WO2012173113A1 - 波長選択偏波制御器 - Google Patents

波長選択偏波制御器 Download PDF

Info

Publication number
WO2012173113A1
WO2012173113A1 PCT/JP2012/065007 JP2012065007W WO2012173113A1 WO 2012173113 A1 WO2012173113 A1 WO 2012173113A1 JP 2012065007 W JP2012065007 W JP 2012065007W WO 2012173113 A1 WO2012173113 A1 WO 2012173113A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
polarization
polarization controller
optical
light
Prior art date
Application number
PCT/JP2012/065007
Other languages
English (en)
French (fr)
Inventor
尚也 和田
成哲 朴
浩行 山崎
裕作 鳥取
Original Assignee
独立行政法人情報通信研究機構
株式会社オプトクエスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人情報通信研究機構, 株式会社オプトクエスト filed Critical 独立行政法人情報通信研究機構
Priority to CA2848178A priority Critical patent/CA2848178C/en
Priority to CN201280029597.1A priority patent/CN103608717B/zh
Priority to US14/126,161 priority patent/US8982442B2/en
Priority to EP12801085.7A priority patent/EP2722706B1/en
Publication of WO2012173113A1 publication Critical patent/WO2012173113A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/58Multi-wavelength, e.g. operation of the device at a plurality of wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/58Multi-wavelength, e.g. operation of the device at a plurality of wavelengths
    • G02F2203/585Add/drop devices

Definitions

  • the present invention relates to a wavelength selective polarization controller capable of performing polarization control for each wavelength component without performing laser separation on an optical wavelength multiplexed signal multiplexed in a random polarization state.
  • VBS band variable spectrum shaper
  • a multi-input multi-output optical polarization controller is known as a device for performing polarization adjustment for each wavelength component and outputting optical signals of a large number of wavelengths whose polarization planes are adjusted.
  • Patent Document 2 discloses a multi-input multi-output optical polarization controller. This multi-input multi-output optical polarization controller separates optical wavelength-multiplexed signals according to the wavelength, adjusts the polarization plane of each wavelength component, and then combines them to provide each of the signals included in the optical wavelength-multiplexed signal. The polarization plane of the wavelength component can be controlled.
  • the VBS described above cannot control the polarization of the optical wavelength multiplexed signal.
  • the multi-input multi-output optical polarization controller described above shifts the timing of each component when a plurality of wavelength components are combined.
  • an object of the present invention is to provide a wavelength selective polarization controller that can adjust the polarization plane of an optical wavelength-multiplexed signal for each wavelength component and that does not cause a temporal shift in each component.
  • the wavelength selective polarization controller of the present invention can perform polarization control for each wavelength component of an optical wavelength multiplexed signal without laser separation.
  • the wavelength selective polarization controller of the present invention adjusts the polarization of each component that is output from the telecentric optical system and arranged for each wavelength within one light beam, and a diffraction grating and a condensing lens constituting the telecentric optical system.
  • an optical wavelength-multiplexed signal is converted into light beams arranged for each wavelength in one beam, and polarization adjustment is performed for each component by a polarization controller.
  • the first aspect of the present invention relates to a wavelength selective polarization controller.
  • This wavelength selective polarization controller includes a telecentric optical system 11 on which an optical wavelength multiplexed signal is incident, a polarization controller 12 that adjusts a polarization plane of light output from the telecentric optical system, and an output from the polarization controller. And an output optical system 13 for outputting to the optical path.
  • the telecentric optical system 11 includes a first diffraction grating 15 on which an optical wavelength multiplexed signal is incident and a first condenser lens 16 that condenses the optical wavelength multiplexed signal that has passed through the diffraction grating 15.
  • the telecentric optical system 11 transmits the optical wavelength multiplexed signal to the polarization controller 12 in a state where the optical wavelength multiplexed signals are arranged for each wavelength within one light beam.
  • the polarization controller 12 includes a plurality of phase modulators 21, 22 and 23.
  • Examples of the plurality of phase modulators 21, 22, and 23 include a first phase modulator of 0 degree, a second phase modulator of 45 degrees, and a third phase modulator of 0 degree in this order. It is.
  • the polarization controller 12 controls the polarization plane for each wavelength component of the optical wavelength multiplexed signal output from the telecentric optical system 11.
  • phase modulators 21, 22, and 23 is a 90-degree first phase modulator, a 135-degree second phase modulator, and a 90-degree third phase modulator.
  • a 90 degree phase modulator may be used instead of the 0 degree phase modulator.
  • a 135 degree phase modulator may be used instead of the 45 degree phase modulator.
  • the output optical system 13 is, for example, one having a symmetric configuration with the telecentric optical system 11 or the telecentric optical system 11 itself when the light beam is reflected back.
  • the telecentric optical system 11 includes a second condenser lens 31 into which output light from the polarization controller 12 is incident, and a second diffraction grating 32 into which output light that has passed through the second condenser lens 31 is incident. .
  • a wavelength selective polarization controller that can adjust the polarization plane of an optical wavelength multiplexed signal for each wavelength component and that does not cause a time shift in each component.
  • FIG. 1 is a block diagram for explaining a wavelength selective polarization controller of the present invention.
  • FIG. 2 is a conceptual diagram of polarization adjustment by phase modulators of 0 degrees, 45 degrees, and 0 degrees.
  • FIG. 3 is a diagram illustrating an example of a liquid crystal cell constituting the polarization controller.
  • FIG. 4 is a conceptual diagram illustrating the wavelength selective polarization controller according to the first embodiment.
  • FIG. 5 is a conceptual diagram illustrating a wavelength selective polarization controller according to the second embodiment.
  • FIG. 6 is a diagram showing a wavelength selective polarization controller using the polarization independent wavelength dispersion element of the third embodiment of the present invention.
  • FIG. 6A is a diagram seen from the direction in which the wavelength separation of the device can be understood.
  • FIG. 6A is a diagram seen from the direction in which the wavelength separation of the device can be understood.
  • FIG. 6B is a diagram viewed from a direction orthogonal to FIG. 6A.
  • FIG. 7 is a diagram showing a wavelength selective polarization controller using the polarization dependent wavelength dispersion element according to the fourth embodiment of the present invention.
  • FIG. 7A is a diagram seen from the direction in which the wavelength separation of the device can be understood.
  • FIG. 7B is a diagram viewed from a direction orthogonal to FIG. 7A.
  • FIG. 1 is a block diagram for explaining a wavelength selective polarization controller of the present invention.
  • the wavelength selective polarization controller includes a telecentric optical system 11 on which an optical wavelength multiplexed signal is incident, a polarization controller 12 that adjusts a polarization plane of light output from the telecentric optical system, And an output optical system 13 for outputting the output from the polarization controller to the optical path.
  • the wavelength selective polarization controller is a device that can adjust the polarization plane for each wavelength component included in the optical wavelength multiplexed signal.
  • the telecentric optical system 11 includes a first diffraction grating 15 on which an optical wavelength multiplexed signal is incident and a first condenser lens 16 that condenses the optical wavelength multiplexed signal that has passed through the diffraction grating 15.
  • a telecentric optical system is an optical system in which the optical axis and the main optical axis can be regarded as parallel.
  • the telecentric optical system 11 may further include an optical element including a polarization plane adjuster, a polarizing plate, and a reflecting plate.
  • the diffraction grating may be an arrayed waveguide diffraction grating (AWG).
  • An example of an optical wavelength multiplexed signal is output from a single mode fiber or polarization maintaining fiber and input to a telecentric optical system.
  • the telecentric optical system 11 transmits the optical wavelength multiplexed signal to the polarization controller 12 in a state where the optical wavelength multiplexed signals are arranged for each wavelength within one light beam. That is, the optical wavelength multiplexed signal is incident on the first diffraction grating 15. Then, the optical wavelength multiplexed signal is dispersed for each wavelength component in the first diffraction grating 15. The dispersed optical wavelength multiplexed signal is condensed by the first condenser lens 16. Then, it is possible to obtain an optical wavelength multiplexed signal arranged for each wavelength component within one light beam. Then, an optical wavelength multiplexed signal arranged for each wavelength component within one light beam is output to the polarization controller 12. That is, the first condenser lens 16 is installed at a position where an optical wavelength multiplexed signal arranged for each wavelength component can be output to the polarization controller 12 within one light beam.
  • the polarization controller 12 includes a plurality of phase modulators 21, 22 and 23.
  • the plurality of phase modulators 21, 22, and 23 may be of a waveguide type whose modulation amount can be controlled by an applied voltage or an applied electric field.
  • An example of such a waveguide type phase modulator is an LN phase modulator.
  • a plurality of phase modulators 21, 22, and 23 may be provided for each wavelength component of the optical wavelength multiplexed signal.
  • the polarization controller 12 exists for each wavelength component, the polarization plane can be adjusted for each wavelength component included in one light beam. Since the wavelength selective polarization controller of the present invention adjusts the polarization plane for one light beam, the polarization plane of each wavelength component can be adjusted without causing a timing shift for each wavelength.
  • Examples of the plurality of phase modulators 21, 22, and 23 include a first phase modulator of 0 degree, a second phase modulator of 45 degrees, and a third phase modulator of 0 degree in this order. It is.
  • the 0 degree phase modulator means a phase modulator in which the phase shift is variable in the range of 0 degree to 360 degrees in the x-axis direction and the y-axis direction.
  • the 45 degree phase modulator means a phase modulator that is variable in the range of 0 degree to 360 degrees in the 45 degree direction and the 135 degree direction with respect to the x-axis. Phase modulators are known, and known phase modulators can be used as appropriate.
  • FIG. 2 is a conceptual diagram of polarization adjustment by 0 degree, 45 degree and 0 degree phase modulators.
  • the alignment of the liquid crystal LC is arranged in the order of 0 degrees, 45 degrees, and 0 degrees.
  • the polarization plane of linearly polarized light can be controlled by using a 0 degree phase modulator and a 45 degree phase modulator. By returning the light beam to the fiber with the polarization plane adjusted in this way, a linearly multiplexed wavelength multiplexed signal can be obtained.
  • the wavelength selective polarization controller of the present invention can be in an arbitrary polarization state using a phase modulator after adjusting the plane of polarization to linearly polarized light.
  • the plurality of phase modulators 21, 22, and 23 include a 90-degree first phase modulator, a 135-degree second phase modulator, and a 90-degree third phase modulator. You may have in this order. That is, a 90 degree phase modulator may be used instead of the 0 degree phase modulator. Further, instead of the 45 degree phase modulator, a 135 degree phase modulator may be used.
  • the wavelength selective polarization controller of the present invention also functions as a polarization state monitor.
  • the wavelength selective polarization controller has a control device such as a computer.
  • the control device is connected to each phase modulator.
  • a control apparatus receives the information regarding a controlled variable from a phase modulator, and memorize
  • the control device receives an instruction of the control program stored in the main memory, reads information on the control amount from the storage unit, and performs a calculation for obtaining the polarization amount by the calculation unit.
  • the control device appropriately stores the calculation result in the storage unit and outputs it to an output unit such as a monitor.
  • the wavelength selective polarization controller of the present invention also functions as a polarization state monitor.
  • FIG. 3 is a diagram showing an example of a liquid crystal cell constituting the polarization controller.
  • the polarization controller 12 may have a plurality of liquid crystal cells formed in a line shape or a matrix shape.
  • the liquid crystal cell includes, for example, a liquid crystal substance and an electrode that exists so as to sandwich the liquid crystal substance. This electrode may be a transparent electrode or a metal electrode present anywhere around the cell.
  • This electrode may be a transparent electrode or a metal electrode present anywhere around the cell.
  • three liquid crystal elements having a lattice pitch of 10 ⁇ m to 40 ⁇ m are bonded, and the bonded ones may be mounted on a glass substrate.
  • the lattice pitch is a factor that determines the cell width.
  • a gap may be provided between adjacent liquid crystal cells.
  • the condensing diameter of the liquid crystal cell on the condensing lens side is smaller because the bandpass width obtained is smaller.
  • the condensing diameter is in the range of 20 ⁇ m to 80 ⁇ m, and preferably in the range of 30 ⁇ m to 70 ⁇ m.
  • the size of the liquid crystal cell is 10 ⁇ m or more and 40 ⁇ m or less, preferably 15 ⁇ m or more and 30 ⁇ m or less, and may be 15 ⁇ m or more and 25 ⁇ m or less. Since such a small cell is used, for example, a pass band with an interval of 10 GHz can be achieved.
  • the condensing diameter increases as the wavelength increases, the short wavelength side may receive one light by two liquid crystal cells, and the long wavelength side may receive one light by three liquid crystal cells.
  • the condensing diameter is the diameter of light formed by forming a plurality of lights condensed by the condensing lens on the liquid crystal cell.
  • the telecentric optical system 11 includes a second condenser lens 31 into which output light from the polarization controller 12 is incident, and a second diffraction grating 32 into which output light that has passed through the second condenser lens 31 is incident. .
  • the condensing lens 31 and the diffraction grating 32 can be the same as those described above.
  • the first condenser lens and the first diffraction grating can be used as the second condenser lens and the second diffraction grating, respectively.
  • the output optical system 13 is, for example, one having a symmetric configuration with the telecentric optical system 11 or the telecentric optical system 11 itself when light rays are reflected back. In this case, a known reflector or mirror may be present. Then, by returning the light beam after controlling the polarization plane to the optical path, it can be output as one wavelength multiplexed signal.
  • FIG. 4 is a conceptual diagram showing the wavelength selective polarization controller of the first embodiment.
  • IN indicates an incident wavelength multiplexed signal.
  • PMF indicates a polarization maintaining fiber.
  • AL indicates a condensing lens.
  • Pol indicates a polarization plane adjuster.
  • the grating indicates a diffraction grating.
  • the spatial modulator indicates a polarization controller.
  • QWP indicates a quarter wave plate.
  • MR indicates a mirror.
  • SMF indicates a single mode fiber, and OUT indicates an output signal.
  • the light output from the PMF is incident on a position offset from the center of the condenser lens. This light travels obliquely as collimated light.
  • the light traveling obliquely passes through the diffraction grating and enters the condenser lens.
  • the light collected by the condenser lens enters the polarization adjuster.
  • the light whose polarization plane is adjusted by the polarization adjuster enters the condenser lens.
  • the light emitted from the condenser lens passes through a quarter-wave plate and a mirror as collimated light, and the plane of polarization rotates 45 degrees. Thereafter, the light whose polarization plane is rotated again enters the polarization adjuster, and is output from the SMF through a symmetric optical path.
  • FIG. 5 is a conceptual diagram showing the wavelength selective polarization controller of the second embodiment. Even in the embodiment as shown in FIG. 5, the same wavelength selective polarization controller as in the first embodiment can be provided.
  • FIG. 6 is a diagram showing a wavelength selective polarization controller using the polarization independent wavelength dispersion element of the third embodiment of the present invention.
  • 6A is a view seen from the direction in which the wavelength separation of the apparatus can be understood
  • FIG. 6B is a view seen from the direction orthogonal to FIG. 6A.
  • 611 is an optical input fiber
  • 612 is an optical output fiber
  • 621 is a collimating lens
  • 622 is a condensing lens
  • 63 is a wavelength dispersion element
  • 641 and 644 are liquid crystal cells with an orientation axis of 0 °
  • 642 and 643 are orientation axes 45.
  • ° Liquid crystal cell 65 is a beam splitter, 66 is a total reflection mirror, 67 is a polarization separation element, 681 and 682 are light receiving elements, 691 is an A / D converter, and 692 is an arithmetic processing circuit. Although not shown in the figure, it is composed of a memory function for storing data and a computer for determining and controlling the operation of the liquid crystal cell based on the data of the arithmetic processing circuit. The operation of this embodiment will be described below.
  • the optical wavelength-multiplexed signal light input from the fiber 611 is collimated by the lens 621 and input to the wavelength dispersion element 63, thereby changing the angle according to each wavelength and input to the lens 622.
  • the fiber 611, the fiber 612, the lens 621, and the lens 622 are both-side telecentric optical systems, and the principal ray is condensed by the lens 622 in parallel with the optical axis for each wavelength.
  • the condensed signal light is input to the liquid crystals 641 and 642.
  • the same number or more cells as the number of wavelengths of the signal light are arranged in the wavelength separation direction, and the liquid crystal cells input for each wavelength are different.
  • the signal light that has passed through the liquid crystal 642 is input to the beam splitter 65, a part of which is transmitted and a part of which is reflected.
  • the monitor light is separated into P-polarized light and S-polarized light components by the polarization separation element.
  • the separated polarization components are input to the light receiving elements 681 and 682, respectively.
  • the light receiving elements 681 and 682 have the same number or more light receiving elements as the number of wavelengths of the signal light in the wavelength separation direction, and can acquire the light intensity of each polarization component for each wavelength of the monitor light.
  • the light intensities acquired by the light receiving elements 681 and 682 are digitized by an A / D converter, and are compared and calculated by an arithmetic processing circuit 692 having a function of comparing them.
  • relay is performed with an appropriate lens system, and monitor light is input to the light receiving elements 681 and 682.
  • monitor light is input to the light receiving elements 681 and 682.
  • phase amount of the liquid crystals 641 and 642 so that the light receiving intensity at the light receiving element 681 (or 682) is maximum and the light receiving intensity at the light receiving element 682 (or 681) is 0, each wavelength is controlled.
  • All of the monitor light can be controlled to linearly polarized light.
  • the signal light can be controlled to linearly polarized light.
  • the polarization state of each wavelength of the signal light can be calculated from the values of the phase control amounts of the liquid crystals 641 and 642 by the Jones matrix method.
  • the signal light reflected by the beam splitter 66 is controlled to linearly polarized light as described above, and is reflected by the total reflection mirror 66 in the state of linearly polarized light.
  • the signal light is input to the liquid crystals 644 and 643 in a linearly polarized state.
  • the same number or more cells as the number of wavelengths of the signal light are arranged in the wavelength separation direction, and the input liquid crystal cells are different for each wavelength. Since the signal light is input as linearly polarized light at 45 ° and 0 ° relative to the alignment axis of the liquid crystal, the signal light can be arbitrarily controlled for each wavelength by individually controlling the phase amounts of the liquid crystals 643 and 644.
  • the polarization state can be controlled.
  • the polarization-controlled signal light is collimated by the lens 622 and incident on the wavelength dispersion element, and the separated wavelengths are recombined.
  • the signal light whose polarization is controlled and combined for each wavelength is collected by the lens 621 and output by the fiber 612.
  • a configuration using a polarization separation element and a light receiving element is shown as a configuration for monitoring the polarization state of the signal light.
  • another optical system capable of measuring the polarization state can be substituted.
  • general Stokes parameter measurement optics composed of a beam splitter, a polarization separation element, a fixed phase difference element, an analyzer, a light receiving element, an A / D converter, and an arithmetic processing circuit It is also possible to use a system.
  • FIG. 7 is a diagram showing a wavelength selective polarization controller using the polarization dependent wavelength dispersion element according to the fourth embodiment of the present invention.
  • FIG. 7A is a view seen from the direction in which the wavelength separation of the apparatus can be understood
  • FIG. 7B is a view seen from the direction orthogonal to FIG. 7A.
  • 611 to 66 are as described above, but it is assumed that the wavelength dispersion element 63 has a significant polarization dependence.
  • 711 to 714 are polarization separation elements
  • 721 to 724 are half-wave plates
  • 73 is a polarization dependent wavelength dispersion element
  • 741 to 744 are optical path length correction plates having the same optical path length as the wavelength plates 721 to 724.
  • it also has a monitor unit composed of 67 to 692 in FIG.
  • the optical wavelength multiplexed signal light input from the fiber 611 is separated into a P-polarized component and an S-polarized component by the polarization separation element 711.
  • One polarized light passes through the correction plate 741 and is input to the lens 621 as it is.
  • the other polarization is input to the wave plate 721 whose optical axis is inclined by 45 ° with respect to the input polarization, and the polarization plane is rotated by 90 °, that is, the same polarization as the other polarization is input to the lens 621.
  • the two signal lights having the same plane of polarization are collimated by the lens 621 and input to the wavelength dispersion element 73, so that the angle is changed according to each wavelength and input to the lens 622 and condensed.
  • One of the signal lights passes through the correction plate 742 and is input to the polarization separation element 712.
  • the other signal light is input to the wave plate 722 whose optical axis is inclined by 45 ° with respect to the input polarization, and the polarization plane is rotated by 90 °, that is, the polarization is orthogonal to the other signal light and is input to the polarization separation element 712. Is done.
  • the signal light separated into two by the polarization separation element 712 is polarized and combined and output.
  • the condensed signal light is input to the liquid crystals 641 and 642.
  • the same number or more cells as the number of wavelengths of the signal light are arranged in the wavelength separation direction, and the liquid crystal cells input for each wavelength are different.
  • the signal light that has passed through the liquid crystal 642 is input to the beam splitter 65, a part of which is transmitted and a part of which is reflected. Thereafter, the same operation as in the third embodiment is performed up to the liquid crystal 643, whereby the signal light can be controlled to an arbitrary polarization state for each wavelength on the output side of the liquid crystal 643.
  • the polarization-controlled signal light is separated into a P polarization component and an S polarization component by a polarization separation element 713.
  • One polarized light passes through the correction plate 743 and is input to the lens 622.
  • the other polarized light is input to the wave plate 723 whose optical axis is inclined by 45 ° with respect to the input polarized light, and the polarization plane is rotated by 90 °, that is, the same polarized light as the other polarized light is input to the lens 622.
  • the two signal lights whose polarizations are controlled and separated are collimated by the lens 622 and input to the wavelength dispersion element 73 to be wavelength-multiplexed.
  • One of the wavelength-combined signal lights is collected by the lens 621, passes through the correction plate 744, and is input to the polarization separation element 714.
  • the other signal light is condensed by the lens 621 and input to the wave plate 724 whose optical axis is inclined by 45 ° with respect to the input polarized light, so that the polarization plane is rotated by 90 ° and input to the polarization separation element 714. Is done.
  • the two signal lights separated by polarization are combined by the polarization separation element 714, and the signal light whose polarization is controlled for each wavelength becomes one and is output from the fiber 612.
  • the present invention can be used in the field of optical information communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】 光波長多重信号の偏光面を波長成分ごとに調整することができ,しかも各成分に時間的なずれが生じない,波長選択偏波制御器を提供する。 【解決手段】 この波長選択偏波制御器は,光波長多重信号が入射するテレセントリック光学系11と,テレセントリック光学系から出力された光の偏波面を調整する偏波制御器12と,偏波制御器からの出力を光路へと出力するための出力光学系13と,を有する。テレセントリック光学系11は,光波長多重信号が入射する第1の回折格子15と,回折格子15を経た光波長多重信号を集光する第1の集光レンズ16と,を有する偏波制御器12は,複数の位相変調器21,22,23を有する。

