WO2012176969A1 - 해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치 - Google Patents

해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치 Download PDF

Info

Publication number
WO2012176969A1
WO2012176969A1 PCT/KR2012/001904 KR2012001904W WO2012176969A1 WO 2012176969 A1 WO2012176969 A1 WO 2012176969A1 KR 2012001904 W KR2012001904 W KR 2012001904W WO 2012176969 A1 WO2012176969 A1 WO 2012176969A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
altitude
detection
target
azimuth
Prior art date
Application number
PCT/KR2012/001904
Other languages
English (en)
French (fr)
Inventor
조득재
서상현
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to US14/125,358 priority Critical patent/US9223014B2/en
Priority to CN201280028812.6A priority patent/CN103597372B/zh
Publication of WO2012176969A1 publication Critical patent/WO2012176969A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/34Adaptation for use in or on ships, submarines, buoys or torpedoes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/917Radar or analogous systems specially adapted for specific applications for traffic control for marine craft or other waterborne vessels

Definitions

  • the present invention relates to a three-dimensional radar apparatus capable of enabling port and anti-aircraft surveillance using a marine radar.
  • VTS Vessel Traffic Service
  • the port radar is used to identify and track the system.
  • the VTS 200 is in service using the CCTV 301, the VHF 201 communication, etc. in order to confirm the control and clearness of the ship in operation in the radar detection zone. ), But no equipment has been implemented to acquire any information about aircraft operating in port airspace.
  • the current status of the domestic air defense system is based on coastal and air traffic control, medium and long-range airspace surveillance, and is suitable for manned aircraft and missile defense. No system has been developed to monitor unmanned aerial vehicles.
  • the international port control radar makers are mainly NORCON and ATRAS, and they are only available for installation and operation at sea VTS Sites.
  • Lockheed Martin's AN / TPS-77 (500) operated by the US military as shown in Figure 2 is a mobile long-range air defense system, using the L-Band to monitor the monitoring radius of up to 460Km, up to 30Km, this equipment is currently in Korea It is operated in more than 20 countries around the world, including high-priced equipment with a set price of nearly 15 billion won.
  • the TRML-3D radar system 600 which is a mobile monitoring system developed by EADS of France as shown in FIG. 3, is known to exhibit high detection capability.
  • the present invention provides an advanced low altitude vehicle surveillance function and a marine / air defense system to protect the main facilities of the port. It is an object of the present invention to provide a three-dimensional radar device using a combination of relatively inexpensive marine radars that can be used to monitor functions.
  • the bearing detection radar module provided with at least two or more direction detection radar for firing radio waves for the direction detection of anti-air and sea targets and arranged at different distances from each other in azimuth measurement angle and vertically;
  • a bearing detecting device comprising a bearing rotating module for supporting and rotating the bearing radar;
  • An altitude detection device comprising an altitude detection radar disposed vertically to emit radio waves for the altitude detection of the target, and an altitude rotation module for supporting and rotating the altitude detection radar;
  • It includes; a control device for controlling the orientation detection device and the altitude detection device,
  • the control device includes a commercial radar, characterized in that when the orientation detection device detects the orientation of the target, the altitude detection radar is positioned in the orientation of the target to measure the altitude of the target through an altitude rotation module. It is achieved by a three-dimensional radar device using.
  • the direction detection radar for firing radio waves for the direction detection of the air and sea targets
  • the tilting device for adjusting the horizontal angle of the direction detection radar
  • the direction detection radar and tilting device A direction detecting device comprising a horizontal rotating module to rotate;
  • An altitude detection device comprising an altitude detection radar disposed vertically to emit radio waves for the altitude detection of the target, and an altitude rotation module for supporting and rotating the altitude detection radar;
  • It includes; a control device for controlling the orientation detection device and the altitude detection device,
  • the control device includes a commercial radar, characterized in that when the orientation detection device detects the orientation of the target, the altitude detection radar is positioned in the orientation of the target to measure the altitude of the target through an altitude rotation module. It is also achieved by a three-dimensional radar device using.
  • the propagation widths of the azimuth detection radar and the altitude detection radar are 15 ° or more and less than 30 °, or in particular, the same as those of a commercial ship radar specification of 22 °.
  • the present invention is equipped with the azimuth detecting device (40, 40 ') and the altitude detecting device 70 in the marine facility, and the information of the air and sea targets to interact with other marine facilities
  • the communication device is further provided, characterized in that for sharing the information of the air defense and the sea target.
  • synergies are expected to be generated through the linkage of related industries.
  • VTS Vessel Traffic Service
  • Figure 2 is Lockheed Martin's AN / TPS-77
  • FIG. 4 is a view showing an example of use of a three-dimensional radar apparatus using a commercial radar according to the present invention
  • FIG. 5 is a block diagram of a three-dimensional radar apparatus using a commercial radar according to the present invention.
  • FIG. 6 is a configuration diagram of an orientation detecting device according to an embodiment of the present invention.
  • FIG. 7 is a block diagram of an altitude detection apparatus according to an embodiment of the present invention.
  • FIG. 8 is a configuration diagram of an orientation detecting device according to another embodiment of the present invention.
  • FIG. 9 is a view showing a tilt angle of the azimuth radar of FIG. 8.
  • the three-dimensional radar apparatus using a commercial radar provided with at least two azimuth detection radar 10 for emitting radio waves for azimuth detection of anti-air and sea targets different angle measurement angle and vertical
  • a bearing detection device 40 comprising a bearing detection radar module 20 disposed at intervals between the bearing detection radar module 20 and a bearing rotation module 30 for supporting and rotating the bearing detection radar 10;
  • An altitude detection device 70 comprising an altitude detection radar 50 disposed vertically while firing radio waves for the altitude detection of the target, and an altitude rotation module 60 supporting and rotating the altitude detection radar 50. )Wow;
  • control device 90 for controlling the orientation detection device 40 and the altitude detection device 70,
  • the control device 90 detects the direction of the target by the direction detecting device 40 so that the altitude detecting radar 50 measures the height of the target through the altitude rotation module 60. And positioning control.
  • the orientation detection radar 10 for emitting radio waves for the orientation detection of the air defense and sea target, and the horizontal angle of the orientation detection radar 10
  • An altitude detection device 70 comprising an altitude detection radar 50 disposed vertically while firing radio waves for the altitude detection of the target, and an altitude rotation module 60 supporting and rotating the altitude detection radar 50. )Wow;
  • a control device 90 for controlling the direction detecting device 40 'and the altitude detecting device 70.
  • the controller 90 is azimuth of the target so that the altitude detection radar 50 measures the altitude of the target through the altitude rotation module 60 when the orientation detection device 40 'detects the orientation of the target. It characterized in that it comprises a control located in.
  • the present invention comprises a direction detecting device, an altitude detecting device, a control device and a communication device.
  • the bearing detection device is divided into two types.
  • One is provided with at least two azimuth detection radar 10 as shown in Figure 6 and arranged at a different distance from each other azimuth measurement angle and vertically and the azimuth detection radar 10, It is a bearing detecting device 40 composed of a bearing rotating module 30 for supporting and rotating,
  • the other is to rotate the orientation detection radar 10, the tilting device 80 for adjusting the horizontal angle of the orientation detection radar 10, the orientation detection radar 10 and the tilting device 80 as shown in FIG. It is a direction detecting device 40 'composed of a horizontal rotation module 87.
  • the former direction detecting device 40 includes three direction detecting radars 10 and one direction detecting radar module 20 which is installed at different angles and vertically spaced as shown in FIG. 6. It consists of a bearing rotation module 30 for supporting and rotating the orientation detection radar 10, the plurality of orientation detection radar 10 of the orientation detection radar module 20 is the same configuration, the orientation rotation module 30 ) Is a bracket (31,32,33) for supporting each of the direction detection radar 10, and the motor (To rotate the plurality of direction detection radar 10 at the same time to fix the bracket (31,32,33) Rotation shaft 35 is connected to the (not shown).
  • the former orientation detection device 40 is installed on the lower side of the orientation detection radar 10 is tilted 24 ° vertically relative to the horizontal line, the orientation detection radar 10 provided on the upper side is 4 based on the vertical line It is installed inclined, the orientation detection radar 10 inclined as described above on the lower side is suitable for detecting the orientation of the ship and wigship, the orientation detection radar 10 inclined as shown in Figure 6 on the middle and upper side is an aircraft It is suitable for detecting the orientation of the back. Therefore, since the former direction detecting device 40 detects the rotating angle range as shown in FIG. 6 at a time, the detection speed is faster than the direction detecting device 40 'which will be described later.
  • the latter orientation detecting device 40 ' is provided with one orientation detecting radar 10 as shown in FIG. 8, and is provided with a tilting device 80 so as to change the horizontal angle of the orientation detecting radar 10. As shown in FIG. And, it comprises a horizontal rotation module 87 for rotating the direction detection radar 10 and the tilting device 80 at the same time.
  • the tilting device 80 includes a main body 84 having a receiving portion 83 formed thereon, a support 82 supporting and fixing the orientation detection radar 10, and a support 82 for changing a horizontal angle of the support 82. It includes a tilting module (not shown) for adjusting the angle of the connecting shaft 82 and the support 82 to connect the main body 84.
  • This tilting device 80 is a conventional one for adjusting the angle.
  • the horizontal rotation module 87 simultaneously rotates the orientation detection radar 10 mounted to the tilting device 80 and the tilting device 80. Accordingly, the azimuth detection radar 10 may be changed to any one angle selected from the angles A, B, and C of FIG. 9 through the tilting device 80. In addition, the horizontal rotation module 87 rotates the orientation detection radar 10 in a state in which the orientation detection radar 10 is changed to any one selected from the angles of A, B, and C, or the angle is changed. The direction detection radar 10 is rotated. Although the orientation detecting device 40 'of this configuration may be slower in the direction detecting speed than the electronic direction detecting device 40, it is more efficient than the electronic direction detecting device 40 when detecting only the direction of the target located at a specific angle. This has a high advantage.
  • the altitude detecting device 70 includes an altitude detecting radar 50 vertically arranged to emit radio waves for detecting an altitude of a target, and an altitude rotating module 60 supporting and rotating the altitude detecting radar 50. To detect the altitude of the target, such as an aircraft.
  • the azimuth detection radar 10 of the azimuth detection devices 40 and 40 'and the altitude detection radar 50 of the altitude detection device 70 detect high air and seas, and as shown in FIGS. Rather than using an air defense monitoring system of about 15 to 50 billion won, it is a general marine radar mounted on a vessel having a radio wave width of 22 ° which is relatively inexpensive (approximately 20 to 30 million won). Therefore, the present invention can be installed as shown in Figure 6 using the radar for ships can detect the target of the air and sea area even at low cost, it is possible to build an integrated air surveillance system through the construction and linkage of the air surveillance network of major areas It is possible and inexpensive maintenance is possible.
  • such a direction detection radar 10 includes an antenna 11 and a rotating portion 12 for rotating the antenna 11, the direction detection radar 10 in the present invention, the antenna 11 is a rotating portion 12 It is fixed so as not to rotate by, and the altitude detection radar 50 allows the antenna 51 to be rotated by the rotation unit 52.
  • the control device 90 is configured to control the azimuth detecting device 40, 40 ′ and the altitude detecting device 70.
  • an altitude rotating module 60 is provided.
  • the altitude detection radar 50 includes a control for positioning in the orientation of the target to measure the altitude of the target, the configuration is as shown in FIG.
  • the controller 90 detects the orientation of the target while the orientation detection radar 10 is rotated by the orientation rotation module 30, the orientation data detected by the orientation radar controller 91 is the radar processing server 94. ) And use the transmitted bearing data in the monitoring operation room 95 and at the same time transmit the bearing data to the radar local controller 93.
  • the advanced rotation module 60 rotates the altitude detecting radar 50 in the direction of the target by the radar local controller 93, the antenna 51 of the altitude detecting radar 50 is rotated by the rotating unit 52. Detect the altitude of the target.
  • the present invention is equipped with the azimuth detecting device (40, 40 ') and the altitude detecting device 70 in the marine facilities, and further provided with a communication device for interacting with the other marine facilities information of the air defense and the sea target It is desirable to share the information of the targets and maritime targets, which is for the establishment of an integrated air surveillance system through the establishment and interlocking of the air surveillance network of the main area.
  • a major facility such as a refinery, a VTS (Vessel Traffic Service) center that requires security
  • the communication device may be a VHF communication.
  • the present invention is used for the altitude detection and the orientation detection by changing the installation angle of the commercial ship radar, and anti-aircraft surveillance is possible at a lower cost than an expensive air defense monitoring system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

