. 16 is obtained.
  • the positive hole transport layer 34b when not including the said compound (1), the positive hole transport layer 34b is for organic EL. A well-known thing may be sufficient.
  • the electron transport layer 34d has been described as being made of a known material for organic EL or organic photoconductor. However, the electron transport layer 34d may include the compound (1). Can be formed by the same method as in the case of the hole transport layer 34b containing the compound (1).
  • the array for a display device includes the field effect transistor as a switching element. And it can be set as the structure similar to the array for conventional display apparatuses except having provided this field effect transistor.
  • the array for a display device according to the present embodiment includes the field effect transistor, and thus can operate at high speed.
  • FIG. 18A is a plan view illustrating the main part of the array for a display device according to the invention.
  • FIG. 18B is an enlarged plan view illustrating the main part of the array for a display device according to the invention.
  • 18C is a cross-sectional view taken along the line CC ′ of FIG. 18B illustrating the main part of the array for a display device according to the present invention.
  • 18D is a cross-sectional view taken along the line DD ′ of FIG. 18B illustrating the main part of the array for display devices according to the present invention.
  • the display device array 4A shown here is used as an array for driving an image display device by arranging the organic semiconductor devices 42 including the field effect transistors 1A shown in FIG. 1 in a matrix.
  • the display device array 4A is roughly composed of an organic semiconductor device 42 including a gate wiring 40, a source wiring 41, a pixel electrode 43, and a field effect transistor 1A electrically connected to the gate wiring 40 and the source wiring 41 provided on the transparent substrate 11. It is configured.
  • the gate wiring 40 constitutes the gate electrode 12 in FIG. 1 and also serves as a connection wiring to the gate electrode 12.
  • a source electrode 14 and a drain electrode 15 are provided on the gate wiring 40 with a gate insulating film 13 therebetween, and an organic semiconductor layer 16 is formed on the gate insulating film 13 between the source electrode 14 and the drain electrode 15. Is provided. Further, the drain electrode 15 is connected to the pixel electrode 43 and configured as a driving array.
  • the organic semiconductor device 42 can be manufactured by the same method as in the case of the field effect transistor 1A, for example, except that it includes a step of forming the source wiring 41 and the pixel electrode 43. Specifically, it is as follows. 19A to 19E are schematic cross-sectional views for explaining the method for manufacturing the organic semiconductor device 42. First, in the same manner as described with reference to FIGS. 9A to 9C, as shown in FIGS. 19A to 19C, the gate wiring 40 (gate electrode 12) and the gate insulating film 13 are sequentially formed on the substrate 11. Next, a photoresist film 90 having a predetermined pattern is formed.
  • the gate insulating film 13 is formed so as to cover the surface of the gate wiring 40 and cover the entire surface of the substrate 11, and then etched into a predetermined pattern.
  • the source electrode 14 and the drain electrode 15 are formed by a method similar to the method described with reference to FIG. 9D.
  • the source wiring 41 is formed on the gate insulating film 13 so as to be in contact with the source electrode 14, and the pixel electrode 43 is formed so as to be in contact with the drain electrode 15.
  • the source wiring 41 and the pixel electrode 43 are made of a metal such as silver (Ag), for example, and can be formed by various printing methods.
  • the pixel electrode 43 may be made of the same material as the anode electrode 32 or the cathode electrode 33 of the organic light emitting element 3A.
  • ITO that is a transparent electrode may be used.
  • an organic semiconductor layer 16 is formed on the gate insulating film 13 as shown in FIG. 19E by a method similar to the method described with reference to FIG. 9E. However, here, the organic semiconductor layer 16 is formed only on the gate insulating film 13 between the source electrode 14 and the drain electrode 15 by a method using a metal mask or the like. By performing the above steps, the organic semiconductor device 42 is obtained. And the array 4A for display apparatuses is obtained by arrange
  • the display device array according to the present embodiment is suitable for driving an image display device such as a liquid crystal display device or an organic EL display device.
  • the display device includes an image signal output unit, a drive unit, and a light emitting unit.
  • the image signal output unit generates and outputs an image signal.
  • the driving unit generates a current or a voltage based on the image signal.
  • the light emitting unit emits light by the generated current or voltage.
  • the light emitting unit is the organic light emitting element. And it can be set as the structure similar to the conventional display apparatus except having provided this organic light emitting element.
  • the display device according to the present embodiment includes the organic light emitting element, so that good light emission characteristics can be obtained.
  • FIG. 20A is a plan view illustrating the main part of the display device according to this embodiment.
  • FIG. 20B is an equivalent circuit diagram of one pixel illustrating the main part of the display device according to this embodiment.
  • FIG. 20C is a plan view of one pixel illustrating the main part of the display device according to this embodiment.
  • the display device 5 ⁇ / b> A shown here is an organic EL display device using the organic light emitting element 3 according to the present embodiment as an element of the organic EL display device.
  • a matrix is formed in which a plurality of scanning lines (gate lines) 50 and a plurality of signal lines (source lines) 51 are arranged vertically and horizontally, and one pixel is located near each intersection. A provided pixel array is formed.
  • a scanning line driving circuit (gate driver) 55 connected to the scanning line 50 and a signal line driving circuit (source driver) 56 connected to the signal line 51 are arranged.
  • the scanning line driving circuit 55 and the signal line driving circuit 56 are connected to a controller 57 for supplying image signals such as timing signals for displaying images and RGB luminance signals.
  • a power supply circuit 59 for supplying a signal voltage to be applied to the scanning line 50 and the signal line 51 is connected to the scanning line driving circuit 55 and the signal line driving circuit 56.
  • the controller 57 is connected to an external processing device 58 for supplying a horizontal / vertical synchronizing signal and an image signal from the outside to the display device 5A. As shown in FIG.
  • one pixel of the pixel array constituting the display device 5A includes a pixel portion including a switching transistor 52, a driving transistor 53, a storage capacitor 54, and an organic light emitting element 3 (organic EL element).
  • the switching transistor 52 is connected to the scanning line 50 and the signal line 51.
  • the driving transistor 53 drives the pixel.
  • a pixel portion including the organic light emitting element 3 (organic EL element) is connected to the driving transistor 53.
  • the organic light emitting element 3 emits light by a driving current or voltage.
  • the switching transistor 52 and the driving transistor 53 can be configured by, for example, a transistor using general polycrystalline silicon as a semiconductor.
  • a method for manufacturing the switching transistor 52 and the driving transistor 53 using polycrystalline silicon as a semiconductor will be described with reference to FIGS. 23A to 23F.
  • the polysilicon film 100 is formed as shown in FIG. 23A using a laser annealing method or a solid phase growth method using an excimer laser, for example. Form.
  • the thickness of the polysilicon film 100 is, for example, 80 nm.
  • the polysilicon film 100 is patterned by photolithography and etching to form island-like polysilicon films 101 and 102 that become channel regions of the switching transistor 52 and the driving transistor 53.
  • a silicon oxide (SiO 2) film (not shown) is formed as a gate insulating film on the island-shaped polysilicon films 101 and 102.
  • the thickness of the gate insulating film is, for example, 100 nm.
  • a metal film for forming a gate electrode is formed on the substrate, and gate electrodes 103 and 104 are formed on the channel region by photolithography and etching.
  • As a metal for forming the gate electrodes 103 and 104 commonly used metals such as Ta, Al, and Mo, or alloys thereof can be used.
  • the thickness of the gate electrodes 103 and 104 is, for example, 300 nm.
  • impurity ions are introduced into the source and drain portions of the island-like polysilicon films 101 and 102 using the gate electrodes 103 and 104 as masks, and activation is performed by laser annealing or the like. As a result, the resistance of the source and drain portions of the island-like polysilicon films 101 and 102 is reduced. For example, after implanting boron (B) as p-type impurity ions, the resistance of the source and drain portions is reduced by laser activation.
  • B boron
  • Contact holes are formed in the gate insulating film located on the source and drain portions of the polysilicon films 101 and 102 using photolithography and etching. Subsequently, a metal film is formed on the gate insulating film and the contact hole. The metal film is patterned using photolithography and etching to form a signal line 51, a power supply line Vdd, and source electrodes 105 and 106 as shown in FIG. 23D. In the pixel structure of this embodiment, a part of the power supply line Vdd also serves as an electrode of the capacitor 54 described later.
  • the metal film for example, Al or Al—Si alloy having a low resistance can be used.
  • an interlayer insulating film (not shown) is formed on the entire surface of the substrate, photolithography and etching are used for the portions where the gate electrodes 103 and 104 and the drain electrode of the switching transistor 52 and the driving transistor 53 are formed.
  • a silicon oxide film or a silicon nitride film can be used as the interlayer insulating film.
  • the thickness of the interlayer insulating film is, for example, 400 nm.
  • An electrode is formed.
  • this metal film an Al—Si alloy having a low resistance can be used.
  • the gate electrode 103 of the switching transistor 52 is electrically connected to the scanning line 50.
  • the gate electrode 104 of the driving transistor 53 is electrically connected to the drain electrode 107 of the switching transistor 52.
  • a part of the drain electrode 107 of the switching transistor 52 is overlapped with an extended part of the power supply line Vdd via an interlayer insulating film to form a capacitor 54.
  • a pixel electrode 108 made of ITO is formed as the drain electrode of the driving transistor 53.
  • the pixel electrode 108 is the anode electrode 32 of the organic light emitting element 3.
  • any element according to the present embodiment including the organic light emitting element 3A shown in FIG. 16 can be used.
  • the display device 5A is configured as described above.
  • Example 1 a compound represented by the following general formula (1a-1) (hereinafter abbreviated as compound (1a-1)) is used as the compound (1a), and the following general formula (1- 1) (hereinafter abbreviated as compound (1-1)) was produced.
  • Ph is a phenyl group
  • Ac is an acetyl group
  • bpy is 2,2′-bipyridine.
  • Compound (1a-2) includes a compound represented by the following formula (1a-201) (hereinafter abbreviated as compound (1a-201)) and a compound represented by the following formula (1a-202) (hereinafter referred to as “compound”). (Abbreviated as compound (1a-202)).
  • Me is a methyl group
  • Et is an ethyl group
  • Ph is a phenyl group
  • Ac is an acetyl group.
  • the compounds (1-1) and (1-2) have a lower HOMO level than pentacene and have a large ionization potential, that is, the compound (1-1) Showed higher oxidation resistance than pentacene. Further, it is known that when the HOMO-LUMO gap (energy difference between HOMO-LUMO) is small, the stability of the compound is lowered, and the compounds (1-1) and (1-2) are more effective than pentacene. Since the HOMO-LUMO gaps are as large as 1.85 eV and 2.37 eV, respectively, it was shown that the compounds (1-1) and (1-2) are excellent in stability.
  • the HOMO level such as the compounds (1-1) and (1-2)
  • a compound as an organic semiconductor layer of a field effect transistor in which the source electrode and the gate electrode are gold (work function is about 5 eV). It was expected that hole injection would be possible using (1-1) and (1-2).
  • the compounds (1-1) and (1-2) have higher oxidation resistance than pentacene, which is a typical organic semiconductor material, and are stable even in the air atmosphere.
  • pentacene which is a typical organic semiconductor material
  • the compounds (1-1) and (1-2) as semiconductor materials, a semiconductor device having stable electrical characteristics can be provided.
  • the compound (1) can be easily produced using commercially available materials and has high practicality.
  • the field effect transistor 1C shown in FIG. 5 was manufactured by the manufacturing method described with reference to FIGS. 11A to 11D. More specifically, it is as follows.
  • a glass substrate Cornning, Eagle 2000, thickness: 0.5 mm
  • the material of the gate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al).
  • a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy.
  • the patterning of the metal film was performed by photolithography and etching.
  • the material of the gate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
  • the organic semiconductor layer 16 was formed by forming a film by a vacuum evaporation method using the compound (1-1) manufactured in Example 1 with a film thickness of about 40 nm.
  • the source electrode 14 and the drain electrode 15 were made of gold (Au), and an Au film having a film thickness of 40 nm was formed by a vacuum deposition method through a metal mask. At this time, the distance (channel length) between the source electrode 14 and the drain electrode 15 was 50 ⁇ m, and the length of the opposing electrode (channel width) was 1000 ⁇ m.
  • the organic transistor fabricated as described above exhibited characteristics as a p-type transistor element. Charge mobility was determined from the saturation region of the current-voltage (IV) characteristics of the organic transistor, and the measurement results are shown in Table 3. *
  • the field effect transistor 1D shown in FIG. 6 was manufactured by the manufacturing method described with reference to FIGS. 12A to 12D. More specifically, it is as follows.
  • a glass substrate Cornning, Eagle 2000, thickness: 0.5 mm
  • the material of the gate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al).
  • a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy. The patterning of the metal film was performed by photolithography and etching.
  • the material of the gate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
  • the surface modification layer 18 was formed by placing the substrate 11 on which the gate insulating film 13 was formed in a petri dish (150 ° C.) in a hexamethyldisilazane (HMDS) atmosphere for 30 minutes.
  • the organic semiconductor layer 16 was formed by forming a film by a vacuum evaporation method using the compound (1-1) manufactured in Example 1 with a film thickness of about 40 nm.
  • the source electrode 14 and the drain electrode 15 were made of gold (Au), and an Au film having a film thickness of 40 nm was formed by a vacuum deposition method through a metal mask. At this time, the distance (channel length) between the source electrode 14 and the drain electrode 15 was 50 ⁇ m, and the length of the opposing electrode (channel width) was 1000 ⁇ m.
  • the organic transistor fabricated as described above exhibited characteristics as a p-type transistor element. Charge mobility was determined from the saturation region of the current-voltage (IV) characteristics of the organic transistor, and the measurement results are shown in Table 3. *
  • Example 5 An organic transistor was produced by the method of Example 4 except for the formation of the surface modification layer 18 in Example 4.
  • octadecyltrichlorosilanesilane (ODS) was used as a surface modifier.
  • the surface modification layer 18 was formed as follows. The substrate 11 on which the gate insulating film 13 is formed is immersed in an anhydrous toluene solution (5 mmol) of octadecyltrichlorosilanesilane (ODS) for 18 hours, and then subjected to ultrasonic waves for 10 minutes each in chloroform, acetone, ethanol, and ultrapure water. The surface modification layer 18 was formed by washing.
  • An organic transistor was produced by the method of Example 4 except for the formation of the surface modification layer 18.
  • Example 6 In Example 3, an organic transistor was fabricated by the method described in Example 3 except that the substrate was heated to 100 ° C. when forming the organic semiconductor layer.
  • Example 7 an organic transistor was produced by the method described in Example 4 except that the substrate was heated to 100 ° C. when forming the organic semiconductor layer.
  • Example 8 In Example 5, an organic transistor was fabricated by the method described in Example 5 except that the substrate was heated to 100 ° C. when forming the organic semiconductor layer.
  • Example 9 the organic semiconductor layer was formed by the method described in Example 3 except that the compound of exemplary compound number 1-2 was used instead of the compound of exemplary compound number 1-1. A transistor was manufactured.
  • Example 10 the organic semiconductor layer was formed by the method described in Example 4 except that the compound of exemplary compound number 1-2 was used instead of the compound of exemplary compound number 1-1. A transistor was manufactured.
  • Example 11 the organic semiconductor layer was formed by the method described in Example 5 except that the compound of exemplary compound number 1-2 was used instead of the compound of exemplary compound number 1-1. A transistor was manufactured.
  • Example 12 the organic semiconductor layer was formed by the method described in Example 6 except that the compound of exemplary compound number 1-2 was used instead of the compound of exemplary compound number 1-1. A transistor was manufactured.
  • Example 13 the organic semiconductor layer was formed by the method described in Example 7 except that the compound of exemplary compound number 1-2 was used instead of the compound of exemplary compound number 1-1. A transistor was manufactured.
  • Example 14 the organic semiconductor layer was formed by the method described in Example 7 except that the compound of exemplary compound number 1-2 was used instead of the compound of exemplary compound number 1-1. A transistor was manufactured.
  • the organic transistor of this example showed characteristics as a p-type transistor element, but the charge mobility varies greatly depending on the device fabrication process.
  • an organic transistor having high charge mobility can be manufactured by using a specific combination, that is, using a substrate that has been subjected to a surface modifier treatment on an insulating film, and heating the substrate during vapor deposition.
  • the selection of the surface modifier is also an important factor affecting the magnitude of the charge mobility, and in the compound of the embodiment of the present invention, a significant improvement in the charge mobility is recognized in the transistor using HMDS as the surface modifier. It was.
  • these organic transistors operate stably even in an air atmosphere, and no significant deterioration in characteristics was observed even in the measurement one month after being placed in the air.
  • the field effect transistor 1A shown in FIG. 1 was manufactured by the manufacturing method described with reference to FIGS. 9A to 9E. More specifically, it is as follows.
  • a glass substrate Cornning, Eagle 2000, thickness: 0.5 mm
  • the material of the gate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al).
  • a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy. The patterning of the metal film was performed by photolithography and etching.
  • the material of the gate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
  • the photoresist film 90 was formed by spin coating using a negative photoresist (ZPN 1150, manufactured by Nippon Zeon Co., Ltd.) for lift-off process, and then by photolithography.
  • ZPN 1150 negative photoresist
  • a lift-off method in which an adhesion layer made of chromium (Cr) with a thickness of 2 nm and a metal film made of gold (Au) with a thickness of 40 nm are sequentially formed by vacuum deposition, and the substrate 11 is immersed in an organic solvent such as acetone.
  • the photoresist film 90 and the unnecessary Au film / Cr film formed thereon were removed by the method to form the source electrode 14 and the drain electrode 15. At this time, the distance (channel length) between the source electrode 14 and the drain electrode 15 was 20 ⁇ m, and the length of the opposing electrode (channel width) was 1000 ⁇ m.
  • the organic semiconductor layer 16 was formed by forming a film by a vacuum evaporation method using the compound (1-1) manufactured in Example 1 with a film thickness of about 40 nm.
  • the field effect transistor 1A manufactured through the above steps operates stably even in the air atmosphere as in the transistor of the above-described embodiment, and no significant deterioration in characteristics is observed even after one month after being placed in the air. It was. *
  • Example 16 In Example 15, when the organic semiconductor layer 16 was formed, instead of using the compound of Exemplified Compound No. 1-1, instead of using the compound of Exemplified Compound No. 1-2, the method described in Example 15 was used. An organic transistor was fabricated. The field effect transistor 1A manufactured through the above steps operates stably even in the air atmosphere as in the transistor of the above-described embodiment, and no significant deterioration in characteristics is observed even after one month after being placed in the air. It was.
  • the field effect transistor 1B shown in FIG. 3 was manufactured by the manufacturing method described with reference to FIGS. 10A to 10F. More specifically, it is as follows.
  • a glass substrate Cornning, Eagle 2000, thickness: 0.5 mm
  • the material of the gate electrode 12 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al).
