WO2013002198A1 - 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 - Google Patents
有機発光素子、有機発光素子の製造方法、表示装置および照明装置 Download PDFInfo
- Publication number
- WO2013002198A1 WO2013002198A1 PCT/JP2012/066224 JP2012066224W WO2013002198A1 WO 2013002198 A1 WO2013002198 A1 WO 2013002198A1 JP 2012066224 W JP2012066224 W JP 2012066224W WO 2013002198 A1 WO2013002198 A1 WO 2013002198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- light emitting
- organic light
- dielectric layer
- anode
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 45
- 238000005286 illumination Methods 0.000 title description 4
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 64
- 239000000758 substrate Substances 0.000 claims abstract description 64
- 230000000149 penetrating effect Effects 0.000 claims description 38
- 230000035515 penetration Effects 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000010410 layer Substances 0.000 description 365
- 239000000463 material Substances 0.000 description 44
- 239000010408 film Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 14
- 238000000605 extraction Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 230000005525 hole transport Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- 239000000872 buffer Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 238000009616 inductively coupled plasma Methods 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229920001940 conductive polymer Polymers 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- -1 nitro-substituted fluorene Chemical class 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 229910001512 metal fluoride Inorganic materials 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 150000004866 oxadiazoles Chemical class 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 239000011775 sodium fluoride Substances 0.000 description 2
- 235000013024 sodium fluoride Nutrition 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- NSMJMUQZRGZMQC-UHFFFAOYSA-N 2-naphthalen-1-yl-1H-imidazo[4,5-f][1,10]phenanthroline Chemical compound C12=CC=CN=C2C2=NC=CC=C2C2=C1NC(C=1C3=CC=CC=C3C=CC=1)=N2 NSMJMUQZRGZMQC-UHFFFAOYSA-N 0.000 description 1
- VLRSADZEDXVUPG-UHFFFAOYSA-N 2-naphthalen-1-ylpyridine Chemical class N1=CC=CC=C1C1=CC=CC2=CC=CC=C12 VLRSADZEDXVUPG-UHFFFAOYSA-N 0.000 description 1
- 150000005360 2-phenylpyridines Chemical class 0.000 description 1
- FSEXLNMNADBYJU-UHFFFAOYSA-N 2-phenylquinoline Chemical class C1=CC=CC=C1C1=CC=C(C=CC=C2)C2=N1 FSEXLNMNADBYJU-UHFFFAOYSA-N 0.000 description 1
- QLPKTAFPRRIFQX-UHFFFAOYSA-N 2-thiophen-2-ylpyridine Chemical class C1=CSC(C=2N=CC=CC=2)=C1 QLPKTAFPRRIFQX-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910017073 AlLi Inorganic materials 0.000 description 1
- 241001136782 Alca Species 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910000941 alkaline earth metal alloy Inorganic materials 0.000 description 1
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical class C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 125000002080 perylenyl group Chemical class C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920003255 poly(phenylsilsesquioxane) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 150000001651 triphenylamine derivatives Chemical class 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 238000004402 ultra-violet photoelectron spectroscopy Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- GWDUZCIBPDVBJM-UHFFFAOYSA-L zinc;2-(2-hydroxyphenyl)-3h-1,3-benzothiazole-2-carboxylate Chemical compound [Zn+2].OC1=CC=CC=C1C1(C([O-])=O)SC2=CC=CC=C2N1.OC1=CC=CC=C1C1(C([O-])=O)SC2=CC=CC=C2N1 GWDUZCIBPDVBJM-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80515—Anodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/813—Anodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/858—Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/879—Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Definitions
- the present invention relates to an organic light emitting element used for a display device or a lighting device.
- Organic light-emitting devices that use organic compounds as light emitters are expected to be used for lighting in recent years due to the characteristics of surface light sources. Development of light extraction technology that extracts emitted light to the outside for the purpose of further increasing efficiency. Is actively done.
- An organic light-emitting device having a structure in which a large number of pores are formed in a light-transmitting electrode formed on a transparent substrate and a light-emitting layer is formed on the electrode and in the pores, light from the light-emitting layer to the outside of the organic light-emitting device It has been proposed as a technique for improving the extraction efficiency.
- Patent Document 1 discloses an organic light emitting device in which a cavity penetrating through a laminated structure of an electrode and a dielectric layer is formed, and a light emitting layer is formed in the cavity.
- Patent Document 2 discloses an organic light-emitting device having irregularities on the electrode surface and having a light emitting layer formed on and within the irregularities.
- the conventional organic light emitting device has a problem that part of the light emitted from the light emitting layer is repeatedly reflected between the upper surface of the dielectric layer and the electrode on the light emitting layer, and is confined inside the light emitting layer. .
- the organic light emitting device in which irregularities are simply formed on the electrode surface has a problem that the effect of improving the light extraction efficiency is not sufficient.
- the path of light is changed at the interface with different refractive index, and the outside of the organic light emitting device The effect of extracting light was limited.
- the present inventors form a dielectric layer on the electrode having the first through portion, and further provide a second through portion that penetrates the dielectric layer and the first electrode layer, and a recess formed on the top surface of the dielectric layer.
- the light extraction efficiency was found to be improved, and the present invention was completed. That is, the present invention is summarized below.
- the organic light emitting device of the present invention includes a first electrode layer formed on a substrate, a first through part formed through the first electrode layer, an upper surface of the first electrode layer, and an inner surface of the first through part.
- a dielectric layer formed so as to cover the surface, a plurality of recesses formed on the upper surface of the dielectric layer without penetrating the dielectric layer, and a second formed through the first electrode layer and the dielectric layer.
- An organic compound layer including a penetrating portion, at least an upper surface of the dielectric layer, an inner surface of the recess, and an inner surface of the second penetrating portion; a second electrode layer formed on the organic compound layer; including.
- the recess is preferably formed immediately above the first penetrating portion, and the inner surface of the recess is preferably formed along the inner surface of the first penetrating portion.
- the dielectric layer preferably has a refractive index smaller than that of the first electrode layer and the organic compound layer, and the second penetrating portion and the concave portion have a circular shape having a maximum width of 10 ⁇ m or less in the plane of the dielectric layer or many In addition to having a square shape, it is preferable that 10 4 to 10 8 are formed in 1 mm 2 in any plane of the dielectric layer.
- the manufacturing method of the organic light emitting element of this invention has the 1st electrode layer formation process which forms a 1st electrode layer on a board
- the display device of the present invention includes the above organic light emitting element.
- the lighting device of the present invention includes the above organic light emitting element.
- an organic light emitting device having high light extraction efficiency and high light emission efficiency can be provided.
- FIG. 1 is a partial cross-sectional view illustrating an example of an organic light emitting device to which the present embodiment is applied.
- the organic light emitting device 10 shown in FIG. 1 is a partial cross-sectional view illustrating an example of an organic light emitting device to which the present embodiment is applied.
- the organic light emitting device 10 is provided with a plurality of first through portions 16 formed through the anode layer 12.
- a second penetrating portion 17 formed through the anode layer 12 and the dielectric layer 13 is also provided. Furthermore, a plurality of recesses 18 that are formed without penetrating the dielectric layer 13 are provided.
- the dielectric layer 13 is formed so as to cover the upper surface of the anode layer 12 and the inner surface of the first through portion 16.
- the organic compound layer 14 is formed above the anode layer 12 and the dielectric layer 13 and covers at least the upper surface of the dielectric layer 13, the inner surface of the recess 18, and the inner surface of the second through portion 17.
- the organic compound layer 14 is a light emitting layer.
- the organic compound layer 14 emits light to form the light emitting surface of the organic light emitting element 10.
- the cathode layer 15 is formed on the organic compound layer 14, and the organic compound layer 14 and the cathode layer 15 are continuously formed over the entire light emitting surface.
- the substrate 11 serves as a support on which the anode layer 12, the dielectric layer 13, the organic compound layer 14, and the cathode layer 15 are formed.
- a material that satisfies the mechanical strength required for the organic light emitting device 10 is used for the substrate 11.
- the material As a material used for the substrate 11, when light is to be extracted from the substrate 11 side of the organic light emitting element 10, the material needs to be transparent to the light emitted from the light emitting layer.
- glass such as sapphire glass, soda lime glass, and quartz glass; transparent resin such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and polyamide resin; silicon resin; transparent metal oxide such as aluminum nitride and alumina Such as things.
