WO2012176428A1 - ズームレンズおよび撮像装置 - Google Patents

ズームレンズおよび撮像装置 Download PDF

Info

Publication number
WO2012176428A1
WO2012176428A1 PCT/JP2012/003971 JP2012003971W WO2012176428A1 WO 2012176428 A1 WO2012176428 A1 WO 2012176428A1 JP 2012003971 W JP2012003971 W JP 2012003971W WO 2012176428 A1 WO2012176428 A1 WO 2012176428A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
refractive power
zoom
zoom lens
Prior art date
Application number
PCT/JP2012/003971
Other languages
English (en)
French (fr)
Inventor
長 倫生
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2013521444A priority Critical patent/JP5837931B2/ja
Priority to CN201280030559.8A priority patent/CN103620474B/zh
Publication of WO2012176428A1 publication Critical patent/WO2012176428A1/ja
Priority to US14/105,860 priority patent/US9063322B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming

Definitions

  • the present invention relates to a zoom lens and an image pickup apparatus, and more particularly to a zoom lens having a relatively short overall length, a high angle of view and a high zoom ratio, and an image pickup apparatus including such a zoom lens.
  • a zoom lens in which a third lens group having a fourth lens group having a negative refractive power is arranged.
  • Such a configuration is an arrangement of lens groups in which two telephoto types are arranged, which is advantageous in reducing the total length.
  • JP-A-4-296809 JP 2001-350093 A (Example 1) JP2007-279622, etc.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a zoom lens having a short overall length, a sufficiently wide angle of view, and a high zoom ratio.
  • the zoom lens according to the present invention comprises: A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refractive power, which are arranged in order from the object side.
  • a fourth lens group having When zooming from the wide-angle end to the telephoto end side, the distance between the first lens group and the second lens group gradually increases, the distance between the second lens group and the third lens group gradually decreases, and the third lens group All the lens groups move along the optical axis so that the distance from the fourth lens group gradually increases,
  • the focal length of the entire system at the wide angle end is fw
  • the focal length of the second lens group is f2
  • the focal length of the fourth lens group is f4
  • the following conditional expression ⁇ 2.0 ⁇ fw / f2 ⁇ 0. 8 (1) -1.0 ⁇ fw / f4 ⁇ -0.2 (2) It is characterized by satisfying both.
  • substantially composed of the first lens group, the second lens group, the third lens group, and the fourth lens group has substantially no power other than those lens groups.
  • the optical element other than the lens such as a lens, a diaphragm or a cover glass, a lens flange, a lens barrel, an image sensor, a mechanism portion such as a camera shake correction mechanism, or the like is included.
  • the fourth lens group substantially consists of a 41st lens, a 42nd lens, and a 43rd lens” described later.
  • the more preferable ranges of the conditions defined by the respective expressions are as follows: ⁇ 1.05 ⁇ fw / f2 ⁇ 0.85 (1) ′ ⁇ 0.8 ⁇ fw / f4 ⁇ 0.5 (2) ′ It is as follows.
  • the focal length of the entire system at the wide-angle end is fw and the focal length of the third lens group is f3, the following conditional expression 0.6 ⁇ fw / f3 ⁇ 1.5 ( 3) Is preferably satisfied.
  • the focal length of the entire system at the wide angle end is fw
  • the focal length of the first lens group is f1
  • the focal length of the third lens group is f3
  • the following conditional expression 0.10 ⁇ Fw / f1 ⁇ 0.18 (4) 0.60 ⁇ fw / f3 ⁇ 0.80 (3) " It is preferable that both are satisfied.
  • the fourth lens group is arranged in order from the object side and has a positive refractive power, a forty-first lens, a negative refractive power, a forty-second lens, and positive refractive power. It is desirable to comprise a 43rd lens having power.
  • the forty-second lens and the forty-third lens are cemented together to form a cemented lens.
  • the forty-second lens is made of a material having a higher refractive index than the forty-first and forty-third lenses.
  • an imaging apparatus includes the zoom lens according to the present invention described above.
  • the zoom lens according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, which are arranged in order from the object side. , And a fourth lens group having a negative refracting power, and the arrangement of the lens group in which two telephoto types are arranged side by side makes it possible to shorten the overall length.
  • the zoom lens according to the present invention when zooming from the wide-angle end to the telephoto end side, the distance between the first lens group and the second lens group gradually increases, and the distance between the second lens group and the third lens group increases. Since all the lens groups move along the optical axis so that the distance between the third lens group and the fourth lens group gradually increases, the aberration correction and the amount of movement of the lens group are appropriately controlled It becomes easy to balance, and it becomes possible to obtain a wide zoom ratio and a high zoom ratio.
  • conditional expression (1) regulates the power distribution of the second lens group with respect to the entire system, and if the lower limit is not reached, the refractive power of the second lens group becomes too strong, and various aberrations are corrected well. Becomes difficult. On the other hand, if the upper limit value is exceeded, the refractive power of the second lens group becomes too weak, making it difficult to obtain a high zoom ratio while keeping the overall length short.
  • conditional expression (2) regulates the power distribution of the fourth lens group with respect to the entire system.
  • the refractive power of the fourth lens group becomes too strong, and distortion is caused from the intermediate focal length to the telephoto end. Becomes larger.
  • the refractive power of the fourth lens group becomes too weak, making it difficult to obtain a high zoom ratio while keeping the overall length short.
  • the conditional expression (3) defines the power distribution of the third lens group with respect to the entire system. If the lower limit is not reached, the refractive power of the third lens group becomes too weak, and the high zoom ratio is maintained while keeping the entire length short. It becomes difficult to obtain the ratio. On the other hand, if the upper limit value is exceeded, the refractive power of the third lens group becomes too strong, making it difficult to correct various aberrations satisfactorily. When the conditional expression (3) is satisfied, the above problems can be prevented.
  • conditional expression (3) becomes more remarkable in the range of conditional expression (3), particularly when conditional expression (3) 'is satisfied.
  • the conditional expression (4) is for the entire system.
  • the power distribution of the first lens group is defined, and if it is below the lower limit, the refractive power of the first lens group becomes too weak, and it becomes difficult to obtain a high zoom ratio while keeping the entire length short. If the value exceeds the upper limit, the refractive power of the first lens unit becomes too strong, and it becomes difficult to correct various aberrations satisfactorily.
  • the effect by the conditional expression (3) "is basically the same as the effect by the conditional expressions (3) and (3) 'that define the range of the value of fw / f3. The effect becomes more remarkable.
  • the fourth lens group is arranged in order from the object side, the 41st lens having a positive refractive power, the 42nd lens having a negative refractive power, and the positive lens
  • the chromatic aberration and astigmatism of magnification can be satisfactorily corrected while increasing the refractive power of the fourth lens group and keeping the entire length short.
  • each lens is prevented from causing total reflection of peripheral rays. This is desirable because it can increase the refractive power.
  • the forty-second lens is made of a material having a higher refractive index than the forty-first and forty-third lenses, a wider angle of view can be achieved more easily.
  • the image pickup apparatus includes the zoom lens according to the present invention that achieves the effects described above. Therefore, the lens portion can be reduced in size and can be imaged with a wide angle of view and a high zoom ratio. Become.
  • Sectional view showing the lens configuration of the zoom lens according to Example 1 of the present invention Sectional drawing which shows the lens structure of the zoom lens concerning Example 2 of this invention. Sectional drawing which shows the lens structure of the zoom lens concerning Example 3 of this invention. Sectional drawing which shows the lens structure of the zoom lens concerning Example 4 of this invention. Sectional drawing which shows the lens structure of the zoom lens concerning Example 5 of this invention. Sectional drawing which shows the lens structure of the zoom lens concerning Example 6 of this invention.
  • (A)-(L) are aberration diagrams of the zoom lens according to Example 1 of the present invention.
  • (A)-(L) are aberration diagrams of the zoom lens according to Example 2 of the present invention.
  • (A) to (L) are aberration diagrams of the zoom lens according to Example 3 of the present invention.
  • FIG. 1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of a zoom lens according to an embodiment of the present invention, and corresponds to a zoom lens of Example 1 described later.
