WO2013002194A1 - 風力発電装置保守装置および風力発電装置保守方法 - Google Patents

風力発電装置保守装置および風力発電装置保守方法 Download PDF

Info

Publication number
WO2013002194A1
WO2013002194A1 PCT/JP2012/066213 JP2012066213W WO2013002194A1 WO 2013002194 A1 WO2013002194 A1 WO 2013002194A1 JP 2012066213 W JP2012066213 W JP 2012066213W WO 2013002194 A1 WO2013002194 A1 WO 2013002194A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
appropriate
output
wind turbine
generator
Prior art date
Application number
PCT/JP2012/066213
Other languages
English (en)
French (fr)
Inventor
中村 成章
満也 馬場
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12804125.8A priority Critical patent/EP2728176A1/en
Publication of WO2013002194A1 publication Critical patent/WO2013002194A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine generator maintenance device and a wind turbine generator maintenance method, and more particularly to a wind turbine generator maintenance device and a wind turbine generator maintenance method for maintaining a wind turbine generator.
  • Wind power generators that convert wind power into electric power are known.
  • the wind turbine generator is manufactured by designing the blade length of the blade so that electric power is generated with high efficiency based on the wind conditions observed before the wind turbine generator is installed.
  • the wind power generator is further controlled based on control parameters set based on the wind conditions so that electric power is generated with high efficiency. It is desired to further increase the amount of electric power generated by the wind power generator, and it is desired to more appropriately control and maintain the wind power generator.
  • US Pat. No. 7,569,945 discloses a method for reducing the fluctuating load of the components of the windmill and extending the life of the windmill.
  • the method is to repeatedly collect and store rotor load data, to calculate the rotor load distribution function from the load data, to obtain multiple periodic functions from the load distribution function, and to Calculating the operation of the wind turbine control means in order to reduce the fatigue load of the components of the wind turbine from the periodic function, and causing the wind turbine control means to execute the calculated operation.
  • the wind turbine generator maintenance device (1) refers to the control parameters (22, 23, 24) used when associating the wind speed with the power generation output, and when the wind of a predetermined wind speed is blowing.
  • Such a wind turbine generator maintenance device (1) can appropriately change the control parameters (22, 23, 24) while the wind turbine generator (8-j) is in operation, and the control parameters (22, 23, Compared with other wind power generators that are not changed in 24), it is possible to generate power more efficiently and increase the power generation amount of the wind power generator (8-j).
  • the setting unit (44, 53) further controls the sensor (19) so that the load received by the wind power generator (8-j) by the wind is measured.
  • the appropriate control parameter is updated so that the load is included in the predetermined load range.
  • Such a wind turbine generator maintenance device (1) is controlled according to the wind conditions received by the wind turbine generator (8-j) as long as the load received by the wind turbine generator (8-j) is not overloaded.
  • the parameters (22, 23, 24) can be appropriately changed, power can be generated with higher efficiency, the amount of power generated by the wind power generator (8-j) is increased, and the wind power generator (8-j) Can extend the lifespan.
  • the wind turbine generator maintenance device (1) further includes a weather prediction unit (52) that collects weather information of a region where the wind turbine generator (8-j) is arranged from the weather information server (6). .
  • the appropriate control parameter is preferably calculated further based on the weather information.
  • the operation control unit (43) controls the wind power generator (8-j) so that the rated power output (23) is generated when the predetermined wind speed is included in the rated wind speed range.
  • the rated power generation output (23) is preferably updated to an appropriate rated power generation output calculated based on the wind conditions.
  • the wind condition preferably indicates the average wind speed of the wind.
  • the wind turbine generator maintenance device (1) when the blade length of the blade (15) included in the wind turbine generator (8-j) is different from the appropriate blade length calculated based on the wind condition, A replacement blade calculation unit (54) is further provided for controlling the output device so that the appropriate blade length is output. According to such a wind turbine generator maintenance device (1), the operator can replace the blade (15) with another blade having an appropriate blade length while the wind turbine generator (8-j) is in operation. Compared with other wind power generators in which the blades are not exchanged, it is possible to generate power more efficiently and increase the power generation amount of the wind power generator (8-j).
  • the replacement blade calculation unit (54) further refers to a table associating the plurality of wind turbine generators (8-1 to 8-m) with the plurality of blade lengths, and thereby includes the plurality of wind turbine generators (8-1 to 8).
  • the output device is controlled so that the replacement target wind turbine generator (8-j) corresponding to the appropriate blade length of -m) is output. According to such a wind turbine generator maintenance device (1), it is not necessary to prepare a plurality of blades (15) having different blade lengths for each of the plurality of wind turbine generators (8-1 to 8-m). (15) can be replaced at a lower cost.
  • the wind turbine generator maintenance method refers to the control parameters (22, 23, 24) used when associating the wind speed with the power generation output.
  • the step of controlling the wind power generator (8-j) and the wind condition of the wind received by the wind power generator (8-j) are measured so that a predetermined power generation output corresponding to the predetermined wind speed is generated.
  • the step of controlling the sensor (19) included in the wind turbine generator (8-j) and the appropriate control parameter calculated based on the wind condition are controlled by the control parameter (22, 23, 24).
  • a step of updating at least one of a certain cut-in wind speed, a rated power output, a rated wind speed range, and a control gain.
  • Such a wind turbine generator maintenance method can appropriately change the control parameters (22, 23, 24) while the wind turbine generator (8-j) is in operation, and the control parameters (22, 23, 24) Compared with other wind power generators that are not changed, it is possible to generate power more efficiently and increase the power generation amount of the wind power generator (8-j).
  • the wind turbine generator maintenance method further includes a step of controlling the sensor (19) so that the load received by the wind turbine generator (8-j) by the wind is measured.
  • the appropriate control parameter is calculated so that the load is included in the predetermined load range.
  • the control parameter (22) depends on the wind condition of the wind received by the wind turbine (8-j) within a range in which the load received by the wind turbine (8-j) is not overloaded. , 23, 24) can be appropriately changed, power can be generated with higher efficiency, and the amount of power generated by the wind power generator (8-j) can be increased.
  • the wind power generator (8-j) Can extend the service life.
  • the wind turbine generator maintenance method further includes a step of collecting weather information of a region where the wind turbine generator (8-j) is arranged from the weather information server (6).
  • the appropriate control parameter is preferably calculated further based on the weather information.
  • the wind power generator (8-j) is controlled so that the rated power output (23) is generated when the predetermined wind speed is included in the rated wind speed range.
  • the rated power generation output (23) is preferably updated to an appropriate rated power generation output calculated based on the wind conditions.
  • the wind condition preferably indicates the average wind speed of the wind.
  • the wind turbine generator maintenance method includes a step of determining whether or not the blade length of the blade (15) included in the wind turbine generator (8-j) is different from an appropriate blade length calculated based on the wind condition. And a step of controlling the output device so that the appropriate blade length is output when the blade length is different from the appropriate blade length.
  • the operator can replace the blade (15) with another blade having an appropriate blade length while the wind turbine generator (8-j) is in operation. Compared with other wind turbine generators that are not exchanged, it is possible to generate power more efficiently and increase the amount of power generated by the wind turbine generator (8-j).
  • the wind turbine generator maintenance method refers to a table associating a plurality of wind turbine generators (8-1 to 8-m) with a plurality of blade lengths, and includes a plurality of wind turbine generators (8-1 to 8- The method further includes a step of controlling the output device so that the replacement target wind turbine generator (8-j) corresponding to the appropriate blade length of m) is output. According to such a wind turbine generator maintenance method, it is not necessary to prepare a plurality of blades (15) having different blade lengths for each of the plurality of wind turbine generators (8-1 to 8-m). Can be replaced at a lower cost.
  • the wind turbine generator maintenance device (1) includes a sensor (19) provided in the wind turbine generator (8-j) so that the wind condition of the wind received by the wind turbine generator (8-j) is measured.
  • the wind length data collection unit (41, 42, 51) for controlling the blade length and the blade length of the blade (15) included in the wind power generator (8-j) are calculated based on the appropriate blade length.
  • a replacement blade calculation unit (54) that controls the output device so that the appropriate blade length is output at different times is provided. According to such a wind turbine generator maintenance device (1), the operator can replace the blade (15) with another blade having an appropriate blade length while the wind turbine generator (8-j) is in operation. Compared with other wind power generators in which the blades are not exchanged, it is possible to generate power more efficiently and increase the power generation amount of the wind power generator (8-j).
  • the wind turbine generator maintenance method controls the sensor (19) included in the wind turbine generator (8-j) so that the wind condition of the wind received by the wind turbine generator (8-j) is measured. Determining whether or not the blade length of the blade (15) included in the wind power generator (8-j) is different from the appropriate blade length calculated based on the wind condition; And a step of controlling the output device so that an appropriate blade length is output when it is different from the blade length.
  • the operator can replace the blade (15) with another blade having an appropriate blade length while the wind turbine generator (8-j) is in operation. Compared with other wind turbine generators that are not replaced, power generation can be performed more efficiently, and the amount of power generated by the wind turbine generator (8-j) can be increased.
  • the wind turbine generator maintenance device and the wind turbine generator maintenance method according to the present invention can appropriately change the control parameter while the wind turbine generator is in operation, compared with other wind turbine generator maintenance devices in which the control parameter is not changed. Thus, it is possible to generate power with higher efficiency, and as a result, it is possible to increase the amount of power generated by the wind turbine generator.
  • FIG. 1 is a block diagram showing a wind turbine generator maintenance apparatus according to the present invention.
  • FIG. 2 is a diagram illustrating the wind power generator.
  • FIG. 3 is a block diagram illustrating the sensor.
  • FIG. 4 is a block diagram showing the local side remote monitoring device.
  • FIG. 5 is a graph showing a power curve.
  • FIG. 6 is a block diagram showing the remote monitoring device.
  • FIG. 7 is a flowchart showing the long-term maintenance operation.
  • FIG. 8 is a flowchart showing the short-term maintenance operation.
  • the wind turbine generator maintenance device 1 is applied to a wind turbine generator system, and includes a plurality of computers connected to each other so as to be able to transmit information in both directions via the Internet 2 as shown in FIG. .
  • the Internet 2 can be replaced with another communication line network.
  • An example of the communication line network is a dedicated line network.
  • the weather information server 6 records a plurality of predicted weather information corresponding to a plurality of periods and a plurality of regions. Predicted weather information corresponding to a certain period and a certain region of the plurality of predicted weather information indicates the average wind speed of the wind blowing in that region during that period.
  • the predicted weather information can also indicate other wind conditions different from the average wind speed. As the wind condition, for example, the wind speed distribution of the wind is exemplified.
  • the weather information server 6 receives a predicted weather information request from a computer connected to the Internet 2, the predicted weather information corresponding to the period and region indicated by the predicted weather information request among the plurality of predicted weather information To the computer.
  • the plurality of on-site remote monitoring devices 5-1 to 5-n are arranged at positions remote from the position where the remote monitoring device 3 is arranged, and are arranged at a plurality of different sites.
  • the lidar 7 is connected to the remote monitoring device 3 via the Internet 2 so that information can be transmitted.
  • the lidar 7 is controlled by the remote monitoring device 3 to measure the wind condition of the wind blowing on the site, and transmits the wind condition to the remote monitoring device 3.
  • the tower 11 is formed in a columnar shape and is fixed to the foundation.
  • the nacelle 12 is disposed at a sufficiently high place and is supported by the tower 11 so as to be rotatable around a yaw rotation axis that is parallel to the vertical direction.
  • the main shaft 14 is supported by the nacelle 12 so as to be rotatable about a rotor rotation shaft that is substantially parallel to the horizontal direction.
  • the plurality of blades 15 are arranged along a plurality of pitch rotation axes that are substantially orthogonal to the rotor rotation axis at one point on the rotor rotation axis.
  • the plurality of wings 15 are further arranged so that the plurality of wings 15 are evenly spaced and surround the main shaft 14.
  • Arbitrary blades of the plurality of blades 15 are supported by the main shaft 14 so as to be rotatable around a pitch rotation axis along the arbitrary blade of the plurality of pitch rotation shafts.
  • the main shaft 14 is rotated around the rotor rotation shaft by wind received by the wind power generator 8-j to generate rotational power.
  • the generator 16 is disposed inside the nacelle 12 and connected to the local remote monitoring device 5-i so as to be able to transmit information.
  • the generator 16 generates predetermined power from the rotational power generated by the plurality of blades 15 by being controlled by the local remote monitoring device 5-i.
  • the yaw driving device 17 rotates the nacelle 12 around the yaw rotation axis with respect to the tower 11 by being controlled by the local remote monitoring device 5-i.
  • the pitch driving device 18 is controlled by the local remote monitoring device 5-i to rotate the plurality of blades 15 about the plurality of pitch rotation axes with respect to the main shaft 14, respectively.
  • FIG. 3 shows the sensor 19.
  • the sensor 19 includes a wind speed sensor 31, a wind direction sensor 32, a load sensor 33, a rotation speed sensor 34, and a power generation output sensor 35.
  • the wind speed sensor 31 is controlled by the local remote monitoring device 5-i to measure the wind speed of the wind received by the wind power generator 8-j, and transmits the wind speed to the local remote monitoring device 5-i.
  • the wind direction sensor 32 is controlled by the local remote monitoring device 5-i, thereby measuring the wind direction received by the wind power generator 8-j and transmitting the wind direction to the local remote monitoring device 5-i.
  • the load sensor 33 is disposed at the root of the plurality of blades 15.
  • the load sensor 33 is controlled by the local remote monitoring device 5-i to measure the load applied to the plurality of blades 15 when the wind power generator 8-j receives wind, and the load is detected on the local side. Send to remote monitoring device 5-i. Note that the load sensor 33 can also measure other sensor values different from the load. The sensor value is exemplified by a load applied to the tower 11 when the wind power generator 8-j receives wind.
  • the rotational speed sensor 34 is controlled by the local remote monitoring device 5-i, and measures the rotational speed at which the plurality of blades 15 rotate per unit time when the wind power generator 8-j receives wind. The rotation number is transmitted to the local side remote monitoring device 5-i.
  • the power generation output sensor 35 is controlled by the local remote monitoring device 5-i to measure the electric power generated by the generator 16 when the plurality of blades 15 rotate, and the electric power is output to the local remote monitoring device 5. -Send to i.
  • FIG. 4 shows the local side remote monitoring device 5-i.
  • the local side remote monitoring device 5-i includes a CPU, a storage device, a communication device, a removable memory drive, an input device, an output device, and an interface (not shown).
  • the CPU controls the storage device, the communication device, the removable memory drive, the input device, the output device, and the interface by executing a computer program installed in the local side remote monitoring device 5-i.
  • the storage device records the computer program and temporarily records information generated by the CPU.
  • the communication apparatus transmits information generated by the CPU via the Internet 2 to another computer, and outputs information received from the other computer via the Internet 2 to the CPU.
  • the communication device is further used to download a computer program installed in the local side remote monitoring device 5-i from another computer.
  • the removable memory drive is used to read data recorded on the recording medium when the recording medium is inserted.
  • the removable memory drive is further used when the computer program is installed in the local remote monitoring device 5-i when a recording medium in which the computer program is recorded is inserted. Examples of the recording medium include a flash memory, a magnetic disk (flexible disk, hard disk), and an optical disk (CD, DVD).
  • the input device generates information when operated by the user, and outputs the information to the CPU.
  • Examples of the input device include a keyboard, a pointing device, and a touch panel.
  • the output device outputs information generated by the CPU so that the user can recognize the information. Examples of the output device include a display, an acoustic device, and a touch panel.
  • the interface outputs information generated by an external device connected to the local remote monitoring device 5-i to the CPU, and outputs information generated by the CPU to the external device.
  • the external device includes a wind speed sensor 31, a wind direction sensor 32, a load sensor 33, a rotation speed sensor 34, and a power generation output sensor 35.
  • the computer program installed in the local remote monitoring device 5-i is formed of a plurality of computer programs that cause the local remote monitoring device 5-i to realize a plurality of functions.
  • the plurality of functions include a sensor value collection unit 41, a wind condition data transmission unit 42, an operation control unit 43, and a setting unit 44.
  • the sensor value collection unit 41 collects a plurality of sensor values corresponding to the plurality of wind power generators 8-1 to 8-m from the plurality of wind power generators 8-1 to 8-m.
  • the sensor value corresponding to the wind power generator 8-j is the wind speed measured by the wind speed sensor 31, the wind direction measured by the wind direction sensor 32, the load measured by the load sensor 33, and the rotation speed.
  • the rotation speed measured by the sensor 34 and the power measured by the power generation output sensor 35 are shown.
  • the sensor value collection unit 41 controls the wind speed sensor 31 so that the wind speed of the wind received by the wind turbine generator 8-j is measured.
  • the sensor value collection unit 41 controls the wind direction sensor 32 so that the wind direction of the wind received by the wind turbine generator 8-j is measured.
  • the sensor value collection unit 41 controls the load sensor 33 so that the load applied to the plurality of blades 15 when the wind power generator 8-j receives wind is measured.
  • the sensor value collection unit 41 controls the rotational speed sensor 34 so that the rotational speed at which the plurality of blades 15 rotate per unit time is measured.
  • the sensor value collection unit 41 controls the power generation output sensor 35 so that the power generated by the generator 16 is measured.
  • the wind condition data transmission unit 42 creates wind condition data based on a plurality of sensor values collected by the sensor value collection unit 41 and transmits the wind condition data to the remote monitoring device 3 via the Internet 2.
  • the wind condition data indicates a plurality of wind speeds corresponding to a plurality of dates and times and a plurality of wind power generators 8-1 to 8-m. Of the plurality of wind speeds, the wind speed corresponding to a certain date and time and the wind power generator 8-j indicates the wind speed measured by the wind speed sensor 31 at that date and time.
  • the operation control unit 43 controls the plurality of wind power generators 8-1 to 8-m based on the plurality of sensor values collected by the sensor value collection unit 41. That is, based on the wind direction measured by the wind direction sensor 32, the operation control unit 43 arranges the plurality of blades 15 on the windward side from the nacelle 12, and the rotor rotation axis is parallel to the wind direction. Thus, the yaw driving device 17 is controlled.
  • the operation control unit 43 further records a plurality of control parameters corresponding to the plurality of wind turbine generators 8-1 to 8-m.
  • the operation control unit 43 determines that the power generated by the generator 16 is a predetermined power.
  • the generator 16 and the pitch driving device 18 are controlled so as to be equal to.
  • the setting unit 44 When the setting unit 44 receives a plurality of setting information corresponding to the plurality of wind power generators 8-1 to 8-m from the remote monitoring device 3, the setting unit 44 sets a plurality of control parameters recorded by the operation control unit 43 to the control parameters. Update based on multiple pieces of setting information. The setting unit 44 further transmits the load collected by the sensor value collecting unit 41 to the remote monitoring device 3 via the Internet 2.
  • FIG. 5 shows a power curve determined by the control parameter corresponding to the wind power generator 8-j among the plurality of control parameters recorded by the operation control unit 43.
  • the power curve 21 associates a plurality of wind speeds with a plurality of power outputs, and shows the relationship between the wind speed of the wind received by the wind power generator 8-j and the power generated by the generator 16.
  • the control parameters indicate the cut-in wind speed 22, the rated power output 23, the rated wind speed range 24, and the control gain.
  • the power curve 21 indicates that the power increases monotonously with respect to the wind speed.
  • the power curve 21 indicates that the power is not generated when the wind speed is smaller than the cut-in wind speed 22.
  • the power curve 21 further indicates that the power is equal to the rated power output 23 when the wind speed is included in the rated wind speed range 24.
  • the power curve 21 further shows that when the wind speed is larger than the cut-in wind speed 22 and the wind speed is smaller than the rated wind speed range 24, the power increases with a predetermined inclination with respect to the wind speed. .
  • the slope is a function that increases monotonously with respect to the control gain.
  • the operation control unit 43 controls the generator 16 and the pitch driving device 18 based on the control parameters corresponding to the wind turbine generator 8-j among the plurality of control parameters.
  • the wind power generator 8-j when a certain wind speed is measured by the wind speed sensor 31, electric power equal to the power output corresponding to the wind speed is generated by the generator 16 on the power curve 21 by such control.
  • FIG. 6 shows the remote monitoring device 3.
  • the remote monitoring device 3 includes a CPU, a storage device, a communication device, a removable memory drive, an input device, and an output device (not shown).
  • the CPU executes a computer program installed in the remote monitoring device 3 to control the storage device, the communication device, the removable memory drive, the input device, the output device, and the interface.
  • the storage device records the computer program and temporarily records information generated by the CPU.
  • the communication apparatus transmits information generated by the CPU via the Internet 2 to another computer, and outputs information received from the other computer via the Internet 2 to the CPU.
  • the communication device is further used to download a computer program installed in the remote monitoring device 3 from another computer.
  • the removable memory drive is used to read data recorded on the recording medium when the recording medium is inserted.
  • the removable memory drive is further used when the computer program is installed in the remote monitoring device 3 when a recording medium in which the computer program is recorded is inserted. Examples of the recording medium include a flash memory, a magnetic disk (flexible disk, hard disk), and an optical disk (CD, DVD).
  • the input device generates information when operated by the user, and outputs the information to the CPU.
  • Examples of the input device include a keyboard, a pointing device, and a touch panel.
  • the output device outputs information generated by the CPU so that the user can recognize the information. Examples of the output device include a display, an acoustic device, and a touch panel.
  • the computer program installed in the remote monitoring device 3 is formed of a plurality of computer programs that cause the remote monitoring device 3 to realize a plurality of functions.
  • the plurality of functions includes a wind condition data collection unit 51, a weather prediction unit 52, and a setting unit 53.
  • the wind condition data collecting unit 51 collects a plurality of wind condition data from the plurality of local remote monitoring devices 5-1 to 5-n via the Internet 2, respectively.
  • the wind condition data transmitted from the local remote monitoring device 5-i is identical to the wind condition data created by the wind condition data transmitting unit 42 of the local remote monitoring device 5-i.
  • a plurality of wind speeds corresponding to a plurality of dates and times and a plurality of wind power generators 8-1 to 8-m are shown.
  • the wind speed corresponding to a certain date and time and the wind power generator 8-j indicates the wind speed measured by the wind speed sensor 31 at that date and time.
  • the weather forecast unit 52 creates a plurality of forecast weather information requests corresponding to the plurality of sites, and transmits the plurality of forecast weather information requests to the weather information server 6 via the Internet 2.
  • the forecast weather information request corresponding to the site of the local side remote monitoring device 5-i includes the period inputted via the input device of the remote monitoring device 3 and the site. It shows the area.
  • the weather prediction unit 52 further collects a plurality of predicted weather information corresponding to the plurality of predicted weather information requests from the weather information server 6.
  • the weather prediction unit 52 is based on a plurality of wind condition data collected by the wind condition data collection unit 51, a plurality of forecast weather information collected by the weather prediction unit 52, and a set period input via the input device.
  • a plurality of predicted average wind speeds corresponding to the plurality of wind power generators are calculated.
  • the predicted average wind speed corresponding to the wind turbine generator 8-j indicates the average wind speed that the wind turbine generator 8-j receives during the set period.
  • the setting unit 53 calculates a plurality of setting information corresponding to the plurality of wind turbine generators based on the plurality of predicted average wind speeds calculated by the weather prediction unit 52.
  • the setting information corresponding to the wind turbine generator 8-j indicates the setting period and indicates an appropriate control parameter.
  • the appropriate control parameter indicates an appropriate rated power output and an appropriate control gain.
  • the setting information indicates that when the wind power generator 8-j is controlled using the appropriate rated power output and the appropriate control gain, the wind power generator 8-j can generate power with high efficiency during the setting period. Is calculated.
  • the appropriate rated power output is set to a value greater than the rated power output 23 when the predicted average wind speed corresponding to the wind power generator 8-j among the plurality of predicted average wind speeds is greater than the assumed average wind speed.
  • the assumed average wind speed indicates the average wind speed of the wind received by the wind power generator 8-j, which is assumed when calculating the control parameters of the wind power generator 8-j.
  • the appropriate rated power output is set to a value smaller than the rated power output 23 when the predicted average wind speed is smaller than the assumed average wind speed.
  • the appropriate control gain is set to a value larger than the control gain used when calculating the power curve 21 when the predicted average wind speed is larger than the assumed average wind speed.
  • the appropriate control gain is set to a value smaller than the control gain when the predicted average wind speed is smaller than the assumed average wind speed.
  • the setting unit 53 further sets the setting information corresponding to the wind power generator 8-j among the plurality of setting information, to the local remote monitoring device 5- corresponding to the site where the wind power generator 8-j is located. send to i.
  • the setting unit 44 of the local remote monitoring device 5-i receives the setting information corresponding to the wind power generation device 8-j from the remote monitoring device 3, the setting power generation unit 44 outputs the rated power generation during the setting period indicated by the setting information.
  • the control parameter corresponding to the wind power generator 8-j among the plurality of control parameters is updated so that the output 23 indicates the appropriate rated power generation output and the control gain indicates the appropriate control gain.
  • the replacement blade information calculation unit 54 calculates a plurality of appropriate blade lengths corresponding to a plurality of wind power generators based on the plurality of predicted average wind speeds calculated by the weather prediction unit 52.
  • the appropriate blade length corresponding to the wind power generator 8-j among the plurality of appropriate blade lengths is the set period when the blade lengths of the plurality of blades 15 of the wind power generator 8-j are equal to the appropriate blade length.
  • the wind power generator 8-j is calculated so that it can generate power more efficiently.
  • the replacement blade information calculation unit 54 causes the wind turbine generator 8-j to have the blades of the appropriate blade length.
  • the output device of the remote monitoring device 3 is controlled such that a message indicating that the remote monitoring device 3 is attached is displayed.
  • the replacement blade information calculation unit 54 records a table associating a plurality of wind turbine generators with a plurality of blade lengths and a plurality of positions.
  • the blade length corresponding to the wind turbine generator 8-j among the blade lengths indicates the length of the blades of the blades 15 included in the wind turbine generator 8-j.
  • the position corresponding to the wind turbine generator 8-j among the plurality of positions indicates the position where the wind turbine generator 8-j is disposed.
  • the replacement blade information calculation unit 54 further refers to the table and outputs a plurality of blades corresponding to the appropriate blade lengths from the plurality of wind turbine generators. Extract wind power generators.
  • the replacement blade information calculation unit 54 further extracts a plurality of wind turbine generators having an inappropriate blade length from the extracted plurality of wind turbine generators.
  • the replacement blade information calculation unit 54 selects one wind power generator installed at a location closest to the wind power generator 8-j from the extracted wind power generator.
  • the replacement blade information calculation unit 54 controls the output device of the remote monitoring device 3 so that a message indicating that a plurality of blades of the selected wind turbine generator is attached to the wind turbine generator 8-j is displayed.
  • the embodiment of the wind turbine generator maintenance method according to the present invention is executed using the wind turbine generator maintenance device 1 and includes an operation control operation, a long-term maintenance operation, a short-term maintenance operation, and a blade replacement operation. .
  • the operation control operation is always executed by a plurality of local remote monitoring devices 5-1 to 5-n.
  • the on-site remote monitoring device 5-i controls the wind direction sensor 32 to measure the wind direction of the wind received by the wind power generator 8-j at every sufficiently short sampling period.
  • the on-site remote monitoring device 5-i controls the yaw drive device 17 so that the plurality of blades 15 are arranged on the windward side from the nacelle 12, and the rotor rotation axis is parallel to the wind direction. As described above, the nacelle 12 is rotated with respect to the tower 11 around the yaw rotation axis.
  • the on-site remote monitoring device 5-i further controls the wind speed sensor 31 to measure the wind speed of the wind received by the wind power generator 8-j at every sufficiently short sampling period.
  • the local remote monitoring device 5-i controls the generator 16 and the pitch driving device 18 based on the control parameters set in the wind power generation device 8-j, and as shown in the power curve 21, Electric power equal to the electric power output corresponding to the wind speed is generated by the generator 16.
  • Fig. 7 shows the operation during long-term maintenance.
  • the long-time maintenance operation is executed by the wind turbine generator maintenance apparatus 1 at a predetermined timing.
  • the timing is exemplified every year or every season.
  • the operator inputs a set period to the remote monitoring device 3 via the input device.
  • the set period indicates a period from the current date and time to the date and time when the next long-term maintenance operation is executed.
  • the remote monitoring device 3 collects a plurality of wind condition data from the plurality of local side remote monitoring devices 5-1 to 5-n.
  • the wind condition data transmitted from the local remote monitoring device 5-i indicates a plurality of wind speeds corresponding to a plurality of date and time and a plurality of wind power generators 8-1 to 8-m. Show.
  • the wind speed corresponding to a certain date and time and the wind power generator 8-j indicates the wind speed measured by the wind speed sensor 31 at that date and time.
  • the remote monitoring device 3 creates a plurality of forecast weather information requests corresponding to a plurality of sites, and transmits the plurality of forecast weather information requests to the weather information server 6 via the Internet 2.
  • the predicted weather information request corresponding to the site of the local remote monitoring device 5-i indicates the set period and the region where the site is located.
  • the remote monitoring device 3 further collects a plurality of predicted weather information corresponding to the plurality of predicted weather information requests from the weather information server 6.
  • the remote monitoring device 3 is based on the set period, a plurality of wind condition data collected from the plurality of local side remote monitoring devices 5-1 to 5-n, and a plurality of predicted weather information collected from the weather information server 6. Thus, a plurality of predicted average wind speeds corresponding to the plurality of wind power generators are calculated (step S1). Of the plurality of predicted average wind speeds, the predicted average wind speed corresponding to the wind turbine generator 8-j indicates the average wind speed that the wind turbine generator 8-j receives during the set period. The remote monitoring device 3 determines whether or not the predicted average wind speed is smaller than the assumed average wind speed assumed when calculating the control parameters currently set in the wind turbine generator 8-j (step S2).
  • the remote monitoring device 3 sets a value larger than the rated power output 23 currently set for the wind power generator 8-j to the appropriate rated power generation.
  • the output is set, and a value larger than the control gain currently set in the wind turbine generator 8-j is set as the appropriate control gain (step S3).
  • the remote monitoring device 3 transmits the setting information indicating the setting period, the appropriate rated power generation output and the control gain thereof to the wind power generation device 8-j and transmits it to the local remote monitoring device 5-i.
  • the control gain is the appropriate control so that the rated power output indicates the appropriate rated power output during the setting period.
  • the control parameter corresponding to the wind turbine generator 8-j is updated so as to indicate the gain.
  • the remote monitoring device 3 sets a value smaller than the rated power output currently set for the wind power generator 8-j as the appropriate rated power output.
  • a value smaller than the control gain currently set in the wind turbine generator 8-j is set as an appropriate control gain (step S4).
  • the remote monitoring device 3 transmits the setting information indicating the setting period, the appropriate rated power generation output and the control gain thereof to the wind power generation device 8-j and transmits it to the local remote monitoring device 5-i.
  • the control gain is the appropriate control so that the rated power output indicates the appropriate rated power output during the setting period.
  • the control parameter corresponding to the wind turbine generator 8-j is updated so as to indicate the gain.
  • the remote monitoring device 3 remotely monitors the load measured by the load sensor 33 after setting the appropriate rated power generation output and the appropriate control gain in the wind power generation device 8-j, that is, during the setting period. Collect from device 5-i. The remote monitoring device 3 determines whether or not the load is included in a predetermined load range (step S5).
  • the remote monitoring device 3 sets a value larger than the rated power output 23 currently set for the wind power generator 8-j as the appropriate rated power output.
  • a value larger than the control gain currently set in the wind turbine generator 8-j is set as the control gain (step S3).
  • the remote monitoring device 3 transmits the setting information indicating the setting period, the appropriate rated power generation output and the control gain thereof to the wind power generation device 8-j and transmits it to the local remote monitoring device 5-i.
  • the control gain is the appropriate control so that the rated power output indicates the appropriate rated power output during the setting period.
  • the control parameter corresponding to the wind turbine generator 8-j is updated so as to indicate the gain.
  • the remote monitoring device 3 sets a value smaller than the rated power output currently set in the wind power generator 8-j as the appropriate rated power output. Then, a value smaller than the control gain currently set in the wind turbine generator 8-j is set as the appropriate control gain (step S4).
  • the remote monitoring device 3 transmits the setting information indicating the setting period, the appropriate rated power generation output and the control gain thereof to the wind power generation device 8-j and transmits it to the local remote monitoring device 5-i.
  • the control gain is the appropriate control so that the rated power output indicates the appropriate rated power output during the setting period.
  • the control parameter corresponding to the wind turbine generator 8-j is updated so as to indicate the gain.
  • the remote monitoring device 3 repeats steps S3, S4, and S5 until the load is included in the load range (step S5, appropriate).
  • the wind turbine generator 8-j appropriately changes the control parameter based on the wind condition during operation, and other wind turbine generator maintenance in which the control parameter is not changed during operation. Compared with the apparatus, it is possible to generate power with higher efficiency, and it is possible to increase the power generation amount of the wind power generation apparatus 8-j.
  • the remote monitoring device 3 can also calculate a plurality of predicted average wind speeds without using a plurality of predicted weather information collected from the weather information server 6. Also in this case, the operation during long-term maintenance can similarly generate power more efficiently than other wind power generator maintenance devices whose control parameters are not changed during operation. The power generation amount of ⁇ j can be increased.
  • FIG. 8 shows the operation during short-term maintenance.
  • the short-term maintenance operation is executed by the wind turbine generator maintenance device 1 at intervals shorter than the interval at which the long-term maintenance operation is executed.
  • the interval is exemplified by one day.
  • the operator inputs a set period to the remote monitoring device 3 via the input device.
  • the set period indicates a period from the current date to the date when the next short-term maintenance operation is executed.
  • the remote monitoring device 3 creates a plurality of forecast weather information requests corresponding to a plurality of sites, and transmits the plurality of forecast weather information requests to the weather information server 6 via the Internet 2.
  • the predicted weather information request corresponding to the site of the local remote monitoring device 5-i indicates the set period and the region where the site is located.
  • the remote monitoring device 3 further collects a plurality of predicted weather information corresponding to the plurality of predicted weather information requests from the weather information server 6.
  • the remote monitoring device 3 calculates a plurality of predicted average wind speeds corresponding to the plurality of wind power generators based on the plurality of predicted weather information (step S11).
  • the predicted average wind speed corresponding to the wind turbine generator 8-j indicates the average wind speed that the wind turbine generator 8-j receives during the set period.
  • the remote monitoring device 3 determines whether or not the predicted average wind speed is smaller than the assumed average wind speed assumed when calculating the control parameters currently set in the wind turbine generator 8-j (step S12).
  • the remote monitoring device 3 sets a value larger than the rated power output 23 currently set for the wind power generator 8-j to the appropriate rated power generation.
  • the output is set, and a value larger than the control gain currently set in the wind turbine generator 8-j is set as the control gain (step S13).
  • the remote monitoring device 3 transmits the setting information indicating the setting period, the appropriate rated power generation output and the control gain thereof to the wind power generation device 8-j and transmits it to the local remote monitoring device 5-i.
  • the control gain is the appropriate control so that the rated power output indicates the appropriate rated power output during the setting period.
  • the control parameter corresponding to the wind turbine generator 8-j is updated so as to indicate the gain.
  • the remote monitoring device 3 sets a value smaller than the rated power output currently set for the wind power generator 8-j as the appropriate rated power output.
  • a value smaller than the control gain currently set in the wind turbine generator 8-j is set as the appropriate control gain (step S14).
  • the remote monitoring device 3 transmits the setting information indicating the setting period, the appropriate rated power generation output and the control gain thereof to the wind power generation device 8-j and transmits it to the local remote monitoring device 5-i.
  • the control gain is the appropriate control so that the rated power output indicates the appropriate rated power output during the setting period.
  • the control parameter corresponding to the wind turbine generator 8-j is updated so as to indicate the gain.
  • the remote monitoring device 3 remotely monitors the load measured by the load sensor 33 after setting the appropriate rated power generation output and the appropriate control gain in the wind power generation device 8-j, that is, during the setting period. Collect from device 5-i. The remote monitoring device 3 determines whether or not the load is included in a predetermined load range (step S15).
  • the remote monitoring device 3 sets a value larger than the rated power output 23 currently set for the wind power generator 8-j as the appropriate rated power output.
  • a value larger than the control gain currently set in the wind turbine generator 8-j is set as the control gain (step S13).
  • the remote monitoring device 3 transmits the setting information indicating the setting period, the appropriate rated power generation output and the control gain thereof to the wind power generation device 8-j and transmits it to the local remote monitoring device 5-i.
  • the control gain is the appropriate control so that the rated power output indicates the appropriate rated power output during the setting period.
  • the control parameter corresponding to the wind turbine generator 8-j is updated so as to indicate the gain.
  • the remote monitoring device 3 sets a value smaller than the rated power output currently set in the wind power generator 8-j as the appropriate rated power output. Then, a value smaller than the control gain currently set for the wind turbine generator 8-j is set as the appropriate control gain (step S14).
  • the remote monitoring device 3 transmits the setting information indicating the setting period, the appropriate rated power generation output and the control gain thereof to the wind power generation device 8-j and transmits it to the local remote monitoring device 5-i.
  • the control gain is the appropriate control so that the rated power output indicates the appropriate rated power output during the setting period.
  • the control parameter corresponding to the wind turbine generator 8-j is updated so as to indicate the gain.
  • the remote monitoring device 3 repeats steps S13, S14, and S15 until the load is included in the load range (step S15, appropriate).
  • the wind turbine generator 8-j has other wind turbine generator maintenance in which the control parameters are appropriately changed based on the wind conditions during operation and the control parameters are not changed during operation. Compared with the apparatus, it is possible to generate power with higher efficiency, and it is possible to increase the power generation amount of the wind power generation apparatus 8-j.
  • the remote monitoring device 3 can also calculate the plurality of predicted average wind speeds based on the plurality of predicted weather information collected from the weather information server 6. Also in this case, the operation during the short-term maintenance can similarly generate power more efficiently than other wind power generator maintenance devices whose control parameters are not changed during operation. The power generation amount of ⁇ j can be increased.
  • the operation at the time of blade replacement is executed by the wind turbine generator maintenance device 1 at a predetermined timing.
  • Examples of the timing include the timing at which the long-term maintenance operation is executed and the timing at which the periodic inspection of the wind turbine generator 8-j is executed.
  • the remote monitoring device 3 calculates a plurality of appropriate blade lengths corresponding to the plurality of wind turbine generators based on the plurality of predicted average wind speeds calculated by the weather prediction unit 52.
  • the appropriate blade length corresponding to the wind power generator 8-j among the plurality of appropriate blade lengths is set to the wind turbine generator 8-- to the predicted average wind speed corresponding to the wind power generator 8-j among the plurality of predicted average wind speeds.
  • the wind power generator 8-j may generate power with high efficiency. Calculated as possible.
  • the remote monitoring device 3 controls the output device of the remote monitoring device 3 when the blade lengths of the plurality of blades 15 currently attached to the wind power generation device 8-j are different from the appropriate blade lengths. A message to the effect that the blade of the appropriate blade length is attached to the device 8-j is displayed on the output device.
  • the remote monitoring device 3 When the blade lengths of the plurality of blades 15 currently attached to the wind turbine generator 8-j are different from the appropriate blade length, the remote monitoring device 3 further combines the blade generators with the blade lengths and the plurality of blade lengths. A plurality of wind turbine generators corresponding to the appropriate blade length are extracted from the plurality of wind turbine generators with reference to the table associated with the position. The remote monitoring device 3 further extracts a plurality of wind turbine generators having an inappropriate blade length from the extracted plurality of wind turbine generators. The remote monitoring device 3 selects the wind power generator installed in the place closest to the wind power generator 8-j from the extracted wind power generator.
  • the remote monitoring device 3 controls the output device of the remote monitoring device 3 to display a message on the output device that the plurality of blades of the selected wind power generation device are attached to the wind power generation device 8-j. By viewing the message, the worker attaches the plurality of blades of the selected wind turbine generator to the wind turbine generator 8-j.
  • the wind power generator 8-j has a plurality of blades 15 replaced with blades of appropriate blade lengths based on the wind conditions during operation, and the blades are not replaced during operation. It is possible to generate power more efficiently than the wind power generators of No. 1 and increase the amount of power generated by the wind power generators 8-j.
  • the blade length is different for each of the plurality of wind power generation devices.
  • the plurality of wings 15 can be replaced at a lower cost.
  • the cost of transporting the blades is reduced.
  • the plurality of blades 15 can be replaced at a lower cost.
  • the plurality of blades 15 of the wind power generator 8-j can be replaced with other blades stored in a warehouse or the like.
  • a plurality of blades 15 can be replaced with blades having appropriate blade lengths based on wind conditions during operation, and the amount of power generated by the wind turbine generator 8-j can be increased. Can do.
  • the appropriate control parameters for the long-term maintenance operation and the short-term maintenance operation may be other appropriate control parameters that do not update the rated power output 23 and the control gain among the control parameters.
  • Examples of the appropriate control parameter include a parameter that updates at least one of the cut-in wind speed 22, the rated power output 23, the rated wind speed range 24, and the control gain.
  • the long-term maintenance operation and the short-term maintenance operation are the same as the long-term maintenance operation and the short-term maintenance operation in the embodiment described above, even when such appropriate control parameters are applied.
  • the power generation amount of 8-j can be increased.
  • wind speed measured by the wind speed sensor 31 can be replaced with the wind speed measured by another sensor.
  • the wind speed is exemplified by the wind speed measured by the lidar 7, the pitch angle of the plurality of blades 15, the rotation speed measured by the rotation speed sensor 34, and the power generation output measured by the power generation output sensor 35.
  • the wind turbine generator maintenance method according to the present invention increases the power generation amount of the wind turbine generator 8-j in the same manner as the wind turbine generator maintenance method in the above-described embodiment even when such wind speed is applied. be able to.
  • the predicted weather information provided by the weather information server 6 can also indicate other weather information that is different from the average wind speed of the wind blowing in a predetermined area during a predetermined period.
  • the weather information is exemplified by a weather map.
  • the remote monitoring device 3 calculates the plurality of predicted average wind speeds based on the weather information.
  • the power generation amount of the wind power generator 8-j can be reduced in the same manner as the wind power generator maintenance method in the embodiment described above. Can be increased.
  • the predicted average wind speed in the wind turbine generator maintenance method according to the present invention can be replaced with other predicted wind conditions.
  • An example of the predicted wind condition is a predicted wind speed distribution indicating the wind speed distribution of the wind received by the wind turbine generator 8-j during the set period.
  • the wind turbine generator maintenance method according to the present invention reduces the power generation amount of the wind turbine generator 8-j in the same manner as the wind turbine generator maintenance method in the above-described embodiment even when such a predicted wind condition is applied. Can be increased.
  • the wind turbine generator maintenance method according to the present invention does not need to perform all of the long-term maintenance operation, the short-term maintenance operation, and the blade replacement operation, and by executing at least one of the operations. Thus, the amount of power generated by the wind power generator 8-j can be increased.
  • Wind power generator maintenance device 2 Internet 3: Remote monitoring device 5-1 to 5-n: Multiple local remote monitoring devices 6: Weather information server 7: Lidar 8-1 to 8-m: Multiple wind power generation Device 11: Tower 12: Nacelle 14: Main shaft 15: Plural blades 16: Generator 17: Yaw drive device 18: Pitch drive device 19: Sensor 21: Power curve 22: Cut-in wind speed 23: Rated power output 24: Rated wind speed Range 31: wind speed sensor 32: wind direction sensor 33: load sensor 34: rotation speed sensor 35: power generation output sensor 41: sensor value collection unit 42: wind condition data transmission unit 43: operation control unit 44: setting unit 51: wind condition data Collection unit 52: Weather prediction unit 53: Setting unit 54: Replacement blade information calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

 風力発電装置保守装置が、風速を発電出力に対応づけるときに利用される制御パラメータを参照して、所定風速の風が吹いているときに、発電出力のうちの所定風速に対応する所定発電出力が発電されるように、風力発電装置を制御する運転制御部と、風力発電装置が受ける風の風況が計測されるように、風力発電装置が備えるセンサを制御する風況データ収集部と、設定部とを具備する。該設計部は、風況に基づいて算出された適切制御パラメータに、制御パラメータであるカットイン風速と定格発電出力と定格風速範囲と制御ゲインのうちの少なくとも1つを更新する。

Description

風力発電装置保守装置および風力発電装置保守方法
 本発明は、風力発電装置保守装置および風力発電装置保守方法に関し、特に、風力発電装置を保守する風力発電装置保守装置および風力発電装置保守方法に関する。
 風力を電力に変換する風力発電装置が知られている。その風力発電装置は、その風力発電装置が設置される前に観測された風況に基づいて、電力が高効率に生成されるように翼の翼長が設計されて、作製される。その風力発電装置は、さらに、電力が高効率に生成されるように、その風況に基づいて設定された制御パラメータに基づいて制御される。風力発電装置により発電される電力の電力量をより増加させることが望まれ、風力発電装置をより適切に制御し、保守することが望まれている。
 米国特許第7569945号明細書には、風車の構成部分の変動する荷重を低減し、風車の寿命を延長する方法が開示されている。その方法は、ロータの荷重データを繰り返し収集して保存すること、その荷重データからロータの荷重分布関数を算出すること、その荷重分布関数から複数の周期関数を取得すること、その得られた複数の周期関数から風車の構成要素の疲労荷重を低減するために風車制御手段の動作を算出すること、その風車制御手段にその算出された動作を実行させることを備えている。
米国特許第7569945号明細書
 本発明の課題は、風力発電装置により発電される発電量をより増加する風力発電装置保守装置および風力発電装置保守方法を提供することにある。
 本発明の他の課題は、風力発電装置により適切に保守する風力発電装置保守装置および風力発電装置保守方法を提供することにある。
 本発明のさらに他の課題は、風力発電装置により適切に制御する風力発電装置保守装置および風力発電装置保守方法を提供することにある。
 本発明のさらに他の課題は、風力発電装置により発電される電力の電力量をより増加し、かつ、その風力発電装置の寿命を延長する風力発電装置保守装置および風力発電装置保守方法を提供することにある。
 以下に、発明を実施するための形態・実施例で使用される符号を括弧付きで用いて、課題を解決するための手段を記載する。この符号は、特許請求の範囲の記載と発明を実施するための形態・実施例の記載との対応を明らかにするために付加されたものであり、特許請求の範囲に記載されている発明の技術的範囲の解釈に用いてはならない。
 本発明による風力発電装置保守装置(1)は、風速を発電出力に対応づけるときに利用される制御パラメータ(22、23、24)を参照して、所定風速の風が吹いているときに、その発電出力のうちのその所定風速に対応する所定発電出力が発電されるように、風力発電装置(8-j)を制御する運転制御部(43)と、風力発電装置(8-j)が受ける風の風況が計測されるように、風力発電装置(8-j)が備えているセンサ(19)を制御する風況データ収集部(41、42、51)と、その風況に基づいて算出された適切制御パラメータに、制御パラメータ(22、23、24)であるカットイン風速と定格発電出力と定格風速範囲と制御ゲインのうちの少なくとも1つを更新する設定部(44、53)とを備えている。このような風力発電装置保守装置(1)は、風力発電装置(8-j)の稼働中に制御パラメータ(22、23、24)を適切に変更することができ、制御パラメータ(22、23、24)が変更されない他の風力発電装置に比較して、より高効率に発電することができ、風力発電装置(8-j)の発電量を増大させることができる。
 設定部(44、53)は、さらに、その風により風力発電装置(8-j)が受ける荷重が計測されるように、センサ(19)を制御する。適切制御パラメータは、その荷重が所定荷重範囲に含まれるように、更新される。このような風力発電装置保守装置(1)は、風力発電装置(8-j)が受ける荷重が過負荷にならない範囲で、風力発電装置(8-j)が受ける風の風況に応じて制御パラメータ(22、23、24)を適切に変更することができ、より高効率に発電することができ、風力発電装置(8-j)の発電量を増大させ、風力発電装置(8-j)の寿命を延長させることができる。
 本発明による風力発電装置保守装置(1)は、風力発電装置(8-j)が配置された地域の気象情報を気象情報サーバ(6)から収集する気象予測部(52)をさらに備えている。適切制御パラメータは、その気象情報にさらに基づいて算出されることが好ましい。
 運転制御部(43)は、その所定風速が定格風速範囲に含まれるときに、定格発電出力(23)が発電されるように、風力発電装置(8-j)を制御する。定格発電出力(23)は、その風況に基づいて算出された適切定格発電出力に更新されることが好ましい。その風況は、その風の平均風速を示していることが好ましい。
 本発明による風力発電装置保守装置(1)は、風力発電装置(8-j)が備えている翼(15)の翼長がその風況に基づいて算出された適切翼長と異なるときに、その適切翼長が出力されるように出力装置を制御する交換翼算出部(54)をさらに備えている。このような風力発電装置保守装置(1)によれば、作業者は、風力発電装置(8-j)の稼働中に翼(15)を適切な翼長の他の翼に交換することができ、翼が交換されない他の風力発電装置に比較して、より高効率に発電することができ、風力発電装置(8-j)の発電量を増大させることができる。
 交換翼算出部(54)は、さらに、複数の風力発電装置(8-1~8-m)を複数の翼長に対応づけるテーブルを参照して、複数の風力発電装置(8-1~8-m)のうちのその適切翼長に対応する交換対象風力発電装置(8-j)が出力されるように、その出力装置を制御する。このような風力発電装置保守装置(1)によれば、互いに異なる複数の翼長の翼(15)を複数の風力発電装置(8-1~8-m)毎に準備する必要がなく、翼(15)をより安価に交換することができる。
 本発明による風力発電装置保守方法は、風速を発電出力に対応づけるときに利用される制御パラメータ(22、23、24)を参照して、所定風速の風が吹いているときに、その発電出力のうちのその所定風速に対応する所定発電出力が発電されるように、風力発電装置(8-j)を制御するステップと、風力発電装置(8-j)が受ける風の風況が計測されるように、風力発電装置(8-j)が備えているセンサ(19)を制御するステップと、その風況に基づいて算出された適切制御パラメータに、制御パラメータ(22、23、24)であるカットイン風速と定格発電出力と定格風速範囲と制御ゲインのうちの少なくとも1つを更新するステップとを備えている。このような風力発電装置保守方法は、風力発電装置(8-j)の稼働中に制御パラメータ(22、23、24)を適切に変更することができ、制御パラメータ(22、23、24)が変更されない他の風力発電装置に比較して、より高効率に発電することができ、風力発電装置(8-j)の発電量を増大させることができる。
 本発明による風力発電装置保守方法は、その風により風力発電装置(8-j)が受ける荷重が計測されるように、センサ(19)を制御するステップをさらに備えている。適切制御パラメータは、その荷重が所定荷重範囲に含まれるように、算出される。このような風力発電装置保守方法は、風力発電装置(8-j)が受ける荷重が過負荷にならない範囲で、風力発電装置(8-j)が受ける風の風況に応じて制御パラメータ(22、23、24)を適切に変更することができ、より高効率に発電することができ、風力発電装置(8-j)の発電量を増大させることができ、風力発電装置(8-j)の寿命を延長することができる。
 本発明による風力発電装置保守方法は、風力発電装置(8-j)が配置された地域の気象情報を気象情報サーバ(6)から収集するステップをさらに備えている。適切制御パラメータは、その気象情報にさらに基づいて算出されることが好ましい。
 風力発電装置(8-j)は、その所定風速が定格風速範囲に含まれるときに、定格発電出力(23)が発電されるように、その制御される。定格発電出力(23)は、その風況に基づいて算出された適切定格発電出力に更新されることが好ましい。その風況は、その風の平均風速を示していることが好ましい。
 本発明による風力発電装置保守方法は、風力発電装置(8-j)が備えている翼(15)の翼長がその風況に基づいて算出された適切翼長と異なるかどうかを判別するステップと、翼長がその適切翼長と異なるときに、その適切翼長が出力されるように出力装置を制御するステップとをさらに備えている。このような風力発電装置保守方法によれば、作業者は、風力発電装置(8-j)の稼働中に翼(15)を適切な翼長の他の翼に交換することができ、翼が交換されない他の風力発電装置に比較して、より高効率に発電することができ、風力発電装置(8-j)の発電量を増大させることができる。
 本発明による風力発電装置保守方法は、複数の風力発電装置(8-1~8-m)を複数の翼長に対応づけるテーブルを参照して、複数の風力発電装置(8-1~8-m)のうちのその適切翼長に対応する交換対象風力発電装置(8-j)が出力されるように、その出力装置を制御するステップをさらに備えている。このような風力発電装置保守方法によれば、互いに異なる複数の翼長の翼(15)を複数の風力発電装置(8-1~8-m)毎に準備する必要がなく、翼(15)をより安価に交換することができる。
 本発明による風力発電装置保守装置(1)は、風力発電装置(8-j)が受ける風の風況が計測されるように、風力発電装置(8-j)が備えているセンサ(19)を制御する風況データ収集部(41、42、51)と、風力発電装置(8-j)が備えている翼(15)の翼長がその風況に基づいて算出された適切翼長と異なるときに、その適切翼長が出力されるように出力装置を制御する交換翼算出部(54)とを備えている。このような風力発電装置保守装置(1)によれば、作業者は、風力発電装置(8-j)の稼働中に翼(15)を適切な翼長の他の翼に交換することができ、翼が交換されない他の風力発電装置に比較して、より高効率に発電することができ、風力発電装置(8-j)の発電量を増大させることができる。
 本発明による風力発電装置保守方法は、風力発電装置(8-j)が受ける風の風況が計測されるように、風力発電装置(8-j)が備えているセンサ(19)を制御するステップと、風力発電装置(8-j)が備えている翼(15)の翼長がその風況に基づいて算出された適切翼長と異なるかどうかを判別するステップと、翼長がその適切翼長と異なるときに、その適切翼長が出力されるように出力装置を制御するステップとを備えている。このような風力発電装置保守方法によれば、作業者は、風力発電装置(8-j)の稼働中に翼(15)を適切な翼長の他の翼に交換することができ、翼(15)が交換されない他の風力発電装置に比較して、より高効率に発電することができ、風力発電装置(8-j)の発電量を増大させることができる。
 本発明による風力発電装置保守装置および風力発電装置保守方法は、風力発電装置の稼働中に制御パラメータを適切に変更することができ、その制御パラメータが変更されない他の風力発電装置保守装置に比較して、より高効率に発電することができ、その結果、風力発電装置の発電量を増大させることができる。
図1は、本発明による風力発電装置保守装置を示すブロック図である。 図2は、風力発電装置を示す図である。 図3は、センサを示すブロック図である。 図4は、現地側遠隔監視装置を示すブロック図である。 図5は、パワーカーブを示すグラフである。 図6は、遠隔監視装置を示すブロック図である。 図7は、長期保守動作を示すフローチャートである。 図8は、短期保守動作を示すフローチャートである。
 図面を参照して、本発明による風力発電装置保守装置の実施の形態を記載する。その風力発電装置保守装置1は、風力発電システムに適用され、図1に示されているように、インターネット2を介して互いに双方向に情報伝送可能に接続されている複数のコンピュータを備えている。その複数のコンピュータは、遠隔監視装置3と複数の現地側遠隔監視装置5-1~5-n(n=2,3,4,…)と気象情報サーバ6とを含んでいる。なお、インターネット2は、他の通信回線網に置換されることができる。その通信回線網としては、専用回線網が例示される。
 気象情報サーバ6は、複数の期間と複数の地域とに対応する複数の予測気象情報を記録している。その複数の予測気象情報のうちのある期間とある地域とに対応する予測気象情報は、その期間にその地域に吹く風の平均風速を示している。なお、その予測気象情報は、その平均風速と異なる他の風況を示すこともできる。その風況としては、たとえば、その風の風速の分布が例示される。気象情報サーバ6は、インターネット2に接続されるコンピュータから予測気象情報要求を受信したときに、その複数の予測気象情報のうちのその予測気象情報要求が示す期間と地域とに対応する予測気象情報をそのコンピュータに返信する。
 複数の現地側遠隔監視装置5-1~5-nは、遠隔監視装置3が配置される位置から遠隔に離れた位置に配置され、互いに異なる複数のサイトにそれぞれ配置されている。その複数のサイトのうちの任意の現地側遠隔監視装置5-i(i=1,2,3,…,n)が配置されるサイトには、図2に示されているように、ライダ7と複数の風力発電装置8-1~8-m(m=2,3,4,…)とが配置されている。ライダ7は、インターネット2を介して、情報伝達可能に遠隔監視装置3に接続されている。ライダ7は、遠隔監視装置3に制御されることにより、そのサイトに吹く風の風況を計測して、その風況を遠隔監視装置3に送信する。
 複数の風力発電装置8-1~8-mのうちの任意の風力発電装置8-j(j=1,2,3,…,m)は、タワー11とナセル12と主軸14と複数の翼15と発電機16とヨー駆動装置17とピッチ駆動装置18とセンサ19とを備えている。
 タワー11は、柱状に形成され、基礎に固定されている。ナセル12は、十分に高所に配置され、鉛直方向に平行であるヨー回転軸を中心に回転可能にタワー11に支持されている。主軸14は、水平方向に概ね平行であるロータ回転軸を中心に回転可能にナセル12に支持されている。複数の翼15は、そのロータ回転軸上の1点でそのロータ回転軸に概ね直交する複数のピッチ回転軸にそれぞれ沿うように配置されている。複数の翼15は、さらに、複数の翼15が均等に離れて主軸14を囲むように、配置されている。複数の翼15のうちの任意の翼は、その複数のピッチ回転軸のうちのその任意の翼に沿うピッチ回転軸を中心に回転可能に主軸14に支持されている。複数の翼15は、所定のピッチ角度で主軸14に固定されているときに、風力発電装置8-jが受ける風によりそのロータ回転軸を中心に主軸14を回転させ、回転動力を生成する。
 発電機16は、ナセル12の内部に配置され、現地側遠隔監視装置5-iに情報伝達可能に接続されている。発電機16は、現地側遠隔監視装置5-iに制御されることにより、複数の翼15により生成された回転動力から所定の電力を生成する。ヨー駆動装置17は、現地側遠隔監視装置5-iに制御されることにより、タワー11に対してナセル12をそのヨー回転軸を中心に回転させる。ピッチ駆動装置18は、現地側遠隔監視装置5-iに制御されることにより、主軸14に対して複数の翼15をその複数のピッチ回転軸を中心にそれぞれ回転させる。
 図3は、センサ19を示している。センサ19は、風速センサ31と風向センサ32と荷重センサ33と回転数センサ34と発電出力センサ35とを含んでいる。風速センサ31は、現地側遠隔監視装置5-iに制御されることにより、風力発電装置8-jが受ける風の風速を計測し、その風速を現地側遠隔監視装置5-iに送信する。風向センサ32は、現地側遠隔監視装置5-iに制御されることにより、風力発電装置8-jが受ける風の風向を計測し、その風向を現地側遠隔監視装置5-iに送信する。荷重センサ33は、複数の翼15の根本に配置されている。荷重センサ33は、現地側遠隔監視装置5-iに制御されることにより、風力発電装置8-jが風を受けることにより複数の翼15に印加される荷重を計測し、その荷重を現地側遠隔監視装置5-iに送信する。なお、荷重センサ33は、その荷重と異なる他のセンサ値を計測することもできる。そのセンサ値としては、風力発電装置8-jが風を受けることによりタワー11に印加される荷重が例示される。回転数センサ34は、現地側遠隔監視装置5-iに制御されることにより、風力発電装置8-jが風を受けることにより複数の翼15が単位時間当たりに回転する回転数を計測し、その回転数を現地側遠隔監視装置5-iに送信する。発電出力センサ35は、現地側遠隔監視装置5-iに制御されることにより、複数の翼15が回転することにより発電機16が生成する電力を計測し、その電力を現地側遠隔監視装置5-iに送信する。
 図4は、現地側遠隔監視装置5-iを示している。現地側遠隔監視装置5-iは、図示されていないCPUと記憶装置と通信装置とリムーバルメモリドライブと入力装置と出力装置とインターフェースとを備えている。そのCPUは、現地側遠隔監視装置5-iにインストールされるコンピュータプログラムを実行することにより、その記憶装置と通信装置とリムーバルメモリドライブと入力装置と出力装置とインターフェースとを制御する。その記憶装置は、そのコンピュータプログラムを記録し、そのCPUにより生成される情報を一時的に記録する。
 その通信装置は、インターネット2を介してそのCPUにより生成された情報を他のコンピュータに送信し、インターネット2を介して他のコンピュータから受信された情報をそのCPUに出力する。その通信装置は、さらに、現地側遠隔監視装置5-iにインストールされるコンピュータプログラムを他のコンピュータからダウンロードすることに利用される。そのリムーバルメモリドライブは、記録媒体が挿入されたときに、その記録媒体に記録されているデータを読み出すことに利用される。そのリムーバルメモリドライブは、さらに、コンピュータプログラムが記録されている記録媒体が挿入されたときに、そのコンピュータプログラムを現地側遠隔監視装置5-iにインストールするときに利用される。その記録媒体としては、フラッシュメモリ、磁気ディスク(フレキシブルディスク、ハードディスク)、光ディスク(CD、DVD)が例示される。
 その入力装置は、ユーザに操作されることにより情報を生成し、その情報をそのCPUに出力する。その入力装置としては、キーボード、ポインティングデバイス、タッチパネルが例示される。その出力装置は、そのCPUにより生成される情報をユーザに認識可能に出力する。その出力装置としては、ディスプレイ、音響装置、タッチパネルが例示される。
 そのインターフェースは、現地側遠隔監視装置5-iに接続される外部機器により生成される情報をそのCPUに出力し、そのCPUにより生成された情報をその外部機器に出力する。その外部機器は、風速センサ31と風向センサ32と荷重センサ33と回転数センサ34と発電出力センサ35とを含んでいる。
 現地側遠隔監視装置5-iにインストールされるコンピュータプログラムは、現地側遠隔監視装置5-iに複数の機能をそれぞれ実現させる複数のコンピュータプログラムから形成されている。その複数の機能は、センサ値収集部41と風況データ送信部42と運転制御部43と設定部44とを含んでいる。
 センサ値収集部41は、複数の風力発電装置8-1~8-mに対応する複数のセンサ値を複数の風力発電装置8-1~8-mから収集する。その複数のセンサ値のうちの風力発電装置8-jに対応するセンサ値は、風速センサ31により計測される風速と風向センサ32により計測される風向と荷重センサ33により計測される荷重と回転数センサ34により計測される回転数と発電出力センサ35により計測される電力とを示している。
 すなわち、センサ値収集部41は、風力発電装置8-jが受ける風の風速が計測されるように、風速センサ31を制御する。センサ値収集部41は、風力発電装置8-jが受ける風の風向が計測されるように、風向センサ32を制御する。センサ値収集部41は、風力発電装置8-jが風を受けることにより複数の翼15に印加される荷重が計測されるように、荷重センサ33を制御する。センサ値収集部41は、複数の翼15が単位時間当たりに回転する回転数が計測されるように、回転数センサ34を制御する。センサ値収集部41は、発電機16が生成する電力が計測されるように、発電出力センサ35を制御する。
 風況データ送信部42は、センサ値収集部41により収集された複数のセンサ値に基づいて風況データを作成し、インターネット2を介してその風況データを遠隔監視装置3に送信する。その風況データは、複数の日時と複数の風力発電装置8-1~8-mとに対応する複数の風速を示している。その複数の風速のうちのある日時と風力発電装置8-jとに対応する風速は、その日時に風速センサ31により計測される風速を示している。
 運転制御部43は、センサ値収集部41により収集された複数のセンサ値に基づいて複数の風力発電装置8-1~8-mを制御する。すなわち、運転制御部43は、風向センサ32により計測された風向に基づいて、複数の翼15がナセル12より風上に配置されるように、かつ、そのロータ回転軸がその風向に平行になるように、ヨー駆動装置17を制御する。運転制御部43は、さらに、複数の風力発電装置8-1~8-mに対応する複数の制御パラメータを記録している。運転制御部43は、その複数の制御パラメータのうちの風力発電装置8-jに対応する制御パラメータと風速センサ31により計測される風速に基づいて、発電機16により発電される電力が所定の電力に等しくなるように、発電機16とピッチ駆動装置18とを制御する。
 設定部44は、複数の風力発電装置8-1~8-mに対応する複数の設定情報を遠隔監視装置3から受信したときに、運転制御部43により記録されている複数の制御パラメータをその複数の設定情報に基づいて更新する。設定部44は、さらに、センサ値収集部41により収集された荷重を、インターネット2を介して遠隔監視装置3に送信する。
 図5は、運転制御部43により記録されている複数の制御パラメータのうちの風力発電装置8-jに対応する制御パラメータにより決定されるパワーカーブを示している。そのパワーカーブ21は、複数の風速を複数の電力出力に対応づけ、風力発電装置8-jが受ける風の風速と発電機16により発電される電力との関係を示している。その制御パラメータは、カットイン風速22と定格発電出力23と定格風速範囲24と制御ゲインとを示している。パワーカーブ21は、その電力がその風速に対して単調に増加することを示している。パワーカーブ21は、その風速がカットイン風速22より小さいときにその電力が生成されないことを示している。パワーカーブ21は、さらに、その風速が定格風速範囲24に含まれるときに、その電力が定格発電出力23に等しいことを示している。パワーカーブ21は、さらに、その風速がカットイン風速22より大きく、かつ、その風速が定格風速範囲24より小さいときに、その電力がその風速に対して所定の傾きで増加することを示している。その傾きは、その制御ゲインに対して単調に増加する関数である。
 このとき、運転制御部43は、その複数の制御パラメータのうちの風力発電装置8-jに対応する制御パラメータに基づいて、発電機16とピッチ駆動装置18とを制御する。風力発電装置8-jは、このような制御により、風速センサ31によりある風速が計測されたときに、パワーカーブ21でその風速に対応する電力出力に等しい電力が発電機16により発電される。
 図6は、遠隔監視装置3を示している。遠隔監視装置3は、図示されていないCPUと記憶装置と通信装置とリムーバルメモリドライブと入力装置と出力装置とを備えている。そのCPUは、遠隔監視装置3にインストールされるコンピュータプログラムを実行することにより、その記憶装置と通信装置とリムーバルメモリドライブと入力装置と出力装置とインターフェースとを制御する。その記憶装置は、そのコンピュータプログラムを記録し、そのCPUにより生成される情報を一時的に記録する。
 その通信装置は、インターネット2を介してそのCPUにより生成された情報を他のコンピュータに送信し、インターネット2を介して他のコンピュータから受信された情報をそのCPUに出力する。その通信装置は、さらに、遠隔監視装置3にインストールされるコンピュータプログラムを他のコンピュータからダウンロードすることに利用される。そのリムーバルメモリドライブは、記録媒体が挿入されたときに、その記録媒体に記録されているデータを読み出すことに利用される。そのリムーバルメモリドライブは、さらに、コンピュータプログラムが記録されている記録媒体が挿入されたときに、そのコンピュータプログラムを遠隔監視装置3にインストールするときに利用される。その記録媒体としては、フラッシュメモリ、磁気ディスク(フレキシブルディスク、ハードディスク)、光ディスク(CD、DVD)が例示される。
 その入力装置は、ユーザに操作されることにより情報を生成し、その情報をそのCPUに出力する。その入力装置としては、キーボード、ポインティングデバイス、タッチパネルが例示される。その出力装置は、そのCPUにより生成される情報をユーザに認識可能に出力する。その出力装置としては、ディスプレイ、音響装置、タッチパネルが例示される。
 遠隔監視装置3にインストールされるコンピュータプログラムは、遠隔監視装置3に複数の機能をそれぞれ実現させる複数のコンピュータプログラムから形成されている。その複数の機能は、風況データ収集部51と気象予測部52と設定部53とを含んでいる。
 風況データ収集部51は、インターネット2を介して、複数の現地側遠隔監視装置5-1~5-nから複数の風況データをそれぞれ収集する。その複数の風況データのうちの現地側遠隔監視装置5-iから送信された風況データは、現地側遠隔監視装置5-iの風況データ送信部42により作成された風況データに一致し、複数の日時と複数の風力発電装置8-1~8-mとに対応する複数の風速を示している。その複数の風速のうちのある日時と風力発電装置8-jとに対応する風速は、その日時に風速センサ31により計測される風速を示している。
 気象予測部52は、その複数のサイトに対応する複数の予測気象情報要求を作成し、インターネット2を介してその複数の予測気象情報要求を気象情報サーバ6に送信する。その複数の予測気象情報要求のうちの現地側遠隔監視装置5-iのサイトに対応する予測気象情報要求は、遠隔監視装置3の入力装置を介して入力された期間とそのサイトが配置される地域とを示している。気象予測部52は、さらに、その複数の予測気象情報要求に対応する複数の予測気象情報を気象情報サーバ6から収集する。気象予測部52は、風況データ収集部51により収集された複数の風況データと気象予測部52により収集された複数の予測気象情報と入力装置を介して入力された設定期間とに基づいて、複数の風力発電装置に対応する複数の予測平均風速を算出する。その複数の予測平均風速のうちの風力発電装置8-jに対応する予測平均風速は、風力発電装置8-jがその設定期間に受ける風の風速の平均を示している。
 設定部53は、気象予測部52により算出された複数の予測平均風速に基づいて、複数の風力発電装置に対応する複数の設定情報を算出する。その複数の設定情報のうちの風力発電装置8-jに対応する設定情報は、その設定期間を示し、適切制御パラメータを示している。その適切制御パラメータは、適切定格発電出力と適切制御ゲインとを示している。その設定情報は、その適切定格発電出力と適切制御ゲインとを用いて風力発電装置8-jを制御したときに、その設定期間に風力発電装置8-jが高効率に発電することができるように、算出される。すなわち、その適切定格発電出力は、その複数の予測平均風速のうちの風力発電装置8-jに対応する予測平均風速が想定平均風速より大きいときに、定格発電出力23より大きい値が設定される。その想定平均風速は、風力発電装置8-jの制御パラメータを算出するときに想定されていた風力発電装置8-jが受ける風の平均風速を示している。その適切定格発電出力は、その予測平均風速が想定平均風速より小さいときに、定格発電出力23より小さい値が設定される。その適切制御ゲインは、その予測平均風速が想定平均風速より大きいときに、パワーカーブ21を算出するときに利用された制御ゲインより大きい値が設定される。その適切制御ゲインは、その予測平均風速が想定平均風速より小さいときに、その制御ゲインより小さい値が設定される。
 設定部53は、さらに、その複数の設定情報のうちの風力発電装置8-jに対応する設定情報を、風力発電装置8-jが配置されているサイトに対応する現地側遠隔監視装置5-iに送信する。このとき、現地側遠隔監視装置5-iの設定部44は、風力発電装置8-jに対応する設定情報を遠隔監視装置3から受信したときに、その設定情報が示す設定期間に、定格発電出力23がその適切定格発電出力を示すように、その制御ゲインがその適切制御ゲインを示すように、その複数の制御パラメータのうちの風力発電装置8-jに対応する制御パラメータを更新する。
 交換翼情報算出部54は、気象予測部52により算出された複数の予測平均風速に基づいて、複数の風力発電装置に対応する複数の適切翼長を算出する。その複数の適切翼長のうちの風力発電装置8-jに対応する適切翼長は、風力発電装置8-jの複数の翼15の翼長がその適切翼長に等しいときに、その設定期間に風力発電装置8-jがより高効率に発電することができるように、算出される。交換翼情報算出部54は、風力発電装置8-jに現在取り付けられている複数の翼15の翼長がその適切翼長と異なるときに、風力発電装置8-jにその適切翼長の翼を取り付ける旨のメッセージが表示されるように、遠隔監視装置3の出力装置を制御する。
 交換翼情報算出部54は、複数の風力発電装置を複数の翼長と複数の位置とに対応づけるテーブルを記録している。その複数の翼長のうちの風力発電装置8-jに対応する翼長は、風力発電装置8-jが備える複数の翼15の翼の長さを示している。その複数の位置のうちの風力発電装置8-jに対応する位置は、風力発電装置8-jが配置されている位置を示している。交換翼情報算出部54は、複数の翼15の翼長がその適切翼長と異なるときに、さらに、そのテーブルを参照して、その複数の風力発電装置からその適切翼長に対応する複数の風力発電装置を抽出する。交換翼情報算出部54は、その抽出された複数の風力発電装置から翼長が不適切である複数の風力発電装置をさらに抽出する。交換翼情報算出部54は、その抽出された風力発電装置から風力発電装置8-jに最も近い場所に設置されている1つの風力発電装置を選択する。交換翼情報算出部54は、その選択された風力発電装置の複数の翼を風力発電装置8-jに取り付ける旨のメッセージが表示されるように、遠隔監視装置3の出力装置を制御する。
 本発明による風力発電装置保守方法の実施の形態は、風力発電装置保守装置1を用いて実行され、運転制御時動作と長期保守時動作と短期保守時動作と翼交換時動作とを備えている。
 その運転制御時動作は、複数の現地側遠隔監視装置5-1~5-nにより常時実行される。現地側遠隔監視装置5-iは、風向センサ32を制御することにより、風力発電装置8-jが受ける風の風向を十分に短時間のサンプリング周期ごとに計測する。現地側遠隔監視装置5-iは、ヨー駆動装置17を制御することにより、複数の翼15がナセル12より風上に配置されるように、かつ、そのロータ回転軸がその風向に平行になるように、ヨー回転軸を中心にナセル12をタワー11に対して回転させる。
 現地側遠隔監視装置5-iは、さらに、風速センサ31を制御することにより、風力発電装置8-jが受ける風の風速を十分に短時間のサンプリング周期ごとに計測する。現地側遠隔監視装置5-iは、風力発電装置8-jに設定されている制御パラメータに基づいて発電機16とピッチ駆動装置18とを制御することにより、パワーカーブ21に示されるように、その風速に対応する電力出力に等しい電力を発電機16に発電させる。
 図7は、その長期保守時動作を示している。その長期保守時動作は、所定のタイミングに風力発電装置保守装置1により実行される。そのタイミングとしては、1年ごとまたは季節ごとが例示される。作業者は、入力装置を介して遠隔監視装置3に設定期間を入力する。その設定期間は、現在日時から次回の長期保守時動作が実行される日時までの期間を示している。遠隔監視装置3は、複数の現地側遠隔監視装置5-1~5-nから複数の風況データをそれぞれ収集する。その複数の風況データのうちの現地側遠隔監視装置5-iから送信された風況データは、複数の日時と複数の風力発電装置8-1~8-mとに対応する複数の風速を示している。その複数の風速のうちのある日時と風力発電装置8-jとに対応する風速は、その日時に風速センサ31により計測される風速を示している。
 遠隔監視装置3は、複数のサイトに対応する複数の予測気象情報要求を作成し、インターネット2を介してその複数の予測気象情報要求を気象情報サーバ6に送信する。その複数の予測気象情報要求のうちの現地側遠隔監視装置5-iのサイトに対応する予測気象情報要求は、その設定期間とそのサイトが配置される地域とを示している。遠隔監視装置3は、さらに、その複数の予測気象情報要求に対応する複数の予測気象情報を気象情報サーバ6から収集する。
 遠隔監視装置3は、その設定期間と複数の現地側遠隔監視装置5-1~5-nから収集された複数の風況データと気象情報サーバ6から収集された複数の予測気象情報とに基づいて、複数の風力発電装置に対応する複数の予測平均風速を算出する(ステップS1)。その複数の予測平均風速のうちの風力発電装置8-jに対応する予測平均風速は、風力発電装置8-jがその設定期間に受ける風の風速の平均を示している。遠隔監視装置3は、風力発電装置8-jに現在設定されている制御パラメータを算出するときに想定されていた想定平均風速よりその予測平均風速が小さいかどうかを判別する(ステップS2)。
 遠隔監視装置3は、その想定平均風速よりその予測平均風速が小さいときに(ステップS2、YES)、風力発電装置8-jに現在設定されている定格発電出力23より大きい値をその適切定格発電出力に設定し、風力発電装置8-jに現在設定されている制御ゲインより大きい値をその適切制御ゲインに設定する(ステップS3)。遠隔監視装置3は、その設定期間とその適切定格発電出力とその制御ゲインとを示す設定情報を風力発電装置8-jに対応づけて現地側遠隔監視装置5-iに送信する。現地側遠隔監視装置5-iは、その設定情報を遠隔監視装置3から受信したときに、その設定期間に、定格発電出力がその適切定格発電出力を示すように、その制御ゲインがその適切制御ゲインを示すように、風力発電装置8-jに対応する制御パラメータを更新する。
 遠隔監視装置3は、その想定平均風速よりその予測平均風速が大きいときに(ステップS2、NO)、風力発電装置8-jに現在設定されている定格発電出力より小さい値を適切定格発電出力に設定し、風力発電装置8-jに現在設定されている制御ゲインより小さい値を適切制御ゲインに設定する(ステップS4)。遠隔監視装置3は、その設定期間とその適切定格発電出力とその制御ゲインとを示す設定情報を風力発電装置8-jに対応づけて現地側遠隔監視装置5-iに送信する。現地側遠隔監視装置5-iは、その設定情報を遠隔監視装置3から受信したときに、その設定期間に、定格発電出力がその適切定格発電出力を示すように、その制御ゲインがその適切制御ゲインを示すように、風力発電装置8-jに対応する制御パラメータを更新する。
 遠隔監視装置3は、その適切定格発電出力とその適切制御ゲインとを風力発電装置8-jに設定した後に、すなわち、その設定期間中に、荷重センサ33により計測された荷重を現地側遠隔監視装置5-iから収集する。遠隔監視装置3は、その荷重が所定の荷重範囲に含まれているかどうかを判別する(ステップS5)。
 遠隔監視装置3は、その荷重がその荷重範囲より小さいときに(ステップS5、荷重小)、風力発電装置8-jに現在設定されている定格発電出力23より大きい値をその適切定格発電出力に設定し、風力発電装置8-jに現在設定されている制御ゲインより大きい値をその制御ゲインに設定する(ステップS3)。遠隔監視装置3は、その設定期間とその適切定格発電出力とその制御ゲインとを示す設定情報を風力発電装置8-jに対応づけて現地側遠隔監視装置5-iに送信する。現地側遠隔監視装置5-iは、その設定情報を遠隔監視装置3から受信したときに、その設定期間に、定格発電出力がその適切定格発電出力を示すように、その制御ゲインがその適切制御ゲインを示すように、風力発電装置8-jに対応する制御パラメータを更新する。
 遠隔監視装置3は、その荷重がその荷重範囲より大きいときに(ステップS5、過負荷)、風力発電装置8-jに現在設定されている定格発電出力より小さい値を適切定格発電出力に設定し、風力発電装置8-jに現在設定されている制御ゲインより小さい値を適切制御ゲインに設定する(ステップS4)。遠隔監視装置3は、その設定期間とその適切定格発電出力とその制御ゲインとを示す設定情報を風力発電装置8-jに対応づけて現地側遠隔監視装置5-iに送信する。現地側遠隔監視装置5-iは、その設定情報を遠隔監視装置3から受信したときに、その設定期間に、定格発電出力がその適切定格発電出力を示すように、その制御ゲインがその適切制御ゲインを示すように、風力発電装置8-jに対応する制御パラメータを更新する。
 遠隔監視装置3は、その荷重がその荷重範囲に含まれるまで(ステップS5、適切)、ステップS3、S4,S5を繰り返して実行する。
 このような長期保守時動作によれば、風力発電装置8-jは、稼働中に風況に基づいて制御パラメータを適切に変更され、その制御パラメータが稼働中に変更されない他の風力発電装置保守装置に比較して、より高効率に発電することができ、風力発電装置8-jの発電量を増大させることができる。
 なお、遠隔監視装置3は、気象情報サーバ6から収集された複数の予測気象情報を用いないで、その複数の予測平均風速を算出することもできる。この場合も、その長期保守時動作は、同様にして、その制御パラメータが稼働中に変更されない他の風力発電装置保守装置に比較して、より高効率に発電することができ、風力発電装置8-jの発電量を増大させることができる。
 図8は、その短期保守時動作を示している。その短期保守時動作は、その長期保守時動作が実行される間隔より短い間隔ごとに風力発電装置保守装置1により実行される。その間隔としては、1日が例示される。作業者は、入力装置を介して遠隔監視装置3に設定期間を入力する。その設定期間は、現在日時から次回の短期保守時動作が実行される日時までの期間を示している。
 遠隔監視装置3は、複数のサイトに対応する複数の予測気象情報要求を作成し、インターネット2を介してその複数の予測気象情報要求を気象情報サーバ6に送信する。その複数の予測気象情報要求のうちの現地側遠隔監視装置5-iのサイトに対応する予測気象情報要求は、その設定期間とそのサイトが配置される地域とを示している。遠隔監視装置3は、さらに、その複数の予測気象情報要求に対応する複数の予測気象情報を気象情報サーバ6から収集する。遠隔監視装置3は、その複数の予測気象情報に基づいて、複数の風力発電装置に対応する複数の予測平均風速を算出する(ステップS11)。
 その複数の予測平均風速のうちの風力発電装置8-jに対応する予測平均風速は、風力発電装置8-jがその設定期間に受ける風の風速の平均を示している。遠隔監視装置3は、風力発電装置8-jに現在設定されている制御パラメータを算出するときに想定されていた想定平均風速よりその予測平均風速が小さいかどうかを判別する(ステップS12)。
 遠隔監視装置3は、その想定平均風速よりその予測平均風速が小さいときに(ステップS12、YES)、風力発電装置8-jに現在設定されている定格発電出力23より大きい値をその適切定格発電出力に設定し、風力発電装置8-jに現在設定されている制御ゲインより大きい値をその制御ゲインに設定する(ステップS13)。遠隔監視装置3は、その設定期間とその適切定格発電出力とその制御ゲインとを示す設定情報を風力発電装置8-jに対応づけて現地側遠隔監視装置5-iに送信する。現地側遠隔監視装置5-iは、その設定情報を遠隔監視装置3から受信したときに、その設定期間に、定格発電出力がその適切定格発電出力を示すように、その制御ゲインがその適切制御ゲインを示すように、風力発電装置8-jに対応する制御パラメータを更新する。
 遠隔監視装置3は、その想定平均風速よりその予測平均風速が大きいときに(ステップS12、NO)、風力発電装置8-jに現在設定されている定格発電出力より小さい値を適切定格発電出力に設定し、風力発電装置8-jに現在設定されている制御ゲインより小さい値を適切制御ゲインに設定する(ステップS14)。遠隔監視装置3は、その設定期間とその適切定格発電出力とその制御ゲインとを示す設定情報を風力発電装置8-jに対応づけて現地側遠隔監視装置5-iに送信する。現地側遠隔監視装置5-iは、その設定情報を遠隔監視装置3から受信したときに、その設定期間に、定格発電出力がその適切定格発電出力を示すように、その制御ゲインがその適切制御ゲインを示すように、風力発電装置8-jに対応する制御パラメータを更新する。
 遠隔監視装置3は、その適切定格発電出力とその適切制御ゲインとを風力発電装置8-jに設定した後に、すなわち、その設定期間中に、荷重センサ33により計測された荷重を現地側遠隔監視装置5-iから収集する。遠隔監視装置3は、その荷重が所定の荷重範囲に含まれているかどうかを判別する(ステップS15)。
 遠隔監視装置3は、その荷重がその荷重範囲より小さいときに(ステップS15、荷重小)、風力発電装置8-jに現在設定されている定格発電出力23より大きい値をその適切定格発電出力に設定し、風力発電装置8-jに現在設定されている制御ゲインより大きい値をその制御ゲインに設定する(ステップS13)。遠隔監視装置3は、その設定期間とその適切定格発電出力とその制御ゲインとを示す設定情報を風力発電装置8-jに対応づけて現地側遠隔監視装置5-iに送信する。現地側遠隔監視装置5-iは、その設定情報を遠隔監視装置3から受信したときに、その設定期間に、定格発電出力がその適切定格発電出力を示すように、その制御ゲインがその適切制御ゲインを示すように、風力発電装置8-jに対応する制御パラメータを更新する。
 遠隔監視装置3は、その荷重がその荷重範囲より大きいときに(ステップS15、過負荷)、風力発電装置8-jに現在設定されている定格発電出力より小さい値を適切定格発電出力に設定し、風力発電装置8-jに現在設定されている制御ゲインより小さい値を適切制御ゲインに設定する(ステップS14)。遠隔監視装置3は、その設定期間とその適切定格発電出力とその制御ゲインとを示す設定情報を風力発電装置8-jに対応づけて現地側遠隔監視装置5-iに送信する。現地側遠隔監視装置5-iは、その設定情報を遠隔監視装置3から受信したときに、その設定期間に、定格発電出力がその適切定格発電出力を示すように、その制御ゲインがその適切制御ゲインを示すように、風力発電装置8-jに対応する制御パラメータを更新する。
 遠隔監視装置3は、その荷重がその荷重範囲に含まれるまで(ステップS15、適切)、ステップS13、S14,S15を繰り返して実行する。
 このような短期保守時動作によれば、風力発電装置8-jは、稼働中に風況に基づいて制御パラメータが適切に変更され、その制御パラメータが稼働中に変更されない他の風力発電装置保守装置に比較して、より高効率に発電することができ、風力発電装置8-jの発電量を増大させることができる。
 なお、遠隔監視装置3は、気象情報サーバ6から収集された複数の予測気象情報にさらに基づいてその複数の予測平均風速を算出することもできる。この場合も、その短期保守時動作は、同様にして、その制御パラメータが稼働中に変更されない他の風力発電装置保守装置に比較して、より高効率に発電することができ、風力発電装置8-jの発電量を増大させることができる。
 その翼交換時動作は、所定のタイミングに風力発電装置保守装置1により実行される。そのタイミングとしては、その長期保守時動作が実行されるタイミング、風力発電装置8-jの定期検査が実行されるタイミングが例示される。遠隔監視装置3は、気象予測部52により算出された複数の予測平均風速に基づいて、複数の風力発電装置に対応する複数の適切翼長を算出する。その複数の適切翼長のうちの風力発電装置8-jに対応する適切翼長は、その複数の予測平均風速のうちの風力発電装置8-jに対応する予測平均風速に風力発電装置8-jが受ける風の平均風速が等しい場合で、風力発電装置8-jの複数の翼15の翼長がその適切翼長に等しいときに、風力発電装置8-jが高効率に発電することができるように、算出される。遠隔監視装置3は、風力発電装置8-jに現在取り付けられている複数の翼15の翼長がその適切翼長と異なるときに、遠隔監視装置3の出力装置を制御することにより、風力発電装置8-jにその適切翼長の翼を取り付ける旨のメッセージを出力装置に表示する。
 遠隔監視装置3は、風力発電装置8-jに現在取り付けられている複数の翼15の翼長がその適切翼長と異なるときに、さらに、複数の風力発電装置を複数の翼長と複数の位置とに対応づけるテーブルを参照して、その複数の風力発電装置からその適切翼長に対応する複数の風力発電装置を抽出する。遠隔監視装置3は、その抽出された複数の風力発電装置から翼長が不適切である複数の風力発電装置をさらに抽出する。遠隔監視装置3は、その抽出された風力発電装置から風力発電装置8-jに最も近い場所に設置されている風力発電装置を選択する。遠隔監視装置3は、遠隔監視装置3の出力装置を制御することにより、その選択された風力発電装置の複数の翼を風力発電装置8-jに取り付ける旨のメッセージを出力装置に表示する。作業者は、そのメッセージを閲覧することにより、その選択された風力発電装置の複数の翼を風力発電装置8-jに取り付ける。
 このような翼交換時動作によれば、風力発電装置8-jは、稼働中に風況に基づいて複数の翼15が適切な翼長の翼に交換され、稼働中に翼が交換されない他の風力発電装置に比較して、より高効率に発電することができ、風力発電装置8-jの発電量を増大させることができる。
 風力発電装置8-jの複数の翼15が風力発電装置8-jと異なる他の風力発電装置が備える複数の翼と交換されることによれば、複数の風力発電装置毎に翼長が異なる複数の翼を保管する必要がなく、複数の翼15をより安価に交換することができる。風力発電装置8-jの複数の翼15が風力発電装置8-jに近い他の風力発電装置が備える複数の翼と交換されることによれば、その複数の翼を輸送するコストを低減することができ、複数の翼15をより安価に交換することができる。
 なお、風力発電装置8-jの複数の翼15は、倉庫等に保管されている他の複数の翼と交換することもできる。このような風力発電装置保守方法も、稼働中に風況に基づいて複数の翼15が適切な翼長の翼に交換されることができ、風力発電装置8-jの発電量を増大させることができる。
 なお、その長期保守時動作と短期保守時動作とにおける適切制御パラメータは、その制御パラメータのうちの定格発電出力23と制御ゲインとを更新するものでない他の適切制御パラメータが適用されることもできる。その適切制御パラメータとしては、カットイン風速22と定格発電出力23と定格風速範囲24と制御ゲインとのうちの少なくとも1つのパラメータを更新するものが例示される。その長期保守時動作と短期保守時動作とは、このような適切制御パラメータが適用された場合でも、既述の実施の形態における長期保守時動作と短期保守時動作と同様にして、風力発電装置8-jの発電量を増大させることができる。
 なお、風速センサ31により計測された風速は、他のセンサにより計測される風速に置換されることができる。その風速は、ライダ7により計測される風速、複数の翼15のピッチ角と回転数センサ34により計測される回転数と発電出力センサ35により計測される発電出力とから算出される風速が例示される。本発明による風力発電装置保守方法は、このような風速が適用された場合でも、既述の実施の形態における風力発電装置保守方法と同様にして、風力発電装置8-jの発電量を増大させることができる。
 なお、気象情報サーバ6により情報提供される予測気象情報は、所定期間に所定地域に吹く風の平均風速と異なる他の気象情報を示すこともできる。その気象情報としては、天気図が例示される。このとき、遠隔監視装置3は、その気象情報に基づいてその複数の予測平均風速を算出する。本発明による風力発電装置保守方法は、このような予測気象情報が適用された場合でも、既述の実施の形態における風力発電装置保守方法と同様にして、風力発電装置8-jの発電量を増大させることができる。
 なお、本発明による風力発電装置保守方法における予測平均風速は、他の予測風況に置換されることができる。その予測風況としては、その設定期間に風力発電装置8-jが受ける風の風速の分布を示す予測風速分布が例示される。本発明による風力発電装置保守方法は、このような予測風況が適用された場合でも、既述の実施の形態における風力発電装置保守方法と同様にして、風力発電装置8-jの発電量を増大させることができる。
 なお、本発明による風力発電装置保守方法は、その長期保守時動作と短期保守時動作と翼交換時動作との全部を実行する必要がなく、その動作のうちの少なくとも1つを実行することにより、風力発電装置8-jの発電量を増大させることができる。
 1 :風力発電装置保守装置
 2 :インターネット
 3 :遠隔監視装置
 5-1~5-n:複数の現地側遠隔監視装置
 6 :気象情報サーバ
 7 :ライダ
 8-1~8-m:複数の風力発電装置
 11:タワー
 12:ナセル
 14:主軸
 15:複数の翼
 16:発電機
 17:ヨー駆動装置
 18:ピッチ駆動装置
 19:センサ
 21:パワーカーブ
 22:カットイン風速
 23:定格発電出力
 24:定格風速範囲
 31:風速センサ
 32:風向センサ
 33:荷重センサ
 34:回転数センサ
 35:発電出力センサ
 41:センサ値収集部
 42:風況データ送信部
 43:運転制御部
 44:設定部
 51:風況データ収集部
 52:気象予測部
 53:設定部
 54:交換翼情報算出部

Claims (16)

  1.  風速を発電出力に対応づけるときに利用される制御パラメータを参照して、所定風速の風が吹いているときに、前記発電出力のうちの前記所定風速に対応する所定発電出力が発電されるように、風力発電装置を制御する運転制御部と、
     前記風力発電装置が受ける風の風況が計測されるように、前記風力発電装置が備えるセンサを制御する風況データ収集部と、
     前記風況に基づいて算出された適切制御パラメータに、前記制御パラメータであるカットイン風速と定格発電出力と定格風速範囲と制御ゲインのうちの少なくとも1つを更新する設定部
     とを具備する風力発電装置保守装置。
  2.  請求項1において、
     前記設定部は、さらに、前記風により前記風力発電装置が受ける荷重が計測されるように、前記センサを制御し、
     前記適切制御パラメータは、前記荷重が所定荷重範囲に含まれるように、更新される
     風力発電装置保守装置。
  3.  請求項1~請求項2のいずれかにおいて、
     前記風力発電装置が配置された地域の気象情報を気象情報サーバから収集する気象予測部をさらに具備し、
     前記適切制御パラメータは、前記気象情報にさらに基づいて算出される
     風力発電装置保守装置。
  4.  請求項1~請求項3のいずれかにおいて、
     前記運転制御部は、前記所定風速が定格風速範囲に含まれるときに、定格発電出力が発電されるように、前記風力発電装置を制御し、
     前記定格発電出力は、前記風況に基づいて算出された適切定格発電出力に更新される
     風力発電装置保守装置。
  5.  請求項1~請求項4のいずれかにおいて、
     前記風況は、前記風の平均風速を示す
     風力発電装置保守装置。
  6.  請求項1~請求項5のいずれかにおいて、
     前記風力発電装置が備える翼の翼長が前記風況に基づいて算出された適切翼長と異なるときに、前記適切翼長が出力されるように出力装置を制御する交換翼算出部
     をさらに具備する風力発電装置保守装置。
  7.  請求項6において、
     前記交換翼算出部は、さらに、複数の風力発電装置を複数の翼長に対応づけるテーブルを参照して、前記複数の風力発電装置のうちの前記適切翼長に対応する交換対象風力発電装置が出力されるように、前記出力装置を制御する
     風力発電装置保守装置。
  8.  風速を発電出力に対応づけるときに利用される制御パラメータを参照して、所定風速の風が吹いているときに、前記発電出力のうちの前記所定風速に対応する所定発電出力が発電されるように、風力発電装置を制御するステップと、
     前記風力発電装置が受ける風の風況が計測されるように、前記風力発電装置が備えるセンサを制御するステップと、
     前記風況に基づいて算出された適切制御パラメータに、前記制御パラメータであるカットイン風速と定格発電出力と定格風速範囲と制御ゲインのうちの少なくとも1つを更新するステップ
     とを具備する風力発電装置保守方法。
  9.  請求項8において、
     前記風により前記風力発電装置が受ける荷重が計測されるように、前記センサを制御するステップをさらに具備し、
     前記適切制御パラメータは、前記荷重が所定荷重範囲に含まれるように、算出される
     風力発電装置保守方法。
  10.  請求項8~請求項9のいずれかにおいて、
     前記風力発電装置が配置された地域の気象情報を気象情報サーバから収集するステップをさらに具備し、
     前記適切制御パラメータは、前記気象情報にさらに基づいて算出される
     風力発電装置保守方法。
  11.  請求項8~請求項10のいずれかにおいて、
     前記風力発電装置は、前記所定風速が定格風速範囲に含まれるときに、定格発電出力が発電されるように、前記制御され、
     前記定格発電出力は、前記風況に基づいて算出された適切定格発電出力に更新される
     風力発電装置保守方法。
  12.  請求項8~請求項11のいずれかにおいて、
     前記風況は、前記風の平均風速を示す
     風力発電装置保守方法。
  13.  請求項8~請求項12のいずれかにおいて、
     前記風力発電装置が備える翼の翼長が前記風況に基づいて算出された適切翼長と異なるかどうかを判別するステップと、
     前記翼長が前記適切翼長と異なるときに、前記適切翼長が出力されるように出力装置を制御するステップ
     とをさらに具備する風力発電装置保守方法。
  14.  請求項13において、
     複数の風力発電装置を複数の翼長に対応づけるテーブルを参照して、前記複数の風力発電装置のうちの前記適切翼長に対応する交換対象風力発電装置が出力されるように、前記出力装置を制御するステップ
     をさらに具備する風力発電装置保守方法。
  15.  風力発電装置が受ける風の風況が計測されるように、前記風力発電装置が備えるセンサを制御する風況データ収集部と、
     前記風力発電装置が備える翼の翼長が前記風況に基づいて算出された適切翼長と異なるときに、前記適切翼長が出力されるように出力装置を制御する交換翼算出部
     とを具備する風力発電装置保守装置。
  16.  風力発電装置が受ける風の風況が計測されるように、前記風力発電装置が備えるセンサを制御するステップと、
     前記風力発電装置が備える翼の翼長が前記風況に基づいて算出された適切翼長と異なるかどうかを判別するステップと、
     前記翼長が前記適切翼長と異なるときに、前記適切翼長が出力されるように出力装置を制御するステップ
     とを具備する風力発電装置保守方法。
PCT/JP2012/066213 2011-06-29 2012-06-26 風力発電装置保守装置および風力発電装置保守方法 WO2013002194A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12804125.8A EP2728176A1 (en) 2011-06-29 2012-06-26 Maintenance device for wind power generator and maintenance method for wind power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011144475A JP2013011233A (ja) 2011-06-29 2011-06-29 風力発電装置保守装置および風力発電装置保守方法
JP2011-144475 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013002194A1 true WO2013002194A1 (ja) 2013-01-03

Family

ID=47424086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066213 WO2013002194A1 (ja) 2011-06-29 2012-06-26 風力発電装置保守装置および風力発電装置保守方法

Country Status (3)

Country Link
EP (1) EP2728176A1 (ja)
JP (1) JP2013011233A (ja)
WO (1) WO2013002194A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104806448A (zh) * 2015-05-15 2015-07-29 长沙理工大学 基于风速预测的风力发电机再切入控制方法
CN105781884A (zh) * 2016-03-15 2016-07-20 河海大学 一种基于风机优化调控的风电场输出功率平滑控制方法
EP2961030A4 (en) * 2013-02-19 2016-11-02 Nec Corp POWER FLOW CONTROL SYSTEM AND ENERGY FLOW MANAGEMENT PROCESS
US9606234B2 (en) 2013-10-18 2017-03-28 Tramontane Technologies, Inc. Amplified optical circuit
CN107507097A (zh) * 2017-07-03 2017-12-22 上海电力学院 一种风电功率短期预测方法
CN114648909A (zh) * 2022-03-11 2022-06-21 南京工程学院 一种风力发电预测装置及其预测方法
US11850251B2 (en) 2019-06-21 2023-12-26 The Population Council, Inc. System for providing birth control

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379268B1 (ko) 2013-01-11 2014-03-28 삼성중공업 주식회사 풍속 보상 운전이 가능한 풍력 발전 시스템
JP6010485B2 (ja) * 2013-03-04 2016-10-19 株式会社日立パワーソリューションズ 風力発電制御装置及び風力発電制御方法
US9388792B2 (en) 2013-03-15 2016-07-12 Frontier Wind, Llc Distributed control system
JP2018178900A (ja) * 2017-04-18 2018-11-15 株式会社日立製作所 風力発電システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06511133A (ja) * 1991-09-19 1994-12-08 ユーエス・ウィンドパワー・インコーポレーテッド 変速風力タービン用速度制御装置
JP2003083229A (ja) * 2001-09-06 2003-03-19 Mitsubishi Heavy Ind Ltd 風力発電制御装置およびその制御方法
JP2003206846A (ja) * 2002-01-10 2003-07-25 Mitsubishi Heavy Ind Ltd 径方向伸縮式風車及びその運転方法
JP2005155509A (ja) * 2003-11-27 2005-06-16 Jfe Engineering Kk 風力発電制御方法及び装置、風力発電装置並びに風力発電制御方法のプログラム
US7569945B2 (en) 2006-03-16 2009-08-04 Vestas Wind Systems A/S Method and control system for reducing the fatigue loads in the components of a wind turbine subjected to asymmetrical loading of the rotor plane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06511133A (ja) * 1991-09-19 1994-12-08 ユーエス・ウィンドパワー・インコーポレーテッド 変速風力タービン用速度制御装置
JP2003083229A (ja) * 2001-09-06 2003-03-19 Mitsubishi Heavy Ind Ltd 風力発電制御装置およびその制御方法
JP2003206846A (ja) * 2002-01-10 2003-07-25 Mitsubishi Heavy Ind Ltd 径方向伸縮式風車及びその運転方法
JP2005155509A (ja) * 2003-11-27 2005-06-16 Jfe Engineering Kk 風力発電制御方法及び装置、風力発電装置並びに風力発電制御方法のプログラム
US7569945B2 (en) 2006-03-16 2009-08-04 Vestas Wind Systems A/S Method and control system for reducing the fatigue loads in the components of a wind turbine subjected to asymmetrical loading of the rotor plane

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2961030A4 (en) * 2013-02-19 2016-11-02 Nec Corp POWER FLOW CONTROL SYSTEM AND ENERGY FLOW MANAGEMENT PROCESS
US10069302B2 (en) 2013-02-19 2018-09-04 Nec Corporation Power flow control system and power flow control method
US9606234B2 (en) 2013-10-18 2017-03-28 Tramontane Technologies, Inc. Amplified optical circuit
CN104806448A (zh) * 2015-05-15 2015-07-29 长沙理工大学 基于风速预测的风力发电机再切入控制方法
CN105781884A (zh) * 2016-03-15 2016-07-20 河海大学 一种基于风机优化调控的风电场输出功率平滑控制方法
CN105781884B (zh) * 2016-03-15 2018-05-11 河海大学 一种基于风机优化调控的风电场输出功率平滑控制方法
CN107507097A (zh) * 2017-07-03 2017-12-22 上海电力学院 一种风电功率短期预测方法
US11850251B2 (en) 2019-06-21 2023-12-26 The Population Council, Inc. System for providing birth control
CN114648909A (zh) * 2022-03-11 2022-06-21 南京工程学院 一种风力发电预测装置及其预测方法

Also Published As

Publication number Publication date
EP2728176A1 (en) 2014-05-07
JP2013011233A (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2013002194A1 (ja) 風力発電装置保守装置および風力発電装置保守方法
EP3465359B1 (en) System and method for controlling a dynamic system, in particular a wind turbine
US10605228B2 (en) Method for controlling operation of a wind turbine
AU2015371617B2 (en) Optimal wind farm operation
EP3317526B1 (en) Methods and systems for generating wind turbine control schedules
US10928816B2 (en) Methods and systems for generating wind turbine control schedules
DK2469084T3 (en) System and method for controlling the wind turbine energy output
JP6674031B2 (ja) 風力発電装置の状態監視装置及びそれを有する状態監視システム並びに風力発電装置の状態監視方法
CN107810324B (zh) 用于生成风力涡轮机控制时间表的方法和系统
US20140288855A1 (en) Temporary Uprating of Wind Turbines to Maximize Power Output
EP2290231B1 (en) System and method for updating formula in wind turbines controllers
EP2657517B1 (en) System and method of wind turbine control
US11022100B2 (en) System and method for controlling wind turbines
CN107810323B (zh) 用于生成风力涡轮机控制安排的方法和系统
US20180187649A1 (en) Methods and systems for generating wind turbine control schedules
US11428208B2 (en) Methods and systems for generating wind turbine control schedules
AU2008358216A1 (en) Device and method for monitoring dynamic characteristics of windmill
US10746160B2 (en) Methods and systems for generating wind turbine control schedules
TWI729349B (zh) 風力發電裝置及風力發電系統
JP2021161932A (ja) 風力発電装置の発電量予測装置
JP5325348B1 (ja) 風車制御装置及びその方法並びに風力発電システム
CN114810506A (zh) 风力涡轮功率系统的基于里程计的控制
JP5245017B1 (ja) 風力発電システム及びその制御方法
JP6811150B2 (ja) ウィンドファーム制御システム及びウィンドファームの制御方法
JP2018109369A (ja) ウィンドファーム及びその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012804125

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE