WO2012172724A1 - 半導体ウェーハの洗浄方法 - Google Patents

半導体ウェーハの洗浄方法 Download PDF

Info

Publication number
WO2012172724A1
WO2012172724A1 PCT/JP2012/003090 JP2012003090W WO2012172724A1 WO 2012172724 A1 WO2012172724 A1 WO 2012172724A1 JP 2012003090 W JP2012003090 W JP 2012003090W WO 2012172724 A1 WO2012172724 A1 WO 2012172724A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
semiconductor wafer
ozone water
wafer
oxide film
Prior art date
Application number
PCT/JP2012/003090
Other languages
English (en)
French (fr)
Inventor
阿部 達夫
均 椛澤
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to KR1020137033145A priority Critical patent/KR101774843B1/ko
Priority to CN201280029741.1A priority patent/CN103608904B/zh
Priority to DE112012002437.0T priority patent/DE112012002437B4/de
Priority to US14/113,329 priority patent/US9082610B2/en
Publication of WO2012172724A1 publication Critical patent/WO2012172724A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4885Wire-like parts or pins
    • H01L21/4892Cleaning

Definitions

  • the present invention relates to a method for cleaning a semiconductor wafer.
  • a cleaning method using a combination of ozone water, dilute hydrofluoric acid, and pure water has been performed.
  • cleaning is performed in the order of ozone water cleaning ⁇ dilute hydrofluoric acid cleaning ⁇ ozone water (pure water) cleaning ⁇ drying.
  • the organic substances adhering to the surface of the semiconductor wafer are removed by the first ozone water cleaning, and the metal impurities taken into the oxide film simultaneously with the oxide film formed on the surface of the semiconductor wafer by the subsequent dilute hydrofluoric acid cleaning. Then, when a protective oxide film is necessary on the surface of the semiconductor wafer, surface oxidation treatment with ozone water (or pure water) is performed.
  • ozone water or pure water
  • Patent Document 1 a method of repeating formation and etching of an oxide film on the surface of a semiconductor wafer with ozone water and hydrofluoric acid has also been implemented.
  • semiconductor wafer cleaning by single wafer spin cleaning is performed by combining ozone water cleaning, HF (hydrofluoric acid) cleaning, and pure water cleaning as described above, and an oxide film is formed on the surface of the semiconductor wafer by ozone water cleaning.
  • HF hydrofluoric acid
  • the oxide film itself is removed simultaneously with the metal impurities taken into the oxide film.
  • a surface on which the oxide film is not formed hereinafter referred to as a bare surface
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor wafer cleaning method capable of simultaneously reducing the metal impurity level and the particle level on the surface of the semiconductor wafer when cleaning the semiconductor wafer. To do.
  • a semiconductor wafer cleaning method having at least one cleaning step in the order of HF cleaning, ozone water cleaning, and HF cleaning, in the semiconductor wafer cleaning method.
  • the semiconductor wafer surface is cleaned so as to leave a part of the thickness without removing all of the oxide film formed by the ozone water cleaning on the surface of the semiconductor wafer.
  • a method for cleaning a semiconductor wafer is provided.
  • the oxide film formed on the surface of the semiconductor wafer by the ozone water cleaning is used as the last of the semiconductor wafer cleaning method.
  • the oxide film is completely removed from the surface of the semiconductor wafer by leaving a part of the thickness, and the bare surface is exposed so that particles are likely to adhere. This can be suppressed, whereby the metal impurity level and the particle level on the surface of the semiconductor wafer can be simultaneously reduced.
  • the oxide film is dissolved by the HF cleaning performed last in the cleaning of the semiconductor wafer, it is only necessary to leave a part of the thickness of the oxide film on the surface of the semiconductor wafer. .
  • the metal impurities on the semiconductor wafer surface and the oxide film incorporating them can be reliably removed, the metal impurity level can be reliably reduced, and there is no problem even if the oxide film is left by subsequent HF cleaning. .
  • the thickness of the semiconductor wafer is reduced to the same level without removing all of the oxide film formed by the ozone water cleaning on the surface of the semiconductor wafer. It is preferable to wash so as to leave a part.
  • the oxide film remains in the second and subsequent HF cleaning, so that the oxide film on the semiconductor wafer surface is completely removed and the bare surface is exposed. By doing so, it becomes a state in which particles are likely to adhere, and it is possible to more reliably suppress the deterioration of the particle level on the surface of the semiconductor wafer.
  • the semiconductor wafer is cleaned by repeating HF cleaning after ozone water cleaning, or alternately cleaning ozone water cleaning after HF cleaning twice or more. Can be washed.
  • the HF concentration is reduced to 0. .1 wt% to 1.5 wt%.
  • the concentration of ozone water can be 3 ppm or more in the ozone water cleaning.
  • HF cleaning and ozone water cleaning of the semiconductor wafer can be performed by single wafer spin cleaning.
  • single wafer spin cleaning can be applied to the HF cleaning and ozone water cleaning in the semiconductor wafer cleaning method of the present invention.
  • a semiconductor wafer to be cleaned by the cleaning method of the present invention is prepared.
  • the semiconductor wafer that can be used here is not limited to this, but is, for example, a silicon wafer or a compound semiconductor wafer such as GaAs or InP.
  • Such a semiconductor wafer is cleaned, for example, according to a flow chart as shown in FIG. First, the first ozone water cleaning shown in FIG.
  • the concentration of ozone water used at this time can be set to 3 ppm or more, preferably 5 ppm or more, more preferably 10 ppm or more because the higher the concentration of ozone water, the higher the cleaning effect.
  • This first ozone water cleaning is intended to remove organic substances adhering to the surface of the semiconductor wafer, and may be omitted if the prepared semiconductor wafer has almost no organic substance adhering.
  • the semiconductor wafer is cleaned by a cleaning process performed in the order of HF cleaning, ozone water cleaning, and HF cleaning.
  • the cleaning step when performing the final HF cleaning in the cleaning step (corresponding to the HF cleaning in FIG. 1D), all the oxide films formed by the ozone water cleaning on the surface of the semiconductor wafer are all removed. Cleaning is performed so as to leave a part of the thickness on the surface of the semiconductor wafer without removing it. In this way, the metal impurities are sufficiently removed from the surface of the semiconductor wafer by the HF cleaning performed previously (FIG. 1B), and then the ozone water cleaning (corresponding to the ozone water cleaning in FIG. 1C) is performed.
  • the semiconductor wafer when performing the first HF cleaning in the cleaning step (corresponding to the HF cleaning in FIG. 1B), if all the oxide film formed on the surface of the semiconductor wafer is removed, the semiconductor wafer It is preferable because metal impurities on the surface can be removed more reliably, and an oxide film that protects the surface of the semiconductor wafer is formed by subsequent ozone water cleaning, so that the particle level does not deteriorate.
  • FIG. 1 shows an example in which such a cleaning step of HF / O 3 / HF is performed only once
  • the present invention is not limited to this, and may be performed twice or more, or even three times or more. Is possible.
  • cleaning is performed so as to leave a part of the thickness on the surface of the semiconductor wafer without removing all the oxide film formed by the ozone water cleaning on the surface of the semiconductor wafer. This is preferable because the particle level on the surface of the semiconductor wafer can be reduced more effectively.
  • the method of performing HF cleaning so as to leave a part of the thickness on the surface of the semiconductor wafer without removing all the oxide film formed on the surface of the semiconductor wafer by the ozone water cleaning is limited to this.
  • the cleaning time may be shortened so that the oxide film is not completely dissolved.
  • the HF concentration of the HF cleaning for removing all oxide films formed on the surface of the semiconductor wafer is higher than that of the semiconductor.
  • the HF concentration of the HF cleaning that leaves a part of the thickness of the oxide film on the wafer surface may be lowered.
  • the HF concentration is 0.1 wt% to 1.5 wt%, it takes time to dissolve the oxide film. This is preferable because it does not take too much, and the time required for dissolution of the oxide film does not become too difficult to control.
  • the cleaning time and the HF concentration may be controlled simultaneously.
  • the semiconductor wafer cleaning method of the present invention is not limited to this, but HF cleaning after ozone water cleaning, or ozone water cleaning after HF cleaning is repeated twice or more alternately. Therefore, it is preferable to clean the semiconductor wafer because the metal impurity level and the particle level on the surface of the semiconductor wafer can be more effectively reduced.
  • FIG. 1E After performing such a cleaning process, as shown in FIG. 1E, a final ozone water cleaning is performed to form a protective oxide film for protecting the semiconductor wafer surface. Then, as shown in FIG. 1F, the semiconductor wafer on which the protective oxide film is formed is dried.
  • the HF cleaning and the ozone water cleaning are not limited to this, but can be performed by, for example, a single wafer spin cleaning.
  • single wafer spin cleaning switching between ozone water cleaning and HF cleaning, cleaning liquid concentration control, cleaning time control, and the like can be easily and accurately performed.
  • the HF cleaning and the ozone water cleaning are performed by single wafer spin cleaning as described above, it is preferable that the cleaned semiconductor wafer is dried by spin drying because it is more efficient.
  • Example 1 First, fifteen silicon single crystal wafers having a clean surface with both surfaces having a diameter of 300 mm finished with mirror surfaces were prepared. Next, three of the 15 silicon single crystal wafers with clean surfaces were extracted, and one wafer was inspected for particle level before cleaning (particle counter LS-6800 (manufactured by Hitachi High-Tech) Particle measurement was performed according to ⁇ 41 nm)). As a result of the measurement, it was found that the wafer particle level before cleaning was a good level of 100 or less.
  • particle counter LS-6800 manufactured by Hitachi High-Tech
  • the two sheets were subjected to vapor phase decomposition of the natural oxide film on the wafer surface with HF vapor, and the metal impurities on the wafer surface were recovered with HF droplets. Then, the metal impurity concentration on the wafer surface was measured by an ICP-MS analyzer. As a result of the measurement, as shown in Table 4, elements other than Cu were detected in the metal (Al, Cr, Fe, Ni, Cu, Zn) impurity concentration on the wafer surface before the experiment.
  • the other two of the prepared silicon single crystal wafers were washed as follows, and the particle level and metal impurity level were measured.
  • the two silicon single crystal wafers were cleaned by single wafer spin cleaning. At this time, as shown in Table 1, ozone water cleaning is repeated twice after HF cleaning, and in the first HF cleaning, all oxide films (natural oxide films) formed on the surface of the silicon single crystal wafer are all removed. In the second (final) HF cleaning, a part of the thickness is left on the surface of the silicon single crystal wafer without removing all the oxide film formed by the ozone water cleaning on the surface of the silicon single crystal wafer. And washed.
  • the HF concentration during HF cleaning for removing all oxide film on the surface of the silicon single crystal wafer is 1.0 wt%
  • the wafer rotation speed is 500 rpm / 15 sec
  • the thickness of the oxide film on the surface of the silicon single crystal wafer is set.
  • the HF concentration at the time of HF cleaning leaving a part of the water was 1.0 wt%
  • the wafer rotation speed was 500 rpm / 3 sec
  • the ozone water concentration at the time of ozone water cleaning was 10 ppm
  • the wafer rotation speed was 500 rpm / 15 sec.
  • the final ozone water cleaning was performed to form a protective oxide film for protecting the surface of the silicon single crystal wafer. Further, since impurities such as organic substances were hardly adhered to the surface of the prepared silicon single crystal wafer, the first ozone water cleaning for removing the organic substances was not performed.
  • the two wafer single crystal wafers thus cleaned are dried by spin drying at a rotation speed of 1500 rpm / 30 sec, and then the same wafer surface defect inspection apparatus and ICP- whose particle level is measured before cleaning.
  • the particle level and metal impurity level on the wafer surface were measured by MS analyzer. The results at this time are shown in Table 2, Table 3, and FIG.
  • Example 2 Two of the silicon single crystal wafers prepared in Example 1 were washed as follows, and the particle level and metal impurity level were measured.
  • the ozone water cleaning is repeated three times after the HF cleaning, and in the first HF cleaning, all oxide films formed on the surface of the silicon single crystal wafer are removed, and the second and subsequent times.
  • all HF cleaning cleaning is performed except that a part of the thickness is left on the surface of the silicon single crystal wafer without removing all the oxide film formed on the surface of the silicon single crystal wafer by ozone water cleaning.
  • the silicon single crystal wafer was cleaned.
  • the measurement of the particle level and the metal impurity level on the surface of the cleaned silicon single crystal wafer was performed in the same manner as in Example 1. The results at this time are shown in Table 2, Table 3, and FIG.
  • Example 3 Two of the silicon single crystal wafers prepared in Example 1 were washed as follows, and the particle level and metal impurity level were measured.
  • the ozone water cleaning is repeated 4 times after the HF cleaning, and in the first HF cleaning, all oxide films formed on the surface of the silicon single crystal wafer are removed, and the second and subsequent times.
  • all HF cleaning cleaning is performed except that a part of the thickness is left on the surface of the silicon single crystal wafer without removing all the oxide film formed on the surface of the silicon single crystal wafer by ozone water cleaning.
  • the silicon single crystal wafer was cleaned.
  • the measurement of the particle level and the metal impurity level on the surface of the cleaned silicon single crystal wafer was performed in the same manner as in Example 1. The results at this time are shown in Table 2, Table 3, and FIG.
  • Example 1 Two of the silicon single crystal wafers prepared in Example 1 were washed as follows, and the particle level and metal impurity level were measured.
  • Example 2 Two of the silicon single crystal wafers prepared in Example 1 were washed as follows, and the particle level and metal impurity level were measured.
  • the silicon single crystal wafer was cleaned in the same manner as in Comparative Example 1 except that cleaning with ozone water was repeated three times after HF cleaning.
  • the measurement of the particle level and the metal impurity level on the surface of the cleaned silicon single crystal wafer was performed in the same manner as in Example 1. The results at this time are shown in Table 2, Table 3, and FIG.
  • Example 3 Two of the silicon single crystal wafers prepared in Example 1 were washed as follows, and the particle level and metal impurity level were measured.
  • the silicon single crystal wafer was cleaned in the same manner as in Comparative Example 1 except that cleaning with ozone water was repeated four times after HF cleaning.
  • the measurement of the particle level and the metal impurity level on the surface of the cleaned silicon single crystal wafer was performed in the same manner as in Example 1. The results at this time are shown in Table 2, Table 3, and FIG.
  • Example 1-3 the cleaning was performed so as to leave a part of the thickness of the oxide film on the surface of the silicon single crystal wafer by shortening the cleaning time of the second and subsequent HF cleanings.
  • the concentration may be lower than the HF concentration in the HF cleaning, or the cleaning time and the HF concentration may be controlled simultaneously.
  • Example 2 and Example 3 the cleaning was performed so as to leave a part of the thickness of the oxide film on the surface of the silicon single crystal wafer in the second and subsequent HF cleanings. Even in the final HF cleaning, even if the cleaning is performed while leaving a part of the thickness of the oxide film on the surface of the silicon single crystal wafer, the effect of the present invention can be sufficiently obtained.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. It is contained in the technical range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

 本発明は、HF洗浄、オゾン水洗浄、HF洗浄の順で行う洗浄工程を少なくとも1回有する半導体ウェーハの洗浄方法であって、該半導体ウェーハの洗浄方法において最後に行われるHF洗浄において、前記半導体ウェーハ表面に前記オゾン水洗浄で形成された酸化膜を全て除去することなく前記半導体ウェーハ表面上に厚さを一部残すようにして洗浄することを特徴とする半導体ウェーハの洗浄方法である。これによって、半導体ウェーハの洗浄において、半導体ウェーハ表面における金属不純物レベルとパーティクルレベルを同時に低減させることができる半導体ウェーハの洗浄方法が提供される。

Description

半導体ウェーハの洗浄方法
 本発明は、半導体ウェーハの洗浄方法に関する。
 従来、半導体ウェーハの洗浄方法の一つとして、オゾン水、希フッ酸、純水を組み合わせて洗浄処理を行なう方法が行われている。この場合の一般的な洗浄フローとしては、オゾン水洗浄→希フッ酸洗浄→オゾン水(純水)洗浄→乾燥の順で洗浄が行われる。
 この方法においては、最初のオゾン水洗浄で半導体ウェーハ表面に付着した有機物の除去を行い、次の希フッ酸洗浄で半導体ウェーハ表面に形成された酸化膜と同時に該酸化膜に取り込まれた金属不純物を除去し、その後、半導体ウェーハ表面に保護酸化膜が必要な場合にはオゾン水(または純水)による表面酸化処理を行うものである。また、洗浄力を向上させることを目的として、オゾン水とフッ酸によって、半導体ウェーハ表面の酸化膜の形成とエッチングを繰り返す方法も実施されている(特許文献1)。
 例えば枚葉式スピン洗浄による半導体ウェーハの洗浄においても、前述のようにオゾン水洗浄、HF(フッ酸)洗浄、純水洗浄を組み合わせて行っており、オゾン水洗浄によって半導体ウェーハ表面に酸化膜が形成された後に行われるHF洗浄では、前記酸化膜に取り込まれた金属不純物と同時に酸化膜自体も除去される。これによって、半導体ウェーハ表面には酸化膜が形成されていない面(以下、ベア面という)が露出するため、パーティクルが付着しやすい状態となり、パーティクルレベルが悪化する。このため、半導体ウェーハの洗浄において、金属不純物レベルとパーティクルレベルを同時に低減させることが課題となっていた。
特開2007-273911号公報
 本発明は、上記事情に鑑みなされたもので、半導体ウェーハを洗浄する際に、半導体ウェーハ表面における金属不純物レベルとパーティクルレベルを同時に低減させることができる半導体ウェーハの洗浄方法を提供することを目的とする。
 上記課題を解決するために、本発明によれば、HF洗浄、オゾン水洗浄、HF洗浄の順で行う洗浄工程を少なくとも1回有する半導体ウェーハの洗浄方法であって、該半導体ウェーハの洗浄方法において最後に行われるHF洗浄において、前記半導体ウェーハ表面に前記オゾン水洗浄で形成された酸化膜を全て除去することなく前記半導体ウェーハ表面上に厚さを一部残すようにして洗浄することを特徴とする半導体ウェーハの洗浄方法を提供する。
 このようにすれば、先に行われるHF洗浄によって半導体ウェーハ表面における金属不純物を十分に除去した後に、オゾン水洗浄によって前記半導体ウェーハ表面に形成される酸化膜を、前記半導体ウェーハの洗浄方法の最後に行われるHF洗浄によって溶解する際に、厚さを一部残すことで前記酸化膜が半導体ウェーハ表面上から完全に除去され、ベア面が露出することによってパーティクルが付着しやすい状態となってしまうことを抑止することができ、これによって半導体ウェーハ表面における金属不純物レベルとパーティクルレベルを同時に低減させることができる。
 また、半導体ウェーハの洗浄において最後に行われるHF洗浄によって前記酸化膜を溶解させる際に、半導体ウェーハ表面に前記酸化膜の厚さが一部残るようにするだけで良いため、非常に簡便である。
 またこのとき、前記半導体ウェーハの洗浄方法における最初のHF洗浄において、前記半導体ウェーハ表面に形成されている酸化膜を全て除去することが好ましい。
 このようにすれば、半導体ウェーハ表面における金属不純物及びこれを取り込んだ酸化膜を確実に除去し、金属不純物レベルを確実に低減させることができ、その後のHF洗浄で酸化膜を残しても問題ない。
 またこのとき、前記半導体ウェーハの洗浄方法における2回目以降のHF洗浄において、前記半導体ウェーハ表面に前記オゾン水洗浄で形成された酸化膜を全て除去することなく前記半導体ウェーハ表面上に厚さを一部残すようにして洗浄することが好ましい。
 このようにすれば、例えば、HF洗浄とオゾン洗浄を繰り返す場合であっても、2回目以降のHF洗浄では酸化膜を残すので、半導体ウェーハ表面の酸化膜が完全に除去され、ベア面が露出することによってパーティクルが付着しやすい状態となり、半導体ウェーハ表面のパーティクルレベルが悪化してしまうことをより確実に抑制することができる。
 またこのとき、前記半導体ウェーハの洗浄方法において、オゾン水洗浄の後にHF洗浄するか、またはHF洗浄の後にオゾン水洗浄することを2回以上交互に繰り返して洗浄を行うことにより、前記半導体ウェーハを洗浄することができる。
 このようにすれば、より効果的に半導体ウェーハ表面の金属不純物レベル及びパーティクルレベルを低減させることができるため好ましい。
 またこのとき、前記半導体ウェーハ表面に前記オゾン水洗浄で形成された酸化膜を全て除去することなく前記半導体ウェーハ表面上に厚さを一部残すようにして洗浄するHF洗浄において、HF濃度を0.1wt%~1.5wt%とすることができる。
 このようにすれば、半導体ウェーハ表面にオゾン水洗浄で形成された酸化膜の溶解に時間がかかり過ぎてしまうこともなく、また前記酸化膜の溶解にかかる時間が短すぎて制御が困難になってしまうこともないため好ましい。
 またこのとき、前記オゾン水洗浄において、オゾン水の濃度を3ppm以上とすることができる。
 このようにすれば、オゾン水洗浄における洗浄効果がより高まるため好ましい。
 またこのとき、前記半導体ウェーハのHF洗浄、オゾン水洗浄を、枚葉式スピン洗浄で行うことができる。
 このように、本発明の半導体ウェーハの洗浄方法におけるHF洗浄とオゾン水洗浄においては、枚葉式スピン洗浄を適用することができる。
 以上説明したように、本発明の半導体ウェーハの洗浄方法を用いれば、半導体ウェーハ表面のパーティクルを効果的かつ簡便に低減することが可能となり、さらに半導体ウェーハ表面における金属不純物レベルとパーティクルレベルを同時に低減させることができる。
本発明における半導体ウェーハの洗浄方法の一例を示すフロー図である。 実施例及び比較例において、各HF洗浄回数におけるウェーハ表面のパーティクルレベルのグラフを示した図である。
 以下、本発明の半導体ウェーハの洗浄方法について、実施形態の一例として図1を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 先ず、本発明の洗浄方法によって洗浄を行う半導体ウェーハを用意する。ここで用いることができる半導体ウェーハは、これに限定されるわけではないが、例えばシリコンウェーハや、GaAs、InP等の化合物半導体ウェーハ等である。
 このような半導体ウェーハを、例えば図1に示したようなフロー図に沿って洗浄する。
 先ず、図1(a)に示す最初のオゾン水洗浄を行う。このとき用いるオゾン水の濃度としては、オゾン水は高濃度であるほどその洗浄効果が高いため、3ppm以上、好ましくは5ppm以上、より好ましくは10ppm以上とすることができる。尚、この最初のオゾン水洗浄は半導体ウェーハ表面に付着している有機物の除去を目的としているため、用意した半導体ウェーハが有機物の付着のほとんど無いものであれば省略しても良い。
 次に、図1(b)~(d)に示すように、HF洗浄、オゾン水洗浄、HF洗浄の順で行う洗浄工程で半導体ウェーハを洗浄する。
 ここで、本発明においては、上記洗浄工程における最後のHF洗浄(図1(d)のHF洗浄に相当する)を行う際に、半導体ウェーハ表面に前記オゾン水洗浄で形成された酸化膜を全て除去することなく前記半導体ウェーハ表面上に厚さを一部残すようにして洗浄を行う。このようにすれば、先に行われたHF洗浄(図1(b))によって半導体ウェーハ表面から十分に金属不純物を除去した後に、オゾン水洗浄(図1(c)のオゾン水洗浄に相当する)によって半導体ウェーハ表面に形成される酸化膜が完全に除去され、ベア面が露出することによってパーティクルが付着しやすい状態となってしまうことを抑止することができ、これによって半導体ウェーハ表面における金属不純物レベルとパーティクルレベルを同時に低減させることができる。尚、このとき半導体ウェーハ表面上に一部残す酸化膜の厚さは特には限定されず、半導体ウェーハ表面を十分に保護できる厚さであれば良い。また、図1(c)のオゾン水洗浄は、図1(a)のオゾン水洗浄と同様にすることができる。
 また、上記洗浄工程における最初のHF洗浄(図1(b)のHF洗浄に相当する)を行う際には、半導体ウェーハ表面に形成されている酸化膜を全て除去することとすれば、半導体ウェーハ表面の金属不純物をより確実に取り除くことができ、さらにその後に行われるオゾン水洗浄により、半導体ウェーハ表面を保護する酸化膜が形成されるため、パーティクルレベルが悪化してしまうこともないため好ましい。
 尚、図1においてはこのようなHF/O/HFの洗浄工程を1回のみ行う例を示したが、本発明はこれに限定されず、2回以上、さらには3回以上行うことも可能である。その際、2回目以降のHF洗浄において、半導体ウェーハ表面に前記オゾン水洗浄で形成された酸化膜を全て除去することなく前記半導体ウェーハ表面上に厚さを一部残すようにして洗浄することとすれば、より効果的に半導体ウェーハ表面におけるパーティクルレベルを低減させることができるため好ましい。
 また、前記半導体ウェーハ表面に前記オゾン水洗浄で形成された酸化膜を全て除去することなく前記半導体ウェーハ表面上に厚さを一部残すようにしてHF洗浄を行う方法としては、これに限定されるわけではないが、例えば酸化膜が全て溶解しないように洗浄時間を短くすることとすれば良い。