Description

波長選択偏波制御器
 本発明は,ランダムな偏光状態で多重された光波長多重信号を,レーザー分離せずに波長成分ごとに偏光制御を行うことができる波長選択偏波制御器に関するものである。
 波長多重光情報通信において,光波長多重信号の位相及び強度を制御する装置として,帯域可変スペクトルシェイパー(VBS)が知られている。たとえば,特開2008-310190号公報(下記特許文献1)には,VBSが開示されている。
 また,波長成分ごとに偏波調整を行い,偏波面が調整された多数の波長の光信号を出力するための装置として,多入力多出力光偏波コントローラが知られている。たとえば,特開平8-262394号公報(下記特許文献2)には,多入力多出力光偏波コントローラが開示されている。この多入力多出力光偏波コントローラは,光波長多重信号を波長に応じて分離し,それぞれの波長成分の偏波面を調整した後に,合波することで,光波長多重信号に含まれるそれぞれの波長成分の偏波面を制御することができる。
特開2008-310190号公報 特開平8-262394号公報
 上記したVBSは,光波長多重信号の偏光を制御できない。
 上記した多入力多出力光偏波コントローラは,複数の波長成分を合波する際に,それぞれの成分のタイミングがずれる。
 そこで,本発明は,光波長多重信号の偏光面を波長成分ごとに調整することができ,しかも各成分に時間的なずれが生じない,波長選択偏波制御器を提供することを目的とする。
 上記の課題は,本発明の波長選択偏波制御器により解決される。本発明の波長選択偏波制御器は,光波長多重信号を,レーザー分離せずに波長成分ごとに偏光制御を行うことができる。本発明の波長選択偏波制御器は,テレセントリック光学系を構成する回折格子及び集光レンズと,テレセントリック光学系から出力されひとつの光線内で波長ごとに並べられた各成分の偏波を調整する偏波制御器と,偏波制御器からの出力を光路へと出力するための出力光学系とを有する。本発明は,基本的には,テレセントリック光学系にて,光波長多重信号をひとつのビーム内で波長ごとに並べられた光線とし,それぞれの成分ごとに偏波制御器にて偏波調整することで,光波長多重信号を分離せずに波長ごとに偏波面を調整できるという知見に基づくものである。
 本発明の第1の側面は,波長選択偏波制御器に関する。この波長選択偏波制御器は,光波長多重信号が入射するテレセントリック光学系11と,テレセントリック光学系から出力された光の偏波面を調整する偏波制御器12と,偏波制御器からの出力を光路へと出力するための出力光学系13と,を有する。
 テレセントリック光学系11は,光波長多重信号が入射する第1の回折格子15と,回折格子15を経た光波長多重信号を集光する第1の集光レンズ16と,を有する。そして,テレセントリック光学系11は,光波長多重信号をひとつの光線内で波長ごとに並べた状態で偏波制御器12へ伝えるものである。
 偏波制御器12は,複数の位相変調器21,22,23を有する。複数の位相変調器21,22,23の例は,0度の第1の位相変調器と,45度の第2の位相変調器と,0度の第3の位相変調器をこの順に有するものである。偏波制御器12は,テレセントリック光学系11から出力された,光波長多重信号の波長成分ごとに偏波面を制御するものである。
 複数の位相変調器21,22,23の上記とは別の例は,90度の第1の位相変調器と,135度の第2の位相変調器と,90度の第3の位相変調器をこの順に有するものである。すなわち,先に説明した波長選択偏波制御器において,0度の位相変調器の替わりに90度の位相変調器を用いてもよい。また,同様に,45度の位相変調器の替わりに135度の位相変調器を用いてもよい。
 出力光学系13は,たとえば,テレセントリック光学系11と対称的な構成を有するものや,光線が反射されて戻る場合は,テレセントリック光学系11そのものがあげられる。テレセントリック光学系11は,偏波制御器12からの出力光が入射する第2の集光レンズ31と,第2の集光レンズ31を経た出力光が入射する第2の回折格子32とを有する。
 本発明によれば,光波長多重信号の偏光面を波長成分ごとに調整することができ,しかも各成分に時間的なずれが生じない,波長選択偏波制御器を提供することができる。
図1は,本発明の波長選択偏波制御器を説明するためのブロック図である。 図2は,0度,45度及び0度の位相変調器による偏光調整の概念図である。 図3は,偏波制御器を構成する液晶セルの例を示す図である。 図4は,実施例1の波長選択偏波制御器を示す概念図である。 図5は,実施例2の波長選択偏波制御器を示す概念図である。 図6は本発明の第3の実施例の偏光無依存波長分散素子を使用した波長選択偏波制御器を示す図である。図6Aは,装置の波長分離がわかる方向から見た図である。図6Bは図6Aと直交する方向から見た図である。 図7は本発明の実施例4の偏光依存波長分散素子を使用した波長選択偏波制御器を示す図である。図7Aは,装置の波長分離がわかる方向から見た図である。図7Bは図7Aと直交する方向から見た図である。
 以下,本発明を説明する。図1は,本発明の波長選択偏波制御器を説明するためのブロック図である。図1に示されるように,この波長選択偏波制御器は,光波長多重信号が入射するテレセントリック光学系11と,テレセントリック光学系から出力された光の偏波面を調整する偏波制御器12と,偏波制御器からの出力を光路へと出力するための出力光学系13と,を有する。
 波長選択偏波制御器は,光波長多重信号に含まれる波長成分ごとに偏波面を調整できる装置である。
 テレセントリック光学系11は,光波長多重信号が入射する第1の回折格子15と,回折格子15を経た光波長多重信号を集光する第1の集光レンズ16と,を有する。テレセントリック光学系は,光軸と主光軸とが平行とみなせるような光学系である。テレセントリック光学系11は,偏波面調整器,偏光板及び反射板を含む光学素子をさらに含んでもよい。回折格子は,アレイ導波路回折格子(AWG)であってもよい。光波長多重信号の例は,シングルモードファイバや偏波面保持ファイバから出力され,テレセントリック光学系へと入力されるものである。
 テレセントリック光学系11は,光波長多重信号をひとつの光線内で波長ごとに並べた状態で偏波制御器12へ伝えるものである。すなわち,第1の回折格子15に光波長多重信号が入射する。すると,第1の回折格子15にて,波長成分ごとに光波長多重信号が分散する。この分散した光波長多重信号を第1の集光レンズ16で集光する。すると,ひとつの光線内で,波長成分ごとに並んだ光波長多重信号を得ることができる。そして,ひとつの光線内で,波長成分ごとに並んだ光波長多重信号を偏波制御器12へと出力する。すなわち,第1の集光レンズ16は,ひとつの光線内で,波長成分ごとに並んだ光波長多重信号を偏波制御器12に出力できる位置に設置される。
 偏波制御器12は,複数の位相変調器21,22,23を有する。複数の位相変調器21,22,23は,印加する電圧又は印加する電場により変調量を制御できる導波路型のものであってもよい。このような導波路型の位相変調器の例は,LN位相変調器である。さらに,複数の位相変調器21,22,23を光波長多重信号の波長成分ごとに有するものであってもよい。このように,それぞれの波長成分ごとに偏波制御器12が存在するので,ひとつの光線に含まれるそれぞれの波長成分ごとに偏波面を調整することができる。そして,本発明の波長選択偏波制御器は,偏波面の調整をひとつの光線に対して行うため,波長ごとのタイミングのずれを生ずることなく,各波長成分の偏波面を調整できる。
 複数の位相変調器21,22,23の例は,0度の第1の位相変調器と,45度の第2の位相変調器と,0度の第3の位相変調器をこの順に有するものである。0度の位相変調器は,x軸方向とy軸方向とで位相のずれが0度から360度の範囲で可変な位相変調器を意味する。45度の位相変調器は,x軸に対して45度方向と135度方向とで,位相のずれが0度から360度の範囲で可変な位相変調器を意味する。位相変調器は公知であり,公知の位相変調器を適宜用いることができる。
 図2は,0度,45度及び0度の位相変調器による偏光調整の概念図である。上記の例では,液晶LCの配向が0度,45度及び0度の順に並べられている。
 このうち,0度の位相変調器及び45度の位相変調器を用いることで,直線偏光の偏光面を制御できる。このように偏波面を調整した状態で,ファイバに光線を戻すことで,直線偏光の波長多重信号を得ることができる。また,本発明の波長選択偏波制御器は,直線偏光に偏光面を調整した後に,位相変調器を用いて任意の偏光状態とすることができる。先に説明したとおり,複数の位相変調器21,22,23は,90度の第1の位相変調器と,135度の第2の位相変調器と,90度の第3の位相変調器をこの順に有するものであってもよい。すなわち,0度の位相変調器の替わりに90度の位相変調器を用いてもよい。また,45度の位相変調器の替わりに135度の位相変調器を用いてもよい。
 さらに位相変調器の制御量を用いれば入射された各波長成分の偏光状態を求めることができる。これにより,本発明の波長選択偏波制御器は,偏波状態のモニタとしても機能する。具体的には,波長選択偏波制御器は,コンピュータなどの制御装置を有する。そして,制御装置は,各位相変調器と接続されている。そして,制御装置は,位相変調器から制御量に関する情報を受け取り,記憶部に記憶する。そして,制御装置は,メインメモリに格納した制御プログラムの指令を受けて,記憶部から制御量に関する情報を読み出して,演算部で偏波量を求める演算を行う。制御装置は,演算結果を適宜記憶部に記憶する他,モニタなどの出力部へ出力する。このようにして,本発明の波長選択偏波制御器は,偏波状態のモニタとしても機能する。
 図3は,偏波制御器を構成する液晶セルの例を示す図である。図3に示されるように,偏波制御器12は,ライン状又はマトリクス状に形成された複数の液晶セルを有するものであってもよい。液晶セルは,たとえば,それぞれ液晶物質を具備するとともに,液晶物質をはさむように存在する電極を具備する。なお,この電極は,透明電極であってもよいし,セルの周囲のいずれかに存在する金属電極であっても良い。具体的な構成として,たとえば,10μm~40μmの格子ピッチを有する液晶素子を3枚接合し,接合したものをガラス基板に搭載すればよい。なお,上記の格子ピッチがセルの幅を決める要因となる。なお,隣接する液晶セル同士の間には,ギャップが設けられてもよい。