  • FIGS. 2 to 6 are cross-sectional views showing other configuration examples according to the embodiment of the present invention, and correspond to zoom lenses of Examples 2 to 6 described later, respectively.
  • the basic configuration of the example shown in FIGS. 1 to 6 is the same as the example shown in FIG. 3 except that the third lens group G3 is composed of two lenses in the example of FIG. Therefore, here, the zoom lens according to the embodiment of the present invention will be described mainly with reference to FIG.
  • the third lens group G3 in the example of FIG. 3 will be described in detail later.
  • FIG. 1 the left side is the object side, the right side is the image side, (A) is the infinitely focused state and the optical system arrangement at the wide angle end (shortest focal length state), and (B) is the infinitely focused state.
  • the zoom lens according to the embodiment of the present invention includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power.
  • a lens group G3 and a fourth lens group G4 having negative refractive power are arranged as a lens group.
  • the third lens group G3 includes an aperture stop St.
  • the aperture stop St shown here does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
  • FIG. 1 shows an example in which a parallel plate-shaped optical member PP is disposed between the fourth lens group G4 and the image plane Sim.
  • Some recent imaging apparatuses employ a 3CCD system that uses a CCD for each color in order to improve image quality.
  • a color separation optical system such as a color separation prism is used as a lens system.
  • the image plane Sim When applying a zoom lens to an imaging device, various filters such as a cover glass, an infrared cut filter and a low-pass filter are provided between the optical system and the image plane Sim depending on the configuration of the camera side on which the lens is mounted. It is preferable to arrange.
  • the optical member PP assumes such a color separation optical system, a cover glass, various filters, and the like.
  • all the lens groups of the first lens group G1 to the fourth lens group G4 move along the optical axis Z when zooming. More specifically, when zooming from the wide-angle end to the telephoto end, the first lens group G1 moves monotonically toward the object side, and the second lens group G2 moves toward the image plane Sim side while drawing a curved locus.
  • the third lens group G3 monotonously moves to the object side
  • the aperture stop St moves integrally with the third lens group G3
  • the fourth lens group G4 moves to the object side while drawing a locus of the curve, and as a result,
  • the distance between the first lens group G1 and the second lens group G2 gradually increases
  • the distance between the second lens group G2 and the third lens group G3 gradually decreases
  • the movement trajectory of the first lens group G1 to the fourth lens group G4 when zooming from the wide-angle end to the intermediate position is indicated by a solid arrow between (A) and (B).
  • the movement trajectory of the first lens group G1 to the fourth lens group G4 when schematically changing the magnification from the intermediate position to the telephoto end is indicated by a solid line arrow between (B) and (C). It is shown schematically.
  • each lens group is not limited to this, and when zooming from the wide-angle end to the telephoto end, the distance between the first lens group G1 and the second lens group G2 gradually increases, and the second lens group G2 and the second lens group G2
  • the distance between the third lens group G3 and the third lens group G3 may be moved so that the distance between the third lens group G3 and the fourth lens group G4 gradually increases.
  • the first lens group G1 and the third lens group G3 move monotonously.
  • the second lens group G2 may be moved in a straight line.
  • the first lens group G1 includes, in order from the object side, a first lens L11 having a negative refractive power, a second lens L12 having a positive refractive power, and a third lens L13 having a positive refractive power. Configured.
  • the first lens L11 is a negative meniscus lens
  • the second lens L12 is a biconvex lens
  • the third lens L13 is a positive meniscus lens. Can do.
  • the second lens group G2 includes, in order from the object side, a fourth lens L21 having a negative refractive power, a fifth lens L22 having a negative refractive power, and a sixth lens L23 having a positive refractive power.
  • a fourth lens L21 having a negative refractive power a fifth lens L22 having a negative refractive power
  • a sixth lens L23 having a positive refractive power Configured.
  • the fourth lens L21 and the fifth lens L22 can be bi-concave lenses
  • the sixth lens L23 can be a bi-convex lens.
  • the third lens group G3 includes, in order from the object side, a seventh lens L31 having a positive refractive power, an eighth lens L32 having a negative refractive power, and a ninth lens L33 having a positive refractive power. Configured.
  • the seventh lens L31 is a biconvex lens
  • the eighth lens L32 is a negative meniscus lens
  • the ninth lens L33 is a biconvex lens. Can do.
  • the fourth lens group G4 includes, in order from the object side, a tenth lens L41 having a positive refractive power, an eleventh lens L42 having a negative refractive power, and a twelfth lens L43 having a positive refractive power. Configured.
  • the tenth lens L41, the eleventh lens L42, and the twelfth lens L43 are the 41st lens, the 42nd lens, and the 43rd lens described above, respectively.
  • the tenth lens L41 is a biconvex lens
  • the eleventh lens L42 is a biconcave lens
  • the twelfth lens L43 is a biconvex lens. Can do.
  • the eleventh lens L42 and the twelfth lens L43 of the fourth lens group G4 are joined together to form a cemented lens.
  • FIG. 3 has a configuration in which the ninth lens L33 of the third lens group G3 is removed from the configuration described above, and the other configurations are the same as those described above.
  • the focal length fw of the entire system at the wide-angle end in Example 1 is the “wide-angle” of the specification f in Table 2. It is shown in the “End” column. Further, the focal length fw of the entire system at the wide-angle end in Example 2 is shown in the same column of Table 5, and so on.
  • Table 19 shows the values of fw / f2 and fw / f4 related to the conditional expressions (1) and (2) together with the values of fw / f3 and fw / f1 related to conditional expressions (3) and (4) described later. These are shown collectively for each example.
  • conditional expression 0.6 ⁇ fw / f3 ⁇ 1.0 (3) ′ is particularly satisfied within the range of the conditional expression (3). Is satisfied.
  • the eleventh lens L42 of the fourth lens group G4 is made of a material having a higher refractive index than the tenth lens L41 and the twelfth lens L43. That is, for example, in Example 1, the refractive indexes of the materials of the eleventh lens L42, the tenth lens L41, and the twelfth lens L43 are 1.88300, 1.50957, and 1.58144, respectively (see Table 1 described later).
  • the zoom lens includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, which are arranged in order from the object side.
  • the lens group is composed of a fourth lens group G4 having negative refractive power and two telephoto types are arranged side by side, the overall length can be shortened.
  • the distance between the first lens group G1 and the second lens group G2 is wider at the telephoto end than at the wide-angle end, and the distance between the second lens group G2 and the third lens group G3 is narrower. Since all the lens groups G1 to G4 are moved along the optical axis Z so that the distance between the third lens group G3 and the fourth lens group G4 becomes wider, aberration correction and lens group It becomes easy to balance the moving amount appropriately, and a high zoom ratio is obtained with a wide angle of view.
  • conditional expression (1) defines the power distribution of the second lens group G2 with respect to the entire system. If the lower limit value is not reached, the refractive power of the second lens group G2 becomes too strong, and various aberrations are corrected well. It becomes difficult to do. On the other hand, if the upper limit is exceeded, the refractive power of the second lens group G2 becomes too weak, and it becomes difficult to obtain a high zoom ratio while keeping the entire length short. On the other hand, conditional expression (2) prescribes the power distribution of the fourth lens group G4 with respect to the entire system.
  • the refractive power of the fourth lens group G4 becomes too strong, and from the intermediate focal length to the telephoto end. The distortion increases over time.
  • the refractive power of the fourth lens group G4 becomes too weak, and it becomes difficult to obtain a high zoom ratio while keeping the entire length short. In this zoom lens, since the conditional expressions (1) and (2) are satisfied, the above problems can be prevented.
  • the conditional expression (3) defines the power distribution of the third lens group G3 with respect to the entire system. If the lower limit is not reached, the refractive power of the third lens group G3 becomes too weak, and the total length is kept short. It becomes difficult to obtain a zoom ratio. On the other hand, if the upper limit is exceeded, the refractive power of the third lens group G3 becomes too strong, and it becomes difficult to correct various aberrations satisfactorily. In this zoom lens, since the conditional expression (3) is satisfied, the above problems can be prevented.