  • a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy. The patterning of the metal film was performed by photolithography and etching.
  • the material of the gate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
  • the photoresist film 90 was formed to have a film thickness of 4 ⁇ m by spin coating using a negative photoresist (ZPN1150, manufactured by Nippon Zeon Co., Ltd.) for lift-off process, and then formed by photolithography.
  • ZPN1150 negative photoresist
  • a lift-off method in which an adhesion layer made of chromium (Cr) with a thickness of 2 nm and a metal film made of gold (Au) with a thickness of 40 nm are sequentially formed by vacuum deposition, and the substrate 11 is immersed in an organic solvent such as acetone.
  • the photoresist film 90 and the unnecessary Au film / Cr film formed thereon were removed by the method to form the source electrode 14 and the drain electrode 15.
  • the distance (channel length) between the source electrode 14 and the drain electrode 15 was 20 ⁇ m
  • the length of the opposing electrode (channel width) was 1000 ⁇ m.
  • the surface modification layer 18 is obtained by immersing the substrate 11 on which the source electrode 14 and the drain electrode 15 are formed in an ethanol solution of dodecanethiol (10 mg / mL) for 1 hour, and then washing with isopropyl alcohol under a dry nitrogen stream. Formed by drying.
  • the organic semiconductor layer 16 was formed by forming a film by a vacuum evaporation method using the compound (1-1) manufactured in Example 1 with a film thickness of about 40 nm.
  • the field effect transistor 1B manufactured through the above steps operates stably even in the air atmosphere as in the transistor of the above-described embodiment, and no significant deterioration in characteristics is observed even after one month after being placed in the air. It was.
  • Example 18 In Example 17, when the organic semiconductor layer 16 was formed, instead of using the compound of Exemplary Compound No. 1-1, instead of using the compound of Exemplary Compound No. 1-2, the method described in Example 17 was used. An organic transistor was fabricated. The field effect transistor 1B manufactured through the above steps operates stably even in the air atmosphere as in the transistor of the above-described embodiment, and no significant deterioration in characteristics is observed even after one month after being placed in the air. It was.
  • the organic semiconductor layer 16 was formed by a spin coating method using a composition for an organic semiconductor layer containing the compound (1-1) instead of the vacuum vapor deposition method using the compound (1-1).
  • a field effect transistor 1A was manufactured in the same manner as in Example 5.
  • the organic semiconductor layer composition at this time was prepared using chloroform as a solvent so that the concentration of the compound (1-1) was 0.5 mass%.
  • the organic semiconductor layer composition was applied by a spin coating method (rotation number: 1500 rpm) and then gently dried in a saturated chloroform atmosphere to form an organic semiconductor layer 16 having a thickness of about 40 nm.
  • the obtained field effect transistor 1A like the transistors of the above examples, stably operated even in the air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
  • Example 20 In Example 19, when the organic semiconductor layer 16 was formed, instead of using the compound of Exemplified Compound No. 1-1, instead of using the compound of Exemplified Compound No. 1-2, the method described in Example 19 was used. An organic transistor was fabricated. The obtained field effect transistor 1A, like the transistors of the above examples, stably operated even in the air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
  • Example 21 The field effect transistor 1A ′ shown in FIG. 2 was manufactured by the manufacturing method described with reference to FIGS. 9A to 9E. That is, after forming the organic semiconductor layer 16 by the same method as in Example 19, a Parylene C film having a film thickness of 500 nm is further formed as the protective film 17 by using a lab coater PDS2010 (trade name, manufactured by Japan Parylene). Forming on the layer 16 produced the field effect transistor 1A ′.
  • the obtained field effect transistor 1A ′ operates stably even in the air atmosphere as in the transistors of the above examples, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
  • Example 22 the organic semiconductor layer 16 was formed by the method described in Example 21 except that the compound of Exemplified Compound No. 1-2 was used instead of the compound of Exemplified Compound No. 1-1. An organic transistor was fabricated. The obtained field effect transistor 1A ′ operates stably even in the air atmosphere as in the transistors of the above examples, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
  • the solar cell 2A shown in FIG. 13 was manufactured by the manufacturing method described with reference to FIGS. 15A to 15D. More specifically, it is as follows.
  • an ITO film having a thickness of 150 nm was formed by a sputtering method.
  • the p-type semiconductor layer 24 was formed by vacuum deposition using the compound (1-1) manufactured in Example 1 with a film thickness of about 40 nm.
  • a film made of perfluorophthalocyanine having a film thickness of 50 nm was formed by a vacuum deposition method.
  • an aluminum (Al) film having a thickness of 100 nm was formed by a vacuum deposition method.
  • the obtained solar cell 2A operated stably even in an air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
  • Example 24 the p-type semiconductor layer 24 was formed by the method described in Example 23, except that the compound of exemplary compound number 1-2 was used instead of the compound of exemplary compound number 1-1. A solar cell 2A was produced. The obtained solar cell 2A operated stably even in an air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
  • the organic light emitting device 3A shown in FIG. 16 was manufactured by the manufacturing method described with reference to FIGS. 17A to 17G. More specifically, it is as follows.
  • As the anode electrode 32 an ITO film having a film thickness of 150 nm was formed by a sputtering method.
  • the hole injection layer 34a was formed by placing PEDOT / PSS (Bytron-P, manufactured by Bayer) on the anode electrode 32 by spin coating (rotation speed: 1500 rpm), and the film thickness was about 50 nm.
  • the hole transport layer 34b was formed by forming a film by a vacuum deposition method using the compound (1-1) manufactured in Example 1 with a film thickness of about 40 nm.
  • the light emitting layer 34c is formed by depositing 4,4′-N, N′-dicarbazol-biphenyl (CBP) and tris (2-phenylpyridine) iridium (Ir (PPY) 3 ) on the hole transport layer 34b, respectively. It formed by the vacuum evaporation method which co-evaporates from a source. The concentration of Ir (PPY) 3 in the formed light emitting layer 34c was 6.5% by mass.
  • the film thickness was 40 nm.
  • the electron transport layer 34d was formed by vacuum-depositing tris (8-hydroxyquinoline aluminum) (A1q 3 ) on the light emitting layer 34c, and had a film thickness of 40 nm.
  • the electron injection layer 34e was formed by vacuum-depositing lithium oxide (Li 2 O) on the electron transport layer 34d, and the film thickness was 0.5 nm.
  • the cathode electrode 33 was formed by vacuum-depositing aluminum (Al) on the electron injection layer 34e, and the film thickness was 150 nm.
  • the obtained organic light emitting device 3A light emission from Ir (PPY) 3 was observed. Further, it stably operated even in an air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
  • Example 26 the hole transport layer 34b was formed by the method described in Example 21 except that the compound of exemplary compound number 1-2 was used instead of the compound of exemplary compound number 1-1.
  • An organic light emitting device 3A was produced. In the obtained organic light emitting device 3A, light emission from Ir (PPY) 3 was observed. Further, it stably operated even in an air atmosphere, and no significant deterioration in the characteristics was observed even after one month after being placed in the air.
  • the display device array 4A shown in FIGS. 18A to 18D was manufactured using the method for manufacturing the organic semiconductor device described with reference to FIGS. 19A to 19E. More specifically, it is as follows.
  • a glass substrate Cornning, Eagle 2000, thickness: 0.5 mm
  • the material of the gate wiring 40 was an AlSi alloy in which 10% silicon (Si) was added to aluminum (Al).
  • a 40 nm thick metal film made of an AlSi alloy was formed on the substrate 11 by sputtering using a metal target made of this AlSi alloy.
  • the patterning of the metal film was performed by photolithography and etching.
  • the material of the gate insulating film 13 was silicon oxide (SiO 2 ), and a silicon oxide film having a thickness of 300 nm was formed by a sputtering method.
  • the photoresist film 90 was formed to have a film thickness of 4 ⁇ m by spin coating using a negative photoresist (ZPN1150, manufactured by Nippon Zeon Co., Ltd.) for lift-off process, and then formed by photolithography.
  • ZPN1150 negative photoresist
  • a lift-off method in which an adhesion layer made of chromium (Cr) with a thickness of 2 nm and a metal film made of gold (Au) with a thickness of 40 nm are sequentially formed by vacuum deposition, and the substrate 11 is immersed in an organic solvent such as acetone.
  • the photoresist film 90 and the unnecessary Au film / Cr film formed thereon were removed by the method to form the source electrode 14 and the drain electrode 15.
  • the distance (channel length) between the source electrode 14 and the drain electrode 15 was 20 ⁇ m
  • the length of the opposing electrode (channel width) was 1000 ⁇ m.
  • the source wiring 41 and the pixel electrode 43 were formed in a desired pattern with a thickness of 50 nm by performing reverse printing of Ag ink and baking at 180 ° C.
