WO2012171155A1 - 恒阻大变形缆索及其恒阻装置 - Google Patents

恒阻大变形缆索及其恒阻装置 Download PDF

Info

Publication number
WO2012171155A1
WO2012171155A1 PCT/CN2011/075640 CN2011075640W WO2012171155A1 WO 2012171155 A1 WO2012171155 A1 WO 2012171155A1 CN 2011075640 W CN2011075640 W CN 2011075640W WO 2012171155 A1 WO2012171155 A1 WO 2012171155A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant resistance
sleeve
constant
resistance body
cable
Prior art date
Application number
PCT/CN2011/075640
Other languages
English (en)
French (fr)
Inventor
何满潮
陶志刚
张斌
Original Assignee
中国矿业大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学(北京) filed Critical 中国矿业大学(北京)
Priority to JP2014515020A priority Critical patent/JP5771743B2/ja
Priority to PCT/CN2011/075640 priority patent/WO2012171155A1/zh
Priority to PL11867912T priority patent/PL2719858T3/pl
Priority to US14/126,289 priority patent/US9797248B2/en
Priority to EP11867912.5A priority patent/EP2719858B1/en
Publication of WO2012171155A1 publication Critical patent/WO2012171155A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • E21D21/0033Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts having a jacket or outer tube
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/02Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection having means for indicating tension
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors

Definitions

  • the invention relates to a novel material for monitoring and early warning of soft rock slope stability and activity monitoring of seismogenic faults, in particular to a constant resistance large deformation cable and a constant resistance device thereof, belonging to soft rock slope large deformation damage reinforcement and monitoring , early warning technology field.
  • Prestressed anchor cables are of various types and types, and are continuously improved and improved with the improvement of application level. Prestressed anchoring technology has been widely used in various fields of geotechnical reinforcement engineering and has accumulated rich experience in engineering practice.
  • the object of the present invention is to provide a constant-resistance large-deformation cable and a constant-resistance device thereof, so as to solve the problem that the anchor cable fails when the sliding force exceeds the strength of the pre-stressed anchor cable material due to the existing anchor cable strength. .
  • the constant resistance device of the constant resistance large deformation cable comprises a sleeve and a constant resistance body for fixing the connection cable, the sleeve has a straight tube structure, and the constant resistance body has a frustum structure.
  • the diameter of the lower end end of the constant resistance body is larger than the diameter of the end surface of the upper end; the inner diameter of the sleeve is smaller than the diameter of the lower end surface of the constant resistance body, and the lower part of the inner wall of the sleeve is provided with a wedge portion
  • the constant resistance body is disposed on the wedge portion; the strength of the constant resistance body is greater than the strength of the sleeve, so that the shape of the constant resistance body is unchanged when the constant resistance body moves within the sleeve
  • the sleeve is plastically deformed to produce a constant resistance.
  • the constant resistance device of the constant resistance large deformation cable wherein the constant resistance body is provided with a plurality of through holes, the through hole has a frustum structure, and the axis of the through hole Parallel to the axis of the constant resistance body.
  • the present invention provides a constant resistance large deformation cable including a cable, an anchor, a carrier plate and a clip.
  • the upper end of the cable is fixed to the anchor and the carrier plate by a clip, and further includes a constant resistance device, the constant resistance device includes a sleeve and a constant resistance body, and the sleeve has a straight tube structure,
  • the constant resistance body has a frustum structure, and the diameter of the lower end surface of the constant resistance body is larger than the diameter of the end surface of the upper end; the inner diameter of the sleeve is smaller than the diameter of the lower end surface of the constant resistance body, and the inner wall of the sleeve is a lower portion is provided with a wedge portion, the constant resistance body is disposed on the wedge portion; the strength of the constant resistance body is greater than the strength of the sleeve, so that the constant resistance body is constant when moving inside the sleeve
  • the shape of the resistor is unchanged and the sleeve is plastic
  • the constant resistance body is provided with a plurality of through holes, the through hole has a frustum structure, and the axis of the through hole and the constant resistance The axes of the bodies are parallel; the lower ends of the cables are secured in the through holes by the clips.
  • the cable passes through the partition, and the sleeve is filled in the upper portion of the partition Water anti-corrosion material.
  • the lower end surface of the constant resistance body is covered with a baffle to prevent the clips in the through holes from coming off.
  • the baffle is provided with a plurality of first type holes, and the lower ends of the cables respectively pass through the first type of holes in the baffle.
  • a center of the baffle is provided with a second type of hole, and a bolt passes through the second type of hole to fix the baffle to the constant resistance The lower end face of the body.
  • a mechanical sensor is disposed on an upper end of the cable to monitor a force condition of the cable, and the mechanical sensor is disposed on the anchor and the carrier between.
  • the water and corrosion resistant material is a mixture of paraffin, asphalt, butter and various components in a certain proportion.
  • the guide head has a tapered or truncated cone shape.
  • the invention provides a constant resistance large deformation cable applied to soft rock slope and vibration fault activity monitoring, from landslide disaster From the perspective of monitoring and tactile fault activity monitoring, during the sliding process of the rock mass, the sliding force is not broken because the sliding force is greater than the ultimate strength of the cable, and then the monitoring effect is lost, but the sliding body is slipped through the constant resistance body. Move to resist the pull-off effect of the remaining sliding force.
  • the structure of the whole device is reasonable in design, easy to use, and has the mechanical characteristics of "resistance in the middle, resistance in the middle, and resistance in the constant resistance", which can monitor and warn the whole process of landslide disasters and seismogenic fault activities.
  • Figure 1 is a schematic cross-sectional view showing a preferred embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structural view of a sleeve according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic bottom view of a constant resistance body according to a preferred embodiment of the present invention.
  • Figure 4 is a schematic cross-sectional view of the A-A shown in Figure 3;
  • Figure 5 is a schematic view showing the structure of a baffle according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a separator according to a preferred embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing an address structure before a landslide in a preferred embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an address structure after a landslide according to a preferred embodiment of the present invention.
  • Figure 9 is a graph of displacement-pull force when applied in a preferred embodiment of the present invention. detailed description
  • the present invention provides a large constant resistance applied to the reinforcement, monitoring and early warning of soft rock slope and seismogenic fault.
  • the constant resistance device consisting of the constant resistance body and the sleeve disposed at the lower end of the cable can resist the residual load generation by the sliding of the constant resistance body in the casing. The pull-off effect prevents the cable from being broken and broken.
  • Fig. 1 is a view schematically showing the structure of a preferred embodiment of the present invention.
  • the preferred embodiment mainly includes a guide head 1, a constant resistance body 5, a sleeve 8, a cable 7, a partition 9, and a non-slip shutter.
  • the upper end of the cable 7 is fixed to the anchor by the clip 4, and the carrier 12 is abutted against a separate anchor.
  • the sleeve 8 of the preferred embodiment has a straight tube structure, and a lower portion of the inner wall is provided with a wedge portion 801 for accommodating the constant resistance body 5, the inclined surface of the wedge portion 801 and the sleeve 8
