WO2012175072A1 - Verfahren zum schichtweisen aufbau von modellen - Google Patents
Verfahren zum schichtweisen aufbau von modellen Download PDFInfo
- Publication number
- WO2012175072A1 WO2012175072A1 PCT/DE2012/000646 DE2012000646W WO2012175072A1 WO 2012175072 A1 WO2012175072 A1 WO 2012175072A1 DE 2012000646 W DE2012000646 W DE 2012000646W WO 2012175072 A1 WO2012175072 A1 WO 2012175072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- material system
- binder
- particulate
- spray
- solution
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/18—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/18—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
- B22C1/186—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
- B22C1/188—Alkali metal silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C23/00—Tools; Devices not mentioned before for moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/40—Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
- B28B7/46—Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for humidifying or dehumidifying
- B28B7/465—Applying setting liquid to dry mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
- C04B28/26—Silicates of the alkali metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00181—Mixtures specially adapted for three-dimensional printing (3DP), stereo-lithography or prototyping
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00215—Mortar or concrete mixtures defined by their oxide composition
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00905—Uses not provided for elsewhere in C04B2111/00 as preforms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the invention relates to a method for the layered construction of models and material systems for the layered construction of models according to the preambles of claims 1 and 2.
- stereolithography techniques solidification of monomeric liquids with a high-energy beam
- selective laser sintering fusion of particulate material with a high-energy beam
- 3D printing process All these methods allow the comparatively economical production of molds for prototype construction.
- the 3D printing process also allows superior speed when using multi-controllable nozzle printing devices.
- the application is not limited to the prototype area. Even serial components can be economically produced.
- CONFIRMATION COPY The first-mentioned, purely liquid-based systems are known, for example, from US Pat. No. 6,259,962 to Objet Geometries Ltd. known. This method is based on the fact that during solidification two different materials are generated. The layered model can then be released after the printing process of the support material by a dissolution process - for example, a water bath.
- the solidification of the initially provided for the printing liquid materials can be done for example via UV radiation.
- two-component or multi-component systems can be used which are brought together and solidified on the construction platform. Since the entire volume of construction must be generated by inkjet printers, but this process is relatively slow and therefore suitable only for smaller components.
- a powdery material is selectively connected.
- the particulate material is brought up and smoothed onto a workpiece platform with a coater in thin layers, for example.
- a printhead solidifies selective areas on the powder layer based on the component data stored in computers. This process is repeated over and over again until the component is completed and can be removed from the unconsolidated particle material.
- the solidification of the particulate material takes place here by gluing the individual particles together.
- Inorganic casting systems have been used in metal casting since the middle of the last century to produce sand molds.
- so-called hydraulic binders to mention, so binders that cure both in air and under water.
- gypsum-bound form materials This includes, for example, gypsum-bound form materials.
- gypsum-containing particulate material is used to make molds.
- the gypsum contained in the particulate material is activated with an aqueous solution and selectively hardens, for example.
- the mold must be dried after printing.
- the gypsum contains a lot of free water, which can lead to problems during casting, as it can evaporate abruptly when heated.
- the strength of the gypsum is not particularly high and the temperature resistance of the gypsum allows for the resulting shapes only a light metal casting. Furthermore, it has been shown that the gypsum is very dense in the cured state and is difficult for gases that may arise during casting, which is why the gases can penetrate into the casting melt.
- cement-bonded mold materials are also known, reference being made by way of example to DE 10 2004 014 806 B4, EP 1 510 310 A2.
- cement is in the sand for the mold and the cement is activated by an aqueous ink.
- the particle size distribution of reactive cements constitutes a problem with the film-forming apparatuses customary in 3D printing.
- the cements are often poor flowability and tend to agglomerates. The result is bad surfaces and component defects. In addition, caused by the fine grain unpleasant dusts.
- the unbound powder in the construction container is strongly alkaline and thus skin-friendly.
- salt-bonded molding materials wherein sand can be mixed or coated with salts and the particulate material with a solvent - usually an aqueous Solution - is printed.
- the salt dissolves and forms bridges between the particles. If you then dry the mold, the water escapes and the bond becomes firm.
- Salt-bonded mold materials have the advantage that they can be removed "wet” after casting by immersing the cast parts in a water bath, the salt dissolves, the sand loses the bond and can be rinsed out.
- the shape retention of the cores is relatively low, since the salt tends to absorb moisture from the air and thereby softened.
- the salts in the sand are often aggressive towards metals, so that materials that come in contact with the sand are passivated accordingly.
- cement-, gypsum- and salt-bound mixtures of molded materials has no essential significance in series casting, in particular in automotive casting.
- Water glass binders are used for mold and core production in series casting. In this case, the curing in a cold tool via the reaction with carbon dioxide gas (C02 gas) or the reaction with an ester can take place.
- C02 gas carbon dioxide gas
- the hardening of water-glass-bonded molding mixtures by hot tools analogous to the organic hot-box process and the combined curing by heated tools and the gassing with, usually heated air has established.
- Sand cores produced in this way are primarily used in aluminum chill casting. This is described, for example, in EP 2 163 328 A1
- the core production by means of water glass and ester, or CO2 gas are classified as odorless and therefore environmentally friendly.
- the object of the invention is therefore to provide a method and a material system for the layered construction of models available in different aspects, which does not have the disadvantages of known methods or at least reduces the disadvantages of the prior art or completely overcomes, for example, is environmentally friendly and is economically applicable for three-dimensional printing.
- the invention relates to a method of layering models, wherein in a build area a particulate material is applied in layers and selectively cured, and these steps are repeated until a desired model is obtained.
- the material in this case comprises a particulate building material which has a spray-dried alkali silicate solution.
- a selective activation of the curing takes place by means of a solution comprising water and a drying process.
- a model Under a construction area, whole is generally an area in which a model is constructed. In a preferred embodiment, this could be a construction platform or else a construction container. Otherwise it could be any other area. This also depends in particular on the construction process used or the device used. So also conveyor belts or just the ground would be conceivable.
- the application of the material and the selective hardening of the building material can, for example, be carried out by first applying the particulate material in layers by means of a coater and then selectively carrying out a hardening or carrying out parts of the selective hardening or some or all of the process steps could take place simultaneously.
- the material according to the invention comprises a particulate building material.
- a particulate building material could include any material known in the art for making models, and particularly cores, or mixtures thereof.
- typical refractory materials such as quartz sands, kerphalites, olivine sand and chrome ore sands are suitable.
- artificially shaped materials such as cerabeads and (min-sand) bauxite sand are also suitable. Also mixtures of different molding materials are quite conceivable.
- the building materials should not be sour.
- a grain distribution is sought, which has its center grain at about half of the desired layer thickness. That is, for example, with layer thicknesses of about 300 pm, the median particle diameter should measure about 150 pm.