  • the organic semiconductor layer 16 was formed by forming a film by a vacuum deposition method using a compound (1-1) manufactured in Example 1 and a metal mask with a film thickness of about 40 nm. Then, the obtained organic semiconductor devices 42 were arranged in a matrix to form a display device array 4A.
  • Example 28 In Example 27, the organic semiconductor layer 16 was formed by the method described in Example 27, except that the compound of Exemplified Compound No. 1-2 was used instead of the compound of Exemplified Compound No. 1-1. An array 4A for display device was produced.
  • Example 29 With the manufacturing method described with reference to FIGS. 23A to 23F, the display device 5A shown in FIGS. 20A to 20C was manufactured using the organic light emitting device 3A shown in FIG. 16 as an element of the organic EL display device.
  • the organic light emitting device 3A was manufactured in the same manner as in Example 21. More specifically, it is as follows.
  • a polysilicon film 100 having a thickness of 80 nm was formed using a laser annealing method using an excimer laser.
  • the polysilicon film 100 is patterned by photolithography and etching to form island-like polysilicon films 101 and 102 that become channel regions of the switching transistor 52 and the driving transistor 53.
  • SiO 2 silicon oxide
  • Contact holes were formed in the gate insulating film located on the source and drain portions of the island-like polysilicon films 101 and 102 using photolithography and etching. Subsequently, an aluminum film was formed on the gate insulating film and the contact hole. The aluminum film was patterned using photolithography and etching to form the signal line 51, the power supply line Vdd, and the source electrodes 105 and 106. In the pixel structure of this embodiment, a part of the power supply line Vdd also serves as an electrode of the capacitor 54 described later.
  • the gate electrodes 103 and 104 of the switching transistor 52 and the driving transistor 53, and the drain electrode are formed on the portion. Contact holes were formed using photolithography and etching.
  • the Al—Si alloy film is patterned by photolithography and etching, so that the scanning line 50, the drain electrode 107 of the switching transistor 52, and the capacitor 54 are opposed to each other. An electrode was formed.
  • a capacitor 54 was formed by a part of the drain electrode 107 of the switching transistor 52, an extended part of the power supply line Vdd, and an interlayer insulating film.
  • a pixel electrode 108 made of ITO was formed as the drain electrode of the driving transistor 53.
  • the pixel electrode 108 is the anode electrode 32 of the organic light emitting element 3.
  • the organic EL portion described in Example 21 was sequentially formed on the pixel electrode 108 by using mask vapor deposition, thereby forming the organic light emitting element 3A electrically connected to the driving transistor 53.
  • the display device 5A shown in FIG. 20A was manufactured using the organic light emitting device 3A as an element of the organic EL display device.
  • Example 30 In Example 29, when the organic EL part was formed, instead of using the organic EL part described in Example 21, the method described in Example 29 was used except that the organic EL part described in Example 22 was used. A display device 5A was produced.
  • the embodiment of the present invention can be used for semiconductor devices such as field effect transistors, solar cells, and organic light emitting elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

 下記一般式(1)で表される化合物(式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、又は置換基を有していてもよい芳香族基、アルコキシ基、芳香族オキシ基、アルキル置換アミノ基、芳香族置換アミノ基、アシル基もしくは炭素数1~20の脂肪族炭化水素基である。a およびb はそれぞれ独立に0 ~ 3の整数を示す。cおよびdはそれぞれ独立に0 ~ 6の整数を示す。R~Rはがそれぞれ複数ある場合、それらはそれぞれが独立しており、互いに同一でも異なっていてもよい。);かかる化合物を含む有機半導体層を備えた電界効果トランジスタ;かかる電界効果トランジスタをスイッチング素子として備えた表示装置用アレイ。

Description

化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
 本発明は、新規の化合物、前記化合物を用いた電界効果トランジスタ及びその製造方法、並びに前記化合物を用いた太陽電池、有機発光素子、電界効果トランジスタの有機半導体層用組成物、太陽電池の有機半導体層用組成物、有機発光素子のキャリヤ輸送層用組成物、表示装置用アレイ及び表示装置に関する。
 本願は、2011年6月28日に、日本に出願された特願2011-142970号及び2011年11月21日に、日本に出願された特願2011-253846に基づき優先権を主張し、その内容をここに援用する。
 ユビキタス情報社会を迎え、情報端末としてフレキシブル、軽量、かつ安価なデバイスが求められている。さらに、このような情報端末としてのアプリケーションを想定した場合、大量生産のみならず、様々なユーザーの要求に対して迅速にカスタマイズできるデバイスやプロセスが必要となる。こうしたデバイスやプロセスは、従来からあるシリコン系デバイス技術の延長ではその要望に十分に対応できない。そこで近年、このような要望に応え得る技術として、有機材料を半導体等に用いた電子デバイス技術の研究が盛んに行われている。その中でも、有機半導体材料を用いた有機トランジスタ(OFET)、有機発光ダイオード(OLED)、有機太陽電池などの有機電子デバイスが注目され、すでに実用化が始まっている。
 電界効果トランジスタ(FET)などの半導体デバイスの活性層に用いる有機半導体材料としては、これまでに正孔輸送特性を有する各種の化合物が知られている。
 例えば、特許文献1には、有機半導体装置の半導体層にペンタセンを用いることが開示されている。また、特許文献2には、電界効果トランジスタの半導体層に用いる高分子有機半導体として、ポリ(3-オクチルチオフェン)が開示されている。
特開2001-94107号公報 特開平6-177380号公報
 しかし、特許文献1及び2で開示されている有機半導体材料は、大気雰囲気下で酸化され易く、不安定であるため、これら材料を用いた半導体デバイスは、特性が低下し易い。例えば、引用文献1で開示されているペンタセンは、イオン化ポテンシャルが小さく、大気中では以下に示すように容易に酸化され、その結果、電気的特性が低下してしまう。
Figure JPOXMLDOC01-appb-C000002
 このような大気雰囲気下で不安定な有機半導体材料をデバイスに用いる場合、耐環境性を高めるために、保護膜を設けることが考えられる。例えば、シリコン酸化膜、アルミナ膜、窒化シリコン膜、エポキシ樹脂フィルム等をデバイス表面に積層させて、保護膜を設ける技術が開示されている(特開2005-191077号公報)。しかし、このような保護膜を用いても、大気中の酸素や水分に対して有機半導体層を十分には保護できない。また、有機半導体層にダメージを与えることなく保護膜を形成するための材料や、このような保護膜の形成方法は従来知られていない。
 このように、安価でかつ優れた特性を有する半導体デバイスを製造するためには、デバイスの製造過程から製造後に至るまで、大気雰囲気下での安定性が高い有機半導体材料が必要となる。しかしながら、これまでに提案されている有機半導体材料は、実用的な安定性及び電気的特性を共に有しているとは言えない。
 本発明は上記事情に鑑みてなされたものであり、大気雰囲気下での安定性が高く、有機半導体材料として好適な新規化合物、並びに前記化合物を用いた半導体デバイス及び表示装置を提供することを課題とする。
 本発明の一態様は、下記一般式(1)で表される化合物を提供する。
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、置換基を有していない芳香族基、置換基を有している芳香族基、置換基を有していないアルコキシ基、置換基を有しているアルコキシ基、置換基を有していない芳香族オキシ基、置換基を有している芳香族オキシ基、置換基を有していないアルキル置換アミノ基、置換基を有しているアルキル置換アミノ基、置換基を有していない芳香族置換アミノ基、置換基を有している芳香族置換アミノ基、置換基を有していないアシル基、置換基を有しているアシル基、置換基を有していない炭素数1~20の脂肪族炭化水素基、または置換基を有している炭素数1~20の脂肪族炭化水素基である。a およびb はそれぞれ独立に0 ~ 3の整数を示す。cおよびdはそれぞれ独立に0 ~ 6の整数を示す。R~Rはがそれぞれ複数ある場合、それらはそれぞれが独立しており、互いに同一でも異なっていてもよい。)
 また、本発明の一態様における化合物は、前記R~R4が水素原子である化合物であってもよい。
 また、本発明の他の態様は、前記化合物を含む有機半導体層を備える電界効果トランジスタを提供する。
 また、本発明の他の態様における電界効果トランジスタにおいて、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極及び有機半導体層を備え、前記有機半導体層が、前記ゲート絶縁膜を介して前記ゲート電極と対向するように設けられており、前記ソース電極及びドレイン電極が、前記有機半導体層上に接するように設けられている電界効果トランジスタであってもよい。
 また、本発明の他の態様における電界効果トランジスタは、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極及び有機半導体層を備え、前記有機半導体層が、前記ゲート絶縁膜を介して前記ゲート電極と対向するように設けられており、前記有機半導体層が、前記ソース電極及びドレイン電極上を覆うように設けられていてもよい。
 また、本発明の他の態様における電界効果トランジスタは、前記有機半導体層が、前記化合物が蒸着されて形成されたものであってもよい。
 また、本発明の他の態様における電界効果トランジスタは、前記有機半導体層が、前記化合物を含む組成物が塗布されて形成されたものであってもよい。
 また、本発明のさらに他の態様は、前記化合物を含む有機半導体層を備えた電界効果トランジスタの製造方法であって、前記化合物を含む組成物を用いて浸漬法、塗布法、印刷法のいずれかによって前記有機半導体層を形成することを含み、前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムから選択される少なくとも一種を含む。
 また、本発明のさらに他の態様は、前記化合物を含む有機半導体層を備える太陽電池を提供する。
 また、本発明のさらに他の態様における太陽電池は、前記有機半導体層が、前記化合物が蒸着されて形成されたものであってもよい。
 また、本発明のさらに他の態様における太陽電池は、前記有機半導体層が、前記化合物を含む組成物が塗布されて形成されたものであってもよい。
 また、本発明のさらに他の態様は、p型半導体材料とn型半導体材料とを含む有機半導体層を備え、前記p型半導体材料及びn型半導体材料の少なくとも一方が、前記化合物を含む太陽電池を提供する。
 また、本発明のさらに他の態様は、前記化合物を含むキャリヤ輸送層を備える有機発光素子を提供する。
 また、本発明のさらに他の態様における有機発光素子は、前記キャリヤ輸送層が、前記化合物が蒸着されて形成されたものであってもよい。
 また、本発明のさらに他の態様における有機発光素子は、前記キャリヤ輸送層が、前記化合物を含む組成物が塗布されて形成されたものであってもよい。
 また、本発明のさらに他の態様は、前記化合物を含む電界効果トランジスタの有機半導体層用組成物を提供する。
 また、本発明のさらに他の態様は、前記化合物を含む太陽電池の有機半導体層用組成物を提供する。
 また、本発明のさらに他の態様は、p型半導体材料とn型半導体材料とを含み、前記p型半導体材料及びn型半導体材料の少なくとも一方が、前記化合物を含む太陽電池の有機半導体層用組成物を提供する。
 また、本発明のさらに他の態様は、前記化合物を含む有機発光素子のキャリヤ輸送層用組成物を提供する。
 また、本発明のさらに他の態様は、前記電界効果トランジスタをスイッチング素子として備える表示装置用アレイを提供する。
 また、本発明のさらに他の態様は、画像信号を発生して出力する画像信号出力部と、前記画像信号に基づいて電流又は電圧を発生する駆動部と、発生した前記電流又は電圧により発光する発光部と、を備えた表示装置であって、前記発光部が、前記有機発光素子であるを含む表示装置を提供する。
 本発明の態様によれば、大気雰囲気下での安定性が高く、有機半導体材料として好適な新規化合物、並びに該化合物を用いた半導体デバイス及び表示装置を提供できる。
第一の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。 第一の実施形態に係る他の電界効果トランジスタの要部を例示する概略断面図である。 第二の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。 第二の実施形態に係る他の電界効果トランジスタの要部を例示する概略断面図である。 第三の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。 第四の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。 第五の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。 第六の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。 図1に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図1に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図1に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図1に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図1に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図3に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図3に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図3に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図3に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図3に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図3に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図5に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図5に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図5に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図5に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図6に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図6に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図6に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 図6に示す電界効果トランジスタの製造方法を説明するための概略断面図である。 本発明に係る太陽電池の要部を例示する概略断面図である。 本発明に係る他の太陽電池の要部を例示する概略断面図である。 図13に示す太陽電池の製造方法を説明するための概略断面図である。 図13に示す太陽電池の製造方法を説明するための概略断面図である。 図13に示す太陽電池の製造方法を説明するための概略断面図である。 図13に示す太陽電池の製造方法を説明するための概略断面図である。 本発明に係る有機発光素子の要部を例示する概略断面図である。 図16に示す有機発光素子の製造方法を説明するための概略断面図である。 図16に示す有機発光素子の製造方法を説明するための概略断面図である。 図16に示す有機発光素子の製造方法を説明するための概略断面図である。 図16に示す有機発光素子の製造方法を説明するための概略断面図である。 図16に示す有機発光素子の製造方法を説明するための概略断面図である。 図16に示す有機発光素子の製造方法を説明するための概略断面図である。 図16に示す有機発光素子の製造方法を説明するための概略断面図である。 本発明に係る表示装置用アレイの要部を例示する平面図である。 本発明に係る表示装置用アレイの要部を例示する拡大平面図である。 本発明に係る表示装置用アレイの要部を例示する図18BのC-C’線における断面図である。 本発明に係る表示装置用アレイの要部を例示する図18BのD-D’線における断面図である。 本発明に係る表示装置用アレイにおける有機半導体装置の製造方法を説明するための概略断面図である。 本発明に係る表示装置用アレイにおける有機半導体装置の製造方法を説明するための概略断面図である。 本発明に係る表示装置用アレイにおける有機半導体装置の製造方法を説明するための概略断面図である。 本発明に係る表示装置用アレイにおける有機半導体装置の製造方法を説明するための概略断面図である。 本発明に係る表示装置用アレイにおける有機半導体装置の製造方法を説明するための概略断面図である。 本発明に係る表示装置の要部を例示する平面図である。 本発明に係る表示装置の要部を例示する1画素の等価回路図である。 本発明に係る表示装置の要部を例示する1画素の平面図である。 実施例1の化合物(1-1)の溶液について、溶液調製直後と静置一ヶ月後における吸収強度の測定結果を示す図である。 実施例1の化合物(1-2)の溶液について、溶液調製直後と静置一ヶ月後における吸収強度の測定結果を示す図である。 本発明の態様に係る表示装置の製造方法を説明するための1画素の平面図である。 本発明の態様に係る表示装置の製造方法を説明するための1画素の平面図である。 本発明の態様に係る表示装置の製造方法を説明するための1画素の平面図である。 本発明の態様に係る表示装置の製造方法を説明するための1画素の平面図である。 本発明の態様に係る表示装置の製造方法を説明するための1画素の平面図である。 本発明の態様に係る表示装置の製造方法を説明するための1画素の平面図である。
<化合物>
 本実施形態に係る化合物は、下記一般式(1)で表され(以下、化合物(1)と略記する)、α-ブラザン二量体の骨格(α-ブラザン=ベンゾ[b]ナフト[2,1-d]フラン)を有する。
Figure JPOXMLDOC01-appb-C000004
 (式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、又は置換基を有していてもよい芳香族基、アルコキシ基、芳香族オキシ基、アルキル置換アミノ基、芳香族置換アミノ基、アシル基もしくは炭素数1~20の脂肪族炭化水素基である。a およびb はそれぞれ独立に0 ~ 3の整数を示す。cおよびdはそれぞれ独立に0 ~ 6の整数を示す。R~Rはがそれぞれ複数ある場合、それらは同一でも異なっていてもよい。)
 式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、又は置換基を有していてもよい芳香族基、アルコキシ基、芳香族オキシ基、アルキル置換アミノ基、芳香族置換アミノ基、アシル基もしくは炭素数1~20の脂肪族炭化水素基である。
 R~Rにおける前記脂肪族炭化水素基は、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基のいずれでもよく、直鎖状、分岐鎖状及び環状のいずれでもよい。
 前記直鎖状又は分岐鎖状の飽和脂肪族炭化水素基(アルキル基)としては、炭素数が1~20であればよく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が例示できる。
 前記直鎖状又は分岐鎖状の不飽和脂肪族炭化水素基としては、炭素数が2~20であればよく、ビニル基(エテニル基)、アリル基(2-プロペニル基)、1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等、前記直鎖状又は分岐鎖状の飽和脂肪族炭化水素基において、一つ以上の炭素原子間の単結合(C-C)が、不飽和結合である二重結合(C=C)又は三重結合(C≡C)に置換されたものが例示でき、不飽和結合の数及び位置は特に限定されない。
 前記環状の脂肪族炭化水素基(脂環式炭化水素基)は、炭素数が3~20であればよく、単環状及び多環状のいずれでもよい。
 前記環状の飽和脂肪族炭化水素基(シクロアルキル基)としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、トリシクロデシル基、アダマンチル基、テトラシクロドデシル基、イソボルニル基、ノルボルニル基等が例示できる。
 前記環状の不飽和脂肪族炭化水素基としては、前記環状の飽和脂肪族炭化水素基において、一つ以上の炭素原子間の単結合(C-C)が、不飽和結合である二重結合(C=C)又は三重結合(C≡C)に置換されたものが例示でき、不飽和結合の数及び位置は特に限定されない。
 R~Rにおける芳香族基は、単環状及び多環状のいずれでもよく、芳香族炭化水素基(アリール基)及び芳香族複素環式基(ヘテロアリール基)のいずれでもよい。
 R~Rにおける前記アリール基としては、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、2,4,6-トリメチルフェニル基、4-エチルフェニル基、4-プロピルフェニル基、4-ブチルフェニル基、1-ナフチル基、2-ナフチル基、2-アントリル基等が例示できる。
 R~R18における前記ヘテロアリール基は、芳香族環を構成する原子としてヘテロ原子を有するものであれば特に限定されず、前記ヘテロ原子としては、窒素原子、酸素原子、硫黄原子、セレン原子等が例示できる。好ましいヘテロアリール基としては、ピリジル基、フリル基、チエニル基、ベンゾチエニル基、チエノチエニル基、セレノチエニル基等が例示できる。
 R~Rにおけるアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基等、R~Rにおける前記アルキル基が酸素原子に結合した一価の基が例示できる。
 R~Rにおける芳香族オキシ基(アリールオキシ基及びヘテロアリールオキシ基)としては、フェノキシ基、1-ナフトキシ基、2-ナフトキシ基等、R~Rにおける前記芳香族基が酸素原子に結合した一価の基が例示できる。
 R~Rにおけるアルキル置換アミノ基としては、アミノ基(-NH)の一つ又は二つの水素原子がアルキル基で置換された一価の基が例示でき、この時のアルキル基は、R~Rにおける前記アルキル基と同様である。そして、二つの水素原子がアルキル基で置換されたアミノ基(ジアルキルアミノ基)の場合、これら二つのアルキル基は、互いに同一でも異なっていてもよい。
 R~Rにおける芳香族置換アミノ基(アリール置換アミノ基及びヘテロアリール置換アミノ基)としては、アミノ基(-NH)の一つ又は二つの水素原子が芳香族基で置換された一価の基が例示でき、この時の芳香族基は、R~Rにおける前記芳香族基と同様である。そして、二つの水素原子が芳香族基で置換されたアミノ基の場合、これら二つの芳香族基は、互いに同一でも異なっていてもよい。例えば、これら二つの芳香族基は、アリール基及びヘテロアリール基の組み合わせであっても良い。
 R~Rにおけるアシル基は、オキソ酸から一つ以上のヒドロキシル基(-OH)が除去された基であり、前記オキソ酸はカルボン酸であることが好ましく、アルキル基又は芳香族基がカルボニル基(-C(=O)-)に結合した一価の基が例示できる。この時のアルキル基及び芳香族基は、R~Rにおける前記アルキル基及び芳香族基と同様である。
 R~Rにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が例示できる。
 R~Rにおける前記芳香族基、アルコキシ基、芳香族オキシ基、アルキル置換アミノ基、芳香族置換アミノ基、アシル基及び炭素数1~20の脂肪族炭化水素基は、一つ以上の水素原子が置換基で置換されていてもよく、すべての水素原子が置換基で置換されていてもよい。
 例えば、前記脂肪族炭化水素基が有する好ましい置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;メルカプト基;ニトロ基;アミノ基;アルコキシ基;芳香族基;アルキル置換アミノ基;芳香族置換アミノ基;アシル基等が例示できる。また、前記芳香族基が有する好ましい置換基としては、アルキル基が例示できる。置換基で置換される水素原子の位置及び数は、特に限定されない。そして、置換基が複数の場合、これら複数の置換基は互いに同一でも異なっていてもよい。すなわち、すべての置換基が同一でもよいし、すべての置換基が異なっていてもよく、一部の置換基だけが異なっていてもよい。
 R~Rにおける前記置換基としてのアルコキシ基、芳香族基、アルキル置換アミノ基、芳香族置換アミノ基、アシル基及びアルキル基は、それぞれ上記のR~Rとして説明したものと同様である。
 R~Rのうち、R及びRは、それぞれ水素原子であることが好ましい。このような化合物(1)は、R及びRに嵩高い基が存在しないことで、二つのα-ブラザン骨格同士の立体反発が抑制され、これら骨格同士を結合している炭素原子間の結合(C-C)を軸とする分子のねじれが抑制されるので、化合物(1)の分子全体にπ電子共役系がより大きく広がる。
 R~Rがそれぞれ複数ある場合(つまりaおよびbが2~3、cおよびdが2~6の場合)、それぞれが独立であり、それぞれは同一であっても異なっていてもよい。すなわち、aが3である場合、すべてのRが同一でもよいし、すべてのRが異なっていてもよく、一つのRだけが異なっていてもよい。
 好ましい化合物(1)の具体例を以下に示すが、化合物(1)はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 これらのなかでも化合物(1)としては、下記式(1-1)及び式(1-2)で表されるものが特に好ましい。すなわち、前記一般式(1)においては、R~Rがすべて水素原子であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000014
 化合物(1)は、耐酸化性が高いなど、大気雰囲気下でも安定である。したがって、後述するように、電界効果トランジスタ、太陽電池、有機発光素子等の有機電子デバイス(半導体デバイス)の有機半導体材料として、特に好適である。
 化合物(1)の耐酸化性が高いのは、主骨格をビ(α-ブラザン)骨格とすることで、HOMOレベルが低下したことによると推測される。
 また、化合物(1)は、分子内におけるπ電子共役系の広がりが大きく、有機薄膜を形成した時に、隣接する分子との間で大きな分子間相互作用が発現すると推測され、キャリア移動度が高い。
[化合物(1)の製造方法]
 化合物(1)は、例えば、下記一般式(1a)で表される化合物(以下、化合物(1a)と略記する)と、下記一般式(1b)で表される化合物(以下、化合物(1b)と略記する)とを用いてカップリング反応させ、化合物(1)を合成する工程(以下、化合物(1)合成工程と略記する)を有する方法により製造できる。
Figure JPOXMLDOC01-appb-C000015
 (式中、R~Rは前記と同様であり;Y及びYはそれぞれ独立してハロゲン原子、トリフルオロメチルスルホニルオキシ基又は一般式「-B(OX)(式中、Xは水素原子又はアルキル基であり、二つのXは互いに同一でも異なっていてもよく、二つのXが共にアルキル基である場合、これら二つのXが相互に結合して環を形成していても良い。)」で表される基であり、Y及びYのいずれか一方が一般式「-B(OX)」で表される基である場合、他方はハロゲン原子である。)
 式中、R~Rは、前記一般式(1)におけるR~Rと同様である。
 式中、Y及びYはそれぞれ独立してハロゲン原子、トリフルオロメチルスルホニルオキシ基(CFS(=O)-O-)又は一般式「-B(OX)(式中、Xは水素原子又はアルキル基であり、二つのXは互いに同一でも異なっていてもよく、二つのXが共にアルキル基である場合、これら二つのXが相互に結合して環を形成していても良い。)」で表される基であり、Y及びYのいずれか一方が前記一般式「-B(OX)」で表される基である場合、他方はハロゲン原子である。
 Y及びYにおけるハロゲン原子は、塩素原子、臭素原子又はヨウ素原子であることが好ましい。
 Xにおけるアルキル基は、直鎖状又は分岐鎖状であることが好ましく、炭素数が1~6であることが好ましい。また、二つのXが共にアルキル基である場合、これら二つのXが相互に結合して、これら二つのXと、これら二つのXが結合している酸素原子と、かかる酸素原子が結合しているホウ素原子とで環を形成していてもよく、かかる環は単環状及び多環状のいずれでもよい。
 化合物(1a)及び(1b)として同じものを使用する場合には、例えば、Y及びYを共にハロゲン原子とし、金属銅の存在下、ホモカップリング反応(ウルマン(Ullmann)反応)を行うことで、または、Y及びYを共にトリフルオロメチルスルホニルオキシ基とし、金属亜鉛やニッケル化合物等の存在下、ホモカップリング反応を行うことで、それぞれ化合物(1)を合成できる。
 化合物(1a)及び(1b)として異なるものを使用する場合には、例えば、Y及びYのいずれか一方を前記一般式「-B(OX)」で表される基とし、他方をハロゲン原子として、パラジウム化合物やニッケル化合物等の金属触媒の存在下、クロスカップリング反応(鈴木-宮浦カップリング(Suzuki-Miyaura coupling)反応)を行うことで、化合物(1)を合成できる。
 化合物(1a)として合成品を用いる場合には、例えば、後述する実施例で示すように、対応する1-ナフトール類とジハロゲン化ベンゼン類とを、パラジウム触媒存在下で反応させ、化合物(1a)を合成する工程を有する方法により、化合物(1a)を製造できる。化合物(1b)も同様の方法で製造できる。
 化合物(1)合成工程での反応条件は、化合物(1)の生成量が最大となるように調節すればよいが、60℃~100℃で5時間~36時間反応させる条件が例示できる。反応は、溶媒を使用して行ってもよく、無溶媒で行ってもよい。溶媒は、使用原料と反応しないものであれば、特に限定されない。また、反応は、不活性ガス雰囲気下で行うことが好ましい。
 また、化合物(1a)及び(1b)として異なるものを使用する場合、これら化合物の使用量は、化合物(1a):化合物(1b)のモル比が7:3~3:7であることが好ましい。金属触媒の使用量は、例えば、化合物(1a)及び(1b)の総量に対して、0.5モル%~5モル%とすることが好ましく、定法に従って、リガンドや塩基等を併用することが好ましい。
 反応終了後は、必要に応じて後処理を行い、生成物である化合物(1)を取り出せばよい。ここで、「後処理」とは、ろ過、濃縮、抽出、脱水、pH調整等の操作を指し、これら操作のいずれか一つを単独で、又は二つ以上を組み合わせて行えばよい。
 化合物(1)合成工程後の化合物(1)の取り出しは、濃縮、結晶化、カラムクロマトグラフィー、減圧下での昇華精製等の操作で行えばよく、必要に応じて、カラムクロマトグラフィー、結晶化、抽出、溶媒による結晶の撹拌洗浄等の操作を一回以上繰り返して、精製を行ってもよい。
 化合物(1a)及び(1b)、並びに化合物(1)等は、核磁気共鳴分光法(H-NMR、13C-NMR)等の公知の手法で構造を確認できる。
<有機薄膜用組成物>
 前記化合物(1)は、有機薄膜の形成に好適である。例えば、前記化合物(1)と有機溶媒とを含む有機薄膜用組成物は、以下に示す有機半導体層、キャリヤ輸送層等を構成する有機薄膜の形成に用いられる。
(1)電界効果トランジスタの有機半導体層用組成物
 本実施形態に係る電界効果トランジスタの有機半導体層用組成物は、前記化合物(1)を含む。
 化合物(1)は、例えば、R~Rの一部又はすべてが、芳香族基若しくは脂肪族炭化水素基等であるか、又はこれら基を有する基であるなど、疎水性基であることにより、有機溶媒に対する溶解性がより高くなる。したがって、化合物(1)を溶媒に溶解させた、本実施形態の有機半導体層用組成物は容易に調製できる。また、かかる組成物を用いることにより、電界効果トランジスタの有機半導体層を、浸漬法、塗布法、印刷法等の簡便な方法で形成できる。有機半導体層は、後述するように、真空蒸着法等により、化合物(1)を蒸着させて形成することもできるが、上記のように真空装置等を用いずに簡便に成膜することで、電界効果トランジスタの製造コストを大幅に低減できる。
 本実施形態の有機半導体層用組成物は、溶媒成分として、トルエン等の炭化水素;ジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素を含むことが好ましい。
 また、有機半導体層用組成物は、溶媒成分以外に、化合物(1)のみを含むものでもよいし、化合物(1)以外の成分を含むものでもよい。ただし、溶媒成分以外のすべての成分に占める化合物(1)の比率は、90質量%以上であることが好ましく、100質量%である(化合物(1)のみを含む)ことがより好ましい。
 有機半導体層用組成物に含まれる化合物(1)は、一種でもよいし、二種以上でもよい。二種以上である場合、その組み合わせ及び比率は、目的に応じて適宜設定すればよい。
 有機半導体層用組成物は、化合物(1)の含有量が0.2質量%~5質量%であることが好ましい。
(2)太陽電池の有機半導体層用組成物
 本実施形態に係る太陽電池の有機半導体層用組成物は、前記化合物(1)を含み、用途が異なること以外は、上記の電界効果トランジスタの有機半導体層用組成物と同様である。例えば、化合物(1)を溶媒に溶解させた、本実施形態の有機半導体層用組成物は容易に調製でき、かかる組成物を用いることにより、太陽電池の有機半導体層を簡便な方法で形成できる。
 また、本実施形態に係る有機半導体層用組成物は、p型半導体材料とn型半導体材料とを含み、前記p型半導体材料及びn型半導体材料の少なくとも一方が、前記化合物(1)を含む。かかる組成物は、バルクヘテロ接合型太陽電池の有機半導体層を形成するためのものであり、化合物(1)を溶媒に溶解させた本実施形態の有機半導体層用組成物も容易に調製できる。そのため、上記の電界効果トランジスタの有機半導体層用組成物と同様に、太陽電池の有機半導体層を簡便な方法で形成できる。
 太陽電池の有機半導体層は、後述するように、真空蒸着法等により、化合物(1)を蒸着させて形成することもできるが、上記のように真空装置等を用いずに簡便に成膜することで、太陽電池の製造コストを大幅に低減できる。
 前記p型半導体材料及びn型半導体材料の少なくとも一方は、化合物(1)のみからなるものでもよいし、化合物(1)以外の成分を含むものでもよい。ただし、前記半導体材料に占める化合物(1)の比率は、90質量%以上であることが好ましく、100質量%である(化合物(1)のみからなる)ことがより好ましい。
 前記半導体材料に含まれる化合物(1)は、一種でもよいし、二種以上でもよい。二種以上である場合、その組み合わせ及び比率は、目的に応じて適宜設定すればよい。
 前記化合物(1)以外のn型半導体材料は、後述する太陽電池におけるn型半導体層の材質として例示したものが挙げられ、好ましいものとして具体的には、フラーレン;[6,6]-フェニルC61酪酸メチルエステル(PCBM)等のフラーレン誘導体;フタルイミド環を構成している一つ以上の水素原子がフッ素原子で置換されたフッ素化フタロシアニン等が例示できる。前記フッ素化フタロシアニンは、フタルイミド環を構成しているすべての水素原子がフッ素原子で置換されていてもよい。
 有機半導体層用組成物は、溶媒成分として、トルエン等の炭化水素;ジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素を含むことが好ましい。
 有機半導体層用組成物は、前記p型半導体材料の含有量が0.2質量%~5質量%であることが好ましい。そして、同様に前記n型半導体材料の含有量が0.2質量%~5質量%であることが好ましい。
(3)有機発光素子のキャリヤ輸送層用組成物
 本実施形態に係る有機発光素子のキャリヤ輸送層用組成物は、前記化合物(1)を含み、用途が異なること以外は、上記の電界効果トランジスタの有機半導体層用組成物と同様である。例えば、化合物(1)を溶媒に溶解させた、本実施形態のキャリヤ輸送層用組成物は容易に調製でき、かかる組成物を用いることにより、有機発光素子のキャリヤ輸送層を簡便な方法で形成できる。
<電界効果トランジスタ>
 本実施形態に係る電界効果トランジスタは、化合物(1)を含む有機半導体層を備える。そして、かかる有機半導体層を備えたこと以外は、従来の電界効果トランジスタと同様の構成とすることができる。ここでは、化合物(1)は、主にp型半導体として利用されるが、例えば、R~R18の一部又はすべてが、フッ素原子であるか、又はフッ素原子を有する基など、電子吸引性が高い基である場合、あるいは電極の材料の選択によっては、化合物(1)をn型半導体として機能させることも可能である。以下、図面を参照しながら説明する。
 図1は、第一の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。
 ここに示す電界効果トランジスタ1Aは、基板11上に、ゲート電極12、ゲート絶縁膜13、ソース電極14、ドレイン電極15及び有機半導体層16が積層され、概略構成されている。より具体的には、基板11上の一部にゲート電極12が設けられ、さらにゲート電極12を覆うように、基板11上にゲート絶縁膜13が設けられている。そして、ゲート絶縁膜13上には、ソース電極14及びドレイン電極15が離間して設けられ、さらにソース電極14及びドレイン電極15上を覆うように、ゲート絶縁膜13上に有機半導体層16が設けられている。有機半導体層16は、ゲート絶縁膜13を介してゲート電極12と対向するように設けられている。なお、有機半導体層16の配置形態はここに示すものに限定されず、少なくとも、離間して設けられた前記ソース電極14及びドレイン電極15間の領域に、ゲート絶縁膜13を介してゲート電極12と対向するように設けられていればよい。このように有機半導体層16が配置された電界効果トランジスタとしては、後述する表示装置用アレイの図18における有機半導体装置42に備えられたものが例示できる。電界効果トランジスタ1Aは、ボトムゲート・ボトムコンタクト型のトランジスタ構造を有する。
 基板11の材質は、デバイスの構成及び性能等に応じて適宜選択できる。例えば、ガラス;石英;シリコン単結晶;多結晶シリコン;アモルファスシリコン;ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン等の絶縁性の高分子化合物等が例示できる。
 基板11は一種の材質からなる単層構造でもよいし、二種以上の材質が積層された複数層構造でもよい。
 ゲート電極12の材質は特に限定されず、本実施形態に関わる分野で通常使用されるものでよい。具体的には、金、白金、銀、銅、アルミニウム、タンタル、ドープシリコン等の低抵抗の金属;3,4-ポリエチレンジオキシチオフェン(以下、PEDOTと略記する)/ポリスチレンサルフォネイト(以下、PSSと略記する)等の有機導電体等が例示できる。
 前記有機半導体層をp型半導体とする場合、ソース電極14及びドレイン電極15の材質としては、これらの仕事関数が、有機半導体層用組成物の最高占有分子軌道(HOMO:Highest Occupied Molecular Orbital)レベルに近いものが例示できる。そして、前記有機半導体層をn型半導体とする場合、ソース電極14及びドレイン電極15の材質としては、これらの仕事関数が、最低非占有分子軌道(LUMO:Lowest Unocuppied Molecular Orbital)レベルに近いものが例示できる。
 仕事関数が有機半導体層用組成物のHOMOレベルに近い材質としては、金、白金、銀、又はこれらの一種以上を含む合金等の比較的仕事関数が高い金属;インジウム・スズ酸化物(ITO)、酸化亜鉛(ZnO)等の透明酸化物導電体;PEDOT/PSS等の有機導電体が例示できる。
 仕事関数が有機半導体層用組成物のLUMOレベルに近い材質としては、アルミニウム、チタン、アルカリ金属、又はこれらの一種以上を含む合金等の比較的仕事関数が低い金属等が例示できる。前記アルカリ金属としては、リチウム、ナトリウム、カリウム等が例示できる。
 ソース電極14及びドレイン電極15は、密着層(図示略)を介してゲート絶縁膜13上に形成してもよい。密着層の材質としては、クロム等が例示できる。
 ゲート電極12、ソース電極14、ドレイン電極15の膜厚は、特に限定されず、通常のトランジスタにおける膜厚であればよく、目的に応じて適宜調節することが好ましい。例えば、材質が金属である場合には、30nm~200nmであることが好ましい。
 これら電極は、材質に応じて、例えば、蒸着、スパッタ、塗布等で成膜できる。
 また、ソース電極14、ドレイン電極15等の電極の表面に、自己集合単分子膜(self-assembled monolayer:SAM)からなる表面修飾層を形成することで、電極表面の表面エネルギーを低下させることができる。これにより、電極表面上における有機半導体材料の結晶成長若しくは結晶配列、又は有機半導体材料の電極に対する濡れ性等を改善できる。たとえば、金電極の表面は、アルカンチオール等を用いて表面修飾することが好ましい。