  • the inner wall has a smaller angle L.
  • the constant resistance body 5 of the preferred embodiment has a frustum structure, and the diameter D of the lower end surface of the constant resistance body 5 is larger than the diameter d of the upper end surface.
  • the inner diameter of the sleeve 8 is smaller than the diameter D of the lower end surface of the constant resistance body 5.
  • the strength of the constant resistance body 5 is greater than the strength of the sleeve 8.
  • the sleeve 8 can be selected from carbon steel No. 20.
  • the wall thickness of 8 and the difference between the diameter D of the lower end surface of the constant resistance body 5 and the inner diameter of the sleeve 8 are all related to the frictional force of the constant resistance body 5 when sliding in the sleeve 8, and the specific selection should be determined according to actual needs.
  • the cable 7 will drive the constant resistance body 5 to slide in the sleeve, and the sliding friction force is used to ensure the constant resistance effect of the preferred embodiment.
  • the parameters of the constant resistance body 5 and the sleeve 8 are selected, the shape of the constant resistance body 5 is constant and the sleeve 8 is plastically deformed when the constant resistance body 5 is moved inside the sleeve 8.
  • the upper end surface of the constant-resistance body 5 has a diameter of 93 mm
  • the end surface of the constant-resistance body 5 has a diameter of 96 mm
  • the constant-resistance body 5 has a length of 150 mm
  • the casing 8 has a carbon number of 20 mm.
  • the inner diameter of the sleeve 8 is 93 mm
  • the wall thickness of the sleeve 8 is 20 mm
  • the constant resistance between the constant resistance body 5 and the sleeve 8 is 850 KN.
  • the constant resistance body 5 of the preferred embodiment is provided with a plurality of through holes 500 through which the cable ⁇ passes and accommodates the clip 4.
  • the upper end opening 501 of the through hole 500 is located at the upper end surface of the constant resistance body 5, and the lower end opening 502 is located at the lower end surface of the constant resistance body 5, and the opening 501 is smaller than the opening 502, as can be seen from the figure.
  • the through hole 500 has a frustum structure.
  • the axis of each of the through holes 500 is parallel to the axis of the constant resistance body 5, and the lower end of each of the cables 7 is fixed in the through hole 500 by the clips 4, respectively.
  • the cable of the preferred embodiment is six, correspondingly, the through hole 500 of the constant resistance body 5 is six, and the through hole 500 is evenly distributed around the axis of the constant resistance body 5 in the constant resistance body 5.
  • the present invention is not limited thereto, and the number of cables and the manner in which the through holes are disposed can be changed as needed.
  • the upper end of the sleeve 8 is fixed with a non-slip baffle 11, such as a welded fixed, non-slip baffle 11
  • a hole through which the cable passes is provided, and preferably, the hole and the axis of the through hole 500 of the constant resistance body 5 are on the same straight line.
  • the cable 7 Before the application site goes to the soft rock, the cable 7 has been fixed to the lower part of the through hole 500 of the constant resistance body 5 through the clip 4, but in the process of the lower cable, the cable 7 may reciprocally slide to cause the clip 4 to fall off.
  • the lower end surface of the constant resistance body 5 is covered with a baffle 3.
  • the center of the baffle 3 is provided with a hole 302 through which the bolt 2 passes and is fixed to the hole 503 of the end surface of the lower end of the constant resist body 5, whereby the baffle 3 is fixed to the lower end surface of the constant resist body 5.
  • the periphery of the baffle 3 is provided with a plurality of holes 301 corresponding to the respective cables 7, respectively, and the lower ends of the cables 7 respectively pass through the holes 301, thereby preventing the looseness of the clips 4 and the allowance of the cables 7 during the lower cable process.
  • the cable 7 caused by being too small cannot be fixed in the through hole 500.
  • the cable 7 passes through the hole 901 in the partition plate 9, and the space formed by the partition plate 9, the anti-slip baffle 11, and the inner wall of the sleeve is filled with a water-proof and anti-corrosive material, such as asphalt, A mixture of paraffin or paraffin, asphalt, and butter in a certain ratio. It is also preferable that the hole 901 through which the cable 7 passes and the axis of the through hole 500 of the constant resistance body 5 provided on the partition plate 9 are on the same straight line.
  • the lower end of the sleeve 8 of the preferred embodiment is provided with a sealed guide head 1.
  • the front end of the guiding head 1 has a tapered shape, and of course, it can also be in the shape of a flat frustum, and the upper end surface has a groove.
  • the tapered structure can make the resistance of the lower cable smoother, and the groove can reduce the weight, simplify the structure and the capacity.
  • the cable 7 of the baffle 2 is extended.
  • a mechanical sensor (not shown) is provided between the anchor 13 at the upper end of the cable 7 and the carrier plate 12.
  • the preferred embodiment is passed through the potential sliding surface ht and mounted on a relatively stable slide bed he.
  • the design constant resistance of the preferred embodiment i.e., the static friction between the constant resistance body 5 and the sleeve 8
  • the material deformation of the cable 7 is mainly relied on The increase of the sliding force; when the sliding force is greater than the design of the preferred embodiment, the constant resistance body 5 slips along the sleeve 8, and relies on the structural deformation of the sleeve 8 to resist the increase of the sliding force, thereby preventing the cable 7 from being blocked due to The rock mass is broken by large deformation and destruction.
  • the tension-displacement curve can be used to calculate the energy of the preferred embodiment against deformation and the energy of absorption deformation.
  • the applied mechanical sensor can also collect the mechanical information of the traditional prestressed anchor cable. Because there is no constant resistance characteristic and there is no energy absorption characteristic, it is impossible to scientifically calculate the deformation energy of the whole process of the landslide, even if the landslide occurs, the deformation The amount of energy and sliding force is also unknown.
  • the sliding rock mass when the sliding rock mass is from a steady state to an unstable state, from a near slip to a slippery state At this time, the sliding force acting on it gradually increases.
  • the constant resistance body slips to resist the pulling effect of the large deformation of the rock and soil on the cable.
  • the invention does not pull off because the sliding force is greater than the cable strength during the occurrence of the landslide, and then loses the monitoring effect, but slips through the constant resistance body in the casing body to resist the residual sliding force. Break effect, so as to realize real-time monitoring of the whole process of landslide.
  • the invention has the mechanical characteristics of "resistance in the middle, resistance in the middle, and resistance in the constant resistance", and can monitor and warn the whole process of the landslide disaster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