  • the conditional expressions (4) and (3) ′′ described above are satisfied, the following effects can be obtained.
  • the power distribution of one lens group G1 is defined, and if it is below the lower limit, the refractive power of the first lens group G1 becomes too weak, and it becomes difficult to obtain a high zoom ratio while keeping the entire length short. If the value exceeds the upper limit, the refractive power of the first lens group G1 becomes too strong, and it becomes difficult to correct various aberrations well, since conditional expression (4) is satisfied in this zoom lens.
  • the above-described problems can be prevented.
  • the effect by the conditional expression (3) "is basically the same as the effect by the conditional expressions (3) and (3) 'that define the fw / f3 value range. But in this case, the effect It becomes more pronounced.
  • the fourth lens group G4 has a tenth lens L41 having a positive refractive power, an eleventh lens L42 having a negative refractive power, and a positive refractive power, which are arranged in order from the object side. Since the twelfth lens L43 is provided, the refractive power of the fourth lens group G4 is increased, and the lateral chromatic aberration and astigmatism can be corrected well while keeping the entire length short.
  • the eleventh lens L42 and the twelfth lens L43 of the fourth lens group G4 are cemented together to form a cemented lens, so that peripheral rays are prevented from causing total reflection,
  • the refractive power of each of the lenses L42 and L43 can be increased.
  • the eleventh lens L42 of the fourth lens group G4 is made of a material having a higher refractive index than the tenth lens L41 and the twelfth lens L43, so that the angle of view can be increased more easily. Achieved.
  • Table 1 shows basic lens data of the zoom lens of Example 1
  • Table 2 shows data relating to zooming
  • Table 3 shows aspherical data
  • Tables 4 to 18 show basic lens data, zoom-related data, and aspherical data of the zoom lenses of Examples 2 to 6, respectively.
  • the meaning of the symbols in the table will be described using the example 1 as an example, but the same applies to the examples 2 to 6.
  • the i-th (i 1, 2, 3,...) That sequentially increases toward the image side with the object-side surface of the most object-side component as the first.
  • the surface number is indicated
  • the Ri column indicates the radius of curvature of the i-th surface
  • the Di column indicates the surface interval on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
  • the basic lens data also includes the aperture stop St, and ⁇ (aperture stop) is described in the column of the radius of curvature of the surface corresponding to the aperture stop St.
  • D5, D10, D16, and D21 in the basic lens data in Table 1 are surface intervals that change during zooming.
  • D5 is the distance between the first lens group G1 and the second lens group G2
  • D10 is the distance between the second lens group G2 and the third lens group G3
  • D16 is the distance between the third lens group G3 and the fourth lens group G4.
  • D21 is the distance between the fourth lens group G4 and the optical member PP.
  • D14 indicates the distance between the third lens group G3 and the fourth lens group G4
  • D19 indicates the distance between the fourth lens group G4 and the optical member PP.
  • Bf represents back focus.
  • the zoom-related data in Table 2 includes the focal length (f), F value (Fno.), Total field angle (2 ⁇ ), and various surfaces that change during zooming at the wide-angle end, the intermediate position, and the telephoto end, respectively.
  • the values of the intervals (D5, D10, D16, D21) are shown.
  • Table 8 shown for Example 3 the surface spacings that change during zooming are indicated as D5, D10, D14, and D19.
  • the surface number of the aspheric surface is marked with *, and the paraxial radius of curvature is shown as the radius of curvature of the aspheric surface.
  • the aspheric data in Table 3 shows the surface number of the aspheric surface and the aspheric coefficient for each aspheric surface.
  • the numerical value “E ⁇ n” (n: integer) of the aspheric data in Table 3 means “ ⁇ 10 ⁇ n”.
  • Zd C ⁇ h 2 / ⁇ 1+ (1 ⁇ K ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Am ⁇ hm
  • Zd Depth of aspheric surface (length of a perpendicular line drawn from a point on the aspherical surface at height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • h Height (distance from the optical axis to the lens surface)
  • C Reciprocal K of paraxial radius of curvature
  • values rounded to a predetermined digit are shown.
  • degrees are used as the unit of angle and mm is used as the unit of length, but the optical system can be used with proportional expansion or proportional reduction. Other suitable units can also be used.
  • Table 19 shows values related to conditional expressions (1) to (4) of the zoom lenses of Examples 1 to 6. Note that the values in Table 19 relate to the d-line.
  • FIGS. 7A to 6D show spherical aberration, astigmatism, distortion (distortion aberration) and lateral chromatic aberration (chromatic aberration of magnification) at the wide-angle end of the zoom lens of Example 1
  • 7E to 7H show spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) at the position, respectively
  • spherical aberration, astigmatism, distortion (at the telephoto end) Distortion aberration) and chromatic aberration of magnification (chromatic aberration of magnification) are shown in FIGS. 7I to 7L, respectively.
  • Each aberration diagram is based on the d-line (wavelength 587.6 nm), but the spherical aberration diagram also shows aberrations related to the F-line (wavelength 486.1 nm) and C-line (656.3 nm), and the lateral chromatic aberration diagram The aberration regarding F line and C line is shown.
  • the sagittal direction is indicated by a solid line, and the tangential direction is indicated by a dotted line.
  • Fno Of spherical aberration diagram. Means F value, and ⁇ in other aberration diagrams means half angle of view.
  • FIGS. 8A to 8L aberration diagrams of the zoom lens of Example 2 at the wide-angle end, the intermediate position, and the telephoto end are shown in FIGS. 8A to 8L, and the aberrations of Examples 3 to 6 are performed in exactly the same manner.
  • the figures are shown in FIGS. 9 to 12, respectively.
  • FIG. 1 shows an example in which the optical member PP is disposed between the lens system and the imaging plane, but instead of disposing a low-pass filter, various filters that cut a specific wavelength range, etc. These various filters may be disposed between the lenses, or a coating having the same action as the various filters may be applied to the lens surface of any lens.
  • FIG. 13 shows a schematic configuration diagram of an imaging apparatus 10 using the zoom lens 1 of the embodiment of the present invention as an example of the imaging apparatus of the embodiment of the present invention.
  • the imaging device include a surveillance camera, a video camera, and an electronic still camera.
  • An imaging apparatus 10 illustrated in FIG. 13 includes a zoom lens 1, a filter 2 disposed on the image side of the zoom lens 1, an imaging element 3 that captures an image of a subject formed by the zoom lens 1, and an imaging element 3.
  • a signal processing unit 4 that performs arithmetic processing on an output signal from the zoom lens 1, a zooming control unit 5 that performs zooming of the zoom lens 1, and a focus control unit 6 that performs focus adjustment.
  • the zoom lens 1 includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, arranged in order from the object side.
  • the fourth lens group G4 has a negative refractive power.
  • the zoom lens 1 when zooming from the wide-angle end to the telephoto end side, as described above, the distance between the first lens group G1 and the second lens group G2 gradually increases, and the second lens group G2 and the third lens group G3. All the lens groups move along the optical axis Z so that the distance between the lens group G3 and the distance between the third lens group G3 and the fourth lens group G4 gradually increase.
  • FIG. 13 schematically shows each lens group.
  • the image pickup device 3 picks up an optical image formed by the zoom lens 1 and outputs an electrical signal, and the image pickup surface thereof is arranged to coincide with the image surface of the zoom lens 1.
  • a CCD or a CMOS can be used as the imaging element 3.
  • the lens portion can be reduced in size and can be imaged with a wide angle of view and a high zoom ratio.
  • the imaging device 10 is configured so that, for example, a lens having a positive refractive power constituting a part of the third lens group G3 or the entire third lens group G3 is perpendicular to the optical axis Z.
  • a shake correction mechanism that corrects shake of a captured image during vibration or camera shake.
  • the lens group to be moved is not limited to the third lens group, and other groups or a part thereof may be moved in a direction perpendicular to the optical axis Z to correct a shake of a captured image during vibration or camera shake. Good.
  • you may move the image pick-up element 3 instead of a lens.
  • the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above-described embodiments and examples, and various modifications are possible.
  • the values of the radius of curvature, the surface interval, the refractive index, the Abbe number, the aspherical coefficient, etc. of each lens component are not limited to the values shown in the above numerical examples, and can take other values.

