WO2012171309A1 - 一种自屏蔽开放式磁共振成像超导磁体 - Google Patents

一种自屏蔽开放式磁共振成像超导磁体 Download PDF

Info

Publication number
WO2012171309A1
WO2012171309A1 PCT/CN2011/083970 CN2011083970W WO2012171309A1 WO 2012171309 A1 WO2012171309 A1 WO 2012171309A1 CN 2011083970 W CN2011083970 W CN 2011083970W WO 2012171309 A1 WO2012171309 A1 WO 2012171309A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
main magnetic
line
coils
superconducting magnet
Prior art date
Application number
PCT/CN2011/083970
Other languages
English (en)
French (fr)
Inventor
王秋良
王春忠
胡新宁
王晖
严陆光
戴银明
赵保志
汪建华
许建益
Original Assignee
中国科学院电工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院电工研究所 filed Critical 中国科学院电工研究所
Priority to US14/125,003 priority Critical patent/US8996083B2/en
Publication of WO2012171309A1 publication Critical patent/WO2012171309A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34015Temperature-controlled RF coils
    • G01R33/34023Superconducting RF coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field

Definitions

  • the present invention relates to a superconducting magnet for use in the field of magnetic resonance imaging, and more particularly to an open superconducting magnet. Background technique
  • Full-body imaging of magnetic resonance imaging magnets requires high uniformity magnetic fields in large spaces, such as magnetic field inhomogeneities in the 40 cm uniform zone sphere space (uniform zone sphere space, DSV) less than 10 ppm (ppm, millions) One of the points).
  • the general magnet structure is tunnel-shaped, providing high field and high uniformity, which is the case with most current magnet structures.
  • the tunnel-shaped magnet structure is not open, and some patients may develop claustrophobia.
  • magnet lengths ranging from 1.3 m to 1.4 m, it still does not meet the openness requirements for interventional therapy.
  • the invention overcomes the lack of openness of the existing magnetic resonance superconducting magnet system, and proposes an open superconducting magnet.
  • the open superconducting magnet structure of the invention can obtain a large open space, and is suitable for medical diagnosis and interventional treatment. use.
  • the superconducting magnet of the present invention is composed of five pairs of turns, and the five pairs of turns are arranged symmetrically about the center.
  • the five pairs of wires include a shim line, a main magnetic field line, a main magnetic field line, a main magnetic field line, and a shield line.
  • the closest to the center point is the shimming line ⁇ .
  • the main magnetic field line is arranged one after the other, the main magnetic field line is ⁇ 2, the main magnetic field line is ⁇ 3, and the outermost layer is the shielded line ⁇ .
  • the main magnetic field line has a reverse current, the main magnetic field line ⁇ 2 and the main magnetic field line ⁇ three-way forward current, providing the main magnetic field strength.
  • the shimming line passes forward current and compensates the magnetic field in the central region to improve the magnetic field uniformity of the magnet in the uniform sphere space.
  • the shield line is reversed to generate a magnetic field that is opposite to the main magnetic field to compensate for the stray magnetic field in the space, so that the 5G line of the magnet is smaller.
  • the unevenness is 5ppm, which can meet the full imaging requirements.
  • the 5 Gaussian stray field is distributed in the ellipsoid range of less than 5 meters in the radial direction and about 4.8 meters in the axial direction, so it has good electromagnetic compatibility.
  • the entire magnet is compact in structure, providing a clear space greater than 0.6 m between the turns plane, independent of the obesity patient's body shape.
  • the maximum diameter of the wire is less than 1.68 m, so the magnets are not required for space.
  • Electromagnetic structure of open high uniformity superconducting wire 1 shimming line 2, 2 main magnetic field line ⁇ 1, 3 main magnetic field line ⁇ 2, 4 main magnetic field line ⁇ 3, 5 shielding line ⁇ ;
  • Fig. 2 diameter is The equipotential line distribution of the magnetic field uniformity of the 360 mm DSV;
  • Figure 3 is the distribution of the 5G line of the magnet system at a center magnetic field of 1.5T;
  • Figure 4 shows the magnetic field distribution on the superconducting wire of the central magnetic field at 1.5T.
  • Figure 1 shows the structure of an open magnetic resonance magnet of the present invention.
  • the invention consists of five pairs of turns symmetrical about a center, including a shim line ,1, a main magnetic field line ⁇ 2, a main magnetic field line ⁇ 2, a main magnetic field line 43, and a shield line ⁇ 5.
  • the closest to the center point is the shimming line ⁇ 1, and the main magnetic field line ⁇ 2 is arranged outwardly, the main magnetic field line ⁇ 2, the main magnetic field line ⁇ 3, and the outermost arrangement is the shielding line ⁇ 5.
  • the main magnetic field is provided by the main magnetic field line ⁇ 2, the main magnetic field line ⁇ 2, and the main magnetic field line ⁇ 3.
  • the shimming line ⁇ 13 compensates for the magnetic field in the central region to increase the magnetic field uniformity of the magnet in the spherical region.
  • the shield wire ⁇ 5 generates a magnetic field that is opposite to the main magnetic field to compensate for the stray magnetic field in the space, thereby obtaining a smaller 5G line of the magnet.
  • the distance between the main magnetic field line ⁇ 2 is the smallest, 0.6m; the shield line ⁇ 5 has the largest diameter, which is 1.68 m; therefore the magnet has a compact ⁇ structure.
  • Fig. 2 is a calculation result of the magnetic field uniformity of the magnet system having a diameter of 360 mm DSV.
  • the unevenness at the edge of the region is approximately 5 ppm, indicating that the magnet system is capable of providing a reasonable uniform magnetic field for use as medical MRI.
  • Figure 3 shows the distribution characteristics of the 5G line of the magnet system.
  • the central magnetic field is 1.5T
  • the 5 Gaussian stray field is distributed in the ellipsoid range of less than 5 meters in the radial direction and about 4.8 meters in the axial direction.
  • Figure 4 shows the magnetic field distribution on the superconducting wire, which determines the performance of the superconducting wire used in each wire.
  • the center magnetic field is 1.5T
  • the maximum magnetic field is 9.35T
  • the maximum magnetic field is located on the outer surface of the main magnetic field line 43.
  • This turns can be implemented using NbTi phase-embedded conductors (WICs).

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种开放式磁共振成像超导磁体,由匀场线圈(1)、主磁场线圈一(2)、主磁场线圈二(3)、主磁场线圈三(4)、和屏蔽线圈(5)五对线圈组成,五对线圈关于中心对称。离中心点最近的是匀场线圈(1),向外依次布置主磁场线圈一(2)、主磁场线圈二(3)、主磁场线圈三(4)、屏蔽线圈(5)。主磁场线圈一(2)通反向电流,主磁场线圈二(3)和主磁场线圈三(4)通正向电流,提供主磁场强度。匀场线圈(1)通正向电流,对中心区域的磁场进行补偿,以提高磁体在球形区域的磁场均匀度。屏蔽线圈(5)通反向电流,产生与主磁场相反的磁场,以补偿空间的杂散磁场。所述超导磁体在360mm球域内提供1一1.5T的中心磁场,5高斯杂散场限制在5米的范围内。

Description

一种自屏蔽开放式磁共振成像超导磁体 技术领域
本发明涉及一种用于磁共振成像领域的超导磁体,特别涉及 一种开放式超导磁体。 背景技术
全身成像的磁共振成像磁体要在大的空间内实现高均匀度 磁场, 如在 40cm均匀区球域空间 (均匀区球域空间, DSV ) 范 围内磁场不均匀度小于 lO ppm ( ppm, 百万分之一)。 一般的磁 体结构为隧道形, 可以提供高场和高均匀度, 目前绝大多数磁体 结构都是如此。 但是隧道形的磁体结构开放性不好, 部分病人会 产生幽闭症。 虽然近年来许多新型结构磁体系统的出现, 如短腔 磁体结构, 磁体长度在 1.3m到 1.4m, 但是仍然无法满足介入治 疗的开放性需求。
从介入治疗以及医学诊断技术的发展来看, 需要一种处于完 全开放的磁体系统以适应医学介入治疗的需要。 当前的完全开放 式磁共振成像产品以永磁磁体为主, 提供 0.7T以下的中心磁场, 通常采用 "C"形结构。 WO/2007/094844 提供了一种开放式磁共振 成像的永磁磁体结构, 中心磁场可达 1T。 WO/1998/007362提供 了一种双面结构的磁共振成像永磁磁体。中国专利 02210965提供 了一种两立柱开放式 C型永磁型磁共振磁体。
少数公司也发展了开放式磁共振超导磁体,场强一般在 1.2T 以下, 如日立公司和飞利浦公司的相关产品。 飞利浦公司的中国 专利 02824552采用一对超导线圏的开放式磁体结构。目前世界上 还没有 1.5T完全开放式磁共振成像系统。
采用超导线圏的开放式磁共振成像磁体主要难题是:造价偏 高和制作技术难度较大。 对于采用被动屏蔽的开放式超导磁体结 构而言, 加入铁磁屏蔽以后磁体系统过于庞大。 而主动屏蔽的开 放式磁体最高场和中心场比值偏大, 如中心磁场为 1.5T时, 线圏 内最高磁场甚至会超过 10T, 这对于使用 NbTi材料的超导线圏 达不到可接受的程度, 因此需要发明新的磁体结构来克服这种问 题。 发明内容
本发明克服现有磁共振超导磁体系统的开放性不足,提出一 种开放式的超导磁体, 本发明开放式的超导磁体结构可获得较大 的开放空间, 适合于医疗诊断和介入治疗使用。