본 발명은 VTS(Vessel Traffic Service)의 운영적인 한계성을 극복하기 위하여 기존의 항만 내의 선박만을 관리하는 시스템보다 진보된 저고도 비행체의 감시 기능과, 항만의 주요시설을 보호하기 위한 해상/대공 감시 기능이 가능하도록 범용화 되어 있는 비교적 저가의 선박용 레이더의 조합을 이용한 3차원 레이더 장치의 제공을 목적으로 한다.

Description

해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치
본 발명은 선박용 레이더를 이용하여 항만 및 대공 감시를 가능하게 할 수 있는 3차원 레이더 장치에 관한 것이다.
특정 해역 내의 입/출항 선박에 대한 속력, 침로, 이동방향, 위치의 지정 등 전반적인 교통계획을 수립, 조정하고 필요한 통제를 하기 위하여 운용되는 VTS(Vessel Traffic Service, 해상교통관제시스템)는 항만 내의 선박을 확인 및 추적하기 위한 장비로 항만 레이더(Radar)를 사용한다.
VTS(200)는 도 1에 도시한 바와 같이 레이더(Radar) 탐지 불능지역에 운항중인 선박의 통제 및 선명을 확인하기 위하여 CCTV(301), VHF(201) 통신 등을 사용하여 항행중인 선박(400)의 안전을 통제하지만, 항만 영공을 운항중인 항공기에 대해서는 어떠한 정보도 획득할 수 있는 장비가 구현되지 못한 실정이다.
또한, 항만으로 접근하는 항공기의 레이더 잔상으로 인하여 시스템에 에러(Error)가 발생하며, 이 때문에 적절한 시기에 항만관제가 이루어지지 않아 민간 선박에 피해가 예상되기도 하지만, 항공관제를 동시에 수행하기 위해서는 막대한 비용이 소요되는 항공용 레이더를 설치하여야 가능한 실정이다.
한편, 국내·외 관련 기술의 현황 중 국내 현황은 현재 운용중인 대공감시시스템이 연안 및 항공관제, 중·장거리 영공감시 위주로 구축되어 있으므로 유인항공기 및 미사일 방어에 적합하며, 근·단거리 영공의 소형의 무인비행체를 감시할 수 있는 시스템은 개발된 바 없다.
레이더 영상신호 처리기술 및 데이터 처리 기술과 같은 기반기술은 국내 주요 방위산업체를 중심으로 비약적인 발전을 하였으나, 아직 선진국과 비교하여 초보적인 수준이며 국내에서 보유하고 있는 대부분의 레이더 기술은 군사 보안기술로 분류되어 민수용 산업화가 이루어지지 못하는 실정이다.
또한 영공을 관제하는 레이더는 주로 군사용도의 목적으로 사용되어지므로 정밀한 데이터가 필요하고, 관제의 범위도 수백 킬로미터까지 광범위하게 사용되어지므로 협대역의 영공관제가 필요한 지역에서 사용하기가 곤란하며 가격 또한 수십억 원에서 수백억 원을 호가하는 고가의 장비이다.
국내·외 관련 기술의 현황 중 국외 현황은 세계 항만관제 Radar의 제작사는 주로 NORCON, ATRAS社 이며, 국내 VTS Site에 설치 운용 중이나 해상의 선박관제만 가능하다.
도 2와 같은 미군이 운용하는 록히드 마틴社의 AN/TPS-77(500)은 이동식 장거리 대공 감시 시스템이며, L-Band를 사용하여 감시반경 460Km, 최고 30Km 상공을 감시하며, 이 장비는 현재 한국을 비롯한 세계 20여개 국가에서 운용중으로, 한 세트 가격이 약 150억 원에 육박하는 고가 장비이다.
또한, 도 3과 같은 프랑스의 EADS社에서 개발한 이동식 감시 시스템인 TRML-3D 레이더 시스템(600)이 높은 탐지능력을 발휘하는 것으로 알려져 있다.
해외 선진업체(주로 미국, 프랑스, 일본 등)는 이미 다양한 용도의 대공 감시 레이더 시스템이 개발되어 군용장비로 적용되고 있다.
본 발명은 상기와 같이 VTS(Vessel Traffic Service)의 운영적인 한계성을 극복하기 위하여 기존의 항만 내의 선박만을 관리하는 시스템보다 진보된 저고도 비행체의 감시 기능과, 항만의 주요시설을 보호하기 위한 해상/대공 감시 기능이 가능하도록 범용화 되어 있는 비교적 저가의 선박용 레이더의 조합을 이용한 3차원 레이더 장치의 제공을 목적으로 한다.
상기와 같은 본 발명의 목적은, 대공 및 해상 목표물의 방위탐지를 위해 전파를 발사하는 방위탐지 레이더를 적어도 두 개 이상 구비하여 서로 다른 방위 측정 각도 및 수직으로 간격을 두고 배치한 방위탐지 레이더 모듈과, 상기 방위탐지 레이더를 지지 및 회전시키는 방위용 회전모듈로 구성되는 방위탐지 장치와;
상기 목표물의 고도탐지를 위해 전파를 발사하며 수직으로 배치된 고도탐지 레이더와, 상기 고도탐지 레이더를 지지 및 회전시키는 고도용 회전모듈로 구성되는 고도탐지 장치와;
상기 방위탐지 장치 및 고도탐지 장치를 제어하는 제어장치;를 포함하며,
상기 제어장치는 상기 방위탐지 장치가 목표물의 방위를 탐지하면 고도용 회전모듈을 통해 상기 고도탐지 레이더가 상기 목표물의 고도를 측정하도록 상기 목표물의 방위에 위치시키는 제어를 포함하는 것을 특징으로 하는 상용 레이더를 이용한 3차원 레이더 장치에 의해 달성된다.
또한, 상기와 같은 본 발명의 목적은, 대공 및 해상 목표물의 방위탐지를 위해 전파를 발사하는 방위탐지 레이더와, 상기 방위탐지 레이더의 수평각을 조절하는 틸팅장치와, 상기 방위탐지 레이더 및 틸팅장치를 회전시키는 수평회전모듈로 구성되는 방위탐지 장치와;
상기 목표물의 고도탐지를 위해 전파를 발사하며 수직으로 배치된 고도탐지 레이더와, 상기 고도탐지 레이더를 지지 및 회전시키는 고도용 회전모듈로 구성되는 고도탐지 장치와;
상기 방위탐지 장치 및 고도탐지 장치를 제어하는 제어장치;를 포함하며,
상기 제어장치는 상기 방위탐지 장치가 목표물의 방위를 탐지하면 고도용 회전모듈을 통해 상기 고도탐지 레이더가 상기 목표물의 고도를 측정하도록 상기 목표물의 방위에 위치시키는 제어를 포함하는 것을 특징으로 하는 상용 레이더를 이용한 3차원 레이더 장치에 의해서도 달성된다.
여기서, 상기 방위탐지 레이더와 고도탐지 레이더의 전파폭은 15°이상 30°미만이거나, 특히 22°의 상용 선박용 레이더 스펙과 동일한 것을 특징으로 한다.
또한, 본 발명에 있어서, 한편, 본 발명은 상기 방위탐지 장치(40,40')와 고도탐지 장치(70)를 해상시설물에 장착하고, 대공과 해상 목표물의 정보를 타 해상시설물과 상호 교류하는 통신장치는 더 구비하여 대공과 해상 목표물의 정보를 공유하는 것을 특징으로 한다.
본 발명에 의하면, 주요 항만 및 연악해역의 긴급 대응관리 및 항만 보안 체계의 실현이 가능하다.
또한 주요지역의 대공감시망 구축 및 연동을 통한 통합된 대공감시체계 구축이 가능하다.
또한 저가의 상용 레이더를 사용한 시스템 구현으로 저렴한 유지보수가 가능하다.
또한 관련 산업의 연계를 통한 시너지 효과 창출이 기대된다.
도 1은 종래의 VTS(Vessel Traffic Service) 시스템의 개략도,
도 2는 록히드 마틴社의 AN/TPS-77,
도 3은 프랑스 EADS社의 TRML-3D,
도 4는 본 발명에 따른 상용 레이더를 이용한 3차원 레이더 장치의 사용예를 나타낸 도면,
도 5는 본 발명에 따른 상용 레이더를 이용한 3차원 레이더 장치의 구성도,
도 6은 본 발명의 실시예에 따른 방위탐지 장치의 구성도,
도 7은 본 발명의 실시예에 따른 고도탐지 장치의 구성도,
도 8은 본 발명의 다른 실시예에 따른 방위탐지 장치의 구성도,
도 9는 도 8의 방위탐지 레이더의 틸팅각을 나타낸 도면.
<도면의 주요부분에 대한 부호의 표시>
10: 방위탐지 레이더 11: 안테나
12: 회전부 20: 방위탐지 레이더 모듈
30: 방위용 회전모듈 40,40': 방위탐지 장치
50: 고도탐지 레이더 60: 고도용 회전모듈
70: 고도탐지 장치 80: 틸팅장치
90: 제어장치
본 발명의 실시예에 따른 상용 레이더를 이용한 3차원 레이더 장치는, 대공 및 해상 목표물의 방위탐지를 위해 전파를 발사하는 방위탐지 레이더(10)를 적어도 두 개 이상 구비하여 서로 다른 방위 측정 각도 및 수직으로 간격을 두고 배치한 방위탐지 레이더 모듈(20)과, 상기 방위탐지 레이더(10)를 지지 및 회전시키는 방위용 회전모듈(30)로 구성되는 방위탐지 장치(40)와;
상기 목표물의 고도탐지를 위해 전파를 발사하며 수직으로 배치된 고도탐지 레이더(50)와, 상기 고도탐지 레이더(50)를 지지 및 회전시키는 고도용 회전모듈(60)로 구성되는 고도탐지 장치(70)와;
상기 방위탐지 장치(40) 및 고도탐지 장치(70)를 제어하는 제어장치(90);를 포함하며,
상기 제어장치(90)는 상기 방위탐지 장치(40)가 목표물의 방위를 탐지하면 고도용 회전모듈(60)을 통해 상기 고도탐지 레이더(50)가 상기 목표물의 고도를 측정하도록 상기 목표물의 방위에 위치시키는 제어를 포함하는 것을 특징으로 한다.
또한, 본 발명의 다른 실시예에 따른 상용 레이더를 이용한 3차원 레이더 장치는, 대공 및 해상 목표물의 방위탐지를 위해 전파를 발사하는 방위탐지 레이더(10)와, 상기 방위탐지 레이더(10)의 수평각을 조절하는 틸팅장치(80)와, 상기 방위탐지 레이더(10) 및 틸팅장치(80)를 회전시키는 수평회전모듈(87)로 구성되는 방위탐지 장치(40')와; 상기 목표물의 고도탐지를 위해 전파를 발사하며 수직으로 배치된 고도탐지 레이더(50)와, 상기 고도탐지 레이더(50)를 지지 및 회전시키는 고도용 회전모듈(60)로 구성되는 고도탐지 장치(70)와; 상기 방위탐지 장치(40') 및 고도탐지 장치(70)를 제어하는 제어장치(90);를 포함하며,
상기 제어장치(90)는 상기 방위탐지 장치(40')가 목표물의 방위를 탐지하면 고도용 회전모듈(60)을 통해 상기 고도탐지 레이더(50)가 상기 목표물의 고도를 측정하도록 상기 목표물의 방위에 위치시키는 제어를 포함하는 것을 특징으로 한다.
이하, 본 발명의 양호한 실시예를 도시한 첨부 도면들을 참조하여 상세히 설명한다.
본 발명은 방위탐지 장치와 고도탐지 장치와 제어장치 및 통신장치를 포함하여 구성된다. 위 구성 중 방위탐지 장치는 두 가지 타입으로 나뉘어지는데,
그 하나는 도 6과 같이 방위탐지 레이더(10)를 적어도 두 개 이상 구비하여 서로 다른 방위 측정 각도 및 수직으로 간격을 두고 배치한 방위탐지 레이더 모듈(20)과, 상기 방위탐지 레이더(10)를 지지 및 회전시키는 방위용 회전모듈(30)로 구성되는 방위탐지 장치(40)이고,
다른 하나는 도 7과 같이 방위탐지 레이더(10)와, 상기 방위탐지 레이더(10)의 수평각을 조절하는 틸팅장치(80)와, 상기 방위탐지 레이더(10) 및 틸팅장치(80)를 회전시키는 수평회전모듈(87)로 구성되는 방위탐지 장치(40')이다.
전자의 방위탐지 장치(40)는 방위탐지 레이더(10)를 3개 구비하고 도 6과 같이 서로 다른 방위 측정 각도 및 수직으로 간격을 두고 설치하여 이루어진 하나의 방위탐지 레이더 모듈(20)과, 상기 방위탐지 레이더(10)를 지지 및 회전시키는 방위용 회전모듈(30)로 구성되는데, 방위탐지 레이더 모듈(20)의 다수개의 방위탐지 레이더(10)는 각각 동일한 구성이고, 방위용 회전모듈(30)은 각각의 방위탐지 레이더(10)를 지지하는 브라켓(31,32,33)과, 상기 브라켓(31,32,33)을 고정하며 다수의 방위탐지 레이더(10)를 동시에 회전시키도록 모터(미도시)와 연결된 회전축(35)을 포함한다. 즉, 전자의 방위탐지 장치(40)는 하부측에 설치된 방위탐지 레이더(10)는 수평선을 기준으로 수직으로 24°기울여 설치되고, 상부측에 설치된 방위탐지 레이더(10)는 수직선을 기준으로 4°기울여 설치되는데, 하부측에 상기와 같이 기울여 설치된 방위탐지 레이더(10)는 선박 및 위그선의 방위를 탐지하는데 적당하고, 중간 및 상부측에 도 6과 같이 기울여 설치된 방위탐지 레이더(10)는 항공기 등의 방위를 탐지하는데 적당하다. 따라서 전자의 방위탐지 장치(40)는 한번에 도 6과 같은 각도 범위를 회전하면서 탐지하기 때문에 후술하는 방위탐지 장치(40')에 비해 탐지 속도가 빠르다.
후자의 방위탐지 장치(40')는 도 8에 도시한 바와 같이 방위탐지 레이더(10)가 1개 설치되고, 이 방위탐지 레이더(10)의 수평각도를 변화시키도록 틸팅장치(80)를 구비하며, 방위탐지 레이더(10)와 틸팅장치(80)를 동시에 회전시키는 수평회전모듈(87)을 포함하여 구성된다. 틸팅장치(80)는 수용부(83)가 형성된 본체(84)와, 방위탐지 레이더(10)를 받침하여 고정하는 지지대(82)와, 상기 지지대(82)의 수평각 변화를 위해 지지대(82)를 본체(84)에 연결하는 연결축(82) 및 지지대(82)의 각도를 조절하는 틸팅모듈(미도시)를 포함한다. 이와 같은 틸팅장치(80)는 각도를 조절하는 통상적인 것이다. 그리고 수평회전모듈(87)은 틸팅장치(80)와 틸팅장치(80)에 장착된 방위탐지 레이더(10)를 동시에 회전시킨다. 따라서, 방위탐지 레이더(10)는 틸팅장치(80)를 통해 도 9의 A,B,C의 각도 중 선택되는 어느 하나의 각도로 변화될 수 있다. 그리고 수평회전모듈(87)은 방위탐지 레이더(10)가 A,B,C의 각도 중 선택되는 어느 하나의 각도로 변화된 상태에서 방위탐지 레이더(10)를 회전시키거나, 각도가 변화되는 과정에서도 방위탐지 레이더(10)를 회전시킨다. 이러한 구성의 방위탐지 장치(40')는 비록 전자의 방위탐지 장치(40) 보다 방위 탐지 속도가 느릴 수 있으나, 특정 각도에 위치한 목표물의 방위만을 탐지할 때에는 전자의 방위탐지 장치(40) 보다 효율성이 높은 장점이 있다.
고도탐지 장치(70)는 목표물의 고도탐지를 위해 전파를 발사하며 수직으로 배치된 고도탐지 레이더(50)와, 상기 고도탐지 레이더(50)를 지지 및 회전시키는 고도용 회전모듈(60)로 구성되어, 항공기 등과 같은 목표물의 고도를 탐지한다.
한편, 방위탐지 장치(40,40')의 방위탐지 레이더(10) 및 고도탐지 장치(70)의 고도탐지 레이더(50)는 대공 및 해상을 감지하는데 있어, 도 2와 도 3과 같은 고가(대략 150 ~ 500억원)의 대공 감시 시스템을 사용하는 것이 아닌 비교적 저렴(대략 2 ~ 3천만원)한 전파폭이 22°인 선박에 장착되는 통상의 선박용 레이더이다. 따라서, 본 발명은 선박용 레이더를 이용하여 도 6과 같이 설치함으로써 저렴한 비용으로도 대공 및 해상 지역의 목표물을 감지할 수 있어, 주요지역의 대공감시망 구축 및 연동을 통한 통합된 대공감시체계의 구축이 가능하며, 저렴한 유지보수가 가능한 것이다. 한편, 이러한 방위탐지 레이더(10)는 안테나(11)와 안테나(11)를 회전시키는 회전부(12)를 포함하는데, 본 발명에서의 방위탐지 레이더(10)는 안테나(11)가 회전부(12)에 의해 회전되지 않도록 고정하고, 고도탐지 레이더(50)는 안테나(51)가 회전부(52)에 의해 회전되도록 한다.
제어장치(90)는 상기 방위탐지 장치(40,40') 및 고도탐지 장치(70)를 제어하는 구성으로, 상기 방위탐지 장치(40)가 목표물의 방위를 탐지하면 고도용 회전모듈(60)을 통해 상기 고도탐지 레이더(50)가 상기 목표물의 고도를 측정하도록 상기 목표물의 방위에 위치시키는 제어를 포함하며, 구성은 도 5에 도시한 바와 같다.
즉, 제어장치(90)는 방위탐지 레이더(10)가 방위용 회전모듈(30)에 의해 회전되면서 목표물의 방위를 탐지하면, 탐지된 방위 데이터는 방위 레이더 제어부(91)가 레이더 처리 서버(94)에 전송하고, 전송된 방위 데이터는 감시운영실(95)에서 활용하며 동시에 레이더 로컬 컨트롤러(93)에 방위 데이터를 전송한다. 다음 레이더 로컬 컨트롤러(93)에 의해 고도용 회전모듈(60)이 고도탐지 레이더(50)를 목표물의 방위로 회전시키면 고도탐지 레이더(50)의 안테나(51)가 회전부(52)에 의해 회전되어 목표물의 고도를 탐지한다.
한편, 본 발명은 상기 방위탐지 장치(40,40')와 고도탐지 장치(70)를 해상시설물에 장착하고, 대공과 해상 목표물의 정보를 타 해상시설물과 상호 교류하는 통신장치는 더 구비하여 대공과 해상 목표물의 정보를 공유하는 것이 바람직한데, 이는 상기 주요지역의 대공감시망 구축 및 연동을 통한 통합된 대공감시체계의 구축을 위한 것으로서, 상기 해상시설물은 해군이나 해경의 선박뿐 아니라 항만의 안전과 보안을 필요로 하는 정유시설, VTS(Vessel Traffic Service) 센터 등의 주요시설을 의미하며, 상기 통신장치는 VHF 통신일 수 있다.
이와 같이 본 발명은 상용 선박용 레이더의 설치각을 변경하여 고도탐지용 및 방위탐지용으로 사용하는 것이며, 고가의 대공 감시 시스템에 비해 저렴한 비용으로도 대공감시가 가능하다.
이상 본 발명이 양호한 실시예와 관련하여 설명되었으나, 본 발명의 기술 분야에 속하는 자들은 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에 다양한 변경 및 수정을 용이하게 실시할 수 있을 것이다. 그러므로 개시된 실시예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 진정한 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (4)

  1. 대공과 해상 목표물의 방위탐지를 위해 전파를 발사하는 방위탐지 레이더(10)를 적어도 두 개 이상 구비하여 서로 다른 방위 측정 각도 및 수직으로 간격을 두고 배치한 방위탐지 레이더 모듈(20)과, 상기 방위탐지 레이더(10)를 지지 및 회전시키는 방위용 회전모듈(30)로 구성되는 방위탐지 장치(40)와;
    상기 목표물의 고도탐지를 위해 전파를 발사하며 수직으로 배치된 고도탐지 레이더(50)와, 상기 고도탐지 레이더(50)를 지지 및 회전시키는 고도용 회전모듈(60)로 구성되는 고도탐지 장치(70)와;
    상기 방위탐지 장치(40)와 고도탐지 장치(70)를 제어하는 제어장치(90);를 포함하며,
    상기 제어장치(90)는 상기 방위탐지 장치(40)가 목표물의 방위를 탐지하면 고도용 회전모듈(60)을 통해 상기 고도탐지 레이더(50)가 상기 목표물의 고도를 측정하도록 상기 목표물의 방위에 위치시키는 제어를 포함하는 것을 특징으로 하는 해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치.
  2. 대공과 해상 목표물의 방위탐지를 위해 전파를 발사하는 방위탐지 레이더(10)와, 상기 방위탐지 레이더(10)의 수평각을 조절하는 틸팅장치(80)와, 상기 방위탐지 레이더(10) 및 틸팅장치(80)를 회전시키는 수평회전모듈(87)로 구성되는 방위탐지 장치(40')와;
    상기 목표물의 고도탐지를 위해 전파를 발사하며 수직으로 배치된 고도탐지 레이더(50)와, 상기 고도탐지 레이더(50)를 지지 및 회전시키는 고도용 회전모듈(60)로 구성되는 고도탐지 장치(70)와;
    상기 방위탐지 장치(40')와 고도탐지 장치(70)를 제어하는 제어장치(90);를 포함하며,
    상기 제어장치(90)는 상기 방위탐지 장치(40')가 목표물의 방위를 탐지하면 고도용 회전모듈(60)을 통해 상기 고도탐지 레이더(50)가 상기 목표물의 고도를 측정하도록 상기 목표물의 방위에 위치시키는 제어를 포함하는 것을 특징으로 하는 해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치.
  3. 제 1항에 있어서,
    상기 방위탐지 장치(40)와 고도탐지 장치(70)를 해상시설물에 장착하고, 대공과 해상 목표물의 정보를 타 해상시설물과 상호 교류하는 통신장치를 더 구비하여 대공과 해상 목표물의 정보를 공유하는 것을 특징으로 하는 해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치.
  4. 제 2항에 있어서,
    상기 방위탐지 장치(40')와 고도탐지 장치(70)를 해상시설물에 장착하고, 대공과 해상 목표물의 정보를 타 해상시설물과 상호 교류하는 통신장치를 더 구비하여 대공과 해상 목표물의 정보를 공유하는 것을 특징으로 하는 해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치.
PCT/KR2012/001904 2011-06-24 2012-03-16 해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치 WO2012176969A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/125,358 US9223014B2 (en) 2011-06-24 2012-03-16 Three dimensional radar system using usual radars installed in sea facilities
CN201280028812.6A CN103597372B (zh) 2011-06-24 2012-03-16 利用海上设施上安装的商用雷达的三维雷达装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110061719A KR101072485B1 (ko) 2011-06-24 2011-06-24 해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치
KR10-2011-0061719 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176969A1 true WO2012176969A1 (ko) 2012-12-27

Family

ID=45032665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001904 WO2012176969A1 (ko) 2011-06-24 2012-03-16 해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치

Country Status (4)

Country Link
US (1) US9223014B2 (ko)
KR (1) KR101072485B1 (ko)
CN (1) CN103597372B (ko)
WO (1) WO2012176969A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9482749B1 (en) * 2012-08-09 2016-11-01 Lockheed Martin Corporation Signature detection in point images
KR102287852B1 (ko) * 2019-12-26 2021-08-09 우리항행기술(주) 무인항공기용 전파측위시스템 및 무인항공기용 항행방법
JP7487322B2 (ja) 2020-09-24 2024-05-20 株式会社日立国際電気 レーダー装置及びレーダーシステム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940023259A (ko) * 1993-03-09 1994-10-22 도날드 알.엘러맨 3차원 영상 레이다 시스템
KR20030032210A (ko) * 2001-10-16 2003-04-26 박상래 3차원 목표영상 위치추적 방식의 지역방어 시스템 및 그방법
KR20080086714A (ko) * 2007-03-23 2008-09-26 (주)하이게인안테나 저고도 레이더 안테나
KR100902559B1 (ko) * 2008-10-30 2009-06-11 국방과학연구소 레이더 간섭계 및 그것을 이용한 표적위치 추정방법

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939134A (en) * 1946-03-04 1960-05-31 Lester C Van Atta Radio system and method for locating enemy artillery
US2602923A (en) * 1946-09-17 1952-07-08 Bendix Aviat Corp Stereoscopic system for threedimensional location of air-craft
US3064252A (en) * 1952-03-31 1962-11-13 Arthur A Varela Height finding radar system
US3311913A (en) * 1952-10-21 1967-03-28 Arthur A Varela Height finding radar system
US3274593A (en) * 1953-03-26 1966-09-20 Arthur A Varela Height finding radar system
US3070795A (en) * 1954-01-25 1962-12-25 Torrence H Chambers Elevation angle computer for stacked beam height finding radar system
US3184739A (en) * 1960-10-14 1965-05-18 Franklin Frederick Method of tracking radar targets in presence of jamming
US3161870A (en) * 1963-05-06 1964-12-15 Peter H Pincoffs System for increasing the detection range of a group of search radars
US3214755A (en) * 1964-02-24 1965-10-26 Maxson Electronics Corp Three-dimensional radar system
FR1573820A (ko) * 1966-09-01 1969-07-11
US3971020A (en) * 1966-12-02 1976-07-20 International Telephone And Telegraph Corporation Three dimensional radar system with integrated PPI presentation
FR2458820A1 (fr) * 1979-06-13 1981-01-02 Thomson Csf Dispositif d'acquisition distance dans un systeme radar
CA1180794A (en) * 1981-01-19 1985-01-08 Lawrence F. Anderson Multiple radar combination system
US5410316A (en) * 1984-03-05 1995-04-25 Hughes Missile Systems Company Quick-reaction antijamming search radar
JPS60249074A (ja) * 1984-05-24 1985-12-09 Fujitsu Ltd 飛翔体航跡推定方式
US5381156A (en) * 1993-04-15 1995-01-10 Calspan Corporation Multiple target doppler tracker
JPH0727570A (ja) * 1993-07-13 1995-01-27 Oki Electric Ind Co Ltd 船舶交通サービスシステム
US5410314A (en) * 1993-11-30 1995-04-25 University Corporation For Atmospheric Research Bistatic multiple-doppler radar network
US6249241B1 (en) * 1995-09-21 2001-06-19 The United States Of America As Represented By The Secretary Of The Navy Marine vessel traffic system
US6064331A (en) * 1998-06-11 2000-05-16 Boeing North American, Inc. Pulse repetition frequency section method and system
US6657581B1 (en) * 2000-08-16 2003-12-02 Raytheon Company Automotive lane changing aid indicator
JP2004526166A (ja) * 2001-05-04 2004-08-26 ロッキード・マーティン・コーポレイション 高度推定システムおよび方法
SE522651C2 (sv) * 2002-06-14 2004-02-24 Totalfoersvarets Forskningsins Sätt och ett system för att genom bistatiska mätningar med från mål spridda signaler bestämma lägen för målen
US6977610B2 (en) * 2003-10-10 2005-12-20 Raytheon Company Multiple radar combining for increased range, radar sensitivity and angle accuracy
US7167126B2 (en) * 2004-09-01 2007-01-23 The Boeing Company Radar system and method for determining the height of an object
WO2006107565A1 (en) * 2005-04-04 2006-10-12 Raytheon Company System and method for coherently combining a plurality of radars
US7940206B2 (en) * 2005-04-20 2011-05-10 Accipiter Radar Technologies Inc. Low-cost, high-performance radar networks
CN201075258Y (zh) * 2007-05-11 2008-06-18 南京恒立达光电仪器厂 雷达原理综合实验仪
WO2010130286A1 (en) * 2009-05-12 2010-11-18 Raytheon Anschütz Gmbh Combining data from multiple radar signals on a single plan position indicator (ppi) display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940023259A (ko) * 1993-03-09 1994-10-22 도날드 알.엘러맨 3차원 영상 레이다 시스템
KR20030032210A (ko) * 2001-10-16 2003-04-26 박상래 3차원 목표영상 위치추적 방식의 지역방어 시스템 및 그방법
KR20080086714A (ko) * 2007-03-23 2008-09-26 (주)하이게인안테나 저고도 레이더 안테나
KR100902559B1 (ko) * 2008-10-30 2009-06-11 국방과학연구소 레이더 간섭계 및 그것을 이용한 표적위치 추정방법

Also Published As

Publication number Publication date
CN103597372A (zh) 2014-02-19
US9223014B2 (en) 2015-12-29
US20140118183A1 (en) 2014-05-01
CN103597372B (zh) 2016-09-28
KR101072485B1 (ko) 2011-10-11

Similar Documents

Publication Publication Date Title
US7250853B2 (en) Surveillance system
EP2355451B1 (en) Distributed maritime surveillance system
CN202600984U (zh) 基站式多雷达海港综合管理系统
US9720078B2 (en) System and method for wide-area stratospheric surveillance
WO2012176969A1 (ko) 해상시설물에 설치되는 상용 레이더를 이용한 3차원 레이더 장치
WO2020045798A1 (ko) 해상조난구조용 신호장치 및 해상조난구조용 감시장치
CN101986170A (zh) 桥梁防撞雷达预警管理系统
KR101935577B1 (ko) 해상 풍력 단지 및 해저 케이블 감시 시스템
CN106846918A (zh) 桥梁防撞系统
CN109029122B (zh) 一种海防指挥控制系统及控制方法
CN111591404A (zh) 一种波浪滑翔器避碰方法
WO2018169195A1 (ko) 레이다 비콘 장치
EP2329291B1 (en) Sensors in concert for maritime surveillance
CN108226975A (zh) 船舶定位监控系统
CN106530836A (zh) 基于分布式雷达的vts系统
EP0325539A1 (en) Positioning system for a moving object
US5461384A (en) Method for montioring an area
EP2561379A1 (en) Radar filter
WO2012050253A1 (ko) 초음파 선박 항로 유도 시스템 및 장치
WO2022139021A1 (ko) 증강현실을 이용한 선박 안전운항 관리시스템
RU125723U1 (ru) Береговая пространственно распределенная многопозиционная радиолокационная станция с автономными радиолокационными терминалами для мониторинга акваторий
WO2023177117A1 (ko) 사생활 보호를 위한 안티 드론 탐지방법
KR20120117445A (ko) 선박 감시를 위한 네트워크 생성 방법 및 그 시스템
CN206243407U (zh) 一种江河渡船防碰撞装置
CN210466625U (zh) 一种无人海巡船

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14125358

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802363

Country of ref document: EP

Kind code of ref document: A1