- Typical layer thicknesses range from 0.1 mm to 0.5 mm.
- the material comprises a spray-dried alkali silicate solution.
- a selective activation of ⁇ Curing takes place by means of a solution comprising water.
- a drying process is also carried out.
- Alkali silicate solutions frequently also called water glass, are known to the person skilled in the art and are solidified from the melt flow, glassy, water-soluble potassium silicates and sodium silicates (salts of silicas) with a molar ratio Si0 2 / alkali oxide of 1.5: 1 to 4: 1 in aqueous solutions.
- Alkali metal silicates are prepared by fusing quartz sand with sodium carbonate or potassium carbonate at 1400 to 1500 ° C to release carbon dioxide.
- the solidified melt is marketed in the ground state or immediately transferred to a solution of desired concentration.
- Sodium silicate is usually prepared by fusing silica and sodium carbonate together in the appropriate molar ratio as a glassy solidifying product which crystallizes upon annealing below the melting point.
- Water glass and sodium silicate can also be prepared by direct dissolution of sand in sodium hydroxide solution at elevated pressure and temperatures up to about 150 ° C.
- the alkali metal silicate solution may also have other substances.
- it could be provided with a surfactant or other excipients.
- a spray-dried and also spray-dried alkali silicate solution is used.
- Such one preferably has an ignition loss of 10 to 25% by weight.
- Spray drying or spray drying is a procedure for the production of powders from liquids, in which atomized liquids are dried with a hot gas.
- the selective curing according to the present invention is carried out by means of a solution comprising water.
- a solution comprising water comprising water.
- this is provided, for example, such that a spray-dry waterglass or a spray-dried alkali silicate solution-containing particulate material is applied in layers with a coater, as is known, for example, in rapid prototyping methods known from the prior art, and then a water-containing solution is applied by means of a printhead, for example ,
- the water activates a hardening of the alkali metal silicate solution, whereby, after removal of the water, for example by drying, a connection of the particulate material takes place.
- a spray-dried binder is used. This has the advantage that it dissolves faster than a normal dried binder.
- the liquid binder selectively produced in the molding sand mixture by the water-based solvent results in adhesion between the particles of the building material.
- the water-based or water-containing solvent serves to dissolve the alkali silicate used as binder and to contribute to the formation of binder bridges between the individual particle grains (adhesion).
- water-containing solvent To activate the solid binder, it must be dissolved, this requires a water-containing solvent.
- the best solution is pure water.
- water can be used with preferably used single drop generators for selectively introducing the It is difficult to dose the solvent. This is due to a relatively low viscosity of about 1 mPas, which leads to a lack of attenuation of the liquid column in the nozzle.
- the surface tension of water is relatively high, so much energy is needed to produce single drops.
- water tends to absorb gases such as air. At the suppression occurring in the drop generators, the dissolved gas escapes and then absorbs the pressure surges that should serve the drop generation. Accordingly, it is necessary to modify the water for use in the drop generators.
- thickeners such as glycerol, glycol or phyllosilicates could serve this purpose.
- thickeners such as glycerol, glycol or phyllosilicates
- the latter turn out to be advantageous because it is a purely inorganic material system that behaves neutrally during casting, that is, does not lead to pyrolysis.
- the water-containing solution for selectively activating the cure may then be admixed with further additives such as a dye for shape recognition, a biocide and surface tension modifier.
- drying process For curing the selectively printed material, a drying process is still necessary. Which drying process is suitable depends on many factors, such as the material used, the size of the component, the environmental conditions, etc. For example, after the assembly, the finished component could only be dried at room temperature. If this is too slow, so too can a physical drying process by removing water at room temperature or / and also increasing the temperature can speed up the curing process.
- the device for selective application of the hardener does not have to be permanently cleaned, since no sticking takes place, because no self- or air-hardening substances are used.
- the dry material mixture can easily be applied in thin layers by known methods and a high level of strength can be achieved.
- the object of the present invention is also achieved by means of a material system for the layered construction of models, wherein in a construction area a material is applied in layers and selectively cured and these steps are repeated until a desired model is obtained.
- the material comprises a particulate building material and a spray-dried alkali silicate solution, and for selectively activating the cure, a solution comprising water is used.
- the particulate material according to a preferred embodiment of the present invention comprises the particulate material sand. If, according to a preferred variant, sand in the particulate material than Building material is used, so advantageously cast cores can be made of sand.
- the material comprises an inorganic hardener, in particular a latent inorganic hardener.
- latent inorganic hardener describes a substance which reacts very slowly with the binder under normal conditions, ie room temperature and normal pressure, but leads to a rapid hardening when the temperature increases.
- a latent hardener could be, for example, amorphous silica according to a particularly preferred embodiment of the present invention.
- a latent hardener such as amorphous silica
- the setting reaction can be enhanced and additionally irreversibly designed.
- the curing takes place faster and leads to a higher level of strength when the mixture heat is supplied.
- the material has an additive binder.
- Such hydraulically setting binders are, for example, Portland cement, alumina cement and / or a hydraulic aluminum oxide binder.
- a hydraulic binder preferably a cementitious material can be added.
- Such preferably used cement powder are very fine and have particle sizes of preferably below 30 ⁇ . This leads to a large surface and therefore also to a rapid and high water absorption. Excess water is absorbed by these particles and no longer leads to loss of form. The excess water that is not needed to loosen the binder is incorporated in the hydraulic binder, the cement. The cement thus contributes to the increase in strength and makes it possible to influence the hardening curve in a targeted manner.
- the alkali silicate solution or the water glass can be contained in the material in all conceivable forms.
- the waterglass particles should be as small as possible to ensure high solubility.
- Usual Parti are kel preparer this ⁇ less than 150 and more preferably below 100 ⁇ ⁇ .
- Typical representatives of powdered spray-dried waterglass powder are, for example, Sikalon A from Woellener or Portil A from Cognis. They are prepared by spray-drying aqueous alkali silicate solutions (sodium or potassium silicate solutions). To describe the process can also include Ullmann's Encyclopedia of Industrial Chemistry 1982, 4th Edition, Volume 21, page 412 be referenced.
- the particulate building material, or the molding material around it it would also be possible for the particulate building material, or the molding material around it, to be coated with the spray-dried alkali metal silicate solution or for the alkali silicate solution to be applied thereon.
- Such a method is the so-called coating, in which the coated mold base material can be provided, for example, by spray-drying an aqueous mixture of the molding compound and the alkali metal silicate binder. The coated base molding material is then applied in layers and printed on an aqueous solution.
- a spray-dried alkali metal silicate binder or a Alkslisilikatown has a loss on ignition of 10 - 40 wt .-%, preferably 15-25 wt .-%.