一种恒阻大变形缆索及恒阻装置被提供,恒阻大变形缆索包括缆索(7)、锚具(13)、承载板(12)和夹片(4)。缆索(7)的上端通过夹片(4)固定在锚具(13)和承载板(12)上。恒阻大变形缆索还包括恒阻装置,恒阻装置包括套管(8)和恒阻体(5)。套管(8)是直管。恒阻体(5)呈锥台结构,并且恒阻体(5)的下端面的直径大于其上端面的直径。套管(8)的内径小于恒阻体(5)的下端端面的直径。套管(8)内壁的下部设有楔形部,恒阻体(5)设于楔形部。恒阻体(5)的强度大于套管(8)的强度,从而导致恒阻体(5)在套管(8)内移动时恒阻体(5)形状不变而套管(8)发生塑性变形。缆索(7)的下端固定在恒阻体(5)上。恒阻大变形缆索及其恒阻装置具有恒阻防断的性能,其可以对滑坡和发震断层的活动性全过程进行检测和预警。

Description

恒阻大变形缆索及其恒阻装置 技术领域
本发明涉及一种软岩边坡稳定性监测预警和发震断层活动性监测的新型材料,尤其涉 及一种恒阻大变形缆索及其恒阻装置, 属于软岩边坡大变形破坏加固、 监测、 预警技术领 域。 背景技术
20世纪 50年代以后, 随着预应力技术的提高, 锚固加固理论、 设计方法、 规程规范 的逐渐完善, 以及锚索防腐手段的不断进步, 预应力锚索的发展越来越快。 目前, 岩体预 应力锚索单根预应力承载力已经达到 16MN (德国) 。 预应力锚索结构类型多样、 种类繁 多, 并随着应用水平的提高, 不断改进、 完善。 预应力锚固技术已经广泛应用于岩土加固 工程的各个领域, 并积累了丰富的工程实践经验。
但是, 在软岩边坡和活动性断层监测和预警领域, 发现应用传统预应力锚索充当力学 传输装置存在有缺陷, 例如滑动面和断层面上的滑动力超过预应力锚索材料强度时, 会发 生锚索断裂, 力学信号传输系统破坏、 整个监测系统失效的事故, 无法对滑坡全过程进行 连续监测。 发明内容
本发明的目的在于提供一种恒阻大变形缆索及其恒阻装置, 以解决现有锚索存在的单 纯依靠锚索强度导致的当滑动力超过预应力锚索材料强度时锚索失效的问题。
为了实现上述目的,本发明提供的恒阻大变形缆索的恒阻装置包括套管和用于固定连 接缆索的恒阻体, 所述套管呈直管结构, 所述恒阻体呈锥台结构, 且所述恒阻体的下端端 '面的直径大于其上端端面的直径; 所述套管的内径小于所述恒阻体的下端端面的直径, 所 述套管内壁的下部设有楔形部, 所述恒阻体设于所述楔形部; 所述恒阻体的强度大于所述 套管的强度, 以使所述恒阻体在所述套管内移动时所述恒阻体形状不变而所述套管发生塑 性变形进而产生恒阻力。
根据所述恒阻大变形缆索的恒阻装置的一种优选实施方式, 其中, 所述恒阻体中设有 多个通孔, 所述通孔呈锥台结构, 且所述通孔的轴线与所述恒阻体的轴线平行。
为了实现上述目的, 本发明提供的恒阻大变形缆索包括缆索、 锚具、 承载板和夹片, 所述缆索的上端通过夹片固定于所述锚具和承载板, 其中, 还包括恒阻装置, 所述恒阻装 置包括套管和恒阻体, 所述套管呈直管结构, 所述恒阻体呈锥台结构, 且所述恒阻体的下 端端面的直径大于其上端端面的直径; 所述套管的内径小于所述恒阻体的下端端面的直 径, 所述套管内壁的下部设有楔形部, 所述恒阻体设于所述楔形部; 所述恒阻体的强度大 于所述套管的强度, 以使所述恒阻体在所述套管内移动时所述恒阻体形状不变而所述套管 发生塑性变形进而产生恒阻力; 所述缆索的下端固定于所述恒阻体上。
根据上述恒阻大变形缆索的一种优选实施方式, 其中, 所述恒阻体中设有多个通孔, 所述通孔呈锥台结构, 且所述通孔的轴线与所述恒阻体的轴线平行; 所述缆索的下端通过 所述夹片固定于所述通孔中。
根据上述恒阻大变形缆索的一种优选实施方式, 其中, 所述套管的上端固定一防滑挡 板, 所述缆索穿过所述防滑挡板。
根据上述恒阻大变形缆索的一种优选实施方式,其中,所述套管内壁上部固定一隔板, 所述缆索穿过所述隔板, 且所述隔板上方的所述套管内填充隔水防腐材料。
根据上述恒阻大变形缆索的一种优选实施方式, 其中, 所述恒阻体的下端端面覆盖一 挡板以防止所述通孔中的夹片脱落。
根据上述恒阻大变形缆索的一种优选实施方式, 其中, 所述挡板上设有多个第一类型 孔, 所述缆索的下端分别穿过所述挡板上的第一类型孔。
根据上述恒阻大变形缆索的一种优选实施方式, 其中, 所述套管的下端设有一密封的 导向头。
根据上述恒阻大变形缆索的一种优选实施方式, 其中, 所述挡板的中心设有一第二类 型孔, 一螺栓穿过所述第二类型孔将所述挡板固定于所述恒阻体的下端端面。
根据上述恒阻大变形缆索的一种优选实施方式, 其中, 所述缆索的上端上设有力学传 感器以监测所述缆索的受力状况, 且所述力学传感器设于所述锚具和承载板之间。
i:述恒阻大变形缆索的一种优选实施方式, 其中, 所述导向头的上端端面包括一 凹槽。
根据上述恒阻大变形缆索的一种优选实施方式, 其中, 所述隔水防腐材料为石蜡、 沥 青、 黄油及各种成分按一定比例组成的混合材料。
根据上述恒阻大变形缆索的一种优选实施方式, 其中, 所述导向头呈锥形或平头锥台 形。
本发明提供的应用于软岩边坡和发震断层活动性监测的恒阻大变形缆索,从滑坡灾害 监测和发震断层活动性监测的角度来说,在岩体发生滑动过程中不会因为滑动力大于缆索 极限强度而被拉断, 继而丧失监测的作用, 而是通过恒阻体在套管内滑移来抵抗剩余滑动 力的拉断效应。 整个装置结构设计合理, 使用方便, 并且具有 "抗中有让, 让中有抗, 恒 阻防断" 的力学特性, 可以对滑坡灾害和发震断层活动全过程进行监测和预警。 附图说明
图 1为本发明优选实施例的剖面结构示意图;
图 2为本发明优选实施例的套管的剖面结构示意图;
图 3为本发明优选实施例的恒阻体的仰视结构示意图;
图 4为图 3所示的 A-A剖视结构示意图;
图 5为本发明优选实施例的挡板结构示意图;
图 6为本发明优选实施例的隔板结构示意图;
图 7为本发明优选实施例应用时滑坡前的地址结构示意图;
8为本发明优选实施例应用时滑坡后的地址结构示意图;
图 9为本发明优选实施例应用时的位移-拉力曲线图。 具体实施方式
下面结合附图和具体实施方式对本发明做进一步详细说明。
鉴于现有技术中存在的问题和不足, 基于恒阻大变形控制理论和锚固体系基本原理, 本发明提供一种应用于软岩边坡和发震断层加固、 监测、 预警于一体的恒阻大变形缆索, 当作用在缆索上的荷载达到设计阈值时,则设置在缆索下端的由恒阻体和套管组成的恒阻 装置就可以通过恒阻体在套管内的滑移来抵抗剩余荷载产生的拉断效应,从而防止缆索被 拉断破坏。
^ 图 1示意性的示出了本发明优选实施例的结构, 如其所示, 本优选实施例主要包括导 向头 1、 恒阻体 5、 套管 8、 缆索 7、 隔板 9、 防滑挡板 1 1、 填充于隔板 9和防滑挡板 11 之间的防水充填料 10、 承载板 12、 锚具 13以及将缆索 7固定于锚具 13和恒阻体 5的夹 片 4。 应用时, 如图 7和图 8所示, 缆索 7的上端通过夹片 4固定于锚具 13, 承载板 12 抵顶在另设的锚墩上。