Abstract

【課題】ズームレンズにおいて、全長を短くし、かつ広画角、高変倍比を得る。 【解決手段】ズームレンズを、物体側から順に、正の屈折力を有する第1レンズ群(G1)、負の屈折力を有する第2レンズ群(G2)、正の屈折力を有する第3レンズ群(G3)、および負の屈折力を有する第4レンズ群(G4)を配置して構成した上で、広角端から望遠端側に変倍する際に、第1レンズ群(G1)と第2レンズ群(G2)との間隔が次第に広がり、第2レンズ群(G2)と第3レンズ群(G3)との間隔が次第に狭まり、第3レンズ群(G3)と第4レンズ群(G4)との間隔が次第に広がるように全てのレンズ群が光軸(Z)に沿って移動する構成とする。そして広角端における全系の焦点距離をfw、第2レンズ群の焦点距離をf2、第4レンズ群の焦点距離をf4として、以下の条件式を満足させる。 -2.0<fw/f2<-0.8 …(1) -1.0<fw/f4<-0.2 …(2)

Description

ズームレンズおよび撮像装置
 本発明はズームレンズおよび撮像装置に関し、特に、比較的全長が短く、高画角かつ高変倍比のズームレンズ、および、そのようなズームレンズを備えた撮像装置に関するものである。
 従来、例えば特許文献1~3に記載されているように、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とが配置されてなるズームレンズが知られている。このような構成は、テレフォトタイプが2つ並ぶレンズ群の配置となり、全長を短くする上で有利である。
特開平4-296809公報 特開2001-350093号公報(実施例1) 特開2007-279622等
 しかしながら、特許文献1~3に記載されたズームレンズは、いずれも全長、特に望遠端における全長が長いものとなっている。またそれらの中でも特に特許文献1に記載されたものは広角端の画角が十分でなく、特許文献2に記載されたものは変倍比が十分でなく、特許文献3に記載されたものは広角端の画角および変倍比が共に十分でない、という問題を有している。
 本発明は上記の事情に鑑みてなされたものであり、全長が短く、そして十分に広画角で高変倍比のズームレンズを提供とすることを目的とする。
 本発明によるズームレンズは、 
 実質的に、物体側から順に配された、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群、および負の屈折力を有する第4レンズ群からなり、
 広角端から望遠端側に変倍する際に、第1レンズ群と第2レンズ群との間隔が次第に広がり、第2レンズ群と第3レンズ群との間隔が次第に狭まり、第3レンズ群と第4レンズ群との間隔が次第に広がるように全てのレンズ群が光軸に沿って移動し、
 広角端における全系の焦点距離をfw、第2レンズ群の焦点距離をf2、第4レンズ群の焦点距離をf4としたとき、以下の条件式
   -2.0<fw/f2<-0.8 …(1)
   -1.0<fw/f4<-0.2 …(2)
を共に満足していることを特徴とするものである。
 ここで、上記の「実質的に第1レンズ群、第2レンズ群、第3レンズ群、および第4レンズ群からなる」とは、それらのレンズ群以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等レンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手振れ補正機構等の機構部分等を持つ場合も含むものとする。またこの点は、後述する「第4レンズ群が実質的に、第41レンズ、第42レンズ、および第43レンズからなる」との記載についても同様である。
 なお上記条件式(1)、(2)を満足する構成において、各式で規定している条件のより望ましい範囲はそれぞれ下記
   -1.05<fw/f2<-0.85 …(1)’
   -0.8<fw/f4<-0.5 …(2)’
の通りである。
 また本発明のズームレンズにおいては、広角端における全系の焦点距離をfw、第3レンズ群の焦点距離をf3としたとき、以下の条件式
   0.6<fw/f3<1.5 …(3)
を満足していることが好ましい。
 なお上記条件式(3)を満足する構成において、その式で規定している条件のより望ましい範囲は下記
   0.6<fw/f3<1.0 …(3)’
の通りである。
 さらに本発明のズームレンズにおいては、広角端における全系の焦点距離をfw、第1レンズ群の焦点距離をf1、第3レンズ群の焦点距離をf3としたとき、以下の条件式
   0.10<fw/f1<0.18  (4)
   0.60<fw/f3<0.80 …(3)”
を共に満足していることが好ましい。
 また本発明のズームレンズにおいては、第4レンズ群が実質的に、物体側から順に配された、正の屈折力を有する第41レンズ、負の屈折力を有する第42レンズ、および正の屈折力を有する第43レンズからなることが望ましい。
 また本発明のズームレンズにおいては、前記第42レンズと前記第43レンズとが互いに接合されて、接合レンズを構成していることが好ましい。
 また本発明のズームレンズにおいては、前記第42レンズが、前記第41レンズおよび第43レンズよりも高屈折率の材料からなるものであることが好ましい。
 他方、本発明による撮像装置は、以上説明した本発明によるズームレンズを備えたことを特徴とするものである。
 本発明によるズームレンズは実質的に、物体側から順に配された、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群、および負の屈折力を有する第4レンズ群から構成されて、テレフォトタイプが2つ並ぶレンズ群の配置となっているので、全長を短くすることが可能になる。
 また本発明によるズームレンズは、広角端から望遠端側に変倍する際に、第1レンズ群と第2レンズ群との間隔が次第に広がり、第2レンズ群と第3レンズ群との間隔が次第に狭まり、第3レンズ群と第4レンズ群との間隔が次第に広がるように全てのレンズ群が光軸に沿って移動する構成とされているので、収差補正やレンズ群の移動量を適度にバランスさせやすくなり、これにより、広画角でかつ高い変倍比を得ることが可能になる。
 さらに本発明のズームレンズにおいては、特に前述の条件式(1)および(2)が共に満足されているので、下記の効果を得ることができる。すなわち、条件式(1)は全系に対する第2レンズ群のパワー配分を規定しており、その下限値以下になると第2レンズ群の屈折力が強くなり過ぎ、諸収差を良好に補正することが困難になる。反対に上限値以上になると、第2レンズ群の屈折力が弱くなり過ぎ、全長を短く保ちつつ高変倍比を得ることが困難になる。一方、条件式(2)は全系に対する第4レンズ群のパワー配分を規定しており、その下限値以下になると第4レンズ群の屈折力が強くなり過ぎ、中間焦点距離から望遠端にかけてディストーションが大きくなる。反対に上限値以上になると、第4レンズ群の屈折力が弱くなり過ぎ、全長を短く保ちつつ高変倍比を得ることが困難になる。条件式(1)および(2)が満足されている場合は、以上の不具合を防止することができる。
 上に述べた効果は、条件式(1)、(2)の範囲の中で、特にそれぞれ条件式(1)’、(2)’が満足されている場合は、より顕著なものとなる。
 また本発明のズームレンズにおいて、特に前述の条件式(3)が満足されている場合は、下記の効果を得ることができる。すなわち、条件式(3)は全系に対する第3レンズ群のパワー配分を規定しており、その下限値以下になると第3レンズ群の屈折力が弱くなり過ぎ、全長を短く保ちつつ高変倍比を得ることが困難になる。反対に上限値以上になると、第3レンズ群の屈折力が強くなり過ぎ、諸収差を良好に補正することが困難になる。条件式(3)が満足されている場合は、以上の不具合を防止することができる。
 上に述べた効果は、条件式(3)の範囲の中で、特に条件式(3)’が満足されている場合は、より顕著なものとなる。
 また本発明のズームレンズにおいて、特に前述の条件式(4)および(3)”が共に満足されている場合は、下記の効果を得ることができる。すなわち、条件式(4)は全系に対する第1レンズ群のパワー配分を規定しており、その下限値以下になると第1レンズ群の屈折力が弱くなり過ぎ、全長を短く保ちつつ高変倍比を得ることが困難になる。反対に上限値以上になると、第1レンズ群の屈折力が強くなり過ぎ、諸収差を良好に補正することが困難になる。条件式(4)が満足されている場合は、以上の不具合を防止することができる。条件式(3)”による効果は、それと同じくfw/f3の値の範囲を規定した条件式(3)、(3)’による効果と基本的に同じであるが、この場合は、その効果がより顕著なものとなる。