 ゲート絶縁膜13の材質は、誘電率が高く、薄膜形成時にピンホール等が生じにくいものが好ましい。誘電率が高いことで、電界効果トランジスタの閾値をより低減できる。また、薄膜形成時にピンホール等を少なくすることで、ゲート絶縁膜13の機能低下が抑制され、特性がより良好な電界効果トランジスタが得られる。
 このような材質の膜としては、酸化シリコン膜、窒化シリコン膜、五酸化タンタル膜、酸化アルミニウム膜等の無機絶縁膜;ポリイミド膜、パリレン膜、ポリビニルフェノール膜等の有機絶縁膜等が例示できる。
 ゲート絶縁膜13の膜厚は、単位面積あたりの静電容量が大きくなるように設定することが好ましい。また、膜厚を薄くすることで、電界効果トランジスタの閾値電圧をより低減できる。そして、ゲート絶縁膜13の膜厚は、材質の比誘電率、絶縁性等に応じて適宜調節することが好ましく、例えば、50nm~300nmであることが好ましい。このようにすることで、単位面積あたりの静電容量を大きくでき、かつ電界効果トランジスタの閾値電圧を低減できる。
 ゲート絶縁膜13は、材質に応じて、例えば、蒸着、スパッタ、塗布等で成膜できる。
 ゲート絶縁膜13を酸化シリコン膜、窒化シリコン膜等とする場合には、その有機半導体層16と接する表面をシランカップリング剤等で処理することが好ましい。このようにすることで、ゲート絶縁膜13に接する有機半導体層16の膜質が向上し、有機半導体素子の移動度をより向上させることできる。また、リーク電流が少なくなる。
 有機半導体層16は、化合物(1)を含む。そして、例えば、上記の有機半導体層用組成物を用いて、浸漬法、塗布法、印刷法等の低コストの薄膜形成法で形成されたものであってもよく、真空蒸着法等で化合物(1)が蒸着されて形成されたものであってもよい。
 有機半導体層16の膜厚は、5nm~500nmであることが好ましい。
 上記のように化合物(1)は耐酸化性が高い。したがって、化合物(1)を含む有機半導体層16は、大気雰囲気下で安定である。
 電界効果トランジスタ1Aにおいては、さらに、少なくとも有機半導体層16上に保護膜が設けられていてもよい。保護膜を設けることにより、有機半導体層16を酸素や水分などから保護できるので、電界効果トランジスタ1Aは、さらに安定した半導体特性を示す。
 図2に示す電界効果トランジスタ1A’は、図1に示す電界効果トランジスタにおいて、有機半導体層16上の全面が保護膜17で覆われたものである。
 保護膜17は、有機膜及び無機膜のいずれでもよい。
 有機膜の材質としては、ポリパリレン(パラキシリレン系ポリマー);エポキシ樹脂;アクリル樹脂;ポリパラキシレン;ポリパーフルオロオレフィン、ポリパーフルオロエーテル、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン等のフッ素系高分子;ポリイミド等が例示できる。
 無機膜の材質としては、金属窒化物、金属酸化物、炭素、シリコン等が例示できる。より具体的には、SiN、AlN、GaN等の窒化物;SiO、Al、Ta、ZnO、GeO等の酸化物;SiON等の酸化窒化物;SiCN等の炭化窒化物等が例示できる。
 保護膜17は、単層構造及び多層構造のいずれでもよい。
 図3は、第二の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。なお、図3において、図1に示すものと同様の構成要素には、図1の場合と同様の符号を付し、その詳細な説明は省略する。これは、以降の図においても同様である。
 ここに示す電界効果トランジスタ1Bは、ソース電極14及びドレイン電極15の表面に表面修飾層18が設けられ、表面修飾層18に有機半導体層16が接するように構成された点以外は、図1に示す電界効果トランジスタ1Aと同様である。表面修飾層18は、例えば、ソース電極14及びドレイン電極15の表面に表面修飾剤を作用させることで形成でき、有機分子及び無機分子のいずれから構成されていてもよい。この場合の好ましい表面修飾材としては、ドデカンチオール等のアルキルチオールが例示できるが、これらに限定されない。
 表面修飾層18が設けられることで、ソース電極14及びドレイン電極15の表面エネルギーを低下させることができる。これにより、これら電極表面上における有機半導体材料の結晶成長若しくは結晶配列、又は有機半導体材料のこれら電極に対する濡れ性等を改善できる。その結果、有機半導体層16の膜質がより均一になり、特に、上記の有機半導体層用組成物を塗布して有機半導体層16を形成する場合に、上記効果が得られる。
 図3においては、ソース電極14及びドレイン電極15の表面に表面修飾層18が設けられた例を示しているが、表面修飾層を設ける位置はこれに限定されない。例えば、図1乃至3に示すように、有機半導体層16がゲート絶縁膜13上に形成される場合には、表面修飾層がゲート絶縁膜13上に別途設けられていてもよい。
 図4に示す電界効果トランジスタ1B’は、図1に示す電界効果トランジスタにおいて、ゲート絶縁膜13上のうち、ソース電極14及びドレイン電極15が設けられていない部位に、表面修飾層18が設けられ、表面修飾層18に有機半導体層16が接するように構成されたものである。電界効果トランジスタ1B’においては、電界効果トランジスタ1Aに対する電界効果トランジスタ1Bと同様に、有機半導体層16の膜質がより均一になる。また、界面トラップの減少や密着性向上の効果も得られる。
 表面修飾層18を形成するための表面修飾剤としては、例えば、酸化物系のゲート絶縁膜に対して使用するものであれば、ヘキサメチルジシラザン(HMDS)、オクチルトリクロロシラン(OTS)、オクタデシルトリクロロシラン(ODS)、7-オクテニルトリクロロシラン(VTS)、トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリクロロシラン(FTS)、ベンジルトリクロロシラン(BTS)等のシラン系材料が例示できるが、これらに限定されない。
 図5は、第三の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。
 ここに示す電界効果トランジスタ1Cは、基板11上に、ゲート電極12、ゲート絶縁膜13、有機半導体層16、ソース電極14及びドレイン電極15が積層され、概略構成されている。より具体的には、基板11上の一部にゲート電極12が設けられている。さらにゲート電極12を覆うように、基板11上にゲート絶縁膜13が設けられ、ゲート絶縁膜13上に有機半導体層16が設けられている。そして、有機半導体層16上には、ソース電極14及びドレイン電極15が離間して設けられている。有機半導体層16は、ゲート絶縁膜13を介してゲート電極12と対向するように設けられている。電界効果トランジスタ1Cは、トップコンタクト型のトランジスタ構造を有する。
 有機半導体層16の膜質は、有機半導体層16の直下にある層(下地)の影響を受ける可能性がある。例えば、図1に示すようなボトムゲート・ボトムコンタクト型の電界効果トランジスタ(電界効果トランジスタ1A)の場合、有機半導体層16は、これと接するゲート絶縁膜13、ソース電極14及びドレイン電極15の影響を受けて、それぞれと接する部位において膜質が変化する可能性がある。
 これに対して、図5に示すようなトップコンタクト型構造の電界効果トランジスタ(電界効果トランジスタ1C)の場合には、有機半導体層16がすべてゲート絶縁膜13上に形成されているので、有機半導体層16の膜質がより均一となり、電界効果トランジスタは一層安定した半導体特性を示す。
 さらに、図5に示すようなトップコンタクト型構造の電界効果トランジスタ(電界効果トランジスタ1C)の場合には、ソース電極14及びドレイン電極15を有機半導体層16上に形成するので、例えば、製造時にゲート絶縁膜13に与えるダメージや、残渣等の発生を低減できる。その結果、ゲート絶縁膜13と有機半導体層16との界面を、より良好な状態とすることができる。
 電界効果トランジスタ1Cは、ソース電極14、ドレイン電極15及び有機半導体層16の積層順が異なる点以外は、電界効果トランジスタ1Aと同様である。したがって、例えば、ソース電極14及びドレイン電極15を覆うように、有機半導体層16上に保護膜が設けられていてもよい。
 図6は、第四の実施形態に係る電界効果トランジスタの要部を例示する概略断面図である。
 ここに示す電界効果トランジスタ1Dは、ゲート絶縁膜13の表面に表面修飾層18が設けられている点以外は、図5に示す電界効果トランジスタ1Cと同様である。すなわち、電界効果トランジスタ1Dにおいては、有機半導体層16が表面修飾層18に接している。このようにすることで、電界効果トランジスタ1Aに対する電界効果トランジスタ1Bと同様に、有機半導体層16の膜質をより均一にすることができる。また、界面トラップの減少や密着性向上の効果も得られる。
 表面修飾層18は、図4におけるものと同様である。
 本実施形態に係る電界効果トランジスタは、図1~6に示すものに限定されず、これらの構成の一部が変更されたものでもよい。例えば、以下に示すものが挙げられる。
 (I)図7に例示するように、基板11上に有機半導体層16が設けられ、有機半導体層16上に、ソース電極14及びドレイン電極15が離間して設けられ、ソース電極14及びドレイン電極15間の有機半導体層16上に、ゲート絶縁膜13及びゲート電極12がこの順で設けられた電界効果トランジスタ1E(第五の実施形態)。
 (II)図8に例示するように、基板11上にソース電極14及びドレイン電極15が離間して設けられ、ソース電極14及びドレイン電極15上を覆うように、基板11上に有機半導体層16が設けられ、有機半導体層16上にゲート絶縁膜13が設けられ、ゲート絶縁膜13上の一部にゲート電極12が設けられた電界効果トランジスタ1F(第六の実施形態)。
 上述の実施形態に係る電界効果トランジスタは、有機半導体層が大気雰囲気下で安定なので、同様に大気雰囲気下で、長期間に渡り安定に動作可能である。
 上述の実施形態に係る電界効果トランジスタは、例えば、以下の方法で製造できる。
 まず、図1に示す電界効果トランジスタ1Aの製造方法について説明する。図9A~図9Eは、電界効果トランジスタ1Aの製造方法を説明するための概略断面図である。
 基板11上に、ゲート電極12を構成する材質からなる膜を形成し、フォトリソグラフィー及びエッチングにより、前記膜を所望のパターンに形成して、図9Aに示すように、基板11上の所定箇所にゲート電極12を形成する。膜の形成方法としては、スパッタリング法が例示できる。
 次いで、図9Bに示すように、ゲート電極12を覆うように基板11上にゲート絶縁膜13を形成する。ゲート絶縁膜13の形成方法としては、スパッタリング法が例示できる。
 次いで、ゲート絶縁膜13上に、スピンコート法等により、レジスト膜を形成した後、フォトリソグラフィー法で露光及び現像を行うことにより、図9Cに示すように、所定のパターンのフォトレジスト膜90を形成する。フォトレジスト膜90は、ソース電極14及びドレイン電極15を形成するためのものであり、これらの形状に対応して開口部を有する。
 次いで、フォトレジスト膜90を覆うように、ゲート絶縁膜13上にソース電極14及びドレイン電極15の材質からなる金属膜を形成し、フォトレジスト膜90を除去することにより、図9Dに示すように、ゲート絶縁膜13上の所定の箇所にソース電極14及びドレイン電極15を形成する。この時、前記金属膜を形成する前に、フォトレジスト膜90を覆うように、ゲート絶縁膜13上に密着層(図示略)を形成しておき、この密着層上に前記金属膜を形成してもよい。密着層の材質としては、クロム等の金属が例示できる。前記金属膜、密着層の形成方法としては、真空蒸着法が例示できる。フォトレジスト膜90の除去により、この上に形成された前記金属膜、さらに密着層を形成した場合には、この密着層も、フォトレジスト膜90とともに除去される。フォトレジスト膜90の除去方法としては、基板11をアセトン等の有機溶媒中に浸漬するリフトオフ法が例示できる。
 次いで、図9Eに示すように、ソース電極14及びドレイン電極15を覆うように、ゲート絶縁膜13上に有機半導体層16を形成する。有機半導体層16は、例えば、化合物(1)を含む、上記の電界効果トランジスタの有機半導体層用組成物をゲート絶縁膜13上に載せることで、さらに、必要に応じて溶媒を乾燥除去することで形成できる。前記組成物を用いて有機半導体層16を形成する方法としては、浸漬法;キャスト法、スピンコート法等の塗布法;インクジェット法、マイクロコンタクト印刷法、反転オフセット印刷法、フレキソ印刷法、平版印刷法、凹版印刷法等の印刷法が例示できる。また、有機半導体層16は、真空蒸着法等により、化合物(1)を蒸着させて形成してもよい。
 上記工程を行うことで、図1に示す電界効果トランジスタ1Aが得られる。この時、さらに、有機半導体層16上に保護膜17を形成することで、図2に示す電界効果トランジスタ1A’が得られる。
 次に、図3に示す電界効果トランジスタ1Bの製造方法について説明する。図10A~図10Fは、電界効果トランジスタ1Bの製造方法を説明するための概略断面図である。
 図9A~図9Dを参照して説明した方法と同様の方法で、図10A~図10Dに示すように、ゲート絶縁膜13上の所定の箇所にソース電極14及びドレイン電極15を形成する。
 次いで、図10Eに示すように、ソース電極14及びドレイン電極15の表面に表面修飾剤を作用させて、表面修飾層18を形成する。
 次いで、図10Fに示すように、表面修飾されたソース電極14及びドレイン電極15を覆うように、ゲート絶縁膜13上に有機半導体層16を形成する。有機半導体層16の形成方法は、電界効果トランジスタ1Aの場合と同様である。
 上記工程を行うことで、図3に示す電界効果トランジスタ1Bが得られる。この時、さらに、有機半導体層16上に保護膜を形成してもよい。
 図4に示す電界効果トランジスタ1B’は、例えば、図10Eにおいて、ソース電極14及びドレイン電極15の表面に代えて、ゲート絶縁膜13上のうち、ソース電極14及びドレイン電極15が設けられていない部位に表面修飾剤を作用させて、表面修飾層18を形成すること以外は、上記の電界効果トランジスタ1Bの製造方法と同様の方法で製造できる。
 次に、図5に示す電界効果トランジスタ1Cの製造方法について説明する。図11A~図11Dは、電界効果トランジスタ1Cの製造方法を説明するための概略断面図である。
 基板11上に、ゲート電極12を構成する材質からなる膜を形成し、フォトリソグラフィー及びエッチングにより、前記膜を所望のパターンに形成して、図11Aに示すように、基板11上の所定箇所にゲート電極12を形成する。膜の形成方法としては、スパッタリング法が例示できる。
 次いで、図11Bに示すように、ゲート電極12を覆うように基板11上にゲート絶縁膜13を形成する。ゲート絶縁膜13の形成方法としては、スパッタリング法が例示できる。
 次いで、図11Cに示すように、ゲート絶縁膜13上に有機半導体層16を形成する。有機半導体層16は、例えば、化合物(1)を含む前記有機半導体層用組成物をゲート絶縁膜13上に載せることで、さらに、必要に応じて溶媒を乾燥除去することで形成できる。前記組成物を用いて有機半導体層16を形成する方法としては、浸漬法;キャスト法、スピンコート法等の塗布法;インクジェット法、マイクロコンタクト印刷法、反転オフセット印刷法、フレキソ印刷法、平版印刷法、凹版印刷法等の印刷法が例示できる。また、有機半導体層16は、真空蒸着法等により、化合物(1)を蒸着させて形成してもよい。
 真空蒸着法を用いて化合物(1)の有機半導体層16を形成させる場合、基板の温度がデバイスの特性に大きく影響する。基板表面が十分に低温に保たれていると、蒸着によって基板表面に到達した分子はそのまま凝着され、非晶質膜となりやすい。一方、基板が一定温度以上であると、表面を分子が拡散し、それらはより安定な位置でとどまり、核形成および薄膜成長する。すなわち、蒸着時の基板温度の上昇に伴い、分子の表面拡散が促進され、結晶核は成長し、より大きくなるとともに結晶性が向上し、デバイスの特性をより良好なものとすることができる。
 次いで、有機半導体層16上に、所定の開口部を有する金属マスク(図示せず)を介して真空蒸着法等により、図11Dに示すように、ソース電極14及びドレイン電極15を形成する。
 上記工程を行うことで、図5に示す電界効果トランジスタ1Cが得られる。この時、さらに、ソース電極14及びドレイン電極15を覆うように有機半導体層16上に保護膜を形成してもよい。
 次に、図6に示す電界効果トランジスタ1Dの製造方法について説明する。図12A~図12Dは、電界効果トランジスタ1Dの製造方法を説明するための概略断面図である。
 図11Aを参照して説明した方法と同様の方法で、図12Aに示すように、基板11上の所定箇所にゲート電極12を形成する。
 次いで、図12Bに示すように、ゲート電極12を覆うように基板11上にゲート絶縁膜13を形成する。ゲート絶縁膜13の形成方法としては、スパッタリング法が例示できる。さらに、ゲート絶縁膜13の表面に表面修飾剤を作用させて、表面修飾層18を形成する。表面修飾層18は、表面修飾剤の蒸気をゲート絶縁膜13の表面に接触させる方法、表面修飾剤を含む溶液中にゲート絶縁膜13が形成された基板11を浸漬する方法、表面修飾剤を含む溶液をゲート絶縁膜13の表面にスピンコート法で塗布する方法等で形成できる。
 次いで、図12Cに示すように、表面修飾層18上に有機半導体層16を形成する。有機半導体層16は、図11Cを参照して説明した方法と同様の方法で形成できる。表面修飾層18上で、有機半導体層16の膜質はより均一となる。
 次いで、図12Dに示すように、有機半導体層16上に、ソース電極14及びドレイン電極15を形成する。ソース電極14及びドレイン電極15は、図11Dを参照して説明した方法と同様の方法で形成できる。
 上記工程を行うことで、図6に示す電界効果トランジスタ1Dが得られる。この時、さらに、ソース電極14及びドレイン電極15を覆うように有機半導体層16上に保護膜を形成してもよい。
<太陽電池>
 本実施形態に係る太陽電池は、前記化合物(1)を含む有機半導体層を備える。そして、かかる有機半導体層を備えたこと以外は、従来の太陽電池と同様の構成とすることができる。ここでは、化合物(1)は、主にp型半導体として利用されるが、例えば、R~R18の一部又はすべてが、フッ素原子であるか、又はフッ素原子を有するなど、電子吸引性が高い基である場合には、化合物(1)をn型半導体として機能させることも可能である。以下、図面を参照しながら説明する。
 図13は、本実施形態に係る太陽電池の要部を例示する概略断面図である。
 ここに示す太陽電池2Aは、ガラス基板21上に、アノード電極22、p型半導体層24、n型半導体層25及びカソード電極23がこの順に積層され、概略構成されている。すなわち、ガラス基板21上に、アノード電極22及びカソード電極23からなる一対の電極と、この一対の電極間に挟持された、pn接合したp型半導体層24及びn型半導体層25と、が設けられたものである。
 p型半導体層24は、前記化合物(1)を含む。そして、例えば、上記のp型半導体層用組成物を用いて、浸漬法、塗布法、印刷法等の低コストの薄膜形成法で形成されたものであってもよく、真空蒸着法等で化合物(1)が蒸着されて形成されたものであってもよい。
 p型半導体層24の膜厚は、5nm~500nmであることが好ましい。
 上記のように化合物(1)は耐酸化性が高い。したがって、化合物(1)を含むp型半導体層24は、大気雰囲気下で安定である。
 n型半導体層25の材質としては、上記のn型半導体材料で例示したフラーレン、フラーレン誘導体、フッ素化フタロシアニン等が例示できる。
 n型半導体層25の膜厚は、5nm~500nmであることが好ましい。
 アノード電極22の材質としては、透明電極であるITO、有機導電体であるPEDOT/PSS等が例示できる。
 アノード電極22の膜厚は、10nm~500nmであることが好ましい。
 カソード電極23の材質としては、銀、アルミニウム等が例示できる。
 カソード電極23の膜厚は、10nm~500nmであることが好ましい。
 また、本実施形態に係る太陽電池は、p型半導体材料とn型半導体材料とを含む有機半導体層を備え、前記p型半導体材料及びn型半導体材料の少なくとも一方が、前記化合物(1)を含む。すなわち、いわゆるバルクヘテロ接合型有機薄膜太陽電池である。図14は、かかる太陽電池の要部を例示する概略断面図である。
 ここに示す太陽電池2Bは、ガラス基板21上に、アノード電極22、有機半導体層26及びカソード電極23がこの順に積層され、概略構成されている。すなわち、ガラス基板21上に、アノード電極22及びカソード電極23からなる一対の電極と、この一対の電極間に挟持された有機半導体層26と、が設けられたものである。
 有機半導体層26は、例えば、上記の太陽電池の有機半導体層用組成物を用いて、太陽電池2Aにおけるp型半導体層24の場合と同様の方法で形成できる。
 本実施形態に係る太陽電池は、有機半導体層が大気雰囲気下で安定なので、同様に大気雰囲気下で、長期間に渡り安定に動作可能である。
 本実施形態に係る太陽電池は、例えば、以下の方法で製造できる。
 図15A~図15Dは、太陽電池2Aの製造方法を説明するための概略断面図である。
 まず、図15Aに示すように、ガラス基板21上にアノード電極22を形成する。アノード電極22の形成方法としては、スパッタリング法が例示できる。
 次いで、図15Bに示すように、アノード電極22上にp型半導体層24を形成する。p型半導体層24は、例えば、化合物(1)を含む、上記のp型半導体層用組成物をアノード電極22上に載せることで、さらに、必要に応じて溶媒を乾燥除去することで形成できる。前記組成物を用いてp型半導体層24を形成する方法は、電界効果トランジスタの製造時に、有機半導体層用組成物を用いて有機半導体層を形成する方法と同様であり、浸漬法;キャスト法、スピンコート法等の塗布法;インクジェット法、マイクロコンタクト印刷法、反転オフセット印刷法、フレキソ印刷法、平版印刷法、凹版印刷法等の印刷法が例示できる。また、p型半導体層24は、真空蒸着法等により、化合物(1)を蒸着させて形成してもよい。
 次いで、図15Cに示すように、p型半導体層24上にn型半導体層25を形成する。n型半導体層25の形成方法としては、真空蒸着法が例示できる。
 次いで、図15Dに示すように、n型半導体層25上にカソード電極23を形成する。カソード電極23の形成方法としては、真空蒸着法が例示できる。
 上記工程を行うことで、図15Dに示す太陽電池2Aが得られる。この時、さらに、カソード電極23上に保護膜を形成してもよい。この保護膜は、上記の電界効果トランジスタにおいて用いるものと同様でよい。
 なお、ここではp型半導体層24として、前記化合物(1)を含むものについて説明したが、前記化合物(1)を含まないものとする場合には、p型半導体層24は公知のものでよい。また、ここではn型半導体層25として、公知の材質からなるものについて説明したが、前記化合物(1)を含むものとしてもよく、この場合のn型半導体層25は、上記の化合物(1)を含むp型半導体層24の場合と同様の方法で形成できる。
<有機発光素子>
 本実施形態に係る有機発光素子は、前記化合物(1)を含むキャリヤ輸送層を備える。そして、かかるキャリヤ輸送層を備えたこと以外は、従来の有機発光素子と同様の構成とすることができる。ここでは、化合物(1)は、主にp型半導体(正孔輸送層用の材料)として利用されるが、例えば、R~R18の一部又はすべてが、フッ素原子であるか、又はフッ素原子を有するなど、電子吸引性が高い基である場合には、化合物(1)をn型半導体(電子輸送層用の材料)として機能させることも可能である。以下、図面を参照しながら説明する。