 また2種類以上の濃度の異なるHF洗浄液を半導体ウェーハ表面に供給することが可能である場合には、該半導体ウェーハ表面に形成された酸化膜を全て除去するHF洗浄のHF濃度よりも、前記半導体ウェーハ表面に酸化膜の厚さを一部残すHF洗浄のHF濃度を低くすることとしても良い。この場合、前記半導体ウェーハ表面上に酸化膜の厚さを一部残すようにして行うHF洗浄において、HF濃度を0.1wt%~1.5wt%とすれば、前記酸化膜の溶解に時間がかかり過ぎてしまうこともなく、また前記酸化膜の溶解にかかる時間が短すぎて制御が困難になってしまうこともないため好ましい。もちろん、洗浄時間とHF濃度を同時に制御しても良い。
 また本発明の半導体ウェーハの洗浄方法においては、これに限定されるわけではないが、オゾン水洗浄の後にHF洗浄するか、またはHF洗浄の後にオゾン水洗浄することを2回以上交互に繰り返すことにより、半導体ウェーハの洗浄を行うこととすれば、より効果的に半導体ウェーハ表面の金属不純物レベル及びパーティクルレベルを低減させることができるため好ましい。
 このような洗浄工程を行った後に、図1(e)に示すように、最後のオゾン水洗浄を行うことにより、半導体ウェーハ表面を保護するための保護酸化膜を形成する。
 そして図1(f)に示すように、前記保護酸化膜が形成された半導体ウェーハを乾燥させる。
 ここで、前記HF洗浄及びオゾン水洗浄は、これに限定されるわけではないが、例えば枚葉式スピン洗浄で行うことができる。枚葉式スピン洗浄であれば、オゾン水洗浄とHF洗浄の切り替え、洗浄液の濃度制御、洗浄時間の制御等が容易且つ高精度で行うことができる。尚、このように枚葉式スピン洗浄によって前記HF洗浄及びオゾン水洗浄を行った場合、洗浄した半導体ウェーハをスピンドライによって乾燥させればより一層効率的であるため好ましい。
 以下、実施例と比較例を示して本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 まず、直径が300mmの両面を鏡面で仕上げた、表面が清浄なシリコン単結晶ウェーハを15枚準備した。次に、この表面が清浄な15枚のうち3枚のシリコン単結晶ウェーハを抜き取り、洗浄前のパーティクルレベルを調べる為に、1枚をウェーハ表面欠陥検査装置(パーティクルカウンター 日立ハイテク製LS-6800(≧41nm))によるパーティクル測定を行った。測定の結果、洗浄前のウェーハパーティクルレベルは、100個以下の良好なレベルであることがわかった。また、2枚は、洗浄前の表面に付着している金属不純物濃度を調べる為に、HFベーパーにてウェーハ表面の自然酸化膜を気相分解後、ウェーハ表面の金属不純物をHF液滴によって回収し、ICP-MS分析装置によるウェーハ表面の金属不純物濃度測定を行った。測定の結果、実験前のウェーハ表面の金属(Al、Cr、Fe、Ni、Cu、Zn)不純物濃度は、表4に示すようにCu以外の元素が検出された。
 次に、準備したシリコン単結晶ウェーハのうち他の2枚を以下のように洗浄し、パーティクルレベル及び金属不純物レベルの測定を行った。
 まず、枚葉式スピン洗浄による前記2枚のシリコン単結晶ウェーハの洗浄を行った。このとき、表1に示すようにHF洗浄の後にオゾン水洗浄することを2回繰り返し、1回目のHF洗浄においては、シリコン単結晶ウェーハ表面に形成されている酸化膜(自然酸化膜)を全て除去し、2回目(最後)のHF洗浄においては、シリコン単結晶ウェーハ表面にオゾン水洗浄で形成された酸化膜を全ては除去することなくシリコン単結晶ウェーハ表面上に厚さを一部残すようにして洗浄を行った。
 また、洗浄条件として、シリコン単結晶ウェーハ表面の酸化膜を全て除去するHF洗浄時のHF濃度は1.0wt%、ウェーハ回転数は500rpm/15secとし、シリコン単結晶ウェーハ表面に酸化膜の厚さを一部残すHF洗浄時のHF濃度は1.0wt%、ウェーハ回転数は500rpm/3secとし、オゾン水洗浄時のオゾン水濃度は10ppm、ウェーハ回転数は500rpm/15secとして行った。
 尚、最後のオゾン水洗浄は、シリコン単結晶ウェーハの表面を保護するための保護酸化膜を形成するために行った。また、準備したシリコン単結晶ウェーハの表面には有機物等の不純物がほとんど付着していなかったため、有機物除去のための最初のオゾン水洗浄は行わなかった。
 このようにして洗浄した2枚のシリコン単結晶ウェーハを、回転数1500rpm/30secでスピンドライにより乾燥させた後、洗浄を行う前にパーティクルレベルを測定したものと同じウェーハ表面欠陥検査装置及びICP-MS分析装置によってウェーハ表面におけるパーティクルレベル及び金属不純物レベルの測定を行った。このときの結果を表2、表3及び図2に示す。
(実施例2)
 実施例1で準備したシリコン単結晶ウェーハのうち2枚を以下のように洗浄し、パーティクルレベル及び金属不純物レベルの測定を行った。
 表1に示すように、HF洗浄の後にオゾン水洗浄することを3回繰り返し、1回目のHF洗浄においては、シリコン単結晶ウェーハ表面に形成されている酸化膜を全て除去し、2回目以降の全てのHF洗浄においては、シリコン単結晶ウェーハ表面にオゾン水洗浄で形成された酸化膜を全て除去することなくシリコン単結晶ウェーハ表面上に厚さを一部残すようにして洗浄を行ったこと以外は実施例1と同様にしてシリコン単結晶ウェーハの洗浄を行った。
 このようにして洗浄したシリコン単結晶ウェーハ表面におけるパーティクルレベル及び金属不純物レベルの測定を実施例1と同様にして行った。このときの結果を表2、表3及び図2に示す。
(実施例3)
 実施例1で準備したシリコン単結晶ウェーハのうち2枚を以下のように洗浄し、パーティクルレベル及び金属不純物レベルの測定を行った。
 表1に示すように、HF洗浄の後にオゾン水洗浄することを4回繰り返し、1回目のHF洗浄においては、シリコン単結晶ウェーハ表面に形成されている酸化膜を全て除去し、2回目以降の全てのHF洗浄においては、シリコン単結晶ウェーハ表面にオゾン水洗浄で形成された酸化膜を全て除去することなくシリコン単結晶ウェーハ表面上に厚さを一部残すようにして洗浄を行ったこと以外は実施例1と同様にしてシリコン単結晶ウェーハの洗浄を行った。
 このようにして洗浄したシリコン単結晶ウェーハ表面におけるパーティクルレベル及び金属不純物レベルの測定を実施例1と同様にして行った。このときの結果を表2、表3及び図2に示す。
(比較例1)
 実施例1で準備したシリコン単結晶ウェーハのうち2枚を以下のように洗浄し、パーティクルレベル及び金属不純物レベルの測定を行った。
 表1に示すように、HF洗浄の後にオゾン水洗浄することを2回繰り返し、全てのHF洗浄において、シリコン単結晶ウェーハ表面に形成されている酸化膜を全て除去して洗浄を行ったこと以外は実施例1と同様にしてシリコン単結晶ウェーハの洗浄を行った。
 このようにして洗浄したシリコン単結晶ウェーハ表面におけるパーティクルレベル及び金属不純物レベルの測定を実施例1と同様にして行った。このときの結果を表2、表3及び図2に示す。
(比較例2)
 実施例1で準備したシリコン単結晶ウェーハのうち2枚を以下のように洗浄し、パーティクルレベル及び金属不純物レベルの測定を行った。
 表1に示すように、HF洗浄の後にオゾン水洗浄することを3回繰り返して洗浄を行ったこと以外は比較例1と同様にしてシリコン単結晶ウェーハの洗浄を行った。
 このようにして洗浄したシリコン単結晶ウェーハ表面におけるパーティクルレベル及び金属不純物レベルの測定を実施例1と同様にして行った。このときの結果を表2、表3及び図2に示す。
(比較例3)
 実施例1で準備したシリコン単結晶ウェーハのうち2枚を以下のように洗浄し、パーティクルレベル及び金属不純物レベルの測定を行った。
 表1に示すように、HF洗浄の後にオゾン水洗浄することを4回繰り返して洗浄を行ったこと以外は比較例1と同様にしてシリコン単結晶ウェーハの洗浄を行った。
 このようにして洗浄したシリコン単結晶ウェーハ表面におけるパーティクルレベル及び金属不純物レベルの測定を実施例1と同様にして行った。このときの結果を表2、表3及び図2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例及び比較例の結果より、比較例のように、全てのHF洗浄においてシリコン単結晶ウェーハ表面に形成されている酸化膜を全て除去して洗浄を行った場合には、HF洗浄とオゾン水洗浄を繰り返しても、半導体ウェーハ表面のパーティクルレベルは低くならないどころか、むしろ高くなってしまっていることがわかる。しかし実施例においては、2回目以降のHF洗浄において、半導体ウェーハ表面に酸化膜の厚さを一部残すことで、半導体ウェーハ表面はパーティクルが付着しやすい撥水面にならず、パーティクルレベルが低減された半導体ウェーハを得られることがわかる。さらに、表3に示されているように、比較例と実施例共に、ウェーハ表面金属不純物濃度は全て未検出(N.D.)であり、実施例においては、2回目以降のHF洗浄において、半導体ウェーハ表面に酸化膜の厚さを一部残すにもかかわらず金属不純物濃度の少ないウェーハ表面を得られることが確認できる。すなわち、本発明の半導体ウェーハの洗浄方法であれば、半導体ウェーハ表面の金属不純物レベル及びパーティクルレベルを同時に低減できることがわかる。
 尚、実施例1-3において、2回目以降のHF洗浄の洗浄時間を短くすることによってシリコン単結晶ウェーハ表面上に酸化膜の厚さを一部残すようにして洗浄を行ったが、最初のHF洗浄におけるHF濃度より低濃度とするか、または洗浄時間とHF濃度を同時に制御するようにしても良い。
 また、実施例2及び実施例3においては、2回目以降の全てのHF洗浄においてシリコン単結晶ウェーハ表面上に酸化膜の厚さを一部残すようにして洗浄を行ったが、各実施例において、最後のHF洗浄においてのみシリコン単結晶ウェーハ表面上に酸化膜の厚さを一部残すようにして洗浄を行ったとしても、本発明の効果を十分に得ることができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に含有される。