- the latent curing agent comes from the group of materials of silicas which can undergo an alkali-silica reaction, these are usually synthetic silicic acids. Particular preference is given to using thermal or pyrogenic silicic acids which are formed, for example, as a by-product in the production of crude silicon or ferrosilicon, microsilica, silica fume or condensed silica fume.
- the latent hardener is selected from the group of natural and / or synthetic silicic acids, in particular thermal and / or pyrogenic silicic acids.
- synthetic silica refers here to artificially produced silicas, such as thermally produced silicas by flame pyrolysis, in the electric melting furnace or in the plasma and precipitated silicas.
- Synthesis is to be understood as meaning the natural or artificial, optionally multistage and, above all, targeted production of chemical compounds from the elements, by building up of simpler compounds or by degrading more complex structures.
- a reaction according to the present invention could proceed in this way.
- Spray-dried binder is activated by the addition of water, then reacts with a latent curing agent, such as amorphous silica, which is preferably added.
- a latent curing agent such as amorphous silica
- an alkali-silica reaction is accelerated by energy, especially heat and then leads to a faster curing of the resulting model and a higher strength of the model than without the addition of latent curing agent.
- the storage stability of the cores at elevated humidity and the thermal resistance, such as the deflection of cores, in the casting process increases significantly compared to cores produced only by means of alkali silicate binder as a binder.
- the alkali metal silicate content ie the material, in particular Parti kelmaterial, such as sand added binder content which is present in solid form before being dissolved with the printing solution 2-18, preferably 3-10 wt .-%.
- the proportion of the latent curing agent in relation to the binder present in solid form is 5-90% by weight.
- the material further comprises refractory materials and / or fillers
- the properties of the created model, such as the casting core can be optimized.
- Such refractory materials and / or fillers are also used, for example, as molding compounds, e.g. Graphite, alumina, zirconium silicate to increase the casting quality.
- Other additives to the sand may include water-soluble binder phosphates or carbohydrates, such as e.g. To be dextrin.
- the material comprises a mixture of spray-dried alkali silicate binder, sand, amorphous silica in a weight ratio of 1.5-15: 80-98: 0.2-8.
- the solution for activating the selective cure comprises a layered silicate, preferably 5-15 mass%.
- the solution for activating the selective cure is applied with an ink jet printhead, preferably with piezo technology.
- heat is supplied. This can be done for example by convection and / or thermal radiation.
- the solid bodies produced in this way preferably have a three-point bending strength of approximately greater than or equal to 200 N / cm 2 .
- a material system for use in a three-dimensional printing process is provided as follows.
- quartz sand of the type GS 14 RP with a mean grain diameter of 0.13 mm from the company Grube Strobel with 6 wt .-% water glass powder (for example Molarer module 2.10, Portil A from Cognis), 2 % By weight of synthetic silicon dioxide from the electric arc furnace (Microsilica 971 U from Eikern) as latent hardener and 2% by weight of clay earth cement (CA 14 S from Almatis) as hydraulic binder, so that the mixture is completely homogeneous.
- synthetic silicon dioxide from the electric arc furnace Microsilica 971 U from Eikern
- clay earth cement CA 14 S from Almatis
- This dry molding material mixture is applied in layers applied to a construction area. Following this, water is selectively printed with a print head, which has usually died for three-dimensional printing processes, by means of a known inkjet printing technology, so that the waterglass binder is activated. At the printed areas, the binder dissolves and sticks to the surrounding particles.
- the selective printing is preferably done according to computer data to produce a desired model.
- the or parts of the particulate material can be heated before the selective printing.
- the drying process for curing can be done faster.
- the finished components can be sprayed with a waterglass solution or a waterglass-water mixture and then dried in the oven.
- the mixed unprinted sand can be returned to the process. This must be removed from the models or moldings and sieved to avoid coarser contamination.
- the recycled molding material is mixed with fresh material before reuse to achieve consistent quality.
- the addition of new sand should preferably be between 10 and 50 wt .-%.
- the admixture is between 3% and 6%.
- the achievable strengths are then when using quartz sand type GS14 (MK: 0.13 mm / AFS number 97) at about 280 N / cm 2 .
- quartz sand type GS14 MK: 0.13 mm / AFS number 97
- the amount to be dosed is between 5% and 10%.
- an accelerated solidification reaction can be provided.
- the solidification time should preferably not be shorter than 10 minutes.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mold Materials And Core Materials (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014516196A JP5946526B2 (ja) | 2011-06-22 | 2012-06-20 | 模型を積層造形する方法 |
MX2013014663A MX358187B (es) | 2011-06-22 | 2012-06-20 | Metodo para la construccion de modelos en capas superpuestas. |
US14/126,933 US9358701B2 (en) | 2011-06-22 | 2012-06-20 | Method for the layerwise construction of models |
BR112013032506-2A BR112013032506B1 (pt) | 2011-06-22 | 2012-06-20 | processo para construção de modelos em camadas |
CN201280030829.5A CN103702958B (zh) | 2011-06-22 | 2012-06-20 | 用于逐层构造模型的方法 |