 また、本発明のズームレンズにおいて、特に第4レンズ群が実質的に、物体側から順に配された、正の屈折力を有する第41レンズ、負の屈折力を有する第42レンズ、および正の屈折力を有する第43レンズから構成されている場合は、第4レンズ群の屈折力を強くし、全長を短く押さえながら、倍率の色収差や非点収差を良好に補正可能となる。
 また本発明のズームレンズにおいて、特に前記第42レンズと前記第43レンズとが互いに接合されて接合レンズを構成している場合は、周辺光線が全反射を起こすことを防止しつつ、それぞれのレンズの屈折力を強くできるので望ましい。
 また本発明のズームレンズにおいて、特に前記第42レンズが、前記第41レンズおよび第43レンズよりも高屈折率の材料からなるものである場合は、より容易に広画角化が達成される。
 他方、本発明による撮像装置は、以上説明した効果を奏する本発明のズームレンズを備えたものであるから、レンズ部分を小型化できるとともに、広画角かつ高い変倍比で撮像可能なものとなる。
本発明の実施例1にかかるズームレンズのレンズ構成を示す断面図 本発明の実施例2にかかるズームレンズのレンズ構成を示す断面図 本発明の実施例3にかかるズームレンズのレンズ構成を示す断面図 本発明の実施例4にかかるズームレンズのレンズ構成を示す断面図 本発明の実施例5にかかるズームレンズのレンズ構成を示す断面図 本発明の実施例6にかかるズームレンズのレンズ構成を示す断面図 (A)~(L)は本発明の実施例1にかかるズームレンズの各収差図 (A)~(L)は本発明の実施例2にかかるズームレンズの各収差図 (A)~(L)は本発明の実施例3にかかるズームレンズの各収差図 (A)~(L)は本発明の実施例4にかかるズームレンズの各収差図 (A)~(L)は本発明の実施例5にかかるズームレンズの各収差図 (A)~(L)は本発明の実施例6にかかるズームレンズの各収差図 本発明の実施形態にかかる撮像装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の実施形態にかかるズームレンズの構成例を示す断面図であり、後述の実施例1のズームレンズに対応している。また、図2~図6は、本発明の実施形態にかかる別の構成例を示す断面図であり、それぞれ後述の実施例2~6のズームレンズに対応している。図1~図6に示す例の基本的な構成は、図3の例では第3レンズ群G3が2枚のレンズから構成されている点を除いて互いに同様であり、図示方法も同様であるので、ここでは主に図1を参照しながら、本発明の実施形態にかかるズームレンズについて説明する。なお、図3の例の第3レンズ群G3については後に詳述する。
 図1では、左側が物体側、右側が像側として、(A)は無限遠合焦状態でかつ広角端(最短焦点距離状態)での光学系配置を、(B)は無限遠合焦状態でかつ広角端と望遠端との中間位置での光学系配置を、そして(C)は無限遠合焦状態でかつ望遠端(最長焦点距離状態)での光学系配置を示している。これは、後述する図2~6においても同様である。
 本発明の実施形態にかかるズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4とがレンズ群として配列されてなる。上記第3レンズ群G3には、開口絞りStが含まれている。ここに示す開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
 なお、図1には、第4レンズ群G4と像面Simとの間に、平行平板状の光学部材PPが配置された例を示している。近年の撮像装置は高画質化のために各色毎にCCDを用いる3CCD方式を採用しているものがあり、この3CCD方式に対応するためには、色分解プリズム等の色分解光学系をレンズ系と像面Simの間に挿入することになる。また、ズームレンズを撮像装置に適用する際には、レンズを装着するカメラ側の構成に応じて、光学系と像面Simの間にカバーガラス、赤外線カットフィルタやローパスフィルタなどの各種フィルタ等を配置することが好ましい。光学部材PPは、これら色分解光学系、カバーガラスや各種フィルタ等を想定したものである。
 このズームレンズにおいては、変倍する際に第1レンズ群G1~第4レンズ群G4の全てのレンズ群が光軸Zに沿って移動する。より具体的には、広角端から望遠端に変倍する際に、第1レンズ群G1は物体側に単調移動し、第2レンズ群G2は曲線の軌跡を描きながら像面Sim側に移動し、第3レンズ群G3は物体側に単調移動し、開口絞りStは第3レンズ群G3と一体で移動し、第4レンズ群G4は曲線の軌跡を描きながら物体側に移動し、その結果、第1レンズ群G1と第2レンズ群G2との間隔は次第に広がり、第2レンズ群G2と第3レンズ群G3との間隔は次第に狭まり、第3レンズ群G3と第4レンズ群G4との間隔は次第に広がるようになる。
 なお図1には、広角端から中間位置へ変倍するときの第1レンズ群G1~第4レンズ群G4の移動軌跡を、(A)と(B)との間に付した実線の矢印で模式的に示し、また中間位置から望遠端へ変倍するときの第1レンズ群G1~第4レンズ群G4の移動軌跡を、(B)と(C)との間に付した実線の矢印で模式的に示してある。ただし、各レンズ群の移動はこれに限らず、広角端から望遠端に変倍する際に、第1レンズ群G1と第2レンズ群G2との間隔は次第に広がり、第2レンズ群G2と第3レンズ群G3との間隔は次第に狭まり、第3レンズ群G3と第4レンズ群G4との間隔は次第に広がるように移動させればよく、第1レンズ群G1と第3レンズ群G3は単調移動ではなく曲線移動でもよく、第2レンズ群G2は直線移動でもよい。
 第1レンズ群G1は、物体側から順に、負の屈折力を有する第1レンズL11と、正の屈折力を有する第2レンズL12と、正の屈折力を有する第3レンズL13とを配置して構成されている。ここで、例えば図1に示す例のように、第1レンズL11は負メニスカス形状のレンズとし、第2レンズL12は両凸形状のレンズとし、第3レンズL13は正メニスカス形状のレンズとすることができる。
 第2レンズ群G2は、物体側から順に、負の屈折力を有する第4レンズL21と、負の屈折力を有する第5レンズL22と、正の屈折力を有する第6レンズL23とを配置して構成されている。ここで、例えば図1に示す例のように、第4レンズL21および第5レンズL22は両凹形状のレンズとし、第6レンズL23は両凸形状のレンズとすることができる。
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第7レンズL31と、負の屈折力を有する第8レンズL32と、正の屈折力を有する第9レンズL33とを配置して構成されている。ここで、例えば図1に示す例のように、第7レンズL31は両凸形状のレンズとし、第8レンズL32は負メニスカス形状のレンズとし、第9レンズL33は両凸形状のレンズとすることができる。
 第4レンズ群G4は、物体側から順に、正の屈折力を有する第10レンズL41と、負の屈折力を有する第11レンズL42と、正の屈折力を有する第12レンズL43とを配置して構成されている。なお、これらの第10レンズL41、第11レンズL42および第12レンズL43がそれぞれ、先に説明した第41レンズ、第42レンズおよび第43レンズである。ここで、例えば図1に示す例のように、第10レンズL41は両凸形状のレンズとし、第11レンズL42は両凹形状のレンズとし、第12レンズL43は両凸形状のレンズとすることができる。
 なお上記第4レンズ群G4の第11レンズL42と第12レンズL43とは、互いに接合されて接合レンズを構成している。
 なお図3の例は、以上述べた構成から第3レンズ群G3の第9レンズL33が除かれた形のものであり、その他の構成は上述のものと共通している。
 ここで本ズームレンズにおいては、広角端における全系の焦点距離をfw、第2レンズ群G2の焦点距離をf2、第4レンズ群G4の焦点距離をf4としたとき、以下の条件式
   -2.0<fw/f2<-0.8 …(1)
   -1.0<fw/f4<-0.2 …(2)
が共に満足されている。
 なお本実施形態の数値実施例については、後に表1~19を参照してまとめて説明するが、例えば実施例1の広角端における全系の焦点距離fwは表2の諸元fの「広角端」欄に示してある。また実施例2の広角端における全系の焦点距離fwは表5の同欄に示してあり、以下同様である。
 そして表19には、上記条件式(1)、(2)に関するfw/f2、fw/f4の値を、後述する条件式(3)、(4)に関するfw/f3、fw/f1の値と共に、実施例毎にまとめて示してある。
 表19に示される通り本ズームレンズにおいては、上記条件式(1)、(2)の範囲の中で、特に下記条件式
   -1.05<fw/f2<-0.85 …(1)’
   -0.8<fw/f4<-0.5 …(2)’
が満足されている。
 また本ズームレンズにおいては、広角端における全系の焦点距離fw、第3レンズ群G3の焦点距離f3について、以下の条件式