Claims (7)

  1.  HF洗浄、オゾン水洗浄、HF洗浄の順で行う洗浄工程を少なくとも1回有する半導体ウェーハの洗浄方法であって、該半導体ウェーハの洗浄方法において最後に行われるHF洗浄において、前記半導体ウェーハ表面に前記オゾン水洗浄で形成された酸化膜を全て除去することなく前記半導体ウェーハ表面上に厚さを一部残すようにして洗浄することを特徴とする半導体ウェーハの洗浄方法。
  2.  前記半導体ウェーハの洗浄方法における最初のHF洗浄において、前記半導体ウェーハ表面に形成されている酸化膜を全て除去することを特徴とする請求項1に記載の半導体ウェーハの洗浄方法。
  3.  前記半導体ウェーハの洗浄方法における2回目以降のHF洗浄において、前記半導体ウェーハ表面に前記オゾン水洗浄で形成された酸化膜を全て除去することなく前記半導体ウェーハ表面上に厚さを一部残すようにして洗浄することを特徴とする請求項1または請求項2に記載の半導体ウェーハの洗浄方法。
  4.  前記半導体ウェーハの洗浄方法において、オゾン水洗浄の後にHF洗浄するか、またはHF洗浄の後にオゾン水洗浄することを2回以上交互に繰り返して洗浄を行うことにより、前記半導体ウェーハを洗浄することを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体ウェーハの洗浄方法。
  5.  前記半導体ウェーハ表面に前記オゾン水洗浄で形成された酸化膜を全て除去することなく前記半導体ウェーハ表面上に厚さを一部残すようにして洗浄するHF洗浄において、HF濃度を0.1wt%~1.5wt%とすることを特徴とする請求項1乃至請求項4のいずれか1項に記載の半導体ウェーハの洗浄方法。
  6.  前記オゾン水洗浄において、オゾン水の濃度を3ppm以上とすることを特徴とする請求項1乃至請求項5のいずれか1項に記載の半導体ウェーハの洗浄方法。
  7.  前記半導体ウェーハのHF洗浄、オゾン水洗浄を、枚葉式スピン洗浄で行うことを特徴とする請求項1乃至請求項6のいずれか1項に記載の半導体ウェーハの洗浄方法。
PCT/JP2012/003090 2011-06-17 2012-05-11 半導体ウェーハの洗浄方法 WO2012172724A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137033145A KR101774843B1 (ko) 2011-06-17 2012-05-11 반도체 웨이퍼의 세정 방법
CN201280029741.1A CN103608904B (zh) 2011-06-17 2012-05-11 半导体晶片的清洗方法
DE112012002437.0T DE112012002437B4 (de) 2011-06-17 2012-05-11 Verfahren zum Reinigen eines Halbleiterwafers
US14/113,329 US9082610B2 (en) 2011-06-17 2012-05-11 Method for cleaning semiconductor wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011134809A JP5589968B2 (ja) 2011-06-17 2011-06-17 半導体ウェーハの洗浄方法
JP2011-134809 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012172724A1 true WO2012172724A1 (ja) 2012-12-20

Family

ID=47356744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003090 WO2012172724A1 (ja) 2011-06-17 2012-05-11 半導体ウェーハの洗浄方法

Country Status (7)

Country Link
US (1) US9082610B2 (ja)
JP (1) JP5589968B2 (ja)
KR (1) KR101774843B1 (ja)
CN (1) CN103608904B (ja)
DE (1) DE112012002437B4 (ja)
TW (1) TWI505340B (ja)
WO (1) WO2012172724A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745925A (zh) * 2013-11-14 2014-04-23 上海和辉光电有限公司 一种平坦化多晶硅薄膜的制造方法
WO2019049641A1 (ja) * 2017-09-06 2019-03-14 信越半導体株式会社 シリコンウェーハの評価方法及びシリコンウェーハの製造方法
KR20200051595A (ko) * 2017-09-06 2020-05-13 신에쯔 한도타이 가부시키가이샤 실리콘 웨이퍼의 평가방법 및 실리콘 웨이퍼의 제조방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099211A1 (ja) 2015-12-11 2017-06-15 富士フイルム株式会社 洗浄液、基板洗浄方法、及び、半導体デバイスの製造方法
JP6575538B2 (ja) * 2017-01-23 2019-09-18 信越半導体株式会社 半導体ウェーハの洗浄方法
CN107170677A (zh) * 2017-05-09 2017-09-15 刘程秀 半导体晶片的表面处理方法
CN108039315A (zh) * 2017-12-15 2018-05-15 浙江晶科能源有限公司 一种硅片的清洗方法
KR20220103330A (ko) * 2021-01-15 2022-07-22 삼성전자주식회사 웨이퍼 클리닝 장치 및 방법
EP4181171A1 (de) 2021-11-12 2023-05-17 Siltronic AG Verfahren zur reinigung einer halbleiterscheibe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053050A (ja) * 1999-06-01 2001-02-23 Komatsu Electronic Metals Co Ltd 半導体基板の洗浄方法
JP2002203824A (ja) * 2000-12-28 2002-07-19 Super Silicon Kenkyusho:Kk ウエハ洗浄方法
JP2007273911A (ja) * 2006-03-31 2007-10-18 Sumco Techxiv株式会社 シリコンウェーハの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321755C (zh) * 2003-01-21 2007-06-20 友达光电股份有限公司 清洗硅表面的方法以及用此方法制造薄膜晶体管的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053050A (ja) * 1999-06-01 2001-02-23 Komatsu Electronic Metals Co Ltd 半導体基板の洗浄方法
JP2002203824A (ja) * 2000-12-28 2002-07-19 Super Silicon Kenkyusho:Kk ウエハ洗浄方法
JP2007273911A (ja) * 2006-03-31 2007-10-18 Sumco Techxiv株式会社 シリコンウェーハの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745925A (zh) * 2013-11-14 2014-04-23 上海和辉光电有限公司 一种平坦化多晶硅薄膜的制造方法
WO2019049641A1 (ja) * 2017-09-06 2019-03-14 信越半導体株式会社 シリコンウェーハの評価方法及びシリコンウェーハの製造方法
KR20200051595A (ko) * 2017-09-06 2020-05-13 신에쯔 한도타이 가부시키가이샤 실리콘 웨이퍼의 평가방법 및 실리콘 웨이퍼의 제조방법
US11222780B2 (en) 2017-09-06 2022-01-11 Shin-Etsu Handotai Co., Ltd. Method for evaluating silicon wafer and method for manufacturing silicon wafer
KR102560436B1 (ko) 2017-09-06 2023-07-27 신에쯔 한도타이 가부시키가이샤 실리콘 웨이퍼의 평가방법 및 실리콘 웨이퍼의 제조방법

Also Published As

Publication number Publication date
DE112012002437T5 (de) 2014-04-30
TW201310513A (zh) 2013-03-01
US20140048100A1 (en) 2014-02-20
JP5589968B2 (ja) 2014-09-17
CN103608904B (zh) 2016-05-04
KR20140058439A (ko) 2014-05-14
DE112012002437B4 (de) 2022-01-27
KR101774843B1 (ko) 2017-09-05
US9082610B2 (en) 2015-07-14
CN103608904A (zh) 2014-02-26
JP2013004760A (ja) 2013-01-07
TWI505340B (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5589968B2 (ja) 半導体ウェーハの洗浄方法
TWI520197B (zh) Method of cleaning semiconductor wafers
JPH0426120A (ja) 半導体基板の処理方法
TWI795547B (zh) 矽晶圓的洗淨方法
WO2013179569A1 (ja) 半導体ウェーハの洗浄方法
JP4933071B2 (ja) シリコンウエハの洗浄方法
JP5515588B2 (ja) ウエハ用洗浄水及びウエハの洗浄方法
TWI615896B (zh) 矽晶圓之製造方法
JPH1187281A (ja) シリコンウエーハの洗浄方法
JP2007150196A (ja) 半導体ウエーハの洗浄方法および製造方法
CN109427543B (zh) 硅晶片的洗涤方法
JP2001326209A (ja) シリコン基板の表面処理方法
KR100848777B1 (ko) 반도체 세정공정에서 웨이퍼 배면 결점 제거 방법
KR102509323B1 (ko) 반도체 웨이퍼의 세정방법
JP2010092938A (ja) 半導体ウェハの洗浄方法、および、半導体ウェハ
TWI506690B (zh) Silicon wafer manufacturing method
JPH04274324A (ja) ウェーハの表面洗浄方法
JP5994687B2 (ja) 洗浄槽の処理方法
JP2000124182A (ja) 半導体基板の洗浄方法及び半導体基板
JP2008021924A (ja) シリコンウエハ表面の不純物除去方法
JPH0459700A (ja) シリコンウエハの洗浄方法
JP2005051141A (ja) 半導体装置の製造方法、及び半導体製造装置
JPH04259221A (ja) 半導体ウェーハ用洗浄液
JP2004327878A (ja) シリコンウェーハの洗浄方法
Luo et al. Effect of De-ionized Water Rinse in AlCu Line Post Etch Asher Residue Removal Process Using Fluoride Containing Stripper

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280029741.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799940

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14113329

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012002437

Country of ref document: DE

Ref document number: 1120120024370

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20137033145

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12799940

Country of ref document: EP

Kind code of ref document: A1