 前記液晶セルのうち集光レンズ側にあるものにおける集光径が小さいほど,得られるバンドパスの幅が小さくなるため好ましい。このような観点から,集光径として,20μm以上80μm以下の範囲のものがあげられ,好ましくは30μm以上70μmの範囲のものである。そして,液晶セルのサイズとして,10μm以上40μm以下があげられ,好ましくは15μm以上30μm以下であり,15μm以上25μm以下でも良い。このように微小なセルを用いるので,たとえば,10GHz間隔のパスバンドを達成できる。また,波長が大きくなるほど,集光径が大きくなるので,短波長側は2つの液晶セルでひとつの光を受けて,長波長側は3つの液晶セルでひとつの光を受けても良い。なお,集光径は,集光レンズにより集光された複数の光が液晶セル上に結像してできる光の直径である。
 テレセントリック光学系11は,偏波制御器12からの出力光が入射する第2の集光レンズ31と,第2の集光レンズ31を経た出力光が入射する第2の回折格子32とを有する。集光レンズ31及び回折格子32は,先に説明したものと同様のものを用いることができる。さらに,波長選択偏波制御器がリフレクタ―を有する場合,第1の集光レンズ及び第1の回折格子をそれぞれ第2の集光レンズ及び第2の回折格子として用いることができる。出力光学系13は,たとえば,テレセントリック光学系11と対称的な構成を有するものや,光線が反射されて戻る場合は,テレセントリック光学系11そのものがあげられる。この場合,公知のリフレクタ又はミラーが存在すればよい。すると,偏波面を制御した後の光線を光路に戻すことで,ひとつの波長多重信号として,出力することができる。
 図4は,実施例1の波長選択偏波制御器を示す概念図である。図4中,INは入射された波長多重信号を示す。PMFは,偏波面保持ファイバを示す。ALは集光レンズを示す。Polは偏波面調整器を示す。グレーティングは回折格子を示す。空間変調器は,偏波制御器を示す。QWPは1/4波長板を示す。MRはミラーを示す。SMFはシングルモードファイバを示し,OUTは出力信号を示す。
 PMFから出力された光は,集光レンズの中心よりオフセットした位置に入射する。そして,この光はコリメート光として斜めに進む。斜めに進んだ光は,回折格子を通り,集光レンズに入射する。集光レンズにより集光された光は,偏波調整器へと入射する。偏波調整器で偏波面を調整された光は,集光レンズに入射する。そして,集光レンズから出射した光は,コリメート光として1/4波長板及びミラーを経て,偏光面が45度回転する。その後,偏光面が回転した光は,再度,偏波調整器に入射して,対称光路を経て,SMFから出力される。
 図5は,実施例2の波長選択偏波制御器を示す概念図である。図5に示すような態様であっても実施例1と同様の波長選択偏波制御器を提供できる。
  図6は本発明の第3の実施例の偏光無依存波長分散素子を使用した波長選択偏波制御器を示す図である。図6Aは,装置の波長分離がわかる方向から見た図であり,図6Bは図6Aと直交する方向から見た図である。図中,611は光入力ファイバ,612は光出力ファイバ,621はコリメートレンズ,622は集光レンズ,63は波長分散素子,641・644は配向軸0°液晶セル,642・643は配向軸45°液晶セル,65はビームスプリッタ,66は全反射ミラー,67は偏光分離素子,681・682は受光素子,691はA/D変換器,692は演算処理回路である。図示は行っていないが,この他に,データを記憶するメモリ機能や演算処理回路のデータを元に液晶セルの動作を決め制御するコンピュータからなる。以下に本実施例の動作を説明する。
 ファイバ611から入力された光波長多重信号光は,レンズ621でコリメートされ,波長分散素子63へ入力されることにより,各波長に応じて角度を変え,レンズ622へ入力される。ファイバ611,ファイバ612,レンズ621,レンズ622は,両側テレセントリック光学系となっており,波長ごとに主光線が光軸と平行な状態でレンズ622により集光される。集光された信号光は,液晶641と642へ入力される。液晶641と642は,波長分離方向に信号光の波長数と同数以上のセルが配置されており,波長ごとに入力される液晶セルが異なる。液晶642を通過した信号光は,ビームスプリッタ65へ入力され,一部が透過し,一部が反射する。
 まず,透過した信号光(以下,モニタ光)について記載する。モニタ光は,偏光分離素子により,P偏光とS偏光成分に分離される。分離されたそれぞれの偏光成分は,受光素子681と682へ入力される。受光素子681と682は,波長分離方向に信号光の波長数と同数以上の受光素子が配置されており,モニタ光の波長ごとの各偏光成分の光強度を取得することが可能である。受光素子681と682で取得されたその光強度は,A/D変換器によりデジタル化され,それを比較する機能を有する演算処理回路692にて,比較演算される。なお,図示は行っていないが,通常,適当なレンズ系でリレーし,受光素子681と682へモニタ光を入力させる。受光素子681(もしくは,682)での受光強度が最大,受光素子682(もしくは,681)での受光強度が0となるように,液晶641と642の位相量を制御することで,各波長のモニタ光の全てを直線偏光に制御することが出来,結果として,液晶642の出力側において,信号光を直線偏光に制御することが出来る。この時に液晶641と642の位相制御量の値から,ジョーンズマトリクス法により,信号光の各波長の偏光状態を算出することが可能である。
 一方,ビームスプリッタ66にて反射された信号光は,前述の通り,直線偏光に制御されており,全反射ミラー66にて直線偏光の状態で反射される。信号光は直線偏光の状態で液晶644と643に入力される。液晶643と644は,波長分離方向に信号光の波長数と同数以上のセルが配置されており,波長ごとに入力される液晶セルが異なる。信号光は液晶の配向軸に対して相対的に45°,0°の直線偏光で入力されるため,液晶643と644の位相量を個々に制御することで,信号光を波長ごとに任意の偏光状態に制御することが出来る。偏光制御された信号光は,レンズ622によりコリメートされ波長分散素子に入射し,分離していた各波長が再合波される。波長ごとに偏光制御され合波された信号光は,レンズ621にて集光され,ファイバ612にて出力される。
 本実施例では,信号光の偏光状態のモニタの構成として,偏光分離素子と受光素子を用いた構成を示したが,偏光状態を測定可能な別の光学系で代用することも可能である。公知であるため具体的には示さないが,ビームスプリッタ,偏光分離素子,固定位相差素子,検光子,受光素子,A/D変換器,演算処理回路により構成される一般的なストークスパラメータ測定光学系を用いることも可能である。
 図7は本発明の実施例4の偏光依存波長分散素子を使用した波長選択偏波制御器を示す図である。図7Aは,装置の波長分離がわかる方向から見た図であり,図7Bは図7Aと直交する方向から見た図である。図中,611~66までは前述の通りであるが,波長分散素子63は偏光依存性を顕著に持つものとする。711~714は偏光分離素子,721~724は1/2波長板,73は偏光依存波長分散素子,741~744は波長板721~724と同じ光路長の光路長補正板である。詳細な図示は行っていないが,図6の67~692で構成されるモニタ部を併せて有する。
 ファイバ611から入力された光波長多重信号光は,偏光分離素子711によりP偏光成分とS偏光成分に分離される。片方の偏光は補正板741を通りそのままレンズ621へ入力される。もう片方の偏光は,入力偏光に対して光学軸が45°傾いた波長板721に入力され,偏光面が90°回転,つまり,片方の偏光と同じ偏光となりレンズ621へ入力される。偏光面の揃った二つの信号光は,レンズ621でコリメートされ,波長分散素子73へ入力されることにより,各波長に応じて角度を変え,レンズ622へ入力され集光される。信号光のうちの一つは,補正板742を通り偏波分離素子712へ入力される。もう一つの信号光は,入力偏光に対して光学軸が45°傾いた波長板722に入力され,偏光面が90°回転,つまり,片方の信号光と直交した偏光となり偏光分離素子712へ入力される。その結果,偏光分離素子712により二つに分離していた信号光が偏波合波され出力される。集光された信号光は,液晶641と642へ入力される。液晶641と642は,波長分離方向に信号光の波長数と同数以上のセルが配置されており,波長ごとに入力される液晶セルが異なる。液晶642を通過した信号光は,ビームスプリッタ65へ入力され,一部が透過し,一部が反射する。以降,液晶643までは,実施例3と同じ動作を行うことで,液晶643の出力側において信号光を波長ごとに任意の偏光状態に制御することが出来る。偏光制御された信号光は,偏光分離素子713により,P偏光成分とS偏光成分に分離される。片方の偏光は補正板743を通りレンズ622へ入力される。もう片方の偏光は,入力偏光に対して光学軸が45°傾いた波長板723に入力され,偏光面が90°回転,つまり,片方の偏光と同じ偏光となりレンズ622へ入力される。偏光制御され分離された二つの信号光は,レンズ622によりコリメートされ,波長分散素子73へ入力されることで波長合波される。波長合波された片方の信号光は,レンズ621により集光され,補正板744を通り,偏光分離素子714へ入力される。もう片方の信号光は,レンズ621により集光され,入力偏光に対して光学軸が45°傾いた波長板724に入力されることにより,偏光面が90°回転し,偏光分離素子714へ入力される。結果,偏光分離された二つの信号光が,偏光分離素子714にて偏光合波され,波長ごとに偏光制御された信号光が一つとなり,ファイバ612より出力される。
 本発明は光情報通信の分野で利用され得る。
 11 テレセントリック光学系
 12 偏波制御器
 13 出力光学系
 15 第1の回折格子 
 16 第1の集光レンズ
 21,22,23 位相変調器
 31 第2の集光レンズ
 32 第2の回折格子
 611 光入力ファイバ, 612 光出力ファイバ
 621 コリメートレンズ, 622 集光レンズ
 63 偏波無依存波長分散素子
 641・644 配向軸0°液晶, 642・643 配向軸45°液晶
 65 ビームスプリッタ
 66 全反射ミラー
 67 偏光分離素子
 681,682 受光素子
 691 A/D変換器, 692 演算処理回路
 711,712,713,714 偏光分離素子
 721・722・723・724 1/2波長板
 73 偏光依存波長分散素子
 741・742・743・744 光路長調整板

Claims (3)

  1.  光波長多重信号が入射するテレセントリック光学系(11)と,
     前記テレセントリック光学系から出力された光の偏波面を調整する偏波制御器(12)と,
     前記偏波制御器からの出力を光路へと出力するための出力光学系(13)と,を有し,
     前記テレセントリック光学系(11)は,
      光波長多重信号が入射する第1の回折格子(15)と,
      前記回折格子(15)を経た光波長多重信号を集光する第1の集光レンズ(16)と,を有し,
      前記光波長多重信号をひとつの光線内で波長ごとに並べた状態で前記偏波制御器(12)へ伝えるものであり,
     前記偏波制御器(12)は,
      複数の位相変調器(21,22,23)を有し,
      前記テレセントリック光学系(11)から出力された,前記光波長多重信号の波長成分ごとに偏波面を制御するものであり,
     前記出力光学系(13)は,
      前記偏波制御器(12)からの出力光が入射する第2の集光レンズ(31)と,
      前記第2の集光レンズ(31)を経た出力光が入射する第2の回折格子(32)とを有する,
     波長選択偏波制御器。
  2.  前記複数の位相変調器(21,22,23)は,0度の第1の位相変調器と,45度の第2の位相変調器と,0度の第3の位相変調器をこの順に有するものである,
     請求項1に記載の波長選択偏波制御器。
  3.  前記複数の位相変調器(21,22,23)は,90度の第1の位相変調器と,135度の第2の位相変調器と,90度の第3の位相変調器をこの順に有するものである,
     請求項1に記載の波長選択偏波制御器。

     
PCT/JP2012/065007 2011-06-15 2012-06-12 波長選択偏波制御器 WO2012173113A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2848178A CA2848178C (en) 2011-06-15 2012-06-12 Wavelength selection polarization controller
CN201280029597.1A CN103608717B (zh) 2011-06-15 2012-06-12 波长区分型偏振控制器
US14/126,161 US8982442B2 (en) 2011-06-15 2012-06-12 Wavelength selection polarization controller
EP12801085.7A EP2722706B1 (en) 2011-06-15 2012-06-12 Wavelength selection polarization controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011132791A JP5838532B2 (ja) 2011-06-15 2011-06-15 波長選択偏波制御器
JP2011-132791 2011-06-15

Publications (1)

Publication Number Publication Date
WO2012173113A1 true WO2012173113A1 (ja) 2012-12-20

Family

ID=47357100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065007 WO2012173113A1 (ja) 2011-06-15 2012-06-12 波長選択偏波制御器

Country Status (6)

Country Link
US (1) US8982442B2 (ja)
EP (1) EP2722706B1 (ja)
JP (1) JP5838532B2 (ja)
CN (1) CN103608717B (ja)
CA (1) CA2848178C (ja)
WO (1) WO2012173113A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3043495A4 (en) * 2013-09-27 2016-09-07 Huawei Tech Co Ltd WAVELENGTHELECTIVE SWITCH AND METHOD FOR CONTROLLING A SPATIAL PHASE MODULATOR IN THIS WAVELENGTHELECTIVE SWITCH

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170780A1 (ja) * 2014-05-07 2015-11-12 国立大学法人電気通信大学 レーザー装置
JP2018205646A (ja) * 2017-06-08 2018-12-27 大学共同利用機関法人自然科学研究機構 2光波の位相調整装置
JPWO2019039144A1 (ja) * 2017-08-21 2020-10-15 ソニー株式会社 撮像装置、撮像方法及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218889A (ja) * 1994-01-03 1995-08-18 At & T Corp 旋光装置
JPH08262394A (ja) 1995-03-28 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> 多入力多出力光偏波コントローラ
JP2004302317A (ja) * 2003-03-31 2004-10-28 Fujitsu Ltd 波長選択スイッチ
JP2005526287A (ja) * 2002-05-20 2005-09-02 メトコネックス カナダ,インコーポレーテッド 再設定可能な光アド/ドロップモジュール、システムおよび方法
JP2008310190A (ja) 2007-06-15 2008-12-25 National Institute Of Information & Communication Technology 光波形整形装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4474625B2 (ja) * 1999-12-14 2010-06-09 独立行政法人科学技術振興機構 超広帯域可変波長多重パルス波形整形装置
US6529307B1 (en) * 2000-06-05 2003-03-04 Avanex Corporation Selective intensity modulation of channels in a multiplexed optical communication system
US7218857B1 (en) * 2003-03-28 2007-05-15 Avanex Corporation Method, apparatus and system for a re-configurable optical add-drop multiplexer
US7092594B2 (en) 2003-03-31 2006-08-15 Fujitsu Limited Wavelength selector switch
JP5228205B2 (ja) * 2007-06-15 2013-07-03 独立行政法人情報通信研究機構 光波形整形装置
NL1036407A1 (nl) * 2008-01-23 2009-07-27 Asml Netherlands Bv Polarization control apparatus and method.
CN101888280A (zh) * 2009-05-13 2010-11-17 华为技术有限公司 波长选择装置及方法、波长复用设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218889A (ja) * 1994-01-03 1995-08-18 At & T Corp 旋光装置
JPH08262394A (ja) 1995-03-28 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> 多入力多出力光偏波コントローラ
JP2005526287A (ja) * 2002-05-20 2005-09-02 メトコネックス カナダ,インコーポレーテッド 再設定可能な光アド/ドロップモジュール、システムおよび方法
JP2004302317A (ja) * 2003-03-31 2004-10-28 Fujitsu Ltd 波長選択スイッチ
JP2008310190A (ja) 2007-06-15 2008-12-25 National Institute Of Information & Communication Technology 光波形整形装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3043495A4 (en) * 2013-09-27 2016-09-07 Huawei Tech Co Ltd WAVELENGTHELECTIVE SWITCH AND METHOD FOR CONTROLLING A SPATIAL PHASE MODULATOR IN THIS WAVELENGTHELECTIVE SWITCH
US9660723B2 (en) 2013-09-27 2017-05-23 Huawei Technologies Co., Ltd. Wavelength selective switch and method for controlling spatial phase modulator in wavelengths

Also Published As

Publication number Publication date
CA2848178C (en) 2019-08-27
US20140133004A1 (en) 2014-05-15
JP2013003277A (ja) 2013-01-07
CA2848178A1 (en) 2012-12-20
US8982442B2 (en) 2015-03-17
CN103608717B (zh) 2016-10-05
EP2722706A1 (en) 2014-04-23
CN103608717A (zh) 2014-02-26
JP5838532B2 (ja) 2016-01-06
EP2722706A4 (en) 2014-12-24
EP2722706B1 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6782834B2 (ja) 広帯域光源を基にマルチチャネル可調照明を生成するシステム及び方法
US7359051B2 (en) Multiple-wavelength spectroscopic apparatus
US6753960B1 (en) Optical spectral power monitors employing frequency-division-multiplexing detection schemes
US9575260B2 (en) Wavelength selective switch using orthogonally polarized optical beams
US8571418B2 (en) High resolution optical waveform shaping device having phase shift compensation associated with optical intensity modulation
CN105182474B (zh) 一种波长选择开关
WO2012173113A1 (ja) 波長選択偏波制御器
JP5023707B2 (ja) チューナブルフィルタ、光源装置、及びスペクトル分布測定装置
JP2005115377A (ja) 波長に基づいて光信号を選択的に伝送させるための波長選択スイッチングデバイスおよび方法
US20030067641A1 (en) Apparatus and methods for polarization measurements across a spectral range
JP2005266362A (ja) 偏波無依存型光学機器
JP2003083810A (ja) 分光装置および光測定装置
CN111194528B (zh) 波长监测和/或控制设备、包括所述设备的激光系统及操作所述设备的方法
JP2011220889A (ja) 光測定装置
US6804428B1 (en) Optical spectral power monitors employing polarization deversity scheme
JP2011064540A (ja) チューナブルフィルタ、および光源装置
JP5669140B2 (ja) 光パフォーマンスモニタ
TW200527035A (en) Optical polarization controller
JP4694526B2 (ja) 光制御型フェーズドアレーアンテナ装置
JP2015025961A (ja) 偏光変換装置
CA2690852C (en) Optical waveform shaping device
JP2004132965A (ja) 光サンプリングヘッド
WO2003096091A1 (en) Narrowband filter method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14126161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2848178

Country of ref document: CA