本发明超导磁体由五对线圏组成,五对线圏关于中心对称布 置。 所述的五对线圏包括匀场线圏, 主磁场线圏一, 主磁场线圏 二, 主磁场线圏三和屏蔽线圏。 离中心点最近的是匀场线圏, 向 外依次布置主磁场线圏一, 主磁场线圏二, 主磁场线圏三, 布置 在最外层的是屏蔽线圏。
主磁场线圏一通反向电流,主磁场线圏二和主磁场线圏三通 正向电流, 提供主磁场强度。 匀场线圏通正向电流, 对中心区域 的磁场进行补偿,以提高磁体在均匀区球域空间内的磁场均匀度。 屏蔽线圏通反向电流, 产生和主磁场反向的磁场, 以补偿空间的 杂散磁场, 使获得磁体的 5G线较小。
本发明磁体可以采用低温或高温超导线材实现,并具备以下 性能特点:
( 1 ) 在 360毫米 DSV内, 不均匀度为 5ppm, 能够满足全 身成像要求。
( 2 ) 当中心磁场为 1.5T时,最大磁场小于 9.5T,小于 NbTi 超导材料临界磁场(NbTi临界磁场约为 10T, 4.2K )。 在增大屏 蔽线圏和主线圏轴向距离的条件下,最大磁场还可以进一步降低。
( 3 ) 当中心磁场为 1.5T时, 5高斯杂散场分布在径向小于 5米,轴向约为 4.8米的椭球域范围内, 因此具有较好的电磁兼容 性。
( 4 ) 整个磁体结构紧凑,线圏平面之间提供大于 0. 6米的 净空间, 不受肥胖病人体形的限制。 最大线圏直径小于 1.68 m, 因此磁体对于场地空间要求不高。 附图说明
图 1 开放式高均匀度超导线圏的电磁结构, 1 匀场线圏, 2 主磁场线圏一, 3主磁场线圏二, 4主磁场线圏三, 5屏蔽线圏; 图 2直径为 360 mm DSV的磁场均匀度等位线分布; 图 3为中心磁场 1.5T时, 磁体系统的 5G线的分布图; 图 4为中心磁场 1.5T时, 在超导线圏上的磁场分布。 具体实施方式
以下结合附图及具体实施方式进一步说明本发明。
图 1所示是本发明开放式磁共振磁体的结构。本发明由关于 中心对称的 5对线圏组成, 包括匀场线圏 1, 主磁场线圏一 2, 主 磁场线圏二 3,主磁场线圏三 4和屏蔽线圏 5。 离中心点最近的是 匀场线圏 1 , 向外依次布置主磁场线圏一 2, 主磁场线圏二 3, 主 磁场线圏三 4, 最外布置的是屏蔽线圏 5。 由主磁场线圏一 2、 主 磁场线圏二 3、 主磁场线圏三 4共同提供主磁场。 匀场线圏 13对 中心区域的磁场进行补偿,以提高磁体在球形区域的磁场均匀度。 屏蔽线圏 5产生和主磁场反向的磁场, 以补偿空间的杂散磁场, 从而获得磁体的 5G线较小。 主磁场线圏一 2之间距离最小, 为 0.6m; 屏蔽线圏 5直径最大, 为 1.68 m; 因此该磁体具有紧凑的 线圏结构。
图 2是磁体系统的直径为 360mmDSV的磁场均匀度计算结 果。 在区域边缘不均匀度约为 5ppm, 表明磁体系统能够提供合 理的均匀磁场作为医学核磁共振成像使用。
图 3磁体系统的 5G线的分布特性, 当中心磁场为 1.5T时, 5高斯杂散场分布在径向小于 5米,轴向约为 4.8米的椭球域范围 内。
图 4在超导线圏上的磁场分布, 由此可以决定各个线圏使用 的超导线材的性能。 中心磁场为 1.5T时, 最大磁场为 9.35T, 最 大磁场位于主磁场线圏三 4 的线圏外表面上。 该线圏可以使用 NbTi相嵌导体 (WIC)实现。

Claims

1、 一种开放式磁共振成像超导磁体, 其特征在于, 所述的超导磁 体由五对线圏组成, 五对线圏关于中心对称; 所述的五对线圏包 括匀场线圏 (1) , 主磁场线圏一(2) , 主磁场线圏二(3) , 主 磁场线圏三 (4)和屏蔽线圏 (5) ; 离中心点最近的是匀场线圏 (1) , 向外依次布置主磁场线圏一(2) 、 主磁场线圏二(3) 、 主磁场线圏三 (4) 、 布置在最外层的是屏蔽线圏 (5) ; 主磁场 线圏一( 2 )通反向电流, 主磁场线圏二( 3 )和主磁场线圏三( 4 ) 通正向电流, 提供主磁场强度; 匀场线圏(1)通正向电流, 对中 心区域的磁场进行补偿, 以提高磁体在球形区域的磁场均匀度; 屏蔽线圏(5)通反向电流, 产生与主磁场相反的磁场, 以补偿空 间的杂散磁场。
2、权利要求 1所述的开放式磁共振成像超导磁体, 其中, 所述主 磁场线圏一(2)之间距离最小, 为 0.6m。
3、权利要求 1所述的开放式磁共振成像超导磁体, 其中, 所述屏 蔽线圏 (5) 的直径最大, 为 1.68m。
4、权利要求 1所述的开放式磁共振成像超导磁体, 其中, 所述主 磁场线圏三 (4)使用 NbTi相嵌导体来实现。
5. 权利要求 1所述的开放式磁共振成像超导磁体, 其中, 所述磁 体采用低温或高温超导线材来实现。
PCT/CN2011/083970 2011-06-14 2011-12-14 一种自屏蔽开放式磁共振成像超导磁体 WO2012171309A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/125,003 US8996083B2 (en) 2011-06-14 2011-12-14 Self-shield open magnetic resonance imaging superconducting magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101580778A CN102360690A (zh) 2011-06-14 2011-06-14 一种自屏蔽开放式磁共振成像超导磁体
CN201110158077.8 2011-06-14

Publications (1)

Publication Number Publication Date
WO2012171309A1 true WO2012171309A1 (zh) 2012-12-20

Family

ID=45585989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083970 WO2012171309A1 (zh) 2011-06-14 2011-12-14 一种自屏蔽开放式磁共振成像超导磁体

Country Status (3)

Country Link
US (1) US8996083B2 (zh)
CN (1) CN102360690A (zh)
WO (1) WO2012171309A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035352B (zh) * 2012-12-17 2015-03-18 中国科学院电工研究所 一种双平面型开放式磁共振成像超导磁体系统
CN103077797B (zh) * 2013-01-06 2016-03-30 中国科学院电工研究所 用于头部成像的超导磁体系统
CN103050212B (zh) * 2013-01-09 2015-10-14 中国科学院电工研究所 一种开放式自屏蔽磁共振成像分裂式超导磁体系统
CN103065758B (zh) * 2013-01-25 2015-07-15 中国科学院电工研究所 一种超短腔自屏蔽磁共振成像超导磁体
CN104599805B (zh) 2015-01-30 2017-01-25 中国科学院电工研究所 一种太赫兹源的强磁聚焦磁体系统
CN106782998A (zh) * 2016-12-29 2017-05-31 中国科学院电工研究所 开放式自屏蔽磁共振成像超导磁体
CN106856654B (zh) * 2017-03-13 2019-08-02 深圳市金石医疗科技有限公司 自屏蔽式磁共振装置
CN108303663B (zh) * 2018-01-23 2020-07-03 山东迈格尼医疗科技有限公司 一种双气隙开放式磁共振成像磁体
CN109712773B (zh) * 2018-12-26 2021-10-01 中国科学院电工研究所 一种极高场核磁共振超导磁体
WO2020155137A1 (en) * 2019-02-02 2020-08-06 Shanghai United Imaging Healthcare Co., Ltd. Radiation therapy system and method
EP3828580B1 (en) * 2019-11-27 2023-10-11 Siemens Healthcare GmbH Method and system for compensating stray magnetic fields in a magnetic resonance imaging system with multiple examination areas
CN112444761B (zh) * 2020-11-06 2021-10-19 北京航空航天大学 一种八边形轴向匀场线圈设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677660A (en) * 1996-07-10 1997-10-14 Mitsubishi Denki Kabushiki Kaisha Electromagnetic device
JP2005109144A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd 均一磁場発生マグネット
JP2007282859A (ja) * 2006-04-17 2007-11-01 Hitachi Ltd 超伝導磁石装置および磁気共鳴イメージング装置
CN101552077A (zh) * 2008-12-11 2009-10-07 中国科学院电工研究所 一种用于产生高磁场高均匀度的超导磁体系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4724412A (en) * 1987-08-03 1988-02-09 General Electric Company Method of determining coil arrangement of an actively shielded magnetic resonance magnet
AUPQ198899A0 (en) * 1999-08-03 1999-08-26 University Of Queensland, The A method of magnet design and magnet configuration
US6970062B2 (en) * 2001-12-21 2005-11-29 Koninklijke Philips Electronics N.V. Cooling of a MRI system
GB2448479B (en) * 2007-04-18 2009-06-03 Siemens Magnet Technology Ltd Improved shim for imaging magnets
CN101533078B (zh) * 2009-04-17 2010-12-15 中国科学院电工研究所 用于婴儿成像磁共振成像装置的超导磁体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677660A (en) * 1996-07-10 1997-10-14 Mitsubishi Denki Kabushiki Kaisha Electromagnetic device
JP2005109144A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd 均一磁場発生マグネット
JP2007282859A (ja) * 2006-04-17 2007-11-01 Hitachi Ltd 超伝導磁石装置および磁気共鳴イメージング装置
CN101552077A (zh) * 2008-12-11 2009-10-07 中国科学院电工研究所 一种用于产生高磁场高均匀度的超导磁体系统

Also Published As

Publication number Publication date
US8996083B2 (en) 2015-03-31
CN102360690A (zh) 2012-02-22
US20140121114A1 (en) 2014-05-01

Similar Documents

Publication Publication Date Title
WO2012171309A1 (zh) 一种自屏蔽开放式磁共振成像超导磁体
TWI743481B (zh) 用於磁共振成像系統的b磁鐵方法及設備
TWI627428B (zh) 用於磁共振成像系統中之磁性系統
JP5715116B2 (ja) 磁気共鳴システム用モザイク式シム・コイル
JP2584005B2 (ja) 磁場勾配コイル装置およびそれを用いる磁気共鳴イメージングシステム
CN106782998A (zh) 开放式自屏蔽磁共振成像超导磁体
AU2010336013B2 (en) Open-bore magnet for use in magnetic resonance imaging
JP4204470B2 (ja) 勾配磁場を発生させるためのコイルシステム
JP2006314796A (ja) 三同心コイル・アレイ
CN103123388A (zh) 用于磁共振装置的局部线圈的与梯度无关的匀场线圈
US10473736B2 (en) Subject-loaded helical-antenna radio-frequency coil for magnetic resonance imaging
Wang Hardware of MRI System
WO2020118352A1 (en) Gradient coil system
WO2015190816A1 (ko) Rf 표면 코일부 및 이를 포함하는 자기공명영상 시스템
JP2004130141A (ja) 核磁気共鳴画像用の勾配コイル構造
Sekino et al. Fabrication of an MRI model magnet with an off-centered distribution of homogeneous magnetic field zone
US10156620B2 (en) Multifunctional superconducting coil providing electromagnetic interference shielding and shimming for magnetic resonance imaging system
CN116087849B (zh) 一种mri专用梯度线圈
CA2939982C (en) Magnetic resonance imaging with a single thick loop
CN212872867U (zh) 乳腺检查用核磁共振梯度线圈
JP3474630B2 (ja) 磁気共鳴検査装置用高周波コイル
JP2004325252A (ja) 核磁気共鳴装置用マグネットおよびそれを用いた核磁気共鳴分析装置
Wang et al. Development of high magnetic field magnet technologies for the magnetic resonance medical imaging
Wang et al. High field superconducting magnet technologies for magnetic resonance imaging
Ueno et al. Clinical impact of zoomed EPI: improving image quality of diffusion-weighted imaging of uterus at 3T-MRI

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14125003

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867979

Country of ref document: EP

Kind code of ref document: A1