 図16は、本発明に係る有機発光素子の要部を例示する概略断面図である。
 ここに示す有機発光素子3Aは、ガラス基板31上に、アノード電極32、有機エレクトロルミネッセンス(以下、有機ELと略記する)部34及びカソード電極33がこの順に積層され、概略構成されている。すなわち、ガラス基板31上に、アノード電極32及びカソード電極33からなる一対の電極と、この一対の電極間に挟持された有機EL部34と、が設けられたものである。
 アノード電極32及びカソード電極33は、それぞれ、上記の太陽電池におけるアノード電極及びカソード電極と同様のものである。
 有機EL部34は、アノード電極32側からカソード電極33側へかけて、正孔注入層34a、正孔輸送層34b、発光層34c、電子輸送層34d及び電子注入層34eがこの順に積層され、概略構成されている。
 正孔注入層34a、正孔輸送層34b、発光層34c、電子輸送層34d、電子注入層34eは、それぞれ単層構造及び多層構造のいずれであってもよい。
 正孔輸送層34bは、前記化合物(1)を含む。そして、例えば、上記のキャリヤ(正孔)輸送層用組成物を用いて、浸漬法、塗布法、印刷法等の低コストの薄膜形成法で形成されたものであってもよく、真空蒸着法等で化合物(1)が蒸着されて形成されたものであってもよい。
 正孔輸送層34bの膜厚は、5nm~500nmであることが好ましい。
 上記のように化合物(1)は耐酸化性が高い。したがって、化合物(1)を含む正孔輸送層34bは、大気雰囲気下で安定である。
 正孔注入層34aにおいて、正孔注入輸送材料は、有機EL用又は有機光導電体用として公知のものでよい。好ましい正孔注入輸送材料としては、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物や無機p型半導体材料;ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が例示できる。
 また、正孔注入層34aに適用する正孔注入輸送材料としては、アノード電極からの正孔の注入及び輸送をより効率よく行う観点から、正孔輸送層34bに適用する正孔注入輸送材料よりも、最高被占分子軌道(HOMO)のエネルギー準位が低い材料が好ましい。
 正孔注入層34aの膜厚は、1nm~500nmであることが好ましい。
 発光層34cの材質は、有機EL用の公知のものでよく、例えば、低分子発光材料及び高分子発光材料等に分類できる。
 前記低分子発光材料の好ましいものとしては、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)等の芳香族ジメチリデン化合物;5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾール等のオキサジアゾール化合物;3-(4-ビフェニルイル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体;1,4-ビス(2-メチルスチリル)ベンゼン等のスチリルベンゼン化合物;フルオレノン誘導体;4,4’-N,N’-ジカルバソル-ビフェニル(CBP)等のカルバゾール誘導体等の蛍光性有機材料等が例示できる。また、トリス(2-フェニルピリジン)イリジウム(Ir(PPY))等の燐光性材料等も例示できる。
 前記高分子発光材料の好ましいものとしては、ポリ(2-デシルオキシ-1,4-フェニレン)(DO-PPP)等のポリフェニレンビニレン誘導体;ポリ(9,9-ジオクチルフルオレン)(PDAF)等のポリスピロ誘導体等が例示できる。
 発光層34cの膜厚は、5nm~500nmであることが好ましい。
 電子輸送層34d及び電子注入層34eにおいて、電子注入輸送材料は、有機EL用又は有機光導電体用として公知のものでよい。好ましい電子注入輸送材料としては、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、ベンゾジフラン誘導体、(8-ヒドロキシキノリンアルミニウム)(A1q)等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料が例示できる。特に、電子注入材料としては、フッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物;酸化リチウム(LiO)等の酸化物等が例示できる。
 また、電子注入層34eに適用する電子注入輸送材料としては、カソード電極からの電子の注入及び輸送をより効率よく行う観点から、電子輸送層34dに適用する電子注入輸送材料よりも、最低非占有分子軌道(LUMO)のエネルギー準位が高い材料が好ましい。そして、電子輸送層34dに適用する電子注入輸送材料としては、電子注入層34eに適用する電子注入輸送材料よりも、電子の移動度が高い材料が好ましい。
 電子輸送層34dの膜厚は、5nm~500nmであることが好ましい。また、電子注入層34eの膜厚は、0.1nm~100nmであることが好ましい。
 本実施形態に係る有機発光素子は、図16に示すものに限定されず、その構成の一部が変更されたものでもよい。例えば、有機EL部34の構成を以下のようにしたものが挙げられる。
 (i)アノード電極32側からカソード電極33側へかけて、正孔輸送層、発光層及び電子輸送層がこの順に積層された有機EL部。
 (ii)アノード電極32側からカソード電極33側へかけて、正孔注入層、正孔輸送層、発光層及び電子輸送層がこの順に積層された有機EL部。
 (iii)アノード電極32側からカソード電極33側へかけて、正孔注入層、正孔輸送層、発光層、正孔防止層及び電子輸送層がこの順に積層された有機EL部。
 (iv)アノード電極32側からカソード電極33側へかけて、正孔注入層、正孔輸送層、発光層、正孔防止層、電子輸送層及び電子注入層がこの順に積層された有機EL部。
 (v)アノード電極32側からカソード電極33側へかけて、正孔注入層、正孔輸送層、電子防止層、発光層、正孔防止層、電子輸送層及び電子注入層がこの順に積層された有機EL部。
 前記正孔防止層及び電子防止層は、有機EL用として公知のものでよい。
 本実施形態に係る有機発光素子は、正孔輸送層が大気雰囲気下で安定なので、同様に大気雰囲気下で、長期間に渡り安定に動作可能である。
 本実施形態に係る有機発光素子は、例えば、以下の方法で製造できる。
 図17A~図17Gは、有機発光素子3Aの製造方法を説明するための概略断面図である。
 まず、図17Aに示すように、ガラス基板31上にアノード電極32を形成する。アノード電極32の形成方法としては、スパッタリング法が例示できる。
 次いで、図17Bに示すように、アノード電極32上に正孔注入層34aを形成する。正孔注入層34aの形成方法としては、スピンコート法が例示できる。
 次いで、図17Cに示すように、正孔注入層34a上に正孔輸送層34bを形成する。正孔輸送層34bは、例えば、化合物(1)を含む、上記のキャリヤ(正孔)輸送層用組成物を正孔注入層34a上に載せることで、さらに、必要に応じて溶媒を乾燥除去することで形成できる。正孔輸送層用組成物を用いて正孔輸送層34bを形成する方法は、電界効果トランジスタの製造時に、有機半導体層用組成物を用いて有機半導体層を形成する方法と同様であり、浸漬法;キャスト法、スピンコート法等の塗布法;インクジェット法、マイクロコンタクト印刷法、反転オフセット印刷法、フレキソ印刷法、平版印刷法、凹版印刷法等の印刷法が例示できる。また、正孔輸送層34bは、真空蒸着法等により、化合物(1)を蒸着させて形成してもよい。
 次いで、図17Dに示すように、正孔輸送層34b上に発光層34cを形成する。発光層34cの形成方法としては、真空蒸着法が例示できる。
 次いで、図17Eに示すように、発光層34c上に電子輸送層34dを形成する。電子輸送層34dの形成方法としては、真空蒸着法が例示できる。
 次いで、図17Fに示すように、電子輸送層34d上に電子注入層34eを形成する。電子注入層34eの形成方法としては、真空蒸着法が例示できる。
 次いで、図17Gに示すように、電子注入層34e上にカソード電極33を形成する。カソード電極33の形成方法としては、真空蒸着法が例示できる。
 上記工程を行うことで、図16に示す有機発光素子3Aが得られる。
 なお、ここでは正孔輸送層34bとして、前記化合物(1)を含むものについて説明したが、前記化合物(1)を含まないものとする場合には、正孔輸送層34bは、有機EL用の公知のものでよい。また、ここでは電子輸送層34dとして、有機EL用又は有機光導電体用として公知の材質からなるものについて説明したが、前記化合物(1)を含むものとしてもよく、この場合の電子輸送層34dは、上記の化合物(1)を含む正孔輸送層34bの場合と同様の方法で形成できる。
<表示装置用アレイ>
 本実施形態に係る表示装置用アレイは、前記電界効果トランジスタをスイッチング素子として備える。そして、かかる電界効果トランジスタを備えたこと以外は、従来の表示装置用アレイと同様の構成とすることができる。本実施形態に係る表示装置用アレイは、前記電界効果トランジスタを備えたことで、高速動作が可能となる。
 以下、図面を参照しながら説明する。
 図18Aは、本発明に係る表示装置用アレイの要部を例示する平面図である。図18Bは、本発明に係る表示装置用アレイの要部を例示する拡大平面図である。図18Cは、本発明に係る表示装置用アレイの要部を例示する図18BのC-C’線における断面図である。図18Dは、本発明に係る表示装置用アレイの要部を例示する図18BのD-D’線における断面図である。
 ここに示す表示装置用アレイ4Aは、図1に示す電界効果トランジスタ1Aを備えた有機半導体装置42をマトリクス状に配置することで、画像表示装置の駆動用アレイとして用いたものである。ただし、電界効果トランジスタ1Aとしては、有機半導体層16がソース電極14及びドレイン電極15間のゲート絶縁膜13上のみに形成されたものを用いている。
 表示装置用アレイ4Aは、透明な基板11上に設けられたゲート配線40、ソース配線41、画素電極43、及びこれらに電気的に接続された電界効果トランジスタ1Aを備えた有機半導体装置42から概略構成されている。ゲート配線40は、図1におけるゲート電極12を構成するとともに、ゲート電極12への接続配線ともなっている。
 そして、ゲート配線40上にゲート絶縁膜13を介してソース電極14及びドレイン電極15が離間して設けられ、さらにソース電極14及びドレイン電極15間のゲート絶縁膜13上に、有機半導体層16が設けられている。また、ドレイン電極15は、画素電極43と接続され、駆動用アレイとして構成されている。
 有機半導体装置42は、例えば、ソース配線41及び画素電極43を形成する工程を有すること以外は、電界効果トランジスタ1Aの場合と同様の方法で製造できる。具体的には、以下の通りである。図19A~図19Eは、有機半導体装置42の製造方法を説明するための概略断面図である。
 まず、図9A~図9Cを参照して説明した方法と同様の方法で、図19A~図19Cに示すように、基板11上にゲート配線40(ゲート電極12)、ゲート絶縁膜13を順次形成し、次に所定のパターンのフォトレジスト膜90を形成する。ゲート絶縁膜13は、ゲート配線40の表面を覆い、基板11上の全面を覆うように形成し、次いで所定のパターンにエッチングする。
 次いで、図9Dを参照して説明した方法と同様の方法で、図19Dに示すように、ソース電極14及びドレイン電極15を形成する。さらに、ソース電極14に接触するようにソース配線41を、ドレイン電極15に接触するように画素電極43を、それぞれゲート絶縁膜13上に形成する。ソース配線41及び画素電極43は、例えば、銀(Ag)等の金属を材質とし、各種印刷法により形成できる。なお、画素電極43は、有機発光素子3Aのアノード電極32又はカソード電極33と同じ材料で構成されていてもよい。また、表示装置アレイ4Aを液晶表示装置に用いる場合は、透明電極であるITO等を用いてもよい。
 次いで、図9Eを参照して説明した方法と同様の方法で、図19Eに示すように、ゲート絶縁膜13上に有機半導体層16を形成する。ただし、ここでは、金属マスクを用いる方法等により、ソース電極14及びドレイン電極15間のゲート絶縁膜13上のみに有機半導体層16を形成する。
 上記工程を行うことで、有機半導体装置42が得られる。
 そして、得られた有機半導体装置42をマトリクス状に配置することで、表示装置用アレイ4Aが得られる。
 ここでは、電界効果トランジスタとして電界効果トランジスタ1Aを用いた例を示しているが、その他の電界効果トランジスタも用いることができ、その構成に応じて、有機半導体装置の構成を調節すればよい。
 本実施形態に係る表示装置用アレイは、例えば、液晶表示装置や有機EL表示装置等の画像表示装置の駆動用として好適である。
<表示装置>
 本実施形態に係る表示装置は、画像信号出力部と、駆動部と、発光部と、を備える。画像信号出力部は、画像信号を発生して出力する。駆動部は、前記画像信号に基づいて電流又は電圧を発生する。発光部は、発生した前記電流又は電圧により発光する。前記発光部は、前記有機発光素子である。そして、かかる有機発光素子を備えたこと以外は、従来の表示装置と同様の構成とすることができる。
 本実施形態に係る表示装置は、前記有機発光素子を備えたことで、良好な発光特性が得られる。
 以下、図面を参照しながら説明する。
 図20Aは、本実施形態に係る表示装置の要部を例示する平面図である。図20Bは、本実施形態に係る表示装置の要部を例示する1画素の等価回路図である。図20Cは、本実施形態に係る表示装置の要部を例示する1画素の平面図である。
 ここに示す表示装置5Aは、本実施形態に係る有機発光素子3を有機EL表示装置の素子として用いた有機EL表示装置である。
 表示装置5Aにおいては、複数の走査線(ゲート配線)50と、複数の信号線(ソース配線)51とが縦横に配されたマトリクスが形成されており、それぞれの交差部近傍に1つの画素が設けられた画素アレイが形成されている。画素アレイの周囲領域には、走査線50に接続された走査線駆動回路(ゲートドライバ)55と、信号線51に接続された信号線駆動回路(ソースドライバ)56が、それぞれ配置されている。そして、前記走査線駆動回路55及び信号線駆動回路56には、画像表示を行うためのタイミング信号やRGB輝度信号等の画像信号を供給するためのコントローラ57が接続されている。さらに、前記走査線駆動回路55及び信号線駆動回路56には、走査線50及び信号線51に与える信号電圧を供給するための電源回路59が接続されている。コントローラ57には、表示装置5Aに対して外部より水平・垂直同期信号や画像信号を与えるための外部処理装置58が接続されている。
 表示装置5Aを構成する画素アレイの1画素は、図20Bに示すように、スイッチング用トランジスタ52、駆動用トランジスタ53、保持容量54、有機発光素子3(有機EL素子)からなる画素部を備える。スイッチング用トランジスタ52は、走査線50及び信号線51に接続されている。駆動用トランジスタ53は、画素を駆動する。駆動用トランジスタ53に有機発光素子3(有機EL素子)からなる画素部が接続されている。有機発光素子3は、駆動電流又は電圧により発光する。
 スイッチング用トランジスタ52及び駆動用トランジスタ53は、例えば、一般的な多結晶シリコンを半導体として用いたトランジスタ等で構成できる。以下、多結晶シリコンを半導体として用いてスイッチング用トランジスタ52及び駆動用トランジスタ53を作製する方法について、図23A~図23Fを参照して説明する。
 基板上に、CVD(Chemical Vapor Deposition)等によりアモルファスシリコン膜を形成した後、例えばエキシマレーザーを用いたレーザーアニール法や固相成長法等を用いて、図23Aに示すようにポリシリコン膜100を形成する。ポリシリコン膜100の膜厚は、例えば80nmである。
 図23Bに示すように、フォトリソグラフィーとエッチングにより、ポリシリコン膜100をパターニングし、スイッチング用トランジスタ52及び駆動用トランジスタ53のチャネル領域となるアイランド状のポリシリコン膜101、102を形成する。
 図23Cに示すように、アイランド状のポリシリコン膜101、102上に、ゲート絶縁膜として酸化シリコン(SiO2)膜(図示せず)を形成する。ゲート絶縁膜の厚さは、例えば100nmである。続いて、基板上にゲート電極を形成するための金属膜を形成し、フォトリソグラフィーとエッチングによりチャネル領域上にゲート電極103、104を形成する。ゲート電極103、104を形成する金属としては、一般的に用いられるTa、Al、Mo等の金属、またはその合金を用いることができる。ゲート電極103、104の厚さは、例えば300nmである。次に、ゲート電極103、104をマスクとして、アイランド状ポリシリコン膜101、102のソースおよびドレイン部分に不純物イオンを導入し、レーザーアニール等により活性化を行う。これにより、アイランド状のポリシリコン膜101、102のソース及びドレイン部分を低抵抗化する。例えば、p型の不純物イオンとしてホウ素(B)をイオン注入した後、レーザー活性化によって、ソース及びドレイン部分の低抵抗化を行う。
 ポリシリコン膜101、102のソース及びドレイン部分上に位置するゲート絶縁膜に、フォトリソグラフィーとエッチングを用いてコンタクトホールを形成する。続いて、ゲート絶縁膜およびコンタクトホール上に、金属膜を形成する。この金属膜をフォトリソグラフィーとエッチングを用いてパターニングし、図23Dに示すように信号線51、電源線Vdd及びソース電極105、106を形成する。本実施形態の画素構造では、電源線Vddの一部は、後に述べるキャパシタ54の電極を兼ねている。金属膜としては、例えば、抵抗の低いAlやAl-Si合金などを用いることができる。
 続いて、基板全面に層間絶縁膜(図示せず)を形成した後、スイッチング用トランジスタ52及び駆動用トランジスタ53のゲート電極103、104、ドレイン電極が形成される部分に、フォトリソグラフィーとエッチングを用いてコンタクトホールを形成する。層間絶縁膜としては、例えば酸化シリコン膜や窒化シリコン膜を用いることができる。層間絶縁膜の厚さは、例えば400nmである。次に、基板全面に金属膜を形成した後、フォトリソグラフィーとエッチングによりこの金属膜をパターニングして、図23Eに示すように走査線50、スイッチング用トランジスタ52のドレイン電極107、及びキャパシタ54の対向電極を形成する。この金属膜としては、抵抗の低いAl-Si合金などを用いることができる。これにより、スイッチング用トランジスタ52のゲート電極103は、走査線50と電気的に接続される。また、駆動用トランジスタ53のゲート電極104は、スイッチング用トランジスタ52のドレイン電極107と電気的に接続される。スイッチング用トランジスタ52のドレイン電極107の一部は、電源線Vddの延長された一部分と層間絶縁膜を介して重ね合わせられ、キャパシタ54を形成する。
 次に、駆動用トランジスタ53のドレイン電極として、ITOからなる画素電極108を形成する。画素電極108は、有機発光素子3のアノード電極32である。
 有機発光素子3としては、図16に示す有機発光素子3Aをはじめとして、本実施形態に係る素子であれば、いずれも用いることができる。以上により表示装置5Aが構成されている。
 以下、具体的実施例により、本発明の態様についてより詳細に説明する。ただし、本発明の態様は以下に示す実施例に何ら限定されるものではない。
<化合物(1)の製造>
[実施例1]
 下記手順に従い、化合物(1a)として下記一般式(1a-1)で表される化合物(以下、化合物(1a-1)と略記する)を用いて、化合物(1)として下記一般式(1-1)で表される化合物(以下、化合物(1-1)と略記する)を製造した。
Figure JPOXMLDOC01-appb-C000016
 (式中、Phはフェニル基であり、Acはアセチル基であり、bpyは2,2’-ビピリジンである。)
(化合物(1a-1)の製造)
 4-ブロモ-2-クロロヨードベンゼン(3.0g、9.5mmol)、1-ナフトール(1.4g、9.5mmol)、トリフェニルホスフィン(PPh)(0.5g、1.9mmol)、炭酸セシウム(CSCO)(12.4g、38mmol)及び無水N,N-ジメチルホルムアミド(DMF)(10mL)の混合物に、20分間乾燥窒素ガスを通気させ、バブリングした。
 次いで、酢酸パラジウム(Pd(OAc))(112mg、0.5mmol)を加え、窒素ガス雰囲気下、140℃で10時間攪拌した。
 次いで、得られた反応液に水を加え、ジクロロメタンで抽出し、溶媒を留去後、シリカゲルカラムクロマトグラフィー(n-ヘキサン:ジクロロメタン=5:1、体積比)により精製し、さらにn-ヘキサンを用いて再結晶を行うことにより、化合物(1a-1)(9-クロロ-α-ブラザン、9-クロロ-ベンゾ[b]ナフト[2,1-d]フラン)の無色結晶を1.8g得た(収率75%)。
 化合物(1a)は、H-NMRスペクトルによってその構造を確認した。
 1H-NMR (400 MHz, CDCl3): δ = 7.38 (dd, J = 8.23, 1.83 Hz, 1H), 7.58(td, J = 7.59, 1.37 Hz, 1H), 7.65 (td, J = 7.59, 1.28 Hz, 1H), 7.71 (d, J = 1.83 Hz, 1H), 7.79 (d, J = 8.44 Hz, 1H), 7.90 (d, J = 8.26 Hz, 1H), 7.95 (d, J = 8.44 Hz, 1H), 7.99 (d, J = 8.23, 1H), 8.41 (d, J = 8.18 Hz, 1H)
(化合物(1-1)の製造)
 化合物(1a-1)(610mg、2.4mmol)、ビストリフェニルホスフィンニッケル(II)クロライド(NiCl(PPh)(13mg、0.02mmol)、トリフェニルホスフィン(66mg、0.25mmol)、2,2’-ビピリジン(bpy)(3.2mg、0.02mmol)、亜鉛粉末(68mg、1mmol)、及び無水N,N-ジメチルアセトアミド(DMAc)(4mL)の混合物を、80℃で12時間撹拌した。
 次いで、これを水に加え、ジクロロメタンで抽出し、溶媒留去後の残渣を、減圧下での昇華精製(250℃~300℃/2Pa)に供することにより、化合物(1-1)の無色固体を420mg得た(収率80%)。
 化合物(1-1)は、H-NMRスペクトル、及び高分解能エレクトロスプレーイオン化質量分析(HR-ESI-MS)によって、その構造を確認した。
 1H NMR (400 MHz, CDCl3) : δ = 7.59(td, J= 7.56, 1.34 Hz, 1H), 7.68 (td, J = 7.56, 1.20 Hz, 1H), 7.79 (dd, J = 8.21, 1.74 Hz, 1H), 7.82 (d, J = 8.41 Hz, 1H), 8.02 (d, J = 8.21 Hz, 1H), 8.05 (d, J = 8.61 Hz, 1H), 8.07 (d, J = 1.74 Hz, 1H), 8.11 (d, J = 7.56, 1H), 8.49 (d, J = 8.41 Hz, 1H)
 HR-ESI-MS m/z: 435.1406[M+H]+, Calcd for C32H18O2, 434.1307.