EP12745393.4A EP2723697B1 (de) | 2011-06-22 | 2012-06-20 | Verfahren zum schichtweisen aufbau von modellen |
ES12745393.4T ES2683954T3 (es) | 2011-06-22 | 2012-06-20 | Método para la construcción por capas de modelos |
KR1020137033868A KR102010334B1 (ko) | 2011-06-22 | 2012-06-20 | 모델의 적층 구조를 위한 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201110105688 DE102011105688A1 (de) | 2011-06-22 | 2011-06-22 | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011105688.6 | 2011-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012175072A1 true WO2012175072A1 (de) | 2012-12-27 |
Family
ID=46639938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2012/000646 WO2012175072A1 (de) | 2011-06-22 | 2012-06-20 | Verfahren zum schichtweisen aufbau von modellen |
Country Status (10)
Country | Link |
---|---|
US (1) | US9358701B2 (de) |
EP (1) | EP2723697B1 (de) |
JP (1) | JP5946526B2 (de) |
KR (1) | KR102010334B1 (de) |
CN (1) | CN103702958B (de) |
BR (1) | BR112013032506B1 (de) |
DE (1) | DE102011105688A1 (de) |
ES (1) | ES2683954T3 (de) |
MX (1) | MX358187B (de) |
WO (1) | WO2012175072A1 (de) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015149742A1 (de) | 2014-03-31 | 2015-10-08 | Voxeljet Ag | Verfahren und vorrichtung für den 3d-druck mit klimatisierter verfahrensführung |
CN105562676A (zh) * | 2015-12-23 | 2016-05-11 | 成都新柯力化工科技有限公司 | 一种用于3d打印的增强金属复合材料及其制备方法 |
WO2016091249A1 (de) | 2014-12-12 | 2016-06-16 | Ask Chemicals Gmbh | Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel und ein wasserglashaltiges bindemittel |
DE102015223239A1 (de) * | 2015-11-24 | 2017-05-24 | Sgl Carbon Se | Formgebungswerkzeug für schmelzflüssiges Metall oder Glas |
CN109748557A (zh) * | 2019-03-15 | 2019-05-14 | 武汉理工大学 | 一种复杂形状混凝土制品的3d打印方法 |
DE102018200607A1 (de) | 2018-01-15 | 2019-07-18 | Reinsicht Gmbh | Verfahren zur Erzeugung von für die Herstellung von Faserverbundkörpern oder Gussteilen aus Metall oder Kunststoff geeigneten Formen und Kernen, bei dem Verfahren einsetzbare Formgrundstoffe und Binder sowie gemäß dem Verfahren hergestellte Formen und Kerne |
WO2021094603A1 (de) | 2019-11-17 | 2021-05-20 | Fricke Und Mallah Microwave Technology Gmbh | Mikrowellen-sandformkasten |
DE102021116930A1 (de) | 2021-06-30 | 2023-01-05 | Ask Chemicals Gmbh | Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel |
DE102023107871A1 (de) | 2023-03-28 | 2024-10-02 | Ask Chemicals Gmbh | Verfahren zum schichtweisen aufbau von körpern durch 3-d druck mit einem wasserglashaltigen bindemittel und einem verarbeitungsadditiv |
Families Citing this family (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE381398T1 (de) | 2000-09-25 | 2008-01-15 | Voxeljet Technology Gmbh | Verfahren zum herstellen eines bauteils in ablagerungstechnik |
DE102006038858A1 (de) | 2006-08-20 | 2008-02-21 | Voxeljet Technology Gmbh | Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen |
US10226919B2 (en) | 2007-07-18 | 2019-03-12 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
DE102007050679A1 (de) * | 2007-10-21 | 2009-04-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen |
DE102007050953A1 (de) | 2007-10-23 | 2009-04-30 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE102010006939A1 (de) | 2010-02-04 | 2011-08-04 | Voxeljet Technology GmbH, 86167 | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010013732A1 (de) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010014969A1 (de) | 2010-04-14 | 2011-10-20 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010015451A1 (de) | 2010-04-17 | 2011-10-20 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte |
DE102010056346A1 (de) | 2010-12-29 | 2012-07-05 | Technische Universität München | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011007957A1 (de) | 2011-01-05 | 2012-07-05 | Voxeljet Technology Gmbh | Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper |
DE102011105688A1 (de) | 2011-06-22 | 2012-12-27 | Hüttenes-Albertus Chemische Werke GmbH | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011111498A1 (de) | 2011-08-31 | 2013-02-28 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE102012004213A1 (de) | 2012-03-06 | 2013-09-12 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle |
US9475118B2 (en) * | 2012-05-01 | 2016-10-25 | United Technologies Corporation | Metal powder casting |
DE102012010272A1 (de) | 2012-05-25 | 2013-11-28 | Voxeljet Technology Gmbh | Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen |
DE102012012363A1 (de) | 2012-06-22 | 2013-12-24 | Voxeljet Technology Gmbh | Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter |
DE102012020000A1 (de) | 2012-10-12 | 2014-04-17 | Voxeljet Ag | 3D-Mehrstufenverfahren |
DE102013004940A1 (de) | 2012-10-15 | 2014-04-17 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf |
DE102012022859A1 (de) | 2012-11-25 | 2014-05-28 | Voxeljet Ag | Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen |
DE102013003303A1 (de) | 2013-02-28 | 2014-08-28 | FluidSolids AG | Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung |
WO2015021168A1 (en) * | 2013-08-06 | 2015-02-12 | Wisys Technology Foundation, Inc. | 3-d printed casting shell and method of manufacture |
JP6576244B2 (ja) * | 2013-08-30 | 2019-09-18 | 旭有機材株式会社 | 積層鋳型の造型方法 |
DE102013018182A1 (de) | 2013-10-30 | 2015-04-30 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem |
DE102013018031A1 (de) | 2013-12-02 | 2015-06-03 | Voxeljet Ag | Wechselbehälter mit verfahrbarer Seitenwand |
DE102013020491A1 (de) * | 2013-12-11 | 2015-06-11 | Voxeljet Ag | 3D-Infiltrationsverfahren |
DE102013021091A1 (de) | 2013-12-18 | 2015-06-18 | Voxeljet Ag | 3D-Druckverfahren mit Schnelltrockenschritt |
EP2886307A1 (de) | 2013-12-20 | 2015-06-24 | Voxeljet AG | Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen |
DE102013021891A1 (de) | 2013-12-23 | 2015-06-25 | Voxeljet Ag | Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren |
DE102014007584A1 (de) | 2014-05-26 | 2015-11-26 | Voxeljet Ag | 3D-Umkehrdruckverfahren und Vorrichtung |
DE102014210201A1 (de) | 2014-05-28 | 2015-12-03 | Schaeffler Technologies AG & Co. KG | Lageranordnung und zugehöriges Herstellungsverfahren |
EP3174651B1 (de) | 2014-08-02 | 2020-06-17 | voxeljet AG | Verfahren und gussform, insbesondere zur verwendung in kaltgussverfahren |
DE102015006533A1 (de) | 2014-12-22 | 2016-06-23 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik |
JP6027264B1 (ja) * | 2015-03-09 | 2016-11-16 | 技術研究組合次世代3D積層造形技術総合開発機構 | 粒状材料、3次元積層造形鋳型の製造装置および3次元積層造形鋳型の製造方法 |
DE102015003372A1 (de) | 2015-03-17 | 2016-09-22 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater |
JP6386951B2 (ja) * | 2015-03-18 | 2018-09-05 | 株式会社東芝 | 三次元造形方法及び積層造形用材料 |
DE102015006363A1 (de) | 2015-05-20 | 2016-12-15 | Voxeljet Ag | Phenolharzverfahren |
CN104959613B (zh) * | 2015-07-10 | 2017-02-22 | 北京科技大学 | 一种3d打印用料浆喷雾固化定型方法 |
DE102015011503A1 (de) | 2015-09-09 | 2017-03-09 | Voxeljet Ag | Verfahren zum Auftragen von Fluiden |
DE102015011790A1 (de) | 2015-09-16 | 2017-03-16 | Voxeljet Ag | Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile |
JP6563755B2 (ja) * | 2015-09-24 | 2019-08-21 | 太平洋セメント株式会社 | セメント質硬化体の強度増進方法 |
ITUB20155482A1 (it) * | 2015-11-11 | 2017-05-11 | Desamanera S R L | Legante e procedimento per la produzione additiva di manufatti |
DE102015015353A1 (de) | 2015-12-01 | 2017-06-01 | Voxeljet Ag | Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor |
CN105599103B (zh) * | 2015-12-24 | 2017-10-31 | 广州市得保三维科技有限公司 | 一种无机材料的3d打印成型方法 |
CN105753404A (zh) * | 2016-02-03 | 2016-07-13 | 临沂大学 | 一种用于建筑3d打印的水泥基材料 |
US20180065172A1 (en) | 2016-02-15 | 2018-03-08 | Technology Research Association For Future Additive Manufacturing | Granular material, three-dimensional laminated and shaped mold, three-dimensional laminated and shaped mold manufacturing method, and three-dimensional laminated and shaped mold manufacturing apparatus |
JP6624636B2 (ja) * | 2016-02-15 | 2019-12-25 | 株式会社Lixil | 窯業原料、焼成体の製造方法、及び焼成体 |
CN108367492B (zh) * | 2016-02-25 | 2020-03-06 | 惠普发展公司,有限责任合伙企业 | 使用烧结助剂/固定剂流体和液体功能材料的三维(3d)打印 |
ITUB20161124A1 (it) * | 2016-02-26 | 2017-08-26 | Desamanera S R L | Legante a base magnesiaca e procedimento per la produzione additiva di manufatti con tale legante |
DE102016002777A1 (de) | 2016-03-09 | 2017-09-14 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen |
JP2017177212A (ja) * | 2016-03-29 | 2017-10-05 | 太平洋セメント株式会社 | 付加製造装置用セメント組成物及びその造形製品 |
DE102016013610A1 (de) | 2016-11-15 | 2018-05-17 | Voxeljet Ag | Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken |
CN106671245B (zh) * | 2017-01-20 | 2019-04-05 | 中国建筑材料科学研究总院 | 一种3d打印机及其打印方法 |
CN106810200A (zh) * | 2017-02-20 | 2017-06-09 | 醴陵市陶瓷3D打印研究所 | 双组份陶瓷3d打印挤出成型材料及其使用方法 |
JP6924433B2 (ja) * | 2017-02-28 | 2021-08-25 | 住友化学株式会社 | 積層造形用粒子、成形体、及び、成形体の製造方法 |
JP6901720B2 (ja) * | 2017-02-28 | 2021-07-14 | 住友化学株式会社 | 積層造形用粒子、成形体、及び、成形体の製造方法 |
DE102017203583A1 (de) | 2017-03-06 | 2018-09-06 | Siemens Aktiengesellschaft | Verbund aus Kühlkörper und elektrischer und/oder elektronischer Komponente |
JP2020520808A (ja) * | 2017-05-23 | 2020-07-16 | エクスワン ゲーエムベーハー | 粒状材料およびバインダからなる成形部品の熱間強度を高めるための後処理プロセス、3d印刷装置、ならびに成形部品 |
CN107127306B (zh) * | 2017-06-07 | 2024-01-19 | 第一拖拉机股份有限公司 | 一种3d打印精密铸造模壳的装置及使用方法 |
US11230503B2 (en) | 2017-06-27 | 2022-01-25 | General Electric Company | Resin for production of porous ceramic stereolithography and methods of its use |
DE102017006860A1 (de) | 2017-07-21 | 2019-01-24 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler |
CN109822040B (zh) * | 2017-11-23 | 2020-10-16 | 宁夏共享化工有限公司 | 一种双组份水硬化温芯盒粘结剂 |
CN108340570B (zh) * | 2018-01-05 | 2020-02-14 | 西北工业大学 | 采用蒸发堆积成型技术的3d盐溶液打印装置及打印方法 |
EP3760602A4 (de) * | 2018-02-28 | 2021-11-17 | Sumitomo Chemical Company Limited | Partikelzusammensetzung |
WO2019194823A1 (en) | 2018-04-06 | 2019-10-10 | Hewlett-Packard Development Company, L.P. | Three-dimensional (3d) object printing based on a build material moisture content level |
DE102018205839A1 (de) * | 2018-04-17 | 2019-10-17 | Rampf Holding Gmbh & Co. Kg | Zusammensetzungen zur Formstabilisierung von hydraulischen Bindemitteln und daraus hergestellte Formkörper |
DE102018111014B4 (de) | 2018-05-08 | 2023-03-30 | Ernst-Abbe-Hochschule Jena | Verfahren zum dreidimensionalen additiven Aufbau eines Formkörpers aus Wasserglas |
FR3083472B1 (fr) | 2018-07-07 | 2021-12-24 | Nantes Ecole Centrale | Procédé et dispositif de fabrication additive par agglomération d’un matériau granulaire |
DE102018006473A1 (de) | 2018-08-16 | 2020-02-20 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik mittels Verschlussvorrichtung |
DE102019000796A1 (de) | 2019-02-05 | 2020-08-06 | Voxeljet Ag | Wechselbare Prozesseinheit |
EP3747634B1 (de) * | 2019-06-07 | 2022-05-04 | ExOne GmbH | Verfahren zum herstellen mindestens eines bauteils im 3d-druck und 3d-drucker |
DE102019116406A1 (de) * | 2019-06-17 | 2020-12-17 | HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung | Additivmischung für Formstoffmischungen zur Herstellung wasserglasgebundener Gießereiformen und Gießereikerne |
DE102019005605A1 (de) * | 2019-08-09 | 2021-02-11 | Ing3D Ug | Verfahren zur Herstellung eines additiv gefertigten Produkts aus einem mineralischen Ausgangsmaterial mittels direkter Laserversinterung sowie ein nach diesem Verfahren hergestelltes Leichtbauteil |
DE102019007595A1 (de) | 2019-11-01 | 2021-05-06 | Voxeljet Ag | 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat |
DE102020110289A1 (de) | 2020-04-15 | 2021-10-21 | Peak Deutschland Gmbh | Verfahren unter Verwendung eines anorganischen Binders für die Herstellung von ausgehärteten dreidimensional geschichteten Formkörpern für Gießereikerne und -formen |
DE102020119013A1 (de) | 2020-07-17 | 2022-01-20 | HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechende Form, Kern, Speiserelement oder Formstoffmischung sowie Vorrichtungen und Verwendungen |