如图 1和图 所示,本优选实施例的套管 8呈直管结构,其内壁的下部设有楔形部 801 用于容置恒阻体 5, 楔形部 801的倾斜面和套管 8的内壁有一个较小的夹角 L。 如图 1和 图 3、 图 4所示, 本优选实施例的恒阻体 5呈锥台结构, 且恒阻体 5的下端端面的直径 D 大于其上端端面的直径 d。 套管 8的内径小于恒阻体 5的下端端面的直径 D。 恒阻体 5的 强度大于套管 8的强度,例如若恒阻体 5为 45号碳素钢,则套管 8可以选择 20号碳素钢。 恒阻体 5和套管 8的材料、 恒阻体 5的侧壁和下端面的夹角、 恒阻体 5的长度、 恒阻体 5 的上端端面的直径 d和下端端面直径 D、套管 8的壁厚、恒阻体 5下端端面的直径 D和套 管 8的内径的差都与恒阻体 5在套管 8中滑动时的摩擦力有关,其具体选择应根据实际需 求而定, 因为在应用过程中, 边坡下滑时, 如图 · 7和图 8所示, 缆索 7将带动恒阻体 5在 套管中滑动, 依靠该滑动摩擦力保证本优选实施例的恒阻效果。 但是在进行恒阻体 5和套 管 8的参数选择时,应使恒阻体 5在套管 8内移动时恒阻体 5形状不变而套管 8发生塑性 变形。 例如在恒阻体 5采用 45号碳素钢、 恒阻体 5上端端面的直径为 93mm、 恒阻体 5 下端端面的直径为 96mm、恒阻体 5长 150mm、套管 8釆用 20号碳素钢、套管 8内径 93mm、 套管 8壁厚 20mm时, 恒阻体 5和套管 8之间的恒阻力为 850KN。
为了便捷高效的将缆索 7固定于恒阻体 5, 本优选实施例的恒阻体 5中设有多个供缆 索 Ί穿过并容置夹片 4的通孔 500。 如图 3和图 4所示, 通孔 500的上端开口 501位于恒 阻体 5的上端端面, 其下端开口 502位于恒阻体 5的下端端面, 开口 501小于开口 502, 从图中可以得知, 通孔 500呈锥台结构。 每一通孔 500的轴线均与恒阻体 5的轴线平行, 每一缆索 7的下端分别通过夹片 4固定于通孔 500中。 需要说明的是, 虽然本优选实施例 的缆索为 6根, 相应地, 恒阻体 5的通孔 500也为 6个, 通孔 500环绕恒阻体 5的轴线均 布于恒阻体 5中, 但是本发明并不以此为限, 缆索的数量、 通孔的设置方式都可以根据需 要做出改变。
为了防止材料缺陷或生产缺陷导致恒阻体 5滑出套管 8, 或者恒阻体 5正常滑出套管 8,套管 8的上端固定一防滑挡板 11,例如焊接固定,防滑挡板 11上设有供缆索穿过的孔, 优选的是, 该孔和恒阻体 5的通孔 500的轴线在同一直线上。
■ 在应用现场向软岩下索之前, 已经将缆索 7通过夹片 4固定于恒阻体 5的通孔 500的 下部, 但是下索的过程, 缆索 7将可能发生往复滑动导致夹片 4脱落, 为避免下索吋夹片 4脱落, 如图. 1和图 5所示, 恒阻体 5的下端端面覆盖一挡板 3。 挡板 3的中心设有一孔 302, 螺栓 2穿过孔 302并固定于恒阻体 5下端端面的孔 503中, 借此将挡板 3固定于恒 阻体 5的下端端面。 挡板 3的周缘设有多个孔 301 , 孔 301与各缆索 7分别对应, 缆索 7 的下端分别穿过孔 301 , 借此可以防止下索过程中, 由于夹片 4松动及缆索 7裕量过小导 致的缆索 7不能被固定于通孔 500中。 为了防止固定本优选实施例吋的泥浆或者地下水进入套管 8, 从而导致恒阻体 5和套 管 8的内壁腐蚀, 无法实现恒阻效果, 本优选实施例的套管 8的内壁上部固定一隔板 9, 如图 1和图 6所示, 缆索 7穿过隔板 9上的孔 901, 隔板 9、 防滑挡板 11、 套管内壁构成 的空间中填充隔水防腐材料, 例如沥青、 石蜡或者石蜡、 沥青、 黄油按一定比例进行混合 的混合材料。同样优选的是,隔板 9上设置的供缆索 7穿过的孔 901和恒阻体 5的通孔 500 的轴线在同一直线上。
为了防止套管 8及恒阻体 5受腐蚀,本优选实施例的套管 8的下端设有一密封的导向 头 1。 优选的是, 导向头 1前端呈锥形, 当然也可以呈平头锥台形, 且上端面有一凹槽, 锥形结构可以使得下索时阻力小较为顺利, 凹槽可以减轻重量、 简化结构及容置伸出挡板 2的缆索 7。
为了实时获得缆索 7的拉力,缆索 7上端的锚具 13和承载板 12之间设有力学传感器 (图中未示出) 。
如图 7所示, 在滑坡发生前, 将本优选实施例穿过潜在滑动面 ht, 安装在相对稳定的 滑床 he上。如图 8所示, 在滑坡发生过程中, 当滑动力小于本优选实施例设计恒阻力(即 恒阻体 5和套管 8之间的静摩擦力)时,主要依靠缆索 7的材料变形来抵抗滑动力的增加; 当滑动力大于本优选实施例设计恒阻力时, 恒阻体 5沿着套管 8发生滑移, 依靠套管 8的 结构变形来抵抗滑动力的增加, 从而防止缆索 7由于岩土体大变形破坏而被拉断。
当岩土体发生大变形破坏时, 会将变形能施加到缆索 7上, 形成缆索 7的轴向拉力。 当缆索 7轴向拉力小于缆索设计恒阻力时, 由于摩擦阻力的作用, 恒阻体 5与套管 8之间 不会发生相对位移, 力学传感器上测得的作用力为缆索 7上弹性范围内的轴向拉力; 当缆 索 7轴向拉力大于等于缆索 7设计恒阻力时, 恒阻体 5开始沿着套管 8发生滑移, 此时力 学传感器上测得的作用力主要为恒阻力,由于恒阻力是套管 8和恒阻体 5之间的摩擦阻力, 因此, 在滑移过程中, 不考虑套管 8内部缺陷, 恒阻力大小恒定, 力学传感器测得的力学ϋ也 ^当恒定。 采集数据可以绘制成如图 9所示的拉力 -位移曲线, 其中曲线 cl为传统 预应力锚索的拉力 -位移曲线, c2为传统非预应力锚索的拉力 -位移曲线, c3为本优选实施 例的拉力 -位移曲线, 通过曲线可以分别计算本优选实施例抵抗变形的能量和吸收变形的 能量。而应用力学传感器也可以对传统预应力锚索进行力学信息的采集, 由于其不存在恒 阻特征, 不存在能量吸收特性, 因此无法对滑坡全过程变形能进行科学计算, 即使滑坡发 生了, 变形能和滑动力大小也不得而知。
综上所述, 应用本发明时, 当滑动岩体从稳定状态到不稳定状态、 从近滑到临滑状态 时, 作用在其上的滑动力逐渐增加, 当滑动力超过设计恒阻力吋, 恒阻体发生滑移, 来抵 抗岩土体大变形对缆索产生的拉断效应。从监测的角度来说, 本发明在滑坡发生过程中不 会因为滑动力大于缆索强度而被拉断, 继而丧失监测作用, 而是通过恒阻体在套管体内滑 移来抵剩余滑动力拉断效应, 从而实现对滑坡全过程进行实时监测。 可见本发明具有 "抗 中有让, 让中有抗, 恒阻防断" 的力学特性, 可以对滑坡灾害全过程进行监测和预警。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来 实现。 所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims

权利要求
1、 一种恒阻大变形缆索的恒阻装置, 其特征在于, 包括套管和用于固定连接缆索的 恒阻体,所述套管呈直管结构, 所述恒阻体呈锥台结构, 且所述恒阻体的下端端面的直径 大于其上端端面的直径;
所述套管的内径小于所述恒阻体的下端端面的直径, 所述套管内壁的下部设有楔形 部, 所述恒阻体设于所述楔形部;
所述恒阻体的强度大于所述套管的强度,以使所述恒阻体在所述套管内移动时所述恒 阻体形状不变而所述套管发生塑性变形进而产生恒阻力。
2、 根据权利要求 1所述的恒阻大变形缆索的恒阻装置, 其特征在于, 所述恒阻体中 设有多个通孔, 所述通孔呈锥台结构, 且所述通孔的轴线与所述恒阻体的轴线平行。
3、 一种恒阻大变形缆索, 包括缆索、 锚具、 承载板和夹片, 所述缆索的上端通过夹 片固定于所述锚具和承载板, 其特征在于, 还包括恒阻装置, 所述恒阻装置包括套管和恒 阻体, 所述套管呈直管结构, 所述恒阻体呈锥台结构, 且所述恒阻体的下端端面的直径大 于其上端端面的直径;
所述套管的内径小于所述恒阻体的下端端面的直径, 所述套管内壁的下部设有楔形 部, 所述恒阻体设于所述楔形部;
所述恒阻体的强度大于所述套管的强度以使所述恒阻体在所述套管内移动时所述恒 阻体形状不变而所述套管发生塑性变形进而产生恒阻力;
所述缆索的下端固定于所述恒阻体上。
4、 根据权利要求 3所述的恒阻大变形缆索, 其特征在于, 所述恒阻体中设有多个通 孔, 所述通孔呈锥台结构, 且所述通孔的轴线与所述恒阻体的轴线平行;
所述缆索的下端通过所述夹片固定于所述通孔中。
5、 根据权利要求 3所述的恒阻大变形缆索, 其特征在于, 所述套管的上端固定一防 ,滑挡板, 所述缆索穿过所述防滑挡板。
6、 根据权利要求 3所述的恒阻大变形缆索, 其特征在于, 所述套管内壁上部固定一 隔板, 所述缆索穿过所述隔板, 且所述隔板上方的所述套管内填充隔水防腐材料。
7、 根据权利要求 4所述的恒阻大变形缆索, 其特征在于, 所述恒阻体的下端端面覆 盖一挡板以防止所述通孔中的夹片脱落。
8、 根据权利要求 7所述的恒阻大变形缆索, 其特征在于, 所述挡板上设有多个第一 类型孔, 所述缆索的下端分别穿过所述挡板上的第一类型孔。
9、 根据权利要求 3所述的恒阻大变形缆索, 其特征在于, 所述套管的下端设有一密 封的导向头。
10、根据权利要求 7所述的恒阻大变形缆索, 其特征在于, 所述挡板的中心设有一第 二类型孔, 一螺栓穿过所述第二类型孔将所述挡板固定于所述恒阻体的下端端面。
11、根据权利要求 3所述的恒阻大变形缆索, 其特征在于, 所述缆索的上端上设有力 学传感器以检测所述缆索的受力状况, 且所述力学传感器设于所述锚具和承载板之间。
12、根据权利要求 9所示的恒阻大变形缆索, 其特征在于, 所述导向头的上端端面包 括一凹槽。
13、根据权利要求 6所示的恒阻大变形缆索,其特征在于,所述隔水防腐材料为石蜡、 沥青、 黄油的混合材料。
14、根据权利要求 9所示的恒阻大变形缆索, 其特征在于, 所述导向头的前端呈锥形 或平头锥台形。 _
PCT/CN2011/075640 2011-06-13 2011-06-13 恒阻大变形缆索及其恒阻装置 WO2012171155A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014515020A JP5771743B2 (ja) 2011-06-13 2011-06-13 定抵抗・大変形のアンカーケーブルおよび定抵抗装置
PCT/CN2011/075640 WO2012171155A1 (zh) 2011-06-13 2011-06-13 恒阻大变形缆索及其恒阻装置
PL11867912T PL2719858T3 (pl) 2011-06-13 2011-06-13 Lina kotwiąca o stałym oporze i dużej odkształcalności oraz urządzenie o stałym oporze
US14/126,289 US9797248B2 (en) 2011-06-13 2011-06-13 Constant-resistance and large deformation anchor cable and constant-resistance device
EP11867912.5A EP2719858B1 (en) 2011-06-13 2011-06-13 Constant-resistance and large deformation anchor cable and constant-resistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075640 WO2012171155A1 (zh) 2011-06-13 2011-06-13 恒阻大变形缆索及其恒阻装置

Publications (1)

Publication Number Publication Date
WO2012171155A1 true WO2012171155A1 (zh) 2012-12-20

Family

ID=47356485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075640 WO2012171155A1 (zh) 2011-06-13 2011-06-13 恒阻大变形缆索及其恒阻装置

Country Status (5)

Country Link
US (1) US9797248B2 (zh)
EP (1) EP2719858B1 (zh)
JP (1) JP5771743B2 (zh)
PL (1) PL2719858T3 (zh)
WO (1) WO2012171155A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021083008A1 (zh) * 2019-10-29 2021-05-06 清华大学 滑坡柔性监测装置及其方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105156140B (zh) * 2015-09-10 2017-07-21 河南理工大学 一种可回收液压式锚索恒阻装置
CN107060851B (zh) * 2017-01-24 2019-11-12 中国矿业大学(北京) 双级恒阻大变形锚固件
CN106907169A (zh) * 2017-03-23 2017-06-30 中铁隧道集团二处有限公司 一种压力分散型锚索及其在特大断面隧道支护中的施工方法
CN107227967A (zh) * 2017-07-10 2017-10-03 中国矿业大学 一种恒阻大变形让压锚杆或锚索
CN107489439A (zh) * 2017-09-26 2017-12-19 张立强 一种锚索让压锁紧装置
CN111379583B (zh) * 2020-05-12 2022-11-29 湖北兴业华德威安全信息技术股份有限公司 一种通体式锚杆全长范围总锚固力监测装置
CN114562307A (zh) * 2021-10-18 2022-05-31 辽宁工程技术大学 一种恒阻锚索退锚装置及设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2022756A (en) * 1978-06-05 1979-12-19 Williams C I Mine Bolt and Method of Installing a Mine Bolt in Rock Formation
US4378180A (en) * 1980-11-05 1983-03-29 Scott James J Yieldable mine roof support fixture
CN2044285U (zh) * 1988-11-30 1989-09-13 广西柳州市建筑机械总厂 预应力可塑性锚索(杆)
CN201372432Y (zh) * 2009-02-08 2009-12-30 上海大屯能源股份有限公司 高阻力恒阻大幅度让压锚索
CN101858225A (zh) * 2010-06-10 2010-10-13 北京中矿深远能源环境科学研究院 恒阻大变形锚杆
CN201753609U (zh) * 2009-12-18 2011-03-02 张向阳 一种让压锚索装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3391543A (en) * 1966-06-23 1968-07-09 Soil Sampling Service Inc Means and technique for installing elongated rods in unstable earth formations
US3877235A (en) * 1973-11-28 1975-04-15 West Virginia Bolt Inc Anchor bolt assembly and utilization
IT1017641B (it) 1974-05-31 1977-08-10 Meardi P Tirante d ancoraggio di muri pa ratie e simili con parte attiva ad aderenza incrementata contro il terreno
US3973409A (en) * 1974-07-05 1976-08-10 Kabushiki Kaisha Takechi Koumusho Apparatus for establishing an anchor
US4100748A (en) * 1977-01-07 1978-07-18 Stratabolt Corporation Mine roof or rock bolt expansion anchor of the bail type
US4062229A (en) * 1977-02-22 1977-12-13 General Electric Company Method of testing the integrity of installed rock bolts
CH633648A5 (de) * 1978-08-22 1982-12-15 Sulzer Ag Vorrichtung zum befestigen von zur aufnahme von brennelement-buendeln dienenden lagerkaesten am boden eines wasserbeckens.
US4347020A (en) * 1980-01-02 1982-08-31 Birmingham Bolt Company Mine roof bolt assembly
US4313628A (en) * 1980-05-08 1982-02-02 Duenke Milton J Coupling for hoses and similar conduits
JPS59130077A (ja) 1983-01-14 1984-07-26 国土防災技術株式会社 アンカ−
CA1191033A (en) * 1983-05-31 1985-07-30 Carl W. Peterson Culvert
US4516886A (en) * 1984-05-14 1985-05-14 The Eastern Company Combined resin-mechanical mine roof support anchor
US4678374A (en) * 1985-12-13 1987-07-07 Jennmar Corporation Roof bolt with expansion shell and threaded nut
JPH0620643B2 (ja) 1986-02-19 1994-03-23 日産自動車株式会社 クランプ兼回転装置
US4861197A (en) * 1987-06-15 1989-08-29 Jennmar Corporation Roof bolt system
JPH0437958Y2 (zh) * 1987-12-21 1992-09-07
JP2759126B2 (ja) * 1988-06-29 1998-05-28 清水建設株式会社 アンカーの埋込構造
DE4408043C2 (de) 1994-03-10 1997-11-13 Hochtief Ag Hoch Tiefbauten Vorrichtung zum Überwachen der Spannkraft eines Spannelementes
JP2000160558A (ja) 1998-12-02 2000-06-13 Takenaka Komuten Co Ltd 土留め壁監視装置
JP4122641B2 (ja) * 1999-07-27 2008-07-23 株式会社大林組 グラウンドアンカーの耐凍上定着構造
US6742966B2 (en) * 2001-01-12 2004-06-01 James D. Cook Expansion shell assembly
US6564524B1 (en) * 2001-07-13 2003-05-20 Christian Gruita Modular construction system
WO2005040556A1 (fr) * 2003-10-27 2005-05-06 Marcellin Bruneau Dispositif d'ancrage à gaine d'expansion élastique
US20060027797A1 (en) * 2004-08-07 2006-02-09 Safety By Design Energy absorbing post for roadside safety devices
US20060038164A1 (en) * 2004-08-07 2006-02-23 Sicking Dean L Energy absorbing post for roadside safety devices
CN2740664Y (zh) 2004-11-05 2005-11-16 黄辉 地锚导尖夹固装置
DE102007005540B4 (de) * 2006-02-24 2015-04-23 Friedr. Ischebeck Gmbh Verfahren und Injektionsanker mit fixiertem Statikmischer
US8087850B2 (en) * 2006-07-20 2012-01-03 Fci Holdings Delaware, Inc. Rock bolt
KR101013736B1 (ko) 2008-11-14 2011-02-14 (주)에이에스 프리 - 스트레스드 확장형 앵커
AP3183A (en) * 2009-03-10 2015-03-31 Sandvik Intellectual Property Friction bolt
KR100953995B1 (ko) 2009-07-01 2010-04-21 하영이 인장재 제거식 그라운드 앵커용 다구형 내부정착체
US8517641B2 (en) * 2009-07-21 2013-08-27 Illinois Tool Works Inc. Anchoring adhesive combination and integrated method of applying it
DE102010028349A1 (de) * 2010-04-29 2011-11-03 Hilti Aktiengesellschaft Montageschiene
DE102010042263A1 (de) * 2010-10-11 2012-04-12 Hilti Aktiengesellschaft Sensoranordnung, beispielsweise an einem Ankerbolzen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2022756A (en) * 1978-06-05 1979-12-19 Williams C I Mine Bolt and Method of Installing a Mine Bolt in Rock Formation
US4378180A (en) * 1980-11-05 1983-03-29 Scott James J Yieldable mine roof support fixture
CN2044285U (zh) * 1988-11-30 1989-09-13 广西柳州市建筑机械总厂 预应力可塑性锚索(杆)
CN201372432Y (zh) * 2009-02-08 2009-12-30 上海大屯能源股份有限公司 高阻力恒阻大幅度让压锚索
CN201753609U (zh) * 2009-12-18 2011-03-02 张向阳 一种让压锚索装置
CN101858225A (zh) * 2010-06-10 2010-10-13 北京中矿深远能源环境科学研究院 恒阻大变形锚杆

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HE BINGYING ET AL.: "A support technology using compressible anchor cable is studied in high-ground-pressure laneway", COAL ENGINEERING, 1 September 2005 (2005-09-01), pages 22 - 25, XP008172708 *
See also references of EP2719858A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021083008A1 (zh) * 2019-10-29 2021-05-06 清华大学 滑坡柔性监测装置及其方法

Also Published As

Publication number Publication date
PL2719858T3 (pl) 2018-08-31
EP2719858A1 (en) 2014-04-16
US9797248B2 (en) 2017-10-24
JP2014517174A (ja) 2014-07-17
EP2719858B1 (en) 2018-02-21
US20140227042A1 (en) 2014-08-14
JP5771743B2 (ja) 2015-09-02
EP2719858A4 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2012171155A1 (zh) 恒阻大变形缆索及其恒阻装置
CN102296604B (zh) 恒阻大变形缆索及其恒阻装置
O'loughlin et al. Penetration of dynamically installed anchors in clay
JP6223162B2 (ja) ボンド型アンカーの残存引張り力確認方法及びシステム、変位確認方法
US8517640B2 (en) Method and apparatus for load testing a pile
TW201139788A (en) Slope stabilization system
CN102943493A (zh) 测量预制桩内力及变形的方法
JP6172825B1 (ja) 斜面安定化工法、斜面安定化構造、土構造物の管理方法、及び土構造物の管理システム
Khidri et al. Field axial cyclic loading tests of screw micropiles in cohesionless soil
CA3072732C (en) A rock bolt
CN109029338B (zh) 一种埋入式混凝土应变测量装置及其施工方法
CN103422872B (zh) 锚杆装置
CN113136800A (zh) 锚孔内根键式稳固承压机构和组装方法、根键式锚索、向锚孔注浆的方法
CN210288373U (zh) 内倾斜根键式锚索
Elkasabgy et al. Lateral performance of large-capacity helical piles
Chen et al. Model tests for anchored geosynthetic slope systems under dry and seepage conditions
CN104179203A (zh) 深基坑土钉加固的监测方法
Thorel et al. Vertical uplift capacity of suction caisson in clay
KR101176220B1 (ko) 어스앵커 장력 측정장치 및 그 측정방법
Salini et al. Lateral load capacity of model piles on cohesionless soil
Bhattacharya Safety assessment of piled buildings in liquefiable soils: mathematical tools
Yoon et al. Pile load test and implementation of specifications of load and resistance factor design: case study of Caminada Bay Bridge Project in Louisiana
Niroumand et al. Uplift response of horizontal strip anchor plates in cohesionless soil
Khemakhem et al. Static and cyclic lateral pile behavior in clay
Tang Test study on anchorage force of prestressed anchor cables for foundation pit.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14126289

Country of ref document: US