- the resin film etc. which consist of the said transparent resin as the board
- the material of the substrate 11 is not limited to a material that is transparent to visible light, and an opaque material can also be used.
- such materials include silicon (Si), copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), Alternatively, niobium (Nb) alone, alloys thereof, or stainless steel can also be used.
- a material made of an oxide such as SiO 2 or Al 2 O 3 or a semiconductor such as n-Si can also be used.
- the thickness of the substrate 11 is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm, although it depends on the required mechanical strength.
- the anode layer 12 injects holes from the anode layer 12 into the organic compound layer 14 by applying a voltage to the cathode layer 15.
- the material used for the anode layer 12 needs to have electrical conductivity. Specifically, it has a high work function, and the work function is preferably 4.5 eV or more. In addition, it is preferable that the electrical resistance does not change significantly with respect to the alkaline aqueous solution.
- Metal oxides, metals, and alloys can be used as materials that satisfy these conditions.
- the metal oxide include ITO (indium tin oxide) and IZO (indium-zinc oxide).
- the metal include copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), niobium (Nb), and the like.
- An alloy such as stainless steel containing these metals can also be used.
- metal oxides such as ITO and IZO that are transparent to the light are preferable from the viewpoint of high effect of extracting light emitted from the light emitting layer to the outside of the organic light emitting element 10.
- the anode layer 12 can be formed with a thickness of 2 nm to 2 ⁇ m, for example.
- the work function can be measured by, for example, ultraviolet photoelectron spectroscopy.
- the dielectric layer 13 is for making it easy to enter the substrate 11 by refracting the light emitted from the organic compound layer 14. Therefore, the dielectric layer 13 is preferably transparent and its refractive index is smaller than that of the anode layer 12 and the organic compound layer 14. In the present embodiment, the refractive index of the dielectric layer 13 is smaller than the refractive index of the organic compound layer 14. Therefore, the light emitted from the organic compound layer 14 is refracted at an angle closer to the normal direction of the substrate 11 when entering the dielectric layer 13.
- the light reaching the anode layer 12 and the substrate 11 is totally transmitted at the interface between the dielectric layer 13 and the anode layer 12 and at the interface between the anode layer 12 and the substrate 11. Reflection is less likely to occur. Therefore, it becomes easier to enter the anode layer 12 and the substrate 11. That is, by providing the dielectric layer 13, more light emitted from the organic compound layer 14 can be extracted from the substrate 11 side, and the light extraction efficiency is improved.
- the dielectric layer 13 is insulative. Thereby, the dielectric layer 13 separates and insulates the anode layer 12 and the cathode layer 15 from each other at a predetermined interval, and applies a voltage between the anode layer 12 and the cathode layer 15 to the organic compound layer 14.
- the contained light emitting material can emit light.
- the material forming the dielectric layer 13 needs to be a high resistivity material, and the electrical resistivity is required to be 10 8 ⁇ cm or more, preferably 10 12 ⁇ cm or more.
- Specific materials include metal nitrides such as silicon nitride, boron nitride, and aluminum nitride; metal oxides such as silicon oxide (silicon dioxide) and aluminum oxide, sodium fluoride, lithium fluoride, magnesium fluoride, and fluoride.
- Metal fluorides such as calcium and barium fluoride are listed, but other high molecular compounds such as polyimide, polyvinylidene fluoride, and parylene, and spin-on-glass (SOG) such as poly (phenylsilsesquioxane) are also available. It can be used.
- the thickness of the dielectric layer 13 is preferably as thick as possible.
- the thickness of the dielectric layer 13 does not exceed 1 ⁇ m.
- the dielectric strength may not be sufficient with respect to the voltage for driving the organic light emitting element 10.
- the current density of the current flowing between the dielectric layer 13 anode layer 12 and cathode layer 15 via is preferably at 0.1 mA / cm 2 or less, and more preferably 0.01 mA / cm 2 or less .
- a voltage exceeding 2 V with respect to the driving voltage of the organic light emitting element 10 for example, when the driving voltage is 5 V, about 7 V is provided between the anode side and the cathode side of the dielectric layer 13. It is necessary to satisfy the above current density when a voltage is applied.
- the upper limit of the thickness of the dielectric layer 13 that satisfies this is preferably 750 nm or less, more preferably 400 nm or less, and even more preferably 200 nm or less. Further, the lower limit is preferably 15 nm or more, more preferably 30 nm or more, and further preferably 50 nm or more.
- the organic compound layer 14 includes one or more organic compound layers including a light emitting layer, and is formed to cover at least the upper surface of the dielectric layer 13, the inner surface of the concave portion 18, and the inner surface of the second through portion 17. The That is, the organic compound layer 14 is continuously formed over the entire light emitting surface.
- the light emitting layer includes a light emitting material that emits light when a voltage is applied between the anode layer 12 and the cathode layer 15. As such a light emitting material, both a low molecular compound and a high molecular compound can be used. In this embodiment mode, it is preferable to use a phosphorescent organic compound and a metal complex which are light-emitting organic materials as the light-emitting material.
- Some metal complexes exhibit phosphorescence, and such metal complexes are also preferably used.
- cyclometalated complexes include 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives, 2-phenylquinoline derivatives, and the like.
- the complex include Ir, Pd and Pt having a ligand, and an iridium (Ir) complex is particularly preferable.
- the cyclometalated complex may have other ligands in addition to the ligands necessary for forming the cyclometalated complex.
- the cyclometalated complex includes a compound that emits light from triplet excitons, which is preferable from the viewpoint of improving luminous efficiency.
- the light-emitting polymer compound include poly-p-phenylene vinylene (PPV) derivatives such as MEH-PPV; ⁇ -conjugated polymer compounds such as polyfluorene derivatives and polythiophene derivatives; low molecular dyes and tetraphenyldiamine; And a polymer in which triphenylamine is introduced into the main chain or side chain.
- a light emitting high molecular compound and a light emitting low molecular weight compound can also be used in combination.
- the light emitting layer includes a host material together with the light emitting material, and the light emitting material may be dispersed in the host material.
- a host material preferably has a charge transporting property, and is preferably a hole transporting compound or an electron transporting compound.
- the organic compound layer 14 may have a hole transport layer for receiving holes from the anode layer 12 and transporting them to the light emitting layer.
- the hole transport layer is disposed between the anode layer 12 and the light emitting layer.
- a hole transporting material for forming such a hole transporting layer a known material can be used, for example, TPD (N, N′-diphenyl-N, N′-di (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine); ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl); m-MTDATA (4, 4 Low molecular weight triphenylamine derivatives such as', 4 ''-tris (3-methylphenylphenylamino) triphenylamine); polyvinylcarbazole; a polymer compound obtained by introducing a polymerizable substituent into the above triphenylamine
- the above hole transport materials may be used alone or in combination of two or more, or different hole transport materials may be laminated and used.
- the thickness of the hole transport layer depends on the conductivity of the hole transport layer and cannot be generally limited, but is preferably 1 nm to 5 ⁇ m, more preferably 5 nm to 1 ⁇ m, and particularly preferably 10 nm to 500 nm. Is desirable.
- a hole injection layer may be provided between the hole transport layer and the anode layer 12 in order to relax the hole injection barrier.
- known materials such as copper phthalocyanine, a mixture of polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) (PEDOT: PSS), fluorocarbon, silicon dioxide and the like are used.
- a mixture of the hole transport material used for the hole transport layer and an electron acceptor such as 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinonedimethane (F4TCNQ) can also be used. .
- the organic compound layer 14 may have an electron transport layer for receiving electrons from the cathode layer 15 and transporting them to the light emitting layer.
- Examples of materials that can be used for such an electron transport layer include quinoline derivatives, oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, and the like.
- a hole blocking layer is provided between the electron transport layer and the light emitting layer for the purpose of preventing holes from passing through the light emitting layer and efficiently recombining holes and electrons in the light emitting layer. It may be.
- This hole blocking layer can also be regarded as one of the layers included in the organic compound layer 14.
- a known material such as a triazole derivative, an oxadiazole derivative, or a phenanthroline derivative is used.
- the cathode layer 15 applies a voltage between the anode layer 12 and injects electrons into the organic compound layer 14.
- the cathode layer 15 is formed continuously with the organic compound layer 14 over the entire light emitting surface.
- the material used for the cathode layer 15 is not particularly limited as long as it has electrical conductivity like the anode layer 12, but a material having a low work function and being chemically stable is preferable. . Specific examples include materials such as Al, MgAg alloys, and alloys of Al and alkaline earth metals such as AlLi and AlCa.
- the thickness of the cathode layer 15 is preferably 10 nm to 1 ⁇ m, more preferably 50 nm to 500 nm.
- the cathode layer 15 When the light emitted from the organic compound layer 14 is extracted from the substrate 11 side, the cathode layer 15 may be formed of an opaque material. If light is to be extracted not only from the substrate 11 side but also from the cathode layer 15 side, the cathode layer 15 must be formed of a transparent material such as ITO.
- a cathode buffer layer may be provided adjacent to the cathode layer 15 for the purpose of increasing the electron injection efficiency by lowering the electron injection barrier from the cathode layer 15 to the organic compound layer 14.
- a metal material having a work function lower than that of the cathode layer 15 is preferably used.
- alkali metals Na, K, Rb, Cs
- alkaline earth metals Sr, Ba, Ca, Mg
- rare earth metals Pr, Sm, Eu, Yb
- fluorides or chlorides of these metals A simple substance selected from oxides or a mixture of two or more can be used.
- the thickness of the cathode buffer layer is preferably from 0.05 nm to 50 nm, more preferably from 0.1 nm to 20 nm, and even more preferably from 0.5 nm to 10 nm.
- FIG. 2 is a partial cross-sectional view of the organic light emitting device 10 and shows a path of light extracted from the organic compound layer 14 of the present embodiment to the lower side of the substrate 11.
- the refractive index of the substrate 11 is about 1.5
- the refractive index of the anode layer 12 is about 1.8
- the refractive index of the dielectric layer 13 is about 1.4
- the refractive index of the organic compound layer 14 is about 1. It was set to 6.
- the light emitted from the second through portion 17 that was not sufficient in light extraction efficiency in the conventional organic light emitting device is also provided in the first through portion 16 by providing the first through portion 16.
- the dielectric layer 13 can be efficiently taken out of the organic light emitting device 10. That is, in the organic light emitting device 10 of the present embodiment, the light extraction efficiency can be improved by providing the first through portion 16.
- the shape of the first penetrating portion 16 is not particularly limited, but is preferably a cylindrical column shape or a polygonal column shape such as a quadrangular column from the viewpoint of easy shape control.
- the shape in the plane of the anode layer 12 may change in the thickness direction of the anode layer 12, or the size of the shape may change. That is, for example, the shape may be a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, or the like.
- the side surface of the first through portion 16 is formed perpendicular to the surface of the substrate 11, and the inclination angle of the side surface of the first through portion 16 in this case is 90 degrees.
- the inclination angle is not limited to this, and can be changed as appropriate depending on the material used for the anode layer 12 to increase the efficiency of extracting light emitted from the organic compound layer 14 to the outside.
- the inclination angle is preferably 60 ° to 90 °, more preferably 70 ° to 90 °, and further preferably 75 ° to 85 °.
- the size of the first through portion 16 on the anode layer 12 (the maximum width of the shape on the surface of the anode layer 12) is preferably 10 ⁇ m or less. From the viewpoint of easy production, the size is preferably 0.1 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
- the arrangement of the first through portions 16 on the upper surface of the anode layer 12 may be a regular arrangement such as a square lattice or a hexagonal lattice, or may be an irregular arrangement. About this arrangement
- the plurality of second penetrating portions 17 formed through the anode layer 12 and the dielectric layer 13 change the path of light incident on the dielectric layer 13 from the side surface inside the second penetrating portion 17, and thereby the organic light emitting device 10. Increase the light that goes out of the. In addition to that, it becomes a conductive portion between the anode layer 12 and the cathode layer 15.
- the shape of the second penetrating portion 17, the inclination angle of the side surface of the second penetrating portion 17 in the partial cross-sectional view shown in FIG. 1 and the arrangement in the dielectric layer 13 surface are the same as those of the first penetrating portion 16.
- the shape of the second penetrating portion 17 is a columnar shape or a polygonal column shape such as a quadrangular column.
- the inclination angle of the second penetrating portion 17 is preferably 60 ° to 90 °, more preferably 70 ° to 90 °, and further preferably 75 ° to 85 °.
- the size of the second through portion 17 on the dielectric layer 13 is preferably 10 ⁇ m or less.
- 10 4 to 10 8 second penetrating portions 17 are formed in 1 mm 2 in an arbitrary plane on the dielectric layer 13.
- the size of the shape of the second through portion 17 on the surface of the anode layer 12 is larger than the size of the shape of the first through portion 16 in order to reliably expose the anode layer 12 below the second through portion 17. It is preferable to enlarge it.
- the plurality of recesses 18 formed in the dielectric layer 13 change the path of light propagating in the organic compound layer 14 between the dielectric layer 13 and the cathode layer 15, and emit light that goes out of the organic light emitting element 10. increase.
- the function of the recess 18 will be described using FIG. 2 again.
- the emitted light enters the recess 18 and is refracted when entering the dielectric layer 13 having a lower refractive index from the organic compound layer 14, and travels toward the substrate 11. Thereafter, the light is further refracted at the interface between the dielectric layer 13 and the substrate 11 and goes out to the lower side of the substrate 11.
- the light confined in the organic compound layer 14 above the dielectric layer 13 in the conventional organic light emitting device can also be extracted to the outside of the organic light emitting device 10 through the recess 18. That is, in the organic light emitting device 10 of the present embodiment, the light extraction efficiency can be improved by providing the recess 18.
- the shape of the recess 18, the inclination angle of the side surface of the recess 18 in the partial cross-sectional view shown in FIG. 1, and the arrangement in the surface of the dielectric layer 13 excluding the second penetration portion 17 are the same as the first penetration portion 16 described above. It is. That is, it is preferable that the shape of the concave portion 18 is a cylindrical column shape or a polygonal column shape such as a quadrangular column.
- the inclination angle of the recess 18 is preferably 60 ° to 90 °, more preferably 70 ° to 90 °, and still more preferably 75 ° to 85 °.
- the size of the recess 18 on the dielectric layer 13 (the maximum width of the shape on the surface of the dielectric layer 13) is preferably 10 ⁇ m or less. Furthermore, it is preferable that 10 4 to 10 8 recesses 18 are formed in 1 mm 2 in an arbitrary plane on the dielectric layer 13.
- the recess 18 is formed immediately above the first through portion 16 from the viewpoint that the efficiency of extraction to the outside is higher if the light follows the path A in FIG. From the same viewpoint, it is preferable that the recess 18 and the first through portion 16 have similar shapes as viewed from the surface of the dielectric layer 13 and the anode layer 12. In other words, the inner surface of the recess 18 is formed along the inner surface of the first through portion 16.
- the anode layer 12 is formed on the lower side, and the cathode layer 15 is formed on the upper side with the dielectric layer 13 interposed therebetween.
- the present invention is not limited to this, and a structure in which the anode layer 12 and the cathode layer 15 are interchanged may be used. That is, when the substrate 11 side is the lower side, the cathode layer 15 may be formed on the lower side, and the anode layer 12 may be formed on the upper side with the dielectric layer 13 interposed therebetween.
- FIGS. 3A to 3F are diagrams illustrating a method for manufacturing the organic light emitting device 10 to which the exemplary embodiment is applied.
- the anode layer 12 as the first electrode layer is formed on the substrate 11 (FIG. 3A: first electrode layer forming step).
- a glass substrate is used as the substrate 11.
- ITO was used as a material for forming the anode layer 12.
- anode layer 12 In order to form the anode layer 12 on the substrate 11, dry methods such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion plating, CVD, spin coating, dip coating, ink jet, printing A wet method such as a method, a spray method, or a dispenser method can be used. In addition, the process of forming the anode layer 12 can be omitted by using a so-called electrode-attached substrate in which ITO is already formed as the anode layer 12 on the substrate 11.
- the 1st penetration part 16 which penetrates anode layer 12 formed at the process of Drawing 3 (a) is formed (Drawing 3 (b): the 1st penetration part formation process).
- a method of forming the first through portion 16 in the anode layer 12 for example, a method using lithography can be used. In order to do this, first, a resist solution is applied onto the anode layer 12, the excess resist solution is removed by spin coating or the like, a resist layer is formed, and then the first through portion 16 is formed.
- a mask on which a predetermined pattern is drawn is put on and exposure is performed with ultraviolet (UV), electron beam (EB), or the like, the predetermined pattern corresponding to the first through portion 16 is exposed on the resist layer. Is done.
- UV ultraviolet
- EB electron beam
- the exposed portion of the resist layer is removed using a developer, the resist layer in the exposed pattern portion is removed.
- the surface of the anode layer 12 is exposed corresponding to the exposed pattern portion.
- the exposed portion of the anode layer 12 is removed by etching using the remaining resist layer as a mask.
- the etching either dry etching or wet etching can be used.
- the shape of the first through portion 16 can be controlled by combining isotropic etching and anisotropic etching.
- dry etching reactive ion etching (RIE) or inductively coupled plasma etching can be used.
- the first through portion 16 is formed in the anode layer 12 by removing the last remaining resist layer with a resist removing solution or the like.
- the formation of the first through portion 16 can be performed by a nanoimprint method. Specifically, after forming the resist layer, a mask on which a predetermined convex pattern for forming a pattern is drawn is pressed against the surface of the resist layer while applying pressure. In this state, the resist layer is cured by irradiating the resist layer with heat and / or light. Next, by removing the mask, a pattern of the first through portion 16 corresponding to the convex pattern is formed on the resist layer surface. Then, the 1st penetration part 16 can be formed by performing the etching mentioned above.
- the upper surface of the anode layer 12 and the inner surface of the penetrating portion are covered with a dielectric, thereby forming the dielectric layer 13 and a concave portion on the upper surface of the dielectric layer 13 (FIG. 3C: dielectric layer forming step).
- silicon dioxide (SiO 2 ) is used as a dielectric for forming the dielectric layer 13.
- the dielectric layer 13 can be formed by a method similar to the method used for forming the anode layer 12. Further, when the dielectric layer 13 is formed, a part of the dielectric layer 13 enters the first through portion 16, so that the recess 18 can be formed simultaneously with the formation of the dielectric layer 13.
- the first through portion 16 can function as a mold for forming the recess 18.
- the dielectric layer 13 is formed by a dry method such as an anti-heat deposition method, an electron beam deposition method, a sputtering method, an ion plating method, a CVD method, a spin coating method, a dip coating method, an ink jet method, a printing method, a spray method, or a dispenser method. It can be formed by a wet method such as. However, if the dielectric layer 13 is formed using a dry method, the shape of the recess 18 can be made closer to the shape of the first through portion 16.
- FIG. 3D second through portion forming step.
- a method for forming the second through portion 17 a method similar to the method used for forming the first through portion 16 described above can be used.
- an organic compound layer 14 including a light emitting layer formed so as to cover at least the upper surface of the dielectric layer 13, the inner surface of the recess 18 and the inner surface of the second through portion 17 is formed (FIG. 3E: formation of an organic compound layer).
- the same technique as that used to form the anode layer 12 and the dielectric layer 13 can be used.
- the resistance heating vapor deposition method or the coating method is more preferable for the film formation of each layer included in the organic compound layer 14, and the coating method is particularly preferable for the film formation of the layer containing the polymer organic compound.
- a coating solution in which a material constituting a layer to be formed is dispersed in a predetermined solvent such as an organic solvent or water is applied.
- a predetermined solvent such as an organic solvent or water
- various methods such as spin coating, spray coating, dip coating, ink jet, slit coating, dispenser, and printing can be used.
- a layer to be formed is formed by drying the application solution by heating or evacuating.
- the cathode layer 15 as the second electrode layer is formed on the organic compound layer 14 (FIG. 3F: second electrode layer forming step).
- the same technique as that used to form the anode layer 12 and the dielectric layer 13 can be used.
- the organic light emitting device 10 can be manufactured through the above steps. In addition, it is preferable to use the organic light emitting element 10 stably for a long period of time and to attach a protective layer or a protective cover (not shown) for protecting the organic light emitting element 10 from the outside.
- a protective layer polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used.
- a glass plate, a plastic plate having a low water permeability treatment on the surface, a metal, or the like can be used.
- the protective cover is sealed with a thermosetting resin or a photo-curing resin and bonded to the element substrate.
- a spacer because a predetermined space can be maintained and the organic light emitting element 10 can be prevented from being damaged. If an inert gas such as nitrogen, argon or helium is sealed in this space, it becomes easy to prevent the upper cathode layer 15 from being oxidized. In particular, when helium is used, heat conduction is high, and thus heat generated from the organic light emitting element 10 when voltage is applied can be effectively transmitted to the protective cover, which is preferable. Furthermore, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the organic light emitting element 10.
- the organic light-emitting element of the present embodiment is suitably used for a display device as, for example, a matrix or segment pixel. Further, it can be suitably used as a surface emitting light source without forming pixels. Specifically, computers, televisions, mobile terminals, mobile phones, car navigation systems, signs, signboards, display devices for video camera viewfinders, backlights, electrophotography, illumination, resist exposure, readers, interior lighting, light It is suitably used for a surface emitting light source in a communication system or the like.
- FIG. 4 is a diagram illustrating an example of a display device using the organic light emitting element 10 in the present embodiment.
- the display device 200 shown in FIG. 4 is a so-called passive matrix type display device.
- the display device substrate 202, the anode wiring 204, the anode auxiliary wiring 206, the cathode wiring 208, the insulating film 210, the cathode partition wall 212, and the organic light emitting element 10 are used.
- a sealing plate 216, and a sealing material 218 are used.
- the display device substrate 202 for example, a transparent substrate such as a rectangular glass substrate can be used.
- the thickness of the display device substrate 202 is not particularly limited, but for example, a thickness of 0.1 mm to 1 mm can be used.
- a plurality of anode wirings 204 are formed on the display device substrate 202.
- the anode wirings 204 are arranged in parallel at a constant interval.
- the anode wiring 204 is made of a transparent conductive film, and for example, ITO (Indium Tin Oxide) can be used.
- the thickness of the anode wiring 204 can be set to 100 nm to 150 nm, for example.
- An anode auxiliary wiring 206 is formed on the end of each anode wiring 204.
- the anode auxiliary wiring 206 is electrically connected to the anode wiring 204.
- the anode auxiliary wiring 206 functions as a terminal for connecting to the external wiring on the end side of the display device substrate 202, and the anode auxiliary wiring 206 is connected from an external driving circuit (not shown). A current can be supplied to the anode wiring 204 through the wiring.
- the anode auxiliary wiring 206 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
- a plurality of cathode wirings 208 are provided on the organic light emitting element 10.
- the plurality of cathode wirings 208 are arranged so as to be parallel to each other and orthogonal to the anode wiring 204.
- As the cathode wiring 208 Al or an Al alloy can be used.
- the thickness of the cathode wiring 208 is, for example, 100 nm to 150 nm.
- a cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 208 and is electrically connected to the cathode wiring 208. Therefore, current can flow between the cathode wiring 208 and the cathode auxiliary wiring.
- An insulating film 210 is formed on the display device substrate 202 so as to cover the anode wiring 204.
- the insulating film 210 is provided with a rectangular opening 220 so as to expose a part of the anode wiring 204.
- the plurality of openings 220 are arranged in a matrix on the anode wiring 204.
- the organic light emitting element 10 is provided between the anode wiring 204 and the cathode wiring 208 as described later. That is, each opening 220 is a pixel. Accordingly, a display area is formed corresponding to the opening 220.
- the film thickness of the insulating film 210 can be, for example, 200 nm to 300 nm, and the size of the opening 220 can be, for example, 300 ⁇ m ⁇ 300 ⁇ m.
- the organic light emitting element 10 is formed at a location corresponding to the position of the opening 220 on the anode wiring 204.
- the organic light emitting device 10 is sandwiched between the anode wiring 204 and the cathode wiring 208 in the opening 220. That is, the anode layer 12 of the organic light emitting element 10 is in contact with the anode wiring 204, and the cathode layer 15 is in contact with the cathode wiring 208.
- the thickness of the organic light emitting element 10 can be set to, for example, 150 nm to 200 nm.
- a plurality of cathode partitions 212 are formed on the insulating film 210 along a direction perpendicular to the anode wiring 204.
- the cathode partition 212 plays a role of spatially separating the plurality of cathode wirings 208 so that the wirings of the cathode wirings 208 do not conduct with each other. Accordingly, the cathode wiring 208 is disposed between the adjacent cathode partition walls 212.
- a cathode partition with a height of 2 to 3 ⁇ m and a width of 10 ⁇ m can be used.
- the display device substrate 202 is bonded through a sealing plate 216 and a sealing material 218. Thereby, the space in which the organic light emitting element 10 is provided can be sealed, and the organic light emitting element 10 can be prevented from being deteriorated by moisture in the air.
- a sealing plate 216 for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used.
- a current is supplied to the organic light emitting element 10 through the anode auxiliary wiring 206 and the cathode auxiliary wiring (not shown) by a driving device (not shown), the light emitting layer emits light, and light is emitted. be able to.
- An image can be displayed on the display device 200 by controlling light emission and non-light emission of the organic light emitting element 10 corresponding to the above-described pixel by the control device.
- FIG. 5 is a diagram illustrating an example of a lighting device including the organic light emitting element 10 according to the present embodiment.
- the lighting device 300 illustrated in FIG. 5 includes the organic light emitting element 10 described above and a terminal 302 that is installed adjacent to the substrate 11 (see FIG. 1) of the organic light emitting element 10 and connected to the anode layer 12 (see FIG. 1). And a terminal 303 installed adjacent to the substrate 11 and connected to the cathode layer 15 (see FIG. 1) of the organic light emitting device 10, and a lighting for driving the organic light emitting device 10 connected to the terminal 302 and the terminal 303. Circuit 301.
- the lighting circuit 301 has a DC power source (not shown) and a control circuit (not shown) inside, and supplies a current between the anode layer 12 and the cathode layer 15 of the organic light emitting element 10 through the terminal 302 and the terminal 303. Then, the organic light emitting element 10 is driven to emit light from the light emitting layer, and light is emitted from the first through part 16 and the second through part 17 (see FIG. 1) through the substrate 11 to be used as illumination light.
- the light emitting layer may be composed of a light emitting material that emits white light, and each of the organic light emitting elements 10 using the light emitting material that emits green light (G), blue light (B), and red light (R).
- a plurality of them may be provided so that the combined light is white.
- the first penetrating portion 16 and the second penetrating portion 17 are made to emit light with a reduced diameter and interval, it appears to the human eye to emit light.
- solution A 3 parts by mass of this phosphorescent polymer compound (A) was dissolved in 97 parts by mass of toluene to prepare a luminescent material solution (hereinafter also referred to as “solution A”).
- the organic light emitting device 10 shown in FIG. 1 was produced by the following method. First, on a glass substrate (25 mm square, thickness 1 mm) made of quartz glass as the substrate 11, a sputtering apparatus (E-401s manufactured by Canon Anelva Co., Ltd.) was used, and ITO (refractive index 1.8) was formed as the anode layer 12. A thin film was formed to 150 nm.
- a sputtering apparatus E-401s manufactured by Canon Anelva Co., Ltd.
- ITO reffractive index 1.8
- a photoresist (AZ1500 manufactured by AZ Electronic Materials Co., Ltd.) was formed to a thickness of about 1 ⁇ m by spin coating.
- a mask A corresponding to a pattern in which quartz (plate thickness: 3 mm) is used as a base and circles are arranged in a hexagonal lattice shape is prepared, and using a stepper exposure apparatus (manufactured by Nikon Corporation, model NSR-1505i6), Exposure was performed at 1/5 scale.
- the resist layer was patterned by developing with 1.2% solution of TMAH (Tetramethylammonium hydroxide: (CH 3 ) 4 NOH). Thereafter, heat was applied at 130 ° C. for 10 minutes (post-baking treatment).
- TMAH Tetramethylammonium hydroxide: (CH 3 ) 4 NOH
- the first penetrating portion 16 has a cylindrical shape with a diameter of 1 ⁇ m, and is arranged in a hexagonal lattice pattern on the entire surface of the anode layer 12 so that the distance between the centers of the circles of the first penetrating portion 16 is 2 ⁇ m.
- a silicon dioxide (SiO 2 , refractive index 1.4) layer is formed as a dielectric layer 13 on the upper surface of the anode layer 12 in which the first through portion 16 is formed and inside the first through portion 16 by 50 nm.
- the thickness was formed.
- the SiO 2 layer covered the inner surface of the first through portion 16, thereby forming a recess 18 immediately above the first through portion 16.
- the recess 18 was substantially cylindrical with a diameter of 0.9 ⁇ m and a height of 150 nm.
- a pattern in which a photoresist layer is formed on the dielectric layer 13 and circles for forming the second through portions 17 are arranged in a hexagonal lattice pattern by the same method as the formation of the first through portions 16 described above.
- the resist layer was patterned using the mask B corresponding to.
- the second penetration part 17 was formed in the dielectric layer 13 by removing the resist residue.
- the second penetrating portion 17 has a cylindrical shape with a diameter of 1.2 ⁇ m, is formed immediately above the first penetrating portion 16, and is arranged on the entire surface of the dielectric layer 13 in a hexagonal lattice shape with a center distance of the circle of 4 ⁇ m. .
- the solution A is applied by a spin coating method (rotation speed: 3000 rpm), and is left to stand at 140 ° C. for 1 hour in a nitrogen atmosphere and dried, whereby an organic compound having a single light emitting layer (refractive index 1.6).
- Layer 14 was formed.
- sodium fluoride (4 nm) was formed as a cathode buffer layer on the organic compound layer 14, and aluminum (130 nm) was sequentially formed as the cathode layer 15 by vapor deposition to produce the organic light emitting device 10.
- Example 2 First, after the anode layer 12 was formed on the substrate 11 in the same manner as in Example 1, a plurality of first through portions 16 were formed in the anode layer 12. Next, an SOG liquid (Tokyo Ohka Kogyo Co., Ltd., OCD T-7, refractive index 1.4) is applied as a dielectric layer 13 to the upper surface of the anode layer 12 and the inside of the first through portion 16 by spin coating, By performing heat treatment (in air, at 80 ° C. for 3 minutes, then at 150 ° C. for 3 minutes, and then at 200 ° C. for 3 minutes), an SOG film was formed. The upper surface of the SOG film was a flat surface, and the thickness from the upper surface of the anode layer 12 was 50 nm.
- an SOG liquid Tokyo Ohka Kogyo Co., Ltd., OCD T-7, refractive index 1.4
- a photoresist layer is formed on the dielectric layer 13 in the same manner as the first through portion 16 is formed, and a circle for forming the recesses 18 is arranged in a hexagonal lattice pattern.
- the resist layer was patterned using the corresponding mask C.
- the recess 18 was formed in the dielectric layer 13 by removing the resist residue.
- the recesses 18 have a cylindrical shape with a diameter of 0.5 ⁇ m, and are arranged on the entire surface of the dielectric layer 13 in a hexagonal lattice shape with a center distance between circles of 4/3 ⁇ m.
- Example 1 an ITO film was formed as an anode layer on a glass substrate in the same manner as in Example 1. Next, using a sputtering apparatus, a silicon dioxide (SiO 2 ) layer having a thickness of 50 nm was formed as a dielectric layer on the anode layer.
- SiO 2 silicon dioxide
- a photoresist pattern was formed on the dielectric layer in the same manner as in Example 1.
- CHF 3 reactive ion etching apparatus
- the reaction was performed for 5 minutes to perform a dry etching process.
- the through-holes were cylindrical with a diameter of 1.2 ⁇ m, arranged in a hexagonal lattice pattern on the entire surface of the anode layer and the dielectric layer, and formed so that the distance between the centers of the circles of the through-holes was 4 ⁇ m.
- Comparative Example 2 An organic light emitting device was fabricated in the same manner as in Comparative Example 1 except that the mask A was used instead of the mask B used for patterning the photoresist layer.
- SYMBOLS 10 Organic light emitting element, 11 ... Board
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
透明基板上に形成された光透過性電極に多数の細孔を形成し、電極上および細孔内に発光層を形成した構造の有機発光素子が、発光層から有機発光素子の外への光取り出し効率を向上させる技術として提案されている。
また特許文献2には、電極表面に凹凸を有し、この電極上および凹凸内に発光層が形成された有機発光素子が開示されている。
また誘電体層が、第1電極層および有機化合物層より小さい屈折率を有することが好ましく、第2貫通部および凹部が、誘電体層の面内において、最大幅が10μm以下の円形形状または多角形形状を有するとともに、誘電体層の任意の面内において、いずれも1mm2中に104~108個形成されていることが好ましい。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
図1は、本実施の形態が適用される有機発光素子の例を説明した部分断面図である。
図1に示した有機発光素子10は、基板11と、基板11側を下側とした場合に基板11上に形成され正孔を注入するための第1電極層としての陽極層12と、電子を注入するための第2電極層としての陰極層15と、進入した光の進路を変えるとともに、陽極層12と陰極層15の間の少なくとも一部を絶縁する機能を有する誘電体層13と、陽極層12と陰極層15の間に電圧を印加することで発光する発光層を含む有機化合物層14とが積層された構造を有する。
そして有機発光素子10には、陽極層12を貫通して形成される複数の第1貫通部16が設けられている。また陽極層12および誘電体層13を貫通して形成される第2貫通部17が設けられている。さらに誘電体層13を貫通せずに形成される複数の凹部18が設けられている。
誘電体層13は、陽極層12の上面および第1貫通部16の内面を覆って形成されている。また有機化合物層14は、陽極層12および誘電体層13の上方に形成され、少なくとも誘電体層13の上面、凹部18の内面および第2貫通部17の内面を覆って形成される。
本実施の形態では、有機化合物層14は、1層からなるため、有機化合物層14が即ち発光層となっている。そして有機化合物層14が発光を行なうことにより有機発光素子10の発光面を形成する。本実施の形態では、陰極層15は、有機化合物層14上に形成され、有機化合物層14および陰極層15は、発光面の全面にわたって、連続的に形成されている。
基板11の厚さは、要求される機械的強度にもよるが、好ましくは、0.1mm~10mm、より好ましくは0.25mm~2mmである。
また、発光性高分子化合物としては、MEH-PPVなどのポリ-p-フェニレンビニレン(PPV)誘導体;ポリフルオレン誘導体、ポリチオフェン誘導体等のπ共役系の高分子化合物;低分子色素とテトラフェニルジアミンやトリフェニルアミンを主鎖や側鎖に導入したポリマー;等が挙げられる。発光性高分子化合物と発光性低分子化合物とを併用することもできる。
発光層は発光材料とともにホスト材料を含み、ホスト材料中に発光材料が分散されていることもある。このようなホスト材料は電荷輸送性を有していることが好ましく、正孔輸送性化合物や電子輸送性化合物であることが好ましい。
このような正孔輸送層を形成する正孔輸送材料としては、公知の材料を使用することができ、例えば、TPD(N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン);α-NPD(4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル);m-MTDATA(4、4’,4’’-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン)等の低分子トリフェニルアミン誘導体;ポリビニルカルバゾール;上記トリフェニルアミン誘導体に重合性置換基を導入して重合した高分子化合物などが挙げられる。上記正孔輸送材料は、1種単独でも、2種以上を併用してもよく、異なる正孔輸送材料を積層して用いてもよい。正孔輸送層の厚さは、正孔輸送層の導電性などに依存するため、一概に限定できないが、好ましくは1nm~5μm、より好ましくは5nm~1μm、特に好ましくは10nm~500nmであることが望ましい。
陰極層15に使用される材料としては、陽極層12と同様に電気伝導性を有するものであれば、特に限定されるものではないが、仕事関数が低く、かつ化学的に安定なものが好ましい。具体的には、Al、MgAg合金、AlLiやAlCaなどのAlとアルカリ土類金属の合金等の材料を例示することができる。陰極層15の厚さは10nm~1μmが好ましく、50nm~500nmがより好ましい。有機化合物層14から発した光を基板11側から取り出す場合には、陰極層15は、不透明材料により形成されていてもよい。なお基板11側からのみならず陰極層15側からも光を取り出したい場合は、陰極層15は、ITO等の透明材料により形成する必要がある。
図2は、有機発光素子10の部分断面図であり、本実施の形態の有機化合物層14から基板11の下側へ取り出される光の経路を示した図である。ここで、基板11の屈折率を約1.5、陽極層12の屈折率を約1.8、誘電体層13の屈折率を約1.4、有機化合物層14の屈折率を約1.6とした。つまりこの場合、(陽極層12の屈折率)>(有機化合物層14の屈折率)>(誘電体層13の屈折率)となっている。
図2に示すBの経路では、第2貫通部17の下方において露出した陽極層12の側面から陽極層12へ進入した光が、より低屈折率の誘電体層13との界面で屈折し、光の進行方向が基板11側へ変化する。その後さらに誘電体層13と基板11との界面でも屈折し、基板11の下側へ出る。つまり第1貫通部16が存在しないと、より水平方向に近い角度で、光が、基板11に入射することになる。そして全反射が生じやすくなり、光は有機発光素子10の外部に出射しにくくなる。本実施の形態では、従来の有機発光素子では光取り出し効率が十分でなかった第2貫通部17内から発した光も、第1貫通部16を設け、第1貫通部16内部に形成された誘電体層13によって有機発光素子10の外部へ効率よく取り出すことができる。即ち、本実施の形態の有機発光素子10では、第1貫通部16を設けることにより、光の取り出し効率を向上させることができる。
第1貫通部16は、陽極層12上の任意の面内において、1mm2中に104~108個形成されていることが好ましい。
第2貫通部17の形状、図1に示した部分断面図における第2貫通部17側面の傾斜角および誘電体層13面内における配置については、上記の第1貫通部16と同じである。つまり第2貫通部17の形状は、円柱形状または四角柱などの多角柱形状とすることが好ましい。また第2貫通部17の傾斜角は、60度~90度であることが好ましく、70度~90度であることがより好ましく、75度~85度であることがさらに好ましい。さらに誘電体層13上における第2貫通部17の大きさ(誘電体層13面上における形状の最大幅)は10μm以下であることが好ましい。さらに第2貫通部17は、誘電体層13上の任意の面内において、1mm2中に104~108個形成されていることが好ましい。
ただし、第2貫通部17の下方に陽極層12を確実に露出させるために、陽極層12面上における第2貫通部17の形状の大きさは、第1貫通部16の形状の大きさよりも大きくすることが好ましい。
以下、再び図2を使用して凹部18の機能について説明を行なう。
図2に示すAの経路では、発光した光が、凹部18に侵入し、有機化合物層14からより低屈折率の誘電体層13へ進入する際に屈折し、基板11の方向へ向かう。その後さらに誘電体層13と基板11との界面でも屈折し、基板11の下側へ出る。つまり凹部18が存在しないと、より水平方向に近い角度で、光は、基板11に入射することになる。そして全反射が生じやすくなり、光は有機発光素子10の外部に出射しにくくなる。本実施の形態ではこのように、従来の有機発光素子では誘電体層13の上部の有機化合物層14内に閉じ込められていた光も、凹部18によって有機発光素子10の外部へ取り出すことができる。即ち、本実施の形態の有機発光素子10では、凹部18を設けることにより、光の取り出し効率を向上させることができる。
次に、本実施の形態が適用される有機発光素子の製造方法について、図1で説明を行った有機発光素子10の場合を例に取り説明を行う。
図3(a)~(f)は、本実施の形態が適用される有機発光素子10の製造方法について説明した図である。
まず基板11上に、第1電極層である陽極層12を形成する(図3(a):第1電極層形成工程)。本実施の形態では、基板11として、ガラス基板を使用した。また陽極層12を形成する材料としてITOを使用した。
陽極層12を基板11上に形成するには、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法などのドライ法、スピンコーティング法、ディップコーティング法、インクジェット法、印刷法、スプレー法、ディスペンサー法などのウェット法を用いることができる。
なお基板11に陽極層12としてITOが既に形成されているいわゆる電極付き基板を用いることで、陽極層12を形成する工程を省略することができる。
陽極層12に第1貫通部16を形成する方法としては、例えば、リソグラフィを用いた方法が使用できる。これを行うには、まず陽極層12の上にレジスト液を塗布し、スピンコート等により余分なレジスト液を除去して、レジスト層を形成し、次に第1貫通部16を形成するための所定のパターンが描画されたマスクをかぶせ、紫外線(UV:Ultra Violet)、電子線(EB:Electron Beam)等により露光を行うと、レジスト層に第1貫通部16に対応した所定のパターンが露光される。そして現像液を用いてレジスト層の露光部分を除去すると、露光されたパターンの部分のレジスト層が除去される。これにより露光されたパターンの部分に対応して、陽極層12の表面が露出する。
次に、残存したレジスト層をマスクとして、露出した陽極層12の部分をエッチング除去する。エッチングとしては、ドライエッチングとウェットエッチングの何れをも使用することができる。またこの際に等方性エッチングと異方性エッチングを組合せることで、第1貫通部16の形状の制御を行うことができる。ドライエッチングとしては、反応性イオンエッチング(RIE:Reactive Ion Etching)や誘導結合プラズマエッチングが利用でき、またウェットエッチングとしては、希塩酸や希硫酸への浸漬を行う方法などが利用できる。最後に残存したレジスト層をレジスト除去液等により除去することで、陽極層12に第1貫通部16が形成される。
また誘電体層13を形成する際に、誘電体層13の一部が第1貫通部16に入り込むことにより、誘電体層13の形成と同時に凹部18を形成することができる。つまり第1貫通部16を、凹部18を形成する際の型として機能させることができる。
誘電体層13は、抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法などのドライ法、スピンコーティング法、ディップコーティング法、インクジェット法、印刷法、スプレー法、ディスペンサー法などのウェット法によって、形成することができる。ただしドライ法を用いて誘電体層13を成膜すれば凹部18の形状を第1貫通部16の形状により近いものにすることができる。
第2貫通部17の形成方法は、上述した第1貫通部16の形成に用いる方法と同様な方法を用いることができる。
有機化合物層14を形成するには、陽極層12や誘電体層13を形成したのと同様の手法を使用することができる。ただし有機化合物層14に含まれる各層の成膜には、抵抗加熱蒸着法または塗布法がより好ましく、高分子有機化合物を含む層の成膜を行なうには特に塗布法が好ましい。塗布法により成膜を行なう場合は、成膜を行ないたい層を構成する材料を、有機溶媒や水等の所定の溶媒に分散させた塗布溶液を塗布する。塗布を行う際にはスピンコーティング、スプレーコーティング、ディップコーティング法、インクジェット法、スリットコーティング法、ディスペンサー法、印刷等の種々の方法を使用することができる。塗布を行った後は、加熱あるいは真空引きを行うことで塗布溶液を乾燥させることで成膜を行ないたい層が形成される。
陰極層15を形成するには、陽極層12や誘電体層13を形成したのと同様の手法を使用することができる。
なお有機発光素子10を長期安定的に用い、有機発光素子10を外部から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、酸化ケイ素等のシリコン化合物などを用いることができる。そして、これらの積層体も用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属などを用いることができる。この保護カバーは、熱硬化性樹脂や光硬化性樹脂で素子基板と貼り合わせて密閉する方法を採ることが好ましい。またこの際に、スペーサを用いることで所定の空間を維持することができ、有機発光素子10が傷つくのを防止できるため好ましい。そして、この空間に窒素、アルゴン、ヘリウムのような不活性なガスを封入すれば、上側の陰極層15の酸化を防止しやすくなる。特にヘリウムを用いた場合、熱伝導が高いため、電圧印加時に有機発光素子10より発生する熱を効果的に保護カバーに伝えることができるため、好ましい。更に酸化バリウム等の乾燥剤をこの空間内に設置することにより上記一連の製造工程で吸着した水分が有機発光素子10にダメージを与えるのを抑制しやすくなる。
次に、以上詳述した有機発光素子を備える表示装置について説明を行う。
図4は、本実施の形態における有機発光素子10を用いた表示装置の一例を説明した図である。
図4に示した表示装置200は、いわゆるパッシブマトリクス型の表示装置であり、表示装置基板202、陽極配線204、陽極補助配線206、陰極配線208、絶縁膜210、陰極隔壁212、有機発光素子10、封止プレート216、シール材218とを備えている。
次に、本実施の形態の有機発光素子を用いた照明装置について説明を行う。
図5は、本実施の形態における有機発光素子10を備える照明装置の一例を説明した図である。
図5に示した照明装置300は、上述した有機発光素子10と、有機発光素子10の基板11(図1参照)に隣接して設置され陽極層12(図1参照)に接続される端子302と、基板11に隣接して設置され有機発光素子10の陰極層15(図1参照)に接続される端子303と、端子302と端子303とに接続し有機発光素子10を駆動するための点灯回路301とから構成される。
WO2010-16512号公報に記載された方法に従って下記の燐光発光性高分子化合物(A)を合成した。高分子化合物(A)の重量平均分子量は52,000、各繰り返し単位のモル比はk:m:n=6:42:52であった。
有機発光素子として、図1に示した有機発光素子10を、以下の方法により作製した。
まず基板11として石英ガラスからなるガラス基板(25mm角、厚さ1mm)上に、スパッタ装置(キヤノンアネルバ株式会社製E-401s)を用いて、陽極層12としてITO(屈折率1.8)の薄膜を150nm形成した。
さらに有機化合物層14上に、陰極バッファ層としてフッ化ナトリウム(4nm)を成膜し、さらに陰極層15としてアルミニウム(130nm)を順に蒸着法により成膜することで有機発光素子10を作製した。
まず実施例1と同様にして、基板11上に陽極層12を形成した後、陽極層12に複数の第1貫通部16を形成した。次に陽極層12の上面および第1貫通部16内部に誘電体層13としてSOG液(東京応化工業株式会社製、OCD T-7、屈折率1.4)をスピンコート法により塗布した後、加熱処理(空気中、80℃で3分間、その後150℃で3分間、その後200℃で3分間)を行うことで、SOG膜を形成した。このSOG膜の上面は平坦面であり、陽極層12の上面からの厚さが50nmであった。
まず実施例1と同様にしてガラス基板上に陽極層としてITO膜を形成した。次にスパッタ装置を用いて、上記陽極層上に誘電体層として二酸化ケイ素(SiO2)層を50nmの厚さで形成した。
フォトレジスト層のパターニングに用いるマスクBの替わりにマスクAを用いた以外は、比較例1と同様にして有機発光素子を作製した。
実施例1および比較例1で作製した有機発光素子に、定電圧電源電流計(ケイスレーインスツルメンツ株式会社製SM2400)を用いて段階的に電圧を印加し、有機発光素子の発光強度を輝度計(株式会社トプコン製BM-9)で計測した。そして、電流密度に対する発光強度の比から発光効率を決定した。
結果を以下の表1に示す。発光効率については、示した数値が大きいほど発光効率が良好であることを意味する。
Claims (8)
- 基板上に形成される第1電極層と、
前記第1電極層を貫通して形成される第1貫通部と、
前記第1電極層の上面および前記第1貫通部の内面を覆って形成される誘電体層と、
前記誘電体層の上面に当該誘電体層を貫通せずに形成される複数の凹部と、
前記第1電極層および前記誘電体層を貫通して形成される第2貫通部と、
少なくとも前記誘電体層の上面、前記凹部の内面および前記第2貫通部の内面を覆って形成される発光層を含む有機化合物層と、
前記有機化合物層上に形成される第2電極層と、
を含む有機発光素子。 - 前記凹部は、前記第1貫通部の直上に形成される請求項1に記載の有機発光素子。
- 前記凹部の内表面は、前記第1貫通部の内表面に沿って形成される請求項1または2に記載の有機発光素子。
- 前記誘電体層が、前記第1電極層および前記有機化合物層より小さい屈折率を有する請求項1~3のいずれか1つに記載の有機発光素子。
- 前記第2貫通部および前記凹部が、前記誘電体層の面内において、最大幅が10μm以下の円形形状または多角形形状を有するとともに、
前記誘電体層の任意の面内において、いずれも1mm2中に104~108個形成されている請求項1~4のいずれか1つに記載の有機発光素子。 - 基板上に第1電極層を形成する第1電極層形成工程と、
前記第1電極層を貫通する第1貫通部を形成する第1貫通部形成工程と、
前記第1電極層の上面および前記第1貫通部の内面を誘電体で覆うことで、誘電体層および当該誘電体層上面の凹部を形成する誘電体層形成工程と、
前記第1電極層および前記誘電体層に、第2貫通部を形成する第2貫通部形成工程と、
少なくとも前記誘電体層の上面、前記凹部の内面および前記第2貫通部の内面を覆って形成される発光層を含む有機化合物層を形成する有機化合物層形成工程と、
前記有機化合物層上に第2電極層を形成する第2電極層形成工程と、
を含む有機発光素子の製造方法。 - 請求項1乃至5の何れか1項に記載の有機発光素子を備える表示装置。
- 請求項1乃至5の何れか1項に記載の有機発光素子を備える照明装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280030795.XA CN103621178A (zh) | 2011-06-27 | 2012-06-26 | 有机发光元件、有机发光元件的制造方法、显示装置和照明装置 |
US14/129,496 US20140203255A1 (en) | 2011-06-27 | 2012-06-26 | Organic light-emitting element, method for manufacturing organic light-emitting element, display device and illumination device |
JP2012550253A JP5255161B1 (ja) | 2011-06-27 | 2012-06-26 | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 |
KR1020137033771A KR20140015558A (ko) | 2011-06-27 | 2012-06-26 | 유기발광 소자, 유기발광 소자의 제조 방법, 표시 장치 및 조명 장치 |
EP12804178.7A EP2725874A1 (en) | 2011-06-27 | 2012-06-26 | Organic light-emitting element, method for making organic light-emitting element, display device and illumination device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011141966 | 2011-06-27 | ||
JP2011-141966 | 2011-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013002198A1 true WO2013002198A1 (ja) | 2013-01-03 |
Family
ID=47424090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/066224 WO2013002198A1 (ja) | 2011-06-27 | 2012-06-26 | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140203255A1 (ja) |
EP (1) | EP2725874A1 (ja) |
JP (1) | JP5255161B1 (ja) |
KR (1) | KR20140015558A (ja) |
CN (1) | CN103621178A (ja) |
WO (1) | WO2013002198A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109300967B (zh) * | 2018-11-21 | 2020-06-19 | 京东方科技集团股份有限公司 | 一种显示基板的制作方法及显示基板、显示装置 |
CN112838110B (zh) * | 2021-01-04 | 2022-09-16 | 厦门天马微电子有限公司 | 一种显示面板及显示装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002260843A (ja) * | 2001-03-01 | 2002-09-13 | Nec Corp | 有機発光デバイス |
JP2004311419A (ja) | 2003-03-25 | 2004-11-04 | Kyoto Univ | 発光素子及び有機エレクトロルミネセンス発光素子 |
JP2007234254A (ja) * | 2006-02-27 | 2007-09-13 | Sanyo Electric Co Ltd | 有機エレクトロルミネッセンス素子及びその製造方法 |
WO2008032557A1 (fr) * | 2006-09-12 | 2008-03-20 | Konica Minolta Holdings, Inc. | Élément à électroluminescence organique, ainsi que dispositif d'éclairage et dispositif d'affichage prévus avec l'élément à électroluminescence organique |
WO2010016512A1 (ja) | 2008-08-06 | 2010-02-11 | 昭和電工株式会社 | 有機電界発光素子、表示装置および照明装置 |
JP2010509729A (ja) | 2006-11-14 | 2010-03-25 | エスアールアイ インターナショナル | キャビティエレクトロルミネセント素子およびその製造方法 |
JP2010129544A (ja) * | 2008-11-28 | 2010-06-10 | Commissariat A L'energie Atomique | Oledのためのナノ構造化基板の製造方法及びoledの製造方法 |
JP2011082192A (ja) * | 2009-07-21 | 2011-04-21 | Showa Denko Kk | 発光素子、発光素子の製造方法、画像表示装置および照明装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002056968A (ja) * | 2000-08-10 | 2002-02-22 | Seiko Epson Corp | 発光装置 |
US6683410B2 (en) * | 2000-09-20 | 2004-01-27 | Samsung Sdi Co., Ltd. | Organic EL device with light absorbing piece and method for manufacturing the same |
KR20050121691A (ko) * | 2003-03-25 | 2005-12-27 | 교또 다이가꾸 | 발광 소자 및 유기 일렉트로루미네선스 발광 소자 |
KR100615234B1 (ko) * | 2004-08-03 | 2006-08-25 | 삼성에스디아이 주식회사 | 무기 전계발광 표시장치 및 그 제조방법 |
DE102004041371B4 (de) * | 2004-08-25 | 2007-08-02 | Novaled Ag | Bauelement auf Basis einer organischen Leuchtdiodeneinrichtung und Verfahren zur Herstellung |
-
2012
- 2012-06-26 WO PCT/JP2012/066224 patent/WO2013002198A1/ja active Application Filing
- 2012-06-26 EP EP12804178.7A patent/EP2725874A1/en not_active Withdrawn
- 2012-06-26 US US14/129,496 patent/US20140203255A1/en not_active Abandoned
- 2012-06-26 JP JP2012550253A patent/JP5255161B1/ja not_active Expired - Fee Related
- 2012-06-26 KR KR1020137033771A patent/KR20140015558A/ko not_active Application Discontinuation
- 2012-06-26 CN CN201280030795.XA patent/CN103621178A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002260843A (ja) * | 2001-03-01 | 2002-09-13 | Nec Corp | 有機発光デバイス |
JP2004311419A (ja) | 2003-03-25 | 2004-11-04 | Kyoto Univ | 発光素子及び有機エレクトロルミネセンス発光素子 |
JP2007234254A (ja) * | 2006-02-27 | 2007-09-13 | Sanyo Electric Co Ltd | 有機エレクトロルミネッセンス素子及びその製造方法 |
WO2008032557A1 (fr) * | 2006-09-12 | 2008-03-20 | Konica Minolta Holdings, Inc. | Élément à électroluminescence organique, ainsi que dispositif d'éclairage et dispositif d'affichage prévus avec l'élément à électroluminescence organique |
JP2010509729A (ja) | 2006-11-14 | 2010-03-25 | エスアールアイ インターナショナル | キャビティエレクトロルミネセント素子およびその製造方法 |
WO2010016512A1 (ja) | 2008-08-06 | 2010-02-11 | 昭和電工株式会社 | 有機電界発光素子、表示装置および照明装置 |
JP2010129544A (ja) * | 2008-11-28 | 2010-06-10 | Commissariat A L'energie Atomique | Oledのためのナノ構造化基板の製造方法及びoledの製造方法 |
JP2011082192A (ja) * | 2009-07-21 | 2011-04-21 | Showa Denko Kk | 発光素子、発光素子の製造方法、画像表示装置および照明装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20140015558A (ko) | 2014-02-06 |
EP2725874A1 (en) | 2014-04-30 |
JPWO2013002198A1 (ja) | 2015-02-23 |
CN103621178A (zh) | 2014-03-05 |
JP5255161B1 (ja) | 2013-08-07 |
US20140203255A1 (en) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5523363B2 (ja) | 発光素子、発光素子の製造方法、画像表示装置および照明装置 | |
WO2013128601A1 (ja) | エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置 | |
KR101408463B1 (ko) | 전계발광 소자, 표시 장치 및 조명 장치 | |
JP4882037B1 (ja) | 有機発光素子および有機発光素子の製造方法 | |
JPWO2013069570A1 (ja) | 発光装置及び発光装置の製造方法 | |
WO2011081057A1 (ja) | 電界発光素子、電界発光素子の製造方法、表示装置および照明装置 | |
WO2012147390A1 (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
JP5255161B1 (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
JP2015090817A (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
JP5145483B2 (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
JP2012243517A (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
WO2010061898A1 (ja) | 有機電界発光素子、表示装置および照明装置 | |
JPWO2012029156A1 (ja) | El素子、el素子の製造方法、表示装置および照明装置 | |
WO2011148478A1 (ja) | 発光素子、画像表示装置および照明装置 | |
WO2014084209A1 (ja) | 有機発光素子、有機発光素子の製造方法、表示装置および照明装置 | |
WO2014069396A1 (ja) | 有機発光素子および有機発光素子の製造方法 | |
WO2014084210A1 (ja) | 発光装置 | |
JP2015011893A (ja) | 有機発光素子 | |
JP2014107173A (ja) | 発光装置および発光装置の輝度分布を小さくする方法 | |
JPWO2013128601A1 (ja) | エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012550253 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12804178 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137033771 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14129496 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012804178 Country of ref document: EP |