WO2012176779A1 - 抗erbB3抗体 - Google Patents

抗erbB3抗体 Download PDF

Info

Publication number
WO2012176779A1
WO2012176779A1 PCT/JP2012/065657 JP2012065657W WO2012176779A1 WO 2012176779 A1 WO2012176779 A1 WO 2012176779A1 JP 2012065657 W JP2012065657 W JP 2012065657W WO 2012176779 A1 WO2012176779 A1 WO 2012176779A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
erbb3
amino acid
seq
domain
Prior art date
Application number
PCT/JP2012/065657
Other languages
English (en)
French (fr)
Inventor
高橋 信明
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Priority to EP12803162.2A priority Critical patent/EP2722343A4/en
Priority to KR1020137033867A priority patent/KR20140033152A/ko
Priority to CN201280030600.1A priority patent/CN103781800A/zh
Priority to CA2840461A priority patent/CA2840461A1/en
Priority to AU2012274461A priority patent/AU2012274461A1/en
Publication of WO2012176779A1 publication Critical patent/WO2012176779A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to an antibody that recognizes the extracellular region of erbB3 and inhibits EGF-like ligand-dependent phosphorylation of erbB3, the antibody fragment, DNA encoding the antibody and the antibody fragment, the antibody and the antibody fragment
  • the present invention relates to a production method, a therapeutic agent containing the antibody and the antibody fragment, and a therapeutic use using the antibody and the antibody fragment.
  • ErbB3 is a single transmembrane protein belonging to the epidermal growth factor receptor (EGFR) family (Non-patent Documents 1, 2 and 3).
  • EGFR epidermal growth factor receptor
  • Non-patent Documents 1, 2 and 3 The three-dimensional structure of erbB3 is similar to EGFR, Her2 and erbB4, and the extracellular region is composed of four domain structures of domains 1, 2, 3 and 4 from the N-terminal side.
  • EGFR family molecules other than erbB3 possess a kinase domain in the cell and exert kinase activity upon receptor activation, but the intracellular domain of erbB3 does not have kinase activity.
  • erbB3 For activation of erbB3: 1. Heregulin, which is a specific ligand of erbB3, binds to erbB3 and is phosphorylated by other EGFR families that formed heterodimers with erbB3, and then phosphatidylinositol-3-phosphate kinase (phosphatidylinositol-3 phosphate kinase; PI3 kinase), a signal cascade that activates Akt; Ligand binding or overexpression activates EGFR families other than erbB3 (such as EGFR or Her2). As a result, erbB3 is phosphorylated, and two signal cascades that activate PI3 kinase and Akt are known. Yes.
  • phosphatidylinositol-3-phosphate kinase phosphatidylinositol-3 phosphate kinase
  • PI3 kinase phosphate
  • erbB3 has a particularly high affinity for PI3 kinase among EGFR family molecules. It is strongly suggested that it is important for kinase activation (Non-patent Document 4). Recently, it has been reported that erbB3 is involved in the resistance of EGFR inhibitors to cancer (Non-Patent Documents 5 and 6).
  • hepatocyte growth factor receptor HGFR or Met
  • HGFR or Met hepatocyte growth factor receptor
  • Non-Patent Document 7 has selected five genes (DUSP6, MMD, STAT1, ERBB3, and LCK) that are highly related to prognosis based on the results of array analysis in lung cancer. erbB3 is included.
  • Non-patent Document 8 In immunohistochemical analysis, erbB3 expression has been reported to be a poor prognostic factor in lung cancer (Non-patent Document 8). Muller-Tidow et al. (Non-patent Document 9) examined the kinases related to metastasis in lung cancer by array analysis. As a result, erbB3 is the third most relevant gene for distant metastasis after INSR and NTRK1. Identified. In addition to lung cancer, erbB3 expression has been reported to be a poor prognostic factor in breast cancer (Non-Patent Document 10) and ovarian cancer (Non-Patent Document 11).
  • Non-patent Document 12 antibodies that inhibit the binding of heregulin to erbB3
  • Patent Document 1 antibodies that react specifically with erbB3 without reacting with erbB1 and erbB2
  • Patent Document 2 antibodies that react specifically with erbB3 without reacting with erbB1 and erbB2
  • Patent Document 2 antibodies that react specifically with erbB3 without reacting with erbB1 and erbB2
  • Patent Document 2 antibodies that react specifically with erbB3 without reacting with erbB1 and erbB2
  • Patent Document 3 antibody that reacts with erbB3 extracellular domain
  • Patent Document 4 antibody that binds to domain 1 of erbB3 and inhibits heregulin-dependent phosphorylation of erbB3
  • an antibody that inhibits EGF-like ligand-dependent phosphorylation of erbB3, the antibody fragment, the DNA encoding the antibody and the antibody fragment, the method for producing the antibody and the antibody fragment, the antibody and the antibody fragment And a therapeutic agent comprising the antibody and the antibody fragment can be provided.
  • a combination therapy using an anti-erbB3 antibody can be provided.
  • the present invention relates to the following (1) to (15).
  • Phosphorylation of erbB3 is caused by epidermal growth factor (EGF), transforming growth factor ⁇ (TGF- ⁇ ), amphiregulin, betacellulin, epiregulin.
  • erbB3 Phosphorylation of at least two ligand-dependent erbB3 selected from heparin-binding epidermal growth factor-like growth factor (HB-EGF) and heregulin (1) Or the antibody fragment thereof.
  • the extracellular region of erbB3 is domain 1 consisting of amino acid sequences 20 to 179 of the amino acid sequence represented by SEQ ID NO: 3, domain 2 consisting of amino acid sequences 180 to 328, and 329 to 487
  • the antibody according to any one of (1) to (3), which is an extracellular region comprising at least one domain selected from domain 3 consisting of the amino acid sequence No. 4 and domain 4 consisting of the amino acid sequences No. 488 to 643 And the antibody fragment.
  • the antibody and the antibody fragment thereof according to any one of (1) to (4), wherein the antibody is an antibody selected from the following (a) to (c): (A) An antibody that competitively reacts with any one antibody clone selected from the 1153 antibody clone, the 12511 antibody clone, the 920104 antibody clone, and the 1126 antibody clone, and the antibody fragment. (B) An antibody that reacts with an epitope including an epitope to which any one antibody clone selected from the 1153 antibody clone, the 12511 antibody clone, the 920104 antibody clone, and the 1126 antibody clone reacts, and the antibody fragment.
  • A An antibody that competitively reacts with any one antibody clone selected from the 1153 antibody clone, the 12511 antibody clone, the 920104 antibody clone, and the 1126 antibody clone, and the antibody fragment.
  • An antibody heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 57 (hereinafter also referred to as VH) and an antibody light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 58 (hereinafter referred to as VL)
  • the antibody according to any one of (1) to (5) and the antibody fragment thereof, which are two antibodies.
  • a DNA encoding the antibody and the antibody fragment according to any one of (1) to (6) is cultured in a medium, and the antibody according to any one of (1) to (6) is cultured in the culture solution
  • the extracellular region of erbB3 is domain 1 consisting of amino acid sequences 20 to 179 of the amino acid sequence represented by SEQ ID NO: 3, domain 2 consisting of amino acid sequences 180 to 328, and 329 to 487
  • An antibody composition comprising a second antibody that reacts with or an antibody fragment thereof.
  • the antibody composition according to (9), wherein the first antibody or the antibody fragment is an antibody that reacts with domain 2 or domain 4 of the extracellular region of erbB3 or the antibody fragment.
  • the first antibody or the antibody fragment is an antibody selected from the following (a) to (c) or the antibody fragment.
  • A An antibody that competes with the 1126 antibody clone and the antibody fragment.
  • B An antibody that reacts with an epitope including an epitope to which the 1126 antibody clone reacts and the antibody fragment.
  • C an antibody that reacts with the same epitope to which the 1126 antibody clone reacts and the antibody fragment.
  • A An antibody that competitively reacts with the 1153 antibody clone and the antibody fragment.
  • B An antibody that reacts with an epitope including the epitope with which the 1153 antibody clone reacts and the antibody fragment.
  • C An antibody that reacts with the same epitope as the epitope with which the 1153 antibody clone reacts and the antibody fragment.
  • 15 The treatment method according to (14), wherein the disease involving erbB3-expressing cells is cancer.
  • a therapeutic agent for a disease involving erbB3-expressing cells comprising the antibody composition according to any one of (9) to (13).
  • an antibody that recognizes the extracellular region of erbB3 and inhibits EGF-like ligand-dependent phosphorylation of erbB3, the antibody fragment, the DNA encoding the antibody and the antibody fragment, the antibody, and the antibody A method for producing a fragment, a drug containing the antibody and the antibody fragment, and a therapeutic use using the antibody and the antibody fragment can be provided.
  • FIG. 1 (a) shows heregulin ⁇ (HRG ⁇ ) in human squamous cell carcinoma cell line A431 by anti-human ebB3 antibody.
  • FIG. 1 (b) shows the inhibitory effect of heregulin ⁇ (HRG ⁇ ) -dependent erbB3 phosphorylation and Akt phosphorylation in human squamous cell carcinoma cell line A431 by anti-human ebB3 antibody.
  • the left side shows heregulin ⁇ -dependent phosphorylation
  • the right side shows heregulin ⁇ -dependent phosphorylation
  • from the top shows phosphorylated erbB3, total erbB3 protein, phosphorylated Akt and total Akt protein.
  • the antibodies used on the left and right top are shown.
  • FIGS. 2 (a) and (b) show the inhibitory effect of anti-human erbB3 antibody on EGF-like ligand-dependent erbB3 phosphorylation in human squamous cell carcinoma cell line A431.
  • FIG. 2 (a) shows amphiregulin or betacellulin-dependent erbB3 phosphorylation
  • FIG. 2 (b) shows epiregulin or TGF ⁇ -dependent erbB3 phosphorylation
  • FIG. 2 (c) shows EGF or HB-EGF-dependent erbB3. Shows phosphorylation.
  • the upper part of each figure shows phosphorylated erbB3, and the lower part shows total erbB3 protein.
  • the antibody used at the top of each figure is shown.
  • FIG. 3 (a) and (b) show the inhibitory effect of anti-human erbB3 antibody on EGF-like ligand-dependent erbB3 phosphorylation in human breast cancer cell line T47D.
  • 3 (a) shows epiregulin-dependent erbB3 phosphorylation
  • FIG. 3 (b) TGF ⁇ -dependent erbB3 phosphorylation
  • FIG. 3 (c) shows HB-EGF-dependent erbB3 phosphorylation
  • Figure 3 shows ⁇ -dependent erbB3 phosphorylation.
  • the upper part of each figure shows phosphorylated erbB3, and the lower part shows total erbB3 protein.
  • the antibody used at the top of each figure is shown.
  • FIG. 4 shows the antitumor effect of anti-human erbB3 antibody in a human breast cancer cell line T47D-transplanted mouse model.
  • the horizontal axis represents the number of days since the tumor was transplanted, and the vertical axis represents the tumor volume.
  • indicates control anti-DNP antibody
  • indicates 1153 antibody
  • indicates 12511 antibody
  • indicates 920104 antibody
  • indicates 1126 antibody
  • U1-59 antibody U1-59 antibody.
  • FIG. 5 shows the combined effect of anti-human erbB3 antibody in a human breast cancer cell line T47D-transplanted mouse model.
  • FIG. 6 shows the combined effect of anti-human erbB3 antibody in a mouse model transplanted with human squamous cell carcinoma cell line A431.
  • is a control anti-DNP antibody
  • is a 1153 + 12511 combined antibody (a combined antibody of 1153 and 12511 antibodies)
  • is a 12511 + 1126 combined antibody (a combined antibody of 12511 and 1126 antibodies)
  • x is a 1153 + 1126 combined antibody (1153 antibodies and 1126) Antibody combination antibody).
  • the horizontal axis represents the number of days since the tumor was transplanted, and the vertical axis represents the tumor volume.
  • the antibody of the present invention relates to an antibody that specifically binds to an extracellular region of erbB3 (sometimes abbreviated as extracellular domain, ECD) and inhibits EGF-like ligand-dependent phosphorylation of erbB3 and the antibody fragment.
  • ECD extracellular domain
  • erbB3 is one of the epidermal growth factor receptor (EGFR) family (HER family, also referred to as erbB family) which is a tyrosine kinase type receptor family, erbB3 receptor, epidermal growth factor receptor 3 (Epidermal growth factor receptor 3; EGFR3), also referred to as HER3 receptor, Her3 receptor, or simply HER3, Her3.
  • EGFR epidermal growth factor receptor
  • ErbB3 is a single-transmembrane membrane protein, which includes a ligand binding domain and a dimer formation domain in the extracellular region, and a tyrosine phosphorylation domain in the cell. It is known that erbB3 causes dimerization by causing the specific ligand heregulin to bind to the ligand binding domain in the extracellular region, and causes a cell proliferation signal to flow.
  • erbB3 and other EGF receptor (EGFR) families erbB1 (EGFR1 or HER1), erbB2 (EGFR2, HER2 or Neu) or erbB4 (EGFR4 or HER4) are involved in cell proliferation. It has been.
  • erbB3 is Kraus et al. (Proc. Nat. Acad. Sci. 86: 9193-9197, 1989), a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2, specifically, a membrane protein comprising A membrane protein comprising the amino acid sequence represented by SEQ ID NO: 3.
  • the amino acid sequence information of erbB3 can be obtained from a known database such as NCBI (http://www.ncbi.nlm.nih.gov/). For example, the amino acid sequence represented by SEQ ID NO: 2 is obtained. And human erbB3 (NCBI accession No. NP — 0383.2) containing the amino acid sequence represented by SEQ ID NO: 5 (NCBI accession No. NP — 03483.1) and the like. *
  • examples of erbB3 include a polypeptide having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2 and having the function of erbB3.
  • a polypeptide having an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence represented by SEQ ID NO: 2 is obtained by site-directed mutagenesis [Molecular Cloning, A Laboratory Manual, Second Edition, Cold. Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997), Nucleic Acids Research, 10, 6487 (1982). Natl. Acad. Sci. USA, 79, 6409 (1982), Gene, 34, 315 (1985), Nucleic Acids Research, 13, 4431 (1985), Proc. Natl. Acad. Sci.
  • the number of amino acids to be deleted, substituted or added is not particularly limited, but is preferably 1 to several tens, for example 1 to 20, more preferably 1 to several, for example 1 to 5 amino acids. It is.
  • erbB3 As a gene encoding erbB3, for example, the nucleotide sequence of human erbB3 shown at positions 277 to 4305 in the nucleotide sequence represented by SEQ ID NO: 1 (NCBI accession No. NM_001982.3), SEQ ID NO: 4 (NCBI accession No. NM_010153.1) and the base sequence of mouse erbB3.
  • a gene comprising a DNA encoding a polypeptide having a erbB3 function comprising a base sequence in which one or more bases have been deleted, substituted or added in the 277th to 4305th base sequences represented by SEQ ID NO: 1;
  • Such as a gene comprising a DNA encoding a polypeptide are also included in the gene encoding the erbB3 of the present invention.
  • the DNA that hybridizes under stringent conditions is the colony hybridization method, plaque hybridization method, Southern blot hybridization using the 277th to 4305th DNA represented by SEQ ID NO: 1 as a probe. It means a hybridizable DNA obtained by the method or DNA microarray method.
  • 0.7 to 1.0 mol / L of sodium chloride is present using a DNA or DNA derived from a hybridized colony or plaque, or a filter or slide glass on which a PCR product or oligo DNA having the sequence is immobilized. Hybridization at 65 ° C.
  • DNA capable of hybridizing DNA having at least 60% homology with the nucleotide sequence of positions 277 to 4305 represented by SEQ ID NO: 1, preferably DNA having 70% or 80% homology, More preferable examples include DNA having 90%, 95%, 96%, 97%, 98%, or 99% or more homology.
  • the gene used in the present invention is a gene encoding erbB3 of the present invention in which a small-scale mutation is caused in the nucleotide sequence due to such polymorphism.
  • the numerical value of homology in the present invention may be a numerical value calculated using a homology search program known to those skilled in the art unless otherwise specified, but the base sequence may be BLAST [J. Mol. Biol. , 215, 403 (1990)], for amino acid sequences such as numerical values calculated using default parameters, BLAST2 [Nucleic Acids Res. , 25, 3389 (1997), Genome Res. , 7, 649 (1997), http: // www. ncbi. nlm. nih. gov / Education / BLASTinfo / information3. numerical values calculated using default parameters in [html]. *
  • the default parameters are 5 if G (Cost to open gap) is a base sequence, 11 if it is an amino acid sequence, 2 if -E (Cost to extend gap) is a base sequence, and 1 if it is an amino acid sequence.
  • -Q (Penalty for nucleotide mismatch) is -3
  • -r (reward for nucleotide match) is 1
  • -e (expect value) is 10
  • 11 residues when -W (wordsize) is a base sequence
  • -y [Dropoff (X) for blast extensions in bits] is 20 when blastn, 7 for programs other than blastn
  • -X X dropoff value for If the gap alignment in bits) is 15 and -Z (final X dropoff value for gapd alignment in bits) is blastn, it is 25 for programs other than blastn (http://www.cn.cn. /Blast/html/blastcgihelp.html).
  • a polypeptide comprising a partial sequence of the amino acid sequence represented by SEQ ID NO: 2 can be prepared by a method known to those skilled in the art. For example, a part of DNA encoding the amino acid sequence represented by SEQ ID NO: 2 is prepared. It can be produced by culturing a transformant that has been deleted and into which an expression vector containing the deletion has been introduced.
  • polypeptide having an amino acid sequence can be obtained.
  • polypeptide comprising a partial sequence of the amino acid sequence represented by SEQ ID NO: 2 or an amino acid sequence in which one or more amino acids are deleted, substituted or added in the partial sequence of the amino acid sequence represented by SEQ ID NO: 2.
  • Polypeptides can also be produced by chemical synthesis methods such as the fluorenylmethyloxycarbonyl (Fmoc) method or the t-butyloxycarbonyl (tBoc) method.
  • the extracellular region of erbB3 in the present invention for example, the amino acid sequence represented by SEQ ID NO: 2 is converted into a known transmembrane region prediction program SOSUI (http://sosui.proteome.bio.tuat.ac.jp/sosuiframe0. html), TMHMM ver. 2 (http://www.cbs.dtu.dk/services/TMHMM-2.0/) or ExPASy Proteomics Server (http://Ca.expasy.org/) It is done. Specifically, for example, an extracellular domain predicted in ExPASy Proteomics Server can be mentioned.
  • the extracellular region (ECD) of erbB3 is divided into domains 1 to 4 (D1 to D4).
  • domain 1 and domain 3 are important for ligand binding
  • domain 2 is important for dimer formation. It is known that there is.
  • the amino acid sequence from 20th to 179th of the amino acid sequence represented by SEQ ID NO: 3 is domain 1
  • the amino acid sequence of 180th to 328th is domain 2
  • the amino acid sequence of 329th to 487 is domain 3
  • the amino acid sequence from positions 488 to 643 is domain 4.
  • the EGF-like ligand is an EGF ligand family that binds to the EGFR family. Specifically, for example, epidermal growth factor (EGF), transforming growth factor ⁇ (TGF- ⁇ ), amphiregulin, betacellulin, epiregulin, heparin-binding epidermal growth factor-like growth factor (HB-EGF), NTAK and heregulin [neuregulin].
  • EGF epidermal growth factor
  • TGF- ⁇ transforming growth factor ⁇
  • amphiregulin betacellulin
  • epiregulin heparin-binding epidermal growth factor-like growth factor
  • NTAK heparin-binding epidermal growth factor-like growth factor
  • the function of erbB3 includes a function of inducing erbB3 homodimerization and heterodimerization depending on heregulin binding, and erbB3 is phosphorylated, thereby promoting cell proliferation and cell differentiation.
  • erbB3 can introduce the protein of interest into a host cell to produce a protein-expressing cell, and confirm a ligand-dependent effect under appropriate cell culture conditions.
  • the antibody of the present invention includes an antibody that specifically binds to the extracellular region of erbB3 and inhibits EGF-like ligand-dependent phosphorylation of erbB3, specifically binds to the extracellular region of erbB3, and is specific to erbB3 And antibodies that inhibit both erbB3 phosphorylation dependent on steric ligand and erbB3 specific phosphorylation independent of erbB3.
  • erbB3-specific ligand-dependent phosphorylation of erbB3 means that heregulin, which is known as an erbB3-specific ligand, binds to the extracellular region of erbB3, so that the tyrosine residue in the intracellular domain of erbB3 is phosphorylated. It means being oxidized.
  • erbB3-specific ligand-independent phosphorylation of erbB3 means that an EGF-like ligand containing heregulin, which is an erbB3-specific ligand, binds to an extracellular region of the erbB family other than erbB3, resulting in heterogeneity with erbB3. A dimer is formed and a tyrosine residue in the intracellular domain of erbB3 is phosphorylated.
  • erbB3 specific ligand-independent phosphorylation of erbB3 can be referred to as indirect phosphorylation of erbB3 that is induced in an EGF-like ligand-dependent manner.
  • the antibody of the present invention can simultaneously inhibit the erbB3-specific ligand-dependent / independent erbB3 phosphorylation described above.
  • epidermal growth factor EGF
  • TGF- ⁇ transforming growth factor ⁇
  • amphiregulin betacellulin
  • epiregulin heparin-binding epidermal growth factor-like growth factor (HB-EGF)
  • NTAK NTAK
  • An antibody that inhibits at least 2, 3, 4, 5 or 6 ligand-dependent phosphorylation of erbB3 selected from heregulin, preferably an antibody that inhibits all EGF-like ligand-dependent phosphorylation of erbB3 Can be mentioned.
  • domain 1 consisting of amino acid sequence 20th to 179 of the amino acid sequence represented by SEQ ID NO: 3
  • domain 2 consisting of amino acid sequence 180th to 328th, amino acid of 329th to 487th
  • An antibody that binds to an extracellular region comprising at least one domain selected from domain 3 consisting of sequences and domain 4 consisting of amino acids 488 to 643, preferably cells containing at least one domain of domain 2 or domain 4 Examples thereof include an antibody that binds to the outer region, more preferably an antibody that binds to the extracellular region containing domain 2, and an antibody that binds to the extracellular region containing domain 4.
  • the antibody of the present invention includes an antibody that binds to an epitope present in each domain of D1 to D4 in the extracellular region of erbB3.
  • examples of the antibody of the present invention include an antibody capable of inhibiting erbB3 dimerization, and an antibody capable of inhibiting heterodimerization of erbB3 and other erbB families (erbB1, erbB2 and erbB4).
  • an antibody that can inhibit at least one set of interactions selected from erbB3-erbB1, erbB3-erbB2, and erbB3-erbB4 can be mentioned.
  • the antibody of the present invention includes an antibody that inhibits growth factor receptor-dependent phosphorylation of erbB3 that interacts with erbB3. Specifically, an antibody that inhibits erbB3 phosphorylation dependent on hepatocyte growth factor (HGF) receptor (c-Met).
  • HGF hepatocyte growth factor
  • the antibody of the present invention includes any of monoclonal antibodies, oligoclonal antibodies and polyclonal antibodies.
  • a monoclonal antibody is an antibody that is secreted by a single clone of antibody-producing cells, recognizes only one epitope (also referred to as an antigenic determinant), and has an amino acid sequence (primary structure) constituting the monoclonal antibody. It is uniform.
  • An oligoclonal antibody or a polyclonal antibody is an antibody mixture containing two or more monoclonal antibodies.
  • Epitopes include, for example, a single amino acid sequence that a monoclonal antibody recognizes and binds, a three-dimensional structure composed of amino acid sequences, a three-dimensional structure composed of amino acid sequences bound to sugar chains and amino acid sequences bound to sugar chains, and the like.
  • the three-dimensional structure is a three-dimensional structure possessed by a naturally occurring protein and refers to a three-dimensional structure constituted by a protein expressed in a cell or on a cell membrane.
  • the epitope recognized by the antibody of the present invention is, for example, an epitope present on erbB3 expressed on the cell membrane, and a primary structure consisting of the amino acid sequence of erbB3, a three-dimensional structure consisting of the amino acid sequence of erbB3, and erbB3 3D structure in which a sugar chain is bound to the amino acid sequence, and amino acid residues on a 3D structure defined by the results of crystal structure analysis of EGFR family proteins.
  • Antibody molecules are also referred to as immunoglobulins (hereinafter referred to as Ig), and human antibodies are classified into IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4 and IgM isotypes according to the difference in molecular structure. Is done. IgG1, IgG2, IgG3, and IgG4 having relatively high amino acid sequence homology are collectively referred to as IgG.
  • Antibody molecules are composed of polypeptides called heavy chains (hereinafter referred to as H chains) and light chains (hereinafter referred to as L chains).
  • H chains is an H chain variable region (also expressed as VH)
  • H chain constant region also expressed as CH
  • L chain is also expressed as an L chain variable region (VL) from the N terminal side.
  • CL Each region of the L chain constant region (also expressed as CL).
  • CH has known ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ chains for each subclass.
  • CH is further composed of each domain of the CH1 domain, hinge domain, CH2 domain, and CH3 domain from the N-terminal side.
  • a domain refers to a functional structural unit constituting each polypeptide of an antibody molecule.
  • the CH2 domain and the CH3 domain are collectively referred to as an Fc region or simply Fc.
  • CL C ⁇ chain and C ⁇ chain are known.
  • the CH1 domain, hinge domain, CH2 domain, CH3 domain, and Fc region are EU indexes [Kabat et al. , Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services (1991)] can be specified by the number of amino acid residues from the N-terminus.
  • CH1 is an amino acid sequence of EU indexes 118 to 215
  • hinge is an amino acid sequence of EU indexes 216 to 230
  • CH2 is an amino acid sequence of EU indexes 231 to 340
  • CH3 is an EU index 341 to 447. Each amino acid sequence is identified.
  • antibodies of the present invention include gene sets such as human chimeric antibodies (hereinafter also simply referred to as “chimeric antibodies”), humanized antibodies [also referred to as complementarity determining regions (CDR) -grafted antibodies] and human antibodies. Replacement antibodies are also included.
  • chimeric antibodies hereinafter also simply referred to as “chimeric antibodies”
  • CDR complementarity determining regions
  • the chimeric antibody means an antibody composed of VH and VL of an antibody other than an animal (non-human animal) and CH and CL of a human antibody.
  • non-human animal any mouse, rat, hamster, rabbit or the like can be used as long as it can produce a hybridoma.
  • a hybridoma is a cell that produces a monoclonal antibody having a desired antigen specificity obtained by fusing a B cell obtained by immunizing a non-human animal with a myeloma cell derived from a mouse or the like.
  • the variable region constituting the antibody produced by the hybridoma consists of the amino acid sequence of a non-human animal antibody.
  • Human chimeric antibodies are obtained by obtaining cDNAs encoding VH and VL from non-human animal cell-derived hybridomas producing monoclonal antibodies, and expressing them as expression vectors for animal cells having DNAs encoding human antibodies CH and CL, respectively.
  • a human chimeric antibody expression vector is constructed by insertion and can be expressed and produced by introducing it into animal cells.
  • a humanized antibody refers to an antibody obtained by grafting the amino acid sequences of CDRs of VH and VL of a non-human animal antibody into CDRs corresponding to VH and VL of a human antibody.
  • An area other than the CDRs of VH and VL is referred to as a framework area (hereinafter referred to as FR).
  • the humanized antibody is composed of a cDNA encoding a VH amino acid sequence consisting of a VH CDR amino acid sequence of a non-human animal antibody and a VH FR amino acid sequence of any human antibody, and a VL CDR amino acid of a non-human animal antibody.
  • a cDNA encoding the amino acid sequence of VL consisting of the sequence and the amino acid sequence of FR of VL of any human antibody is constructed, and inserted into an expression vector for animal cells having DNA encoding CH and CL of human antibody, respectively.
  • An antibody expression vector can be constructed and introduced into animal cells for expression and production.
  • a human antibody originally refers to an antibody that naturally exists in the human body, but a human antibody phage library and a human antibody-producing transgene prepared by recent advances in genetic engineering, cell engineering, and developmental engineering techniques. Also included are antibodies obtained from transgenic animals.
  • a human antibody can be obtained by immunizing a mouse carrying a human immunoglobulin gene (Tomizuka K. et. Al., Proc Natl Acad Sci USA. 97, 722-7, 2000.) with a desired antigen. I can do it. Further, by using a Page Display library obtained by amplifying antibody genes from human-derived B cells, a human antibody can be obtained without immunization by selecting a human antibody having a desired binding activity ( Winter G. et.al., Annu Rev Immunol. 12: 433-55.1994). Furthermore, by immortalizing human B cells using EB virus, cells that produce human antibodies having a desired binding activity can be produced and human antibodies can be obtained (Rosen A. et. Al.,). Nature 267, 52-54.1977).
  • the antibody present in the human body can be cultured, for example, by immortalizing lymphocytes isolated from human peripheral blood by infecting EB virus or the like and then cloning the lymphocytes, The antibody can be purified from the culture.
  • the human antibody phage library is a phage library in which antibody fragments such as Fab and scFv are expressed on the surface by inserting antibody genes prepared from human B cells into the phage genes. From the library, phages expressing antibody fragments having a desired antigen-binding activity can be collected using the binding activity to the substrate on which the antigen is immobilized as an index. The antibody fragment can be further converted into a human antibody molecule comprising two complete heavy chains and two complete light chains by genetic engineering techniques.
  • a human antibody-producing transgenic animal is an animal in which a human antibody gene is integrated into the chromosome of a host animal.
  • a human antibody-producing transgenic animal can be produced by introducing a human antibody gene into mouse ES cells, and then transplanting the ES cells into early embryos of other mice and then generating them.
  • a human antibody production method from a human antibody-producing transgenic animal is obtained by obtaining and culturing a human antibody-producing hybridoma by a hybridoma production method performed in a normal non-human mammal. Production can be accumulated.
  • the amino acid sequences of VH and VL of the antibody of the present invention include VH and VL amino acid sequences of human antibodies, VH and VL amino acid sequences of non-human animal antibodies, or CDRs of non-human animal antibodies, and human antibody frameworks. Any of the amino acid sequences of the humanized antibody transplanted into the. Specific examples include VH and VL amino acid sequences of non-human animal antibodies produced by hybridomas, humanized antibody VH and VL amino acid sequences, or human antibody VH and VL amino acid sequences.
  • the amino acid sequence of CL of the antibody of the present invention may be either the amino acid sequence of a human antibody or the amino acid sequence of a non-human animal antibody, but the amino acid sequence of a human antibody is preferably C ⁇ or C ⁇ .
  • the CH of the antibody of the present invention may be any as long as it belongs to immunoglobulin, but preferably any of subclass belonging to IgG class, ⁇ 1 (IgG1), ⁇ 2 (IgG2), ⁇ 3 (IgG3) or ⁇ 4 (IgG4) Can also be used.
  • the effector activity refers to an antibody-dependent activity caused through the Fc region of an antibody.
  • the antibody-dependent cytotoxic activity Antibody-Dependent Cellular Cytotoxicity activity; ADCC activity
  • the complement-dependent injury activity Complement-Dependent
  • Cytotoxicity CDC activity
  • antibody-dependent phagocytosis ADP activity
  • ADCC activity and CDC activity are measured using a known measurement method [Cancer Immunol. Immunother. , 36, 373 (1993)].
  • ADCC activity means that an antibody bound to an antigen on a target cell binds to an Fc receptor of an immune cell through the Fc region of the antibody, thereby activating an immune cell (natural killer cell, etc.) and damaging the target cell. Activity.
  • the Fc receptor (hereinafter also referred to as FcR) is a receptor that binds to the Fc region of an antibody, and induces various effector activities by the binding of the antibody.
  • FcR corresponds to an antibody subclass, and IgG, IgE, IgA, and IgM specifically bind to Fc ⁇ R, Fc ⁇ R, Fc ⁇ R, and Fc ⁇ R, respectively.
  • Fc ⁇ R has Fc ⁇ RI (CD64), Fc ⁇ RII (CD32) and Fc ⁇ RIII (CD16) subtypes, and Fc ⁇ RIA, Fc ⁇ RIB, Fc ⁇ RIIC, Fc ⁇ RIIA, Fc ⁇ RIIB, Fc ⁇ RIIC, Fc ⁇ RIIIA and Fc ⁇ RIIIB isoforms, respectively. To do. These different Fc ⁇ Rs are present on different cells [Annu. Rev. Immunol. 9: 457-492 (1991)].
  • Fc ⁇ RIIIB is specifically expressed in neutrophils, and Fc ⁇ RIIIA is expressed in monocytes, Natural Killer cells (NK cells) and some T cells. Antibody binding via Fc ⁇ RIIIA induces NK cell-dependent ADCC activity.
  • CDC activity refers to an activity in which an antibody bound to an antigen on a target cell activates a series of cascades (complement activation pathways) composed of complement-related proteins in the blood and damages the target cell.
  • cascades complement activation pathways
  • migration and activation of immune cells can be induced by protein fragments generated by complement activation.
  • the cascade of CDC activity begins when C1q, which has a binding domain with the Fc region of an antibody, binds to the Fc region and binds to two serine proteases, C1r and C1s, to form a C1 complex.
  • H chain CDR1 to 3 comprising amino acid sequences represented by SEQ ID Nos. 59 to 61 and sequences respectively
  • Antibodies comprising L chain CDRs 1 to 3 comprising the amino acid sequences represented by Nos. 62 to 64, amino acids represented by SEQ ID Nos.
  • H chain CDR1 to 3 comprising the sequence and an antibody comprising L chain CDR1 to 3 comprising the amino acid sequence represented by SEQ ID NOs: 74 to 76, respectively, H chain CDR1 to comprising the amino acid sequence represented by SEQ ID NO: 83 to 85, respectively 3 and L chain CDRs 1 to 3 comprising the amino acid sequences represented by SEQ ID NOs: 86 to 88, respectively, and H chain CDR1 to 3 comprising the amino acid sequences represented by SEQ ID NOs: 95 to 97 and SEQ ID NOs: 98 to respectively.
  • antibodies containing L chain CDRs 1-3 containing the amino acid sequence represented by 100 are antibodies containing L chain CDRs 1-3 containing the amino acid sequence represented by 100.
  • the antibodies of the present invention include 1153 antibodies comprising H chain CDRs 1 to 3 comprising the amino acid sequences represented by SEQ ID NOs: 59 to 61 and L chain CDRs 1 to 3 comprising the amino acid sequences represented by SEQ ID NOs: 62 to 64, respectively.
  • the recombinant antibodies of the present invention include H chain CDRs 1 to 3 including amino acid sequences represented by SEQ ID NOs: 59 to 61 and L chain CDRs 1 to 3 including amino acid sequences represented by SEQ ID NOs: 62 to 64, respectively.
  • An antibody comprising an H chain CDR1 to 3 comprising the amino acid sequence represented by 85 and an L chain CDR1 to 3 comprising the amino acid sequence represented by SEQ ID NOs: 86 to 88, respectively, and an amino acid sequence represented by SEQ ID NOs: 95 to 97, respectively H chain CDR1 to 3 containing L and the L chain CDR1 to 3 containing the amino acid sequences represented by SEQ ID NOs: 98 to 100, respectively
  • an antibody including the like.
  • Examples of the antibody of the present invention include the antibodies described in the following (a) to (c).
  • the antibody of the present invention includes an antibody that competes with the above-described antibody and binds to the extracellular region of erbB3, an antibody that reacts with an epitope including the epitope present in the extracellular region of erbB3 to which the above-mentioned antibody reacts, and the above-mentioned And an antibody that reacts with the same epitope as that present in the extracellular region of erbB3 to which the above-mentioned antibody reacts.
  • an antibody reacting with an epitope including an epitope to which any one antibody clone selected from the 1153 antibody clone, the 12511 antibody clone, the 920104 antibody clone, and the 1126 antibody clone reacts refers to the 1153 antibody clone, the 12511 antibody A second antibody that binds to a second epitope including a first epitope to which a first antibody selected from a clone, a 920104 antibody clone, and a 1126 antibody clone reacts.
  • the antibodies of the present invention include an Fc fusion protein in which Fc and an antibody fragment are bound, an Fc fusion protein in which Fc and a naturally occurring ligand or receptor are bound (also referred to as immunoadhesin), and a plurality of Fc regions are fused. Fc fusion proteins and the like that have been made are also included in the present invention. An Fc region containing an amino acid residue modification that has been modified to enhance or lack the effector activity of the antibody, stabilize the antibody, and control the blood half-life is also included in the antibody of the present invention. Can be used.
  • Examples of the antibody of the present invention include an antibody that reacts with at least two domains selected from domains 1 to 4 in the extracellular region of erbB3 containing the amino acid sequence represented by SEQ ID NO: 3, and the antibody fragment. Specifically, it reacts to any one combination selected from Domain 1 and Domain 2, Domain 1 and Domain 3, Domain 1 and Domain 4, Domain 2 and Domain 3, Domain 2 and Domain 4, and Domain 3 and Domain 4. Antibody. Among these, antibodies that react with any one combination selected from Domain 1 and Domain 2, Domain 1 and Domain 4, Domain 2 and Domain 3, and Domain 3 and Domain 4 are preferable, and react with Domain 1 and Domain 4. Antibodies are more preferred.
  • Antibodies that react with two domains in the extracellular region of erbB3 are known bispecific antibodies, multivalent antibody (polyvalent antibody) production techniques (International Publication No. 1998/050431, International Publication No. 2001/7734, International Publication No. 2002/002773, International Publication No. 2009/131239).
  • antibody fragment in the present invention examples include Fab, Fab ′, F (ab ′) 2 , scFv, Diabody, dsFv, and a peptide containing CDR.
  • Fab is a fragment obtained by treating an IgG antibody with the proteolytic enzyme papain (cleaved at the amino acid residue at position 224 of the H chain), and about half of the N-terminal side of the H chain and the entire L chain are disulfide bonded. It is an antibody fragment having an antigen binding activity of about 50,000 molecular weight bound by (SS bond).
  • F (ab ′) 2 is a fragment obtained by treating IgG with proteolytic enzyme pepsin (which is cleaved at the 234th amino acid residue of the H chain), and Fab is linked via an SS bond in the hinge region.
  • Antibody fragment having an antigen-binding activity with a molecular weight of about 100,000, which is slightly larger than those bound together.
  • Fab ′ is an antibody fragment having an antigen binding activity of about 50,000 molecular weight obtained by cleaving the SS bond in the hinge region of F (ab ′) 2 .
  • scFv is a VH-P-VL or VL-P-VH polypeptide in which one VH and one VL are linked using an appropriate peptide linker (P) having 12 or more residues, and has antigen-binding activity. It is an antibody fragment having
  • Diabody is an antibody fragment in which scFv with the same or different antigen-binding specificity forms a dimer, and has two bivalent antigen-binding activities for the same antigen or bispecific antigen-binding activities for two different antigens It is.
  • DsFv refers to a polypeptide in which one amino acid residue in each of VH and VL is substituted with a cysteine residue, which are bound via an SS bond between the cysteine residues.
  • the peptide containing CDR is configured to contain at least one region of CDR of VH or VL.
  • a peptide containing a plurality of CDRs can be linked to each other directly or via an appropriate peptide linker.
  • a DNA encoding the CDRs of the modified antibody VH and VL of the present invention is constructed, the DNA is inserted into a prokaryotic expression vector or eukaryotic expression vector, and the expression vector is introduced into a prokaryotic or eukaryotic organism It can be expressed and manufactured by doing.
  • the peptide containing CDR can also be manufactured by chemical synthesis methods, such as Fmoc method or tBoc method.
  • Examples of the antibody composition of the present invention include an antibody composition (or mixture) containing two or more of the above-described antibodies or antibody fragments. Specifically, a first antibody that reacts with an extracellular region containing at least one domain selected from domains 1 to 4 of the extracellular region of erbB3 comprising the amino acid sequence represented by SEQ ID NO: 1, or the antibody fragment And an antibody composition containing a second antibody that reacts with a domain different from the first antibody or the antibody fragment.
  • an antibody composition in which the first antibody is an antibody that reacts with domain 4 or domain 2 of erbB3 and the second antibody is an antibody that reacts with domain 1 or domain 3 of erbB3 is preferable, and the first antibody is erbB3. More preferred is an antibody composition that is an antibody that reacts with domain 4 and the second antibody is an antibody that reacts with domain 1 of erbB3.
  • the first antibody is preferably an antibody selected from the following (a) to (c) or the antibody fragment.
  • A An antibody that competes with the 1126 antibody clone and the antibody fragment.
  • B An antibody that reacts with an epitope including an epitope to which the 1126 antibody clone reacts and the antibody fragment.
  • C an antibody that reacts with the same epitope to which the 1126 antibody clone reacts and the antibody fragment.
  • the second antibody is preferably an antibody selected from the following (a) to (c) or an antibody fragment thereof.
  • A An antibody that competitively reacts with the 1153 antibody clone and the antibody fragment.
  • B An antibody that reacts with an epitope including the epitope with which the 1153 antibody clone reacts and the antibody fragment.
  • C An antibody that reacts with the same epitope as the epitope with which the 1153 antibody clone reacts and the antibody fragment.
  • the antibody composition of the present invention can inhibit the binding of an erbB3-specific ligand to erbB3, and at the same time, can inhibit dimerization (homodimer and heterodimer) between erb3 and the erbB family.
  • the antibody of the present invention includes an antibody or an antibody fragment thereof that specifically recognizes the extracellular region of erbB3 of the present invention and inhibits EGF-like ligand-dependent phosphorylation of erbB3, a radioisotope, a small molecule drug, It includes a derivative of an antibody in which a high-molecular drug, protein, antibody drug or the like is chemically or genetically bound.
  • the derivative of the antibody in the present invention specifically recognizes the extracellular region of erbB3 of the present invention and inhibits EGF-like ligand-dependent phosphorylation of erbB3, or the N of the H chain or L chain of the antibody fragment thereof
  • an appropriate substituent or side chain in the antibody or antibody fragment thereof, and also a sugar chain in the antibody or antibody fragment thereof, etc., a radioisotope, a low molecular drug, a high molecular drug It can be produced by combining an immunostimulant, protein, antibody drug, or the like by a chemical method [Introduction to Antibody Engineering, Jinshoshokan (1994)].
  • the derivative of the antibody in the present invention binds to DNA encoding an antibody or antibody fragment that specifically recognizes the extracellular region of erbB3 of the present invention and inhibits EGF-like ligand-dependent phosphorylation of erbB3. It can be produced by genetic engineering techniques in which the protein or DNA encoding the antibody drug is linked and inserted into an expression vector, the expression vector is introduced into an appropriate host cell and expressed.