WO2022164867A1 (en) * | 2021-01-29 | 2022-08-04 | Essentium, Inc. | Build substrate for directed energy deposition additive manufacturing |
DE102021002770A1 (de) | 2021-05-28 | 2022-12-01 | Voxeljet Ag | 3d-druckverfahren und damit hergestelltes formteil unter verwendung von wasserglasbinder und ester |
CN114985672B (zh) * | 2022-05-23 | 2024-04-26 | 广东中立鼎智能科技有限公司 | 一种适用于3dp打印工艺的无机盐粘结剂的制备方法及无机盐粘结剂 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4030939A (en) * | 1975-07-30 | 1977-06-21 | Southwest Research Institute | Cement composition |
EP0431924B1 (de) | 1989-12-08 | 1996-01-31 | Massachusetts Institute Of Technology | Dreidimensionale Drucktechniken |
WO1998009798A1 (en) * | 1996-09-04 | 1998-03-12 | Z Corporation | Three dimensional printing materials system and method of use |
US6259962B1 (en) | 1999-03-01 | 2001-07-10 | Objet Geometries Ltd. | Apparatus and method for three dimensional model printing |
WO2001068375A2 (en) | 2000-03-13 | 2001-09-20 | Objet Geometries Ltd. | Compositions and methods for use in three dimensional model printing |
US20040138336A1 (en) * | 1996-09-04 | 2004-07-15 | Z Corporation | Three dimensional printing material system and method |
EP1510310A2 (de) | 2003-08-27 | 2005-03-02 | Hewlett-Packard Development Company, L.P. | Inorganische Phosphatzementzusammensetzungen für ein "Solid Free Form" Verfahren |
DE102004014806B4 (de) | 2004-03-24 | 2006-09-14 | Daimlerchrysler Ag | Rapid-Technologie-Bauteil |
EP1721875A2 (de) * | 2005-05-13 | 2006-11-15 | Hewlett-Packard Development Company, L.P. | Verwendung eines Salzes einer Polysäure für die Abbindeverzögerung eines Zementschlammes |
US20060254467A1 (en) * | 2005-05-13 | 2006-11-16 | Isaac Farr | Method for making spray-dried cement particles |
EP2163328A1 (de) | 2008-09-05 | 2010-03-17 | Minelco GmbH | Mit Wasserglas beschichteter und/oder vermischter Kern- oder Formsand mit einem Wassergehalt im Bereich von >= etwa 0,25 Gew.-% bis etwa 0,9 Gew.-% |
WO2011087564A1 (en) * | 2010-01-15 | 2011-07-21 | Massachusetts Institute Of Technology | Cement-based materials system for producing ferrous castings using a three dimensional printer |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4022704A (en) * | 1971-06-21 | 1977-05-10 | Stauffer Chemical Company | Production of spray dried, high bulk density hydrous sodium silicate mixtures |
JPS5864281A (ja) * | 1981-10-13 | 1983-04-16 | 入江 日出男 | キヤスタプル耐火物用原料組成物 |
ES2083690T3 (es) * | 1991-07-02 | 1996-04-16 | Crosfield Joseph & Sons | Silicatos. |
US5660621A (en) * | 1995-12-29 | 1997-08-26 | Massachusetts Institute Of Technology | Binder composition for use in three dimensional printing |
AU720255B2 (en) * | 1996-03-06 | 2000-05-25 | BioZ, L.L.C | Method for formation of a three-dimensional body |
US5697043A (en) * | 1996-05-23 | 1997-12-09 | Battelle Memorial Institute | Method of freeform fabrication by selective gelation of powder suspensions |
ATE381398T1 (de) | 2000-09-25 | 2008-01-15 | Voxeljet Technology Gmbh | Verfahren zum herstellen eines bauteils in ablagerungstechnik |
DE10047615A1 (de) | 2000-09-26 | 2002-04-25 | Generis Gmbh | Wechselbehälter |
DE10047614C2 (de) | 2000-09-26 | 2003-03-27 | Generis Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
GB0026902D0 (en) * | 2000-11-03 | 2000-12-20 | Foseco Int | Machinable body and casting process |
DE10117875C1 (de) | 2001-04-10 | 2003-01-30 | Generis Gmbh | Verfahren, Vorrichtung zum Auftragen von Fluiden sowie Verwendung einer solchen Vorrichtung |
GB0127252D0 (en) * | 2001-11-13 | 2002-01-02 | Vantico Ag | Production of composite articles composed of thin layers |
DE10216013B4 (de) | 2002-04-11 | 2006-12-28 | Generis Gmbh | Verfahren und Vorrichtung zum Auftragen von Fluiden |
DE10222167A1 (de) | 2002-05-20 | 2003-12-04 | Generis Gmbh | Vorrichtung zum Zuführen von Fluiden |
DE10224981B4 (de) | 2002-06-05 | 2004-08-19 | Generis Gmbh | Verfahren zum schichtweisen Aufbau von Modellen |
US7087109B2 (en) * | 2002-09-25 | 2006-08-08 | Z Corporation | Three dimensional printing material system and method |
JP2004330743A (ja) * | 2003-05-12 | 2004-11-25 | Fuji Photo Film Co Ltd | 三次元造形物の製造方法 |
US7807077B2 (en) | 2003-06-16 | 2010-10-05 | Voxeljet Technology Gmbh | Methods and systems for the manufacture of layered three-dimensional forms |
DE10327272A1 (de) | 2003-06-17 | 2005-03-03 | Generis Gmbh | Verfahren zum schichtweisen Aufbau von Modellen |
DE102004008168B4 (de) | 2004-02-19 | 2015-12-10 | Voxeljet Ag | Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung |
DE102004025374A1 (de) | 2004-05-24 | 2006-02-09 | Technische Universität Berlin | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Artikels |
US7389154B2 (en) * | 2004-09-29 | 2008-06-17 | Hewlett-Packard Development Company, L.P. | Fabricating a three-dimensional object |
DE102006030350A1 (de) | 2006-06-30 | 2008-01-03 | Voxeljet Technology Gmbh | Verfahren zum Aufbauen eines Schichtenkörpers |
DE102006038858A1 (de) | 2006-08-20 | 2008-02-21 | Voxeljet Technology Gmbh | Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen |
DE102007033434A1 (de) | 2007-07-18 | 2009-01-22 | Voxeljet Technology Gmbh | Verfahren zum Herstellen dreidimensionaler Bauteile |
DE102007049058A1 (de) | 2007-10-11 | 2009-04-16 | Voxeljet Technology Gmbh | Materialsystem und Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteils |
DE102007050679A1 (de) | 2007-10-21 | 2009-04-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen |
DE102007050953A1 (de) | 2007-10-23 | 2009-04-30 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
JP4722988B2 (ja) * | 2008-11-10 | 2011-07-13 | 有限会社小松鋳型製作所 | 造形用材料、機能剤、造形製品及び製品 |
DE102008058378A1 (de) | 2008-11-20 | 2010-05-27 | Voxeljet Technology Gmbh | Verfahren zum schichtweisen Aufbau von Kunststoffmodellen |
JP4654457B2 (ja) * | 2009-02-26 | 2011-03-23 | 富田製薬株式会社 | 造形用粉末及びこれを用いる造形物の製造方法 |
DE102009030113A1 (de) | 2009-06-22 | 2010-12-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Zuführen von Fluiden beim schichtweisen Bauen von Modellen |
DE102010006939A1 (de) | 2010-02-04 | 2011-08-04 | Voxeljet Technology GmbH, 86167 | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010013733A1 (de) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010013732A1 (de) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010014969A1 (de) | 2010-04-14 | 2011-10-20 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102010015451A1 (de) | 2010-04-17 | 2011-10-20 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte |
DE102010027071A1 (de) | 2010-07-13 | 2012-01-19 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtauftragstechnik |
DE102010056346A1 (de) | 2010-12-29 | 2012-07-05 | Technische Universität München | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011007957A1 (de) | 2011-01-05 | 2012-07-05 | Voxeljet Technology Gmbh | Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper |
US9757801B2 (en) | 2011-06-01 | 2017-09-12 | Bam Bundesanstalt Für Material Forschung Und Prüfung | Method for producing a moulded body and device |
DE102011105688A1 (de) | 2011-06-22 | 2012-12-27 | Hüttenes-Albertus Chemische Werke GmbH | Verfahren zum schichtweisen Aufbau von Modellen |
DE102011111498A1 (de) | 2011-08-31 | 2013-02-28 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE102012004213A1 (de) | 2012-03-06 | 2013-09-12 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102012010272A1 (de) | 2012-05-25 | 2013-11-28 | Voxeljet Technology Gmbh | Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen |
DE102012012363A1 (de) | 2012-06-22 | 2013-12-24 | Voxeljet Technology Gmbh | Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter |
DE102012020000A1 (de) | 2012-10-12 | 2014-04-17 | Voxeljet Ag | 3D-Mehrstufenverfahren |
DE102013004940A1 (de) | 2012-10-15 | 2014-04-17 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf |
DE102012022859A1 (de) | 2012-11-25 | 2014-05-28 | Voxeljet Ag | Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen |
-
2011
- 2011-06-22 DE DE201110105688 patent/DE102011105688A1/de not_active Ceased
-
2012
- 2012-06-20 US US14/126,933 patent/US9358701B2/en active Active
- 2012-06-20 WO PCT/DE2012/000646 patent/WO2012175072A1/de active Application Filing
- 2012-06-20 MX MX2013014663A patent/MX358187B/es active IP Right Grant
- 2012-06-20 CN CN201280030829.5A patent/CN103702958B/zh active Active
- 2012-06-20 BR BR112013032506-2A patent/BR112013032506B1/pt not_active IP Right Cessation
- 2012-06-20 KR KR1020137033868A patent/KR102010334B1/ko active IP Right Grant
- 2012-06-20 ES ES12745393.4T patent/ES2683954T3/es active Active
- 2012-06-20 JP JP2014516196A patent/JP5946526B2/ja not_active Expired - Fee Related
- 2012-06-20 EP EP12745393.4A patent/EP2723697B1/de active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4030939A (en) * | 1975-07-30 | 1977-06-21 | Southwest Research Institute | Cement composition |
EP0431924B1 (de) | 1989-12-08 | 1996-01-31 | Massachusetts Institute Of Technology | Dreidimensionale Drucktechniken |
WO1998009798A1 (en) * | 1996-09-04 | 1998-03-12 | Z Corporation | Three dimensional printing materials system and method of use |
US20040138336A1 (en) * | 1996-09-04 | 2004-07-15 | Z Corporation | Three dimensional printing material system and method |
US6259962B1 (en) | 1999-03-01 | 2001-07-10 | Objet Geometries Ltd. | Apparatus and method for three dimensional model printing |
WO2001068375A2 (en) | 2000-03-13 | 2001-09-20 | Objet Geometries Ltd. | Compositions and methods for use in three dimensional model printing |
EP1510310A2 (de) | 2003-08-27 | 2005-03-02 | Hewlett-Packard Development Company, L.P. | Inorganische Phosphatzementzusammensetzungen für ein "Solid Free Form" Verfahren |
DE102004014806B4 (de) | 2004-03-24 | 2006-09-14 | Daimlerchrysler Ag | Rapid-Technologie-Bauteil |
EP1721875A2 (de) * | 2005-05-13 | 2006-11-15 | Hewlett-Packard Development Company, L.P. | Verwendung eines Salzes einer Polysäure für die Abbindeverzögerung eines Zementschlammes |
US20060254467A1 (en) * | 2005-05-13 | 2006-11-16 | Isaac Farr | Method for making spray-dried cement particles |
EP2163328A1 (de) | 2008-09-05 | 2010-03-17 | Minelco GmbH | Mit Wasserglas beschichteter und/oder vermischter Kern- oder Formsand mit einem Wassergehalt im Bereich von >= etwa 0,25 Gew.-% bis etwa 0,9 Gew.-% |
WO2011087564A1 (en) * | 2010-01-15 | 2011-07-21 | Massachusetts Institute Of Technology | Cement-based materials system for producing ferrous castings using a three dimensional printer |
Non-Patent Citations (1)
Title |
---|
"Ullmanns Enzyklopädie der technischen Chemie", vol. 21, 1982, pages: 412 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11097471B2 (en) | 2014-03-31 | 2021-08-24 | Voxeljet Ag | Method and device for 3D printing using temperature-controlled processing |
DE102014004692A1 (de) | 2014-03-31 | 2015-10-15 | Voxeljet Ag | Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung |
WO2015149742A1 (de) | 2014-03-31 | 2015-10-08 | Voxeljet Ag | Verfahren und vorrichtung für den 3d-druck mit klimatisierter verfahrensführung |
US11759847B2 (en) | 2014-12-12 | 2023-09-19 | Ask Chemicals Gmbh | Method for constructing molds and cores layer by layer by means of a binder containing water glass, and a binder containing water glass |
WO2016091249A1 (de) | 2014-12-12 | 2016-06-16 | Ask Chemicals Gmbh | Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel und ein wasserglashaltiges bindemittel |
DE102014118577A1 (de) | 2014-12-12 | 2016-06-16 | Ask Chemicals Gmbh | Verfahren zum schichtweisen Aufbau von Formen und Kernen mit einem wasserglashaltigen Bindemittel und ein wasserglashaltiges Bindemittel |
EP4234132A2 (de) | 2014-12-12 | 2023-08-30 | ASK Chemicals GmbH | Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel und ein wasserglashaltiges bindemittel |
DE102015223239A1 (de) * | 2015-11-24 | 2017-05-24 | Sgl Carbon Se | Formgebungswerkzeug für schmelzflüssiges Metall oder Glas |
US11541453B2 (en) | 2015-11-24 | 2023-01-03 | Sgl Carbon Se | Molding tool for molten metal or glass |
CN105562676A (zh) * | 2015-12-23 | 2016-05-11 | 成都新柯力化工科技有限公司 | 一种用于3d打印的增强金属复合材料及其制备方法 |
WO2019137871A2 (de) | 2018-01-15 | 2019-07-18 | Reinsicht Gmbh | VERFAHREN ZUR ERZEUGUNG VON FÜR DIE HERSTELLUNG VON FASERVERBUNDKÖRPERN ODER GUSSTEILEN AUS METALL ODER KUNSTSTOFF GEEIGNETEN FORMEN UND KERNEN, BEI DEM VERFAHREN EINSETZBARE FORMGRUNDSTOFFE UND BINDER SOWIE GEMÄß DEM VERFAHREN HERGESTELLTE FORMEN UND KERNE |
DE102018200607A1 (de) | 2018-01-15 | 2019-07-18 | Reinsicht Gmbh | Verfahren zur Erzeugung von für die Herstellung von Faserverbundkörpern oder Gussteilen aus Metall oder Kunststoff geeigneten Formen und Kernen, bei dem Verfahren einsetzbare Formgrundstoffe und Binder sowie gemäß dem Verfahren hergestellte Formen und Kerne |
US12064807B2 (en) | 2018-01-15 | 2024-08-20 | Reinsicht Gmbh | Method of producing molds and cores suitable for producing fiber composite bodies or cast parts in metal or plastic, mold base material and binder used in the method and molds and cores produced according to the method |
CN109748557B (zh) * | 2019-03-15 | 2021-07-06 | 武汉理工大学 | 一种复杂形状混凝土制品的3d打印方法 |
CN109748557A (zh) * | 2019-03-15 | 2019-05-14 | 武汉理工大学 | 一种复杂形状混凝土制品的3d打印方法 |
WO2021094603A1 (de) | 2019-11-17 | 2021-05-20 | Fricke Und Mallah Microwave Technology Gmbh | Mikrowellen-sandformkasten |
DE102021116930A1 (de) | 2021-06-30 | 2023-01-05 | Ask Chemicals Gmbh | Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel |
WO2023274450A1 (de) | 2021-06-30 | 2023-01-05 | Ask Chemicals Gmbh | Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel |
DE102023107871A1 (de) | 2023-03-28 | 2024-10-02 | Ask Chemicals Gmbh | Verfahren zum schichtweisen aufbau von körpern durch 3-d druck mit einem wasserglashaltigen bindemittel und einem verarbeitungsadditiv |
WO2024199584A1 (de) | 2023-03-28 | 2024-10-03 | Ask Chemicals Gmbh | Verfahren zum schichtweisen aufbau von körpern durch 3d-druck mit einem wasserglashaltigen bindemittel und einem verarbeitungsadditiv |
Also Published As
Publication number | Publication date |
---|---|
BR112013032506A2 (pt) | 2017-02-21 |
KR20140078584A (ko) | 2014-06-25 |
CN103702958A (zh) | 2014-04-02 |
MX358187B (es) | 2018-08-08 |
JP2014516845A (ja) | 2014-07-17 |
JP5946526B2 (ja) | 2016-07-06 |
KR102010334B1 (ko) | 2019-10-21 |
DE102011105688A1 (de) | 2012-12-27 |
BR112013032506B1 (pt) | 2020-11-03 |
ES2683954T3 (es) | 2018-09-28 |
CN103702958B (zh) | 2016-05-04 |
EP2723697B1 (de) | 2018-05-16 |
EP2723697A1 (de) | 2014-04-30 |
US9358701B2 (en) | 2016-06-07 |
MX2013014663A (es) | 2014-12-05 |
US20140212677A1 (en) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2723697B1 (de) | Verfahren zum schichtweisen aufbau von modellen | |
EP3230046B1 (de) | Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel und ein wasserglashaltiges bindemittel | |
EP2097192B1 (de) | Phosphorhaltige formstoffmischung zur herstellung von giessformen für die metallverarbeitung | |
EP3010669B1 (de) | Verfahren zur herstellung von lithiumhaltigen formstoffmischungen auf der basis eines anorganischen bindemittels zur herstellung von formen und kernen für den metallguss | |
EP3137246B1 (de) | Verfahren zum schichtweisen aufbau von körpern umfassend feuerfesten formgrundstoff und resole | |
WO2004112988A2 (de) | Verfahren zum schichtweisen aufbau von modellen | |
WO2019137871A2 (de) | VERFAHREN ZUR ERZEUGUNG VON FÜR DIE HERSTELLUNG VON FASERVERBUNDKÖRPERN ODER GUSSTEILEN AUS METALL ODER KUNSTSTOFF GEEIGNETEN FORMEN UND KERNEN, BEI DEM VERFAHREN EINSETZBARE FORMGRUNDSTOFFE UND BINDER SOWIE GEMÄß DEM VERFAHREN HERGESTELLTE FORMEN UND KERNE | |
DE102012103705A1 (de) | Verfahren zur Herstellung von Formen und Kernen für den Metallguss sowie nach diesem Verfahren hergestellte Formen und Kerne | |
WO2014059968A2 (de) | Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss | |
WO2014059969A2 (de) | Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss | |
WO2011054920A2 (de) | Kerne auf der basis von salz, verfahren zu ihrer herstellung und deren verwendung | |
WO2013152851A2 (de) | Kerne auf der basis von salz, verfahren zu ihrer herstellung und deren verwendung | |
EP1850986A2 (de) | Verwendung von schwerl\slichen salzen in kombination mit wasserglas im rahmen der herstellung von formen und kernen für die giessereitechmik | |
EP4135918A1 (de) | VERFAHREN UNTER VERWENDUNG EINES ANORGANISCHEN BINDERS FÜR DIE HERSTELLUNG VON AUSGEHÄRTETEN DREIDIMENSIONAL GESCHICHTETEN FORMKÖRPERN FÜR GIEßEREIKERNE UND -FORMEN | |
EP3638435A1 (de) | NACHBEHANDLUNGSVERFAHREN ZUR ERHÖHUNG DER HEIßFESTIGKEIT EINES AUS PARTIKELMATERIAL UND BINDEMITTEL GEFERTIGTEN FORMTEILS, 3D-DRUCK-ANORDNUNG UND FORMTEIL | |
WO2022247977A1 (de) | 3d-druckverfahren und damit hergestelltes formteil unter verwendung von wasserglasbinder und ester | |
DE102023107871A1 (de) | Verfahren zum schichtweisen aufbau von körpern durch 3-d druck mit einem wasserglashaltigen bindemittel und einem verarbeitungsadditiv |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280030829.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12745393 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/014663 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20137033868 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014516196 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013032506 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012745393 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14126933 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 112013032506 Country of ref document: BR Kind code of ref document: A2 Effective date: 20131217 |