   0.6<fw/f3<1.5 …(3)
が満足されている。
 また本ズームレンズにおいては、上記条件式(3)の範囲の中で、特に下記条件式
   0.6<fw/f3<1.0 …(3)’
が満足されている。
 さらに本ズームレンズにおいては、広角端における全系の焦点距離fw、第1レンズ群G1の焦点距離f1、第3レンズ群G3の焦点距離f3について、以下の条件式
   0.10<fw/f1<0.18  (4)
   0.60<fw/f3<0.80 …(3)”
が共に満足されている。
 また本ズームレンズにおいては、第4レンズ群G4の第11レンズL42が、第10レンズL41および第12レンズL43よりも高屈折率の材料から形成されている。つまり、例えば実施例1において、それら第11レンズL42、第10レンズL41および第12レンズL43の材料の屈折率はそれぞれ1.88300、1.50957および1.58144である(後述する表1参照)。
 以下、本ズームレンズの作用、効果について説明する。まず本ズームレンズは、物体側から順に配された、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群G3、および負の屈折力を有する第4レンズ群G4から構成され、テレフォトタイプが2つ並ぶレンズ群の配置となっているので、全長を短くすることが可能になる。
 また本ズームレンズは、広角端に比べて望遠端において、第1レンズ群G1と第2レンズ群G2との間隔がより広く、第2レンズ群G2と第3レンズ群G3との間隔がより狭く、第3レンズ群G3と第4レンズ群G4との間隔がより広くなるように全てのレンズ群G1~G4が光軸Zに沿って移動する構成とされているので、収差補正やレンズ群の移動量を適度にバランスさせやすくなり、これにより、広画角で高い変倍比が得られている。
 また本ズームレンズにおいては、前述した条件式(1)、(2)が共に満足されているので、下記の効果を得ることができる。すなわち、条件式(1)は全系に対する第2レンズ群G2のパワー配分を規定しており、その下限値以下になると第2レンズ群G2の屈折力が強くなり過ぎ、諸収差を良好に補正することが困難になる。反対に上限値以上になると、第2レンズ群G2の屈折力が弱くなり過ぎ、全長を短く保ちつつ高変倍比を得ることが困難になる。一方、条件式(2)は全系に対する第4レンズ群G4のパワー配分を規定しており、その下限値以下になると第4レンズ群G4の屈折力が強くなり過ぎ、中間焦点距離から望遠端にかけてディストーションが大きくなる。反対に上限値以上になると、第4レンズ群G4の屈折力が弱くなり過ぎ、全長を短く保ちつつ高変倍比を得ることが困難になる。本ズームレンズにおいては、条件式(1)および(2)が満足されているので、以上の不具合を防止することができる。
 そして本ズームレンズでは、上記条件式(1)、(2)の範囲の中で特に条件式(1)’、(2)’が満足されているので、上述の効果がより顕著なものとなる。
 また本ズームレンズにおいては、前述した条件式(3)が満足されているので、下記の効果を得ることができる。すなわち、条件式(3)は全系に対する第3レンズ群G3のパワー配分を規定しており、その下限値以下になると第3レンズ群G3の屈折力が弱くなり過ぎ、全長を短く保ちつつ高変倍比を得ることが困難になる。反対に上限値以上になると、第3レンズ群G3の屈折力が強くなり過ぎ、諸収差を良好に補正することが困難になる。本ズームレンズにおいては、条件式(3)が満足されているので、以上の不具合を防止することができる。
 そして本ズームレンズでは、上記条件式(3)の範囲の中で特に条件式(3)’が満足されているので、上述の効果がより顕著なものとなる。
 また本発明のズームレンズにおいは、前述した条件式(4)および(3)”が共に満足されているので、下記の効果を得ることができる。すなわち、条件式(4)は全系に対する第1レンズ群G1のパワー配分を規定しており、その下限値以下になると第1レンズ群G1の屈折力が弱くなり過ぎ、全長を短く保ちつつ高変倍比を得ることが困難になる。反対に上限値以上になると、第1レンズ群G1の屈折力が強くなり過ぎ、諸収差を良好に補正することが困難になる。本ズームレンズにおいては、条件式(4)が満足されているので、以上の不具合を防止することができる。条件式(3)”による効果は、それと同じくfw/f3の値の範囲を規定した条件式(3)、(3)’による効果と基本的に同じであるが、この場合は、その効果がより顕著なものとなる。
 さらに本ズームレンズにおいては、第4レンズ群G4が、物体側から順に配された、正の屈折力を有する第10レンズL41、負の屈折力を有する第11レンズL42、および正の屈折力を有する第12レンズL43から構成されているので、第4レンズ群G4の屈折力を強くし、全長を短く押さえながら、倍率の色収差や非点収差を良好に補正可能となっている。
 また本ズームレンズにおいては、第4レンズ群G4の第11レンズL42と第12レンズL43とが互いに接合されて接合レンズを構成しているので、周辺光線が全反射を起こすことを防止しつつ、それぞれのレンズL42、L43の屈折力を強くすることができる。
 また本ズームレンズにおいては、第4レンズ群G4の第11レンズL42が、第10レンズL41および第12レンズL43よりも高屈折率の材料から形成されているので、より容易に広画角化が達成される。
 次に、本発明のズームレンズの数値実施例について説明する。実施例1~6のズームレンズのレンズ断面図はそれぞれ図1~6に示したものである。そして、実施例1のズームレンズの基本レンズデータを表1に、ズームに関するデータを表2に、非球面データを表3に示す。同様に、実施例2~6のズームレンズの基本レンズデータ、ズームに関するデータ、非球面データを表4~表18に示す。以下では、表中の記号の意味について、実施例1のものを例に挙げて説明するが、実施例2~6のものについても基本的に同様である。
 表1の基本レンズデータにおいて、Siの欄には最も物体側の構成要素の物体側の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示している。なお、曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負としている。
 また、基本レンズデータにおいて、Ndjの欄には最も物体側のレンズを1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.6nm)に対する屈折率を示し、νdjの欄にはj番目の構成要素のd線に対するアッベ数を示している。なお、基本レンズデータには、開口絞りStも含めて示しており、開口絞りStに相当する面の曲率半径の欄には、∞(開口絞り)と記載している。
 表1の基本レンズデータにおけるD5、D10、D16、D21は、変倍時に変化する面間隔である。D5は第1レンズ群G1と第2レンズ群G2との間隔、D10は第2レンズ群G2と第3レンズ群G3との間隔、D16は第3レンズ群G3と第4レンズ群G4との間隔、D21は第4レンズ群G4と光学部材PPとの間隔である。なお実施例3について示す表7では、D14が第3レンズ群G3と第4レンズ群G4との間隔を、D19が第4レンズ群G4と光学部材PPとの間隔を示している。また、Bfはバックフォーカスを示す。
 表2のズームに関するデータには、広角端、中間位置、望遠端それぞれにおける、全系の焦点距離(f)、F値(Fno.)、全画角(2ω)、変倍時に変化する各面間隔(D5、D10、D16、D21)の値を示している。なお、実施例3について示す表8では、変倍時に変化する各面間隔はD5、D10、D14、D19として示してある。
 表1のレンズデータでは、非球面の面番号に*印を付しており、非球面の曲率半径として近軸の曲率半径の数値を示している。表3の非球面データには、非球面の面番号と、各非球面に関する非球面係数を示す。表3の非球面データの数値の「E-n」(n:整数)は、「×10-n」を意味する。なお、非球面係数は、下記非球面式における各係数K、Am(m=3、4、5、…10)の値である。
  Zd=C・h/{1+(1-K・C・h1/2}+ΣAm・hm
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率半径の逆数
K、Am:非球面係数(m=3、4、5、…10)
 以下に記載する表では、所定の桁で丸めた数値を記載している。また、以下に記載する表のデータにおいて、角度の単位としては度を用い、長さの単位としてはmmを用いているが、光学系は比例拡大又は比例縮小して使用することが可能なため、他の適当な単位を用いることもできる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012

Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 また表19に、実施例1~6のズームレンズの条件式(1)~(4)に関する値を示す。なお、この表19の値はd線に関するものである。
Figure JPOXMLDOC01-appb-T000019
 ここで、実施例1のズームレンズの広角端における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)をそれぞれ図7(A)~図6(D)に示し、中間位置における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)をそれぞれ図7(E)~図7(H)に示し、望遠端における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)をそれぞれ図7(I)~図7(L)に示す。
 各収差図はd線(波長587.6nm)を基準としたものであるが、球面収差図ではF線(波長486.1nm)およびC線(656.3nm)に関する収差も示し、倍率色収差図ではF線およびC線に関する収差を示す。非点収差図では、サジタル方向については実線で、タンジェンシャル方向については点線で示している。球面収差図のFno.はF値を意味し、その他の収差図のωは半画角を意味する。
 同様に、実施例2のズームレンズの広角端、中間位置、望遠端における各収差図を図8(A)~図8(L)に示し、以下全く同様にして実施例3~6の各収差図をそれぞれ図9~図12に示す。
 なお図1には、レンズ系と結像面との間に光学部材PPを配置した例を示したが、ローパスフィルタや特定の波長域をカットするような各種フィルタ等を配置する代わりに、各レンズの間にこれらの各種フィルタを配置してもよく、あるいは、いずれかのレンズのレンズ面に、各種フィルタと同様の作用を有するコートを施してもよい。
 次に、本発明の実施形態にかかる撮像装置について説明する。図13に、本発明の実施形態の撮像装置の一例として、本発明の実施形態のズームレンズ1を用いた撮像装置10の概略構成図を示す。撮像装置としては、例えば、監視カメラ、ビデオカメラ、電子スチルカメラ等を挙げることができる。
 図13に示す撮像装置10は、ズームレンズ1と、ズームレンズ1の像側に配置されたフィルタ2と、ズームレンズ1によって結像される被写体の像を撮像する撮像素子3と、撮像素子3からの出力信号を演算処理する信号処理部4と、ズームレンズ1の変倍を行うための変倍制御部5と、フォーカス調整を行うためのフォーカス制御部6とを備える。
 ズームレンズ1は、物体側から順に配された、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群G3、および負の屈折力を有する第4レンズ群G4からなるものである。そしてこのズームレンズ1においては、広角端から望遠端側に変倍する際に、前述した通り第1レンズ群G1と第2レンズ群G2との間隔が次第に広がり、第2レンズ群G2と第3レンズ群G3との間隔が次第に狭まり、第3レンズ群G3と第4レンズ群G4との間隔が次第に広がるように全てのレンズ群が光軸Zに沿って移動する。なお、図13では各レンズ群を概略的に示している。
 撮像素子3は、ズームレンズ1により形成される光学像を撮像して電気信号を出力するものであり、その撮像面はズームレンズ1の像面に一致するように配置される。撮像素子3としては例えばCCDやCMOS等を用いることができる。
 この撮像装置10は、本発明によるズームレンズ1を備えたものであるから、レンズ部分を小型化できるとともに、広画角かつ高い変倍比で撮像可能なものとなる。
 なお、図13では図示していないが、撮像装置10は、例えば第3レンズ群G3の一部を構成する正の屈折力を有するレンズもしくは第3レンズ群G3全体を光軸Zに垂直な方向に移動させて、振動や手振れ時の撮影画像のぶれを補正するぶれ補正機構をさらに備えるようにしてもよい。また移動させるレンズ群は第3レンズ群に限らず、他の群全体、もしくはその一部を光軸Zに垂直な方向に移動させて、振動や手振れ時の撮影画像のぶれを補正してもよい。またレンズではなく撮像素子3を移動させてもよい。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではなく、種々の変形が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数、非球面係数等の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。

Claims (6)

  1.  実質的に、物体側から順に配された、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群、および負の屈折力を有する第4レンズ群からなり、
     広角端から望遠端側に変倍する際に、第1レンズ群と第2レンズ群との間隔が次第に広がり、第2レンズ群と第3レンズ群との間隔が次第に狭まり、第3レンズ群と第4レンズ群との間隔が次第に広がるように全てのレンズ群が光軸に沿って移動し、
     広角端における全系の焦点距離をfw、第2レンズ群の焦点距離をf2、第4レンズ群の焦点距離をf4としたとき、以下の条件式を満足することを特徴とするズームレンズ。
       -2.0<fw/f2<-0.8 …(1)
       -1.0<fw/f4<-0.2 …(2)
  2.  以下の条件式の少なくとも1つを満足することを特徴とする請求項1に記載のズームレンズ。
       -1.05<fw/f2<-0.85 …(1)’
       -0.8<fw/f4<-0.5 …(2)’
  3.  前記第4レンズ群が実質的に、物体側から順に配された、正の屈折力を有する第41レンズ、負の屈折力を有する第42レンズ、および正の屈折力を有する第43レンズからなることを特徴とする請求項1または2に記載のズームレンズ。
  4.  前記第42レンズと前記第43レンズとが互いに接合されていることを特徴とする請求項3に記載のズームレンズ。
  5.  前記第42レンズの屈折率が、前記第41レンズ、前記第43レンズの各屈折率よりも大であることを特徴とする請求項3または4に記載のズームレンズ。
  6.  請求項1から5のいずれか1項に記載のズームレンズを備えたことを特徴とする撮像装置。
PCT/JP2012/003971 2011-06-22 2012-06-19 ズームレンズおよび撮像装置 WO2012176428A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013521444A JP5837931B2 (ja) 2011-06-22 2012-06-19 ズームレンズおよび撮像装置
CN201280030559.8A CN103620474B (zh) 2011-06-22 2012-06-19 变焦镜头和成像设备
US14/105,860 US9063322B2 (en) 2011-06-22 2013-12-13 Zoom lens and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-138434 2011-06-22
JP2011138434 2011-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/105,860 Continuation US9063322B2 (en) 2011-06-22 2013-12-13 Zoom lens and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2012176428A1 true WO2012176428A1 (ja) 2012-12-27

Family

ID=47422286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003971 WO2012176428A1 (ja) 2011-06-22 2012-06-19 ズームレンズおよび撮像装置

Country Status (4)

Country Link
US (1) US9063322B2 (ja)
JP (1) JP5837931B2 (ja)
CN (1) CN103620474B (ja)
WO (1) WO2012176428A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142794A (ja) * 2015-01-30 2016-08-08 キヤノン株式会社 撮像装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3547004B1 (en) * 2016-10-07 2022-12-28 Nikon Corporation Variable magnification optical system, optical device and manufacturing method for variable magnification optical system
CN109116532A (zh) * 2018-10-17 2019-01-01 舜宇光学(中山)有限公司 变焦镜头
CN110018554B (zh) * 2019-03-15 2024-03-26 广东奥普特科技股份有限公司 一种广角机器视觉镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178421A (ja) * 1984-02-27 1985-09-12 Canon Inc コンパクトなズ−ムレンズ
JPH01178912A (ja) * 1987-12-29 1989-07-17 Asahi Optical Co Ltd 広角を包括するコンパクトな高変倍比ズームレンズ
JPH0383005A (ja) * 1989-08-28 1991-04-09 Minolta Camera Co Ltd 広角域を含む高変倍率ズームレンズ系
JPH04296809A (ja) * 1991-03-27 1992-10-21 Olympus Optical Co Ltd ズームレンズ
JPH075361A (ja) * 1993-06-15 1995-01-10 Olympus Optical Co Ltd ズームレンズ
JPH11109241A (ja) * 1997-10-03 1999-04-23 Minolta Co Ltd ズームレンズ系
JP2005284097A (ja) * 2004-03-30 2005-10-13 Nikon Corp 防振機能を有するズームレンズ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917482A (en) * 1987-12-29 1990-04-17 Asahi Kogaku Kogyo Kabushiki Kaisha Compact zoom lens system capable of high zoom ratio and having coverage of a wide visual field
JP3598971B2 (ja) 2000-04-07 2004-12-08 ミノルタ株式会社 撮像レンズ装置
JP4016204B2 (ja) * 2003-01-17 2007-12-05 ソニー株式会社 ズームレンズ及び撮像装置
US7158315B2 (en) 2004-03-30 2007-01-02 Nikon Corporation Zoom lens system
JP4911679B2 (ja) 2006-04-12 2012-04-04 オリンパスイメージング株式会社 ズームレンズ及びそれを備えた撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178421A (ja) * 1984-02-27 1985-09-12 Canon Inc コンパクトなズ−ムレンズ
JPH01178912A (ja) * 1987-12-29 1989-07-17 Asahi Optical Co Ltd 広角を包括するコンパクトな高変倍比ズームレンズ
JPH0383005A (ja) * 1989-08-28 1991-04-09 Minolta Camera Co Ltd 広角域を含む高変倍率ズームレンズ系
JPH04296809A (ja) * 1991-03-27 1992-10-21 Olympus Optical Co Ltd ズームレンズ
JPH075361A (ja) * 1993-06-15 1995-01-10 Olympus Optical Co Ltd ズームレンズ
JPH11109241A (ja) * 1997-10-03 1999-04-23 Minolta Co Ltd ズームレンズ系
JP2005284097A (ja) * 2004-03-30 2005-10-13 Nikon Corp 防振機能を有するズームレンズ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142794A (ja) * 2015-01-30 2016-08-08 キヤノン株式会社 撮像装置

Also Published As

Publication number Publication date
US9063322B2 (en) 2015-06-23
JPWO2012176428A1 (ja) 2015-02-23
JP5837931B2 (ja) 2015-12-24
US20140104698A1 (en) 2014-04-17
CN103620474B (zh) 2016-03-30
CN103620474A (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5616534B2 (ja) ズームレンズおよび撮像装置
WO2012137496A1 (ja) ズームレンズおよび撮像装置
WO2014006841A1 (ja) ズームレンズおよび撮像装置
JP5745188B2 (ja) ズームレンズおよび撮像装置
WO2013031188A1 (ja) ズームレンズおよび撮像装置
JP5580940B2 (ja) ズームレンズおよび撮像装置
WO2013031180A1 (ja) ズームレンズおよび撮像装置
WO2013038610A1 (ja) 変倍光学系および撮像装置
JP5837931B2 (ja) ズームレンズおよび撮像装置
JP6164894B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5840685B2 (ja) ズームレンズおよび撮像装置
WO2012176389A1 (ja) ズームレンズおよび撮像装置
WO2013031110A1 (ja) ズームレンズおよび撮像装置
JP5778276B2 (ja) ズームレンズおよび撮像装置
JP2020160263A (ja) ズームレンズおよび撮像装置
WO2012176427A1 (ja) ズームレンズおよび撮像装置
JP5335373B2 (ja) ズームレンズおよび撮像装置
JP5785333B2 (ja) ズームレンズおよび撮像装置
WO2012176426A1 (ja) ズームレンズおよび撮像装置
WO2013031185A1 (ja) ズームレンズおよび撮像装置
WO2013031179A1 (ja) ズームレンズおよび撮像装置
WO2013031181A1 (ja) ズームレンズおよび撮像装置
WO2013031186A1 (ja) ズームレンズおよび撮像装置
WO2013031178A1 (ja) ズームレンズおよび撮像装置
JP2020160264A (ja) ズームレンズおよび撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280030559.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802244

Country of ref document: EP

Kind code of ref document: A1