[実施例2]
 下記手順に従い、前記化合物(1a)として下記式(1a-2)で表される化合物(以下、化合物(1a-2)と略記する)を用いて、化合物(1)として下記式(1-2)で表される化合物(以下、化合物(1-2)と略記する)を製造した。化合物(1a-2)は、下記式(1a-201)で表される化合物(以下、化合物(1a-201)と略記する)、及び下記式(1a-202)で表される化合物(以下、化合物(1a-202)と略記する)を経由する方法で製造した。
Figure JPOXMLDOC01-appb-C000017
 (式中、Meはメチル基であり、Etはエチル基であり、Phはフェニル基であり、Acはアセチル基である。)
(化合物(1a-201)の製造)
 3,4-ジブロモアニソール(13.3g、0.05mol)、1-ナフトール(7.2g、0.05mol)、トリフェニルホスフィン(PPh)(2.62g,0.01mol)、炭酸セシウム(CsCO)(65.2g,0.2mol)及び無水N,N-ジメチルホルムアミド(DMF)(50mL)の混合物に、20分間乾燥窒素ガスをバブリングした。これに酢酸パラジウム(Pd(OAc))(561mg,2.5mmol)を加え、窒素ガス雰囲気下、150℃で2日間攪拌した。得られた反応液に水を加え、ジクロロメタンで抽出し、溶媒留去後の残渣を、シリカゲル充填剤を用いたカラムクロマトグラフィー(n-ヘキサン:ジクロロメタン=5:1、体積比)による精製、及びGPC精製することにより、白色固体として化合物(1a-201)(8-メトキシベンゾ[k,l]ナフト[1,2-d]フラン)を得た(収率5.6%)。
 化合物(1a-201)は、H-NMRスペクトル及び13C-NMRスペクトルによってその構造を確認した。
 1H NMR (400 MHz, CDCl3)δ:3.93 (s, 3H), 7.06 (dd, J = 8.98, 2.60 Hz, 1H), 7.45 (d, J = 2.57 Hz, 1H), 7.45 (td, J = 7.54, 1.35 Hz, 1H), 7.60 (d, J = 8.95 Hz, 1H), 7.63 (td, J = 7.56, 1.34 Hz, 1H), 7.75 (d, J = 8.43 Hz, 1H), 7.95 (d, J = 8.61 Hz, 1H), 7.98 (d, J = 7.38, 1H) , 8.41 (d, J = 8.22, 1H)
 13C NMR (100 MHz, CDCl3)δ:56.15, 103.27, 112.36, 114.49, 118.50, 119.50, 120.99, 121.61, 123.12, 125.62, 126.53, 128.52, 133.14, 150.89, 152.89, 156.16
(化合物(1a-202)の製造)
 化合物(1a-201)(695mg、2.8mmol)の無水ジクロロメタン溶液(10mL)に、三臭化ホウ素(BBr)(1.4g、5.6mmol)を0℃で加え、その後、室温において3時間撹拌した。これを水に加え、塩化メチレンで抽出し、溶媒留去後の残渣を、シリカゲル充填剤を用いたカラムクロマトグラフィー(ジクロロメタン)により精製することで、化合物(1a-202)(8-ヒドロキシベンゾ[k,l]ナフト[1,2-d]フラン)を白色固体として得た(収率98%)。
 化合物(1a-202)は、H-NMRスペクトルによってその構造を確認した。
 1H NMR (400 MHz, CDCl3)δ:4.87 (s, 1H), 6.58 (d, J = 2.60 Hz, 1H), 6.61 (dd, J = 8.56, 2.60 Hz, 1H), 6.89 (dd, J = 5.68, 3.02 Hz, 1H), 7.31-7.40 (m, 3H), 7.48 (d, J = 6.52 Hz, 1H), 7.51 (d, J = 8.21 Hz, 1H), 7.71 (d, J = 8.56, 1H)
(化合物(1a-2)の製造)
 化合物(1a-202)(640mg、2.7mmol)及びトリエチルアミン(760μL)の無水ジクロロメタン溶液(15mL)に、トリフルオロメタンスルホン酸無水物((CFSOO)(1.54mg、5.5mmol)を0℃で加え、その後、室温において12時間撹拌した。これを水に加え、塩化メチレンで抽出し、溶媒留去後の残渣を、シリカゲル充填剤を用いたカラムクロマトグラフィー(n-ヘキサン:ジクロロメタン=1:1、体積比)により精製することで、化合物(1a-2)(8-トリフルオロメタンスルホニルベンゾ[k,l]ナフト[1,2-d]フラン)を淡黄色固体として得た(収率96%)。
 化合物(1a-2)は、H-NMRスペクトル及び13C-NMRスペクトルによってその構造を確認した。
 1H NMR (400 MHz, CDCl3)δ:7.37 (dd, J = 8.89, 2.57 Hz, 1H), 7.62 (ddd, J = 7.50, 7.50, 1.15 Hz, 1H), 7.68 (ddd, J = 7.50, 7.50, 1.15 Hz, 1H), 7.74 (d, J = 8.92 Hz, 1H), 7.82 (d, J = 8.58 Hz, 1H), 7.89 (d, J = 2.52 Hz, 1H), 7.96 (d, J = 8.43 Hz, 1H), 8.01(d, J = 8.03 Hz, 1H), 8.43 (d, J = 8.15 Hz, 1H)
 13C NMR (100 MHz, CDCl3)δ:113.00, 113.30, 118.13, 118.38, 118.80 (q, J= 320.77 Hz, CF3), 119.01, 120.93, 121.23, 124.08, 126.41, 126.90, 126.91, 128.53, 133.59, 145.23, 153.58, 154.42
(化合物(1-2)の製造)
 化合物(1a-2)(146mg、0.4mmol)、ビストリフェニルホスフィンニッケル(II)クロライド(NiCl(PPh)(26mg、0.04mmol)、ヨウ化カリウム(266mg、1.6mmol)、亜鉛粉末(523mg、8mmol)、及び無水テトラヒドロフラン(THF)(5mL)の混合物を、70℃で24時間撹拌した。その後、これを水に加え、クロロホルムで抽出し、溶媒留去後の残渣を減圧下昇華精製(300℃/2Pa)することにより、化合物(1-2)を白色固体として得た(収率58%)。
 化合物(1-2)は、H-NMRスペクトル、及び高分解能エレクトロスプレーイオン化質量分析(HR-ESI-MS)によって、その構造を確認した。
 1H NMR (400 MHz, CDCl3)δ:7.59 (ddd, J = 7.51, 7.51, 1.19 Hz, 1H), 7.62 (ddd, J = 7.56, 7.56, 1.21 Hz, 1H), 7.80-7.85 (m, 3H), 8.02 (d, J = 8.06 Hz, 1H), 8.09 (d, J = 8.41 Hz, 1H), 8.31 (t, J = 1.30 Hz, 1H), 8.49 (d, J = 8.29 Hz, 1H)
 HR-ESI-MS m/z:435.1385[M+H]+, Calcd for C32H18O2, 434.1307.
<化合物(1)の物性評価>
 化合物(1-1)及び(1-2)と下記ペンタセンについて、DFT法(B3LYP6-31G)による第一原理計算を行い、最高被占有分子軌道(HOMO)及び最低非占有分子軌道(LUMO)のレベルを算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-T000019
 表1に示すように、第一原理計算の結果、化合物(1-1)及び(1-2)はペンタセンよりもHOMOレベルが低く、大きなイオン化ポテンシャルを有すること、すなわち、化合物(1-1)はペンタセンよりも耐酸化性が高いことを示していた。また、HOMO-LUMOギャップ(HOMO-LUMO間のエネルギー差)が小さい場合には、化合物の安定性が低下することが知られており、化合物(1-1)と(1-2)がペンタセンよりもHOMO-LUMOギャップがそれぞれ1.85eV、2.37eVも大きいことから、化合物(1-1)及び(1-2)が安定性に優れることが示された。
 なお、化合物(1-1)及び(1-2)のようなHOMOレベルである場合、例えば、ソース電極及びゲート電極が金(仕事関数は約5eV)である電界効果トランジスタの有機半導体層として化合物(1-1)及び(1-2)を用いれば、正孔(ホール)注入が可能であると予想された。
 次に、化合物(1-1)及び(1-2)の空気酸化に対する安定性を評価した。
 すなわち、空気飽和の状態とした塩化メチレンを溶媒として化合物(1-1)及び(1-2)の溶液を調製し、暗所で静置した。そして、溶液調製直後から静置一ヶ月後まで、紫外-可視(UV-Vis)分光の吸収スペクトルを測定することによって、化合物(1-1)及び(1-2)の溶液について、吸収強度の経時変化を追跡した。この時、文献1「J.Am.Chem.Soc.,2007,129,2225.」を参照した。溶液調製直後と暗所静置一ヶ月後における吸収強度の測定結果を図21に示す。
 図21に示すように、化合物(1-1)及び(1-2)の溶液の吸収強度は、調製直後と、暗所静置一ヶ月後とでは、全く違いが見られなかった。なお、ペンタセンについては、このような条件下で24時間静置すると、その溶液の吸収強度がほとんどゼロになることが文献1で報告されている。したがって、化合物(1-1)及び(1-2)は、空気酸化に対する安定性がペンタセンよりも顕著に高いことが確認できた。
 また、化合物(1-1)及び(1-2)の吸収スペクトル(λmax in CHCl)を測定し、大気中光電子分光法(AC-2)によるイオン化ポテンシャル(HOMOレベル)を測定した。これらの結果を、ペンタセンの結果と共に表2に示す。なお、吸収スペクトルの値は、最長波長のピークのものを示し、ペンタセンの吸収スペクトルは、上記の文献1「J.Am.Chem.Soc.,2007,129,2225.」より引用し、イオン化ポテンシャルは文献2「Jpn.J.Appl.Phys.2005,44,561.」より引用した。
Figure JPOXMLDOC01-appb-T000020
 表2に示すように、化合物(1-1)及び(1-2)は、ペンタセンよりも短波長側に吸収スペクトルが観測された。また、化合物(1-1)及び(1-2)は、ペンタセンよりもイオン化ポテンシャルが大きく、HOMOレベルがペンタセンよりも0.7eV~0.8eV程度低いことを示していた。これらの結果は、上記の第一原理計算の結果とよく一致していた。
 以上のように、化合物(1-1)及び(1-2)は、代表的な有機半導体材料であるペンタセンよりも耐酸化性が高く、大気雰囲気下でも安定であることが確認できた。化合物(1-1)及び(1-2)を半導体材料として用いることにより、電気的特性が安定な半導体デバイスを提供できる。また、実施例1及び2で化合物(1-1)及び(1-2)について示すように、化合物(1)は、市販品の原料を用いても容易に製造でき、実用性が高い。
<電界効果トランジスタの製造>
[実施例3]
 図11A~図11Dを参照して説明した製造方法により、図5に示す電界効果トランジスタ1Cを製造した。より具体的には、以下の通りである。
 基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
 ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
 ゲート絶縁膜13の材質は、酸化シリコン(SiO)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
 有機半導体層16は、膜厚を約40nmとし、実施例1で製造した化合物(1-1)を用いて、真空蒸着法で成膜することにより形成した。
 ソース電極14及びドレイン電極15の材質は金(Au)とし、金属マスクを介して真空蒸着法により、膜厚40nmのAu膜を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は50μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。
 以上のように作製した有機トランジスタは、p型のトランジスタ素子としての特性を示した。有機トランジスタの電流―電圧(I-V)特性の飽和領域から、電荷移動度を求め、測定結果を表3に示した。 
[実施例4]
 図12A~図12Dを参照して説明した製造方法により、図6に示す電界効果トランジスタ1Dを製造した。より具体的には、以下の通りである。
 基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
 ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
 ゲート絶縁膜13の材質は、酸化シリコン(SiO)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
 表面修飾層18は、ゲート絶縁膜13を形成した基板11を、ヘキサメチルジシラザン(HMDS)雰囲気のシャーレ中(150℃)に30分間置くことで形成した。 有機半導体層16は、膜厚を約40nmとし、実施例1で製造した化合物(1-1)を用いて、真空蒸着法で成膜することにより形成した。
 ソース電極14及びドレイン電極15の材質は金(Au)とし、金属マスクを介して真空蒸着法により、膜厚40nmのAu膜を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は50μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。
 以上のように作製した有機トランジスタは、p型のトランジスタ素子としての特性を示した。有機トランジスタの電流―電圧(I-V)特性の飽和領域から、電荷移動度を求め、測定結果を表3に示した。 
[実施例5]
 実施例4における表面修飾層18の形成以外は、実施例4の方法により有機トランジスタを作製した。表面修飾層18の形成には、表面修飾剤としてオクタデシルトリクロロシランシラン(ODS)を用いた。表面修飾層18の形成は、以下のように行った。ゲート絶縁膜13を形成した基板11をオクタデシルトリクロロシランシラン(ODS)の無水トルエン溶液中(5mmol)に18時間浸漬し、その後、クロロホルム、アセトン、エタノール、超純水中でそれぞれ10分間、超音波洗浄することで、表面修飾層18を形成した。表面修飾層18の形成以外は、実施例4の方法により有機トランジスタを作製した。
[実施例6]
 実施例3において、有機半導体層の形成に際して、基板を100℃に加熱した以外は、実施例3に記載の方法により、有機トランジスタを作製した。
[実施例7]
 実施例4において、有機半導体層の形成に際して、基板を100℃に加熱した以外は、実施例4に記載の方法により、有機トランジスタを作製した。
[実施例8]
 実施例5において、有機半導体層の形成に際して、基板を100℃に加熱した以外は、実施例5に記載の方法により、有機トランジスタを作製した。
[実施例9]
 実施例3において、有機半導体層の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例3に記載の方法により、有機トランジスタを作製した。
[実施例10]
実施例4において、有機半導体層の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例4に記載の方法により、有機トランジスタを作製した。
[実施例11]
 実施例5において、有機半導体層の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例5に記載の方法により、有機トランジスタを作製した。
[実施例12]
実施例6において、有機半導体層の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例6に記載の方法により、有機トランジスタを作製した。
[実施例13]
 実施例7において、有機半導体層の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例7に記載の方法により、有機トランジスタを作製した。
[実施例14]
 実施例8において、有機半導体層の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例7に記載の方法により、有機トランジスタを作製した。
Figure JPOXMLDOC01-appb-T000021
 表3より、本実施例の有機トランジスタは、p型のトランジスタ素子としての特性を示したが、デバイスの作製プロセスによって電荷移動度が大きく異なる。特に、特定の組み合わせ、すなわち、絶縁膜上に表面修飾剤処理を施した基板を用い、蒸着時に基板加熱を行うことで、高い電荷移動度を有する有機トランジスタを作製することができる。更には、表面修飾剤の選択も電荷移動度の大きさに及ぼす重要な要因となり、本発明の態様における化合物では、HMDSを表面修飾剤として用いたトランジスタにおいて電荷移動度の顕著な向上が認められた。
 また、これらの有機トランジスタは大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後の測定においても、著しい特性の低下は見られなかった。
[実施例15]
 図9A~図9Eを参照して説明した製造方法により、図1に示す電界効果トランジスタ1Aを製造した。より具体的には、以下の通りである。
 基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
 ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
 ゲート絶縁膜13の材質は、酸化シリコン(SiO)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
 フォトレジスト膜90は、膜厚を4μmとし、リフトオフプロセス用のネガ型フォトレジスト(日本ゼオン社製、ZPN1150)を用いて、スピンコート法により成膜した後、フォトリソグラフィー法で形成した。
 真空蒸着法によって、膜厚2nmのクロム(Cr)からなる密着層、及び膜厚40nmの金(Au)からなる金属膜を順次成膜し、アセトン等の有機溶媒中に基板11を浸漬するリフトオフ法により、フォトレジスト膜90及びその上に形成された不要なAu膜/Cr膜を除去して、ソース電極14及びドレイン電極15を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は20μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。
 有機半導体層16は、膜厚を約40nmとし、実施例1で製造した化合物(1-1)を用いて、真空蒸着法で成膜することにより形成した。
上記工程を経て製造した電界効果トランジスタ1Aは、前記実施例のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。 
[実施例16]
 実施例15において、有機半導体層16の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例15に記載の方法により、有機トランジスタを作製した。
 上記工程を経て製造した電界効果トランジスタ1Aは、前記実施例のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
[実施例17]
 図10A~図10Fを参照して説明した製造方法により、図3に示す電界効果トランジスタ1Bを製造した。より具体的には、以下の通りである。
 基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
 ゲート電極12の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
 ゲート絶縁膜13の材質は、酸化シリコン(SiO)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
 フォトレジスト膜90は、膜厚を4μmとし、リフトオフプロセス用のネガ型フォトレジスト(日本ゼオン社製、ZPN1150)を用いて、スピンコート法により成膜した後、フォトリソグラフィー法で形成した。
 真空蒸着法によって、膜厚2nmのクロム(Cr)からなる密着層、及び膜厚40nmの金(Au)からなる金属膜を順次成膜し、アセトン等の有機溶媒中に基板11を浸漬するリフトオフ法により、フォトレジスト膜90及びその上に形成された不要なAu膜/Cr膜を除去して、ソース電極14及びドレイン電極15を形成した。この時、ソース電極14及びドレイン電極15間の距離(チャネル長)は20μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。
 表面修飾層18は、ソース電極14及びドレイン電極15を形成した基板11を、ドデカンチオールのエタノール溶液(10mg/mL)に1時間浸漬し、次いで、イソプロピルアルコールで洗浄して、乾燥窒素気流下で乾燥させることにより形成した。
 有機半導体層16は、膜厚を約40nmとし、実施例1で製造した化合物(1-1)を用いて、真空蒸着法で成膜することにより形成した。
 上記工程を経て製造した電界効果トランジスタ1Bは、前記実施例のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
[実施例18]
 実施例17において、有機半導体層16の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例17に記載の方法により、有機トランジスタを作製した。
 上記工程を経て製造した電界効果トランジスタ1Bは、前記実施例のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。 
[実施例19]
 有機半導体層16を、化合物(1-1)を用いた真空蒸着法により形成する代わりに、化合物(1-1)を含む有機半導体層用組成物を用いてスピンコート法により形成したこと以外は、実施例5と同様の方法で電界効果トランジスタ1Aを製造した。この時の有機半導体層用組成物は、クロロホルムを溶媒として、化合物(1-1)の濃度が0.5質量%となるように調製した。この有機半導体層用組成物を、スピンコート法(回転数1500rpm)により塗布した後、飽和クロロホルム雰囲気下で緩やかに乾燥させることで、膜厚約40nmの有機半導体層16を形成した。
 得られた電界効果トランジスタ1Aは、前記施例のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
[実施例20]
 実施例19において、有機半導体層16の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例19に記載の方法により、有機トランジスタを作製した。
 得られた電界効果トランジスタ1Aは、前記施例のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
[実施例21]
 図9A~図9Eを参照して説明した製造方法により、図2に示す電界効果トランジスタ1A’を製造した。すなわち、実施例19と同様の方法で有機半導体層16を形成した後、さらに、ラボコーターPDS2010(商品名、日本パリレン社製)を用いて、保護膜17として膜厚500nmのパリレンC膜を有機半導体層16上に形成することで、電界効果トランジスタ1A’を製造した。
 得られた電界効果トランジスタ1A’は、前記施例のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
[実施例22]
 実施例21において、有機半導体層16の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例21に記載の方法により、有機トランジスタを作製した。
 得られた電界効果トランジスタ1A’は、前記施例のトランジスタと同様に、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
<太陽電池の製造>
[実施例23]
 図15A~図15Dを参照して説明した製造方法により、図13に示す太陽電池2Aを製造した。より具体的には、以下の通りである。
 アノード電極22としては、膜厚150nmのITO膜を、スパッタリング法により形成した。
 p型半導体層24は、膜厚を約40nmとし、実施例1で製造した化合物(1-1)を用いて、真空蒸着法で成膜することにより形成した。
 n型半導体層25としては、膜厚50nmのパーフルオロフタロシアニンからなる膜を、真空蒸着法により形成した。
 カソード電極23としては、膜厚100nmのアルミニウム(Al)膜を、真空蒸着法により形成した。
 得られた太陽電池2Aは、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
[実施例24]