  • radioisotope examples include 111 In, 131 I, 125 I, 90 Y, 64 Cu, 99 Tc, 77 Lu, and 211 At.
  • the radioisotope can be directly bound to the antibody by the chloramine T method or the like. Further, a substance that chelates a radioisotope may be bound to the antibody.
  • the chelating agent include 1-isothiocyanate benzyl-3-methyldiethylenetriaminepentaacetic acid (MX-DTPA).
  • low molecular weight drugs examples include alkylating agents, nitrosourea agents, antimetabolites, antibiotics, plant alkaloids, topoisomerase inhibitors, hormone therapy agents, hormone antagonists, aromatase inhibitors, P glycoprotein inhibitors, platinum Anti-cancer agents such as complex derivatives, M phase inhibitors or kinase inhibitors [Clinical Oncology, Cancer and Chemotherapy (1996)], steroidal agents such as hydrocortisone or prednisone, non-steroidal agents such as aspirin or indomethacin, gold thiomalate, Anti-inflammatory agents such as immunomodulators such as penicillamine, immunosuppressive agents such as cyclophosphamide or azathioprine, chlorpheniramine maleate, or antihistamines such as clemacytin [Inflammation and anti-inflammatory therapy, Medical & Dental Publishing Co., Ltd. ( 1982)] It is.
  • anticancer agents include amifostine (ethiol), cisplatin, dacarbazine (DTIC), dactinomycin, mechlorethamine (nitrogen mustard), streptozocin, cyclophosphamide, ifosfamide, carmustine (BCNU), lomustine (CCNU), doxorubicin (Adriamycin), epirubicin, gemcitabine (gemzar), daunorubicin, procarbazine, mitomycin, cytarabine, etoposide, methotrexate, 5-fluorouracil, fluorouracil, vinblastine, vincristine, bleomycin, daunomycin, pepromycin, estramustine, paclitaxel, paclitaxel, paclitaxel Taxotea), aldesleukin, asparaginase, buoy Ruphan, carboplatin, oxaliplatin, nedaplatin, cladribine
  • Examples of a method for binding a low molecular weight drug and an antibody include, for example, a method of binding a drug and an amino group of an antibody via glutaraldehyde, or a drug amino group and an antibody carboxyl group via a water-soluble carbodiimide. And the like.
  • polymer drug examples include polyethylene glycol (hereinafter referred to as PEG), albumin, dextran, polyoxyethylene, styrene maleic acid copolymer, polyvinyl pyrrolidone, pyran copolymer, and hydroxypropyl methacrylamide.
  • PEG polyethylene glycol
  • albumin dextran
  • polyoxyethylene polyoxyethylene
  • styrene maleic acid copolymer polyoxyethylene
  • polyvinyl pyrrolidone polyvinyl pyrrolidone
  • pyran copolymer examples include hydroxypropyl methacrylamide.
  • Examples of the method of binding PEG and antibody include a method of reacting with a PEGylation modifying reagent [Bioconjugate Pharmaceutical, Yodogawa Shoten (1993)].
  • Examples of the PEGylation modifying reagent include a modifying agent for ⁇ -amino group of lysine (Japanese Patent Laid-Open No. 61-178926), a modifying agent for carboxyl group of aspartic acid and glutamic acid (Japanese Patent Laid-Open No. Sho 56). No. -23587), or a modifier of arginine to a guanidino group (Japanese Patent Laid-Open No. 2-117920).
  • an immunostimulant a natural product known as an immunoadjuvant may be used.
  • a drug that enhances immunity is ⁇ (1 ⁇ 3) glucan (lentinan, schizophyllan), or ⁇ -galactosylceramide ( KRN7000).
  • proteins include cytokines or growth factors that activate immunocompetent cells such as NK cells, macrophages, or neutrophils, or toxin proteins.
  • cytokines or growth factors examples include interferon (hereinafter referred to as IFN) - ⁇ , IFN- ⁇ , IFN- ⁇ , interleukin (hereinafter referred to as IL) -2, IL-12, IL-15, IL- 18, IL-21, IL-23, granulocyte colony stimulating factor (G-CSF), granulocyte / macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF) and the like.
  • IFN interferon
  • IL interleukin
  • IL-12 interleukin
  • IL-15 interleukin
  • IL-15 interleukin- 18, IL-21
  • IL-23 granulocyte colony stimulating factor
  • G-CSF granulocyte colony stimulating factor
  • GM-CSF granulocyte / macrophage colony stimulating factor
  • M-CSF macrophage colony stimulating factor
  • toxin protein examples include ricin, diphtheria toxin,
  • Examples of the antibody drug include an antigen against which apoptosis is induced by antibody binding, an antigen associated with tumor pathogenesis or an antigen that regulates immune function, and an antibody against an antigen involved in angiogenesis of a lesion site.
  • antigens whose apoptosis is induced by antibody binding include, for example, Cluster of differentiation (hereinafter referred to as CD) 19, CD20, CD21, CD22, CD23, CD24, CD37, CD53, CD72, CD73, CD74, CDw75, CDw76, CD77, CDw78, CD79a, CD79b, CD80 (B7.1), CD81, CD82, CD83, CDw84, CD85, CD86 (B7.2), human leukocyte antigen (HLA) -Class II, or epidermal growth factor receptor The body (Epideral Growth Factor Receptor, EGFR) and the like.
  • CD Cluster of differentiation
  • CD20 CD21, CD22, CD23, CD24, CD37, CD53, CD72, CD73, CD74, CDw75, CDw76, CD77, CDw78, CD79a, CD79b, CD80
  • CD81, CD82, CD83, CDw84, CD85, CD86 B7.2
  • human leukocyte antigen H
  • antigens involved in tumor pathogenesis or antibodies that regulate immune functions include CD4, CD40, CD40 ligand, B7 family molecules (CD80, CD86, CD274, B7-DC, B7-H2, B7-H3, Or B7-H4), a ligand of a B7 family molecule (CD28, CTLA-4, ICOS, PD-1, or BTLA), OX-40, OX-40 ligand, CD137, a tumor necrosis factor (TNF) receptor family molecule ( DR4, DR5, TNFR1, or TNFR2), TNF-related apoptosis-inducing ligand receptor (TRAIL) family molecule, TRAIL family Child receptor family (TRAIL-R1, TRAIL-R2, TRAIL-R3, or TRAIL-R4), NF ⁇ B activating receptor ligand (receptor activator of nuclear factor B ligand; RANK), RANK ligand CD25, Body, cytokine [such as IL-1 ⁇ ,
  • antigens for antibodies that inhibit angiogenesis at a lesion site include, for example, vascular endothelial growth factor (VEGF), angiopoietin, fibroblast growth factor (FGF), and GF.
  • VEGF vascular endothelial growth factor
  • FGF fibroblast growth factor
  • GF vascular endothelial growth factor
  • Cell growth factor hepatocyte growth factor; HGF
  • PDGF platelet-derived growth factor
  • IGF insulin-like growth factor
  • ILGF erythropoietin
  • IL 8 erythropoietin
  • SDF-1 ephrin
  • a fusion antibody with a protein or antibody drug comprises linking a cDNA encoding a protein to a cDNA encoding a monoclonal antibody or antibody fragment, constructing a DNA encoding the fusion antibody, and expressing the DNA for prokaryote or eukaryote It is inserted into a vector and expressed by introducing the expression vector into a prokaryotic or eukaryotic organism to produce a fusion antibody.
  • the derivative of the above antibody is used as a detection method, a quantification method, a detection reagent, a quantification reagent or a diagnostic agent
  • the natural steric structure of the extracellular region of erbB3 of the present invention is specifically recognized, and the cell Examples of the agent that binds to a monoclonal antibody that binds to the outer region or an antibody fragment thereof include a label that is used in ordinary immunological detection or measurement methods.
  • the label examples include an enzyme such as alkaline phosphatase, peroxidase or luciferase, a luminescent substance such as acridinium ester or lophine, or a fluorescent substance such as fluorescein isothiocyanate (FITC) or tetramethylrhodamine isothiocyanate (RITC).
  • an enzyme such as alkaline phosphatase, peroxidase or luciferase, a luminescent substance such as acridinium ester or lophine, or a fluorescent substance such as fluorescein isothiocyanate (FITC) or tetramethylrhodamine isothiocyanate (RITC).
  • FITC fluorescein isothiocyanate
  • RITC tetramethylrhodamine isothiocyanate
  • the tumor, malignant tumor and cancer include colon cancer, colorectal cancer, lung cancer, breast cancer, brain tumor, melanoma, renal cell cancer, leukemia, lymphoma, T cell lymphoma, gastric cancer, pancreatic cancer, cervical cancer, Endometrial cancer, ovarian cancer, esophageal cancer, liver cancer, squamous cell carcinoma of the head and neck, skin cancer, urinary tract cancer, prostate cancer, choriocarcinoma, pharyngeal cancer, laryngeal cancer, pleuromas, male embryos, endometrial hyperplasia Formation, endometriosis, germoma, fibrosarcoma, Kaposi sarcoma, hemangioma, cavernous hemangioma, hemangioblastoma, retinoblastoma, astrocytoma, neurofibroma, oligodendroglioma, medulloblastoma, And at least
  • the production of a monoclonal antibody includes the following working steps. (1) Purification of a biopolymer used as an immunogen and / or preparation of cells overexpressing an antigen protein on the cell surface, (2) Immunization by injecting an antigen into an animal, Collecting blood and examining the antibody titer to determine the timing of removal of the spleen and the like, and then preparing antibody-producing cells; (3) preparing myeloma cells (hereinafter referred to as “myeloma”); (4) Cell fusion between antibody-producing cells and myeloma, (5) Selection of hybridoma group producing desired antibody, (6) Division into single cell clones (cloning), (7) In some cases, a large amount of monoclonal antibody Culture of hybridomas for production, or breeding of animals transplanted with hybridomas, (8) Physiological activity of the monoclonal antibody thus produced and its recognition specificity Study of, or test properties as labeling reagents, and the
  • the production method of the anti-erbB3 antibody of the present invention will be described in detail according to the above steps, but the production method of the antibody is not limited thereto, and for example, antibody-producing cells other than spleen cells and myeloma can also be used. . It is also possible to use antibodies derived from human antibody-producing transgenic animal serum.
  • erbB3 or erbB3 as antigens can be obtained by introducing an expression vector containing cDNA encoding erbB3 full length or a partial length thereof into Escherichia coli, yeast, insect cells or animal cells. ,Obtainable.
  • erbB3 can be purified and obtained from cultured human tumor cells and human tissues that express erbB3 in large amounts. Further, the tumor cultured cells or the tissue can be used as an antigen as it is.
  • a synthetic peptide having a partial sequence of erbB3 can be prepared by a chemical synthesis method such as the Fmoc method or the tBoc method and used as an antigen.
  • the erbB3 used in the present invention is described in Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989) or Current Protocols InMoleculars in 197.
  • the DNA encoding erbB3 can be expressed in a host cell and produced by the following method. *
  • a recombinant vector is prepared by inserting a full-length cDNA encoding erbB3 downstream of the promoter of an appropriate expression vector.
  • a DNA fragment of an appropriate length encoding a partial polypeptide prepared based on the full-length cDNA may be used.
  • a transformant producing erbB3 can be obtained by introducing the obtained recombinant vector into a host cell suitable for the expression vector.
  • Any expression vector can be used as long as it contains an appropriate promoter at a position where it can be autonomously replicated in the host cell to be used or integrated into the chromosome and can transcribe DNA encoding erbB3. it can.
  • any microorganisms belonging to the genus Escherichia such as Escherichia coli, yeast, insect cells or animal cells can be used so long as they can express the target gene.
  • the recombinant vector is a vector that can autonomously replicate in a prokaryotic organism and at the same time contains a promoter, a ribosome binding sequence, DNA encoding erbB3, and a transcription termination sequence. It is preferable.
  • the recombinant vector does not necessarily require a transcription termination sequence, but it is preferable to place the transcription termination sequence immediately below the structural gene.
  • the recombinant vector may contain a gene that controls the promoter. *
  • a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the start codon is adjusted to an appropriate distance is preferably used.
  • the base sequence of the DNA encoding erbB3 can be substituted so that the codon is optimal for expression in the host, thereby improving the production rate of the desired erbB3.
  • Any expression vector can be used as long as it can function in the host cell to be used.
  • pBTrp2, pBTac1, pBTac2 above, Roche Diagnostics
  • pKK233-2 Pharmacia
  • pSE280 manufactured by Invitrogen
  • pGEMEX-1 manufactured by Promega
  • pQE-8 manufactured by Qiagen
  • pKYP10 Japanese Unexamined Patent Publication No. 58-110600
  • pKYP200 [Agricultural Biological Chemistry, 48,669 (1984)]
  • pLSA1 Agric. Biol. Chem. , 53, 277 (1989)]
  • pGEL1 Proc. Natl.
  • any promoter can be used as long as it can function in the host cell to be used.
  • promoters derived from Escherichia coli or phage such as trp promoter (Ptrp), lac promoter, PL promoter, PR promoter or T7 promoter.
  • An artificially modified promoter such as a tandem promoter, tac promoter, lacT7 promoter, or letI promoter in which two Ptrps are connected in series can also be used.
  • Examples of host cells include E. coli XL1-Blue, E. coli XL2-Blue, E. coli DH1, E. coli MC1000, E. coli KY3276, E. coli W1485, E. coli JM109, E. coli HB101, E. coli No. 49, E. coli W3110, E. coli NY49 or E. coli DH5 ⁇ .
  • Any method can be used for introducing a recombinant vector into a host cell as long as it is a method for introducing DNA into the host cell to be used.
  • a method using calcium ions Proc. Natl. Acad. Sci. USA, 69, 2110 (1972), Gene, 17, 107 (1982), Molecular & General Genetics, 168, 111 (1979)].
  • any expression vector can be used as long as it can function in animal cells.
  • pAGE107 Japanese Unexamined Patent Publication No. 3-22979; Cytotechnology, 3, 133 (1990)
  • pAS3-3 Japanese Unexamined Patent Publication No. 2227705
  • CMV cytomegalovirus
  • IE immediate early gene promoter
  • SV40 early promoter SV40 early promoter
  • retroviral promoter metallothionein promoter
  • heat shock promoter SR ⁇ promoter
  • Moloney murine leukemia virus promoter or enhancer Moloney murine leukemia virus promoter or enhancer.
  • an enhancer of human CMV IE gene may be used together with a promoter.
  • Examples of the host cell include Namalwa cells that are human cells, COS cells that are monkey cells, CHO cells that are Chinese hamster cells, or HBT5637 (Japanese Patent Laid-Open No. 63-000299).
  • Any method can be used for introducing a recombinant vector into a host cell as long as it is a method for introducing DNA into animal cells.
  • the electroporation method [Cytotechnology, 3, 133 (1990)]
  • the calcium phosphate method Japanese Patent Laid-Open No. 2227705
  • the lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
  • a microorganism having a recombinant vector incorporating DNA encoding erbB3 obtained as described above, or a transformant derived from an animal cell or the like is cultured in a medium, and the erbB3 is produced and accumulated in the culture. By collecting from the culture, erbB3 can be produced.
  • the method of culturing the transformant in a medium can be performed according to a usual method used for culturing a host. *
  • erbB3 When expressed in cells derived from eukaryotes, erbB3 with an added sugar or sugar chain can be obtained.
  • an inducer When culturing a microorganism transformed with a recombinant vector using an inducible promoter, an inducer may be added to the medium as necessary.
  • cultivating a microorganism transformed with a recombinant vector using the lac promoter cultivate a microorganism transformed with isopropyl- ⁇ -D-thiogalactopyranoside or the like using a recombinant vector using the trp promoter.
  • indole acrylic acid or the like may be added to the medium.
  • Examples of a medium for culturing a transformant obtained using an animal cell as a host include, for example, a commonly used RPMI 1640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science]. , 122, 501 (1952)], Dulbecco's modified MEM medium [Virology, 8, 396 (1959)], 199 medium [Proc. Soc. Exp. Biol. Med. 73, 1 (1950)], Iscove's Modified Dulbecco's Medium (IMDM) medium, or a medium obtained by adding fetal bovine serum (FBS) or the like to these mediums.
  • RPMI 1640 medium The Journal of the American Medical Association, 199, 519 (1967)]
  • Eagle's MEM medium Science].
  • 122, 501 (1952) Dulbecco's modified MEM medium
  • 199 medium Proc. Soc. Exp. Biol. Med. 73, 1 (1950)]
  • the culture is usually carried out for 1 to 7 days under conditions such as pH 6 to 8, 30 to 40 ° C., and 5% CO 2 .
  • Examples of the production method of erbB3 include a method for producing it in a host cell, a method for producing it secreted outside the host cell, or a method for producing it on the host cell membrane.
  • the host cell to be used or the structure of erbB3 to be produced is used. By changing, an appropriate method can be selected.
  • DNA encoding the amino acid sequence of the extracellular region DNA encoding the Fc region of the antibody, DNA encoding glutathione S-transferase (GST), DNA encoding the FLAG tag, DNA encoding the histidine tag, etc.
  • GST glutathione S-transferase
  • An antigen fusion protein can be prepared by preparing linked DNA and expressing and purifying it.
  • an Fc fusion protein (hereinafter referred to as erbB3-hFc) in which the extracellular region of erbB3 is bound to the Fc region of human IgG, a fusion protein of the extracellular region of erbB3 and glutathione S-transferase (GST) (Hereinafter referred to as erbB3-GST).
  • the production amount of erbB3 can be increased by using a gene amplification system using a dihydrofolate reductase gene or the like (Japanese Patent Laid-Open No. 2-227075).
  • the obtained erbB3 can be isolated and purified as follows, for example.
  • the cells When erbB3 is expressed in a dissolved state in the cells, the cells are collected by centrifugation after culturing, suspended in an aqueous buffer, and then used with an ultrasonic crusher, French press, Manton Gaurin homogenizer, or dynomill. The cells are disrupted to obtain a cell-free extract.
  • an ordinary protein isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, diethylamino Anion exchange chromatography using a resin such as ethyl (DEAE) -Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical), cation exchange chromatography using a resin such as S-Sepharose FF (manufactured by Pharmacia) Methods such as electrophoresis, hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieves, affinity chromatography, chromatofocusing or isoelectric focusing. Use alone or in combination to obtain purified preparations Door can be.
  • a solvent extraction method ethyl (DEAE) -Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical)
  • erbB3 When erbB3 is expressed by forming an insoluble substance in the cell, the cell is collected and crushed in the same manner as described above, and centrifuged to collect the insoluble substance of erbB3 as a precipitate fraction. The recovered insoluble erbB3 is solubilized with a protein denaturant. After diluting or dialyzing the solubilized solution, the erbB3 is returned to a normal three-dimensional structure, and then a purified polypeptide preparation can be obtained by the same isolation and purification method as described above. *
  • the derivative such as erbB3 or a sugar modification product thereof can be recovered from the culture supernatant.
  • a soluble fraction can be obtained by treating the culture by a method such as centrifugation as described above, and a purified preparation can be obtained from the soluble fraction by using the same isolation and purification method as described above. it can.
  • ErbB3 used in the present invention can also be produced by a chemical synthesis method such as the Fmoc method or the tBoc method. Furthermore, since the primary structure of erbB3 is known (Kraus, MH et al., Proc. Nat. Acad. Sci. 86, 9193-9197, 1989.), peptides and the like can be obtained by methods well known to those skilled in the art. Peptide synthesizers such as Advanced Chemtech, Perkin Elmer, Pharmacia, Protein Technology Instrument, Synthecel-Vega, Perceptive, or Shimadzu Corporation It can also be chemically synthesized using.
  • Immunization is performed by administering the antigen together with Freund's complete adjuvant or an appropriate adjuvant such as aluminum hydroxide gel and pertussis vaccine.
  • the immunogen administration method for mouse immunization may be subcutaneous injection, intraperitoneal injection, intravenous injection, intradermal injection, intramuscular injection or footpad injection, but intraperitoneal injection, footpad injection or intravenous injection. Is preferred.
  • a conjugate with a carrier protein such as bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH) is prepared and used as an immunogen.
  • BSA bovine serum albumin
  • KLH keyhole limpet hemocyanin
  • the antigen is administered 5 to 10 times every 1 to 2 weeks after the first administration. Three to seven days after each administration, blood is collected from the fundus venous plexus, and the antibody titer of the serum is measured using an enzyme immunoassay [Antibodies- A Laboratory Manual, Cold Spring Harbor Laboratory (1988)]. If an animal whose serum shows a sufficient antibody titer against the antigen used for immunization is used as a source of antibody-producing cells for fusion, the effect of subsequent operations can be enhanced. *
  • tissue containing antibody-producing cells such as the spleen are removed from the immunized animal, and antibody-producing cells are collected.
  • Antibody-producing cells are plasma cells and their precursor cells, lymphocytes, which may be obtained from any part of the individual, generally spleen, lymph nodes, bone marrow, tonsils or peripheral blood, or a combination thereof as appropriate.
  • lymphocytes which may be obtained from any part of the individual, generally spleen, lymph nodes, bone marrow, tonsils or peripheral blood, or a combination thereof as appropriate.
  • Spleen cells are most commonly used, although they can be obtained from When spleen cells are used, the spleen is shredded and loosened, and then centrifuged, and the erythrocytes are removed to obtain antibody producing cells for fusion.
  • myeloma cells having no autoantibody-producing ability derived from mammals such as mice, rats, guinea pigs, hamsters, rabbits or humans can be used.
  • a cell line obtained from a mouse for example, a myeloma cell (myeloma cell), a cell line obtained from a mouse is used.
  • an 8-azaguanine resistant mouse (BALB / c-derived) myeloma is used.
  • P3-X63Ag8-U1 P3-U1 [Current Topics in Microbiology and Immunology, 18, 1 (1978)], P3-NS1 / 1-Ag41 (NS-1) [European J. et al. Immunology, 6, 511 (1976)], SP2 / 0-Ag14 (SP-2) [Nature, 276, 269 (1978)], P3-X63-Ag8653 (653) [J. Immunology, 123, 1548 (1979)], P3-X63-Ag8 (X63) [Nature, 256, 495 (1975)] or the like is used.
  • FCS fetal calf serum
  • Culture medium such as Iscove's Modified Dulbecco's Medium (Iscove's Modified Dulbecco's Medium; hereinafter referred to as “IMDM”) or Dulbecco's Modified Eagle Medium (Dulbecco's Modified Eagle Medium; hereinafter referred to as “DMEM”)
  • IMDM Iscove's Modified Dulbecco's Medium
  • DMEM Dulbecco's Modified Eagle Medium
  • the cells are subcultured in a normal medium (for example, DMEM medium containing 10% FCS) 3 to 4 days before cell fusion, and a cell number of 2 ⁇ 10 7 or more is secured on the day of fusion.
  • MEM Minimum Essential Medium
  • PBS 1.83 g of disodium phosphate, monopotassium phosphate 0 .21 g, 7.65 g of sodium chloride, 1 liter of distilled water, pH 7.2
  • a mixture of polyethylene glycol-1000 (PEG-1000), MEM medium and dimethyl sulfoxide is added at 37 ° C. with stirring.
  • the cells are gently suspended in a normal medium (HAT medium) in which hypoxanthine, thymidine, and aminopterin are added to the antibody-producing cells for fusion. This suspension is cultured for 7-14 days at 37 ° C. in a 5% CO 2 incubator.
  • cell fusion can be performed by the following method. Spleen cells and myeloma are thoroughly washed with a serum-free medium (eg, DMEM) or phosphate buffered saline (hereinafter referred to as “phosphate buffer solution”), and the ratio of the number of spleen cells to myeloma is 5: 1 to Mix to about 10: 1 and centrifuge.
  • a serum-free medium eg, DMEM
  • phosphate buffer solution phosphate buffered saline
  • a serum-free medium containing 1 mL of 50% (w / v) polyethylene glycol (molecular weight 1000 to 4000) is added dropwise with stirring. Thereafter, 10 mL of serum-free medium is slowly added and then centrifuged.
  • HAT medium containing an appropriate amount of HAT solution and human interleukin-2 (hereinafter referred to as “IL-2”), and cultured on each plate (hereinafter referred to as “plate”). Dispense into wells and incubate at 37 ° C. for about 2 weeks in the presence of 5% CO 2 . HAT medium is supplemented as needed.
  • IL-2 human interleukin-2
  • the myeloma cell is an 8-azaguanine resistant strain, that is, a hypoxanthine / guanine / phosphoribosyltransferase (HGPRT) deficient strain
  • HGPRT hypoxanthine / guanine / phosphoribosyltransferase
  • the myeloma cell that has not fused, and the myeloma Fusion cells between cells cannot survive in a HAT-containing medium.
  • fused cells between antibody-producing cells or hybridomas between antibody-producing cells and myeloma cells can survive, but fused cells between antibody-producing cells have a lifetime. Therefore, by continuing the culture in the HAT-containing medium, only the hybridoma of the antibody-producing cell and the myeloma cell survive, and as a result, the hybridoma can be selected.
  • the medium is replaced with a medium obtained by removing aminopterin from the HAT medium (hereinafter referred to as “HT medium”). Thereafter, a part of the culture supernatant is collected, and a hybridoma that produces an antibody can be selected using the antibody titer measurement method described later.
  • HT medium a medium obtained by removing aminopterin from the HAT medium
  • antibody titer measurement methods include radioisotope immunoassay (hereinafter referred to as “RIA method”), solid-phase enzyme immunoassay (hereinafter referred to as “ELISA method”), fluorescent antibody method, passive hemagglutination method, and the like.
  • RIA method radioisotope immunoassay
  • ELISA method solid-phase enzyme immunoassay
  • fluorescent antibody method fluorescent antibody method
  • passive hemagglutination method passive hemagglutination method
  • the RIA method or the ELISA method is preferable from the viewpoints of detection sensitivity, rapidity, accuracy, and possibility of automation of operation.
  • the hybridoma that has been found to produce a specific antibody by measuring the antibody titer is transferred to another plate for cloning.
  • This cloning method includes, for example, a limiting dilution method in which one well of a plate is diluted and cultured so that one hybridoma is contained, a soft agar method in which colonies are collected by culturing in a soft agar medium, and 1 by a micromanipulator. Examples include a method of picking up individual cells and culturing, and a “sorter clone” in which one cell is separated by a cell sorter.
  • the limiting dilution method is simple and often used.
  • cloning by limiting dilution is repeated 2 to 4 times, and those with stable antibody titers are selected as anti-human erbB3 monoclonal antibody-producing hybridoma strains.
  • Ascites fluid is collected from the mouse, centrifuged to remove solids, salted out with 40-50% ammonium sulfate, and purified by caprylic acid precipitation, DEAE-Sepharose column, protein A column or gel filtration column.
  • the IgG or IgM fraction is collected and used as a purified monoclonal antibody.
  • ascites containing a large amount of the anti-erbB3 antibody of the present invention can be obtained by growing the hybridoma in the abdominal cavity of the same strain (eg, BALB / c) or Nu / Nu mouse, rat, guinea pig, hamster or rabbit. Obtainable.
  • the obtained cell suspension is centrifuged, and purified using a protein A-column or protein G-column from the obtained supernatant, and the IgG fraction is collected to obtain a purified monoclonal antibody.
  • a commercially available monoclonal antibody purification kit for example, MAbTrap GII kit; manufactured by Amersham Pharmacia Biotech
  • MAbTrap GII kit manufactured by Amersham Pharmacia Biotech
  • the subclass of the antibody is determined by an enzyme immunoassay using a subcluster epiting kit.
  • Binding assay of anti-erbB3 monoclonal antibody includes, for example, an octterlony method, an ELISA method, an RIA method, a flow cytometry method (FCM), or a surface plasmon resonance method (SPR). This can be confirmed with the above binding assay system.
  • Octelrony method is simple, but if the antibody concentration is low, a concentration operation is required.
  • the culture supernatant is reacted with the antigen-adsorbing solid phase as it is, and antibodies corresponding to various immunoglobulin isotypes and subclasses are used as secondary antibodies. Can be identified.
  • Purified or partially purified recombinant human erbB3 is adsorbed on a solid phase surface such as a 96-well plate for ELISA, and the solid phase surface to which no antigen is adsorbed is a protein unrelated to the antigen, such as bovine serum albumin (hereinafter “BSA”).
  • BSA bovine serum albumin
  • the ELISA plate was washed with a phosphate buffer saline (hereinafter abbreviated as PBS) (hereinafter abbreviated as Tween-PBS) containing 0.05% Tween 20 and then serially diluted primary antibody (eg, mouse serum, on culture) The antibody is bound to the antigen immobilized on the plate.
  • PBS phosphate buffer saline
  • Tween-PBS serially diluted primary antibody
  • an anti-immunoglobulin antibody labeled with biotin, an enzyme (horse radish peroxidase; HRP, alkaline phosphatase; ALP, etc.), a chemiluminescent substance or a radioactive compound is dispensed as the second antibody, and the primary antibody bound to the plate.
  • a secondary antibody is reacted with the antibody.
  • Tween-PBS a reaction according to the labeling substance of the second antibody is performed, and a monoclonal antibody that reacts specifically with the immunogen is selected.
  • the FCM method can measure the binding activity of a target antibody to antigen-expressing cells [Cancer Immunol. Immunother. , 36, 373 (1993)].
  • the binding of the target antibody to the membrane protein expressed on the cell membrane can be said to be an antibody that recognizes the three-dimensional structure of the naturally occurring antigen.
  • Examples of the SPR method include kinetic analysis by Biacore (registered trademark) .
  • Biacore registered trademark
  • T100 kinetics in the binding between the antigen and the test substance is measured, and the result is analyzed by analysis software attached to the instrument.
  • a test substance such as a hybridoma culture supernatant or a purified monoclonal antibody is allowed to flow, bind in an appropriate amount, and further, multiple concentrations of antigens with known concentrations are allowed to flow. Measure dissociation.
  • the obtained data is subjected to kinetic analysis using a 1: 1 binding model, and various parameters are acquired.
  • human erbB3 protein is immobilized on a sensor chip by, for example, an amine coupling method, and then purified monoclonal antibodies having a plurality of known concentrations are allowed to flow to measure binding and dissociation.
  • the obtained data is subjected to kinetic analysis using a software that is included with the device, using a binding binding model, and various parameters are acquired.
  • an antibody that competes with the anti-erbB3 antibody of the present invention and binds to erbB3 can be obtained by adding a test antibody to the above-described binding assay system for reaction. That is, by screening for an antibody that inhibits antibody binding when a test antibody is added, an antibody that competes with the acquired antibody for binding to the extracellular region of erbB3 can be obtained.
  • the recognition epitope of an antibody can be identified as follows. For example, if a partial deletion of an antigen, an amino acid modification in which a different amino acid residue is changed depending on the species difference, or a domain modification is prepared, and the reactivity of the target antibody against the deletion or amino acid modification decreases, the deletion It becomes clear that the site or amino acid modification site is an epitope of the antibody of interest.
  • Partially deleted antigens and amino acid variants may be obtained as secreted proteins using appropriate host cells (such as E. coli, yeast, plant cells, and mammalian cells) or expressed on the cell membrane of host cells. Antigen-expressing cells can also be produced.
  • a membrane-type antigen it is preferably expressed on the host cell membrane in order to express it while retaining the three-dimensional structure of the antigen. It is also possible to prepare a synthetic peptide that mimics the primary structure or three-dimensional structure of the antigen and confirm the reactivity of the target antibody. Synthetic peptides include methods for preparing various partial peptides of the molecule using known peptide synthesis techniques.
  • a chimeric protein is prepared by combining domains 1 to 4, and the epitope of the antibody is determined by confirming the reactivity of the target antibody. Can be identified.
  • An epitope that is recognized by an antibody that binds to the extracellular region of erbB3 of the present invention and an antibody that binds to the same epitope are identified by identifying the epitope of the antibody obtained by the above-described binding assay system, and a partial epitope of the identified epitope.
  • a synthetic peptide, a synthetic peptide mimicking the three-dimensional structure of an epitope, or a recombinant protein can be prepared and obtained by immunization.
  • a recombinant protein in which the whole extracellular region or a part of the extracellular domain is linked to an appropriate tag FLAG tag, Histidine tag, GST protein, antibody Fc region, etc.
  • an appropriate tag FLAG tag, Histidine tag, GST protein, antibody Fc region, etc.
  • a recombinant antibody expression vector is an animal cell expression vector in which DNAs encoding human antibodies CH and CL are incorporated, and the animal cell expression vector is human. It can be constructed by cloning DNAs encoding antibody CH and CL, respectively.
  • Any human antibody CH and CL can be used for the C region of a human antibody.
  • ⁇ 1 subclass CH and ⁇ class CL of human antibodies are used.
  • cDNA is used for DNA encoding CH and CL of human antibodies
  • chromosomal DNA consisting of exons and introns can also be used.
  • Any animal cell expression vector can be used as long as it can incorporate and express a gene encoding the C region of a human antibody.
  • the promoter and enhancer include the SV40 early promoter [J. Biochem. , 101, 1307 (1987)], Moloney murine leukemia virus LTR [Biochem. Biophys. Res. Commun. 149, 960 (1987)], CMV promoter (US Pat. No. 5,168,062) or immunoglobulin heavy chain promoter [Cell, 41,479 (1985)] and enhancer [Cell, 33,717 ( 1983)].
  • Recombinant antibody expression vectors balance the ease of construction of recombinant antibody expression vectors, the ease of introduction into animal cells, and the balance of expression levels of antibody H and L chains in animal cells.
  • a vector for expressing a recombinant antibody of a type (tandem type) in which the antibody H chain and L chain are present on the same vector [J. Immunol. Methods, 167, 271 (1994)]
  • Tandem type recombinant antibody expression vectors include pKANTEX93 (International Publication No.
  • MRNA is extracted from hybridoma cells producing non-human antibodies, and cDNA is synthesized.
  • the synthesized cDNA is cloned into a vector such as a phage or a plasmid to prepare a cDNA library.
  • Recombinant phages or recombinant plasmids having cDNA encoding VH or VL are isolated from the library using DNA encoding the C region portion or V region portion of the mouse antibody as a probe.
  • the entire base sequence of VH or VL of the target mouse antibody on the recombinant phage or recombinant plasmid is determined, respectively, and the total amino acid sequence of VH or VL is estimated from the base sequence.
  • non-human animal for producing a hybridoma cell producing a non-human antibody a mouse, rat, hamster, rabbit or the like is used, but any animal can be used as long as it can produce a hybridoma cell. .
  • RNA easy kit manufactured by Qiagen
  • mRNA from the total RNA, oligo (dT) immobilized cellulose column method [Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)], or Oligo-dT30 ⁇ Super> (R )
  • a kit such as mRNA Purification Kit (manufactured by Takara Bio Inc.) is used.
  • mRNA can be prepared from hybridoma cells using a kit such as Fast Track (registered trademark) mRNA Isolation Kit (manufactured by Invitrogen) or QuickPrep (registered trademark) mRNA Purification Kit (manufactured by Pharmacia).
  • any vector can be used as a vector into which cDNA synthesized using mRNA extracted from a hybridoma cell as a template is incorporated.
  • ZAP Express [Stratesies, 5, 58 (1992)], pBluescript II SK (+) [Nucleic Acids Research, 17, 9494 (1989)], ⁇ ZAPIII (manufactured by Stratagene), ⁇ gt10, Clgt11A: Clgt11 DNA Approach, I, 49 (1985)], Lambda BlueMid (Clontech), ⁇ ExCell, pT7T3-18U (Pharmacia), pcD2 [Mol. Cell. Biol. 3, 280 (1983)], or pUC18 [Gene, 33, 103 (1985)].
  • ZAP Express [Stratesies, 5, 58 (1992)]
  • pBluescript II SK (+) [Nucleic Acids Research, 17, 9494 (1989)]
  • ⁇ ZAPIII manufactured by Stratagene
  • Escherichia coli into which a cDNA library constructed by a phage or plasmid vector is introduced can be used as long as the cDNA library can be introduced, expressed and maintained.
  • PCR method Polymerase Chain Reaction method
  • the selected cDNA is cleaved with an appropriate restriction enzyme and then cloned into a plasmid such as pBluescript SK (-) (Stratagene), and the base sequence of the cDNA is determined by a commonly used base sequence analysis method, etc. To do.
  • a plasmid such as pBluescript SK (-) (Stratagene)
  • the base sequence of the cDNA is determined by a commonly used base sequence analysis method, etc.
  • Examples of the nucleotide sequence analysis method include the dideoxy method [Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)] and the like.
  • L. F. An automatic base sequence analyzer such as a DNA sequencer (Pharmacia) is used. *
  • VH and VL complete amino acid sequences for example, BLAST method [J. Mol. Biol. , 215, 403 (1990)] and the like, and novelity of complete amino acid sequences of VH and VL can be confirmed.
  • the base sequence of the linking portion encodes an appropriate amino acid
  • VH and VL cDNAs designed to be appropriate restriction enzyme recognition sequences are prepared.
  • the prepared VH and VL cDNAs are cloned so that they are expressed in an appropriate form upstream of each gene encoding the human antibody CH or CL of the humanized antibody expression vector obtained in (1). Then, a human chimeric antibody expression vector is constructed.
  • a cDNA encoding the non-human antibody VH or VL is amplified by a PCR method using a synthetic DNA having a recognition sequence of an appropriate restriction enzyme at both ends, and the recombinant antibody expression vector obtained in (1) Can also be cloned.
  • the amino acid sequence of the VH or VL framework region (hereinafter referred to as FR) of the human antibody to be grafted with the VH or VL CDR amino acid sequence of the non-human antibody is selected. Any amino acid sequence can be used as long as it is derived from a human antibody.
  • FR amino acid sequences of human antibodies registered in databases such as Protein Data Bank, or common amino acid sequences of each subgroup of FRs of human antibodies [Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services (1991)] are used.
  • an FR amino acid sequence having the highest homology (at least 60% or more) with the FR amino acid sequence of the VH or VL of the original antibody is selected.
  • the amino acid sequence of CDR of the original antibody is transplanted to the amino acid sequence of FR of VH or VL of the selected human antibody, respectively, and the amino acid sequence of VH or VL of the humanized antibody is designed respectively.
  • Frequency of codon usage of the designed amino acid sequence in the nucleotide sequence of the antibody gene [Sequencys of Proteins of Immunological Interest, US Dept. Considering Health and Human Services (1991)]
  • the DNA sequence is converted into a DNA sequence, and the DNA sequence encoding the amino acid sequence of VH or VL of the humanized antibody is designed.
  • the humanized antibody expression vector obtained in (1) can be easily encoded with VH or VL of the humanized antibody.
  • the cDNA to be cloned can be cloned.
  • the amplified product is cloned into a plasmid such as pBluescript SK (-) (Stratagene), the base sequence is determined by the same method as described in (2), and the desired humanized antibody is obtained.
  • a plasmid having a DNA sequence encoding the amino acid sequence of VH or VL is obtained.
  • a humanized antibody can only have its antigen-binding activity by transplanting only the VH and VL CDRs of a non-human antibody into the VH and VL FRs of a human antibody. [BIO / TECHNOLOGY, 9, 266 (1991)].
  • the amino acid residues that are directly involved in binding to the antigen the amino acid residues that interact with the amino acid residues of the CDRs, and the antibody V Reduced by maintaining the conformation of the region, identifying amino acid residues indirectly involved in antigen binding, and substituting those amino acid residues with the amino acid residues of the original non-human antibody Antigen binding activity can be increased.
  • the amino acid residues of human antibody VH and VL FRs can be modified by performing the PCR reaction described in (4) using the synthetic DNA for modification.
  • the base sequence is determined by the method described in (2) and it is confirmed that the target modification has been performed.
  • the vector for humanized antibody expression obtained in (1) is cloned upstream of each gene encoding the human antibody CH or CL so that they are expressed in an appropriate form.
  • Any host cell capable of expressing a recombinant antibody can be used as the host cell into which the expression vector is introduced.
  • COS-7 cells [American Type Culture Collection (ATCC) number: CRL1651] are used. Use [Methods in Nucleic Acids Res. , CRC press, 283 (1991)].
  • the DEAE-dextran method [Methods in Nucleic Acids Res. , CRC press (1991)]
  • lipofection method Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
  • Any host cell capable of expressing a recombinant antibody can be used as a host cell into which the recombinant antibody expression vector is introduced.
  • mouse SP2 / 0-Ag14 cells ATCC number: CRL1581
  • mouse P3X63-Ag8.653 cells ATCC number: CRL1580
  • CHO cells lacking a dihydrofolate reductase gene hereinafter referred to as dhfr
  • a protein such as an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or a sugar chain modification in which the 1-position of fucose is ⁇ -linked to the 6-position of N-acetylglucosamine at the reducing end of an N-glycoside-linked complex sugar chain
  • a host cell (WO 2003/85102) with reduced or deleted activity, such as a protein such as an enzyme involved in or a protein involved in transport of intracellular sugar nucleotide GDP-fucose to the Golgi apparatus, eg, ⁇ 1, CHO cells deficient in the 6-fucose transferase gene (International Publication No. 2005/035586, International Publication No. 02/31140) and the like can also be used.
  • a protein such as an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or a sugar chain modification in which the 1-position of fucose is ⁇ -linked to the 6-position of N-
  • a transformant that stably expresses the recombinant antibody is selected by culturing in an animal cell culture medium containing a drug such as G418 sulfate (hereinafter referred to as G418) (Japan).
  • G418 sulfate hereinafter referred to as G418, (Japan).
  • animal cell culture medium examples include RPMI 1640 medium (manufactured by Invitrogen), GIT medium (manufactured by Nippon Pharmaceutical), EX-CELL301 medium, EX-CELL302 medium, EX-CELL325 medium (manufactured by JRH), IMDM medium (Invitrogen). Or a hybridoma-SFM medium (manufactured by Invitrogen), or a medium obtained by adding various additives such as FBS to these mediums.
  • the obtained transformant is cultured in a medium to express and accumulate the recombinant antibody in the culture supernatant.
  • the expression level and antigen binding activity of the recombinant antibody in the culture supernatant can be measured by ELISA method or the like.
  • the transformed strain can increase the expression level of the recombinant antibody using a DHFR amplification system (Japanese Patent Laid-Open No. 2-257891). *
  • the recombinant antibody is purified from the culture supernatant of the transformant using a protein A-column [Monoclonal Antibodies-Principles and Practice, Third edition, Academic Press (1996), Antibodies-A LaboratoryLaboratoryLaboratoryLaboratoryLaboratory. (1988)]. It is also possible to combine methods used in protein purification such as gel filtration, ion exchange chromatography and ultrafiltration. *
  • the molecular weight of the purified recombinant antibody H chain, L chain, or whole antibody molecule is determined by polyacrylamide gel electrophoresis [Nature, 227, 680 (1970)] or Western blotting [Monoclonal Antibodies-Principles and practicies, Third]. edition, Academic Press (1996), Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory (1988)]. *
  • Activity evaluation of purified monoclonal antibody or antibody fragment thereof The activity evaluation of the purified monoclonal antibody or antibody fragment thereof of the present invention can be carried out as follows.
  • the binding activity to an erbB3-expressing cell line can be measured using the binding assay system described in 1- (7) above. CDC activity or ADCC activity against an antigen positive cell line is measured by a known measuring method [Cancer Immunol. Immunother. , 36, 373 (1993)].
  • EGF-like ligand-dependent phosphorylation of erbB3 and erbB3-specific ligand-dependent phosphorylation of erbB3 can be measured as follows.
  • ErbB3-expressing cells are washed with PBS or serum-free medium, and cultured for about 24 hr in serum-free medium.
  • a housekeeping gene such as actin
  • the phosphorylation inhibitory activity of erbB3 can be measured by performing Western blotting using an erbB3 specific antibody and a phosphotyrosine specific antibody.
  • erbB3 phosphorylation can also be achieved by subjecting cultured cells after addition of antibody to protein fixation and cell membrane permeabilization with formaldehyde and saponin, and performing FCM analysis using erbB3-specific antibodies and phosphotyrosine-specific antibodies. Can be confirmed.
  • erbB3 dimerization was performed in the same manner as in the phosphorylation detection experiment described above, and after cell preparation was prepared, immunoprecipitation of erbB3 protein was performed using an anti-erbB3 antibody. ErbB3 can be detected for dimerization or heterodimerization.
  • the method for controlling the effector activity of the anti-erbB3 antibody of the present invention is to be present at the reducing end of the N-linked complex type sugar chain that binds to the 297th asparagine (Asn) of the Fc region of the antibody.
  • fucose also referred to as core fucose
  • GlcNAc N-acetylglucosamine
  • the anti-erbB3 antibody of the present invention can control effector activity using any method.
  • Effector activity refers to antibody-dependent activity caused through the Fc region of an antibody.
  • Antibody-dependent cytotoxic activity ADCC activity
  • complement-dependent cytotoxic activity CDC activity
  • Antibody-dependent phagocytosis ADCC activity
  • antibody-dependent phagocytosis ADP activity
  • phagocytic cells ADP activity
  • the effector activity of the antibody can be increased or decreased.
  • expressing the antibody using CHO cells deficient in the ⁇ 1,6-fucose transferase gene An antibody to which fucose is not bound can be obtained.
  • Antibodies without fucose binding have high ADCC activity.
  • the antibody is expressed using a host cell into which an ⁇ 1,6-fucose transferase gene has been introduced.
  • an antibody to which fucose is bound can be obtained.
  • An antibody to which fucose is bound has a lower ADCC activity than an antibody to which fucose is not bound.
  • ADCC activity or CDC activity can be increased or decreased by modifying amino acid residues in the Fc region of the antibody.
  • ADCC activity can be controlled by increasing or decreasing the binding activity to Fc ⁇ R, and by modifying amino acid residues in the Fc region, CDC activity can be controlled by increasing or decreasing binding activity.
  • the CDC activity of an antibody can be increased by using the amino acid sequence of the Fc region described in US Patent Application Publication No. 2007/0148165.
  • amino acid modification described in US Pat. No. 6,737,056, US Pat. No. 7,297,775, US Pat. No. 7,317,091 or International Publication No. 2005/070963 By performing the above, ADCC activity or CDC activity can be increased or decreased.
  • an antibody with controlled effector activity of an antibody can be obtained by combining the above-mentioned method for controlling sugar chains and the method for modifying amino acid residues in the Fc region.
  • Antibody or antibody fragment thereof that specifically recognizes the extracellular region of erbB3 of the present invention and inhibits phosphorylation of EGF-like ligand-dependent erbB3 Can be used to treat hyperproliferative diseases such as cancer involving erbB3.
  • diseases involving erbB3 include colorectal cancer, colorectal cancer, lung cancer, breast cancer, glioma, malignant melanoma, thyroid cancer, renal cell cancer, leukemia, lymphoma, T cell lymphoma, gastric cancer, pancreatic cancer, Cervical cancer, endometrial cancer, ovarian cancer, esophageal cancer, liver cancer, head and neck squamous cell carcinoma, skin cancer, urinary tract cancer, bladder cancer, prostate cancer, choriocarcinoma, pharyngeal cancer, laryngeal cancer, pleurioma, male Embryoma, endometrial hyperplasia, endometriosis, embryonal, fibrosarcoma, Kaposi's sarcoma, hemangioma, cavernous hemangioma, hemangioblastoma, retinoblastoma, astrocytoma, neurofibroma, oligodendron
  • the above-mentioned diseases can be treated using at least two or more of the anti-erbB3 antibodies of the present invention.
  • an antibody that binds to domain 1 or 3 of erbB3 and an antibody that binds to domain 2 or 4 are used.
  • a therapeutic method comprising administration, most preferably a therapeutic method comprising administering an antibody that binds to domain 1 of erbB3 and an antibody that binds to domain 4.
  • the therapeutic agent containing the antibody of the present invention or an antibody fragment thereof, or a derivative thereof may contain only the antibody or the antibody fragment, or a derivative thereof as an active ingredient. It is provided as a pharmaceutical preparation prepared by a method known in the technical field of pharmaceutics, mixed with one or more pharmaceutically acceptable carriers.
  • Examples of the administration route include oral administration and parenteral administration such as intraoral, intratracheal, rectal, subcutaneous, intramuscular or intravenous.
  • Examples of the dosage form include sprays, capsules, tablets, powders, granules, syrups, emulsions, suppositories, injections, ointments or tapes.
  • compositions are usually used excipients, extenders, binders, wetting agents, disintegrants, surfactants, lubricants, dispersants, buffers, preservatives, solubilizers, preservatives, coloring. It can be produced by a conventional method using a flavoring agent, a flavoring agent or a stabilizer.
  • excipients include lactose, fructose, glucose, corn starch, sorbit, crystalline cellulose, sterilized water, ethanol, glycerol, physiological saline, and buffer solution.
  • disintegrant include starch, sodium alginate, gelatin, calcium carbonate, calcium citrate, dextrin, magnesium carbonate, and synthetic magnesium silicate.
  • binder examples include methyl cellulose or a salt thereof, ethyl cellulose, gum arabic, gelatin, hydroxypropyl cellulose, and polyvinyl pyrrolidone.
  • lubricant examples include talc, magnesium stearate, polyethylene glycol and hydrogenated vegetable oil.
  • the stabilizer examples include amino acids such as arginine, histidine, lysine, and methionine, human serum albumin, gelatin, dextran 40, methylcellulose, sodium sulfite, and sodium metasulfite.
  • additives examples include syrup, petrolatum, glycerin, ethanol, propylene glycol, citric acid, sodium chloride, sodium nitrite, and sodium phosphate.
  • Suitable formulations for oral administration are emulsions, syrups, capsules, tablets, powders or granules.
  • Liquid preparations such as emulsions or syrups include saccharides such as water, sucrose, sorbitol or fructose, glycols such as polyethylene glycol or propylene glycol, oils such as sesame oil, olive oil or soybean oil, p-hydroxybenzoic acid Manufactured using preservatives such as esters, or flavors such as strawberry flavor or peppermint as additives.
  • saccharides such as water, sucrose, sorbitol or fructose
  • glycols such as polyethylene glycol or propylene glycol
  • oils such as sesame oil, olive oil or soybean oil
  • p-hydroxybenzoic acid Manufactured using preservatives such as esters, or flavors such as strawberry flavor or peppermint as additives.
  • Capsules, tablets, powders or granules include excipients such as lactose, glucose, sucrose or mannitol, disintegrants such as starch or sodium alginate, lubricants such as magnesium stearate or talc, polyvinyl alcohol, hydroxy A binder such as propylcellulose or gelatin, a surfactant such as fatty acid ester, or a plasticizer such as glycerin is used as an additive.
  • preparations suitable for parenteral administration include injections, suppositories, and sprays.
  • Injection is manufactured using a carrier made of a salt solution, a glucose solution, or a mixture of both.
  • Suppositories are produced using a carrier such as cacao butter, hydrogenated fat or carboxylic acid.
  • the propellant is manufactured using a carrier that does not irritate the recipient's oral cavity and airway mucosa, disperses the monoclonal antibody of the present invention or an antibody fragment thereof as fine particles, and facilitates absorption.
  • a carrier for example, lactose or glycerin is used. It can also be produced as an aerosol or dry powder.
  • the effective amount administered as a combination of an effective amount of the antibody of the present invention with a suitable diluent and a pharmacologically usable carrier is 0.0001 mg to 100 mg per kg body weight at a time, from 2 days to 8 days. It is administered at weekly intervals.
  • Disease diagnosis method using the anti-erbB3 monoclonal antibody or antibody fragment thereof of the present invention Diseases associated with erbB3 by detecting or measuring cells expressing erbB3 or erbB3 using the antibody or antibody fragment of the present invention Can be diagnosed.
  • Diagnosis of cancer which is one of the diseases associated with erbB3, can be performed by detecting or measuring erbB3 as follows, for example.
  • the monoclonal antibody of the present invention or the antibody fragment, or a derivative thereof is used to detect or measure erbB3 using the following immunological technique.
  • the abundance of erbB3 in the biological sample of a healthy person is examined.
  • the abundance of erbB3 is similarly examined in the biological sample of the subject, and the abundance is compared with the abundance of a healthy person.
  • the cancer is diagnosed as positive.
  • An immunological technique is a method for detecting or measuring the amount of antibody or the amount of antigen using a labeled antigen or antibody.
  • a radioactive substance-labeled immunoantibody method an enzyme immunoassay method, a fluorescence immunoassay method, a luminescence immunoassay method, a Western blot method, a physicochemical method, or the like can be given.
  • the radioactive substance-labeled immunoantibody method is used, for example, by reacting an antigen or antigen-expressing cell with the antibody of the present invention or the antibody fragment, and further reacting with a radiolabeled anti-immunoglobulin antibody or binding fragment. Measure with a scintillation counter.
  • an antigen or a cell expressing the antigen is reacted with the antibody of the present invention or the antibody fragment, and further, a labeled anti-immunoglobulin antibody or binding fragment is reacted, and then a coloring dye. Is measured with an absorptiometer.
  • a sandwich ELISA method can be used.
  • enzyme immunoassay As the label used in the enzyme immunoassay, a known enzyme label [enzyme immunoassay, Medical School (1987)] can be used. For example, alkaline phosphatase label, peroxidase label, luciferase label, biotin label and the like can be mentioned.
  • Sandwich ELISA is a method in which an antibody to be bound to a solid phase, an antigen to be detected or measured is trapped, and a second antibody is reacted with the trapped antigen.
  • two types of antibodies or antibody fragments that recognize an antigen to be detected or measured and that have different antigen recognition sites are prepared, of which the first antibody or antibody fragment is pre-plated (for example, 96 Next, the second antibody or antibody fragment is labeled with a fluorescent substance such as FITC, an enzyme such as peroxidase, or biotin.
  • an antibody used for the sandwich ELISA method either a polyclonal antibody or a monoclonal antibody may be used, and an antibody fragment such as Fab, Fab ′ or F (ab) 2 may be used.
  • the combination of two types of antibodies used in the sandwich ELISA method may be a combination of monoclonal antibodies or antibody fragments recognizing different epitopes, or a combination of polyclonal antibodies and monoclonal antibodies or antibody fragments.
  • the fluorescence immunoassay is measured by the method described in the literature [Monoclonal Antibodies-Principles and practices, Third edition, Academic Press (1996), Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987)].
  • a label used in the fluorescence immunoassay a fluorescent label known in the art [fluorescent antibody method, Soft Science (1983)] can be used.
  • FITC or RITC can be used.
  • the luminescent immunoassay is measured by the method described in the literature [Bioluminescence and chemiluminescence, clinical examination 42, Yodogawa Shoten (1998)].
  • Examples of the label used in the luminescent immunoassay include known luminescent labels, such as acridinium ester or lophine.
  • an antigen or cells expressing the antigen are fractionated with SDS (sodium dodecyl sulfate) -PAGE [Antibodies-A Laboratory Manual Spring Spring Laboratory (1988)], and the gel is then polyvinylidene fluoride (PVDF).
  • SDS sodium dodecyl sulfate
  • PAGE Polyvinylidene fluoride
  • FITC fluorescent substance
  • an enzyme label such as peroxidase
  • biotin label a biotin label
  • a cell or tissue expressing a polypeptide having the amino acid sequence represented by SEQ ID NO: 2 is lysed, and 0.1 to 30 ⁇ g of protein per lane is electrophoresed by SDS-PAGE under reducing conditions.
  • the migrated protein is transferred to a PVDF membrane and reacted with PBS containing 1 to 10% BSA (hereinafter referred to as BSA-PBS) at room temperature for 30 minutes to perform a blocking operation.
  • BSA-PBS PBS containing 1 to 10% BSA
  • the monoclonal antibody of the present invention was reacted, washed with PBS containing 0.05 to 0.1% Tween-20 (hereinafter referred to as Tween-PBS), and peroxidase-labeled goat anti-mouse IgG was washed at room temperature. React for 2 hours.
  • Tween-PBS PBS containing 0.05 to 0.1% Tween-20
  • peroxidase-labeled goat anti-mouse IgG was washed at room temperature. React for 2 hours.
  • the polypeptide having the amino acid sequence represented by SEQ ID NO: 2 was washed with Tween-PBS and detected with a band bound to the monoclonal antibody using ECL (registered trademark) Western Blotting Detection Reagents (manufactured by Amersham). To detect.
  • Examples of the physicochemical method include a method in which an aggregate is formed by binding the antigen erbB3 and the monoclonal antibody of the present invention or an antibody fragment thereof, and the aggregate is detected.
  • Other physicochemical methods include, for example, the capillary method, the one-dimensional immunodiffusion method, the immunoturbidimetric method, or the latex immunoturbidimetric method [Proposal for Clinical Laboratory Methods, Kanbara Publishing (1998)].
  • Latex immunoturbidimetry is a method in which an antibody or antigen-sensitized carrier such as polystyrene latex having a particle size of about 0.1 to 1 ⁇ m is used to cause an antigen-antibody reaction with the corresponding antigen or antibody. Scattered light increases and transmitted light decreases. By detecting this change as absorbance or integrating sphere turbidity, the antigen concentration or the like in the test sample is measured.
  • a known immunological detection method can be used, but preferably, immunoprecipitation method, immune cell staining method, immunohistochemical staining method, fluorescent antibody staining method, etc. Is used.
  • cells expressing erbB3 and the like are reacted with the monoclonal antibody of the present invention or an antibody fragment thereof, and then a carrier having specific binding ability to immunoglobulin such as protein G-sepharose is added to the antigen-antibody complex. Let the body settle.
  • the above-described monoclonal antibody of the present invention or an antibody fragment thereof is immobilized on a 96-well plate for ELISA, and then blocked with BSA-PBS.
  • the antibody When the antibody is in an unpurified state, such as a hybridoma culture supernatant, anti-mouse immunoglobulin, anti-rat immunoglobulin, protein-A or protein-G is preliminarily immobilized on a 96-well plate for ELISA. After blocking with BSA-PBS, the hybridoma culture supernatant is dispensed and bound.
  • an unpurified state such as a hybridoma culture supernatant, anti-mouse immunoglobulin, anti-rat immunoglobulin, protein-A or protein-G is preliminarily immobilized on a 96-well plate for ELISA. After blocking with BSA-PBS, the hybridoma culture supernatant is dispensed and bound.
  • the immune cell staining method or the immunohistochemical staining method is a method in which cells or tissues expressing an antigen are treated with a surfactant or methanol in order to improve antibody passage, and then reacted with the monoclonal antibody of the present invention. And then reacting with a fluorescent label such as FITC, an enzyme label such as peroxidase or a biotin label, or an anti-immunoglobulin antibody or a binding fragment thereof, then the label is visualized and microscopically observed .
  • a fluorescent label such as FITC
  • an enzyme label such as peroxidase or a biotin label
  • an antibody or an antibody fragment thereof that binds to the extracellular region of erbB3 of the present invention can detect erbB3 expressed on the cell membrane by fluorescent antibody staining.
  • the formed antibody-antigen complex and the free that is not involved in the formation of the antibody-antigen complex can be measured without separating the antibody or antigen.
  • Example 1 Production of erbB3 antigen Human erbB3-Fc protein expression vector A cDNA fragment of an Fc fusion protein (hereinafter referred to as erbB3-Fc) in which a human IgG1-Fc region is bound to the extracellular region of human erbB3 (SEQ ID NO: 3) is prepared as follows. did.
  • a DNA fragment encoding the amino acid sequence of the extracellular region of human erbB3 was prepared by using a primer of SEQ ID NO: 7 and SEQ ID NO: 8 and using human lung Marathon Ready cDNA (Clontech) as a template, KOD plus (registered trademark) DNA polymerase (Toyobo Co., Ltd.) was used for amplification by conducting 35 cycles of PCR reaction at 94 ° C. for 15 seconds, 60 ° C. for 30 seconds, 68 ° C. for 2 minutes.
  • This erbB3 gene fragment was digested with restriction enzymes KpnI and XbaI and inserted into an appropriate site of INPEP4 vector (Biogen-IDEC) containing the Fc region of human IgG to prepare an erbB3-Fc expression vector.
  • a cDNA fragment of a GST fusion protein (hereinafter referred to as herbB3-GST) in which an extracellular region of human erbB3 (SEQ ID NO: 3) and glutathione S-transferase (hereinafter referred to as GST) are bound was prepared as follows. did.
  • the human erbB3 extracellular region cDNA fragment was prepared by using human primer Marathon Ready cDNA (Clontech) as a template using primers of SEQ ID NO: 9 and SEQ ID NO: 10 at 94 ° C for 15 seconds, 60 ° C for 15 seconds, 68. Amplification was performed by performing 35 cycles of PCR reaction at 2 ° C. for 2 minutes. This gene fragment was digested with restriction enzymes KpnI and BglII, and inserted into an appropriate position of an INPEP4 vector (Biogen-IDEC) containing GST to prepare a herbB3-GST expression vector.
  • mouse erbB3-GST protein expression vector A cDNA fragment of GST fusion protein (hereinafter referred to as merbB3-GST) in which GST is bound to the extracellular region of mouse erbB3 (SEQ ID NO: 6) is Mouse lunar Marathon Ready cDNA (manufactured by Clontech). ) was used as a template to amplify by performing 35 cycles of PCR reaction at 94 ° C. for 30 seconds, 65 ° C. for 15 seconds and 68 ° C. for 2 minutes using the primer of SEQ ID NO: 11 and the primer of SEQ ID NO: 12. The amplified cDNA fragment was digested with restriction enzymes MuI and BglII. The following operations are described in [Example 1]. In the same manner, a mouse erbB3-GST expression vector was prepared.
  • chimeric protein (hereinafter referred to as hD1) in which domains 2-4 of extracellular region of human erbB3 were replaced with domains 2-4 of mouse erbB3 / MD234)
  • a chimeric protein in which domains 3-4 of the extracellular region of human erbB3 are replaced with domains 3-4 of mouse erbB3 (hereinafter referred to as hD12 / mD34) and domain 4 of the extracellular region of human erbB3.
  • An expression vector of a chimeric protein (hereinafter referred to as hD123 / mD4) substituted with domain 4 of mouse erbB3 was prepared as follows.
  • the human erbB3-D1 cDNA fragment was prepared at 94 ° C. for 30 seconds and 65 ° C. for 15 seconds using human erbB3 cDNA as a template and the primers of SEQ ID NO: 13 and SEQ ID NO: 14. Amplification was carried out by performing 35 cycles of PCR reaction at 68 ° C. for 30 seconds.
  • the mouse erbB3-D234 cDNA fragment was prepared at 94 ° C. for 30 seconds, 65 ° C. for 15 seconds, 68 ° C. for 90 seconds, 35 ° C. using mouse erbB3 cDNA as a template and the primers of SEQ ID NO: 15 and SEQ ID NO: 16. Cycle PCR was performed and amplified.
  • the hD1 / mD234 cDNA fragment was prepared by purifying the human erbB3-D1 cDNA fragment and the mouse erbB3-D234 cDNA fragment, and using the mixture as a template at 94 ° C for 30 seconds, 65 ° C for 15 seconds, 68 ° C for 2 minutes, 5 minutes. After performing the cycle PCR reaction, the primer of SEQ ID NO: 17 and the primer of SEQ ID NO: 18 were added, and further, 35 cycles of PCR reaction were performed at 94 ° C for 30 seconds, 65 ° C for 15 seconds, 68 ° C for 2 minutes, Amplified.
  • This gene fragment was digested with restriction enzymes MluI and BglII and inserted into an INPEP4 vector (manufactured by Biogen-IDEC) containing GST to prepare an hD1 / mD234 expression vector.
  • the mouse erbB3-D34 cDNA fragment was obtained by PCR at 94 ° C. for 30 seconds, 65 ° C. for 15 seconds, 68 ° C. for 90 seconds, using the mouse erbB3 cDNA as a template and the primer of SEQ ID NO: 22 for 35 cycles. The reaction was performed and amplified. Using these two amplified cDNA fragments, the primer of SEQ ID NO: 23 and the primer of SEQ ID NO: 24, an hD12 / mD34 expression vector was prepared in the same manner as described above (a).
  • the mouse erbB3-D4 cDNA fragment was obtained by using the mouse erbB3 cDNA as a template and the primer of SEQ ID NO: 27 and the primer of SEQ ID NO: 28 at 94 ° C. for 30 seconds, 65 ° C. for 15 seconds, 68 ° C. for 90 seconds, 35 cycles. PCR reaction was performed and amplified. Using these two amplified cDNA fragments, the primer of SEQ ID NO: 29, and the primer of SEQ ID NO: 30, an hD123 / mD4 expression vector was prepared in the same manner as described above (a).
  • erbB3-Fc protein and erbB3-GST protein ⁇ 4.
  • the erbB3-Fc protein expression vector and the erbB3-GST protein expression vector prepared in 1 above were introduced into FreeStyle 293F cells using FreeStyle 293 Expression Kit (Invitrogen) according to the attached instructions.
  • the culture supernatant on the 5th day after the introduction of the vector was collected and treated with a 0.2 ⁇ m filter (Millipore).
  • the erbB3-Fc protein was affinity purified using Protein A resin (MabSelect (registered trademark) , manufactured by Amersham). Phosphate buffer (PBS) was used as the washing solution, and 20 mM sodium citrate and 50 mM NaCl buffer (pH 2.7) were used as the elution buffer. The elution fraction was adjusted to around pH 6.0 by adding 200 mM sodium phosphate buffer (pH 7.0).
  • PBS Protein A resin
  • 20 mM sodium citrate and 50 mM NaCl buffer (pH 2.7) were used as the elution buffer.
  • the elution fraction was adjusted to around pH 6.0 by adding 200 mM sodium phosphate buffer (pH 7.0).
  • erbB3-GST protein For erbB3-GST protein, 1 mL of Glutathione Sepharose 4B (Amersham) resin suspension was added to 125 mL of the culture supernatant and reacted at 4 ° C. for 4 hours. Then, it was washed with a phosphate buffer, and each domain peptide was affinity purified using 10 mM Glutathione in 50 mM Tris-HCl (pH 8.0) as an elution buffer.
  • Glutathione Sepharose 4B Amersham
  • the eluted fusion protein solution was replaced with a phosphate buffer using a dialysis membrane (10000 cut, Spectrum Laboratories), and sterilized by filtration with a membrane filter MILLEX-GV (manufactured by MILLIPORE) having a pore size of 0.22 ⁇ m.
  • a membrane filter MILLEX-GV manufactured by MILLIPORE
  • concentrations of erbB3-Fc protein and erbB3-GST protein were calculated by measuring the absorbance at 280 nm and setting the concentration of the fusion protein solution showing 0.86 Optimal density to 1 mg / mL.
  • Example 2 Production of anti-human erbB3 antibody Production of the monoclonal antibody in this example is a general method as described in the introduction to monoclonal antibody experimental procedures (authored by Ando Minhe et al., Published by Kodansha, 1991). Prepared according to As the immunized animal, C3H / Hej jms Slc-lpr / lpr mice commercially available from SLC Japan were used.
  • Antigen proteins such as erbB3-Fc and MPL + TDM EMULSION (RiBi: Ca. No. 52-0177-00 manufactured by Sigma) were mixed at a ratio of 1: 1, and the mice were initially immunized at 20 ⁇ g / mouse in the right abdominal cavity. After the initial immunization, mice were immunized several times every 7-9 days with 10-20 ⁇ g / antigen. Furthermore, for cell fusion, the same antigen was immunized intraperitoneally 3 days before obtaining the spleen and lymph nodes. The antibody titer measurement was started from the second and subsequent antigen immunizations, and thereafter the antibody titer was measured over time to determine the timing of removal of the spleen and the like.
  • Serum-free DMEM medium containing 350 mg / mL sodium bicarbonate, 50 units / mL penicillin and 50 ⁇ g / mL streptomycin (manufactured by Gibco BRL) in surgically excised spleen and lymph nodes from mice immunized with antigen ( Hereinafter, 10 mL of serum-free DMEM medium) was added, and the mixture was crushed with a spatula on a mesh (cell strainer: manufactured by Falcon). After centrifuging the cell suspension passed through the mesh to precipitate the cells, the cells were washed twice with serum-free DMEM medium, then suspended in serum-free DMEM medium, and the number of cells was measured.
  • FCS 10% fetal bovine serum
  • DMEM medium containing L-Glu manufactured by Gibco BRL
  • the cultured mouse myeloma cells were washed with serum-free DMEM medium in the same manner as described above, suspended in serum-free DMEM medium, and the number of cells was measured.
  • the collected cell suspension derived from mouse spleen and lymph node and mouse myeloma suspension were mixed at a cell number ratio of 5: 1. The cell mixture was centrifuged and then the supernatant was completely removed.
  • Hybridomas are selected by culturing in DMEM medium (HAT medium) containing 10% FCS and hypoxanthine (H), aminopterin (A) and thymidine (T) (hereinafter referred to as “HAT”: manufactured by Sigma). did.
  • the hybridoma was made into a single clone by a limiting dilution method using HT (manufactured by Sigma) -containing DMEM medium (HT medium).
  • HT manufactured by Sigma
  • HT medium DMEM medium
  • the culture was performed in a 96-well microtiter plate (Becton Dickinson).
  • Hybridoma screening for producing anti-human erbB3 monoclonal antibody and reaction specificity analysis of the monoclonal antibody produced by each hybridoma were performed by enzyme-labeled immunosorbent assay (ELISA) and fluorescence activated cell sorter (FACS) assay described later.
  • ELISA enzyme-labeled immunosorbent assay
  • FACS fluorescence activated cell sorter
  • anti-human erbB3 monoclonal antibody-producing hybridomas 1126, 1153, 920104 and 12511 were established.
  • Example 3 Determination of binding domain of anti-erbB3 antibody
  • the binding domain of the anti-human erbB3 monoclonal antibody obtained in the present invention was determined by binding ELISA for GST fusion protein in which the extracellular region of erbB3 was fused to GST.
  • anti-GST Anti-Glutathione-Transferase-Schistoma-japonicum (Goat) (calock No. 16979) (hereinafter referred to as anti-GST) (hereinafter referred to as anti-GST) prepared to 1 ⁇ g / mL with 50 mM carbonate buffer (pH 9) (hereinafter referred to as coating buffer).
  • coating buffer 50 mM carbonate buffer
  • a blocking reagent (SuperBlock (registered trademark) Blocking Buffer, manufactured by PIERCE) was added to each well in an amount of 250 to 300 ⁇ L / well, followed by incubation at room temperature for 5 to 10 minutes for blocking. After discarding the blocking reagent, it is adjusted to 5 ⁇ g / mL with Tris buffer physiological saline (hereinafter referred to as assay diluent) containing 10% Block Ace (registered trademark) (manufactured by Sumitomo Dainippon Pharma Co., Ltd.) and 0.1% tween20.
  • Tris buffer physiological saline hereinafter referred to assay diluent
  • Block Ace registered trademark
  • Diluted herbB3-GST fusion protein, merbB3-GST fusion protein, hD1 / mD234 fusion protein, hD12 / mD34 fusion protein and hD123 / mD4 fusion protein are added to the plate for each antigen at 50 ⁇ L / well for 1 hour at room temperature. Incubated to immobilize.
  • washing buffer Tris buffer saline containing 0.1% tween 20
  • the immune serum sample diluted with the assay diluent (final concentration 100, 1000-fold, 1000-fold dilution), mouse serum sample (final concentration 100, 1000-fold, 10000-fold dilution), anti-c-ErbB3 mouse monoclonal antibody (Ab-4) (Calbiochem, Cat. No. OP119) as a positive control ( (Final concentration 1-1000 ng / mL) and mouse IgG1 ⁇ isotype control (manufactured by Southern Biotech, Cat. No. 010201) as a negative control (final concentration 1-1000)
  • the g / mL was added at 50 [mu] L / well. After adding the primary antibody, it was incubated at room temperature for 30 minutes.
  • HRP-labeled goat anti-mouse IgG antibody manufactured by Southern biotech, Cat. No. 1030-05
  • HRP-labeled goat anti-mouse IgG antibody manufactured by CALTAG, Cat
  • an HRP-labeled goat anti-mouse IgM antibody manufactured by Southern Biotech, Cat. No. 1020-05 were added to each well and allowed to react at room temperature for 30 minutes.
  • TMB 3,3 ′, 5,5′-tetramethylbenzidine
  • the anti-human erbB3 monoclonal antibody 1153 of the present invention recognizes domain 1 of the erbB3 extracellular region
  • the anti-human erbB3 monoclonal antibody 920104 recognizes domain 3
  • the anti-human erbB3 monoclonal antibody 1126 It became clear that 4 was recognized.
  • the anti-human erbB3 monoclonal antibody 12511 of the present invention reacts with both human erbB3 and mouse erbB3.
  • Example 4 Production of recombinant antibody CDNA cloning of each antibody gene and preparation of mouse / human chimera monoclonal antibody expression vector Hybridomas are cultured in serum-containing DMEM, and cells are collected by centrifugation (1500 rpm for 3 minutes), and then 5 mL of ISOGEN (registered trademark) (Nippon Gene ) And total RNA was extracted according to the attached protocol.
  • ISOGEN registered trademark
  • VH VL and heavy chain variable region
  • UMP included in SMART RACE cDNA amplification Kit
  • mk-RvP1 SEQ ID NO: 31
  • PCR was performed at 94 ° C. for 5 seconds, 72 ° C. for 3 minutes, followed by 5 cycles.
  • the reaction was carried out for 5 cycles of 94 ° C. for 5 seconds, 70 ° C. for 10 seconds, 72 ° C. for 3 minutes, and further PCR was performed for 25 cycles of 94 ° C. for 5 seconds, 68 ° C. for 10 seconds, 72 ° C. for 3 minutes.
  • NUMP included in SMART RACE (registered trademark) cDNA amplification kit
  • mk-RvP2 primer SEQ ID NO: 32
  • PCR using UMP and mH-Rv1 primer (SEQ ID NO: 33) attached to the kit PCR using NUMP and mH-Rv2 primer (SEQ ID NO: 34) attached to the kit are as described above. The same was done.
  • Amplified VH and VL PCR products were subjected to 2% agarose gel electrophoresis and purified by QIAquick (registered trademark) gel extraction kit (manufactured by QIAGEN).
  • the purified PCR product was ligated to pCR4 Blunt-TOPO (registered trademark) vector (manufactured by Invitrogen) and subcloned according to the attached instructions.
  • nucleotide sequences were determined using the T3 primer and T7 primer included in the kit, and each clone-specific primer was designed.
  • the procedure for preparing a chimeric antibody expression vector for each clone is shown below. All PCR reactions were performed using KOD plus (registered trademark) DNA polymerase (manufactured by Toyobo Co., Ltd.). The sequence analysis after inserting the expression vector was confirmed using the SEQ4618 primer (SEQ ID NO: 35) for the heavy chain and the SEQ1783 primer (SEQ ID NO: 36) for the light chain.
  • the 1153VH amplified fragment was digested with restriction enzymes SalI and NheI, and placed on the SalI and NheI sites of the N5KG1-Val Clark vector (Biogen-IDEC) containing DNA fragments encoding the heavy chain constant region and the light chain constant region of human IgG1. Introduced. The DNA sequence of the inserted portion was confirmed, and an N5KG1 / 1153H vector having the VH DNA of the 1153 antibody was prepared.
  • 1153 Lc-BglII primer SEQ ID NO: 39
  • 1153Lc-BsiWI primer SEQ ID NO: 40
  • a PCR reaction similar to VH was performed to purify a fragment of about 400 bp.
  • the extracted 1153VL amplified fragment was digested with restriction enzymes BglII and BsiWI and inserted into BglII and BsiWI of the N5KG1 / 1153VH vector.
  • the DNA sequence of the inserted portion was confirmed, and an N5KG1 / 1153 expression vector containing 1153 antibody VH and VL DNA was prepared.
  • the 920104 antibody expression vector uses a 920104Hc-SalIU primer (SEQ ID NO: 41) and a 920104Hc-NheIL primer (SEQ ID NO: 42) for VH amplification, and a 920104Lc-BglII primer for VL amplification (
  • An N5KG1 / 920104 expression vector having the VH and VL DNAs of the 920104 antibody was prepared in the same manner as 1- (1) except that the SEQ ID NO: 43) and the 920104Lc-BsiWI primer (SEQ ID NO: 44) were used.
  • the 1126 antibody expression vector uses 1126Hc-SalIU primer (SEQ ID NO: 45) for VH amplification and 1126Hc-NheIL primer (SEQ ID NO: 46), and 1126Lc-PmeIU primer for VL amplification ( SEQ ID NO: 47) and 1126Lc-BsiWI primer (SEQ ID NO: 48) were used in the same manner as 1- (1) except that PmeI was used as the restriction enzyme for VL, including the VH and VL DNAs of the 1126 antibody. An N5KG1 / 1126 expression vector was constructed.
  • the 12511 antibody expression vector uses a 12511Hc-SalIU primer (SEQ ID NO: 49) and 12511Hc-NheIL primer (SEQ ID NO: 50) for VH amplification, and a 12511Lc-BglIIU primer for VL amplification (
  • An N5KG1 / 12511 expression vector containing the VH and VL DNAs of the 12511 antibody was prepared in the same manner as in the above 1- (1) except that the SEQ ID NO: 51) and 12511Lc-BsiWI primer (SEQ ID NO: 52) were used. .
  • nucleotide sequences of DNAs encoding VH and VL of the 1153 antibody are shown in SEQ ID NO: 53 and SEQ ID NO: 55, and the amino acid sequences encoded by the nucleotide sequences are shown in SEQ ID NOs: 54 and 56.
  • amino acid sequences of VH and VL of the secreted 1153 antibody are shown in SEQ ID NOs: 57 and 58, respectively.
  • amino acid sequences of CDR1-3 of VH and CDR1-3 of VL are shown in SEQ ID NOs: 59-61 and 62-64, respectively.
  • the nucleotide sequences of DNAs encoding the VH and VL of the 920104 antibody are shown in SEQ ID NOs: 65 and 67, and the amino acid sequences encoded by the nucleotide sequences are shown in SEQ ID NOs: 66 and 68.
  • the amino acid sequences of VH and VL of the secreted 920104 antibody are shown in SEQ ID NOs: 69 and 70, respectively.
  • the amino acid sequences of CDR1-3 of VH and CDR1-3 of VL are shown in SEQ ID NOs: 71-73 and 74-76, respectively.
  • nucleotide sequences of DNA encoding VH and VL of the 1126 antibody are shown in SEQ ID NOs: 77 and 79, and the amino acid sequences encoded by the nucleotide sequences are shown in SEQ ID NOs: 78 and 80.
  • amino acid sequences of VH and VL of the secreted 1126 antibody are shown in SEQ ID NOs: 81 and 82, respectively.
  • amino acid sequences of CDR1-3 of VH and CDR1-3 of VL are shown in SEQ ID NOs: 83-85 and 86-88, respectively.
  • the nucleotide sequences of DNAs encoding the VH and VL of 12511 antibody are shown in SEQ ID NO: 89 and SEQ ID NO: 91, and the amino acid sequences encoded by the nucleotide sequences are shown in SEQ ID NOs: 90 and 92.
  • the amino acid sequences of the secreted 12511 antibody VH and VL are shown in SEQ ID NOs: 93 and 94, respectively.
  • the amino acid sequences of CDR1-3 of VH and CDR1-3 of VL are shown in SEQ ID NOs: 95-97 and 98-100, respectively.
  • an anti-dinitrophenylazine (DNP) antibody is available from Motoki K et. al. , Clin. Cancer Res. 11, 3126-3135, 2005 were used.
  • Protein A resin (MabSelect (registered trademark) , manufactured by Amersham ) , and affinity purification of the recombinant antibody was performed.
  • a phosphate buffer solution was used as a washing solution, and a 20 mM sodium citrate buffer solution (pH 3) was used as an elution buffer solution.
  • the elution fraction was adjusted to around pH 6.0 by adding 50 mM sodium phosphate buffer (pH 7.0).
  • the prepared antibody solution was replaced with a phosphate buffer using a dialysis membrane (10,000 cut, Spectrum Laboratories), sterilized by filtration with a membrane filter MILLEX-GV (MILLIPORE) having a pore size of 0.22 ⁇ m, and purified.
  • An anti-human erbB3 gene recombinant antibody was prepared.
  • the concentration of the purified antibody was determined by measuring the absorbance at 280 nm and calculating 1 mg / mL as 1.45 Optimal density.
  • Example 5 Anti-erbB3 antibody dependent erbB3 4 or phosphorylation inhibitory effect human squamous carcinoma cell line A431 5 ⁇ 10 the heregulin by, (manufactured by Invitrogen Corp.) RPMI1640 medium containing 10% FBS (hereinafter, serum-containing RPMI And then seeded on a 24 well plate at 1 mL / well, and cultured overnight at 37 ° C. under a culture condition of 6.5% CO 2 .
  • RPMI 1640 medium manufactured by Invitrogen
  • 1 mL / well of RPMI was added and cultured overnight.
  • 250 ⁇ L / well of each antibody prepared to 50 ⁇ g / mL with RPMI was added, and the cells were cultured at 37 ° C., 6.5% CO 2 for 30 minutes.
  • anti-erbB3 antibody (Santa Cruz Biotechnology) prepared with 5% BSA-tTBS, anti-phosphorylated erbB3 antibody (cell signaling technology), anti-AKT antibody (cell signaling) and anti-phosphorylation AKT antibody (Promega) was added and incubated at 4 ° C. overnight.
  • the PVDF membrane was washed with Tris buffer saline (hereinafter referred to as TTBS) containing 0.1% tween 20, and then incubated at room temperature for 1 hour with an anti-rabbit immunoglobulin goat polyclonal antibody / HRP (manufactured by DAKO).
  • TTBS Tris buffer saline
  • HRP anti-rabbit immunoglobulin goat polyclonal antibody / HRP
  • the PVDF membrane was washed with TTBS, reacted with ECL (registered trademark) Plus Western Blotting Detection Reagents (manufactured by Amhersham Pharmacia), and fluorescence was detected using a lumino image analyzer (LAS-1000 Fuji Film).
  • both the anti-human erbB3 human antibody U1-59 and the anti-human erbB3 gene recombinant antibody of the present invention inhibited heregulin ⁇ and ⁇ -dependent phosphorylation of erbB3, and also inhibited phosphorylation of Akt as a downstream signal. .
  • Example 6 Inhibition of amphiregulin, betacellulin, epiregulin, TGF- ⁇ , EGF and HB-EGF-dependent erbB3 phosphorylation by anti-erbB3 antibody In the same manner as in Example 5, before the human squamous cell carcinoma cell line A431 Treatment was performed and then each ligand was added.
  • Anti-human erbB3 human antibody U1-59 and anti-human erbB3 recombinant antibodies 1153, 920104, 1126 and 12511 of the present invention all inhibited EGF-like ligand-dependent phosphorylation of erbB3.
  • the anti-human erbB3 recombinant antibody 1126 of the present invention most strongly inhibited all ligand-dependent phosphorylation of erbB3.
  • Example 7 Inhibition of Epiregulin, TGF- ⁇ , HB-EGF and Heregulin-Dependent erbB3 Phosphorylation by Anti-erbB3 Antibody
  • Five human breast cancer cell lines T47D 1 ⁇ 10 5 were suspended in serum-containing RPMI and 1 mL in a 24 well plate. / Well, and cultured overnight at 37 ° C. under a culture condition of 6.5% CO 2 . The culture supernatant was removed, and after washing once with RPMI, 1 mL / well of RPMI was added and cultured overnight.
  • each anti-human erb3 antibody prepared to 50 ⁇ g / mL with RPMI was added, and the cells were cultured at 37 ° C., 6.5% CO 2 for 30 minutes. .
  • the anti-human erbB3 gene recombinant antibody 1126 antibody of the present invention was compared with the negative control antibody in the epiregulin, TGF- ⁇ , HB-EGF and HRG1 ⁇ -dependent erbB3 of human breast cancer cell T47D. Inhibited phosphorylation. Further, the anti-human erbB3 gene recombinant antibody 1126 antibody of the present invention had a higher inhibitory effect on TGF- ⁇ and HB-EGF-dependent erbB3 phosphorylation of human breast cancer cell T47D than the positive control antibody.
  • the anti-human erbB3 gene recombinant antibody 12511 of the present invention completely suppressed HRG1 ⁇ - and HB-EGF-dependent erbB3 phosphorylation in human breast cancer cell T47D, compared to the positive control antibody (U1-59).
  • the anti-human erbB3 gene recombinant antibody 920104 of the present invention has an inhibitory effect on TGF- ⁇ and HB-EGF-dependent erbB3 phosphorylation in human breast cancer cell T47D compared to the positive control antibody (U1-59). it was high.
  • the anti-human erbB3 gene recombinant antibody 1153 of the present invention inhibited TGF- ⁇ -dependent phosphorylation of erbB3 in human breast cancer cell T47D as compared with the negative control antibody.
  • Example 8 Evaluation of anti-erbB3 antibody in vivo BALB / cA Jcl-nu / nu female (CLEA Japan) 6weeks was received and pre-bred for 1 week.
  • the prepared cell suspension was subcutaneously transplanted to 72 mice at 100 ⁇ L / head. Confirmation of T47D engraftment in mice, and when the tumor volume (major axis x minor axis x minor axis / 2) reaches 50 mm 3 to 100 mm 3 , select the mouse so that the average value of the tumor volume is equivalent And divided into 6 groups / group, 6 groups in total.
  • 1 mg / mL anti-human erbB3 recombinant antibody 1153, 12511, 920104, 1126, 1 mg / mL anti-human erbB3 human antibody U1-59 and negative control anti-DNP antibody diluted with PBS were 200 ⁇ L / head from the time of grouping. Then, intraperitoneal administration of the mouse was started, and it was repeated twice / week for a total of eight times.
  • the anti-human erbB3 human antibody U1-59 and the anti-human erbB3 gene recombinant antibody both inhibited tumor growth of the human breast cancer cell line T47D.
  • Example 9 In vivo efficacy evaluation using a plurality of anti-erbB3 antibodies
  • xenograft mice subcutaneously transplanted with human breast cancer cell line T47D or xenograft mice subcutaneously transplanted with human squamous cell carcinoma cell line A431 were used.
  • the tumor mass became 100 mm 3 to 200 mm 3
  • the mice were selected so that the average value of the tumor volume was equivalent, and divided into 4 groups of 6 individuals / group.
  • 153, 12511, 1126 and an anti-DNP antibody solution were prepared using PBS.
  • 1153 antibody, 12511 antibody, and 1126 antibody solution were mixed at a ratio of 1: 1, respectively, and 1153 + 12511 combined antibody solution (combined antibody solution of 1153 antibody and 12511 antibody), 1153 + 1126 combined antibody solution (combined antibody solution of 1153 antibody and 1126 antibody) And 12511 + 1126 combined antibody solution (combined antibody solution of 12511 antibody and 1126 antibody).
  • the antibody was administered by intraperitoneal administration at 100 ⁇ L / head from the time of grouping, and was performed twice / week for a total of 10 times.
  • anti-human erbB3 gene recombinant antibodies 1153 and 1126 inhibited tumor growth of human breast cancer cell T47D compared to control anti-DNP antibody. Further, the combined administration of the 1153 antibody and the 1126 antibody inhibited tumor growth more strongly than the administration of the 1153 antibody or the 1126 antibody alone.
  • the combined use of the 1153 antibody and the 12511 antibody, the combined use of the 12511 antibody and the 1126 antibody, and the combined use of the 1153 antibody and the 1126 antibody is more human than the control anti-DNP antibody.
  • Cell proliferation of squamous cell carcinoma cell A431 was inhibited.
  • the combined administration of the 12511 antibody and the 1126 antibody, and the combined administration of the 1153 antibody and the 1126 antibody inhibited tumor growth more strongly than the combined administration of the 1153 antibody and the 12511 antibody.
  • SEQ ID NO: 3 amino acid sequence of human erbB3 extracellular region
  • SEQ ID NO: 6 amino acid sequence of mouse erbB3 extracellular region
  • SEQ ID NO: 7 nucleotide sequence of rherbB3 primer 1
  • SEQ ID NO: 8 nucleotide sequence of rherbB3 primer 2
  • SEQ ID NO: 9 rherbB3- GST primer 1 nucleotide sequence
  • SEQ ID NO: 11 mouse erbB3-GST primer 1 nucleotide sequence
  • SEQ ID NO: 12 mouse erbB3-GST primer 2 nucleotide sequence
  • SEQ ID NO: 13 hD1 / mD234 primer 1 nucleotide sequence
  • SEQ ID NO: 14 hD1 / mD234 primer 2 nucleotide sequence
  • SEQ ID NO: 15 hD1 /

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、erbB3の細胞外領域を認識し、EGF様リガンド依存的なerbB3のリン酸化を阻害する抗体および該抗体断片、該抗体および該抗体断片をコードするDNA、該抗体および該抗体断片の製造方法、該抗体および該抗体断片を含む治療薬および該抗体および該抗体断片を用いた治療用途に関する。

Description

抗erbB3抗体
 本発明は、erbB3の細胞外領域を認識し、EGF様リガンド依存的なerbB3のリン酸化を阻害する抗体および該抗体断片、該抗体および該抗体断片をコードするDNA、該抗体および該抗体断片の製造方法、該抗体および該抗体断片を含む治療薬並びに該抗体および該抗体断片を用いた治療用途に関する。
 erbB3は上皮細胞増殖因子受容体(epidermal growth factor receptor;EGFR)ファミリーに属する1回膜貫通型タンパク質である(非特許文献1、2および3)。erbB3の立体構造は、EGFR、Her2およびerbB4に類似しており、細胞外領域は、N末端側からドメイン1、2、3および4の4つのドメイン構造から構成される。erbB3以外のEGFRファミリー分子は、細胞内にキナーゼドメインを保有しており、受容体の活性化によりキナーゼ活性を発揮するが、erbB3の細胞内ドメインはキナーゼ活性を有していない。
 erbB3の活性化については、1.erbB3の特異的リガンドであるヘレグリンがerbB3に結合し、erbB3とヘテロダイマーを形成した他のEGFRファミリーによってerbB3がリン酸化された後、ホスファチジルイノシトール-3-リン酸キナーゼ(phosphatidyl inositol-3 phosphate kinase;PI3キナーゼ)、Aktを活性化するシグナルカスケード、2.リガンドの結合または過剰発現により、erbB3以外のEGFRファミリー(EGFRまたはHer2など)が活性化し、この結果erbB3がリン酸化された後、PI3キナーゼ、Aktを活性化するシグナルカスケードの2通りが知られている。
 EGFRファミリー分子の細胞内ドメインとシグナル伝達タンパク質との親和性を、たんぱく質アレイを用いて網羅的に解析した結果では、erbB3はEGFRファミリー分子の中で、特にPI3キナーゼへの親和性が高く、PI3キナーゼの活性化に重要であることが強く示唆されている(非特許文献4)。最近になって、癌のEGFR阻害剤耐性化にerbB3が関与していることが報告された(非特許文献5、6)。
 薬剤耐性の腫瘍では、肝細胞増殖因子受容体(hepatocyte growth factor receptor;HGFRまたはMet)が、erbB3のリン酸化を引き起こした結果(非特許文献5)、またはMetがerbB3の発現を増加させた結果(非特許文献6)、薬剤存在下での腫瘍細胞増殖が維持されていることが明らかになっている。
 erbB3の発現と癌の予後の関連性については、いくつか報告されている。Chenら(非特許文献7)は、肺がんにおいてアレイ解析の結果をもとに予後と関連性が高い5つの遺伝子(DUSP6、MMD、STAT1、ERBB3およびLCK)を選択しているが、この中にerbB3は含まれている。
 免疫組織学的解析においても、erbB3の発現は肺がんにおける予後不良因子であると報告されている(非特許文献8)。Muller-Tidowら(非特許文献9)は、肺がんにおいて転移に関連するキナーゼをアレイ解析により調べた結果、erbB3は、INSR、NTRK1に続いて3番目に遠隔転移リスクとの関連性が高い遺伝子として同定された。肺がん以外でも、乳がん(非特許文献10)および卵巣がん(非特許文献11)で、erbB3の発現は予後不良因子であると報告されている。
 erbB3に対する抗体に関しては、ヘレグリン(heregulin)のerbB3への結合を阻害する抗体(非特許文献12)、erbB1およびerbB2には反応せずerbB3特異的に反応する抗体(特許文献1)、ヘレグリン依存的erbB2-erbB3の相互作用を阻害するerbB3抗体(特許文献2)、erbB3細胞外ドメインに反応する抗体(特許文献3)およびerbB3のドメイン1に結合しヘレグリン依存的erbB3のリン酸化を阻害する抗体(特許文献4)が報告されている。
米国特許第5,480,968号明細書 米国特許第5,968,511号明細書 国際公開第2007/077028号 国際公開第2008/100624号
Harari P.M.et.al.,Endocr Relat Cancer.2004,11,689-708. Nagy P.et.al.,Pathol Oncol Res.1999,5,255-71. Hynes N.E.et.al.,Nat Rev Cancer.2005,5,341-54. Jones R.B.et.al.,Nature.2006,439,168-74. Engelman J.A.et.al.,Science.2007,316,1039-43. Sergina N.V.et.al., Nature.2007,445,437-41. Chen H.Y.et.al.,N Engl J Med.2007,356,11-20 Hilbe W.et.al., J Clin Pathol.2003,56,736-41 Muller-Tidow C.Et.Al.,Cancer Res.2005,65,1778-82 Bieche I.et.al.,Int J Cancer.2003,106,758-65. Tanner B.et.,al.J Clin Oncol.2006,24,4317-23 Chen et al.,J Bio Chem 1996,271,7620-7629,1996.
 erbB3発現細胞が関与する疾患の治療薬が求められている。本発明により、EGF様リガンド依存的なerbB3のリン酸化を阻害する抗体および該抗体断片、該抗体および該抗体断片をコードするDNA、該抗体および該抗体断片の製造方法、該抗体および該抗体断片を用いた治療方法並びに該抗体および該抗体断片を含む治療薬を提供することができる。また、本発明により、抗erbB3抗体を用いた併用療法を提供することができる。
 本発明は、以下の(1)~(15)に関する。
(1)erbB3の細胞外領域に特異的に結合し、上皮細胞増殖因子(epidermal growth factor;EGF)様リガンド依存的なerbB3のリン酸化を阻害する抗体および該抗体断片。
(2)erbB3の細胞外領域に特異的に結合し、かつerbB3特異的リガンド依存的なerbB3のリン酸化およびerbB3特異的リガンド非依存的なerbB3のリン酸化の両方を阻害する抗体。
(3)erbB3のリン酸化が、上皮細胞増殖因子(EGF)、形質転換増殖因子α(transforming growth factor-α;TGF-α)、アンフィレギュリン(amphiregulin)、ベータセルリン(betacellulin)、エピレグリン(epiregulin)、ヘパリン結合上皮細胞増殖因子様増殖因子(heparin-binding epidermal growth factor-like growth factor;HB-EGF)およびヘレグリン(heregulin)から選ばれる少なくとも2つのリガンド依存的なerbB3のリン酸化である(1)または(2)に記載の抗体および該抗体断片。
(4)erbB3の細胞外領域が、配列番号3で表されるアミノ酸配列の20番から179番のアミノ酸配列からなるドメイン1、180番から328番のアミノ酸配列からなるドメイン2、329番から487番のアミノ酸配列からなるドメイン3および488番から643番のアミノ酸配列からなるドメイン4から選ばれる少なくとも1つのドメインを含む細胞外領域である(1)~(3)のいずれか1に記載の抗体および該抗体断片。
(5)抗体が下記(a)~(c)から選ばれる抗体である(1)~(4)のいずれか1に記載の抗体および該抗体断片。
(a)1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれるいずれか1つの抗体クローンと競合反応する抗体および該抗体断片。
(b)1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれるいずれか1つの抗体クローンが反応するエピトープを含むエピトープに反応する抗体および該抗体断片。
(c)1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれるいずれか1つの抗体クローンが反応するエピトープと同じエピトープに反応する抗体および該抗体断片。
(6)抗体が、配列番号57で表されるアミノ酸配列を含む抗体重鎖可変領域(以下、VHともいう)および配列番号58で表されるアミノ酸配列を含む抗体軽鎖可変領域(以下、VLともいう)を含む抗体、配列番号69で表されるアミノ酸配列を含むVHおよび配列番号70で表されるアミノ酸配列を含むVLを含む抗体、配列番号81で表されるアミノ酸配列を含むVHおよび配列番号82で表されるアミノ酸配列を含むVLを含む抗体、ならびに配列番号93で表されるアミノ酸配列を含むVHおよび配列番号94で表されるアミノ酸配列を含むVLを含む抗体から選ばれるいずれか1つの抗体である、(1)~(5)のいずれか1に記載の抗体および該抗体断片。
(7)(1)~(6)のいずれか1に記載の抗体および該抗体断片をコードするDNA。
(8)(7)に記載のDNAを含むベクターを細胞へ導入して得られる形質転換体を培地内で培養し、培養液中に(1)~(6)のいずれか1に記載の抗体および該抗体断片を生成蓄積させ、培養液から抗体および該抗体断片を精製することを特徴とする(1)~(6)のいずれか1に記載の抗体および該抗体断片を製造する方法。
(9)erbB3の細胞外領域が、配列番号3で表されるアミノ酸配列の20番から179番のアミノ酸配列からなるドメイン1、180番から328番のアミノ酸配列からなるドメイン2、329番から487番のアミノ酸配列からなるドメイン3および488番から643番のアミノ酸配列からなるドメイン4から選ばれる少なくとも1つのドメインに反応する第1抗体または該抗体断片と、第1抗体が反応するドメインと異なるドメインに反応する第2抗体または該抗体断片とを含む抗体組成物。
(10)第1抗体または該抗体断片が、erbB3の細胞外領域のドメイン2またはドメイン4に反応する抗体または該抗体断片である(9)に記載の抗体組成物。
(11)第2抗体または該抗体断片が、erbB3の細胞外領域のドメイン1またはドメイン3に反応する抗体または該抗体断片である(9)または(10)のいずれか1に記載の抗体組成物。
(12)第1抗体または該抗体断片が、下記(a)~(c)から選ばれる抗体または該抗体断片である(9)~(11)のいずれか1に記載の抗体組成物。
(a)1126抗体クローンと競合反応する抗体および該抗体断片。
(b)1126抗体クローンが反応するエピトープを含むエピトープに反応する抗体および該抗体断片。
(c)1126抗体クローンが反応するエピトープと同じエピトープに反応する抗体および該抗体断片。
(13)第2抗体または該抗体断片が、下記(a)~(c)から選ばれる抗体または該抗体断片である(9)~(12)のいずれか1に記載の抗体組成物。
(a)1153抗体クローンと競合反応する抗体および該抗体断片。
(b)1153抗体クローンが反応するエピトープを含むエピトープに反応する抗体および該抗体断片。
(c)1153抗体クローンが反応するエピトープと同じエピトープに反応する抗体および該抗体断片。
(14)(9)~(13)のいずれか1に記載の抗体組成物を用いたerbB3発現細胞が関与する疾患の治療方法。
(15)erbB3発現細胞が関与する疾患が癌である(14)に記載の治療方法。
(16)(9)~(13)のいずれか1に記載の抗体組成物を含むerbB3発現細胞が関与する疾患の治療薬。
 本発明によれば、erbB3の細胞外領域を認識し、EGF様リガンド依存的なerbB3のリン酸化を阻害する抗体および該抗体断片、該抗体および該抗体断片をコードするDNA、該抗体および該抗体断片の製造方法、該抗体および該抗体断片を含む医薬および該抗体および該抗体断片を用いた治療用途を提供することができる。
図1(a)は、抗ヒトebB3抗体による、ヒト偏平上皮癌細胞株A431におけるヘレグリンα(HRGα)を示す。図1(b)は、抗ヒトebB3抗体による、ヒト偏平上皮癌細胞株A431におけるヘレグリンβ(HRGβ)依存的erbB3リン酸化およびAktリン酸化の阻害効果を示す。左側がヘレグリンα依存的リン酸化、右側がヘレグリンβ依存的リン酸化を示し、上からリン酸化erbB3、全erbB3タンパク質、リン酸化Aktおよび全Aktタンパク質を示す。また、左右最上段に使用した抗体を示す。 図2(a)および(b)は、抗ヒトerbB3抗体による、ヒト偏平上皮癌細胞株A431におけるEGF様リガンド依存的erbB3リン酸化の阻害効果を示す。図2(a)はアンフィレギュリンまたはベータセルリン依存的erbB3のリン酸化、図2(b)はエピレグリンまたはTGFα依存的erbB3のリン酸化および図2(c)はEGFまたはHB-EGF依存的erbB3のリン酸化を示す。各図の上段がリン酸化erbB3、下段が全erbB3タンパク質を示す。また、各図の最上段に使用した抗体を示す。 図3(a)および(b)は、抗ヒトerbB3抗体による、ヒト乳癌細胞株T47DにおけるEGF様リガンド依存的erbB3リン酸化の阻害効果を示す。図3(a)はエピレグリン依存的erbB3のリン酸化、図3(b)TGFα依存的erbB3のリン酸化、図3(c)はHB-EGF依存的erbB3のリン酸化および図3は(d)ヘレグリンβ依存的erbB3のリン酸化を示す。各図の上段がリン酸化erbB3、下段が全erbB3タンパク質を示す。また、各図の最上段に使用した抗体を示す。 図4はヒト乳癌細胞株T47D移植マウスモデルにおける抗ヒトerbB3抗体の抗腫瘍効果を示す。横軸に腫瘍を移植してからの日数、縦軸に腫瘍体積を示す。□はコントロールの抗DNP抗体、◆は1153抗体、○は12511抗体、×は920104抗体、△は1126抗体、および●はU1-59抗体を示す。 図5は、ヒト乳癌細胞株T47D移植マウスモデルにおける抗ヒトerbB3抗体の併用効果を示す。×はコントロールの抗DNP抗体、□1153抗体、◆は1126抗体および○は1153+1126併用抗体(1153抗体および1126抗体の併用抗体)を示す。横軸に腫瘍を移植してからの日数、縦軸に腫瘍体積を示す。 図6は、ヒト偏平上皮癌細胞株A431移植マウスモデルにおける抗ヒトerbB3抗体の併用効果を示す。□は、コントロールの抗DNP抗体、◆は1153+12511併用抗体(1153抗体および12511抗体の併用抗体)、○は12511+1126併用抗体(12511および1126抗体の併用抗体)および×は1153+1126併用抗体(1153抗体および1126抗体の併用抗体)を示す。横軸に腫瘍を移植してからの日数、縦軸に腫瘍体積を示す。
 本発明の抗体は、erbB3の細胞外領域(extracellular domain,ECDと略記する場合もある)に特異的に結合し、EGF様リガンド依存的なerbB3のリン酸化を阻害する抗体および該抗体断片に関する。
 erbB3はチロシンキナーゼ(tyrosine kinase)型受容体ファミリーである上皮細胞増殖因子受容体(EGFR)ファミリー(HERファミリー、erbBファミリーともいう)の1つであり、erbB3受容体、上皮細胞増殖因子受容体3(epidermal growth factor receptor 3;EGFR3)、HER3受容体、Her3受容体または単に、HER3、Her3とも呼ばれる。
 erbB3は、1回膜貫通型の膜タンパク質であり、細胞外領域にはリガンド結合ドメイン、ダイマー形成ドメインを含みかつ細胞内にはチロシンリン酸化ドメインを含む。erbB3は、特異的リガンドであるヘレグリンが細胞外領域のリガンド結合ドメインに結合することで、ダイマー化を引き起こし、細胞増殖シグナルを流すことが知られている。
 特に、erbB3と他のEGF受容体(EGFR)ファミリーであるerbB1(EGFR1またはHER1)、erbB2(EGFR2、HER2またはNeu)またはerbB4(EGFR4またはHER4)とのヘテロダイマーが細胞増殖に関与することが知られている。
 本発明において、erbB3とは、Kraus et al.(Proc.Nat.Acad.Sci.86: 9193-9197,1989.)により示されているアミノ酸配列を含むポリペプチドであり、具体的には配列番号2で表されるアミノ酸配列を含む膜タンパク質および配列番号3で表されるアミノ酸配列を含む膜タンパク質をいう。
 また、erbB3のアミノ酸配列情報は、NCBI(http://www.ncbi.nlm.nih.gov/)などの公知のデータベースから取得することができ、例えば、配列番号2で表されるアミノ酸配列を含むヒトerbB3(NCBI accession No.NP_001973.2)、配列番号5で表されるアミノ酸配列を含むマウスerbB3(NCBI accession No.NP_034283.1)などが挙げられる。 
 本発明においてerbB3としては、例えば、配列番号2で表されるアミノ酸配列において1つ以上のアミノ酸が欠失、置換あるいは付加されたアミノ酸配列からなり、かつerbB3の機能を有するポリペプチドが挙げられる。
 配列番号2で表されるアミノ酸配列と70%以上、好ましくは80%以上、さらに好ましくは90%以上の相同性を有するアミノ酸配列を含むポリペプチド、最も好ましくは95%、96%、97%、98%および99%以上の相同性を有するアミノ酸配列からなり、かつerbB3の機能を有するポリペプチドも本発明のerbB3に包含される。
 配列番号2で表されるアミノ酸配列において1以上のアミノ酸が欠失、置換、または付加されたアミノ酸配列を有するポリペプチドは、部位特異的変異導入法[Molecular Cloning,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1989)、Current Protocols in Molecular Biology,John Wiley&Sons(1987-1997)、Nucleic Acids Research,10,6487(1982)、Proc.Natl.Acad.Sci.USA,79,6409(1982)、Gene,34,315(1985)、Nucleic Acids Research,13,4431(1985)、Proc.Natl.Acad.Sci.USA,82,488(1985)]などを用いて、例えば、配列番号2で表されるアミノ酸配列ををコードするDNAに部位特異的変異を導入することにより得ることができる。欠失、置換または付加されるアミノ酸の数は特に限定されないが、好ましくは1個~数十個、例えば、1~20個、より好ましくは1個~数個、例えば、1~5個のアミノ酸である。
 erbB3をコードする遺伝子としては、例えば、配列番号1(NCBI accession No.NM_001982.3)で表される塩基配列の277番目~4305番目に示されるヒトerbB3の塩基配列、配列番号4(NCBI accession No.NM_010153.1)に示されるマウスerbB3の塩基配列が挙げられる。
 配列番号1で表される277番目~4305番目の塩基配列において1以上の塩基が欠失、置換または付加された塩基配列からなり、かつerbB3の機能を有するポリペプチドをコードするDNAを含む遺伝子、配列番号1で表される277番目~4305番目の塩基配列と少なくとも60%以上の相同性を有する塩基配列、好ましくは70%、80%以上の相同性を有する塩基配列、さらに好ましくは90%、95%、96%、97%、98%、99%以上の相同性を有する塩基配列からなり、かつerbB3の機能を有するポリペプチドをコードするDNAを含む遺伝子、ならびに配列番号1で表される277番目~4305番目のDNAとストリンジェントな条件下でハイブリダイズするDNAからなり、かつerbB3の機能を有するポリペプチドをコードするDNAを含む遺伝子なども本発明のerbB3をコードする遺伝子に包含される。 
 ストリンジェントな条件下でハイブリダイズするDNAとは、配列番号1で表される277番目~4305番目のDNAをプローブに用いた、コロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法、サザンブロット・ハイブリダイゼーション法、またはDNAマイクロアレイ法などにより得られるハイブリダイズ可能なDNAを意味する。
 具体的には、ハイブリダイズしたコロニー若しくはプラーク由来のDNA、または該配列を有するPCR産物若しくはオリゴDNAを固定化したフィルターまたはスライドガラスを用いて、0.7~1.0mol/Lの塩化ナトリウム存在下、65℃でハイブリダイゼーション[Molecular Cloning,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1989)、Current Protocols in Molecular Biology,John Wiley&Sons(1987-1997)、DNA Cloning 1: Core Techniques,A Practical Approach,Second Edition,Oxford University,(1995)]を行った後、0.1~2倍濃度のSSC溶液(1倍濃度のSSC溶液の組成は、150mmol/L塩化ナトリウム、15mmol/Lクエン酸ナトリウムよりなる)を用い、65℃条件下でフィルターまたはスライドグラスを洗浄することにより同定できるDNAを挙げることができる。
 ハイブリダイズ可能なDNAとしては、配列番号1で表される277番目~4305番目の塩基配列と少なくとも60%以上の相同性を有するDNA、好ましくは70%または80%以上の相同性を有するDNA、さらに好ましくは90%、95%、96%、97%、98%または99%以上の相同性を有するDNAを挙げることができる。 
 真核生物のタンパク質をコードする遺伝子の塩基配列には、しばしば遺伝子の多型が認められる。本発明において用いられる遺伝子に、このような多型によって塩基配列に小規模な変異を生じた遺伝子も、本発明のerbB3をコードする遺伝子に包含される。
 本発明における相同性の数値は、特に明示した場合を除き、当業者に公知の相同性検索プログラムを用いて算出される数値であってよいが、塩基配列については、BLAST[J.Mol.Biol.,215,403(1990)]においてデフォルトのパラメータを用いて算出される数値など、アミノ酸配列については、BLAST2[Nucleic Acids Res.,25,3389(1997)、Genome Res.,7,649(1997)、http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/information3.html]においてデフォルトのパラメータを用いて算出される数値などが挙げられる。 
 デフォルトのパラメータとしては、G(Cost to open gap)が塩基配列の場合は5、アミノ酸配列の場合は11、-E(Cost to extend gap)が塩基配列の場合は2、アミノ酸配列の場合は1、-q(Penalty for nucleotide mismatch)が-3、-r(reward for nucleotide match)が1、-e(expect value)が10、-W(wordsize)が塩基配列の場合は11残基、アミノ酸配列の場合は3残基、-y[Dropoff(X)for blast extensions in bits]がblastnの場合は20、blastn以外のプログラムでは7、-X(X dropoff value for gapped alignment in bits)が15および-Z(final X dropoff value for gapped alignment in bits)がblastn の場合は50、blastn以外のプログラムでは25である(http://www.ncbi.nlm.nih.gov/blast/html/blastcgihelp.html)。 
 配列番号2で表されるアミノ酸配列の部分配列からなるポリペプチドは、当業者に公知の方法によって作製することができ、例えば、配列番号2で表されるアミノ酸配列をコードするDNAの一部を欠失させ、これを含む発現ベクターを導入した形質転換体を培養することにより作製することができる。
 また、上記の方法で作製されるポリペプチドまたはDNAに基づいて、上記と同様の方法により、配列番号2で表されるアミノ酸配列の部分配列において1以上のアミノ酸が欠失、置換または付加されたアミノ酸配列を有するポリペプチドを得ることができる。
 さらに、配列番号2で表されるアミノ酸配列の部分配列からなるポリペプチド、または配列番号2で表されるアミノ酸配列の部分配列において1以上のアミノ酸が欠失、置換あるいは付加されたアミノ酸配列を有するポリペプチドは、フルオレニルメチルオキシカルボニル(Fmoc)法またはt-ブチルオキシカルボニル(tBoc)法などの化学合成法によって製造することもできる。 
 本発明におけるerbB3の細胞外領域としては、例えば、配列番号2で表されるアミノ酸配列を公知の膜貫通領域予測プログラムSOSUI(http://sosui.proteome.bio.tuat.ac.jp/sosuiframe0.html)、TMHMM ver.2(http://www.cbs.dtu.dk/services/TMHMM-2.0/)またはExPASy Proteomics Server(http://Ca.expasy.org/)などを用いて予測された領域などが挙げられる。具体的には、例えば、ExPASy Proteomics Serverにおいて予測される細胞外ドメインが挙げられる。
 erbB3の細胞外領域(ECD)は、ドメイン1~4(D1~D4)に分かれており、他のEGFRファミリーと同様に、ドメイン1とドメイン3がリガンド結合に、ドメイン2がダイマー形成に重要であることが知られている。具体的には、配列番号3で表されるアミノ酸配列の20番から179番のアミノ酸配列がドメイン1、180番から328番のアミノ酸配列がドメイン2、329番から487番のアミノ酸配列がドメイン3および488番から643番のアミノ酸配列がドメイン4である。
 EGF様リガンドとは、EGFRファミリーに結合するEGFリガンドファミリーという。具体的には、例えば、上皮細胞増殖因子(EGF)、形質転換増殖因子α(TGF-α)、アンフィレギュリン、ベータセルリン、エピレグリン、ヘパリン結合上皮細胞増殖因子様増殖因子(HB-EGF)、NTAKおよびヘレグリン[ニューレグリン(neuregulin)]が挙げられる。
 本発明において、erbB3の機能としては、ヘレグリンの結合に依存したerbB3のホモダイマー化およびヘテロダイマー化を誘導し、erbB3がリン酸化された結果、細胞増殖・細胞分化を促進させる機能が挙げられる。このようなerbB3の機能は、当該目的のタンパク質を宿主細胞へ導入してタンパク質発現細胞を作製し、適当な細胞培養条件においてリガンド依存的な効果を確認することができる。
 本発明の抗体としては、erbB3の細胞外領域に特異的に結合し、かつEGF様リガンド依存的なerbB3のリン酸化を阻害する抗体、erbB3の細胞外領域に特異的に結合し、かつerbB3特異的リガンド依存的なerbB3のリン酸化およびerbB3特異的リガンド非依存的なerbB3のリン酸化の両方を阻害する抗体が挙げられる。
 本発明においてerbB3特異的リガンド依存的なerbB3のリン酸化とは、erbB3特異的なリガンドとして知られているヘレグリンがerbB3の細胞外領域に結合した結果、erbB3の細胞内ドメインのチロシン残基がリン酸化されることをいう。
 本発明においてerbB3特異的リガンド非依存的なerbB3のリン酸化とは、erbB3特異的リガンドであるヘレグリンを含むEGF様リガンドが、erbB3以外のerbBファミリーの細胞外領域に結合した結果、erbB3とのヘテロダイマーを形成しerbB3の細胞内ドメインのチロシン残基がリン酸化されることをいう。または、erbB3特異的リガンド非依存的なerbB3のリン酸化とは、EGF様リガンド依存的に引き起こされる間接的なerbB3のリン酸化ということができる。
 本発明の抗体は、上述のerbB3特異的リガンド依存的/非依存的なerbB3のリン酸化を同時に阻害することができる。
 具体的には、上皮細胞増殖因子(EGF)、形質転換増殖因子α(TGF-α)、アンフィレギュリン、ベータセルリン、エピレグリン、ヘパリン結合上皮細胞増殖因子様増殖因子(HB-EGF)、NTAKおよびヘレグリン(neuregulin)から選ばれる少なくとも2、3、4、5または6つのリガンド依存的なerbB3のリン酸化を阻害する抗体、好ましくは全てのEGF様リガンド依存的なerbB3のリン酸化を阻害する抗体が挙げられる。
 本発明の抗体としては、配列番号3で表されるアミノ酸配列の20番から179番のアミノ酸配列からなるドメイン1、180番から328番のアミノ酸配列からなるドメイン2、329番から487番のアミノ酸配列からなるドメイン3および488番から643番のアミノ酸配列からなるドメイン4から選ばれる少なくとも1つのドメインを含む細胞外領域に結合する抗体、好ましくはドメイン2またはドメイン4の少なくとも1つのドメインを含む細胞外領域に結合する抗体、より好ましくはドメイン2を含む細胞外領域に結合する抗体およびドメイン4を含む細胞外領域に結合する抗体が挙げられる。
 また、本発明の抗体としては、erbB3の細胞外領域中のD1からD4の各ドメインに存在するエピトープに結合する抗体が挙げられる。
 更に、本発明の抗体としては、erbB3のダイマー化を阻害できる抗体、erbB3と他のerbBファミリー(erbB1、erbB2およびerbB4)とのヘテロダイマー化を阻害できる抗体が挙げられる。具体的には、erbB3-erbB1、erbB3-erbB2およびerbB3-erbB4から選ばれる少なくとも1組の相互作用を阻害することができる抗体が挙げられる。
 更に、本発明の抗体としては、erbB3と相互作用する増殖因子受容体依存的なerbB3のリン酸化を阻害する抗体も含まれる。具体的には、肝細胞増殖因子(hepatocyte growth factor;HGF)受容体(c-Met)依存的なerbB3のリン酸化を阻害する抗体が挙げられる。
 本発明の抗体には、モノクローナル抗体、オリゴクローナル抗体およびポリクローナル抗体のいずれの抗体も含まれる。
 本発明においてモノクローナル抗体とは、単一クローンの抗体産生細胞が分泌する抗体であり、ただ一つのエピトープ(抗原決定基ともいう)を認識し、モノクローナル抗体を構成するアミノ酸配列(1次構造)が均一である。オリゴクローナル抗体、ポリクローナル抗体とは、モノクローナル抗体が2つ以上含まれる抗体混合物である。
 エピトープとしては、例えば、モノクローナル抗体が認識し結合する、単一のアミノ酸配列、アミノ酸配列からなる立体構造、糖鎖が結合したアミノ酸配列および糖鎖が結合したアミノ酸配列からなる立体構造などが挙げられる。立体構造は、天然に存在するタンパク質が有する3次元立体構造であり、細胞内または細胞膜上に発現しているタンパク質が構成する立体構造をいう。
 本発明の抗体が認識するエピトープとしては、例えば、細胞膜上に発現しているerbB3上に存在するエピトープであって、かつerbB3のアミノ酸配列からなる一次構造、erbB3のアミノ酸配列からなる立体構造、erbB3のアミノ酸配列に糖鎖が結合した立体構造、およびEGFRファミリータンパク質の結晶構造解析の結果によって規定される3次元立体構造上のアミノ酸残基等が挙げられる。
 抗体分子はイムノグロブリン(以下、Igと表記する)とも称され、ヒト抗体は、分子構造の違いに応じて、IgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4およびIgMのアイソタイプに分類される。アミノ酸配列の相同性が比較的高いIgG1、IgG2、IgG3およびIgG4を総称してIgGともいう。
 抗体分子は重鎖(Heavy chain、以下H鎖と記す)および軽鎖(Light chain、以下L鎖と記す)と呼ばれるポリペプチドより構成される。また、H鎖はN末端側よりH鎖可変領域(VHとも表記される)、H鎖定常領域(CHとも表記される)、L鎖はN末端側よりL鎖可変領域(VLとも表記される)、L鎖定常領域(CLとも表記される)の各領域により、それぞれ構成される。
 CHは各サブクラスごとに、α、δ、ε、γおよびμ鎖がそれぞれ知られている。CHはさらに、N末端側よりCH1ドメイン、ヒンジドメイン、CH2ドメイン、CH3ドメインの各ドメインにより構成される。
 ドメインとは、抗体分子の各ポリペプチドを構成する機能的な構造単位をいう。また、CH2ドメインとCH3ドメインを併せてFc領域または単にFcという。CLは、Cλ鎖およびCκ鎖が知られている。
 本発明におけるCH1ドメイン、ヒンジドメイン、CH2ドメイン、CH3ドメインおよびFc領域は、EUインデックス[Kabat et al.,Sequences of Proteins of Immunological Interest,US Dept.Health and Human Services(1991)]により、N末端からのアミノ酸残基の番号で特定することができる。
 具体的には、CH1はEUインデックス118~215番のアミノ酸配列、ヒンジはEUインデックス216~230番のアミノ酸配列、CH2はEUインデックス231~340番のアミノ酸配列、CH3はEUインデックス341~447番のアミノ酸配列とそれぞれ特定される。
 本発明の抗体としては、特にヒト型キメラ抗体(以下、単にキメラ抗体とも略記する)、ヒト化抗体[相補性決定領域(Complementarity Determining Region; CDR)移植抗体ともいう]およびヒト抗体などの遺伝子組換え抗体も含まれる。
 キメラ抗体とは、ヒト以外の動物(非ヒト動物)の抗体のVHおよびVLと、ヒト抗体のCHおよびCLからなる抗体を意味する。非ヒト動物としては、マウス、ラット、ハムスターまたはラビット等、ハイブリドーマを作製することが可能であれば、いかなるものも用いることができる。
 ハイブリドーマとは、非ヒト動物に抗原を免疫して取得されたB細胞と、マウスなどに由来するミエローマ細胞とを細胞融合させて得られる、所望の抗原特異性を有したモノクローナル抗体を産生する細胞をいう。したがって、ハイブリドーマが産生する抗体を構成する可変領域は、非ヒト動物抗体のアミノ酸配列からなる。
 ヒト型キメラ抗体は、モノクローナル抗体を生産する非ヒト動物細胞由来のハイブリドーマより、VHおよびVLをコードするcDNAを取得し、ヒト抗体のCHおよびCLをコードするDNAを有する動物細胞用発現ベクターにそれぞれ挿入してヒト型キメラ抗体発現ベクターを構築し、動物細胞へ導入することにより発現させ、製造することができる。
 ヒト化抗体とは、非ヒト動物抗体のVHおよびVLのCDRのアミノ酸配列をヒト抗体のVHおよびVLの対応するCDRに移植した抗体をいう。VHおよびVLのCDR以外の領域はフレームワーク領域(以下、FRと表記する)と称される。
 ヒト化抗体は、非ヒト動物抗体のVHのCDRのアミノ酸配列と任意のヒト抗体のVHのFRのアミノ酸配列からなるVHのアミノ酸配列をコードするcDNAと、非ヒト動物抗体のVLのCDRのアミノ酸配列と任意のヒト抗体のVLのFRのアミノ酸配列からなるVLのアミノ酸配列をコードするcDNAを構築し、ヒト抗体のCHおよびCLをコードするDNAを有する動物細胞用発現ベクターにそれぞれ挿入してヒト化抗体発現ベクターを構築し、動物細胞へ導入することにより発現させ、製造することができる。
 ヒト抗体は、元来、ヒト体内に天然に存在する抗体をいうが、最近の遺伝子工学的、細胞工学的、発生工学的な技術の進歩により作製されたヒト抗体ファージライブラリーおよびヒト抗体産生トランスジェニック動物から得られる抗体等も含まれる。
 ヒト抗体は、ヒトイムノグロブリン遺伝子を保持するマウス(Tomizuka K.et.al.,Proc Natl Acad Sci USA.97,722-7,2000.)に所望の抗原を免疫することにより、取得することが出来る。また、ヒト由来のB細胞から抗体遺伝子を増幅したPhage Displayライブラリーを用いることにより、所望の結合活性を有するヒト抗体を選択することで、免疫を行わずにヒト抗体を取得することができる(Winter G.et.al.,Annu Rev Immunol.12:433-55.1994)。さらに、EBウイルスを用いてヒトB細胞を不死化することにより、所望の結合活性を有するヒト抗体を生産する細胞を作製し、ヒト抗体を取得することができる(Rosen A.et.al.,Nature 267,52-54.1977)。
 ヒト体内に存在する抗体は、例えば、ヒト末梢血から単離したリンパ球を、EBウイルス等を感染させることによって不死化した後、クローニングすることにより、該抗体を産生するリンパ球を培養でき、培養物中より該抗体を精製することができる。
 ヒト抗体ファージライブラリーは、ヒトB細胞から調製した抗体遺伝子をファージ遺伝子に挿入することによりFab、scFv等の抗体断片を表面に発現させたファージのライブラリーである。該ライブラリーより、抗原を固定化した基質に対する結合活性を指標として所望の抗原結合活性を有する抗体断片を発現しているファージを回収することができる。該抗体断片は、更に遺伝子工学的手法により、2本の完全なH鎖および2本の完全なL鎖からなるヒト抗体分子へも変換することができる。
 ヒト抗体産生トランスジェニック動物は、ヒト抗体遺伝子が宿主動物の染色体内に組込まれた動物をいう。具体的には、マウスES細胞へヒト抗体遺伝子を導入し、該ES細胞を他のマウスの初期胚へ移植後、発生させることによりヒト抗体産生トランスジェニック動物を作製することができる。ヒト抗体産生トランスジェニック動物からのヒト抗体の作製方法は、通常のヒト以外の哺乳動物で行われているハイブリドーマ作製方法によりヒト抗体産生ハイブリドーマを取得し、培養することで培養物中にヒト抗体を産生蓄積させることができる。
 本発明の抗体のVHおよびVLのアミノ酸配列としては、ヒト抗体のVHおよびVLのアミノ酸配列、非ヒト動物抗体のVHおよびVLのアミノ酸配列、または非ヒト動物抗体のCDRを、ヒト抗体のフレームワークに移植したヒト化抗体のアミノ酸配列のいずれでもよい。具体的には、ハイブリドーマが産生する非ヒト動物抗体のVHおよびVLのアミノ酸配列、ヒト化抗体のVHおよびVLのアミノ酸配列、またはヒト抗体のVHおよびVLのアミノ酸配列などが挙げられる。
 本発明の抗体のCLのアミノ酸配列としては、ヒト抗体のアミノ酸配列または非ヒト動物抗体のアミノ酸配列のいずれでもよいが、ヒト抗体のアミノ酸配列のCκまたはCλが好ましい。
 本発明の抗体のCHとしては、イムノグロブリンに属すればいかなるものでもよいが、好ましくはIgGクラスに属するサブクラス、γ1(IgG1)、γ2(IgG2)、γ3(IgG3)またはγ4(IgG4)のいずれも用いることができる。
 エフェクター活性とは、抗体のFc領域を介して引き起こされる抗体依存性の活性をいい、抗体依存性細胞傷害活性(Antibody-Dependent Cellular Cytotoxicity activity;ADCC活性)、補体依存性傷害活性(Complement-Dependent Cytotoxicity activity;CDC活性)、またはマクロファージ若しくは樹状細胞などの食細胞による抗体依存性ファゴサイトーシス(Antibody-Dependent Phagocytosis activity;ADP活性)などが知られている。本発明においてADCC活性およびCDC活性は、公知の測定方法[Cancer Immunol.Immunother.,36,373(1993)]を用いて測定することができる。
 ADCC活性とは、標的細胞上の抗原に結合した抗体が、抗体のFc領域を介して免疫細胞のFc受容体と結合することで免疫細胞(ナチュラルキラー細胞など)を活性化し、標的細胞を傷害する活性をいう。
 Fc受容体(以下、FcRと記すこともある)とは、抗体のFc領域に結合する受容体であり、抗体の結合によりさまざまなエフェクター活性を誘導する。FcRは抗体のサブクラスに対応しており、IgG、IgE、IgA、IgMはそれぞれFcγR、FcεR、FcαR、FcμRに特異的に結合する。
 更にFcγRには、FcγRI(CD64)、FcγRII(CD32)およびFcγRIII(CD16)のサブタイプが存在し、ぞれぞれFcγRIA、FcγRIB、FcγRIC、FcγRIIA、FcγRIIB、FcγRIIC、FcγRIIIA、FcγRIIIBのアイソフォームが存在する。これらの異なるFcγRは異なる細胞上に存在している[Annu.Rev.Immunol.9:457-492(1991)]。
 ヒトにおいては、FcγRIIIBは好中球に特異的に発現しており、FcγRIIIAは、単球、Natural Killer細胞(NK細胞)および一部のT細胞に発現している。FcγRIIIAを介した抗体の結合は、NK細胞依存的なADCC活性を誘導する。
 CDC活性とは標的細胞上の抗原に結合した抗体が血液中の補体関連タンパク質群からなる一連のカスケード(補体活性化経路)を活性化し、標的細胞を傷害する活性をいう。また、補体の活性化により生じるタンパク質断片により免疫細胞の遊走、活性化を誘導することができる。CDC活性のカスケードは、抗体のFc領域との結合ドメインを有するC1qが、Fc領域に結合し、2つのセリンプロテアーゼであるC1rおよびC1sと結合することでC1複合体を形成することで開始する。
 本発明の抗体としては、具体的には配列番号57で表されるアミノ酸配列を含むVHおよび配列番号58で表されるアミノ酸配列を含むVLを含む抗体、配列番号69で表されるアミノ酸配列を含むVHおよび配列番号70で表されるアミノ酸配列を含むVLを含む抗体、配列番号81で表されるアミノ酸配列を含むVHおよび配列番号82で表されるアミノ酸配列を含むVLを含む抗体、ならびに配列番号93で表されるアミノ酸配列を含むVHおよび配列番号94で表されるアミノ酸配列を含むVLを含む抗体、それぞれ配列番号59~61で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号62~64で表されるアミノ酸配列を含むL鎖CDR1~3を含む抗体、それぞれ配列番号71~73で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号74~76で表されるアミノ酸配列を含むL鎖CDR1~3を含む抗体、それぞれ配列番号83~85で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号86~88で表されるアミノ酸配列を含むL鎖CDR1~3を含む抗体ならびにそれぞれ配列番号95~97で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号98~100で表されるアミノ酸配列を含むL鎖CDR1~3を含む抗体などが挙げられる。
 本発明の抗体としては、それぞれ配列番号59~61で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号62~64で表されるアミノ酸配列を含むL鎖CDR1~3を含む1153抗体クローン、それぞれ配列番号71~73で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号74~76で表されるアミノ酸配列を含むL鎖CDR1~3を含む920104抗体クローン、それぞれ配列番号83~85で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号86~88で表されるアミノ酸配列を含むL鎖CDR1~3を含む1126抗体クローンならびにそれぞれ配列番号95~97で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号98~100で表されるアミノ酸配列を含むL鎖CDR1~3を含む12511抗体クローンが挙げられる。
 本発明の遺伝子組み換え抗体としては、それぞれ配列番号59~61で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号62~64で表されるアミノ酸配列を含むL鎖CDR1~3を含む抗体、それぞれ配列番号71~73で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号74~76で表されるアミノ酸配列を含むL鎖CDR1~3を含む抗体、それぞれ配列番号83~85で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号86~88で表されるアミノ酸配列を含むL鎖CDR1~3を含む抗体ならびにそれぞれ配列番号95~97で表されるアミノ酸配列を含むH鎖CDR1~3およびそれぞれ配列番号98~100で表されるアミノ酸配列を含むL鎖CDR1~3を含む抗体などが挙げられる。
 本発明の抗体としては、下記(a)~(c)に記載の抗体が挙げられる。
(a)1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれるいずれか1つの抗体クローンと競合反応する抗体および該抗体断片。
(b)1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれるいずれか1つの抗体クローンが反応するエピトープを含むエピトープに反応する抗体および該抗体断片。
(c)1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれるいずれか1つの抗体クローンが反応するエピトープと同じエピトープに反応する抗体および該抗体断片。
 また本発明の抗体としては、上述の抗体と競合してerbB3の細胞外領域に結合する抗体、上述の抗体が反応するerbB3の細胞外領域に存在するエピトープを含むエピトープに反応する抗体、および上述の抗体が反応するerbB3の細胞外領域に存在するエピトープと同じエピトープに反応する抗体が挙げられる。
 本発明において、「1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれるいずれか1つの抗体クローンが反応するエピトープを含むエピトープに反応する抗体」とは、1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれる第1抗体が反応する第1エピトープを含む第2エピトープに結合する第2抗体のことをいう。
 本発明の抗体としては、Fcと抗体断片とが結合したFc融合タンパク質、Fcと天然に存在するリガンドまたは受容体とが結合したFc融合タンパク質(イムノアドヘシンともいう)、複数のFc領域を融合させたFc融合タンパク質等も本発明に包含される。また、抗体のエフェクター活性を増強または欠損させるため、抗体を安定化させるためおよび血中半減期を制御するためにアミノ酸残基改変を行ったアミノ酸残基改変を含むFc領域も本発明の抗体に用いることができる。
 本発明の抗体としては、配列番号3で表されるアミノ酸配列を含むerbB3の細胞外領域のドメイン1~ドメイン4から選ばれる少なくとも2つのドメインに反応する抗体および該抗体断片が挙げられる。具体的には、ドメイン1とドメイン2、ドメイン1とドメイン3、ドメイン1とドメイン4、ドメイン2とドメイン3、ドメイン2とドメイン4およびドメイン3とドメイン4から選ばれるいずれか1つの組み合わせに反応する抗体が挙げられる。これらの中でも、ドメイン1とドメイン2、ドメイン1とドメイン4、ドメイン2とドメイン3およびドメイン3とドメイン4から選ばれるいずれか1つの組み合わせに反応する抗体が好ましく、ドメイン1とドメイン4に反応する抗体がより好ましい。
 erbB3の細胞外領域の2つのドメインに反応する抗体は、既存のバイスペシフィック抗体、多価抗体(multivalent antibody、polyvalent antibody)作製技術(国際公開第1998/050431号、国際公開第2001/7734号、国際公開第2002/002773号、国際公開第2009/131239号)により作製することができる。
 本発明において抗体断片としては、Fab、Fab’、F(ab’)、scFv、Diabody、dsFv、CDRを含むペプチドなどが挙げられる。
 Fabは、IgG抗体をタンパク質分解酵素パパインで処理して得られる断片のうち(H鎖の224番目のアミノ酸残基で切断される)、H鎖のN末端側約半分とL鎖全体がジスルフィド結合(S-S結合)で結合した分子量約5万の抗原結合活性を有する抗体断片である。
 F(ab’)は、IgGをタンパク質分解酵素ペプシンで処理して得られる断片のうち(H鎖の234番目のアミノ酸残基で切断される)、Fabがヒンジ領域のS-S結合を介して結合されたものよりやや大きい、分子量約10万の抗原結合活性を有する抗体断片である。
 Fab’は、上記F(ab’)のヒンジ領域のS-S結合を切断した分子量約5万の抗原結合活性を有する抗体断片である。
 scFvは、1本のVHと1本のVLとを12残基以上の適当なペプチドリンカー(P)を用いて連結した、VH-P-VLまたはVL-P-VHポリペプチドで、抗原結合活性を有する抗体断片である。
 Diabodyは、抗原結合特異性の同じまたは異なるscFvが2量体を形成した抗体断片で、同じ抗原に対する2価の抗原結合活性または異なる2種類の抗原に対する2特異的な抗原結合活性を有する抗体断片である。
 dsFvは、VHおよびVL中のそれぞれ1アミノ酸残基をシステイン残基に置換したポリペプチドを該システイン残基間のS-S結合を介して結合させたものをいう。
 CDRを含むペプチドは、VHまたはVLのCDRの少なくとも1領域以上を含んで構成される。複数のCDRを含むペプチドは、CDR同士を直接または適当なペプチドリンカーを介して結合させることができる。
 本発明の改変抗体のVHおよびVLのCDRをコードするDNAを構築し、該DNAを原核生物用発現ベクターまたは真核生物用発現ベクターに挿入し、該発現ベクターを原核生物または真核生物へ導入することにより発現させ、製造することができる。また、CDRを含むペプチドは、Fmoc法またはtBoc法などの化学合成法によって製造することもできる。
 本発明の抗体組成物としては、上述に記載の抗体または該抗体断片の2つ以上を含む抗体組成物(または混合物)などが挙げられる。具体的には、配列番号1で表されるアミノ酸配列を含むerbB3の細胞外領域のドメイン1~ドメイン4から選ばれる少なくとも1つのドメインを含む細胞外領域に反応する第1抗体または該抗体断片と、第1抗体と異なるドメインに反応する第2抗体または該抗体断片とを含む抗体組成物などが挙げられる。中でも、第1抗体がerbB3のドメイン4またはドメイン2に反応する抗体であり、かつ第2抗体がerbB3のドメイン1またはドメイン3に反応する抗体である抗体組成物が好ましく、第1抗体がerbB3のドメイン4に反応する抗体であり、かつ第2抗体がerbB3のドメイン1に反応する抗体である抗体組成物などがより好ましい。
 前記第1抗体は、下記(a)~(c)から選ばれる抗体または該抗体断片であることが好ましい。
(a)1126抗体クローンと競合反応する抗体および該抗体断片。
(b)1126抗体クローンが反応するエピトープを含むエピトープに反応する抗体および該抗体断片。
(c)1126抗体クローンが反応するエピトープと同じエピトープに反応する抗体および該抗体断片。
 また、前記第2抗体は、下記(a)~(c)から選ばれる抗体または該抗体断片であることが好ましい。
(a)1153抗体クローンと競合反応する抗体および該抗体断片。
(b)1153抗体クローンが反応するエピトープを含むエピトープに反応する抗体および該抗体断片。
(c)1153抗体クローンが反応するエピトープと同じエピトープに反応する抗体および該抗体断片。
 本発明の抗体組成物は、erbB3特異的リガンドのerbB3への結合を阻害すると同時に、erb3とerbBファミリーとのダイマー化(ホモダイマーおよびヘテロダイマー)を阻害することができる。
 本発明の抗体には、本発明のerbB3の細胞外領域を特異的に認識し、かつEGF様リガンド依存的erbB3のリン酸化を阻害する抗体またはその抗体断片に放射性同位元素、低分子の薬剤、高分子の薬剤、タンパク質若しくは抗体医薬などを化学的または遺伝子工学的に結合させた抗体の誘導体を包含する。
 本発明における、抗体の誘導体は、本発明のerbB3の細胞外領域を特異的に認識し、かつEGF様リガンド依存的erbB3のリン酸化を阻害する抗体またはその抗体断片のH鎖若しくはL鎖のN末端側あるいはC末端側、抗体またはその抗体断片中の適当な置換基若しくは側鎖、さらには抗体またはその抗体断片中の糖鎖などに、放射性同位元素、低分子の薬剤、高分子の薬剤、免疫賦活剤、タンパク質または抗体医薬などを化学的手法[抗体工学入門,地人書館(1994)]により結合させることにより製造することができる。
 また、本発明における、抗体の誘導体は、本発明のerbB3の細胞外領域を特異的に認識し、かつEGF様リガンド依存的erbB3のリン酸化を阻害する抗体または抗体断片をコードするDNAと、結合させたいタンパク質または抗体医薬をコードするDNAとを連結させて発現ベクターに挿入し、該発現ベクターを適当な宿主細胞へ導入し、発現させる遺伝子工学的手法より製造することができる。
 放射性同位元素としては、例えば、111In、131I、125I、90Y、64Cu、99Tc、77Lu、または211Atなどが挙げられる。放射性同位元素は、クロラミンT法などによって抗体に直接結合させることができる。また、放射性同位元素をキレートする物質を抗体に結合させてもよい。キレート剤としては、例えば、1-イソチオシアネートベンジル-3-メチルジエチレントリアミンペンタ酢酸(MX-DTPA)などが挙げられる。
 低分子の薬剤としては、例えば、アルキル化剤、ニトロソウレア剤、代謝拮抗剤、抗生物質、植物アルカロイド、トポイソメラーゼ阻害剤、ホルモン療法剤、ホルモン拮抗剤、アロマターゼ阻害剤、P糖蛋白阻害剤、白金錯体誘導体、M期阻害剤若しくはキナーゼ阻害剤などの抗癌剤[臨床腫瘍学,癌と化学療法社(1996)]、ハイドロコーチゾン若しくはプレドニゾンなどのステロイド剤、アスピリン若しくはインドメタシンなどの非ステロイド剤、金チオマレート、ペニシラミンなどの免疫調節剤、サイクロフォスファミド若しくはアザチオプリンなどの免疫抑制剤、マレイン酸クロルフェニラミン、またはクレマシチンのような抗ヒスタミン剤などの抗炎症剤[炎症と抗炎症療法,医歯薬出版株式会社(1982)]などが挙げられる。
 抗癌剤としては、例えば、アミフォスチン(エチオール)、シスプラチン、ダカルバジン(DTIC)、ダクチノマイシン、メクロレタミン(ナイトロジェンマスタード)、ストレプトゾシン、シクロフォスファミド、イホスファミド、カルムスチン(BCNU)、ロムスチン(CCNU)、ドキソルビシン(アドリアマイシン)、エピルビシン、ゲムシタビン(ゲムザール)、ダウノルビシン、プロカルバジン、マイトマイシン、シタラビン、エトポシド、メトトレキセート、5-フルオロウラシル、フルオロウラシル、ビンブラスチン、ビンクリスチン、ブレオマイシン、ダウノマイシン、ペプロマイシン、エストラムスチン、パクリタキセル(タキソール)、ドセタキセル(タキソテア)、アルデスロイキン、アスパラギナーゼ、ブスルファン、カルボプラチン、オキサリプラチン、ネダプラチン、クラドリビン、カンプトテシン、10-ヒドロキシ-7-エチル-カンプトテシン(SN38)、フロクスウリジン、フルダラビン、ヒドロキシウレア、イホスファミド、イダルビシン、メスナ、イリノテカン(CPT-11)、ノギテカン、ミトキサントロン、トポテカン、ロイプロリド、メゲストロール、メルファラン、メルカプトプリン、ヒドロキシカルバミド、プリカマイシン、ミトタン、ペガスパラガーゼ、ペントスタチン、ピポブロマン、ストレプトゾシン、タモキシフェン、ゴセレリン、リュープロレニン、フルタミド、テニポシド、テストラクトン、チオグアニン、チオテパ、ウラシルマスタード、ビノレルビン、クロラムブシル、ハイドロコーチゾン、プレドニゾロン、メチルプレドニゾロン、ビンデシン、ニムスチン、セムスチン、カペシタビン、トムデックス、アザシチジン、UFT、オキザロプラチン、ゲフィチニブ(イレッサ)、イマチニブ(STI571)、エルロチニブ、FMS様チロシンキナーゼ3(FMS-like tyrosine kinase 3;Flt3)阻害剤、vascular endothelial growth facotr receptor(VEGFR)阻害剤、fibroblast growth factor receptor(FGFR)阻害剤、イレッサ、タルセバなどの上皮細胞増殖因子受容体(epidermal growth factor receptor;EGFR)阻害剤、ラディシコール、17-アリルアミノ-17-デメトキシゲルダナマイシン、ラパマイシン、アムサクリン、オール-トランスレチノイン酸、サリドマイド、レナリドマイド、アナストロゾール、ファドロゾール、レトロゾール、エキセメスタン、金チオマレート、D-ペニシラミン、ブシラミン、アザチオプリン、ミゾリビン、シクロスポリン、ラパマイシン、ヒドロコルチゾン、ベキサロテン(ターグレチン)、タモキシフェン、デキサメタゾン、プロゲスチン類、エストロゲン類、アナストロゾール(アリミデックス)、ロイプリン、アスピリン、インドメタシン、セレコキシブ、アザチオプリン、ペニシラミン、金チオマレート、マレイン酸クロルフェニラミン、クロロフェニラミン、クレマシチン、トレチノイン、ベキサロテン、砒素、ボルテゾミブ、アロプリノール、カリケアマイシン、イブリツモマブチウキセタン、タルグレチン、オゾガミン、クラリスロマシン、ロイコボリン、イファスファミド、ケトコナゾール、アミノグルテチミド、スラミン、メトトレキセート、メイタンシノイドまたはその誘導体、などが挙げられる。
 低分子の薬剤と抗体とを結合させる方法としては、例えば、グルタールアルデヒドを介して薬剤と抗体のアミノ基間を結合させる方法、または水溶性カルボジイミドを介して薬剤のアミノ基と抗体のカルボキシル基を結合させる方法などが挙げられる。
 高分子の薬剤としては、例えば、ポリエチレングリコール(以下、PEGと表記する)、アルブミン、デキストラン、ポリオキシエチレン、スチレンマレイン酸コポリマー、ポリビニルピロリドン、ピランコポリマーまたはヒドロキシプロピルメタクリルアミドなどが挙げられる。
 これらの高分子化合物を抗体または抗体断片に結合させることにより、(1)化学的、物理的または生物的な種々の因子に対する安定性の向上、(2)血中半減期の顕著な延長、(3)免疫原性の消失または抗体産生の抑制、などの効果が期待される[バイオコンジュゲート医薬品,廣川書店(1993)]。
 PEGと抗体を結合させる方法としては、例えば、PEG化修飾試薬と反応させる方法などが挙げられる[バイオコンジュゲート医薬品,廣川書店(1993)]。PEG化修飾試薬としては、例えば、リジンのε-アミノ基への修飾剤(日本国特開昭61-178926号公報)、アスパラギン酸およびグルタミン酸のカルボキシル基への修飾剤(日本国特開昭56-23587号公報)、またはアルギニンのグアニジノ基への修飾剤(日本国特開平2-117920号公報)などが挙げられる。
 免疫賦活剤としては、イムノアジュバントとして知られている天然物でもよく、具体例としては、例えば、免疫を亢進する薬剤が、β(1→3)グルカン(レンチナン、シゾフィラン)、またはαガラクトシルセラミド(KRN7000)などが挙げられる。
 タンパク質としては、例えば、NK細胞、マクロファージ若しくは好中球などの免疫担当細胞を活性化するサイトカインまたは増殖因子、あるいは毒素タンパク質などが挙げられる。
 サイトカインまたは増殖因子としては、例えば、インターフェロン(以下、IFNと記す)-α、IFN-β、IFN-γ、インターロイキン(以下、ILと記す)-2、IL-12、IL-15、IL-18、IL-21、IL-23、顆粒球コロニー刺激因子(G-CSF)、顆粒球/マクロファージコロニー刺激因子(GM-CSF)、またはマクロファージコロニー刺激因子(M-CSF)などが挙げられる。毒素タンパク質としては、例えば、リシン、ジフテリアトキシン、またはONTAKなどが挙げられ、毒性を調節するためにタンパク質に変異を導入したタンパク毒素も含まれる。
 抗体医薬としては、例えば、抗体の結合によりアポトーシスが誘導される抗原、腫瘍の病態形成に関わる抗原または免疫機能を調節する抗原、病変部位の血管新生に関与する抗原に対する抗体が挙げられる。
 抗体の結合によりアポトーシスが誘導される抗原としては、例えば、Cluster of differentiation(以下、CDと記載する)19、CD20、CD21、CD22、CD23、CD24、CD37、CD53、CD72、CD73、CD74、CDw75、CDw76、CD77、CDw78、CD79a、CD79b、CD80(B7.1)、CD81、CD82、CD83、CDw84、CD85、CD86(B7.2)、human leukocyte antigen(HLA)-Class II、または上皮細胞増殖因子受容体(Epidermal Growth Factor Receptor、EGFR)などが挙げられる。
 腫瘍の病態形成に関わる抗原または免疫機能を調節する抗体の抗原としては、例えば、CD4、CD40、CD40リガンド、B7ファミリー分子(CD80、CD86、CD274、B7-DC、B7-H2、B7-H3、またはB7-H4)、B7ファミリー分子のリガンド(CD28、CTLA-4、ICOS、PD-1、またはBTLA)、OX-40、OX-40リガンド、CD137、tumor necrosis factor(TNF)受容体ファミリー分子(DR4、DR5、TNFR1、またはTNFR2)、TNF関連アポトーシス誘導リガンド受容体(TNF-related apoptosis-inducing ligand receptor;TRAIL)ファミリー分子、TRAILファミリー分子の受容体ファミリー(TRAIL-R1、TRAIL-R2、TRAIL-R3、またはTRAIL-R4)、NFκB活性化受容体リガンド(receptor activator of nuclear factor kappa B ligand;RANK)、RANKリガンド、CD25、葉酸受容体、サイトカイン[IL-1α、IL-1β、IL-4、IL-5、IL-6、IL-10、IL-13、transforming growth factor(TGF)β、またはTNFαなど]、これらのサイトカインの受容体、ケモカイン(SLC、ELC、I-309、TARC、MDC、またはCTACKなど)、またはこれらのケモカインの受容体が挙げられる。
 病変部位の血管新生を阻害する抗体の抗原としては、例えば、血管内皮増殖因子(vascular endothelial growth factor;VEGF)、アンジオポエチン(angiopoietin)、繊維芽細胞増殖因子(fibroblast growth factor;FGF)、EGF、肝細胞増殖因子(hepatocyte growth factor;HGF)、血小板由来増殖因子(platelet-derived growth factor;PDGF)、インスリン様増殖因子(insulin-like growth factor;IGF)、エリスロポエチン(erythropoietin;EPO)、TGFβ、IL-8、エフリン(ephrin)、SDF-1、またはこれらの受容体などが挙げられる。
 タンパク質または抗体医薬との融合抗体は、モノクローナル抗体または抗体断片をコードするcDNAにタンパク質をコードするcDNAを連結させ、融合抗体をコードするDNAを構築し、該DNAを原核生物または真核生物用発現ベクターに挿入し、該発現ベクターを原核生物または真核生物へ導入することにより発現させ、融合抗体を製造することができる。 
 上記抗体の誘導体を検出方法、定量方法、検出用試薬、定量用試薬または診断薬として使用する場合に、本発明のerbB3の細胞外領域の天然型立体構造を特異的に認識し、かつ該細胞外領域に結合するモノクローナル抗体またはその抗体断片に結合する薬剤としては、例えば、通常の免疫学的検出または測定法で用いられる標識体が挙げられる。
 標識体としては、例えば、アルカリフォスファターゼ、ペルオキシダーゼ若しくはルシフェラーゼなどの酵素、アクリジニウムエステル若しくはロフィンなどの発光物質、またはフルオレセインイソチオシアネート(FITC)若しくはテトラメチルローダミンイソチオシアネート(RITC)などの蛍光物質などが挙げられる。
 本発明において、腫瘍、悪性腫瘍および癌としては、大腸癌、結腸直腸癌、肺癌、乳癌、脳腫瘍、黒色腫、腎細胞癌、白血病、リンパ腫、T細胞リンパ腫、胃癌、膵臓癌、子宮頚癌、子宮内膜癌、卵巣癌、食道癌、肝臓癌、頭頚部扁平上皮癌、皮膚癌、尿路癌、前立腺癌、絨毛癌、咽頭癌、喉頭癌、胸膜腫、男性胚腫、子宮内膜過形成、子宮内膜症、胚芽腫、線維肉腫、カポジ肉腫、血管腫、海綿状血管腫、血管芽腫、網膜芽腫、星状細胞腫、神経線維腫、稀突起膠腫、髄芽腫、神経芽腫、神経膠腫、横紋筋肉腫、膠芽腫、骨原性肉腫、平滑筋肉腫、甲状肉腫およびウィルムス腫瘍からなる群から選ばれる少なくとも1つが挙げられる。
 以下、本発明の抗体の作製方法、抗体を用いたerb3の測定方法、診断方法および治療方法について具体的に記載する。
1.抗体の作製方法
 本発明において、モノクローナル抗体の製造にあたっては、下記の作業工程を包含する。
 すなわち、(1)免疫原として使用する、生体高分子の精製および/または抗原タンパク質を細胞表面に過剰に発現している細胞の作製、(2)抗原を動物に注射することにより免疫した後、血液を採取しその抗体価を検定して脾臓等の摘出の時期を決定してから、抗体産生細胞を調製する工程、(3)骨髄腫細胞(以下「ミエローマ」という)の調製、(4)抗体産生細胞とミエローマとの細胞融合、(5)目的とする抗体を産生するハイブリドーマ群の選別、(6)単一細胞クローンへの分割(クローニング)、(7)場合によっては、モノクローナル抗体を大量に製造するためのハイブリドーマの培養、またはハイブリドーマを移植した動物の飼育、(8)このようにして製造されたモノクローナル抗体の生理活性およびその認識特異性の検討、または標識試薬としての特性の検定、等である。
 以下、本発明の抗erbB3抗体の作製法を上記工程に沿って詳述するが、該抗体の作製法はこれに制限されず、例えば脾細胞以外の抗体産生細胞およびミエローマを使用することもできる。またヒト抗体産生トランスジェニック動物血清由来の抗体を用いることも可能である。
(1)抗原の精製
抗原となるerbB3またはerbB3を発現させた細胞は、erbB3全長またはその部分長をコードするcDNAを含む発現ベクターを、大腸菌、酵母、昆虫細胞または動物細胞などに導入することにより、得ることができる。また、erbB3を多量に発現している各種ヒト腫瘍培養細胞、ヒト組織などからerbB3を精製し、得ることが出来る。また、該腫瘍培養細胞または該組織などをそのまま抗原として用いることもできる。さらに、Fmoc法またはtBoc法などの化学合成法によりerbB3の部分配列を有する合成ペプチドを調製し、抗原に用いることもできる。 
 本発明で用いられるerbB3は、Molecular Cloning,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1989)またはCurrent Protocols In Molecular Biology,John Wiley&Sons(1987-1997)などに記載された方法などを用い、例えば以下の方法により、該erbB3をコードするDNAを宿主細胞中で発現させて、製造することができる。 
 erbB3をコードする完全長cDNAを適当な発現ベクターのプロモーターの下流に挿入することにより、組換えベクターを作製する。上記完全長cDNAの代わりに、完全長cDNAをもとにして調製された、部分ポリペプチドをコードする適当な長さのDNA断片を用いてもよい。次に、得られた該組換えベクターを、該発現ベクターに適合した宿主細胞に導入することにより、erbB3を生産する形質転換体を得ることができる。 
 発現ベクターとしては、使用する宿主細胞における自律複製または染色体中への組込みが可能で、erbB3をコードするDNAを転写できる位置に、適当なプロモーターを含有しているものであればいずれも用いることができる。
 宿主細胞としては、大腸菌などのエシェリヒア属などに属する微生物、酵母、昆虫細胞または動物細胞など、目的とする遺伝子を発現できるものであればいずれも用いることができる。 
 大腸菌などの原核生物を宿主細胞として用いる場合、組換えベクターは、原核生物中で自律複製が可能であると同時に、プロモーター、リボソーム結合配列、erbB3をコードするDNAおよび転写終結配列を含むベクターであることが好ましい。また、該組換えベクターには、転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。さらに、該組換えベクターには、プロモーターを制御する遺伝子を含んでいてもよい。 
 該組換えベクターとしては、リボソーム結合配列であるシャイン・ダルガルノ配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節したプラスミドを用いることが好ましい。
 また、該erbB3をコードするDNAの塩基配列としては、宿主内での発現に最適なコドンとなるように塩基を置換することができ、これにより目的とするerbB3の生産率を向上させることができる。 
 発現ベクターとしては、使用する宿主細胞中で機能を発揮できるものであればいずれも用いることができ、例えば、pBTrp2、pBTac1、pBTac2(以上、ロシュ・ダイアグノスティックス社製)、pKK233-2(ファルマシア社製)、pSE280(インビトロジェン社製)、pGEMEX-1(プロメガ社製)、pQE-8(キアゲン社製)、pKYP10(日本国特開昭58-110600号公報)、pKYP200[Agricultural Biological Chemistry,48,669(1984)]、pLSA1[Agric.Biol.Chem.,53,277(1989)]、pGEL1[Proc.Natl.Acad.Sci.USA,82,4306(1985)]、pBluescript II SK(-)(ストラタジーン社製)、pTrs30[大腸菌JM109/pTrS30(FERM BP-5407)より調製]、pTrs32[大腸菌JM109/pTrS32(FERM BP-5408)より調製]、pGHA2[大腸菌IGHA2(FERM BP-400)より調製、日本国特開昭60-221091号公報]、pGKA2[大腸菌IGKA2(FERM BP-6798)より調製、日本国特開昭60-221091号公報]、pTerm2(米国特許第4686191号明細書、米国特許第4939094号明細書、米国特許第5160735号明細書)、pSupex、pUB110、pTP5、pC194、pEG400[J.Bacteriol.,172,2392(1990)]、pGEX(ファルマシア社製)、pETシステム(ノバジェン社製)、またはpME18SFL3などが挙げられる。 
 プロモーターとしては、使用する宿主細胞中で機能を発揮できるものであればいかなるものでもよい。例えば、trpプロモーター(Ptrp)、lacプロモーター、PLプロモーター、PRプロモーターまたはT7プロモーターなどの、大腸菌またはファージなどに由来するプロモーターが挙げられる。また、Ptrpを2つ直列させたタンデムプロモーター、tacプロモーター、lacT7プロモーター、またはletIプロモーターなどの人為的に設計改変されたプロモーターなども用いることができる。 
 宿主細胞としては、例えば、大腸菌XL1-Blue、大腸菌XL2-Blue、大腸菌DH1、大腸菌MC1000、大腸菌KY3276、大腸菌W1485、大腸菌JM109、大腸菌HB101、大腸菌No.49、大腸菌W3110、大腸菌NY49または大腸菌DH5αなどが挙げられる。
 宿主細胞への組換えベクターの導入方法としては、使用する宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法[Proc.Natl.Acad.Sci.USA,69,2110(1972)、Gene,17,107(1982)、Molecular&General Genetics,168,111(1979)]が挙げられる。 
 動物細胞を宿主として用いる場合、発現ベクターとしては、動物細胞中で機能を発揮できるものであればいずれも用いることができる。例えば、pcDNAI、pcDM8(フナコシ社製)、pAGE107[日本国特開平3-22979号公報;Cytotechnology,3,133(1990)]、pAS3-3(日本国特開平2-227075号公報)、pCDM8[Nature,329,840(1987)]、pcDNAI/Amp(インビトロジェン社製)、pcDNA3.1(インビトロジェン社製)、pREP4(インビトロジェン社製)、pAGE103[J.Biochemistry,101,1307(1987)]、pAGE210、pME18SFL3、またはpKANTEX93(国際公開第97/10354号)などが挙げられる。 
 プロモーターとしては、動物細胞中で機能を発揮できるものであればいずれも用いることができる。例えば、サイトメガロウイルス(CMV)のimmediate early(IE)遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRαプロモーター、またはモロニーマウス白血病ウイルスのプロモーター若しくはエンハンサーが挙げられる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。 
 宿主細胞としては、ヒトの細胞であるNamalwa細胞、サルの細胞であるCOS細胞、チャイニーズ・ハムスターの細胞であるCHO細胞、またはHBT5637(日本国特開昭63-000299号公報)などが挙げられる。
 宿主細胞への組換えベクターの導入方法としては、動物細胞にDNAを導入する方法であればいずれも用いることができる。例えば、エレクトロポレーション法[Cytotechnology,3,133(1990)]、リン酸カルシウム法(日本国特開平2-227075号公報)、またはリポフェクション法[Proc.Natl.Acad.Sci.USA,84,7413(1987)]などが挙げられる。 
 以上のようにして得られるerbB3をコードするDNAを組み込んだ組換えベクターを保有する微生物、または動物細胞などの由来の形質転換体を培地に培養し、培養物中に該erbB3を生成蓄積させ、該培養物から採取することにより、erbB3を製造することができる。該形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従って行うことができる。 
 真核生物由来の細胞で発現させた場合には、糖または糖鎖が付加されたerbB3を得ることができる。誘導性のプロモーターを用いた組換えベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた組換えベクターで形質転換した微生物を培養する場合にはイソプロピル-β-D-チオガラクトピラノシドなどを、trpプロモーターを用いた組換えベクターで形質転換した微生物を培養する場合にはインドールアクリル酸などを培地に添加してもよい。 
 動物細胞を宿主として得られた形質転換体を培養する培地としては、例えば、一般に使用されているRPMI1640培地[The Journal of the American Medical Association,199,519(1967)]、EagleのMEM培地[Science,122,501(1952)]、ダルベッコ改変MEM培地[Virology,8,396(1959)]、199培地[Proc.Soc.Exp.Biol.Med.,73,1(1950)]、Iscove’s Modified Dulbecco’s Medium(IMDM)培地、またはこれら培地に牛胎児血清(FBS)などを添加した培地などが挙げられる。培養は、通常pH6~8、30~40℃、5%CO存在下などの条件下で1~7日間行う。また、培養中必要に応じて、カナマイシンまたはペニシリンなどの抗生物質を培地に添加してもよい。 
 erbB3をコードする遺伝子の発現方法としては、直接発現以外に、例えば、分泌生産または融合タンパク質発現などの方法[Molecular Cloning,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1989)]が挙げられる。
 erbB3の生産方法としては、例えば、宿主細胞内に生産させる方法、宿主細胞外に分泌させる方法、または宿主細胞外膜上に生産させる方法が挙げられ、使用する宿主細胞または生産させるerbB3の構造を変えることにより、適切な方法を選択することができる。 
 例えば、細胞外領域のアミノ酸配列をコードするDNAに、抗体のFc領域をコードするDNA、グルタチオン S-トランスフェラーゼ(GST)をコードするDNA、FLAGタグをコードするDNAまたはHistidineタグをコードするDNAなどを連結したDNAを作製して、発現・精製することで抗原融合タンパク質を作製することができる。
 具体的には、erbB3の細胞外領域をヒトIgGのFc領域を結合させたFc融合タンパク質(以下、erbB3-hFcと記す)、erbB3の細胞外領域とグルタチオンS-トランスフェラーゼ(GST)との融合タンパク質(以下、erbB3-GSTと記す)が挙げられる。
 erbB3が宿主細胞内または宿主細胞外膜上に生産される場合、ポールソンらの方法[J.Biol.Chem.,264,17619(1989)]、ロウらの方法[Proc.Natl.Acad.Sci.,USA,86,8227(1989)、Genes Develop.,4,1288(1990)]、日本国特開平05-336963号公報、または国際公開第94/23021号などに記載の方法を用いることにより、erbB3を宿主細胞外に積極的に分泌させることができる。 
 また、ジヒドロ葉酸還元酵素遺伝子などを用いた遺伝子増幅系(日本国特開平2-227075号公報)を利用してerbB3の生産量を上昇させることもできる。
 得られたerbB3は、例えば、以下のようにして単離、精製することができる。
 erbB3が細胞内に溶解状態で発現した場合には、培養終了後に細胞を遠心分離により回収し、水系緩衝液に懸濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、またはダイノミルなどを用いて細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、通常のタンパク質の単離精製法、即ち、溶媒抽出法、硫安などによる塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化学社製)などのレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)などのレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロースなどのレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法または等電点電気泳動などの電気泳動法などの手法を単独または組み合わせて用い、精製標品を得ることができる。 
 erbB3が細胞内に不溶体を形成して発現した場合は、上記と同様に細胞を回収後破砕し、遠心分離を行うことにより、沈殿画分として該erbB3の不溶体を回収する。回収した該erbB3の不溶体をタンパク質変性剤で可溶化する。該可溶化液を希釈または透析することにより、該erbB3を正常な立体構造に戻した後、上記と同様の単離精製法によりポリペプチドの精製標品を得ることができる。 
 erbB3またはその糖修飾体などの誘導体が細胞外に分泌された場合には、培養上清において該erbB3またはその糖修飾体などの誘導体を回収することができる。該培養物を上記と同様に遠心分離などの手法により処理することにより可溶性画分を取得し、該可溶性画分から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。
 また、本発明において用いられるerbB3は、Fmoc法またはtBoc法などの化学合成法によっても製造することができる。更に、erbB3の一次構造は公知であるので(Kraus,M.H.et al.,Proc.Nat.Acad.Sci.86,9193-9197,1989.)、当業者に周知の方法により、ペプチド等を作製することができ、アドバンストケムテック社製、パーキン・エルマー社製、ファルマシア社製、プロテインテクノロジインストルメント社製、シンセセル-ベガ社製、パーセプチブ社製、または島津製作所社製などのペプチド合成機を利用して化学合成することもできる。
(2)抗体産生細胞の調製工程
 3~20週令のマウス、ラットまたはハムスターなどの動物に、(1)で得られる抗原を免疫して、その動物の脾臓、リンパ節、末梢血中の抗体産生細胞を採取する。また、動物としては、富塚らの文献(Tomizuka.et al.,Proc Natl Acad Sci USA.,Vol 97:722、2000)に記載されているヒト由来の抗体を産生する能力を有するトランスジェニックマウス、または免疫原性を高めるためにerbB3コンディショナルノックアウトマウスを被免疫動物として用いることもできる。 
 免疫は、フロインドの完全アジュバント、または水酸化アルミニウムゲルと百日咳菌ワクチンなどの適当なアジュバントとともに抗原を投与することにより行う。マウス免疫の際の免疫原投与法は、皮下注射、腹腔内注射、静脈内注射、皮内注射、筋肉内注射または足蹠注射などいずれでもよいが、腹腔内注射、足蹠注射または静脈内注射が好ましい。抗原が部分ペプチドである場合には、ウシ血清アルブミン(BSA)、またはKeyhole Limpet hemocyanin(KLH)などのキャリアタンパク質とコンジュゲートを作製し、これを免疫原として用いる。 
 抗原の投与は、1回目の投与の後、1~2週間おきに5~10回行う。各投与後3~7日目に眼底静脈叢より採血し、その血清の抗体価を酵素免疫測定法[Antibodies - A Laboratory Manual,Cold Spring Harbor Laboratory(1988)]などを用いて測定する。免疫に用いた抗原に対し、その血清が十分な抗体価を示した動物を融合用抗体産生細胞の供給源として用いれば、以後の操作の効果を高めることができる。 
 抗原の最終投与後3~7日目に、免疫した動物より脾臓などの抗体産生細胞を含む組織を摘出し、抗体産生細胞を採取する。抗体産生細胞は、形質細胞、およびその前駆細胞であるリンパ球であり、これは個体のいずれの部位から得てもよく、一般には脾臓、リンパ節、骨髄、扁桃若しくは末梢血またはこれらを適宜組み合わせたもの等から得ることができるが、脾臓細胞が最も一般的に用いられる。脾臓細胞を用いる場合には、脾臓を細断、ほぐした後、遠心分離し、さらに赤血球を除去して融合用抗体産生細胞を取得する。
(3)ミエローマの調製工程
 ミエローマとしては、マウス、ラット、モルモット、ハムスター、ウサギまたはヒト等の哺乳動物に由来する自己抗体産生能のない細胞を用いることが出来る。一般的にはマウスから得られた株化細胞、例えば、ミエローマ細胞(骨髄腫細胞)としては、マウスから得られた株化細胞を用い、例えば、8-アザグアニン耐性マウス(BALB/c由来)ミエローマ細胞株P3-X63Ag8-U1(P3-U1)[Current Topics in Microbiology and Immunology,18,1(1978)]、P3-NS1/1-Ag41(NS-1)[European J.Immunology,6,511(1976)]、SP2/0-Ag14(SP-2)[Nature,276,269(1978)]、P3-X63-Ag8653(653)[J.Immunology,123,1548(1979)]、またはP3-X63-Ag8(X63)[Nature,256,495(1975)]などが用いられる。
 これらの細胞株は、適当な培地、例えば8-アザグアニン培地[グルタミン、2-メルカプトエタノール、ゲンタマイシンおよびウシ胎児血清(以下「FCS」という)を加えたRPMI-1640培地に8-アザグアニンを加えた培地] 、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium;以下「IMDM」という)、またはダルベッコ改変イーグル培地(Dulbecco’s Modified Eagle Medium;以下「DMEM」という)などの培地で継代培養するが、細胞融合の3~4日前に正常培地(例えば、10% FCSを含むDMEM培地)で継代培養し、融合当日に2×10以上の細胞数を確保しておく。
(4)細胞融合
 (2)で得られる融合用抗体産生細胞と(3)で得られる骨髄腫細胞をMinimum Essential Medium(MEM)培地またはPBS(リン酸二ナトリウム1.83g、リン酸一カリウム0.21g、食塩7.65g、蒸留水1リットル、pH7.2)でよく洗浄し、細胞数が、融合用抗体産生細胞:骨髄腫細胞=5:1~10:1になるよう混合し、遠心分離した後、上清を除く。
 沈澱した細胞群をよくほぐした後、ポリエチレングリコール-1000(PEG-1000)、MEM培地およびジメチルスルホキシドの混液を37℃で、攪拌しながら加える。さらに1~2分間毎にMEM培地1~2mLを数回加えた後、MEM培地を加えて全量が50mLになるようにする。遠心分離後、上清を除く。沈澱した細胞群をゆるやかにほぐした後、融合用抗体産生細胞にヒポキサンチン、チミジン、およびアミノプテリンを加えた正常培地(HAT培地)中にゆるやかに細胞を懸濁する。この懸濁液を5%COインキュベーター中、37℃で7~14日間培養する。 
 また、以下の方法でも細胞融合を行うことができる。脾細胞とミエローマとを無血清培地(例えばDMEM)、またはリン酸緩衝生理食塩液(以下「リン酸緩衝液」という)でよく洗浄し、脾細胞とミエローマの細胞数の比が5:1~10:1程度になるように混合し、遠心分離する。
 上清を除去し、沈澱した細胞群をよくほぐした後、撹拌しながら1mLの50%(w/v)ポリエチレングリコール(分子量1000~4000)を含む無血清培地を滴下する。その後、10mLの無血清培地をゆっくりと加えた後遠心分離する。
 再び上清を捨て、沈澱した細胞を適量のHAT液およびヒトインターロイキン-2(以下「IL-2」という)を含むHAT培地中に懸濁して培養用プレート(以下「プレート」という)の各ウェルに分注し、5%CO存在下、37℃で2週間程度培養する。途中適宜HAT培地を補う。
(5)ハイブリドーマ群の選択
 上記ミエローマ細胞が、8-アザグアニン耐性株である場合、すなわち、ヒポキサンチン・グアニン・ホスホリボシルトランスフェラーゼ(HGPRT)欠損株である場合、融合しなかった該ミエローマ細胞、およびミエローマ細胞どうしの融合細胞は、HAT含有培地中では生存できない。一方、抗体産生細胞同士の融合細胞、または、抗体産生細胞とミエローマ細胞とのハイブリドーマは生存することができるが、抗体産生細胞同士の融合細胞には寿命がある。従って、HAT含有培地中での培養を続けることによって、抗体産生細胞とミエローマ細胞とのハイブリドーマのみが生き残り、結果的にハイブリドーマを選択することができる。
 コロニー状に生育してきたハイブリドーマについて、HAT培地からアミノプテリンを除いた培地(以下「HT培地」という)への培地交換を行う。その後、培養上清の一部を採取し後述する抗体価測定法を用いて抗体を生産するハイブリドーマを選択することができる。
 抗体価の測定方法としては、例えば、放射性同位元素免疫定量法(以下「RIA法」という)、固相酵素免疫定量法(以下「ELISA法」という)、蛍光抗体法および受身血球凝集反応法など種々の公知技術が挙げられる。中でも、検出感度、迅速性、正確性および操作の自動化の可能性などの観点から、RIA法またはELISA法が好ましい。
 抗体価を測定することにより、特異的抗体を産生することが判明したハイブリドーマを、別のプレートに移しクローニングを行う。このクローニング法としては、例えば、プレートの1ウェルに1個のハイブリドーマが含まれるように希釈して培養する限界希釈法、軟寒天培地中で培養しコロニーを回収する軟寒天法、マイクロマニュピレーターによって1個ずつの細胞を取り出し培養する方法、およびセルソーターによって1個の細胞を分離する「ソータクローン」などが挙げられるが、限界希釈法が簡便であり、よく用いられる。
 抗体価の認められたウェルについて、例えば限界希釈法によるクローニングを2~4回繰返し、安定して抗体価の認められたものを抗ヒトerbB3モノクローナル抗体産生ハイブリドーマ株として選択する。
(6)モノクローナル抗体の調製
 プリスタン処理[2,6,10,14-テトラメチルペンタデカン(Pristane)0.5mLを腹腔内投与し、2週間飼育する]した8~10週令のマウスまたはヌードマウスに、(5)で得られるモノクローナル抗体産生ハイブリドーマを腹腔内に注射する。10~21日でハイブリドーマは腹水癌化する。
 前記マウスから腹水を採取し、遠心分離して固形分を除去後、40~50%硫酸アンモニウムで塩析し、カプリル酸沈殿法、DEAE-セファロースカラム、プロテインA-カラムまたはゲル濾過カラムによる精製を行ない、IgGまたはIgM画分を集め、精製モノクローナル抗体とする。また、同系統のマウス(例えばBALB/c)若しくはNu/Nuマウス、ラット、モルモット、ハムスターまたはウサギ等の腹腔内で該ハイブリドーマを増殖させることにより、本発明の抗erbB3抗体を大量に含む腹水を得ることができる。
(5)で得られるたモノクローナル抗体産生ハイブリドーマを、10%FBS添加を添加したRPMI1640培地などで培養した後、遠心分離により上清を除き、GIT培地、5%ダイゴGF21を添加したHybridoma SFM培地等に懸濁し、フラスコ培養、スピナー培養、バック培養などにより3~7日間培養する。
 得られた細胞懸濁液を遠心分離し、得られた上清よりプロテインA-カラムまたはプロテインG-カラムによる精製を行ない、IgG画分を集め、精製モノクローナル抗体を得ることもできる。精製の簡便な方法としては、市販のモノクローナル抗体精製キット(例えば、MAbTrap GIIキット;アマシャムファルマシアバイオテク社製)等を利用することもできる。
 抗体のサブクラスの決定は、サブクラスタイピングキットを用いて酵素免疫測定法により行う。蛋白量の定量は、ローリー法および280nmにおける吸光度[1.4(OD280)=イムノグロブリン1mg/mL]より算出する方法により行うことができる。
(7)抗erbB3モノクローナル抗体の結合アッセイ
 本発明の抗erbB3モノクローナル抗体の結合活性は、オクテルロニー(Ouchterlony)法、ELISA法、RIA法、フローサイトメトリー法(FCM)または表面プラズモン共鳴法(SPR)などのバインディングアッセイ系で、確認することができる。オクテルロニー法は簡便ではあるが、抗体の濃度が低い場合には濃縮操作が必要である。
 一方、ELISA法またはRIA法を用いた場合は、培養上清をそのまま抗原吸着固相と反応させ、さらに二次抗体として各種イムノグロブリンアイソタイプ、サブクラスに対応する抗体を用いることにより抗体のアイソタイプ、サブクラスを同定することが可能である。
 精製または部分精製した組換えヒトerbB3をELISA用96穴プレート等の固相表面に吸着させ、さらに抗原が吸着していない固相表面を抗原と無関係なタンパク質、例えばウシ血清アルブミン(以下「BSA」と記す)によりブロッキングを行う。
 ELISAプレートを0.05% Tween 20を含むphosphata buffer saline(以下、PBSと略記する)(以下、Tween-PBSと略記する)などで洗浄後、段階希釈した1次抗体(例えばマウス血清、培養上清等)を反応させ、プレートに固定化された抗原へ抗体を結合させる。
 次に、第2抗体としてビオチン、酵素(horse radish peroxidase;HRP,alkaline phosphatase;ALPなど)、化学発光物質または放射性化合物などで標識した抗イムノグロブリン抗体を分注して、プレートに結合した1次抗体に2次抗体を反応させる。Tween-PBSでよく洗浄した後、第2抗体の標識物質に応じた反応を行ない、免疫原に対し特異的に反応するモノクローナル抗体を選択する。
 FCM法は、抗原発現細胞に対する目的抗体の結合活性を測定することができる[Cancer Immunol.Immunother.,36,373(1993)]。目的の抗体が細胞膜上に発現している膜タンパク質に結合することは、目的抗体が天然に存在する抗原の立体構造を認識する抗体であるといえる。
 SPR法は、Biacore(登録商標)によるkinetics解析が挙げられる。例えば、Biacore(登録商標) T100を用い、抗原と被験物の間の結合におけるkineticsを測定し、その結果を機器付属の解析ソフトウエアで解析をする。
 抗マウスIgG抗体をセンサーチップCM5にアミンカップリング法により固定した後、ハイブリドーマ培養上清または精製モノクローナル抗体などの被験物質を流し、適当量結合させ、更に濃度既知の複数濃度の抗原を流し、結合、解離を測定する。得られたデータを機器付属のソフトウエアを用い、1:1バインディングモデルによりkinetics解析を行い、各種パラメータを取得する。
 または、ヒトerbB3タンパク質をセンサーチップ上に、例えばアミンカップリング法により固定した後、濃度既知の複数濃度の精製モノクローナル抗体を流し、結合、解離を測定する。得られたデータを機器付属のソフトウエアを用い、バイバレントバインディングモデルによりkinetics解析を行い、各種パラメータを取得する。
 また、本発明の抗erbB3抗体と競合してerbB3に結合する抗体は、上述のバインディングアッセイ系に、被検抗体を添加して反応させることで取得できる。すなわち、被検抗体を加えた時に抗体の結合が阻害される抗体をスクリーニングすることにより、erbB3細胞外領域への結合について、取得した抗体と競合する抗体を取得することができる。
(8)抗erbB3モノクローナル抗体のエピトープの同定
 本発明において、抗体の認識エピトープの同定は以下のようにして行なうことができる。例えば、抗原の部分欠損体、種差で異なるアミノ酸残基を改変したアミノ酸改変体またはドメインを改変した改変体を作製し、該欠損体またはアミノ酸改変体に対する目的抗体の反応性が低下すれば、欠損部位またはアミノ酸改変部位が目的抗体のエピトープであることが明らかになる。抗原の部分欠損体およびアミノ酸改変体は、適当な宿主細胞(大腸菌、酵母、植物細胞、哺乳動物細胞など)を用いて分泌タンパク質として取得してもよいし、宿主細胞の細胞膜上に発現させて抗原発現細胞を作製することもできる。膜型抗原の場合は、抗原の立体構造を保持したまま発現させるために、宿主細胞膜上へ発現させることが好ましい。また、抗原の1次構造または立体構造を模倣した合成ペプチドを作製し、目的の抗体の反応性を確認することもできる。合成ペプチドは、公知のペプチド合成技術を用いてその分子の様々な部分ペプチドを作製する方法等が挙げられる。
 本発明の抗erbB3抗体については、ヒトおよびマウスerbB3の細胞外領域について、各ドメイン1~4をそれぞれ、組み合わせたキメラタンパク質を作製し、目的の抗体の反応性を確認することで抗体のエピトープを同定することができる。
 その後、さらに細かく、その対応部分のオリゴペプチドまたは該ペプチドの変異体等を、当業者に周知のオリゴペプチド合成技術を用いて種々合成し、該ペプチドに対する目的の抗体の反応性を確認することでエピトープを限定することができる。多種のオリゴペプチドを得るための簡便な方法として、市販のキット[例えば、SPOTsキット(ジェノシス・バイオテクノロジーズ社製)、マルチピン合成法を用いた一連のマルチピン・ペプチド合成キット(カイロン社製)等]を利用することもできる。
 本発明のerbB3の細胞外領域に結合する抗体が認識するエピトープと、同じエピトープに結合する抗体は、上述のバインディングアッセイ系で取得された抗体のエピトープを同定し、同定したエピトープの、部分的な合成ペプチド、エピトープの立体構造に擬態させた合成ペプチドまたは組換えタンパク質等を作製し、免疫することで取得することができる。
 例えば、膜タンパク質であれば全細胞外領域または一部の細胞外ドメインを適当なタグ(FLAGタグ、Histidineタグ、GSTタンパク質、抗体Fc領域など)に連結した組換えタンパク質を作製し、該組換えタンパク質を免疫することでより効率的なエピトープ特異的な抗体を作製することができる。
2.遺伝子組換え抗体の作製
遺伝子組換え抗体の作製例として、P.J.Delves.,ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES.,1997 WILEY、P.Shepherd and C.Dean.Monoclonal Antibodies.,2000 OXFORD UNIVERSITY PRESSおよびJ.W.Goding.,Monoclonal Antibodies:principles and practice.,1993 ACADEMIC PRESSなどに概説されているが、以下にヒト型キメラ抗体、ヒト化抗体およびヒト抗体の作製方法を示す。
(1)遺伝子組換え抗体発現用ベクターの構築
 遺伝子組換え抗体発現用ベクターは、ヒト抗体のCHおよびCLをコードするDNAが組み込まれた動物細胞用発現ベクターであり、動物細胞用発現ベクターにヒト抗体のCHおよびCLをコードするDNAをそれぞれクローニングすることにより構築することができる。
 ヒト抗体のC領域は任意のヒト抗体のCHおよびCLを用いることができる。例えば、ヒト抗体のγ1サブクラスのCHおよびκクラスのCLなどを用いる。ヒト抗体のCHおよびCLをコードするDNAには、cDNAを用いるが、エキソンとイントロンからなる染色体DNAを用いることもできる。動物細胞用発現ベクターには、ヒト抗体のC領域をコードする遺伝子を組込み発現できるものであればいかなるものでも用いることができる。
 例えば、pAGE107[Cytotechnol.,3,133(1990)]、pAGE103[J.Biochem.,101,1307(1987)〕、pHSG274[Gene,27,223(1984)]、pKCR[Proc.Natl.Acad.Sci.USA,78,1527(1981)]、pSG1bd2-4[Cytotechnol.,4,173(1990)]、またはpSE1UK1Sed1-3[Cytotechnol.,13,79(1993)]、INPEP4,(Biogen-IDEC社製)、N5KG1val(米国特許第6,001,358号明細書)、トランスポゾンベクター(国際公開第2010/143698号)などを用いる。動物細胞用発現ベクターのうちプロモーターとエンハンサーには、SV40の初期プロモーター[J.Biochem.,101,1307(1987)]、モロニーマウス白血病ウイルスLTR[Biochem.Biophys.Res.Commun.,149,960(1987)〕、CMVプロモーター(米国特許第5,168,062号明細書)または免疫グロブリンH鎖のプロモーター[Cell,41,479(1985)]とエンハンサー[Cell,33,717(1983)]などを用いる。
 遺伝子組換え抗体発現用ベクターには、遺伝子組換え抗体発現ベクターの構築の容易さ、動物細胞への導入の容易さ、動物細胞内での抗体H鎖およびL鎖の発現量のバランスが均衡するなどの点から、抗体H鎖およびL鎖が同一のベクター上に存在するタイプ(タンデム型)の遺伝子組換え抗体発現用ベクター[J.Immunol.Methods,167,271(1994)]を用いるが、抗体H鎖およびL鎖が別々のベクター上に存在するタイプを用いることもできる。タンデム型の遺伝子組換え抗体発現用ベクターには、pKANTEX93(国際公開第97/10354号)、pEE18[Hybridoma,17,559(1998)]、N5KG1val(米国特許第6,001,358号明細書)、トランスポゾンベクター(国際公開第2010/143698号)などを用いる。 
(2)ヒト以外の動物由来の抗体のV領域をコードするcDNAの取得およびアミノ酸配列の解析
 非ヒト抗体のVHおよびVLをコードするcDNAの取得およびアミノ酸配列の解析は以下のようにして行うことができる。
 非ヒト抗体を産生するハイブリドーマ細胞よりmRNAを抽出し、cDNAを合成する。合成したcDNAをファージまたはプラスミドなどのベクターにクローニングしてcDNAライブラリーを作製する。該ライブラリーより、マウス抗体のC領域部分またはV領域部分をコードするDNAをプローブとして用い、VHまたはVLをコードするcDNAを有する組換えファージまたは組換えプラスミドをそれぞれ単離する。組換えファージまたは組換えプラスミド上の目的とするマウス抗体のVHまたはVLの全塩基配列をそれぞれ決定し、塩基配列よりVHまたはVLの全アミノ酸配列をそれぞれ推定する。 
 非ヒト抗体を産生するハイブリドーマ細胞を作製するヒト以外の動物には、マウス、ラット、ハムスター、またはラビットなどを用いるが、ハイブリドーマ細胞を作製することが可能であれば、いかなる動物も用いることができる。
 ハイブリドーマ細胞からの全RNAの調製には、チオシアン酸グアニジン-トリフルオロ酢酸セシウム法[Methods in Enzymol.,154,3(1987)]、またはRNA easy(登録商標) kit(キアゲン社製)などのキットなどを用いる。 
 全RNAからのmRNAの調製には、オリゴ(dT)固定化セルロースカラム法[Molecular Cloning,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1989)]、またはOligo-dT30<Super>(登録商標) mRNA Purification Kit(タカラバイオ社製)などのキットなどを用いる。また、Fast Track(登録商標) mRNA Isolation Kit(インビトロジェン社製)、またはQuickPrep(登録商標) mRNA Purification Kit(ファルマシア社製)などのキットを用いてハイブリドーマ細胞からmRNAを調製することもできる。
 cDNAの合成およびcDNAライブラリーの作製には、公知の方法[Molecular Cloning,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1989)、Current Protocols in Molecular Biology,Supplement 1,John Wiley&Sons(1987-1997)]、SuperScript Plasmid System for cDNA Synthesis and Plasmid Cloning(インビトロジェン社製)、またはZAP-cDNA Synthesis Kit(ストラタジーン社製)などのキットなどを用いる。 
 cDNAライブラリーの作製の際、ハイブリドーマ細胞から抽出したmRNAを鋳型として合成したcDNAを組み込むベクターには、該cDNAを組み込めるベクターであればいかなるものでも用いることができる。例えば、ZAP Express[Strategies,5,58(1992)]、pBluescript II SK(+)[Nucleic Acids Research,17,9494(1989)]、λZAPII(Stratagene社製)、λgt10、λgt11[DNA Cloning:A Practical Approach,I,49(1985)]、Lambda BlueMid(クローンテック社製)、λExCell、pT7T3-18U(ファルマシア社製)、pcD2[Mol.Cell.Biol.,3,280(1983)]、またはpUC18[Gene,33,103(1985)]などが挙げられる。 
 ファージまたはプラスミドベクターにより構築されるcDNAライブラリーを導入する大腸菌には、該cDNAライブラリーを導入、発現および維持できるものであればいかなるものでも用いることができる。例えば、XL1-Blue MRF’[Strategies,5,81(1992)]、C600[Genetics,39,440(1954)]、Y1088、Y1090[Science,222,778(1983)]、NM522[J.Mol.Biol.,166,1(1983)]、K802[J.Mol.Biol.,16,118(1966)]、またはJM105[Gene,38,275(1985)]などが挙げられる。 
 cDNAライブラリーからの非ヒト抗体のVHまたはVLをコードするcDNAクローンの選択には、アイソトープあるいは蛍光標識したプローブを用いたコロニー・ハイブリダイゼーション法、またはプラーク・ハイブリダイゼーション法[Molecular Cloning,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1989)]などを用いる。 
 また、プライマーを調製し、mRNAから合成したcDNAまたはcDNAライブラリーを鋳型として、Polymerase Chain Reaction法[以下、PCR法と表記する、Molecular Cloning,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1989)、Current Protocols in Molecular Biology,Supplement 1,John Wiley&Sons(1987-1997)]を行うことよりVHまたはVLをコードするcDNAを調製することもできる。 
 選択されたcDNAを、適当な制限酵素などで切断後、pBluescript SK(-)(ストラタジーン社製)などのプラスミドにクローニングし、通常用いられる塩基配列の解析方法などにより該cDNAの塩基配列を決定する。塩基配列の解析方法には、例えば、ジデオキシ法[Proc.Natl.Acad.Sci.USA,74,5463(1977)]などの反応を行った後、A.L.F.DNAシークエンサー(ファルマシア社製)などの塩基配列自動分析装置などを用いる。 
 決定した塩基配列からVHおよびVLの全アミノ酸配列をそれぞれ推定し、既知の抗体のVHおよびVLの全アミノ酸配列[Sequences of Proteins of Immunological Interest,US Dept.Health and Human Services(1991)]と比較することにより、取得したcDNAが分泌シグナル配列を含む抗体のVHおよびVLの完全なアミノ酸配列をコードしているかをそれぞれ確認する。
 分泌シグナル配列を含む抗体のVHおよびVLの完全なアミノ酸配列に関しては、既知の抗体のVHおよびVLの全アミノ酸配列[Sequences of Proteins of Immunological Interest,US Dept.Health and Human Services(1991)]と比較することにより、分泌シグナル配列の長さおよびN末端アミノ酸配列を推定でき、更にはそれらが属するサブグループを知ることができる。
 また、VHおよびVLの各CDRのアミノ酸配列についても、既知の抗体のVHおよびVLのアミノ酸配列[Sequences of Proteins of Immunological Interest,US Dept.Health and Human Services(1991)]と比較することによって見出すことができる。 
 また、得られたVHおよびVLの完全なアミノ酸配列を用いて、例えば、SWISS-PROTまたはPIR-Proteinなどの任意のデータベースに対してBLAST法[J.Mol.Biol.,215,403(1990)]などの相同性検索を行い、VHおよびVLの完全なアミノ酸配列の新規性を確認できる。
(3)ヒト型キメラ抗体発現ベクターの構築
 (1)で得られる遺伝子組換え抗体発現用ベクターのヒト抗体のCHまたはCLをコードするそれぞれの遺伝子の上流に、それぞれ非ヒト抗体のVHまたはVLをコードするcDNAをそれぞれクローニングすることで、ヒト型キメラ抗体発現ベクターを構築することができる。 
 非ヒト抗体のVHまたはVLをコードするcDNAの3’末端側と、ヒト抗体のCHまたはCLの5’末端側とを連結するために、連結部分の塩基配列が適切なアミノ酸をコードし、かつ適当な制限酵素認識配列になるように設計したVHおよびVLのcDNAを作製する。作製されたVHおよびVLのcDNAを、(1)で得られるヒト化抗体発現用ベクターのヒト抗体のCHまたはCLをコードするそれぞれの遺伝子の上流にそれらが適切な形で発現する様にそれぞれクローニングし、ヒト型キメラ抗体発現ベクターを構築する。 
 また、非ヒト抗体VHまたはVLをコードするcDNAを、適当な制限酵素の認識配列を両端に有する合成DNAを用いてPCR法によりそれぞれ増幅し、(1)で得られる遺伝子組換え抗体発現用ベクターにクローニングすることもできる。
(4)ヒト化抗体のV領域をコードするcDNAの構築
 ヒト化抗体のVHまたはVLをコードするcDNAは、以下のようにして構築することができる。 
 非ヒト抗体のVHまたはVLのCDRのアミノ酸配列を移植するヒト抗体のVHまたはVLのフレームワーク領域(以下、FRと表記する)のアミノ酸配列をそれぞれ選択する。選択するFRのアミノ酸配列には、ヒト抗体由来のものであれば、いずれのものでも用いることができる。
 例えば、Protein Data Bankなどのデータベースに登録されているヒト抗体のFRのアミノ酸配列、またはヒト抗体のFRの各サブグループの共通アミノ酸配列[Sequences of Proteins of Immunological Interest,US Dept.Health and Human Services(1991)]などを用いる。抗体の結合活性の低下を抑えるため、元の抗体のVHまたはVLのFRのアミノ酸配列とできるだけ高い相同性(少なくとも60%以上)のFRのアミノ酸配列を選択する。 
 次に、選択したヒト抗体のVHまたはVLのFRのアミノ酸配列に、もとの抗体のCDRのアミノ酸配列をそれぞれ移植し、ヒト化抗体のVHまたはVLのアミノ酸配列をそれぞれ設計する。設計したアミノ酸配列を抗体の遺伝子の塩基配列に見られるコドンの使用頻度[Sequences of Proteins of Immunological Interest,US Dept.Health and Human Services(1991)]を考慮してDNA配列に変換し、ヒト化抗体のVHまたはVLのアミノ酸配列をコードするDNA配列をそれぞれ設計する。 
 設計したDNA配列に基づき、100~150塩基前後の長さからなる数本の合成DNAを合成し、それらを用いてPCR反応を行う。この場合、PCR反応での反応効率および合成可能なDNAの長さから、好ましくはH鎖、L鎖とも4~6本の合成DNAを設計する。また、可変領域全長の合成DNAを合成して用いることもできる。
 また、両端に位置する合成DNAの5’末端に適当な制限酵素の認識配列を導入することで、(1)で得られるヒト化抗体発現用ベクターに容易にヒト化抗体のVHまたはVLをコードするcDNAをクローニングすることができる。 
 PCR反応後、増幅産物をpBluescript SK(-)(ストラタジーン社製)などのプラスミドにそれぞれクローニングし、(2)に記載の方法と同様の方法により、塩基配列を決定し、所望のヒト化抗体のVHまたはVLのアミノ酸配列をコードするDNA配列を有するプラスミドを取得する。
(5)ヒト化抗体のV領域のアミノ酸配列の改変
 ヒト化抗体は、非ヒト抗体のVHおよびVLのCDRのみをヒト抗体のVHおよびVLのFRに移植しただけでは、その抗原結合活性は元の非ヒト抗体に比べて低下する[BIO/TECHNOLOGY,9,266(1991)]。ヒト化抗体では、ヒト抗体のVHおよびVLのFRのアミノ酸配列の中で、直接抗原との結合に関与しているアミノ酸残基、CDRのアミノ酸残基と相互作用するアミノ酸残基、および抗体V領域の立体構造を維持し、間接的に抗原との結合に関与しているアミノ酸残基を同定し、それらのアミノ酸残基を元の非ヒト抗体のアミノ酸残基に置換することにより、低下した抗原結合活性を上昇させることができる。 
 抗原結合活性に関わるFRのアミノ酸残基を同定するために、X線結晶解析[J.Mol.Biol.,112,535(1977)]またはコンピューターモデリング[Protein Engineering,7,1501(1994)]などを用いることにより、抗体の立体構造の構築および解析を行うことができる。また、それぞれの抗体について数種の改変体を作製し、それぞれの抗原結合活性との相関を検討することを繰り返し行うことで必要な抗原結合活性を有する改変ヒト化抗体を取得できる。 
 ヒト抗体のVHおよびVLのFRのアミノ酸残基は、改変用合成DNAを用いて(4)に記載のPCR反応を行うことにより、改変させることができる。PCR反応後の増幅産物について(2)に記載の方法により、塩基配列を決定し、目的の改変が施されたことを確認する。
 (6)ヒト化抗体発現ベクターの構築
(1)で得られる遺伝子組換え抗体発現用ベクターのヒト抗体のCHまたはCLをコードするそれぞれの遺伝子の上流に、構築した遺伝子組換え抗体のVHまたはVLをコードするcDNAをそれぞれクローニングし、ヒト化抗体発現ベクターを構築することができる。 
 例えば、(4)および(5)で得られるヒト化抗体のVHまたはVLを構築する際に用いる合成DNAのうち、両端に位置する合成DNAの5’末端に適当な制限酵素の認識配列を導入することで、(1)で得られるヒト化抗体発現用ベクターのヒト抗体のCHまたはCLをコードするそれぞれの遺伝子の上流にそれらが適切な形で発現するようにそれぞれクローニングする。
(7)遺伝子組換え抗体の一過性発現
 (3)および(6)で得られる遺伝子組換え抗体発現ベクター、またはそれらを改変した発現ベクターを用いて遺伝子組換え抗体の一過性発現を行い、作製した多種類のヒト化抗体の抗原結合活性を効率的に評価することができる。 
 発現ベクターを導入する宿主細胞には、遺伝子組換え抗体を発現できる宿主細胞であれば、いかなる細胞でも用いることができるが、例えばCOS-7細胞[American Type Culture Collection(ATCC)番号:CRL1651]を用いる[Methods in Nucleic Acids Res.,CRC press,283(1991)]。COS-7細胞への発現ベクターの導入には、DEAE-デキストラン法[Methods in Nucleic Acids Res.,CRC press(1991)]、またはリポフェクション法[Proc.Natl.Acad.Sci.USA,84,7413(1987)]などを用いる。 
 発現ベクターの導入後、培養上清中の遺伝子組換え抗体の発現量および抗原結合活性はELISA法[Monoclonal Antibodies-Principles and practice,Third edition,Academic Press(1996)、Antibodies-A Laboratory Manual,Cold Spring Harbor Laboratory(1988)、単クローン抗体実験マニュアル,講談社サイエンティフィック(1987)]などを用いて測定する。 
(8)遺伝子組換え抗体を安定に発現する形質転換株の所得と遺伝子組換え抗体の調製
 (3)および(6)で得られた遺伝子組換え抗体発現ベクターを適当な宿主細胞に導入することにより遺伝子組換え抗体を安定に発現する形質転換株を得ることができる。
宿主細胞への発現ベクターの導入には、エレクトロポレーション法[日本国特開平2-257891号公報、Cytotechnology,3,133(1990)]、カルシウムイオン方法、エレクトロポレーション法、スフェロプラスト法、酢酸リチウム法、リン酸カルシウム法、リポフェクション法等)が挙げられる。また、後述の動物に遺伝子を導入する方法としては、マイクロインジェクション法、ES細胞にエレクトロポレーション若しくはリポフェクション法を使用して遺伝子を導入する方法、または核移植法などが挙げられる。
 遺伝子組換え抗体発現ベクターを導入する宿主細胞には、遺伝子組換え抗体を発現させることができる宿主細胞であれば、いかなる細胞でも用いることができる。例えば、マウスSP2/0-Ag14細胞(ATCC番号:CRL1581)、マウスP3X63-Ag8.653細胞(ATCC番号:CRL1580)、ジヒドロ葉酸還元酵素遺伝子(以下、dhfrと表記する)が欠損したCHO細胞[Proc.Natl.Acad.Sci.USA,77,4216(1980)]、レクチン耐性を獲得したLec13[Somatic Cell and Molecular genetics,12,55(1986)]、α1,6-フコース転移酵素遺伝子が欠損したCHO細胞(国際公開第2005/035586号、国際公開第02/31140号)、ラットYB2/3HL.P2.G11.16Ag.20細胞(ATCC番号:CRL1662)などを用いる。
 また、細胞内糖ヌクレオチドGDP-フコースの合成に関与する酵素などのタンパク質あるいはN-グリコシド結合複合型糖鎖の還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素などのタンパク質、または細胞内糖ヌクレオチドGDP-フコースのゴルジ体への輸送に関与するタンパク質などの活性が低下または欠失した宿主細胞(国際公開第2003/85102号)、例えばα1,6-フコース転移酵素遺伝子が欠損したCHO細胞(国際公開第2005/035586号、国際公開第02/31140号)などを用いることもできる。 
 発現ベクターの導入後、遺伝子組換え抗体を安定に発現する形質転換株は、G418硫酸塩(以下、G418と表記する)などの薬剤を含む動物細胞培養用培地で培養することにより選択する(日本国特開平2-257891号公報)。
 動物細胞培養用培地としては、例えば、RPMI1640培地(インビトロジェン社製)、GIT培地(日本製薬社製)、EX-CELL301培地、EX-CELL302培地、EX-CELL325培地(JRH社製)IMDM培地(インビトロジェン社製)、Hybridoma-SFM培地(インビトロジェン社製)、またはこれら培地にFBSなどの各種添加物を添加した培地などが挙げられる。
 得られた形質転換株を培地中で培養することで培養上清中に遺伝子組換え抗体を発現蓄積させる。培養上清中の遺伝子組換え抗体の発現量および抗原結合活性はELISA法などにより測定できる。また、形質転換株は、DHFR増幅系(日本国特開平2-257891号公報)などを利用して遺伝子組換え抗体の発現量を上昇させることができる。 
 遺伝子組換え抗体は、形質転換株の培養上清よりプロテインA-カラムを用いて精製する[Monoclonal Antibodies-Principles and practice,Third edition,Academic Press(1996)、Antibodies-A Laboratory Manual,Cold Spring Harbor Laboratory(1988)]。また、ゲル濾過、イオン交換クロマトグラフィーおよび限外濾過などのタンパク質の精製で用いられる方法を組み合わすこともできる。 
 精製した遺伝子組換え抗体のH鎖、L鎖或いは抗体分子全体の分子量は、ポリアクリルアミドゲル電気泳動法[Nature,227,680(1970)]、またはウェスタンブロッティング法[Monoclonal Antibodies-Principles and practice,Third edition,Academic Press(1996)、Antibodies-A Laboratory Manual,Cold Spring Harbor Laboratory(1988)]など用いて測定することができる。 
3.精製モノクローナル抗体またはその抗体断片の活性評価
 精製した本発明のモノクローナル抗体またはその抗体断片の活性評価は、以下のように行うことができる。
 erbB3発現細胞株に対する結合活性は、前述の1-(7)記載のバインディングアッセイ系を用いて測定することができる。抗原陽性細胞株に対するCDC活性、またはADCC活性は公知の測定方法[Cancer Immunol.Immunother.,36,373(1993)]により測定することができる。
 EGF様リガンド依存的erbB3のリン酸化およびerbB3特異的リガンド依存的erbB3のリン酸化は以下のようにして測定することができる。
 erbB3発現細胞をPBSまたは無血清培地等で洗浄し、無血清培地で24 hr程度培養する。次に、数ng/mL~数10ng /mLのerbB3受容体リガンドを含む培地中に目的の抗体を添加した培地を用いてerbB3発現細胞を数分~数10分細胞を培養した後、該細胞抽出液を調製し、erbB3特異的抗体およびhouse keeping gene(アクチンなど)特異的抗体を用いて各タンパク質を免疫沈降させる。
 前記沈降タンパク質をSDS-PAGEで泳動後、erbB3特異的抗体およびリン酸化チロシン特異的抗体を用いて、western blottingを行なうことで、erbB3のリン酸化阻害活性を測定することができる。
 また、抗体添加後の培養細胞を、formaldehydeおよびサポニンによりタンパク質の固定化および細胞膜透過処理を行ない、erbB3特異的抗体およびリン酸化チロシン特異的抗体を用いたFCM解析を行うことでも、erbB3のリン酸化を確認することができる。
 また、erbB3のダイマー化について上述リン酸化検出実験と同様にして培養、細胞抽出液の調製を行なった後に、抗erbB3抗体を用いてerbB3タンパク質の免疫沈降を行い、該沈降タンパク質を各erbBファミリータンパク質に対する抗体で検出することで、erbB3のダイマー化またはヘテロダイマー化について検出することができる。
4.抗体のエフェクター活性を制御する方法
 本発明の抗erbB3抗体のエフェクター活性を制御する方法としては、抗体のFc領域の297番目のアスパラギン(Asn)に結合するN結合複合型糖鎖の還元末端に存在するN-アセチルグルコサミン(GlcNAc)にα-1,6結合するフコース(コアフコースともいう)の量を制御する方法(国際公開第2005/035586号、国際公開第2003/85102号、国際公開第2002/31140号、国際公開第00/61739号)、または抗体のFc領域のアミノ酸残基を改変する方法などが挙げられる。本発明の抗erbB3抗体はいずれの方法を用いても、エフェクター活性を制御することができる。
 エフェクター活性とは、抗体のFc領域を介して引き起こされる抗体依存性の活性をいい、抗体依存性細胞傷害活性(ADCC活性)、補体依存性傷害活性(CDC活性)、またはマクロファージ若しくは樹状細胞などの食細胞による抗体依存性ファゴサイトーシス(Antibody-dependent phagocytosis,ADP活性)などが知られている。
 抗体のFcのN結合複合型糖鎖のコアフコースの含量を制御することで、抗体のエフェクター活性を増加または低下させることができる。抗体のFcに結合しているN結合複合型糖鎖に結合するフコースの含量を低下させる方法としては、α1,6-フコース転移酵素遺伝子が欠損したCHO細胞を用いて抗体を発現することで、フコースが結合していない抗体を取得することができる。フコースが結合していない抗体は高いADCC活性を有する。
 一方、抗体のFcに結合しているN結合複合型糖鎖に結合するフコースの含量を増加させる方法としては、α1,6-フコース転移酵素遺伝子を導入した宿主細胞を用いて抗体を発現させることで、フコースが結合している抗体を取得できる。フコースが結合している抗体は、フコースが結合していない抗体よりも低いADCC活性を有する。
 また、抗体のFc領域のアミノ酸残基を改変することでADCC活性またはCDC活性を増加または低下させることができる。Fc領域のアミノ酸残基改変を行うことで、FcγRへの結合活性を増加させるあるいは低下させることによりADCC活性を制御することができるし、Fc領域のアミノ酸残基改変を行うことで、補体の結合活性を増加させるあるいは低下させることによりCDC活性を制御することができる。
 例えば、米国特許出願公開第2007/0148165号明細書に記載のFc領域のアミノ酸配列を用いることで、抗体のCDC活性を増加させることができる。また、米国特許第6,737,056号明細書、米国特許第7,297,775号明細書、米国特許第7,317,091号明細書または国際公開第2005/070963号に記載のアミノ酸改変を行うことで、ADCC活性またはCDC活性を、増加させることも低下させることもできる。
 更に、上述の糖鎖を制御する方法とFc領域のアミノ酸残基改変を行う方法を組み合わせることにより、抗体のエフェクター活性が制御された抗体を取得することができる。
5.本発明の抗erbB3抗体またはその抗体断片を用いた疾患の治療方法
 本発明のerbB3の細胞外領域を特異的に認識し、かつEGF様リガンド依存的erbB3のリン酸化を阻害する抗体またはその抗体断片は、erbB3が関与する癌などの過増殖性疾患(hyper proliferative diseases)の治療に用いることができる。 
 erbB3が関与する疾患としては、例えば、大腸癌、結腸直腸癌、肺癌、乳癌、グリオーマ、悪性黒色腫(メラノーマ)、甲状腺癌、腎細胞癌、白血病、リンパ腫、T細胞リンパ腫、胃癌、膵臓癌、子宮頚癌、子宮内膜癌、卵巣癌、食道癌、肝臓癌、頭頚部扁平上皮癌、皮膚癌、尿路癌、膀胱癌、前立腺癌、絨毛癌、咽頭癌、喉頭癌、胸膜腫、男性胚腫、子宮内膜過形成、子宮内膜症、胚芽腫、線維肉腫、カポジ肉腫、血管腫、海綿状血管腫、血管芽腫、網膜芽腫、星状細胞腫、神経線維腫、稀突起膠腫、髄芽腫、神経芽腫、神経膠腫、横紋筋肉腫、膠芽腫、骨原性肉腫、平滑筋肉腫、甲状肉腫およびウィルムス腫瘍などが挙げられる。
 また、本発明の抗erbB3抗体の少なくとも2つ以上を用いて、上述の疾患の治療を行なうことができる。具体的には、erbB3の1~4ドメインの各ドメインの抗体を組み合わせて用いることが挙げられるが、好ましくはerbB3のドメイン1または3に結合する抗体と、ドメイン2または4に結合する抗体とを投与することを含む治療方法、最も好ましくはerbB3のドメイン1に結合する抗体と、ドメイン4に結合する抗体とを投与することを含む治療方法が挙げられる。
 本発明の抗体またはその抗体断片、またはこれらの誘導体を含有する治療剤は、有効成分としての該抗体もしくは該抗体断片、またはこれらの誘導体のみを含むものであってもよいが、通常は薬理学的に許容される1以上の担体と一緒に混合し、製剤学の技術分野において公知の方法により製造した医薬製剤として提供される。
 投与経路としては、例えば、経口投与、または口腔内、気道内、直腸内、皮下、筋肉内あるいは静脈内などの非経口投与が挙げられる。投与形態としては、例えば、噴霧剤、カプセル剤、錠剤、散剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、軟膏またはテープ剤などが挙げられる。
 各種製剤は、通常用いられている賦形剤、増量剤、結合剤、浸潤剤、崩壊剤、表面活性剤、滑沢剤、分散剤、緩衝剤、保存剤、溶解補助剤、防腐剤、着色料、香味剤または安定化剤などを用いて常法により製造することができる。
 賦形剤としては、例えば、乳糖、果糖、ブドウ糖、コーンスターチ、ソルビット、結晶セルロース、滅菌水、エタノール、グリセロール、生理食塩水および緩衝液などが挙げられる。崩壊剤としては、例えば、澱粉、アルギン酸ナトリウム、ゼラチン、炭酸カルシウム、クエン酸カルシウム、デキストリン、炭酸マグネシウムおよび合成ケイ酸マグネシウムなどが挙げられる。
 結合剤としては、例えば、メチルセルロースまたはその塩、エチルセルロース、アラビアゴム、ゼラチン、ヒドロキシプロピルセルロースおよびポリビニルピロリドンなどが挙げられる。滑沢剤としては、例えば、タルク、ステアリン酸マグネシウム、ポリエチレングリコールおよび硬化植物油などが挙げられる。
 安定化剤としては、例えば、アルギニン、ヒスチジン、リジン、メチオニンなどのアミノ酸、ヒト血清アルブミン、ゼラチン、デキストラン40、メチルセルロース、亜硫酸ナトリウム、メタ亜硫酸ナトリウムなどが挙げられる。
 その他の添加剤としては、例えば、シロップ、ワセリン、グリセリン、エタノール、プロピレングリコール、クエン酸、塩化ナトリウム、亜硝酸ソーダおよびリン酸ナトリウムなどがそれぞれ挙げられる。
 経口投与に適当な製剤は、乳剤、シロップ剤、カプセル剤、錠剤、散剤または顆粒剤などである。
 乳剤またはシロップ剤のような液体調製物は、水、ショ糖、ソルビトール若しくは果糖などの糖類、ポリエチレングリコール若しくはプロピレングリコールなどのグリコール類、ごま油、オリーブ油若しくは大豆油などの油類、p-ヒドロキシ安息香酸エステル類などの防腐剤、またはストロベリーフレーバー若しくはペパーミントなどのフレーバー類などを添加剤として用いて製造する。 
 カプセル剤、錠剤、散剤または顆粒剤などは、乳糖、ブドウ糖、ショ糖若しくはマンニトールなどの賦形剤、デンプン若しくはアルギン酸ナトリウムなどの崩壊剤、ステアリン酸マグネシウム若しくはタルクなどの滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース若しくはゼラチンなどの結合剤、脂肪酸エステルなどの界面活性剤またはグリセリンなどの可塑剤などを添加剤として用いて製造する。
 非経口投与に適当な製剤としては、例えば、注射剤、座剤または噴霧剤などが挙げられる。
 注射剤は、塩溶液、ブドウ糖溶液、またはその両者の混合物からなる担体などを用いて製造する。
 座剤はカカオ脂、水素化脂肪またはカルボン酸などの担体を用いて製造する。
 噴霧剤は受容者の口腔および気道粘膜を刺激せず、かつ本発明のモノクローナル抗体またはその抗体断片を微細な粒子として分散させ、吸収を容易にさせる担体などを用いて製造する。担体としては、例えば、乳糖またはグリセリンなどを用いる。また、エアロゾルまたはドライパウダーとして製造することもできる。 
 さらに、上記非経口剤においても、経口投与に適当な製剤で添加剤として例示した成分を添加することもできる。
 本発明の抗体の有効量と適切な希釈剤および薬理学的に使用し得るキャリアとの組合せとして投与される有効量は、1回につき体重1kgあたり0.0001mg~100mgであり、2日から8週間間隔で投与される。
6.本発明の抗erbB3モノクローナル抗体またはその抗体断片を用いた疾患の診断方法
 本発明の抗体または該抗体断片を用いて、erbB3またはerbB3が発現した細胞を検出または測定することにより、erbB3が関連する疾患を診断することができる。 
 erbB3が関連する疾患の一つである癌の診断は、例えば、以下のようにerbB3の検出または測定して行うことができる。
 まず、複数の健常者の生体から採取した生体試料について、本発明のモノクローナル抗体または該抗体断片、またはこれらの誘導体を用い、下記の免疫学的手法を用いて、erbB3の検出または測定を行い、健常者の生体試料中のerbB3の存在量を調べる。次に、被験者の生体試料中についても同様にerbB3の存在量を調べ、その存在量を健常者の存在量と比較する。被験者の該ポリペプチドの存在量が健常者と比較して増加している場合には、癌が陽性であると診断される。 
 免疫学的手法とは、標識を施した抗原または抗体を用いて、抗体量または抗原量を検出または測定する方法である。例えば、放射性物質標識免疫抗体法、酵素免疫測定法、蛍光免疫測定法、発光免疫測定法、ウェスタンブロット法または物理化学的手法などが挙げられる。
 放射性物質標識免疫抗体法は、例えば、抗原または抗原を発現した細胞などに、本発明の抗体または該抗体断片を反応させ、さらに放射性標識を施した抗イムノグロブリン抗体または結合断片を反応させた後、シンチレーションカウンターなどで測定する。 
 酵素免疫測定法は、例えば、抗原または抗原を発現した細胞などに、本発明の抗体または該抗体断片を反応させ、さらに標識を施した抗イムノグロブリン抗体または結合断片を反応させた後、発色色素を吸光光度計で測定する。例えば、サンドイッチELISA法などが挙げられる。
 酵素免疫測定法で用いる標識体としては、公知[酵素免疫測定法,医学書院(1987)]の酵素標識を用いることができる。例えば、アルカリフォスファターゼ標識、ペルオキシダーゼ標識、ルシフェラーゼ標識またはビオチン標識などが挙げられる。
 サンドイッチELISA法は、固相に抗体を結合させた後、検出または測定対象である抗原をトラップさせ、トラップされた抗原に第2の抗体を反応させる方法である。該ELISA法では、検出または測定したい抗原を認識する抗体または抗体断片であって、抗原認識部位の異なる2種類の抗体を準備し、そのうち、第1の抗体または抗体断片を予めプレート(例えば、96ウェルプレート)に吸着させ、次に第2の抗体または抗体断片をFITCなどの蛍光物質、ペルオキシダーゼなどの酵素、またはビオチンなどで標識しておく。
 上記の抗体が吸着したプレートに、生体内から分離された、細胞若しくはその破砕液、組織若しくはその破砕液、細胞培養上清、血清、胸水、腹水または眼液などを反応させた後、標識したモノクローナル抗体または抗体断片を反応させ、標識物質に応じた検出反応を行う。濃度既知の抗原を段階的に希釈して作製した検量線より、被験サンプル中の抗原濃度を算出する。
 サンドイッチELISA法に用いる抗体としては、ポリクローナル抗体またはモノクローナル抗体のいずれを用いてもよく、Fab、Fab’またはF(ab)などの抗体フラグメントを用いてもよい。サンドイッチELISA法で用いる2種類の抗体の組み合わせとしては、異なるエピトープを認識するモノクローナル抗体または抗体断片の組み合わせでもよいし、ポリクローナル抗体とモノクローナル抗体または抗体断片との組み合わせでもよい。
 蛍光免疫測定法は、文献[Monoclonal Antibodies-Principles and practice,Third edition,Academic Press(1996)、単クローン抗体実験マニュアル,講談社サイエンティフィック(1987)]などに記載された方法で測定する。蛍光免疫測定法で用いる標識体としては、公知[蛍光抗体法,ソフトサイエンス社(1983)]の蛍光標識を用いることができる。例えば、FITCまたはRITCなどが挙げられる。 
 発光免疫測定法は文献[生物発光と化学発光 臨床検査42,廣川書店(1998)]などに記載された方法で測定する。発光免疫測定法で用いる標識体としては、公知の発光体標識が挙げられ、例えば、アクリジニウムエステルまたはロフィンなどが挙げられる。
 ウェスタンブロット法は、抗原または抗原を発現した細胞などをSDS(ドデシル硫酸ナトリウム)-PAGE[Antibodies-A Laboratory Manual Cold Spring Harbor Laboratory(1988)]で分画した後、該ゲルをポリフッ化ビニリデン(PVDF)膜またはニトロセルロース膜にブロッティングし、該膜に抗原を認識する抗体または抗体断片を反応させ、さらにFITCなどの蛍光物質、ペルオキシダーゼなどの酵素標識、またはビオチン標識などを施した抗マウスIgG抗体または結合断片を反応させた後、該標識を可視化することによって測定する。一例を以下に示す。
 配列番号2で示されるアミノ酸配列を有するポリペプチドを発現している細胞または組織を溶解し、還元条件下でレーンあたりのタンパク量として0.1~30μgをSDS-PAGE法により泳動する。泳動されたタンパク質をPVDF膜にトランスファーし1~10%BSAを含むPBS(以下、BSA-PBSと表記する)に室温で30分間反応させブロッキング操作を行う。
 ここで本発明のモノクローナル抗体を反応させ、0.05~0.1%のTween-20を含むPBS(以下、Tween-PBSと表記する)で洗浄し、ペルオキシダーゼ標識したヤギ抗マウスIgGを室温で2時間反応させる。Tween-PBSで洗浄し、ECL(登録商標) Western Blotting Detection Reagents(アマシャム社製)などを用いてモノクローナル抗体が結合したバンドを検出することにより、配列番号2で示されるアミノ酸配列を有するポリペプチドを検出する。
 ウェスタンブロッティングでの検出に用いられる抗体としては、天然型の立体構造を保持していないポリペプチドに結合できる抗体が用いられる。 
 物理化学的手法としては、例えば、抗原であるerbB3と本発明のモノクローナル抗体またはその抗体断片とを結合させることにより凝集体を形成させて、該凝集体を検出することにより行う方法が挙げられる。この他に物理化学的手法として、例えば、毛細管法、一次元免疫拡散法、免疫比濁法またはラテックス免疫比濁法[臨床検査法提要,金原出版(1998)]などが挙げられる。
 ラテックス免疫比濁法は、抗体または抗原を感作させた粒径0.1~1μm程度のポリスチレンラテックスなどの担体を用い、対応する抗原または抗体により抗原抗体反応を起こさせると、反応液中の散乱光は増加し、透過光は減少する。この変化を吸光度または積分球濁度として検出することにより被験サンプル中の抗原濃度などを測定する。 
 一方、erbB3が発現している細胞の検出または測定は、公知の免疫学的検出法を用いることができるが、好ましくは免疫沈降法、免疫細胞染色法、免疫組織染色法または蛍光抗体染色法などを用いる。
 免疫沈降法は、erbB3を発現した細胞などを本発明のモノクローナル抗体またはその抗体断片と反応させた後、プロテインG-セファロースなどのイムノグロブリンに特異的な結合能を有する担体を加えて抗原抗体複合体を沈降させる。
 または以下のような方法によっても行なうことができる。ELISA用96ウェルプレートに上述した本発明のモノクローナル抗体またはその抗体断片を固相化した後、BSA-PBSによりブロッキングする。
 抗体が、例えば、ハイブリドーマ培養上清などの精製されていない状態である場合には、抗マウスイムノグロブリン、抗ラットイムノグロブリン、プロテイン-Aまたはプロテイン-GなどをあらかじめELISA用96ウェルプレートに固相化し、BSA-PBSでブロッキングした後、ハイブリドーマ培養上清を分注して結合させる。
 次に、BSA-PBSを捨てPBSでよく洗浄した後、erbB3を発現している細胞または組織の溶解液を反応させる。よく洗浄した後のプレートより免疫沈降物をSDS-PAGE用サンプルバッファーで抽出し、上記のウェスタンブロッティングにより検出する。 
 免疫細胞染色法または免疫組織染色法は、抗原を発現した細胞または組織などを、場合によっては抗体の通過性を良くするため界面活性剤またはメタノールなどで処理した後、本発明のモノクローナル抗体と反応させ、さらにFITCなどの蛍光標識、ペルオキシダーゼなどの酵素標識またはビオチン標識などを施した抗イムノグロブリン抗体またはその結合断片と反応させた後、該標識を可視化し、顕微鏡にて顕鏡する方法である。
 また、蛍光標識の抗体と細胞を反応させ、フロ-サイトメーターにて解析する蛍光抗体染色法[Monoclonal Antibodies-Principles and practice,Third edition,Academic Press(1996)、単クローン抗体実験マニュアル,講談社サイエンティフィック(1987)]により検出を行うことができる。特に、本発明のerbB3の細胞外領域に結合する抗体またはその抗体断片は、蛍光抗体染色法により細胞膜上に発現しているerbB3を検出することができる。 
 また、蛍光抗体染色法のうち、FMAT8100HTSシステム(アプライドバイオシステム社製)などを用いた場合には、形成された抗体-抗原複合体と、抗体-抗原複合体の形成に関与していない遊離の抗体または抗原とを分離することなく、抗原量または抗体量を測定できる。
 以下、本発明を実施例により具体的に説明するが、本発明は下記実施例に限定されるものではない。
[実施例1] erbB3抗原の作製
1.ヒトerbB3-Fcタンパク質発現ベクター
 ヒトerbB3の細胞外領域(配列番号3)にヒトIgG1-Fc領域を結合させたFc融合タンパク質(以下、erbB3-Fcと記す)のcDNA断片は以下のようにして作製した。ヒトerbB3の細胞外領域のアミノ酸配列をコードするDNA断片は、配列番号7および配列番号8のプライマーを用いて、Human lung Marathon Ready cDNA(クロンテック社)を鋳型として、KOD plus(登録商標)DNAポリメラーゼ(東洋紡社製)を用いて、94℃ 15秒間、60℃ 30秒間、68℃ 2分間、35サイクルのPCR反応を行い増幅した。このerbB3遺伝子断片を制限酵素KpnIおよびXbaIで消化し、ヒトIgGのFc領域を含むINPEP4ベクター(Biogen-IDEC社製)の適切な部位に挿入し、erbB3-Fc発現ベクターを作製した。
2.ヒトerbB3-GSTタンパク質発現ベクターの作製
 以下の実験において、別途記載が無い限り、1.のPCR条件および制限酵素処理を行い、各発現ベクターを作製した。
 ヒトerbB3の細胞外領域(配列番号3)とグルタチオン S-トランスフェラーゼ(以下、GSTと記す)を結合させたGST融合タンパク質(以下、herbB3-GSTと記す)のcDNA断片は、以下のようにして作製した。
 ヒトerbB3細胞外領域のcDNA断片は、配列番号9のプライマーおよび配列番号10のプライマーを用いて、Human lung Marathon Ready cDNA(クロンテック社製)を鋳型として、94℃ 15秒間、60℃ 15秒間、68℃ 2分間、35サイクルのPCR反応を行い、増幅した。この遺伝子断片を制限酵素KpnIおよびBglIIで消化し、GSTを含むINPEP4ベクター(Biogen-IDEC社製)の適切な位置にに挿入し、herbB3-GST発現ベクターを作製した。
3.マウスerbB3-GSTタンパク質発現ベクターの作製
 マウスerbB3の細胞外領域(配列番号6)にGSTを結合させたGST融合タンパク質(以下、merbB3-GST)のcDNA断片は、Mouse lung Marathon Ready cDNA(クロンテック社製)を鋳型として、配列番号11のプライマーおよび配列番号12のプライマーを用いて94℃ 30秒間、65℃ 15秒間、68℃ 2分間、35サイクルのPCR反応を行い増幅した。増幅したcDNA断片は、制限酵素MuIおよびBglIIを用いて消化した。以下の操作は[実施例1]1.と同様にしてマウスerbB3-GST発現ベクターを作製した。
4.ヒト-マウスキメラerbB3-Fcタンパク質発現ベクターの作製
 抗erbB3抗体の結合領域を調べるため、ヒトerbB3の細胞外領域のドメイン2~4をマウスerbB3のドメイン2~4に置換したキメラタンパク質(以下、hD1/mD234と記す)、ヒトerbB3の細胞外領域のドメイン3~4をマウスerbB3のドメイン3~4に置換したキメラタンパク質(以下、hD12/mD34と記す)およびヒトerbB3の細胞外領域のドメイン4をマウスerbB3のドメイン4に置換したキメラタンパク質(以下、hD123/mD4と記す)の発現ベクターを、以下のようにして作製した。
(1)hD1/mD234発現ベクターの作製
 ヒトerbB3-D1のcDNA断片は、ヒトerbB3cDNAを鋳型として、配列番号13のプライマーと配列番号14のプライマーとを用いて、94℃ 30秒間、65℃ 15秒間、68℃ 30秒間、35サイクルのPCR反応を行ない増幅した。一方、マウスerbB3-D234のcDNA断片は、マウスerbB3 cDNAを鋳型として、配列番号15のプライマーと配列番号16のプライマーとを用いて、94℃ 30秒間、65℃ 15秒間、68℃ 90秒間、35サイクルのPCRを行い増幅した。
 hD1/mD234のcDNA断片は、ヒトerbB3-D1のcDNA断片およびマウスerbB3-D234のcDNA断片を精製し、混合したものを鋳型として、94℃ 30秒間、65℃ 15秒間、68℃ 2分間、5サイクルのPCR反応を行なった後、配列番号17のプライマーおよび配列番号18のプライマーをを添加して、更に94℃ 30秒間、65℃ 15秒間、68℃ 2分間、35サイクルのPCR反応を行い、増幅した。この遺伝子断片を制限酵素MluIおよびBglIIで消化し、GSTを含むINPEP4ベクター(Biogen-IDEC社製)に挿入し、hD1/mD234発現ベクターを作製した。
(2)hD12/mD34発現ベクターの作製
 ヒトerbB3-D12のcDNA断片は、ヒトerbB3cDNAを鋳型として、配列番号19のプライマーおよび配列番号20のプライマーを用いて、94℃ 30秒間、65℃ 15秒間、68℃ 1分間、35サイクルのPCRを行い、増幅した。
 一方、マウスerbB3-D34のcDNA断片は、マウスerbB3cDNAを鋳型として配列番号21のプライマーおよび配列番号22のプライマーを用いて、94℃ 30秒間、65℃ 15秒間、68℃ 90秒間、35サイクルのPCR反応を行い増幅した。これら増幅した2つのcDNA断片と、配列番号23のプライマーおよび配列番号24のプライマーを用いて、上述(a)と同様にして、hD12/mD34発現ベクターを作製した。
(3)hD123/mD4発現ベクターの作製
 ヒトerbB2-D123のcDNA断片は、ヒトerbB3cDNAを鋳型として、配列番号25のプライマーおよび配列番号26のプライマーを用いて、94℃ 30秒間、65℃ 15秒間、68℃ 2分間、35サイクルのPCRを行い増幅した。
 一方、マウスerbB3-D4のcDNA断片は、マウスerbB3cDNAを鋳型として、配列番号27のプライマーおよび配列番号28のプライマーを用いて、94℃ 30秒間、65℃ 15秒間、68℃ 90秒間、35サイクルのPCR反応を行い増幅した。これら増幅した2つのcDNA断片と、配列番号29のプライマーおよび配列番号30のプライマーを用いて、上述(a)と同様にして、hD123/mD4発現ベクターを作製した。
5.erbB3-Fcタンパク質およびerbB3-GSTタンパク質の作製
 上述1.~4.で作製したerbB3-Fcタンパク質発現ベクターおよびerbB3-GSTタンパク質発現ベクターは、それぞれFreeStyle293 Expression Kit(インビトロジェン社)を用いて、添付説明書に従ってFreeStyle 293F細胞へ導入した。ベクター導入後5日目の培養上清を回収し、0.2μmのフィルター(ミリポア社製)処理を行った。
 erbB3-Fcタンパク質は、Protein A樹脂(MabSelect(登録商標)、アマシャム社製)を用いてアフィニティー精製した。洗浄液としてリン酸緩衝液(PBS)、溶出緩衝液として20mM クエン酸ナトリウム、50mM NaCl緩衝液(pH2.7)を用いた。溶出画分は200mM リン酸ナトリウム緩衝液(pH7.0)を添加してpH6.0付近に調整した。
 erbB3-GSTタンパク質は、培養上清125mLに対しGlutathione Sepharose 4B(アマシャム社製)樹脂懸濁液1mLを添加し、4℃で4時間反応させた。その後、リン酸緩衝液で洗浄し、溶出緩衝液として10mM Glutathione in 50mM Tris-HCl(pH8.0)を用いて各ドメインペプチドをアフィニティー精製した。
 溶出された融合タンパク溶液は、透析膜(10000カット、Spectrum Laboratories社製)を用いてリン酸緩衝液に置換し、孔径0.22μmのメンブレンフィルターMILLEX-GV(MILLIPORE社製)でろ過滅菌し、erbB3-Fcタンパク質およびerbB3-GSTタンパク質を作製した。
 erbB3-Fcタンパク質およびerbB3-GSTタンパク質の濃度は280nmの吸光度を測定し、0.86 Optimal densityを示す融合タンパク質溶液の濃度を1mg/mLとして算出した。
[実施例2] 抗ヒトerbB3抗体の作製
 本実施例におけるモノクローナル抗体の作製は、単クローン抗体実験操作入門(安東民衛ら著作、講談社発行、1991年)等に記載されるような一般的方法に従って調製した。被免疫動物は、日本SLC社で市販されているC3H/Hej jms Slc-lpr/lprマウスを用いた。
 erbB3-Fc等の抗原タンパク質と、MPL+TDM EMULSION(RiBi:シグマ社製Ca.No52-0177-00)とを1:1で混合し、20μg/匹でマウスの右腹腔内に初回免疫した。初回免疫以降は、10~20μg/匹の抗原を7-9日間毎に複数回マウスに免疫した。さらに、細胞融合のために、脾臓およびリンパ節を取得する3日前に、同抗原を右腹腔内に免疫した。抗原免疫2回目以降から抗体価の測定を開始し、以降は経時的に抗体価の測定をおこない、脾臓等の摘出時期を判断した。
 抗原を免疫したマウスから外科的に切除した脾臓およびリンパ節に、350mg/mL 炭酸水素ナトリウム、50単位/mL ペニシリンおよび50μg/mL ストレプトマイシンを含む無血清DMEM培地(ギブコ・ビーアールエル社製)(以下、無血清DMEM培地と記す)10mLを加え、メッシュ(セルストレイナー:ファルコン社製)上で、スパーテルを用いてつぶした。メッシュを通した細胞懸濁液を、遠心分離して細胞を沈澱させた後、細胞を無血清DMEM培地で2回洗浄してから、無血清DMEM培地に懸濁して細胞数を測定した。
 一方、10% ウシ胎児血清(以下、FCSと略記する)(シグマ社製)およびL-Gluを含むDMEM培地(ギブコ・ビーアールエル社製)(以下、血清入りDMEM培地と記す)を用いて、37℃、5% CO存在下で、8-アザグアニン耐性マウスミエローマP3X63Ag8U.1(P3-U1)を1×10細胞/mL以下の細胞濃度で継代培養した。
 培養したマウスミエローマ細胞は、上述と同様にして無血清DMEM培地で洗浄し、無血清DMEM培地に懸濁して細胞数を測定した。回収したマウス脾臓およびリンパ節由来の細胞懸濁液とマウスミエローマ懸濁液とを、細胞数5:1の割合で混合した。この細胞混合液を遠心分離し、その後上清を完全に除去した。
 このぺレットに、融合剤として50%(w/v)ポリエチレングリコール1500(ベーリンガーマンハイム社製) 1mLを、ピペットの先でぺレットを撹拌しながらゆっくり添加した後、予め37℃に加温しておいた無血清DMEM培地 1mLを2回に分けてゆっくり添加し、さらに7mLの無血清DMEM培地を添加した。遠心分離後、上清を除去して得られた融合細胞を、以下に記載する限界希釈法によるスクリーニングに供した。
 ハイブリドーマは、10%FCSおよびヒポキサンチン(H)、アミノプテリン(A)ならびにチミジン(T)(以下「HAT」という。:シグマ社製)を含有するDMEM培地(HAT培地)で培養することで選択した。
 さらに、HT(シグマ社製)含有DMEM培地(HT培地)を用いた限界希釈法により、ハイブリドーマをシングルクローンにした。培養は、96穴マイクロタイタープレート(ベクトンディッキンソン社製)中で行った。
 抗ヒトerbB3モノクローナル抗体を産生するハイブリドーマスクリーニングおよび各ハイブリドーマが産生するモノクローナル抗体の反応特異性解析は、後述する酵素標識免疫吸着アッセイ(ELISA)および蛍光活性化セルソーター(FACS)アッセイで行なった。
 その結果、抗ヒトerbB3モノクローナル抗体産生ハイブリドーマ1126、1153、920104および12511を確立した。
[実施例3] 抗erbB3抗体の結合ドメインの決定
 本発明で取得した抗ヒトerbB3モノクローナル抗体の結合ドメインは、erbB3の細胞外領域をGSTに融合させたGST融合タンパク質に対するbinding ELISAにより決定した。
 50mM 炭酸バッファー(pH9)(以下、coating bufferと記す)にて1μg/mLに調製したanti-Glutathione-Transferase-Schistsoma-japonicum(Goat)(Rockland社製 ca.No.16979)(以下anti-GSTと記す)を、50μL/wellでマキシソープPlate(NUNC;ca.No.442404)に添加し、37℃、1時間(または4℃、ON)インキュベートし、固相化した。
 Bufferを廃棄した後、各ウェルにブロッキング試薬(SuperBlock(登録商標) Blocking Buffer、PIERCE社製)を250~300μL/well加え、室温で5~10分間インキュベートし、ブロッキングした。ブロッキング試薬を廃棄した後、10%Block Ace(登録商標)(大日本住友製薬社製)、0.1% tween20を含むトリスバッファー生理食塩水(以下、アッセイ希釈液と記す)で5μg/mLに希釈したherbB3-GST融合タンパク質、merbB3-GST融合タンパク質、hD1/mD234融合タンパク質、hD12/mD34融合タンパク質およびhD123/mD4融合タンパク質を、それぞれ抗原ごとのplateに50μL/wellで添加し、室温で1時間インキュベートして固相化した。
 抗原溶液を廃棄し、プレートを0.1% tween20を含むトリスバッファー生理食塩水(以下、washing bufferと記す)にて3回洗浄した後、アッセイ希釈液で希釈した免疫血清サンプル(終濃度100、1000、10000倍希釈)、マウス血清サンプル(終濃度100、1000、10000倍希釈)、陽性コントロールとしてanti-c-ErbB3 mouse monoclonal antibody(Ab-4)(Calbiochem社製、Cat.No.OP119)(終濃度1~1000ng/mL)および陰性コントロールとしてmouse IgG1κ isotype control(Southern Biotech社製、Cat.No.010201)(終濃度1~1000ng/mL)を、50μL/wellで添加した。1次抗体を添加した後、室温にて30分間インキュベーションした。
 Washing bufferにて3回洗浄後、アッセイ希釈液で希釈したHRP標識ヤギ抗マウスIgG抗体(southern biotech社製、Cat.No.1030-05)、HRP標識ヤギ抗マウスIgG抗体(CALTAG社製、Cat.No.M30107)およびHRP標識ヤギ抗マウスIgM抗体(southern biotech社製、Cat.No.1020-05)を各ウェルに50μL加え、室温にて30分間反応させた。
 Washing bufferにて4回洗浄後、3,3’,5,5’-tetramethylbenzidine(TMB)発色基質液(DAKO社製)を各ウェルに50μL加え、暗所にて室温でインキュベートし、発色させた(約3分間程度)。発色の進行具合を観察しながら、0.5M硫酸(50μL/well)を加え、反応を停止した。
 波長450nm(参照波長570nm)での吸光度をマイクロプレートリーダー(MTP-300;コロナ電気社製)で測定した。Binding ELISAの結果、各クローンの各種抗原に対する反応性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の抗ヒトerbB3モノクローナル抗体1153は、erbB3細胞外領域のドメイン1を認識し、抗ヒトerbB3モノクローナル抗体920104はドメイン3を認識し、抗ヒトerbB3モノクローナル抗体1126はドメイン4を認識することが明らかになった。一方、本発明の抗ヒトerbB3モノクローナル抗体12511はヒトerbB3およびマウスerbB3の両方に反応することが明らかになった。
[実施例4] 遺伝子組換え抗体の作製
1.各抗体遺伝子のcDNAクローニングとmouse/human chimera モノクローナル抗体発現ベクターの作製
 ハイブリドーマを血清入りDMEMで培養し、遠心分離(1500rpm 3分間)により細胞を集めた後、5mLのISOGEN(登録商標)(ニッポンジーン社製)を添加し、添付のプロトコールにしたがってTotal RNAを抽出した。1μLのtotal RNAを鋳型として、SMART RACE(登録商標) cDNA amplification Kit(クロンテック社製)の添付のプロトコールにしたがって1st strand cDNAを作製し、作製されたcDNA 2.5μLを鋳型として軽鎖可変領域(以下、VLと記す)および重鎖可変領域(以下、VHと記す)をKOD plus(登録商標)DNAポリメラーゼ(東洋紡社製)を用いて増幅した。
 VLの増幅には、UMP(SMART RACE cDNA amplification Kitに含まれる)とmk-RvP1(配列番号31)プライマーを用いて、94℃ 5秒間、72℃ 3分間、5サイクルのPCRを行い、続いて94℃ 5秒間、70℃ 10秒間、72℃ 3分間、5サイクルの反応を行ない、さらに94℃ 5秒間、68℃ 10秒間、72℃ 3分間、25サイクルのPCRを行なった。
 次に、5倍希釈液したこの反応液1μLを鋳型として、NUMP(SMART RACE(登録商標) cDNA amplification Kitに含まれる)とmk-RvP2プライマー(配列番号32)を用いて、94℃ 15秒間、60℃ 30秒間、68℃ 1分間、25~30サイクルのPCRを行なった。
 VHの増幅には、キットに付属のUMPとmH-Rv1プライマー(配列番号33)とを用いたPCR、およびキットに付属のNUMPとmH-Rv2プライマー(配列番号34)を用いたPCRを上述と同じように行なった。
 増幅したVHおよびVLのPCR産物は、2%アガロースゲル電気泳動に供し、QIAquick(登録商標) gel extraction kit(QIAGEN社製)により精製した。精製されたPCR産物をpCR4Blunt-TOPO(登録商標)ベクター(インビトロジェン社製)に連結し、添付説明書に従いサブクローニングした。次に、キットに含まれるT3プライマーおよびT7プライマーを用いて塩基配列の決定を行い、各クローン特異的プライマーを設計した。
 以下に各クローンのキメラ抗体発現ベクター作製手順を示す。なお、全てのPCR反応はKOD plus (登録商標)DNAポリメラーゼ(東洋紡社製)を用いて行なった。また、発現ベクター挿入後のsequence解析は、重鎖はSEQ4618プライマー(配列番号35)、軽鎖はSEQ1783プライマー(配列番号36)を用いて確認した。
(1)1153抗体発現ベクターの作製
 サブクローニングされた1153重鎖遺伝子を鋳型として1153Hc-SalIU(配列番号37)と1153Hc-NheIL(配列番号38)を用い、94℃ 15秒間、55℃ 30秒間、68℃ 1分間、30サイクルのPCRを行なった。この反応液を2% アガロースゲル電気泳動に供し、約450bpの断片をQIAquick(登録商標) gel extraction kit(QIAGEN社製)を用いて精製した。
 1153VH増幅断片を制限酵素SalIおよびNheIで消化し、ヒトIgG1のH鎖定常領域およびL鎖定常領域をコードするDNA断片を含むN5KG1-Val Larkベクター(Biogen-IDEC社製)のSalIおよびNheIサイトに導入した。挿入部分のDNA配列を確認し、1153抗体のVHのDNAを有するN5KG1/1153Hベクターを作製した。
 サブクローニングされた1153軽鎖遺伝子を鋳型として1153Lc-BglIIプライマー(配列番号39)と1153Lc-BsiWIプライマー(配列番号40)を用いて、VHと同様のPCR反応を行い、約400bpの断片を精製した。抽出した1153VL増幅断片を制限酵素BglIIおよびBsiWIで消化し、N5KG1/1153VHベクターのBglIIおよびBsiWIへ挿入した。挿入部分のDNA配列を確認し、1153抗体VHおよびVLのDNAを含むN5KG1/1153発現ベクター作製した。
(2)920104抗体発現ベクターの作製
 920104抗体発現ベクターは、VH増幅用の920104Hc-SalIUプライマー(配列番号41)と920104Hc-NheILプライマー(配列番号42)を用い、VL増幅用の920104Lc-BglIIプライマー(配列番号43)と920104Lc-BsiWIプライマー(配列番号44)とを用いた以外は、1-(1)と同様にして行い920104抗体のVHおよびVLのDNAを有するN5KG1/920104発現ベクターを作製した。
(3)1126抗体発現ベクターの作製
 1126抗体発現ベクターは、VH増幅用の1126Hc-SalIUプライマー(配列番号45)と1126Hc-NheILプライマー(配列番号46)を用い、VL増幅用の1126Lc-PmeIUプライマー(配列番号47)と1126Lc-BsiWIプライマー(配列番号48)とを用い、VLの制限酵素としてPmeIを用いた以外は、1-(1)と同様にして行い1126抗体のVHおよびVLのDNAを含むN5KG1/1126発現ベクターを作製した。
(4)12511抗体発現ベクターの作製
 12511抗体発現ベクターは、VH増幅用の12511Hc-SalIUプライマー(配列番号49)と12511Hc-NheILプライマー(配列番号50)を用い、VL増幅用の12511Lc-BglIIUプライマー(配列番号51)と12511Lc-BsiWIプライマー(配列番号52)とを用いた以外は、上述1-(1)と同様にして行い12511抗体のVHおよびVLのDNAを含むN5KG1/12511発現ベクターを作製した。
 以上(1)~(4)に記載の抗体発現ベクターに含まれるDNAの塩基配列、該塩基配列にコードされるアミノ酸配列および抗体のアミノ酸配列を以下に示す。
 1153抗体のVHおよびVLをコードするDNAの塩基配列を配列番号53および配列番号55、該塩基配列にコードされるアミノ酸配列を配列番号54および56に示す。また、分泌された1153抗体のVHおよびVLのアミノ酸配列を配列番号57および58に示す。更に、VHのCDR1~3およびVLのCDR1~3のアミノ酸配列を、それぞれ配列番号59~61および配列番号62~64に示す。
 920104抗体のVHおよびVLをコードするDNAの塩基配列を配列番号65および配列番号67、該塩基配列にコードされるアミノ酸配列を配列番号66および68に示す。また、分泌された920104抗体のVHおよびVLのアミノ酸配列を配列番号69および70に示す。更に、VHのCDR1~3およびVLのCDR1~3のアミノ酸配列を、それぞれ配列番号71~73および配列番号74~76に示す。
 1126抗体のVHおよびVLをコードするDNAの塩基配列を配列番号77および配列番号79、該塩基配列にコードされるアミノ酸配列を配列番号78および80に示す。また、分泌された1126抗体のVHおよびVLのアミノ酸配列を配列番号81および82に示す。更に、VHのCDR1~3およびVLのCDR1~3のアミノ酸配列を、それぞれ配列番号83~85および配列番号86~88に示す。
 12511抗体のVHおよびVLをコードするDNAの塩基配列を配列番号89および配列番号91、該塩基配列にコードされるアミノ酸配列を配列番号90および92に示す。また、分泌された12511抗体のVHおよびVLのアミノ酸配列を配列番号93および94に示す。更に、VHのCDR1~3およびVLのCDR1~3のアミノ酸配列を、それぞれ配列番号95~97および配列番号98~100に示す。
(5)コントロール抗体発現ベクターの作製
 ポジティブコントロール抗体として国際公開第2007/077028号(特許文献3)に記載の抗ヒトerbB3ヒト抗体U1-59を用いた。抗ヒトerbB3ヒト抗体U1-59の発現ベクターは、国際公開第2007/077028号(特許文献3)に記載の配列番号70および72で表されるアミノ酸配列をコードするcDNAを全合成し(タカラバイオ社)、N5KG1発現ベクター(Biogen-IDEC社製)に組み込み作製した。
 ネガティブコントロール抗体として抗dinitrophenylhydrazine(DNP)抗体は、Motoki K et.al.,Clin.Cancer Res.11,3126-3135,2005に記載のものを用いた。
2.遺伝子組換え抗体の発現と精製
 上述実施例4-1.で作製した遺伝子組換え抗体発現ベクターは、それぞれFreeStyle293(登録商標) Expression Kit(インビトロジェン社)を用いて、添付説明書に従ってFreeStyle 293F細胞へ導入し、数日間培養を行った。取得した上清は、0.2μmのフィルター(ミリポア社製)に供し、FreeStyle293細胞等の雑排物を除去した。
 次に、フィルター処理した培養上清をProtein A樹脂(MabSelect(登録商標)、アマシャム社製)へ添加し、遺伝子組換え抗体のアフィニティー精製を行った。洗浄液としてリン酸緩衝液、溶出緩衝液として20mMクエン酸ナトリウム緩衝液(pH3)を用いた。
 溶出画分は50mMリン酸ナトリウム緩衝液(pH7.0)を添加してpH6.0付近に調整した。調製された抗体溶液は、透析膜(10000カット、Spectrum Laboratories社製)を用いてリン酸緩衝液に置換し、孔径0.22μmのメンブランフィルターMILLEX-GV(MILLIPORE社製)でろ過滅菌し、精製された抗ヒトerbB3遺伝子組換え抗体を作製した。精製抗体の濃度は280nmの吸光度を測定し、1mg/mLを1.45 Optimal densityとして算出した。
[実施例5] 抗erbB3抗体によるヘレグリン依存的erbB3のリン酸化阻害効果
 ヒト偏平上皮癌細胞株A431 5×10個を、10% FBSを含むRPMI1640培地(Invitrogen社製)(以下、血清入り RPMIと記す)で懸濁し、24well plateに1mL/wellで播種し、37℃、6.5% COの培養条件で一晩培養した。
 培養上清を除き、無血清RPMI1640培地(Invitrogen社製)(以下、RPMIと記す)で1回洗浄後、RPMIを1mL/well添加し、一晩培養した。培養上清を除き、RPMIで1回洗浄後、RPMIで50μg/mLに調製した各抗体を250μL/well添加し、37℃、6.5% CO、30分間、細胞を培養した。
 次に、RPMIで希釈した200ng/mL NRG1-α/HRG1-αEGF Domain(R&D社製、296-HR-050/CF)または40ng/mL NRG1-β1/HRG1-β1 Extracellular Domain(R&D社製、377-HB-050/CF)を、それぞれ250μL/well添加し、37℃、6.5% CO、10分間培養した。
 培養後、氷上において上清を除き、RPMIで1回洗浄後、タカラ39000 Lane Marker Reducing Sample Buffer(タカラバイオ社製)を100μL/wellで添加し、細胞を回収した。次に、DNAを破砕し、95℃、5分間加熱してウェスタンブロッティングのサンプルとした。
 次に、30mA/ゲル、60分間、SDS-PAGEを行い、30mA/ゲルで90分間、PVDF膜に転写した。転写したPVDFメンブレンには、erbB3、リン酸化erbB3およびAktの検出には、Block Ace(登録商標)(大日本住友製薬社製)を使用し、リン酸化Aktの検出には、5% BSAおよび0.1% tween20を含むトリスバッファー生理食塩水(以下、5% BSA-tTBSと記す)をブロッキングバッファーとして使用し、それぞれ室温、1時間ブロッキングを行なった。
 ブロッキングバッファーを除いた後、5% BSA-tTBSで調製した抗erbB3抗体(Santa Cruz Biotechnology社)、抗リン酸化erbB3抗体(cell signaling technology社製)、抗AKT抗体(cell signaling社)および抗リン酸化AKT抗体(プロメガ社)を添加し、4℃で一晩インキュベートした。
 0.1% tween20を含むトリスバッファー生理食塩水(以下、TTBS)でPVDF膜を洗浄した後、抗ウサギイムノグロブリンヤギポリクローナル抗体/HRP(DAKO社製)、室温で1時間インキュベートした。TTBSでPVDF膜を洗浄し、ECL(登録商標)Plus Western Blotting Detection Reagents(Amhersham Pharmacia社製)を反応させ、ルミノイメージアナライザー(LAS-1000富士フィルム)を用いて蛍光を検出した。
 その結果、図1に示したように、ヘレグリンαおよびβいずれもヒト偏平上皮癌細胞株A431細胞のerbB3のリン酸化および下流シグナルのAktのリン酸化を誘導した。また、抗ヒトerbB3ヒト抗体U1-59および本発明の抗ヒトerbB3遺伝子組換え抗体は何れも、ヘレグリンαおよびβ依存的erbB3のリン酸化を阻害し、かつ下流シグナルのAktのリン酸化も阻害した。
[実施例6] 抗erbB3抗体によるアンフィレギュリン、ベータセルリン、エピレグリン、TGF-α、EGFおよびHB-EGF依存的erbB3のリン酸化阻害
 実施例5と同様にしてヒト偏平上皮癌細胞株A431の前処理を行い、次に各リガンドを添加した。無血清RPMIで希釈した100ng/mL アンフィレギュリン(R&D 262-AR/CF)、100ng/mL ベータセルリン(R&D 261-CE/CF)、100ng/mL エピレグリン(R&D 1195-EP/CF)、200ng/mL HB-EGF(R&D 259-HE/CF)および200ng/mL TGF-α(R&D 239-A)を、それぞれ250μL/wellで培地に添加し、37℃、6.5% CO、10分間培養した。以降は、実施例5と同様にして全erbB3タンパク質量とリン酸化erbB3タンパク質量を解析した。
 その結果、図2に示したように、ヘレグリン以外のEGF様リガンドであるアンフィレギュリン、ベータセルリン、エピレグリン、TGF-α、EGFおよびHB-EGF何れのリガンドとも、ヒト偏平上皮癌細胞株A431のerbB3をリン酸化した。
 抗ヒトerbB3ヒト抗体U1-59および本発明の抗ヒトerbB3遺伝子組換え抗体1153、920104、1126および12511は何れも、全てのEGF様リガンド依存的なerbB3のリン酸化を阻害した。特に、本発明の抗ヒトerbB3遺伝子組換え抗体1126は、全てのリガンド依存的なerbB3のリン酸化を最も強く阻害した。
[実施例7] 抗erbB3抗体によるエピレグリン、TGF-α、HB-EGFおよびヘレグリン依存的erbB3のリン酸化阻害
 ヒト乳がん細胞株T47D 1×10個を、血清入りRPMIで懸濁し、24well plateに1mL/wellで播種し、37℃、6.5% COの培養条件で一晩培養した。培養上清を除き、RPMIで1回洗浄後、RPMIを1mL/well添加し、一晩培養した。培養上清を除き、RPMIで1回洗浄後、RPMIで50μg/mLに調製した各抗ヒトerb3抗体を250μL/well添加し、37℃、6.5% CO、30分間、細胞を培養した。
 次に、RPMIで希釈した40ng/mL NRG1-β1/HRG1-β1Extracellular Domain(R&D社製、377-HB/CF)、100ng/mL エピレグリン(R&D社製、1195-EP/CF)、200ng/mL HB-EGF(R&D社製、259-HE/CF)および200ng/mL TGF-α(R&D社製、239-A)を、それぞれ250μL/well添加し、37℃、6.5% CO条件下、10分間培養した。
 培養後、氷上において上清を除き、RPMIで1回洗浄後、タカラ39000 Lane Marker Reducing Sample Buffer(タカラバイオ社製)を100μL/wellで添加し、細胞を回収した。次に、DNAを破砕し、95℃、5分間加熱してウエスタンブロッティングのサンプルとした。以降は、実施例5と同様にして全erbB3タンパク質量とリン酸化erbB3タンパク質量を解析した。
 その結果、図3に示すとおり、本発明の抗ヒトerbB3遺伝子組換え抗体1126抗体は、ネガティブコントロール抗体と比べて、ヒト乳癌細胞T47Dのエピレグリン、TGF-α、HB-EGFおよびHRG1β依存的なerbB3のリン酸化を阻害した。また、本発明の抗ヒトerbB3遺伝子組換え抗体1126抗体は、ポジティブコントロール抗体と比べて、ヒト乳癌細胞T47DのTGF-αおよびHB-EGF依存的なerbB3のリン酸化に対する阻害効果が高かった。
 また、本発明の抗ヒトerbB3遺伝子組換え抗体12511は、ポジティブコントロール抗体(U1-59)と比べて、ヒト乳癌細胞T47DにおけるHRG1βおよびHB-EGF依存的なerbB3のリン酸化を完全に抑制した。
 さらに、本発明の抗ヒトerbB3遺伝子組換え抗体920104は、ポジティブコントロール抗体(U1-59)と比べて、ヒト乳癌細胞T47DにおけるTGF-αおよびHB-EGF依存的なerbB3のリン酸化に対する阻害効果が高かった。
 また、本発明の抗ヒトerbB3遺伝子組換え抗体1153は、ネガティブコントロール抗体と比べて、ヒト乳癌細胞T47DにおけるTGF-α依存的なerbB3のリン酸化を阻害した。
[実施例8] 抗erbB3抗体のin vivo薬効評価
 BALB/cA Jcl-nu/nu female(日本クレア社)6weeksを入荷し、1週間の予備飼育を行なった。10% RPMI培地を用いて、37℃、6.5% CO条件下で培養したヒト乳癌細胞株T47Dを、RPMIを用いて1×10cells/mLの細胞懸濁液を調製した。
 調製した細胞懸濁液を、マウス72個体に、100μL/headで皮下移植した。T47Dのマウスへの生着を確認し、腫瘍体積(長径×短径×短径/2)が50mm~100mmになった時点で、腫瘍体積の平均値が同等になるようにマウスを選択し、6個体/1群、計6群に分けた。
 PBSで希釈した1mg/mL 抗ヒトerbB3遺伝子組換え抗体1153、12511、920104、1126、1mg/mL 抗ヒトerbB3ヒト抗体U1-59およびネガティブコントロールの抗DNP抗体は、群分け時点より、200μL/headでマウス腹腔内投与を開始し、2回/week、計8回行なった。
 その結果、図4に示すように、コントロールの抗DNP抗体に比べて、抗ヒトerbB3ヒト抗体U1-59および抗ヒトerbB3遺伝子組換え抗体は何れもヒト乳癌細胞株T47Dの腫瘍増殖を阻害した。
[実施例9] 複数の抗erbB3抗体を用いたin vivo薬効評価
 実施例8と同様にしてヒト乳癌細胞株T47Dを皮下移植したxenograftマウスまたはヒト偏平上皮癌細胞株A431を皮下移植したxenograftマウスを準備し、腫瘍塊が100mm~200mmになった時点で、腫瘍体積の平均値が同等になるように マウスを選択し、6個体/1群、計4群に分けた。
 PBSを用いて2mg/mL抗ヒトerbB3遺伝子組換え抗体1153、12511、1126および抗DNP抗体溶液を調製した。1153抗体、12511抗体および1126抗体溶液を、それぞれ1:1で混合し、1153+12511併用抗体溶液(1153抗体および12511抗体の併用抗体溶液)、1153+1126併用抗体溶液(1153抗体および1126抗体の併用抗体溶液)および12511+1126併用抗体溶液(12511抗体および1126抗体の併用抗体溶液)を調製した。抗体は、群分け時点より100μL/headで腹腔内投与で投与を行い、2回/week、計10回行った。
 その結果、図5に示すように、抗ヒトerbB3遺伝子組換え抗体1153および1126は、コントロールの抗DNP抗体と比べて、ヒト乳癌細胞T47Dの腫瘍増殖を阻害した。また、1153抗体および1126抗体の併用投与は、1153抗体または1126抗体単独投与に比べて、更に強力に腫瘍増殖を阻害した。
 更に、図6に示すように、1153抗体および12511抗体の併用、12511抗体および1126抗体の併用、並びに1153抗体および1126抗体の併用のいずれの抗体併用も、コントロールの抗DNP抗体と比べて、ヒト偏平上皮癌細胞A431の細胞増殖を阻害した。また、12511抗体および1126抗体の併用、並びに1153抗体および1126抗体の併用投与は、1153抗体および12511抗体の併用投与と比べて更に強力に腫瘍増殖を阻害した。
 以上の結果から、erbB3の細胞外ドメインのドメイン4を認識する抗体1126と、ドメイン4以外のerbB3細胞外ドメインに結合する抗体1153または12511との併用投与は抗腫瘍活性を増強させることが明らかになった。
 本願は、平成18年度独立行政法人新エネルギー・産業技術総合開発機構 「新機能抗体創製技術開発プロジェクト」「新機能抗体創製技術開発/系統的な高特異性抗体創製技術の開発/オリゴクローナル抗体創製技術開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願である。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお、本出願は、2011年6月20日付けで出願された米国仮出願(61/498732号)に基づいており、その全体が引用により援用される。
配列番号3:ヒトerbB3細胞外領域のアミノ酸配列
配列番号6:マウスerbB3細胞外領域のアミノ酸配列
配列番号7:rherbB3プライマー1の塩基配列
配列番号8:rherbB3プライマー2の塩基配列
配列番号9:rherbB3-GSTプライマー1の塩基配列
配列番号10:rherbB3-GSTプライマー2の塩基配列
配列番号11:マウスerbB3-GSTプライマー1の塩基配列
配列番号12:マウスerbB3-GSTプライマー2の塩基配列
配列番号13:hD1/mD234プライマー1の塩基配列
配列番号14:hD1/mD234プライマー2の塩基配列
配列番号15:hD1/mD234プライマー3の塩基配列
配列番号16:hD1/mD234プライマー4の塩基配列
配列番号17:hD1/mD234プライマー5の塩基配列
配列番号18:hD1/mD234プライマー6の塩基配列
配列番号19:hD12/mD34プライマー1の塩基配列
配列番号20:hD12/mD34プライマー2の塩基配列
配列番号21:hD12/mD34プライマー3の塩基配列
配列番号22:hD12/mD34プライマー4の塩基配列
配列番号23:hD12/mD34プライマー5の塩基配列
配列番号24:hD12/mD34プライマー6の塩基配列
配列番号25:hD123/mD4プライマー1の塩基配列
配列番号26:hD123/mD4プライマー2の塩基配列
配列番号27:hD123/mD4プライマー3の塩基配列
配列番号28:hD123/mD4プライマー4の塩基配列
配列番号29:hD123/mD4プライマー5の塩基配列
配列番号30:hD123/mD4プライマー6の塩基配列
配列番号31:mkRvP1プライマーの塩基配列
配列番号32:mkRvP2プライマーの塩基配列
配列番号33:mH-Rv1プライマーの塩基配列
配列番号34:mH-Rv2プライマーの塩基配列
配列番号35:SEQ4618プライマーの塩基配列
配列番号36:SEQ1783プライマーの塩基配列
配列番号37:1153Hc-SalIUプライマーの塩基配列
配列番号38:1153Hc-NheILプライマーの塩基配列
配列番号39:1153Lc-BglIIプライマーの塩基配列
配列番号40:1153Lc-BsiWIプライマーの塩基配列
配列番号41:920104Hc-SalIUプライマーの塩基配列
配列番号42:920104Hc-NheILプライマーの塩基配列
配列番号43:920104Lc-BglIIプライマーの塩基配列
配列番号44:920104Lc-BsiWIプライマーの塩基配列
配列番号45:1126 Hc-SalIUプライマーの塩基配列
配列番号46:1126 Hc-NheILプライマーの塩基配列
配列番号47:1126Lc-PmeIUプライマーの塩基配列
配列番号48:1126Lc-BsiWIプライマーの塩基配列
配列番号49:12511Hc-SalIUプライマーの塩基配列
配列番号50:12511Hc-NheILプライマーの塩基配列
配列番号51:12511Lc-BglIIプライマーの塩基配列
配列番号52:12511Lc-BsiWIプライマーの塩基配列

Claims (16)

  1.  erbB3の細胞外領域に特異的に結合し、上皮細胞増殖因子(EGF)様リガンド依存的なerbB3のリン酸化を阻害する抗体および該抗体断片。
  2.  erbB3の細胞外領域に特異的に結合し、かつerbB3特異的リガンド依存的なerbB3のリン酸化およびerbB3特異的リガンド非依存的なerbB3のリン酸化の両方を阻害する抗体。
  3.  erbB3のリン酸化が、上皮細胞増殖因子(EGF)、形質転換増殖因子α(TGF-α)、アンフィレギュリン、ベータセルリン、エピレグリン、ヘパリン結合上皮細胞増殖因子様様増殖因子(HB-EGF)およびヘレグリンから選ばれる少なくとも2つのリガンド依存的なerbB3のリン酸化である請求項1または2に記載の抗体および該抗体断片。
  4.  erbB3の細胞外領域が、配列番号3で表されるアミノ酸配列の20番から179番のアミノ酸配列からなるドメイン1、180番から328番のアミノ酸配列からなるドメイン2、329番から487番のアミノ酸配列からなるドメイン3および488番から643番のアミノ酸配列からなるドメイン4から選ばれる少なくとも1つのドメインを含む細胞外領域である請求項1~3のいずれか1項に記載の抗体および該抗体断片。
  5.  抗体が下記(a)~(c)から選ばれる抗体である請求項1~4のいずれか1項に記載の抗体および該抗体断片。
    (a)1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれるいずれか1つの抗体クローンと競合反応する抗体および該抗体断片。
    (b)1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれるいずれか1つの抗体クローンが反応するエピトープを含むエピトープに反応する抗体および該抗体断片。
    (c)1153抗体クローン、12511抗体クローン、920104抗体クローンおよび1126抗体クローンから選ばれるいずれか1つの抗体クローンが反応するエピトープと同じエピトープに反応する抗体および該抗体断片。
  6.  抗体が、配列番号57で表されるアミノ酸配列を含む抗体重鎖可変領域および配列番号58で表されるアミノ酸配列を含む抗体軽鎖可変領域を含む抗体、配列番号69で表されるアミノ酸配列を含む抗体重鎖可変領域および配列番号70で表されるアミノ酸配列を含む抗体軽鎖可変領域を含む抗体、配列番号81で表されるアミノ酸配列を含む抗体重鎖可変領域および配列番号82で表されるアミノ酸配列を含む抗体軽鎖可変領域を含む抗体、ならびに配列番号93で表されるアミノ酸配列を含む抗体重鎖可変領域および配列番号94で表されるアミノ酸配列を含む抗体軽鎖可変領域を含む抗体から選ばれるいずれか1つの抗体である、請求項1~5のいずれか1項に記載の抗体および該抗体断片。
  7.  請求項1~6のいずれか1項に記載の抗体および該抗体断片をコードするDNA。
  8.  請求項7に記載のDNAを含むベクターを細胞へ導入して得られる形質転換体を培地内で培養し、培養液中に請求項1~6のいずれか1項に記載の抗体および該抗体断片を生成蓄積させ、培養液から抗体および該抗体断片を精製することを特徴とする請求項1~6のいずれか1項に記載の抗体および該抗体断片を製造する方法。
  9.  erbB3の細胞外領域が、配列番号3で表されるアミノ酸配列の20番から179番のアミノ酸配列からなるドメイン1、180番から328番のアミノ酸配列からなるドメイン2、329番から487番のアミノ酸配列からなるドメイン3および488番から643番のアミノ酸配列からなるドメイン4から選ばれる少なくとも1つのドメインに反応する第1抗体または該抗体断片と、第1抗体が反応するドメインと異なるドメインに反応する第2抗体または該抗体断片とを含む抗体組成物。
  10.  第1抗体または該抗体断片が、erbB3の細胞外領域のドメイン2またはドメイン4に反応する抗体または該抗体断片である請求項9に記載の抗体組成物。
  11.  第2抗体または該抗体断片が、erbB3の細胞外領域のドメイン1またはドメイン3に反応する抗体または該抗体断片である請求項9または10に記載の抗体組成物。
  12.  第1抗体または該抗体断片が、下記(a)~(c)から選ばれる抗体または該抗体断片である請求項9~11のいずれか1項に記載の抗体組成物。
    (a)1126抗体クローンと競合反応する抗体および該抗体断片。
    (b)1126抗体クローンが反応するエピトープを含むエピトープに反応する抗体および該抗体断片。
    (c)1126抗体クローンが反応するエピトープと同じエピトープに反応する抗体および該抗体断片。
  13.  第2抗体または該抗体断片が、下記(a)~(c)から選ばれる抗体または該抗体断片である請求項9~12のいずれか1項に記載の抗体組成物。
    (a)1153抗体クローンと競合反応する抗体および該抗体断片。
    (b)1153抗体クローンが反応するエピトープを含むエピトープに反応する抗体および該抗体断片。
    (c)1153抗体クローンが反応するエピトープと同じエピトープに反応する抗体および該抗体断片。
  14.  請求項9~13のいずれか1項に記載の抗体組成物を用いたerbB3発現細胞が関与する疾患の治療方法。
  15.  erbB3発現細胞が関与する疾患が癌である請求項14に記載の治療方法。
  16.  請求項9~13のいずれか1項に記載の抗体組成物を含むerbB3発現細胞が関与する疾患の治療薬。
PCT/JP2012/065657 2011-06-20 2012-06-19 抗erbB3抗体 WO2012176779A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12803162.2A EP2722343A4 (en) 2011-06-20 2012-06-19 ANTI-ERBB3 ANTIBODIES
KR1020137033867A KR20140033152A (ko) 2011-06-20 2012-06-19 항erbB3 항체
CN201280030600.1A CN103781800A (zh) 2011-06-20 2012-06-19 抗erbB3抗体
CA2840461A CA2840461A1 (en) 2011-06-20 2012-06-19 Anti-erbb3 antibody
AU2012274461A AU2012274461A1 (en) 2011-06-20 2012-06-19 Anti-erbB3 antibody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161498732P 2011-06-20 2011-06-20
US61/498732 2011-06-20

Publications (1)

Publication Number Publication Date
WO2012176779A1 true WO2012176779A1 (ja) 2012-12-27

Family

ID=47362048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065657 WO2012176779A1 (ja) 2011-06-20 2012-06-19 抗erbB3抗体

Country Status (8)

Country Link
US (1) US9034328B2 (ja)
EP (1) EP2722343A4 (ja)
JP (1) JPWO2012176779A1 (ja)
KR (1) KR20140033152A (ja)
CN (1) CN103781800A (ja)
AU (1) AU2012274461A1 (ja)
CA (1) CA2840461A1 (ja)
WO (1) WO2012176779A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012349735B2 (en) * 2011-12-05 2016-05-19 Novartis Ag Antibodies for epidermal growth factor receptor 3 (HER3)
RU2707121C2 (ru) * 2015-12-07 2019-11-22 Ису Абксис Ко., Лтд. АНТИТЕЛО, СПЕЦИФИЧЕСКИ СВЯЗЫВАЮЩЕЕСЯ С ErbB3, И ЕГО ПРИМЕНЕНИЕ
WO2024044637A3 (en) * 2022-08-23 2024-05-02 Washington University Anti-tau mtbr antibodies and methods to detect cleaved fragments of tau and uses thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20100577A1 (it) * 2010-11-02 2012-05-03 Takis Srl Immunoterapia contro il recettore erbb-3
CN108424456B (zh) 2011-11-23 2022-04-26 医学免疫有限责任公司 特异于her3的结合分子及其用途
CA2863819C (en) 2012-02-09 2021-11-23 Memed Diagnostics Ltd. Signatures and determinants for diagnosing infections and methods of use thereof
US11305012B2 (en) 2013-09-24 2022-04-19 Medimmune, Llc Binding molecules specific for HER3 and uses thereof
CA2932480A1 (en) * 2013-12-16 2015-06-25 Texas Tech University System Anti-ron monoclonal antibodies as a cytotoxic drug delivery system for targeted cancer therapy
KR102127408B1 (ko) 2014-01-29 2020-06-29 삼성전자주식회사 항 Her3 scFv 단편 및 이를 포함하는 항 c-Met/항 Her3 이중 특이 항체
SG11201607109QA (en) 2014-02-28 2016-09-29 Merus Nv Antibodies that bind egfr and erbb3
SI3110849T1 (sl) * 2014-02-28 2021-01-29 Merus N.V. Protitelo, ki veže ERBB-2 in ERBB-3
US10745490B2 (en) 2014-04-11 2020-08-18 Celldex Therapeutics, Inc. Anti-ErbB antibodies and methods of use thereof
US20170198061A1 (en) * 2014-06-20 2017-07-13 Stephen D. Gillies Influenza vaccines and methods of use thereof
EP3180621B1 (en) * 2014-08-14 2020-04-01 Memed Diagnostics Ltd. Computational analysis of biological data using manifold and a hyperplane
PL3365373T3 (pl) 2015-10-23 2021-08-23 Merus N.V. Molekuły wiążące, które hamują wzrost nowotworu
CN108602890A (zh) 2015-12-11 2018-09-28 瑞泽恩制药公司 用于减少或预防对egfr和/或erbb3阻滞剂具有抗性的肿瘤生长的方法
EP3202788A1 (en) * 2016-02-05 2017-08-09 MediaPharma S.r.l. Endosialin-binding antibody
CN108699583B (zh) 2016-03-03 2022-11-01 米密德诊断学有限公司 用于区分细菌和病毒感染的rna决定子
US11340223B2 (en) 2016-07-10 2022-05-24 Memed Diagnostics Ltd. Early diagnosis of infections
CA3027341A1 (en) 2016-07-10 2018-01-18 Memed Diagnostics Ltd. Protein signatures for distinguishing between bacterial and viral infections
US11385241B2 (en) 2016-09-29 2022-07-12 Memed Diagnostics Ltd. Methods of prognosis and treatment
US11353456B2 (en) 2016-09-29 2022-06-07 Memed Diagnostics Ltd. Methods of risk assessment and disease classification for appendicitis
CN110650752A (zh) 2017-03-31 2020-01-03 美勒斯公司 用于治疗具有NRG1融合基因的细胞的ErbB-2和ErbB3结合双特异性抗体
BR112020002695A2 (pt) 2017-08-09 2020-08-25 Merus N.V. anticorpos que se ligam à egfr e cmet
CN110818797B (zh) * 2018-08-09 2022-11-04 东莞市朋志生物科技有限公司 一种抗人ca153蛋白的重组抗体
CN111518210B (zh) * 2020-05-11 2022-07-19 上海米地生物医药有限公司 一种特异性识别faim3受体的全人源单抗

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623587A (en) 1979-08-03 1981-03-05 Mitsuwa Seiki Co Ltd Vane type compressor
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS60221091A (ja) 1983-12-21 1985-11-05 Kyowa Hakko Kogyo Co Ltd 新規プロモ−タ−
JPS61178926A (ja) 1984-03-06 1986-08-11 Takeda Chem Ind Ltd 化学修飾ペプチドホルモンおよびその製造法
JPS63299A (ja) 1986-04-22 1988-01-05 イミユネツクス・コ−ポレ−シヨン ヒトg−csfタンパク質の発現
JPH02117920A (ja) 1988-05-06 1990-05-02 Sumitomo Pharmaceut Co Ltd ポリエチレングリコール誘導体、修飾ペプチドおよびその製造方法
US4939094A (en) 1985-08-28 1990-07-03 Kyowa Hakko Kogyo Co., Ltd. Fused antigen polypeptide
JPH02227075A (ja) 1988-09-29 1990-09-10 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
JPH02257891A (ja) 1989-03-31 1990-10-18 Kyowa Hakko Kogyo Co Ltd 組換え動物細胞による蛋白質の製造
JPH0322979A (ja) 1989-06-19 1991-01-31 Kyowa Hakko Kogyo Co Ltd 新規プラスミノーゲン活性化因子
US5168062A (en) 1985-01-30 1992-12-01 University Of Iowa Research Foundation Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence
JPH05336963A (ja) 1991-12-17 1993-12-21 Kyowa Hakko Kogyo Co Ltd 新規α2→3シアリルトランスフェラーゼ
WO1994023021A1 (en) 1993-03-29 1994-10-13 Kyowa Hakko Kogyo Co., Ltd. α-1,3-FUCOSYLTRANSFERASE
US5480968A (en) 1989-12-01 1996-01-02 The United States Of America As Represented By The Department Of Health And Human Services Isolated polypeptide erbB-3, related to the epidermal growth factor receptor and antibody thereto
WO1997010354A1 (en) 1995-09-11 1997-03-20 Kyowa Hakko Kogyo Co., Ltd. ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR
WO1998050431A2 (en) 1997-05-02 1998-11-12 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
US5968511A (en) 1996-03-27 1999-10-19 Genentech, Inc. ErbB3 antibodies
US6001358A (en) 1995-11-07 1999-12-14 Idec Pharmaceuticals Corporation Humanized antibodies to human gp39, compositions containing thereof
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2001007734A1 (de) 1999-07-27 2001-02-01 Dorma Gmbh + Co. Kg Türterminal mit montageplatte
WO2002002773A2 (en) 2000-06-29 2002-01-10 Abbott Laboratories Dual specificity antibodies and methods of making and using
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2003085102A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Cellule avec inhibition ou suppression de l'activite de la proteine participant au transport du gdp-fucose
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
JP2005504044A (ja) * 2001-08-09 2005-02-10 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Her3活性の阻害剤
WO2005035586A1 (ja) 2003-10-08 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. 融合蛋白質組成物
WO2005070963A1 (en) 2004-01-12 2005-08-04 Applied Molecular Evolution, Inc Fc region variants
US20070148165A1 (en) 2005-07-22 2007-06-28 Kyowa Hakko Kogyo Co., Ltd. Recombinant antibody composition
WO2007077028A2 (en) 2005-12-30 2007-07-12 U3 Pharma Ag Antibodies directed to her-3 and uses thereof
US7297775B2 (en) 1998-04-02 2007-11-20 Genentech, Inc. Polypeptide variants
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
WO2008100624A2 (en) 2007-02-16 2008-08-21 Merrimack Pharmaceuticals, Inc. Antibodies against erbb3 and uses thereof
WO2009131239A1 (ja) 2008-04-25 2009-10-29 Kyowa Hakko Kirin Co Ltd 安定な多価抗体
WO2010143698A1 (ja) 2009-06-11 2010-12-16 大学共同利用機関法人情報・システム研究機構 タンパク質の生産方法
WO2011022727A2 (en) * 2009-08-21 2011-02-24 Merrimack Pharmaceuticals, Inc. Antibodies against the ectodomain of erbb3 and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010115589A1 (en) * 2009-04-07 2010-10-14 Roche Glycart Ag Trivalent, bispecific antibodies
MX2013002046A (es) * 2010-08-20 2013-04-03 Novartis Ag Anticuerpos para el receptor del factor de crecimiento epidermico 3 (her3).

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623587A (en) 1979-08-03 1981-03-05 Mitsuwa Seiki Co Ltd Vane type compressor
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
US4686191A (en) 1981-12-25 1987-08-11 Hakko Kogyo Co., Ltd. Kyowa Recombinant plasmid containing human interferon-beta gene
JPS60221091A (ja) 1983-12-21 1985-11-05 Kyowa Hakko Kogyo Co Ltd 新規プロモ−タ−
JPS61178926A (ja) 1984-03-06 1986-08-11 Takeda Chem Ind Ltd 化学修飾ペプチドホルモンおよびその製造法
US5168062A (en) 1985-01-30 1992-12-01 University Of Iowa Research Foundation Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence
US4939094A (en) 1985-08-28 1990-07-03 Kyowa Hakko Kogyo Co., Ltd. Fused antigen polypeptide
JPS63299A (ja) 1986-04-22 1988-01-05 イミユネツクス・コ−ポレ−シヨン ヒトg−csfタンパク質の発現
JPH02117920A (ja) 1988-05-06 1990-05-02 Sumitomo Pharmaceut Co Ltd ポリエチレングリコール誘導体、修飾ペプチドおよびその製造方法
JPH02227075A (ja) 1988-09-29 1990-09-10 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
JPH02257891A (ja) 1989-03-31 1990-10-18 Kyowa Hakko Kogyo Co Ltd 組換え動物細胞による蛋白質の製造
JPH0322979A (ja) 1989-06-19 1991-01-31 Kyowa Hakko Kogyo Co Ltd 新規プラスミノーゲン活性化因子
US5160735A (en) 1989-06-19 1992-11-03 Kyowa Hakko Kogyo Co. Ltd. Plasminogen activator
US5480968A (en) 1989-12-01 1996-01-02 The United States Of America As Represented By The Department Of Health And Human Services Isolated polypeptide erbB-3, related to the epidermal growth factor receptor and antibody thereto
JPH05336963A (ja) 1991-12-17 1993-12-21 Kyowa Hakko Kogyo Co Ltd 新規α2→3シアリルトランスフェラーゼ
WO1994023021A1 (en) 1993-03-29 1994-10-13 Kyowa Hakko Kogyo Co., Ltd. α-1,3-FUCOSYLTRANSFERASE
WO1997010354A1 (en) 1995-09-11 1997-03-20 Kyowa Hakko Kogyo Co., Ltd. ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR
US6001358A (en) 1995-11-07 1999-12-14 Idec Pharmaceuticals Corporation Humanized antibodies to human gp39, compositions containing thereof
US5968511A (en) 1996-03-27 1999-10-19 Genentech, Inc. ErbB3 antibodies
WO1998050431A2 (en) 1997-05-02 1998-11-12 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
US7297775B2 (en) 1998-04-02 2007-11-20 Genentech, Inc. Polypeptide variants
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2001007734A1 (de) 1999-07-27 2001-02-01 Dorma Gmbh + Co. Kg Türterminal mit montageplatte
WO2002002773A2 (en) 2000-06-29 2002-01-10 Abbott Laboratories Dual specificity antibodies and methods of making and using
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
JP2005504044A (ja) * 2001-08-09 2005-02-10 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Her3活性の阻害剤
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
WO2003085102A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Cellule avec inhibition ou suppression de l'activite de la proteine participant au transport du gdp-fucose
WO2005035586A1 (ja) 2003-10-08 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. 融合蛋白質組成物
WO2005070963A1 (en) 2004-01-12 2005-08-04 Applied Molecular Evolution, Inc Fc region variants
US20070148165A1 (en) 2005-07-22 2007-06-28 Kyowa Hakko Kogyo Co., Ltd. Recombinant antibody composition
WO2007077028A2 (en) 2005-12-30 2007-07-12 U3 Pharma Ag Antibodies directed to her-3 and uses thereof
JP2009521913A (ja) * 2005-12-30 2009-06-11 ウー3・ファルマ・アクチェンゲゼルシャフト Her−3に対して誘導された抗体及びその使用
WO2008100624A2 (en) 2007-02-16 2008-08-21 Merrimack Pharmaceuticals, Inc. Antibodies against erbb3 and uses thereof
JP2010518820A (ja) * 2007-02-16 2010-06-03 メリマック ファーマシューティカルズ インコーポレーティッド Erbb3に対する抗体およびその使用
WO2009131239A1 (ja) 2008-04-25 2009-10-29 Kyowa Hakko Kirin Co Ltd 安定な多価抗体
WO2010143698A1 (ja) 2009-06-11 2010-12-16 大学共同利用機関法人情報・システム研究機構 タンパク質の生産方法
WO2011022727A2 (en) * 2009-08-21 2011-02-24 Merrimack Pharmaceuticals, Inc. Antibodies against the ectodomain of erbb3 and uses thereof

Non-Patent Citations (97)

* Cited by examiner, † Cited by third party
Title
"Antibodies-A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
"Bioconjugate Drugs", 1993, HIROKAWA SHOTEN LTD.
"Bioluminescence and Chemical luminescence-Clinical Test", vol. 42, 1998, HIROKAWA SHOTEN
"Current Protocols In Molecular Biology", 1987, JOHN WILEY & SONS
"Enzyme immunoassay", 1987, IGAKU-SHOIN, LTD
"Inflammation and anti-inflammatory therapy", 1982, ISHIYAKU PUB, INC.
"Manual for Monoclonal Antibody Experiment", 1987, KODANSHA SCIENTIFIC
"Manual for Monoclonal Antibody Experiment", 1987, KODANSHA SCIENTIFIC LTD.
"Methods in Nucleic Acids Res.", 1991, CRC PRESS
"Methods in Nucleic Acids Res.", vol. 283, 1991, CRC PRESS
"Molecular Cloning, A Laboratory Manual, Second Edition,", 1989, COLD SPRING HARBOR LABORATORY PRESS
"Monoclonal Antibodies-Principle and practice Third edition,", 1996, ACADEMIC PRESS
"Monoclonal Antibodies-Principles and practice", 1996, ACADEMIC PRESS
"Sequences of Proteins of Immunological Interest", 1991, US DEPT. HEALTH AND HUMAN SERVICES
ANDOU TAMIE ET AL.: "Introduction to Monoclonal Antibody Experiment Manual", 1991, KODANSHA
ANNU. REV. IMMUNOL., vol. 9, 1991, pages 457 - 492
BIECHE I., INT J CANCER., vol. 106, 2003, pages 758 - 65
BIO/TECHNOLOGY, vol. 9, 1991, pages 266
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 149, 1987, pages 960
BIOCHEM., vol. 101, 1987, pages 1307
BIOCHEMISTRY, vol. 101, 1987, pages 1307
CANCER IMMUNOL. IMMUNOTHER., vol. 36, 1993, pages 373
CELL, vol. 33, 1983, pages 717
CELL, vol. 41, 1985, pages 479
CHEN ET AL., J BIO CHEM, vol. 271, 1996, pages 7620 - 7629
CHEN H. Y., N ENGL J MED., vol. 356, 2007, pages 11 - 20
CHEN X. ET AL.: "An Immunological Approach Reveals Biological Differences between the Two NDF/Heregulin Receptors, ErbB-3 and ErbB-4", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 13, 1996, pages 7620 - 7629, XP002201895 *
CURRENT TOPICS IN MICROBIOLOGY AND IMMUNOLOGY, vol. 18, 1978, pages 1
CYTOTECHNOL, vol. 3, 1990, pages 133 3
CYTOTECHNOL., vol. 13, 1993, pages 79
CYTOTECHNOL., vol. 4, 1990, pages 173
CYTOTECHNOLOGY, vol. 3, 1990, pages 133
CYTOTECHNOLOGY, vol. 3, no. 133, 1990, pages AS3 - 3
DNA CLONING: A PRACTICAL APPROACH, vol. I, 1985, pages 49
ENGELMAN J. A., SCIENCE, vol. 316, 2007, pages 1039 - 43
GENE, vol. 17, 1982, pages 107
GENE, vol. 27, 1984, pages 223
GENE, vol. 33, 1985, pages 103
GENE, vol. 34, 1985, pages 315
GENE, vol. 38, 1985, pages 275
GENES DEVELOP., vol. 4, 1990, pages 1288
GENETICS, vol. 39, 1954, pages 440
HARARI P. M, ENDOCR RELAT CANCER., vol. 11, 2004, pages 689 - 708
HILBE W., J CLIN PATHOL., vol. 56, 2003, pages 736 - 41
HYNES N. E., NAT REV CANCER, vol. 5, 2005, pages 341 - 54
J. BACTERIOL., vol. 172, 1990, pages 2392
J. IMMUNOL. METHODS, vol. 167, 1994, pages 271
J. IMMUNOLOGY, vol. 123, 1979, pages 1548
J. IMMUNOLOGY, vol. 6, 1976, pages 511
J. MOL. BIOL, vol. 215, 1990, pages 403
J. MOL. BIOL., vol. 112, 1977, pages 535
J. MOL. BIOL., vol. 16, 1966, pages 118
J. MOL. BIOL., vol. 166, 1983, pages 1
J. W. GODING: "Monoclonal Antibodies: principles and practice.", 1993, ACADEMIC PRESS
JONES R. B., NATURE, vol. 439, 2006, pages 168 - 74
KRAUS ET AL., PROC. NAT. ACAD. SCI., vol. 86, 1989, pages 9193 - 9197
KRAUS, M. H. ET AL., PROC. NATL. ACAD. SCI., vol. 86, 1989, pages 9193 - 9197
LOWE ET AL., PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 8227
METHODS IN ENZYMOL., vol. 154, 1987, pages 3
MOL. CELL. BIOL., vol. 3, 1983, pages 280
MOLECULAR & GENERAL GENETICS, vol. 168, 1979, pages 111
MOTOKI K ET AL., CLIN. CANCER RES., vol. 11, 2005, pages 3126 - 3135
MULLER-TIDOW C., CANCER RES., vol. 65, 2005, pages 1778 - 82
NAGY P., PATHOL ONCOL RES., vol. 5, 1999, pages 255 - 71
NATURE, vol. 227, 1970, pages 680
NATURE, vol. 256, 1975, pages 495
NATURE, vol. 276, 1978, pages 269
NATURE, vol. 329, 1987, pages 840
NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487
NUCLEIC ACIDS RESEARCH, vol. 13, 1985, pages 4431
NUCLEIC ACIDS RESEARCH, vol. 17, 1989, pages 9494
P. J. DELVES: "ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES.", 1997, WILEY
P. SHEPHERD; C. DEAN: "Monoclonal Antibodies.", 2000, OXFORD UNIVERSITY PRESS
PAULSON ET AL., J. BIOL. CHEM., vol. 264, 1989, pages 17619
PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 2110
PROC. NATL. ACAD. SCI. USA, vol. 74, 1977, pages 5463
PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216
PROC. NATL. ACAD. SCI. USA, vol. 78, 1981, pages 1527
PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488
PROC. NATL. ACAD. SCI. USA, vol. 84, 1987, pages 7413
PROC. NATL. SCI. ACAD. USA, vol. 79, 1982, pages 6409
PROC. SOC. EXP. BIOL. MED., vol. 73, 1950, pages 1
PROTEIN ENGINEERING, vol. 7, 1994, pages 150I
ROSEN A. ET AL., NATURE, vol. 267, 1977, pages 52 - 54
SALA G. ET AL.: "An ErbB-3 antibody, MP-RM-1, inhibits tumor growth by blocking ligand-dependent and independent activation of ErbB-3/Akt signaling", ONCOGENE, vol. 31, 8 August 2011 (2011-08-08), pages 1275 - 1286, XP055042235 *
SCIENCE, vol. 122, 1952, pages 501
SCIENCE, vol. 222, 1983, pages 778
SERGINA N. V, NATURE, vol. 445, 2007, pages 437 - 41
SOMATIC CELL AND MOLECULAR GENETICS, vol. 12, 1986, pages 55
STRATEGIES, vol. 5, 1992, pages 58
STRATEGIES, vol. 5, 1992, pages 81
TANNER B., J CLIN ONCOL., vol. 24, 2006, pages 4317 - 23
THE JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, vol. 199, 1967, pages 519
TOMIZUKA ET AL., PROC. NATL. ACAD. SCI. USA., vol. 97, 2000, pages 722
TOMIZUKA K ET AL., PROC NATL ACAD SCI USA., vol. 97, 2000, pages 722 - 7
VIROLOGY, vol. 8, 1959, pages 396
WINTER G. ET AL., ANNU REV IMMUNOL, vol. 12, 1994, pages 433 - 55

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012349735B2 (en) * 2011-12-05 2016-05-19 Novartis Ag Antibodies for epidermal growth factor receptor 3 (HER3)
RU2707121C2 (ru) * 2015-12-07 2019-11-22 Ису Абксис Ко., Лтд. АНТИТЕЛО, СПЕЦИФИЧЕСКИ СВЯЗЫВАЮЩЕЕСЯ С ErbB3, И ЕГО ПРИМЕНЕНИЕ
RU2707121C9 (ru) * 2015-12-07 2020-06-16 Ису Абксис Ко., Лтд. АНТИТЕЛО, СПЕЦИФИЧЕСКИ СВЯЗЫВАЮЩЕЕСЯ С ErbB3, И ЕГО ПРИМЕНЕНИЕ
WO2024044637A3 (en) * 2022-08-23 2024-05-02 Washington University Anti-tau mtbr antibodies and methods to detect cleaved fragments of tau and uses thereof

Also Published As

Publication number Publication date
US9034328B2 (en) 2015-05-19
AU2012274461A1 (en) 2014-01-16
KR20140033152A (ko) 2014-03-17
CN103781800A (zh) 2014-05-07
JPWO2012176779A1 (ja) 2015-02-23
CA2840461A1 (en) 2012-12-27
EP2722343A1 (en) 2014-04-23
EP2722343A4 (en) 2014-12-17
US20120328623A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2012176779A1 (ja) 抗erbB3抗体
KR101846590B1 (ko) 항 tim-3 항체
WO2011155579A1 (ja) 抗Trop-2抗体
WO2010074266A1 (ja) 抗cd4抗体
JP7311425B2 (ja) CD40とEpCAMに結合するバイスペシフィック抗体
US20240026017A1 (en) Anti-human ccr1 monoclonal antibody
JP6803231B2 (ja) 抗ヒトGas6モノクローナル抗体
EP3243837A1 (en) Bispecific antibody binding to trailr2 and psma
JP7502281B2 (ja) Cd40とgpc3に結合するバイスペシフィック抗体
WO2017126587A1 (ja) 抗ヒトccr1モノクローナル抗体
WO2024034638A1 (ja) 抗fgf23抗体又は該抗体断片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521589

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137033867

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2840461

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012803162

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012274461

Country of ref document: AU

Date of ref document: 20120619

Kind code of ref document: A