 実施例23において、p型半導体層24の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例23に記載の方法により、太陽電池2Aを作製した。
 得られた太陽電池2Aは、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
<有機発光素子の製造>
[実施例25]
 図17A~図17Gを参照して説明した製造方法により、図16に示す有機発光素子3Aを製造した。より具体的には、以下の通りである。
 アノード電極32としては、膜厚150nmのITO膜を、スパッタリング法により形成した。
 正孔注入層34aは、PEDOT/PSS(Bytron-P、バイエル社製)をスピンコート法(回転数1500rpm)でアノード電極32上に載せることで形成し、膜厚を約50nmとした。
 正孔輸送層34bは、膜厚を約40nmとし、実施例1で製造した化合物(1-1)を用いて、真空蒸着法で成膜することにより形成した。
 発光層34cは、正孔輸送層34b上に、4,4’-N,N’-ジカルバソル-ビフェニル(CBP)及びトリス(2-フェニルピリジン)イリジウム(Ir(PPY))を、それぞれ異なる蒸着源から共蒸着させる真空蒸着法によって形成した。形成した発光層34c中のIr(PPY)の濃度は、6.5質量%であった。また、膜厚は40nmであった。
 電子輸送層34dは、発光層34c上にトリス(8-ヒドロキシキノリンアルミニウム)(A1q)を真空蒸着させることで形成し、膜厚を40nmとした。
 電子注入層34eは、電子輸送層34d上に酸化リチウム(LiO)を真空蒸着させることで形成し、膜厚を0.5nmとした。
 カソード電極33は、電子注入層34e上にアルミニウム(Al)を真空蒸着させることで形成し、膜厚を150nmとした。
 得られた有機発光素子3Aは、Ir(PPY)からの発光が認められた。また、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
[実施例26]
 実施例25において、正孔輸送層34bの形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例21に記載の方法により、有機発光素子3Aを作製した。
得られた有機発光素子3Aは、Ir(PPY)からの発光が認められた。また、大気雰囲気下でも安定に動作し、大気中に置いてから1ヶ月後においても、著しい特性の低下は見られなかった。
<表示装置用アレイの製造>
[実施例27]
 図19A~図19Eを参照して説明した有機半導体装置の製造方法を用いて、図18A~図18Dに示す表示装置用アレイ4Aを製造した。より具体的には、以下の通りである。
 基板11としては、ガラス基板(コーニング社製、Eagle2000、厚さ:0.5mm)を用いた。
 ゲート配線40の材質は、アルミニウム(Al)に対して10%のシリコン(Si)を添加したAlSi合金とした。そして、このAlSi合金からなる金属ターゲットを用いたスパッタリング法により、基板11上に、AlSi合金からなる膜厚40nmの金属膜を形成した。この金属膜のパターンニングは、フォトリソグラフィー及びエッチングで行った。
 ゲート絶縁膜13の材質は、酸化シリコン(SiO)とし、スパッタリング法により、膜厚300nmの酸化シリコン膜を形成した。
 フォトレジスト膜90は、膜厚を4μmとし、リフトオフプロセス用のネガ型フォトレジスト(日本ゼオン社製、ZPN1150)を用いて、スピンコート法により成膜した後、フォトリソグラフィー法で形成した。
 真空蒸着法によって、膜厚2nmのクロム(Cr)からなる密着層、及び膜厚40nmの金(Au)からなる金属膜を順次成膜し、アセトン等の有機溶媒中に基板11を浸漬するリフトオフ法により、フォトレジスト膜90及びその上に形成された不要なAu膜/Cr膜を除去して、ソース電極14及びドレイン電極15を形成した。この時、ソース電極14及びドレイン電極15間の間隔(チャネル長)は20μmであり、対向する電極の長さ(チャネル幅)は1000μmであった。
 ソース配線41及び画素電極43は、Agインクを反転印刷し、180℃で焼成することにより、厚さ50nmで所望のパターンに形成した。
 有機半導体層16は、膜厚を約40nmとし、実施例1で製造した化合物(1-1)を用いた、金属マスクを介した真空蒸着法で成膜することにより形成した。
 そして、得られた有機半導体装置42をマトリクス状に配置して、表示装置用アレイ4Aとした。
[実施例28]
 実施例27において、有機半導体層16の形成に際して、例示化合物番号1-1の化合物を使用する代わりに、例示化合物番号1-2の化合物を使用した以外は、実施例27に記載の方法により、表示装置用アレイ4Aを作製した。
<表示装置の製造>
[実施例29]
 図23A~23Fを参照して説明した製造方法により、図16に示す有機発光素子3Aを有機EL表示装置の素子として用い、図20A~20Cに示す表示装置5Aを製造した。有機発光素子3Aは、実施例21と同様の方法で製造した。
より具体的には、以下の通りである。
 基板上に、CVDによりアモルファスシリコン膜を形成した後、エキシマレーザーを用いたレーザーアニール法を用いて、厚さ80nmのポリシリコン膜100を形成した。
 フォトリソグラフィーとエッチングにより、ポリシリコン膜100をパターニングし、スイッチング用トランジスタ52及び駆動用トランジスタ53のチャネル領域となるアイランド状のポリシリコン膜101、102を形成した。
 アイランド状のポリシリコン膜101、102上に、ゲート絶縁膜として厚さ100nmの酸化シリコン(SiO2)膜(図示せず)を形成した。続いて、基板上にモリブデン膜を形成し、フォトリソグラフィーとエッチングによりチャネル領域上に厚さ300nmのゲート電極103、104を形成した。次に、ゲート電極103、104をマスクとして、アイランド状のポリシリコン膜101、102のソース及びドレイン部分にp型の不純物イオンとしてホウ素(B)をイオン注入した後、レーザー活性化を行い、ソース及びドレイン部分の低抵抗化を行った。
 アイランド状のポリシリコン膜101、102のソース及びドレイン部分上に位置するゲート絶縁膜に、フォトリソグラフィーとエッチングを用いてコンタクトホールを形成した。続いて、ゲート絶縁膜およびコンタクトホール上に、アルミニウム膜を形成した。アルミニウム膜をフォトリソグラフィーとエッチングを用いてパターニングし、信号線51、電源線Vdd及びソース電極105、106を形成した。本実施例の画素構造では、電源線Vddの一部は、後に述べるキャパシタ54の電極を兼ねている。
 続いて、基板全面に層間絶縁膜として400nmの酸化シリコン膜(図示せず)を形成した後、スイッチング用トランジスタ52及び駆動用トランジスタ53のゲート電極103、104、ドレイン電極が形成される部分に、フォトリソグラフィーとエッチングを用いてコンタクトホールを形成した。次に、基板全面にAl-Si合金膜を形成した後、フォトリソグラフィーとエッチングによりこのAl-Si合金膜をパターニングして、走査線50、スイッチング用トランジスタ52のドレイン電極107、及びキャパシタ54の対向電極を形成した。スイッチング用トランジスタ52のドレイン電極107の一部と、電源線Vddの延長された一部分と、層間絶縁膜により、キャパシタ54を形成した。
 次に、駆動用トランジスタ53のドレイン電極として、ITOからなる画素電極108を形成した。画素電極108は、有機発光素子3のアノード電極32である。この後、実施例21で説明した有機EL部を順次、マスク蒸着を用いて画素電極108上に形成することで、駆動用トランジスタ53に電気的に接続された有機発光素子3Aを形成した。
 以上のようにして、有機発光素子3Aを有機EL表示装置の素子として用い、図20Aに示す表示装置5Aを製造した。
[実施例30]
 実施例29において、有機EL部の形成に際して、実施例21で説明した有機EL部を使用する代わりに、実施例22で説明した有機EL部を使用した以外は、実施例29に記載の方法により、表示装置5Aを作製した。
 本発明の態様は、電界効果トランジスタ、太陽電池、有機発光素子等の半導体デバイスに利用可能である。
 1A,1A’,1B,1B’,1C,1D,1E,1F・・・電界効果トランジスタ、11・・・基板、12・・・ゲート電極、13・・・ゲート絶縁膜、14・・・ソース電極、15・・・ドレイン電極、16・・・有機半導体層、2A,2B・・・太陽電池、21・・・ガラス基板、22・・・アノード電極、23・・・カソード電極、24・・・p型半導体層、25・・・n型半導体層、26・・・有機半導体層、3,3A・・・有機発光素子、31・・・ガラス基板、32・・・アノード電極、33・・・カソード電極、34b・・・正孔輸送層、34c・・・発光層、4A・・・表示装置用アレイ、40・・・ゲート配線、5A・・・表示装置、55・・・走査線駆動回路(ゲートドライバ)、56・・・信号線駆動回路(ソースドライバ)、57・・・コントローラ

Claims (21)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アミノ基、置換基を有していない芳香族基、置換基を有している芳香族基、置換基を有していないアルコキシ基、置換基を有しているアルコキシ基、置換基を有していない芳香族オキシ基、置換基を有している芳香族オキシ基、置換基を有していないアルキル置換アミノ基、置換基を有しているアルキル置換アミノ基、置換基を有していない芳香族置換アミノ基、置換基を有している芳香族置換アミノ基、置換基を有していないアシル基、、置換基を有しているアシル基、置換基を有していない炭素数1~20の脂肪族炭化水素基、または置換基を有している炭素数1~20の脂肪族炭化水素である。a およびb はそれぞれ独立に0 ~ 3の整数を示す。cおよびdはそれぞれ独立に0 ~ 6の整数を示す。R~Rはがそれぞれ複数ある場合、それらはそれぞれが独立しており、互いに同一でも異なっていてもよい。)
  2.  前記R~Rが水素原子である請求項1に記載の化合物。
  3.  請求項1に記載の化合物を含む有機半導体層を備える電界効果トランジスタ。
  4.  ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極及び有機半導体層を備え、
     前記有機半導体層が、前記ゲート絶縁膜を介して前記ゲート電極と対向するように設けられており、
     前記ソース電極及びドレイン電極が、前記有機半導体層上に接するように設けられている請求項3に記載の電界効果トランジスタ。
  5.  ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極及び有機半導体層を備え、
     前記有機半導体層が、前記ゲート絶縁膜を介して前記ゲート電極と対向するように設けられており、
     前記有機半導体層が、前記ソース電極及びドレイン電極上を覆うように設けられている請求項3に記載の電界効果トランジスタ。
  6.  前記有機半導体層が、前記化合物が蒸着されて形成されたものである請求項3に記載の電界効果トランジスタ。
  7.  前記有機半導体層が、前記化合物を含む組成物が塗布されて形成されたものである請求項3に記載の電界効果トランジスタ。
  8.  請求項1に記載の化合物を含む有機半導体層を備えた電界効果トランジスタの製造方法であって、
     前記化合物を含む組成物を用いて浸漬法、塗布法及び印刷法のいずれかによって前記有機半導体層を形成することを含み、
     前記組成物は、トルエン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン及びクロロホルムから選択される少なくとも一種を含む電界効果トランジスタの製造方法。
  9.  請求項1に記載の化合物を含む有機半導体層を備える太陽電池。
  10.  前記有機半導体層が、前記化合物が蒸着されて形成されたものである請求項9に記載の太陽電池。
  11.  前記有機半導体層が、前記化合物を含む組成物が塗布されて形成されたものである請求項9に記載の太陽電池。
  12.  p型半導体材料とn型半導体材料とを含む有機半導体層を備え、
     前記p型半導体材料及びn型半導体材料の少なくとも一方が、請求項1に記載の化合物を含む太陽電池。
  13.  請求項1に記載の化合物を含むキャリヤ輸送層を備える有機発光素子。
  14.  前記キャリヤ輸送層が、前記化合物が蒸着されて形成されたものである請求項13に記載の有機発光素子。
  15.  前記キャリヤ輸送層が、前記化合物を含む組成物が塗布されて形成されたものである請求項13に記載の有機発光素子。
  16.  請求項1に記載の化合物を含む電界効果トランジスタの有機半導体層用組成物。
  17.  請求項1に記載の化合物を含む太陽電池の有機半導体層用組成物。
  18.  p型半導体材料とn型半導体材料とを含み、
     前記p型半導体材料及びn型半導体材料の少なくとも一方が、請求項1に記載の化合物を含む太陽電池の有機半導体層用組成物。
  19.  請求項1に記載の化合物を含む有機発光素子のキャリヤ輸送層用組成物。
  20.  請求項3に記載の電界効果トランジスタをスイッチング素子として備える表示装置用アレイ。
  21.  画像信号を発生して出力する画像信号出力部と、前記画像信号に基づいて電流又は電圧を発生する駆動部と、発生した前記電流又は電圧により発光する発光部と、を備えた表示装置であって、
     前記発光部が、請求項13に記載の有機発光素子である表示装置。
PCT/JP2012/066276 2011-06-28 2012-06-26 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置 WO2013002217A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011142970A JP2014177403A (ja) 2011-06-28 2011-06-28 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
JP2011-142970 2011-06-28
JP2011253846A JP2014177405A (ja) 2011-11-21 2011-11-21 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
JP2011-253846 2011-11-21

Publications (1)

Publication Number Publication Date
WO2013002217A1 true WO2013002217A1 (ja) 2013-01-03

Family

ID=47424108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066276 WO2013002217A1 (ja) 2011-06-28 2012-06-26 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置

Country Status (1)

Country Link
WO (1) WO2013002217A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112819A (zh) * 2014-07-17 2014-10-22 东北师范大学 一种有机单晶场效应电路及其制备方法
CN104638105A (zh) * 2013-11-08 2015-05-20 北京鼎材科技有限公司 一种有机薄膜晶体管及其制备方法
CN104638106A (zh) * 2013-11-08 2015-05-20 北京鼎材科技有限公司 一种有机薄膜晶体管及其制备方法
US20150372241A1 (en) * 2014-06-23 2015-12-24 Samsung Electronics Co., Ltd. Organic compound, and organic thin film and electronic device
JP2017523153A (ja) * 2014-06-27 2017-08-17 ヒソン・マテリアル・リミテッドHeesung Material Ltd. 複素環化合物及びそれを用いた有機発光素子
CN109020935A (zh) * 2018-10-11 2018-12-18 西安近代化学研究所 一种二苯并呋喃衍生物及其制备方法
CN109970723A (zh) * 2013-08-29 2019-07-05 株式会社半导体能源研究所 杂环化合物、发光元件、发光装置、电子设备以及照明装置
JP2020506503A (ja) * 2017-01-16 2020-02-27 中國科學院長春應用化學研究所 白色有機エレクトロルミネッセンスデバイス及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144866A (ja) * 1997-11-05 1999-05-28 Toray Ind Inc 発光素子
JP2008060379A (ja) * 2006-08-31 2008-03-13 Mitsui Chemicals Inc 有機電界発光素子および芳香族化合物
JP2008545729A (ja) * 2005-05-30 2008-12-18 チバ ホールディング インコーポレーテッド エレクトロルミネセント素子
JP2010225864A (ja) * 2009-03-24 2010-10-07 Yamamoto Chem Inc 有機トランジスタ
WO2011052285A1 (ja) * 2009-10-28 2011-05-05 シャープ株式会社 新規な化合物、電界効果トランジスタ及び太陽電池ならびにこれらの製造方法、有機半導体層用組成物、ならびにp型半導体層用組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144866A (ja) * 1997-11-05 1999-05-28 Toray Ind Inc 発光素子
JP2008545729A (ja) * 2005-05-30 2008-12-18 チバ ホールディング インコーポレーテッド エレクトロルミネセント素子
JP2008060379A (ja) * 2006-08-31 2008-03-13 Mitsui Chemicals Inc 有機電界発光素子および芳香族化合物
JP2010225864A (ja) * 2009-03-24 2010-10-07 Yamamoto Chem Inc 有機トランジスタ
WO2011052285A1 (ja) * 2009-10-28 2011-05-05 シャープ株式会社 新規な化合物、電界効果トランジスタ及び太陽電池ならびにこれらの製造方法、有機半導体層用組成物、ならびにp型半導体層用組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PERKIN,W.H. ET AL.: "Brazilin, Haematoxylin and Their Derivatives. X", JOURNAL OF THE CHEMICAL SOCIETY, TRANSACTIONS, vol. 95, 1909, pages 381 - 407 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970723A (zh) * 2013-08-29 2019-07-05 株式会社半导体能源研究所 杂环化合物、发光元件、发光装置、电子设备以及照明装置
CN104638105A (zh) * 2013-11-08 2015-05-20 北京鼎材科技有限公司 一种有机薄膜晶体管及其制备方法
CN104638106A (zh) * 2013-11-08 2015-05-20 北京鼎材科技有限公司 一种有机薄膜晶体管及其制备方法
US20150372241A1 (en) * 2014-06-23 2015-12-24 Samsung Electronics Co., Ltd. Organic compound, and organic thin film and electronic device
US9985222B2 (en) * 2014-06-23 2018-05-29 Samsung Electronics Co., Ltd. Organic compound, and organic thin film and electronic device
US10403828B2 (en) 2014-06-23 2019-09-03 Samsung Electronics Co., Ltd. Organic compound, and organic thin film and electronic device
JP2017523153A (ja) * 2014-06-27 2017-08-17 ヒソン・マテリアル・リミテッドHeesung Material Ltd. 複素環化合物及びそれを用いた有機発光素子
US10644244B2 (en) 2014-06-27 2020-05-05 Lt Materials Co., Ltd. Heterocyclic compound and organic light emitting device using same
CN104112819A (zh) * 2014-07-17 2014-10-22 东北师范大学 一种有机单晶场效应电路及其制备方法
JP2020506503A (ja) * 2017-01-16 2020-02-27 中國科學院長春應用化學研究所 白色有機エレクトロルミネッセンスデバイス及びその製造方法
CN109020935A (zh) * 2018-10-11 2018-12-18 西安近代化学研究所 一种二苯并呋喃衍生物及其制备方法

Similar Documents

Publication Publication Date Title
WO2013002217A1 (ja) 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
JP5622585B2 (ja) 新規な複素環式化合物及びその利用
TWI588150B (zh) 雜環化合物及其利用
WO2012157474A1 (ja) 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
KR101490299B1 (ko) 디티에노벤조디티오펜 유도체를 포함하는 유기 반도체 재료 전구체, 잉크, 절연 부재, 전하 수송성 부재 및 유기 전자 디바이스
JP6170488B2 (ja) 新規縮合多環芳香族化合物及びその用途
TWI674266B (zh) 有機化合物及其用途
US10186664B2 (en) N-fluoroalkyl-substituted dibromonaphthalene diimides and their use as semiconductor
JP6592758B2 (ja) 新規な縮合多環芳香族化合物及びその用途
WO2012115218A1 (ja) ジアントラ[2,3-b:2',3'-f]チエノ[3,2-b]チオフェンの製造方法並びにその用途
JP2015199716A (ja) 多環縮環化合物、有機半導体材料、有機半導体デバイス及び有機トランジスタ
WO2013031468A1 (ja) 複素環式化合物及びその利用
TWI614254B (zh) 新穎之縮合多環芳香族化合物及其用途
WO2012165612A1 (ja) 有機半導体材料及び有機エレクトロニクスデバイス
JP6572473B2 (ja) 有機化合物及びその用途
WO2021117622A1 (ja) 縮合多環芳香族化合物
JP2014177405A (ja) 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
JP2014141416A (ja) 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
JP6592863B2 (ja) 有機化合物及びその用途
JP2014141414A (ja) 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、有機薄膜用組成物、表示装置用アレイ、並びに表示装置
WO2006098121A1 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス、有機薄膜トランジスタ及び有機薄膜トランジスタの形成方法
TW201529580A (zh) 新穎縮合多環芳香族化合物及其用途
WO2007066466A1 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
JP5252508B2 (ja) 有機半導体材料およびその製造方法、並びに有機半導体材料の利用
JP2014177403A (ja) 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP