WO2021083008A1 - 滑坡柔性监测装置及其方法 - Google Patents

滑坡柔性监测装置及其方法 Download PDF

Info

Publication number
WO2021083008A1
WO2021083008A1 PCT/CN2020/122519 CN2020122519W WO2021083008A1 WO 2021083008 A1 WO2021083008 A1 WO 2021083008A1 CN 2020122519 W CN2020122519 W CN 2020122519W WO 2021083008 A1 WO2021083008 A1 WO 2021083008A1
Authority
WO
WIPO (PCT)
Prior art keywords
landslide
sleeve
sliding
deformation
acoustic emission
Prior art date
Application number
PCT/CN2020/122519
Other languages
English (en)
French (fr)
Inventor
邓李政
袁宏永
刘勇
陈涛
陈建国
苏国锋
付明
Original Assignee
清华大学
清华大学合肥公共安全研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 清华大学合肥公共安全研究院 filed Critical 清华大学
Publication of WO2021083008A1 publication Critical patent/WO2021083008A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/04Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring the deformation in a solid, e.g. by vibrating string
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes

Definitions

  • This application relates to the technical field of disaster monitoring and early warning, and in particular to a landslide flexible monitoring device and method.
  • Landslides are one of the frequent natural disasters. They are widely distributed and cause great harm. They cause serious casualties, economic losses and environmental damage every year.
  • slope deformation monitoring technology is mainly used to monitor landslides. Carry out monitoring and early warning.
  • slope deformation monitoring is mainly divided into two categories: surface monitoring and deep underground monitoring.
  • the main technologies used in surface monitoring include GPS, remote sensing, and three-dimensional laser scanning.
  • the biggest advantage of surface monitoring technology is large-area measurement.
  • the sliding direction and sliding scale can be obtained by comparing the data before and after a certain period of time.
  • surface monitoring methods are easily affected by climate, topography, vegetation, and human factors, and the monitoring time interval is too long to achieve real-time monitoring.
  • the slip surface plays a key role in the development and evolution of landslides. Surface monitoring cannot obtain information on the formation and destruction of slip surfaces inside the slope, nor can it monitor the weak geological activities in the deep.
  • Landslide is essentially the result of continuous damage and destruction of the internal structure of the slope. Therefore, the information is sent from the inside out, and the initial information can only be sensed inside the slope.
  • the surface will show macroscopic deformation, and only when the deformation reaches a certain level can it be captured by the surface monitoring equipment.
  • the movement of the ground surface soil caused by rainfall erosion will also be misjudged as a landslide by the surface monitoring equipment.
  • the inside of the slope body may be stable.
  • surface monitoring is susceptible to interference from many factors, and it is also unable to detect the initial state of landslide disasters, which will cause delays in early warning, and may also make misjudgments and misjudgments of landslides due to the erosion and movement of the shallow surface of the earth. Newspaper.
  • the underground deep monitoring technology is mainly to directly attach the monitoring device to the slope body to obtain direct information of the slope body change more efficiently and quickly.
  • This method needs to determine the approximate position of the sliding surface in advance so that the monitoring points can be arranged in a more representative position.
  • the borehole inclinometer is the most common application, but its main defect is that when the sliding displacement reaches the centimeter level, the inclinometer tube will be sheared, causing the device to fail and unable to continue monitoring.
  • the installation direction of the borehole inclinometer sensor needs to be determined according to the sliding direction, so as to more accurately measure the horizontal displacement of each depth and locate the depth of the sliding surface.
  • Acoustic emission monitoring technology has the characteristics of direct, reliable, low-cost, high-precision, real-time online, and can provide early warning of landslides.
  • the current acoustic emission waveguides are basically metal pipes, and shear failure occurs when small deformations occur, and large deformations cannot be monitored.
  • the deep large deformation measurement technology is a major difficulty and rarely studied.
  • the purpose of this application is to solve one of the above technical problems at least to a certain extent.
  • the first purpose of this application is to provide a landslide flexible monitoring device.
  • a sleeve is sleeved on the anchor cable
  • a rubber tube is sleeved on the sleeve
  • particles are filled between the rubber tube and the sleeve
  • an acoustic emission sensor is set on the upper surface of the sleeve cover.
  • the acoustic emission sensor collects the acoustic emission parameters during the landslide process, thereby providing an improved landslide flexible monitoring device, so that the device is not easy to be damaged by the deformation of the landslide during the monitoring of the landslide.
  • the range and life of the device are more suitable for monitoring landslides.
  • the second purpose of this application is to propose a method for landslide monitoring through a landslide flexible monitoring device.
  • the landslide flexible monitoring device includes a sliding bed and a sliding body, and a sliding surface is formed at the interface between the sliding bed and the sliding body, and the device It includes: a sleeve, the sleeve defines an upper chamber and a lower chamber communicating with each other, wherein the inner diameter of the upper chamber is greater than the inner diameter of the lower chamber; an anchor cable, the anchor cable is arranged in In the lower chamber and the lower end extends out of the lower chamber, the anchor cable can move downwards in the sleeve in one direction, the bottom end of the anchor cable is provided with an anchor end, and the anchor cable penetrates
  • the sliding body is fixed on the sliding bed by the anchoring end, the length of the sleeve is less than the length of the anchor cable; the sliding head, the sliding head is connected with the top end of the anchor cable, and the sliding
  • the initial state of the head is set in the upper chamber and can move downward in one direction; a rubber tube, the
  • a sleeve is sleeved on the anchor cable, a rubber tube is sleeved on the sleeve, and particles are filled between the rubber tube and the sleeve, and the sleeve cover is
  • the acoustic emission sensor is set on the surface, and the acoustic emission parameters in the landslide process can be collected through the acoustic emission sensor in the device.
  • an improved landslide flexible monitoring device is provided, so that the device is not easily damaged by the deformation of the landslide in the process of monitoring the landslide, and the range and life of the device are improved, and the device is more suitable for monitoring the landslide.
  • the method for landslide monitoring through a landslide flexible monitoring device in the second aspect of the present application is the device described in the embodiment of the first aspect of the application, and the method includes: acquiring sound Transmit the acoustic emission parameters output by the sensor; determine the deformation data of the sliding body according to the acoustic emission parameters; if the deformation data exceeds the early warning threshold, an alarm is issued.
  • the deformation data of the landslide is determined, and when it is determined that the deformation data exceeds the early warning threshold, and the deformation data is combined to determine the sliding
  • the duration of body deformation, and the warning level is determined according to the duration, and warning information including the warning level is issued.
  • Fig. 1 is a structural schematic diagram 1 of a landslide flexible monitoring device according to an embodiment of the present application
  • Fig. 2 is a second structural schematic diagram of a landslide flexible monitoring device according to an embodiment of the present application
  • Fig. 3 is a flowchart of a method for landslide monitoring according to an embodiment of the present application
  • Fig. 4 is a flowchart of a method for landslide monitoring according to another embodiment of the present application.
  • Fig. 5 is a flowchart of a method for landslide monitoring according to another embodiment of the present application.
  • Fig. 6 is a flowchart of a method for landslide monitoring according to another embodiment of the present application.
  • Slide bed 1 slide body 2, slide surface 3, sleeve 4, upper chamber 5, lower chamber 6, anchor cable 7, sliding head 8, rubber tube 9, particulate matter 10, sleeve cover 11, acoustic emission sensor 12 , Inclination angle sensor 13, mechanical measurement module 14, anchoring end 15, cushion 16, nut 17.
  • Fig. 1 is a schematic structural diagram of a landslide flexible monitoring device according to an embodiment of the present application. It should be noted that the landslide flexible monitoring device of the embodiment of the present application can be applied to the technical field of landslide monitoring and early warning, and the landslide monitoring and analysis early warning can be realized by the landslide flexible monitoring device of the embodiment of the present application.
  • the landslide flexible monitoring device of this embodiment is used to monitor a landslide.
  • the landslide includes a sliding bed 1 and a sliding body 2.
  • a sliding surface 3 is formed at the interface between the sliding bed 1 and the sliding body 2.
  • the landslide flexible monitoring device may include:
  • the sleeve 4 defines an upper chamber 5 and a lower chamber 6 in communication with each other, wherein the inner diameter of the upper chamber 5 is larger than the inner diameter of the lower chamber 6.
  • the sleeve 4 in this embodiment is made of metal material.
  • the upper chamber 5 and the lower chamber 6 are smoothly connected in a conical shape in this embodiment.
  • the inner diameter of the lower chamber 6 is 28 mm, and the inner diameter of the upper chamber 5 is 32 mm.
  • the length of the sleeve 4 in this embodiment is less than the length of the anchor cable 7.
  • the length of the aforementioned sleeve 4 may be 2 meters.
  • the sleeve 4 of this embodiment is arranged in the sliding body 2, wherein the sleeve The cylinder 4 does not pass through the sliding surface 3. That is, there is a certain distance between the bottom end of the sleeve 4 and the sliding surface 3.
  • the anchor cable 7 is arranged in the lower chamber 6 and its lower end extends out of the lower chamber 6.
  • the anchor cable 7 can move downward in the sleeve 4 in one direction, and the bottom end of the anchor cable 7 is provided with an anchor end 15.
  • the anchor cable 7 penetrates the sliding body 2 and is fixed on the sliding bed 1 through the anchoring end 15.
  • the length of the anchor cable 7 in this embodiment can be set according to actual requirements.
  • the length of the anchor cable 7 can be 6 meters.
  • the diameter of the anchor cable in this embodiment is 20 mm.
  • anchor cables of other diameters can also be used according to actual needs, and this implementation does not limit this.
  • the anchor cable 7 of this embodiment may be an anchor cable made of flexible materials.
  • the flexible material may include but is not limited to steel material, for example, the flexible material may be an alloy material or the like.
  • the position of the sliding surface 3 in this embodiment can be determined in a variety of ways.
  • inclination sensors can be evenly distributed within 4 meters of the lower end of the anchor cable, and the position of the sliding surface 3 can be determined based on the inclination response of this section, or Through the in-depth analysis of acoustic emission parameters during the gestation period of the landslide, the location of the sound source where the shearing action occurs, that is, the location of the sliding surface, is determined.
  • the anchor cable 7 in this embodiment not only has a certain rigidity to provide a reaction force, but also has a certain degree of flexibility to allow a certain degree of lateral bending and shearing.
  • the anchor cable 7 is added with the sleeve 4.
  • the anchor cable 7 and the sliding head 8 slowly slide in the sleeve 4, and the sleeve 4 will It is gradually expanded without being suddenly broken, thereby increasing the device's monitoring range of deformation and the ability to stabilize the slope.
  • the sleeve 4 will be gradually swelled, and the entire sleeve 4 will be gradually expanded from top to bottom.
  • the damage brings the performance of the material to its extreme, and the energy of the landslide body movement is also converted and consumed in the process of friction and expansion of the sleeve 4.
  • the sliding head 8 is connected with the top end of the anchor cable 7.
  • the sliding head 8 is initially set in the upper chamber 5, and the sliding head 8 can move downward in one direction.
  • the shape of the sliding head 8 is a truncated cone shape, and the upper and lower diameters of the circular cone-shaped sliding head 8 are 31 mm and 20 mm, respectively.
  • the sliding head 8 is initially placed in the upper chamber 5.
  • the inner diameter of the upper chamber 5 is larger than the inner diameter of the lower chamber 6. Therefore, it moves downward during the pulling process to overcome Constant resistance gradually expands the lower chamber 6.
  • the rubber tube 9 is sleeved on the outside of the sleeve 4, the rubber tube 9 penetrates the sliding body 2, there is a gap between the rubber tube 9 and the sleeve 4, and the gap is used to fill the particles 10.
  • the inner diameter of the rubber tube 9 can be set according to actual requirements.
  • the inner diameter of the rubber tube 9 can be 60 mm.
  • the role of the rubber tube 9 is to isolate the rock and soil around the borehole and reduce the impact of the surrounding geological environment.
  • the sleeve cover 11 is fastened on the sleeve 4 and covers the upper chamber 5.
  • the acoustic emission sensor 12 is arranged on the upper surface of the sleeve cover 11.
  • the acoustic emission sensor 12 in this embodiment is used to obtain the acoustic emission parameters of the landslide.
  • the landslide flexibility monitoring device in this embodiment may also be provided with a communication module or a control module.
  • the communication module is connected to the acoustic emission sensor 12 and sends the acoustic emission parameters collected by the acoustic emission sensor 12 to the remote server.
  • the remote server analyzes and warns the landslide according to the acoustic emission parameters, and issues an alarm when it determines that the landslide exceeds the warning threshold according to the acoustic emission parameters.
  • the communication module in this embodiment may be a wireless communication module or a wired communication module.
  • the communication module is preferably a wireless communication module.
  • the landslide flexible monitoring device of this embodiment is provided with a control module, which is connected to the acoustic emission sensor 12, and the control module is used to analyze and warn the landslide according to the acoustic emission parameters, and according to the acoustic emission parameters When it is determined that the landslide exceeds the warning threshold, an alarm is issued.
  • the acoustic emission sensor 12 in this embodiment can also be an acoustic emission sensor 12 with a wireless communication unit.
  • the acoustic emission sensor 12 can send the collected acoustic emission parameters to the remote service through its built-in wireless communication unit. end.
  • the remote server analyzes and warns the landslide according to the acoustic emission parameters, and issues an alarm when it determines that the landslide deformation exceeds the warning threshold according to the acoustic emission parameters.
  • the particulate matter 10 will respond corresponding to this and then emit an acoustic emission signal, indicating that the landslide body is evolving.
  • the sound frequency in this period depends on the interaction between the particulate matter 10 and the metal waveguide, and is closely related to the material properties of the particulate matter 10 and the metal waveguide.
  • the dominant frequency is concentrated between 20-30kHz, and this frequency band can be selected and collected by the filter. Sound waves inside.
  • the quantitative relationship between the relative motion and the acoustic emission characteristic parameters in this embodiment is pre-calibrated based on a large number of experiments, and advanced machine learning algorithms can give a general calibration relationship.
  • the anchor cable and the outer sleeve 4 of this embodiment together form a waveguide, and the gap between the waveguide and the rubber tube 9 is filled with a sufficient amount of particles 10 to form an active waveguide, so that the acoustic emission mainly comes from the device itself.
  • the influence of the difference of the external geological environment is basically excluded, making the applicability of the monitoring device wider and the application simpler.
  • a sleeve is sleeved on the anchor cable, a rubber tube is sleeved on the sleeve, and particles are filled between the rubber tube and the sleeve, and a sound is provided on the upper surface of the sleeve cover. Transmit the sensor.
  • the acoustic emission sensor in the device can be used to collect the acoustic emission parameters during the landslide process.
  • an improved landslide flexible monitoring device is provided, so that the device is not easily damaged by the deformation of the landslide in the process of monitoring the landslide, and the range and life of the device are improved, and the device is more suitable for monitoring the landslide.
  • the device in order to further improve the accuracy of the device for early warning of landslides, as shown in FIG. 1, the device may further include:
  • the tilt angle sensor 13 is provided in the upper chamber 5.
  • the tilt angle sensor 13 is used to measure the tilt angle data of the sleeve 4.
  • the sleeve 4 is buried in the landslide body as a whole, and the length will not change. According to the length, inclination angle and surface position of the sleeve 4, the state of the sleeve 4 in the landslide body can be reversed, and the body state of the sleeve 4 can be visualized.
  • the communication module is connected to the tilt angle sensor 13 and sends the tilt angle data collected by the tilt angle sensor 13 to the remote server.
  • the remote server analyzes and warns the landslide based on the tilt angle data and acoustic emission parameters, and generates an early warning signal when the deformation degree of the sliding body 2 exceeds the warning threshold, and generates an alarm signal when the deformation degree exceeds the alarm threshold. And can transmit the early warning signal and the alarm signal to the far-end and near-end information release terminals.
  • the landslide flexible monitoring device of this embodiment is provided with a control module, the control module is connected to the tilt angle sensor 13, and the control module is used to analyze and warn the landslide according to the tilt angle data and acoustic emission parameters, and When the degree of deformation of the sliding body 2 exceeds the warning threshold, an early warning signal is generated, and when the degree of deformation exceeds the warning threshold, an alarm signal is generated, and the early warning signal and the alarm signal can be transmitted to the remote and near-end systems and information release terminals.
  • the tilt angle sensor 13 in this embodiment can also be a tilt angle sensor 13 with a wireless communication unit.
  • the tilt angle sensor 13 can send the collected tilt angle data to the remote service through its own wireless communication unit. end.
  • the remote server analyzes and warns the landslide based on the inclination angle data and acoustic emission parameters, and generates an early warning signal when the deformation degree of the sliding body 2 exceeds the warning threshold, and generates an alarm signal when the deformation degree exceeds the alarm threshold, and can Early warning signals and alarm signals are transmitted to the remote and near-end systems and information release terminals.
  • the device in order to further improve the accuracy of the device for early warning of landslides, the device further includes:
  • the mechanics measurement module 14 is arranged outside the upper chamber 5.
  • the upper chamber 5 is covered with a pedestal 16 and a nut 17, and the nut 17 is arranged on the pedestal Above 16, the pedestal 16 exposes the ground surface of the sliding body 2, and the mechanics measurement module 14 is located between the pedestal 16 and the nut 17.
  • the nut 17 in this embodiment is used as a force transmission component to fasten the entire device. Specifically, the nut 17 is mainly used to fix the sleeve 4 and the anchor cable 7.
  • the pedestal 16 serves as the main bearing surface of the device and has a length of 80 mm.
  • the function of the pedestal 16 is to transfer the deformation of the rock and soil to the sleeve 4.
  • the mechanical measurement module in the device 14 Measure the axial tension of the device to facilitate subsequent analysis and early warning of the landslide based on the mechanical measurement data of the mechanical measurement module 14.
  • the mechanics measurement module 14 in this embodiment is arranged around the outer circumference of the upper chamber 5 of the sleeve 4.
  • the mechanics measurement module 14 may include, but is not limited to, a vibrating wire dynamometer.
  • the shape of the vibrating wire dynamometer is a ring shape, and the vibrating wire dynamometer is arranged along the outer circumference of the upper chamber 5.
  • the mechanical measurement module 14 is installed on the surface part of the monitoring device in this embodiment, the tensile force of the monitoring device can be measured, and the deformation parameters of the sliding body 2 such as (sliding force) can be calculated according to the force analysis, so as to facilitate the follow-up Combine the mechanical measurement data measured by the mechanical measurement module 14 to analyze and warn the landslide.
  • the communication module is connected to the mechanics measurement module 14 and sends the mechanics measurement data measured by the mechanics measurement module 14 to the remote server.
  • the remote server analyzes and warns the landslide based on the inclination angle data, acoustic emission parameters and mechanical measurement data, and generates an early warning signal when the deformation degree of the sliding body 2 exceeds the warning threshold, and when the deformation degree exceeds the alarm threshold, Generate alarm signals, and can transmit early warning signals and alarm signals to the remote and near-end information release terminals.
  • the landslide flexible monitoring device of this embodiment is provided with a control module, and the control module is connected to the mechanical measurement module 14.
  • the control module is used to analyze the landslide based on the tilt angle data, the acoustic emission parameters, and the mechanical measurement data. And early warning, and when the deformation degree of the sliding body 2 exceeds the warning threshold, it generates a warning signal, and when the deformation degree exceeds the warning threshold, it generates an alarm signal, and can transmit the warning signal and the warning signal to the remote and near-end systems and Information release terminal.
  • the mechanical measurement module 14 in this embodiment can also be a mechanical measurement module 14 with a wireless communication unit.
  • the mechanical measurement module 14 can send the collected mechanical measurement data to the remote service through its own wireless communication unit. end.
  • the remote server analyzes and warns the landslide based on the tilt angle data, acoustic emission parameters and mechanical measurement data, and generates an early warning signal when the deformation degree of the sliding body 2 exceeds the warning threshold, and generates an alarm signal when the deformation degree exceeds the alarm threshold. , And can transmit early warning signals and alarm signals to remote and near-end systems and information release terminals.
  • the landslide flexibility monitoring device shown in FIG. 1 is an example diagram of the state of the landslide flexibility monitoring device after the landslide has slipped, as shown in FIG. 2. It can be seen from Figure 2 that after the sliding body 2 in the landslide moved, the sliding head 8 of the landslide flexible monitoring device slipped, and the sliding head 8 moved from the upper chamber 5 of the sleeve 4 to the lower chamber 6, and The sleeve 4 is deformed.
  • this application also proposes a method for landslide monitoring through a landslide flexible monitoring device, wherein the landslide flexible monitoring device is the device of the embodiment shown in FIG. 1 above.
  • Fig. 3 is a flowchart of a method for landslide monitoring according to an embodiment of the present application. As shown in Figure 3, the method may include:
  • Step 301 Acquire acoustic emission parameters output by the acoustic emission sensor.
  • the landslide monitoring method of this embodiment is applied to a landslide flexible monitoring device.
  • the structure of the landslide flexible monitoring device is schematically shown in FIG. 1.
  • FIG. 1 For the structure description of the landslide flexible monitoring device, please refer to the above embodiment Related descriptions will not be repeated here.
  • Step 302 Determine the deformation data of the sliding body according to the acoustic emission parameters.
  • Step 303 If the deformation data exceeds the early warning threshold, determine the duration of deformation of the sliding body according to the deformation data.
  • the duration in this embodiment refers to the time from when the landslide flexible monitoring device detects that the landslide body begins to deform to when the landslide deformation exceeds the early warning threshold.
  • Step 304 Determine the warning level according to the duration, and issue warning information including the warning level.
  • the issuance of early warning information including the warning level can be achieved in a variety of ways. Examples are as follows:
  • the early warning information is transmitted to the remote and/or near-end information release terminal for early warning release.
  • the specific implementation manner of transmitting the warning information to the remote and/or near-end information publishing terminal for warning issuance may be: according to the warning level, determine to transmit the warning information to the remote and/or near-end The information release terminal to issue an early warning.
  • the corresponding relationship between the early warning level and the early warning release method can be preset in the landslide flexible monitoring device, and according to the corresponding relationship, it is determined to transmit the early warning information to the remote and/or near-end information release terminal for early warning release.
  • the early warning information can be transmitted to the near-end information publishing terminal for early warning release, and when the early warning level is B level, the early warning information can be transmitted to the remote information release
  • the terminal issues an early warning
  • the early warning level is C level
  • the early warning information is transmitted to the remote and near-end information issuing terminals to simultaneously issue the early warning.
  • the information release module provided in the landslide flexible monitoring device directly releases the early warning information including the early warning level.
  • the early warning information is uploaded to the upper-level system, and the upper-level system issues the early warning information.
  • the warning information can also include other precautions or response measures corresponding to the warning level.
  • This implementation does not specifically limit this, and can be set according to specific actual application requirements. .
  • the deformation data of the landslide is determined, and when it is determined that the deformation data exceeds the early warning threshold, the deformation data is combined to determine the occurrence of the landslide.
  • the duration of the deformation, and the warning level is determined according to the duration, and the warning information including the warning level is issued. Therefore, the early monitoring of the landslide is realized by combining the acoustic emission sensor in the landslide flexible monitoring device with an anchor cable.
  • the above device in order to more accurately predict the degeneration of the landslide, in addition to the acoustic emission sensor, the above device may also include a tilt angle sensor.
  • the landslide monitoring method of the embodiment of the present application may include:
  • Step 401 Acquire acoustic emission parameters output by the acoustic emission sensor.
  • Step 402 Obtain tilt angle data output by the tilt angle sensor.
  • Step 403 Determine the deformation data of the sliding body according to the tilt angle data and the acoustic emission parameters.
  • step 404 if the deformation data exceeds the early warning threshold, determine the duration of deformation of the sliding body according to the deformation data.
  • step 405 the warning level is determined according to the duration, and warning information including the warning level is issued.
  • the deformation data of the landslide is determined, and when it is determined that the deformation data exceeds the early warning threshold, Combine the deformation data to determine the duration of the deformation of the landslide, determine the warning level according to the duration, and issue the warning information including the warning level. Combine the two data to determine the deformation data of the landslide, which further improves the landslide flexibility monitoring device to determine the landslide The accuracy of the deformation data.
  • the above-mentioned device in addition to the acoustic emission sensor and the tilt angle sensor, may also include a mechanical measurement module.
  • the landslide monitoring method of the embodiment of the present application may include:
  • Step 501 Acquire acoustic emission parameters output by the acoustic emission sensor.
  • Step 502 Obtain tilt angle data output by the tilt angle sensor.
  • Step 503 Obtain mechanical measurement data output by the mechanical measurement module.
  • Step 504 Determine the deformation data of the sliding body according to the mechanical measurement data, the acoustic emission parameters and the tilt angle data.
  • Step 505 If the deformation data exceeds the early warning threshold, determine the duration of deformation of the sliding body according to the deformation data.
  • Step 506 Determine the warning level according to the duration, and issue warning information including the warning level.
  • the deformation data of the landslide is determined, and When it is determined that the deformation number exceeds the warning threshold, the duration of the deformation of the sliding body is determined according to the deformation data, the warning level is determined according to the duration, and the warning information including the warning level is issued.
  • acoustic emission parameters including acoustic emission parameters, mechanical measurement data, and tilt angle data are combined to determine the deformation data of the landslide, which further improves the accuracy of the landslide flexible monitoring device to determine the landslide deformation data.
  • the method may further include: if it is determined that the deformation data of the sliding body exceeds the alarm threshold, generating an alarm signal and issuing the alarm signal.
  • the degree of deformation of the sliding body corresponding to the alarm threshold is greater than the degree of deformation of the sliding body corresponding to the warning threshold.
  • the method for landslide monitoring in this embodiment can be specifically executed by the control module in the landslide monitoring device.
  • control module in this embodiment can also receive the user's setting of the warning level and the way of issuing the warning.
  • an acoustic emission sensor, a tilt angle sensor, and a vibrating wire dynamometer are provided in the landslide flexible monitoring device as an example for description.
  • the landslide monitoring method of this embodiment includes:
  • Step 601 Determine the position information of the sliding surface in the landslide.
  • the slope elements are determined in accordance with the "Landslide Prevention Engineering Survey Specification" (DZ/T0218-2006), the landslide types are classified according to the main factors such as the material composition and structural form of the landslide, and the rock and soil characteristics, boundary characteristics, Migration form, scale of cause, etc., roughly determine the location, inclination, thickness, etc. of the potential sliding surface, so as to prepare for the next step of embedding the landslide flexible monitoring device.
  • a landslide flexibility monitoring device is installed at a representative location of the main sliding surface of the landslide.
  • the drill hole is perpendicular to the local slope with a diameter of 100 mm.
  • the depth is determined according to the results of the site survey to ensure that it passes through the potential slip surface.
  • the hole depth is between 4-26 meters to cover shallow landslides (the thickness of the sliding body is less than 10 meters) and middle-level landslides (the thickness of the sliding body is between 10-25 meters) to meet the monitoring needs of most landslides.
  • the anchor cable and the sleeve are selected according to the aforementioned parameters, and the two as a whole are used as a waveguide.
  • a small amount of cement mortar with a lime-sand ratio of 1:5 is poured between the waveguide and the borehole wall. The cement glues the anchoring end to the stable and firm sliding bed at the bottom of the borehole.
  • the sleeve body is buried in the sliding body part of the borehole. , The upper end of the tube is exposed to the surface.
  • a plastic protective cover is used to protect the landslide flexible monitoring device.
  • Step 603 Acquire the acoustic emission parameters collected by the acoustic emission sensor in the landslide flexible monitoring device, the tilt angle data measured by the tilt angle sensor, and the mechanical measurement data measured by the vibrating wire dynamometer.
  • Step 604 Determine the degree of deformation of the sliding body according to the acoustic emission parameters, tilt angle data and mechanical measurement data, and determine that the degree of deformation exceeds a preset warning threshold, then determine the duration of deformation of the sliding body according to the deformation data, and according to the continuous Time determines the warning level, and releases warning information containing the warning level.
  • the degree of deformation of the sliding body can be determined according to the relationship between the acoustic emission parameters and the horizontal displacement of the landslide, the tilt angle data and the horizontal displacement of the sliding body, the mechanical measurement data and the sliding force/vertical displacement, etc., and the deformation is determined If the degree exceeds the preset warning threshold, the duration of the deformation of the sliding body is determined according to the deformation data, and the warning level is determined according to the duration, and warning information including the warning level is issued.
  • the degree of deformation of the sliding body exceeds the preset warning threshold, which indicates that the sliding body is currently in an unstable state. At this time, an alarm of the corresponding level is triggered, and measures such as slope protection and emergency evacuation are carried out in a targeted manner.
  • the degree of deformation of the sliding body corresponding to the alarm threshold is greater than the degree of deformation of the sliding body corresponding to the warning threshold.
  • the alarm signal in this embodiment can also be transmitted to the remote and/or near-end information publishing terminal.
  • the present application designs the structure of the monitoring device with the concept of an auxetic structure, uses a relatively flexible anchor cable as the main body of the deep monitoring, and adds a sleeve to form a movable structure. With the movement and deformation of the landslide body, the anchor cable and the sliding head slide slowly in the sleeve, and the sleeve will gradually expand without being suddenly broken.
  • the monitoring device generally has the effects of anti-bending, anti-shearing and anti-stretching, and is expected to solve the problems of short life and short range of the deep large deformation monitoring device.
  • the anchor cable and the outer sleeve together form the waveguide, and the gap between the waveguide and the rubber tube is filled with sufficient particles to form an active waveguide, so that the acoustic emission mainly comes from the device itself, and the influence of the difference of the external geological environment is basically eliminated.
  • the applicability of the monitoring device is wider and the application is simpler.
  • Acoustic emission sensors can detect precursor signals such as small deformations of slopes, and are expected to realize early warning of the initial evolution stage of landslides.
  • the inclination angle sensor can measure the inclination angle of the sleeve, and then can invert the state of the sleeve in the slope body according to information such as the length of the sleeve, so as to realize the transparent visualization of the monitoring device.
  • this application is not easy to be damaged in the monitoring of large deformations in deep slopes, and can realize the measurement of multiple parameters such as acoustic emission, mechanics, and deformation, and combine multiple parameters such as acoustic emission, mechanics and deformation to determine whether the degree of deformation of the slide Exceeding the early warning threshold, realizing comprehensive monitoring and early warning and stable protection of the landslide evolution process.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because it can be used, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable media if necessary. The program is processed in a way to obtain the program electronically and then stored in the computer memory.
  • each part of this application can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented by hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic circuits, application-specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing relevant hardware to complete.
  • the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium. When executed, it includes one of the steps of the method embodiment or a combination thereof.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Abstract

一种滑坡柔性监测装置,包括:套筒(4)内限定出彼此连通的上腔室(5)和下腔室(6),锚索(7)设于下腔室(6)内且其下端伸出下腔室(6)外,使用时的锚索(7)在套筒(4)内向下做单向运动,锚索(7)的底端设置有锚固端(15),锚索(7)贯穿滑体(2)并通过锚固端(15)固定在滑床(1)上;滑动头(8)与锚索(7)的顶端相连,滑动头(8)初始状态位于上腔室(5)内,可向下做单向运动;橡胶管(9)套在套筒(4)外侧,橡胶管(9)贯穿滑体(2),橡胶管(9)与套筒(4)之间填充颗粒物(10);套筒盖(11)紧固在套筒(4)上且封盖上腔室(5),声发射传感器(12)设于套筒盖(11)上表面。该改进的滑坡柔性监测装置对滑坡进行监测的过程中不容易被滑坡的变形所破坏,提高了装置的寿命,更适用于对滑坡进行监测。还提供一种滑坡监测方法。

Description

滑坡柔性监测装置及其方法 技术领域
本申请涉及灾害监测预警技术领域,尤其涉及一种滑坡柔性监测装置及其方法。
背景技术
滑坡是频繁发生的自然灾害之一,分布广泛,危害巨大,每年都造成严重的人员伤亡、经济损失和环境破坏,相关技术中,为了减少滑坡造成的危害,主要利用边坡变形监测技术对滑坡进行监测以及预警。
目前,边坡变形监测主要分为地表监测和地下深部监测两大类。其中,地表监测主要采用的技术有GPS、遥感、三维激光扫描等,地表监测技术最大的优势在于大面积测量,通过一定时间内数据的前后对比可以得到滑动方向和滑动规模等信息。然而,地表监测方法很容易受到气候、地形、植被和人为因素的影响,监测时间间隔较大,不能做到实时监测。此外,滑面在滑坡发展演化过程中起到关键作用,地表监测无法获得边坡内部滑面形成和破坏的信息,也不能监测深部不断进行的微弱地质活动。滑坡实质上是边坡内部结构不断损伤、破坏的结果,因此信息是自内而外发出的,只有在边坡体内部才能感知到最初的信息。边坡内部发生的变化足够大时,地表才会出现宏观变形,变形量达到一定程度时才能被地表监测设备所捕捉。此外,由于降雨冲刷引起的大地表层土壤的运动也会被地表监测设备误判为滑坡,实际上边坡体内部可能是稳定的。综上所述,地表监测容易受到多种因素的干扰,也无法探明滑坡灾害的初始状态,进而会造成预警的延迟,还有可能因为大地浅表层冲刷移动而做出滑坡的误判和误报。
地下深部监测技术,主要是将监测装置直接贴合在边坡体内,更加高效敏捷的获取边坡体变化的直接信息。这种方法需要事先判断出滑面的大致位置,以便在更具代表性的位置布置监测点。目前深部监测技术中,钻孔测斜仪的应用最为普遍,但它的主要缺陷在于当滑动位移达到厘米级时测斜管就会发生剪断,导致装置失效,无法继续监测。而且,钻孔测斜仪传感器的安装方向需要根据滑移方向确定,进而才能比较准确的测量出各个深度的水平位移并且定位滑面的深度。如果滑移方向不好确定,测斜仪监测到的数据可能与实际的滑移量偏差较大。声发射监测技术具有直接、可靠、廉价、高精度、实时在线的特点,能够提前对滑坡进行预警。然而,目前声发射波导管基本都是金属管,在小变形时会发生 剪切破坏,无法监测大变形,深部大变形测量技术是重大难点且鲜有研究。
发明内容
本申请的目的旨在至少在一定程度上解决上述的技术问题之一。
为此,本申请的第一个目的在于提出一种滑坡柔性监测装置。该装置通过在锚索外套有套筒,并通过在套筒外套橡胶管,以及在橡胶管与套筒之间填充颗粒物,以及在套筒盖的上表面设置声发射传感器,可通过装置中的声发射传感器对滑坡过程中的声发射参数进行采集,由此,提供了一种改进的滑坡柔性监测装置,使得该装置对滑坡进行监测的过程中不容易被滑坡的变形所破坏,提高了该装置的量程和寿命,更适用于对滑坡进行监测。
本申请的第二个目的在于提出一种通过滑坡柔性监测装置进行滑坡监测的方法。
为达上述目的,本申请第一方面实施例的滑坡柔性监测装置,所述滑坡包括滑床和滑体,于所述滑床和所述滑体之间的交界面形成滑面,所述装置包括:套筒,所述套筒内限定出彼此连通的上腔室和下腔室,其中,所述上腔室的内径大于所述下腔室的内径;锚索,所述锚索设于所述下腔室内且其下端伸出所述下腔室外,所述锚索在所述套筒内可向下单向运动,所述锚索的底端设置有锚固端,所述锚索贯穿所述滑体并通过所述锚固端固定在所述滑床上,所述套筒的长度小于所述锚索的长度;滑动头,所述滑动头与所述锚索的顶端相连,所述滑动头初始状态设于所述上腔室内,可向下做单向运动;橡胶管,所述橡胶管套在所述套筒外侧,所述橡胶管贯穿所述滑体并终止于所述滑床,所述橡胶管与所述套筒之间存在空隙,所述空隙用于填充颗粒物;套筒盖,所述套筒盖紧固在所述套筒上且封盖所述上腔室;声发射传感器,所述声发射传感器设于所述套筒盖的上表面。
根据本申请实施例的滑坡柔性监测装置,通过在锚索外套有套筒,并通过在套筒外套橡胶管,以及在橡胶管与所述套筒之间填充颗粒物,以及在套筒盖的上表面设置声发射传感器,可通过装置中的声发射传感器对滑坡过程中的声发射参数进行采集。由此,提供了一种改进的滑坡柔性监测装置,使得该装置对滑坡进行监测的过程中不容易被滑坡的变形所破坏,提高了该装置的量程和寿命,更适用于对滑坡进行监测。
为达上述目的,本申请第二方面实施例的通过滑坡柔性监测装置进行滑坡监测的方法,所述滑坡柔性监测装置为本申请第一方面实施例所述的装置,所述方法包括:获取声发射传感器输出的声发射参数;根据所述声发射参数,确定滑体的变形数据;如果所述变形数据超过预警阈值,则发出报警。
根据本申请实施例的滑坡监测方法,结合滑坡柔性监测装置中声发射传感器所输出的声发射参数,确定出滑坡的变形数据,并在确定出变形数据超过预警阈值,并结合变形数据确定出滑体发生变形的持续时间,以及根据持续时间确定预警级别,并发布包含预警级 别的预警信息。由此,结合具有锚索的滑坡柔性监测装置中的声发射传感器实现了对滑坡的实时监测和早期预警。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的滑坡柔性监测装置的结构示意图一;
图2是根据本申请一个实施例的滑坡柔性监测装置的结构示意图二;
图3是根据本申请一个实施例的滑坡监测的方法的流程图;
图4是根据本申请另一个实施例的滑坡监测的方法的流程图;
图5是根据本申请又一个实施例的滑坡监测的方法的流程图;
图6是本申请再一个实施例的滑坡监测的方法的流程图。
附图标记:
滑床1、滑体2、滑面3、套筒4、上腔室5、下腔室6、锚索7、滑动头8、橡胶管9、颗粒物10、套筒盖11、声发射传感器12、倾斜角传感器13、力学测量模块14、锚固端15、垫座16、螺母17。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的滑坡柔性监测装置、通过该装置进行滑坡监测的方法。
图1是根据本申请一个实施例的滑坡柔性监测装置的结构示意图。需要说明的是,本申请实施例的滑坡柔性监测装置可应用于滑坡监测预警技术领域中,可通过本申请实施例的滑坡柔性监测装置实现滑坡监测和分析预警。
如图1所示,本实施例的滑坡柔性监监测装置用于对滑坡进行监测,滑坡包括滑床1和滑体2,于滑床1和滑体2之间的交界面形成滑面3,该滑坡柔性监测装置可以包括:
套筒4,套筒4内限定出彼此连通的上腔室5和下腔室6,其中,上腔室5的内径大于下腔室6的内径。
本实施例中的套筒4是由金属材料制成的。
其中,本实施中的上腔室5与下腔室6之间锥形平滑连接。
在本申请一个实施例中,下腔室6的内径为28毫米,上腔室5的内径为32毫米。
其中,本实施例的套筒4的长度小于锚索7的长度。
在本申请一个实施例中,上述套筒4的长度可以为2米。
在本申请一个实施例中,为了避免在监测过程中,滑面3对套筒4造成伤害,例如,套筒4被剪断,本实施例的套筒4设置在滑体2中,其中,套筒4未穿过滑面3。即,套筒4的底端与滑面3之间存在一定的距离间隔。
锚索7,锚索7设于下腔室6内且其下端伸出下腔室6外,锚索7在套筒4内可向下单向运动,锚索7的底端设置有锚固端15,锚索7贯穿滑体2并通过锚固端15固定在滑床1上。
本实施例中的锚索7的长度是可以根据实际需求设置的,例如,锚索7的长度可以为6米。
其中,本实施例中锚索的直径为20毫米。当然,在实际应用中也可以根据实际需求使用其他直径的锚索,该实施对此不作限定。
其中,本实施例的锚索7可以是基于柔性材料制成的锚索。
其中,柔性材料可以包括但不限于钢质材料,例如,柔性材料可以为合金材料等。
其中,本实施例中的滑面3的位置可通过多种方式确定出,例如,可在锚索下端4米内均布倾角传感器,根据这一段的倾斜响应判断滑面3的位置,或者,可通过滑坡孕育期声发射参数的深入分析,确定剪切作用发生的声源位置即滑面位置。
可以理解的是,本实施例中的锚索7不仅具有一定的刚度以提供反作用力,而且具有一定的柔韧度可以允许一定程度的横向弯曲和剪切。
其中,需要说明的是,本实施例中通过锚索7外加套筒4的方式,随着滑坡体的运动变形,锚索7以及滑动头8在套筒4内缓慢滑移,套筒4会被逐渐胀开而不会被突然拉断,由此,增大了装置监测变形的量程和稳定边坡的能力。
具体而言,在使用该柔性监测装置对滑坡进行监测的过程中,滑动头8在套筒4内作相对滑动时,套筒4会被逐渐拉胀,整个套筒4从上到下逐渐被破坏,将材料的性能发挥到了极致,滑坡体运动的能量也在摩擦和套筒4胀开的过程中被转化和消耗。
滑动头8,滑动头8与锚索7的顶端相连,滑动头8初始状态设于上腔室5内,滑动头8可向下做单向运动。
其中,本实施例中,滑动头8的形状为圆台形,圆台形滑动头8上下直径分别是31毫米和20毫米。
在本实施例中,滑动头8初始时置于上腔室5,本实施例中的上腔室5的内径比下腔室6的内径大,因此,在拉动过程中往下运动,克服了恒定阻力,逐渐把下腔室6胀开。
橡胶管9,橡胶管9套在套筒4外侧,橡胶管9贯穿滑体2,橡胶管9与套筒4之间存在空隙,空隙用于填充颗粒物10。
在本实施例中,橡胶管9的内径是可以根据实际需求设置的,例如,橡胶管9的内径可以为60毫米。
其中,橡胶管9的作用是隔离钻孔周边的岩土体,减少周边地质环境的影响。
在本实施例中,滑坡在变形的过程中,将对橡胶管9和锚索7施加力,由于橡胶管9的变形将远大于锚索7的变形,内外变形差异造成颗粒物10的挤压和摩擦,接触应力释放,进而产生高水平的声发射,密切接触的锚索7和套筒4作为金属波导,声发射信号衰减低。
套筒盖11,套筒盖11紧固在套筒4上且封盖上腔室5。
声发射传感器12,声发射传感器12设于套筒盖11的上表面。
具体地,本实施例中的声发射传感器12用于获取滑坡的声发射参数。
可以理解的是,本实施中的滑坡柔性监测装置中还可以设置有通信模块,或者控制模块。
其中,在本实施例的滑坡柔性监测装置中设置有通信模块时,通信模块与声发射传感器12连接,并将声发射传感器12采集到的声发射参数发送给远程服务端。对应地,远程服务端根据声发射参数对滑坡进行分析和预警,并根据声发射参数确定滑坡超过预警阈值时,发出报警。
其中,需要说明的是,本实施例中的通信模块可以为无线通信模块也可以为有线通信模块。
在本实施例中,为了避免铺设有线网线的麻烦,通信模块优选地为无线通信模块。
作为另一种示例,在本实施例的滑坡柔性监测装置中设置有控制模块,控制模块与声发射传感器12连接,控制模块用于根据声发射参数对滑坡进行分析和预警,并根据声发射参数确定滑坡超过预警阈值时,发出报警。
当然,本实施例中的声发射传感器12也可以为具有无线通信单元的声发射传感器12,对应地,声发射传感器12可通过自身内置的无线通信单元将采集到的声发射参数发送到远程服务端。对应地,远程服务端根据声发射参数对滑坡进行分析和预警,并根据声发射参数确定滑坡变形超过预警阈值时,发出报警。
其中,可以理解的是,在滑坡孕育期,由于滑坡体和装置之间轻微的错动、挤压和变形,颗粒物10会产生与此对应的响应进而发出声发射信号,表明滑坡体正处于演化的初始阶段。这一时期的声音频率取决于颗粒物10和金属波导之间的相互作用,与颗粒物10和 金属波导的材料性质密切相关,主频集中在20-30kHz之间,通过滤波器可选取采集这一频段内的声波。根据颗粒物10声发射特征参数中的振铃计数(ring down count,RDC)响应于应变,实验证明声发射率(RDC/s)与滑移速率(毫米/s)数据之间存在较好的线性关系,基于声发射参数可以量化水平位移、速度等边坡主要的运动学参数。随着滑坡体变形的逐步增加,套筒4在滑坡体下滑力与地表施加的垂直于垫座16的拉力作用下,逐渐被拉离滑床1中的锚固端15。
其中,本实施例中的相对运动量与声发射特征参数之间的定量关系是根据大量实验预先标定出的,先进的机器学习算法可以给出通用的标定关系。
可以理解的是,本实施例锚索和外部套筒4共同组成了波导,在波导和橡胶管9之间的空隙填充足量颗粒物10,形成有源波导,使得声发射主要来源于装置本身,基本排除了外部地质环境差异性的影响,使得监测装置的适用性更广、应用更简单。
本申请实施例的滑坡柔性监测装置,通过在锚索外套有套筒,并通过在套筒外套橡胶管,以及在橡胶管与套筒之间填充颗粒物,以及在套筒盖的上表面设置声发射传感器。此外,可通过装置中的声发射传感器对滑坡过程中的声发射参数进行采集。由此,提供了一种改进的滑坡柔性监测装置,使得该装置对滑坡进行监测的过程中不容易被滑坡的变形所破坏,提高了该装置的量程和寿命,更适用于对滑坡进行监测。
在本申请一个实施例中,为了进一步提高装置对滑坡预警的准确性,如图1所示,该装置还可以包括:
倾斜角传感器13,倾斜角传感器13设于上腔室5内。
其中,倾斜角传感器13用于测得套筒4的倾斜角度数据。
可以理解的是,在本实施例中,可根据套筒4的倾斜角度,确定出滑坡的变形参数。具体而言,采用测斜仪原理,可得水平位移x=l*sinθ,l为套筒长度,θ为套筒倾斜角度。套筒4整体埋藏于滑坡体中,长度不会发生变化,根据套筒4的长度、倾斜角度和地表位置可以反演出套筒4在滑坡体内的状态,实现套筒4体态的可视化。
其中,在本实施例的滑坡柔性监测装置中设置有通信模块时,通信模块与倾斜角传感器13连接,并将倾斜角传感器13采集到的倾斜角度数据发送给远程服务端。对应地,远程服务端根据倾斜角度数据和声发射参数对滑坡进行分析和预警,并在滑体2的变形程度超过预警阈值时,生成预警信号,以及在变形程度超过报警阈值,生成报警信号,并能将预警信号与报警信号传输至远端与近端的信息发布终端。
作为另一种示例,在本实施例的滑坡柔性监测装置中设置有控制模块,控制模块与倾斜角传感器13连接,控制模块用于根据倾斜角度数据和声发射参数对滑坡进行分析和预警,并在滑体2的变形程度超过预警阈值时,生成预警信号,以及在变形程度超过报警阈 值,生成报警信号,并能将预警信号与报警信号传输至远端与近端的系统和信息发布终端。
当然,本实施例中的倾斜角传感器13也可以为具有无线通信单元的倾斜角传感器13,对应地,倾斜角传感器13可通过自身中的无线通信单元将采集到的倾斜角度数据发送到远程服务端。远程服务端根据倾斜角度数据和声发射参数对滑坡进行分析和预警,并在滑体2的变形程度超过预警阈值时,生成预警信号,以及在变形程度超过报警阈值,生成报警信号,并能将预警信号与报警信号传输至远端与近端的系统和信息发布终端。
在本申请一个实施例中,为了进一步提高装置对滑坡预警的准确性,装置还包括:
力学测量模块14,力学测量模块14设于上腔室5外。
在本申请一个实施例中,为了固定锚索7和套筒4的同时,以及减少滑坡对力学测量模块14造成损耗,上腔室5外套有垫座16和螺母17,螺母17设置在垫座16的上方,垫座16露出滑体2的地表面,力学测量模块14位于垫座16和螺母17之间。
本实施例中的螺母17作为传力部件紧固整个装置,具体而言,螺母17主要是用于固定套筒4和锚索7。
垫座16作为装置的主要受力面,长度为80毫米。
其中,垫座16的作用是是传递岩土体变形到套筒4。
可以理解的是,当轴向拉力作用在垫座16上,套筒4的位移与锚固端15相背离,此位移将使装置整体的轴向变形,此时,可该装置中的力学测量模块14测得该装置受到的轴向拉力,以方便后续结合力学测量模块14的力学测量数据对滑坡进行分析和预警。
其中,本实施例中的力学测量模块14围绕套筒4上腔室5外周向设置。
在本申请一个实施例中,力学测量模块14可以包括但不限于振弦式测力计。
其中,振弦式测力计的形状为环形,振弦式测力计沿上腔室5外部周向设置。
可以理解的是,本实施例在监测装置的地表部分安装力学测量模块14,可测得监测装置承受的拉力,根据受力分析计算得到滑体2的变形参数例如(下滑力),从而方便后续结合力学测量模块14所测量到的力学测量数据对滑坡进行分析和预警。
其中,在本实施例的滑坡柔性监测装置中设置有通信模块时,通信模块与力学测量模块14连接,并将力学测量模块14测量到的力学测量数据发送给远程服务端。对应地,远程服务端根据倾斜角度数据、声发射参数和力学测量数据对滑坡进行分析和预警,并在滑体2的变形程度超过预警阈值时,生成预警信号,以及在变形程度超过报警阈值,生成报警信号,并能将预警信号与报警信号传输至远端与近端的信息发布终端。
作为另一种示例,在本实施例的滑坡柔性监测装置中设置有控制模块,控制模块与力学测量模块14连接,控制模块用于根据倾斜角度数据、声发射参数和力学测量数据对滑坡进行分析和预警,并在滑体2的变形程度超过预警阈值时,生成预警信号,以及在变形程 度超过报警阈值,生成报警信号,并能将预警信号与报警信号传输至远端与近端的系统和信息发布终端。
当然,本实施例中的力学测量模块14也可以为具有无线通信单元的力学测量模块14,对应地,力学测量模块14可通过自身中的无线通信单元将采集到的力学测量数据发送到远程服务端。远程服务端根据倾斜角度数据、声发射参数和力学测量数据对滑坡进行分析和预警,并在滑体2的变形程度超过预警阈值时,生成预警信号,以及在变形程度超过报警阈值,生成报警信号,并能将预警信号与报警信号传输至远端与近端的系统和信息发布终端。由此,结合具有锚索的滑坡柔性监测装置中的声发射传感器实现了对滑坡的实时监测和早期预警。
其中,图1所示的滑坡柔性监测装置在滑坡发生滑动后,滑坡柔性监测装置变化后的状态的示例图,如图2所示。通过图2可以看出,在滑坡中的滑体2移动后,滑坡柔性监测装置的滑动头8发生了滑动,滑动头8从套筒4的上腔室5移动到了下腔室6中,并且套筒4发生了变形。
为了实现上述实施例,本申请还提出了一种通过滑坡柔性监测装置进行滑坡监测的方法,其中,该滑坡柔性监测装置为上述图1所示实施例的装置。
图3是根据本申请一个实施例的滑坡监测的方法的流程图。如图3所示,该方法可以包括:
步骤301,获取声发射传感器输出的声发射参数。
其中,需要说明的是,本实施例的滑坡监测方法应用在滑坡柔性监测装置中,滑坡柔性监测装置的结构示意,如图1所示,关于滑坡柔性监测装置的结构描述可参见上述实施例的相关描述,此处不再赘述。
步骤302,根据声发射参数,确定滑体的变形数据。
步骤303,如果变形数据超过预警阈值,则根据变形数据确定滑体发生变形的持续时间。
其中,本实施例中的持续时间是指滑坡柔性监测装置监测到滑体开始变形到滑坡变形超过预警阈值所对应的时间。
步骤304,根据持续时间确定预警级别,并发布包含预警级别的预警信息。
其中,在不同应用场景中,发布包含预警级别的预警信息可以通过多种方式实现,举例说明如下:
作为一种示例,将预警信息传输至远端和/或近端的信息发布终端进行预警发布。
在本实施例中,将预警信息传输至远端和/或近端的信息发布终端进行预警发布的具体实现方式,可以为:根据预警级别,确定将预警信息传输至远端和/或近端的信息发布终端进行预警发布。
具体而言,可在滑坡柔性监测装置中预先设置预警级别与预警发布方式的对应关系,并根据该对应关系,确定将预警信息传输至远端和/或近端的信息发布终端进行预警发布。
例如,可在滑坡柔性监测装置中预先设置在预警级别为A级别时,将预警信息传输至近端的信息发布终端进行预警发布,在预警级别为B级别时,将预警信息传输至远端的信息发布终端进行预警发布,以及在预警级别为C级别时,将预警信息传输至远端与近端的信息发布终端同时进行预警发布。
作为另一种示例,由设置在滑坡柔性监测装置中的信息发布模块直接发布包含预警级别的预警信息。
作为另一种示例中,将预警信息上传至上层系统,并由上层系统发布预警信息。
其中,可以理解的是,预警信息中除了可以包括预警级别之外,还可以包含与预警级别对应的其他注意事项或响应措施等,该实施对此不作具体限定,可根据具体实际应用需求进行设置。
根据本申请实施例的方法,结合滑坡柔性监测装置中声发射传感器所输出的声发射参数,确定出滑坡的变形数据,并在确定出变形数据超过预警阈值,并结合变形数据确定出滑体发生变形的持续时间,以及根据持续时间确定预警级别,并发布包含预警级别的预警信息。由此,结合具有锚索的滑坡柔性监测装置中的声发射传感器实现了对滑坡的早期监测。
在本申请一个实施例中,为了更加准确对滑坡变性进行准确预测,上述装置中除了包括声发射传感器之外,还可以包括倾斜角传感器。如图4所示,本申请实施例的滑坡监测的方法,可以包括:
步骤401,获取声发射传感器输出的声发射参数。
步骤402,获取倾斜角传感器输出的倾斜角度数据。
步骤403,根据倾斜角度数据和声发射参数,确定滑体的变形数据。
步骤404,如果变形数据超过预警阈值,则根据变形数据确定滑体发生变形的持续时间。
步骤405,根据持续时间确定预警级别,并发布包含预警级别的预警信息。
根据本申请实施例的方法,结合滑坡柔性监测装置中声发射传感器所输出的声发射参数以及倾斜角传感器输出的倾斜角度数据,确定出滑坡的变形数据,并在确定出变形数据超过预警阈值,并结合变形数据确定出滑体发生变形的持续时间,以及根据持续时间确定预警级别,并发布包含预警级别的预警信息,结合两种数据确定滑坡的变形数据,进一步提高了滑坡柔性监测装置确定滑坡变形数据的准确性。
在本申请一个实施例中,为了更加准确对滑坡变性进行准确预测,上述装置中除了包 括声发射传感器、倾斜角传感器之外,还可以包括力学测量模块。如图5所示,本申请实施例的滑坡监测的方法,可以包括:
步骤501,获取声发射传感器输出的声发射参数。
步骤502,获取倾斜角传感器输出的倾斜角度数据。
步骤503,获取力学测量模块输出的力学测量数据。
步骤504,根据力学测量数据、声发射参数和倾斜角度数据,确定滑体的变形数据。
步骤505,如果变形数据超过预警阈值,则根据变形数据确定滑体发生变形的持续时间。
步骤506,根据持续时间确定预警级别,并发布包含预警级别的预警信息。
根据本申请实施例的方法,结合滑坡柔性监测装置中声发射传感器所输出的声发射参数、倾斜角传感器输出的倾斜角度数据和力学测量模块输出的力学测量数据,确定出滑坡的变形数据,并在确定出变形数超过预警阈值时,根据变形数据确定滑体发生变形的持续时间,以及根据持续时间确定预警级别,并发布包含预警级别的预警信息。由此,结合声发射参数、力学测量数据以及倾斜角度数据三种数据,确定滑坡的变形数据,进一步提高了滑坡柔性监测装置确定滑坡变形数据的准确性。
基于上述任意方法实施例的基础上,在本实施例中,该方法还可以包括:如果确定滑体的变形数据超过报警阈值,则生成报警信号,并发布该报警信号。
其中,报警阈值对应的滑体变形程度大于预警阈值对应的滑体变形程度。
其中,需要说明的是,本实施例中的滑坡监测的方法具体可由滑坡监测装置中的控制模块执行。
可以理解的是,本实施例中的控制模块除了可以执行上述方法实施例中所描述的滑坡监测的方法外,控制模块还可以接收用户对预警级别与发布报警方式的设置。
为了使得本领域的技术人员理解,本实施例中以滑坡柔性监测装置中设置了声发射传感器、倾斜角传感器以及振弦式测力计为例进行描述。
如图6所示,本实施例的滑坡监测的方法,包括:
步骤601,确定滑坡中的滑面的位置信息。
可以理解的是,依据《滑坡防治工程勘查规范》(DZ/T0218-2006)确定边坡要素,根据滑坡的物质组成和结构形式等主要因素划分滑坡类型,判断滑体岩土特性、边界特征、运移形式、成因规模等,大致判断潜在滑面的位置、倾角、厚度等,为下一步滑坡柔性监测装置的埋入做好准备。
步骤602,根据滑面的位置信息,在滑坡的主要滑面的代表性地点安装滑坡柔性监测装置。
其中,在滑坡上安装滑坡柔性监测装置的示意过程如下:
1)首先在适当地点钻一监测孔,钻孔与此局部坡面垂直,孔径100毫米,深度根据现场勘察的结果而定,确保穿过潜在滑面。孔深为4-26米之间,以覆盖浅层滑坡(滑体厚度小于10米)和中层滑坡(滑体厚度在10-25米之间),满足大多数滑坡的监测需要。
2)锚索和套筒按照前述参数选择,以二者整体作为波导。波导和钻孔壁之间灌入少量灰砂比1:5的水泥砂浆,水泥将锚固端粘合在钻孔底部稳定坚固的滑床中,套筒筒身埋藏在钻孔中的滑体部分,筒的上端露出地表。
3)将直径100毫米的较硬橡胶管放入钻孔内,一方面防止孔壁垮塌,另一方面隔绝周边岩土环境,排除不同地质条件的干扰。波导和橡胶管之间空隙填充足量颗粒物,并用下落击实设备夯实成为密度均匀的填充颗粒物。
4)在装置的地表部分依次安装好垫座、测力计、螺母和声发射传感器。位于大地表面提供径向朝内的压力,测力计装于垫座之上,测力计上面用螺母紧固整个波导杆,最后将声发射传感器通过耦合剂固定在套筒的上表面。
在本实施中,为了防止环境或者人为因素的损坏,在滑坡柔性监测装置上用塑料保护罩加以保护。
步骤603,获取滑坡柔性监测装置中声发射传感器采集到的声发射参数、倾斜角传感器测量到的倾斜角度数据,和振弦式测力计测量到的力学测量数据。
步骤604,根据声发射参数、倾斜角度数据和力学测量数据,确定出滑体的变形程度,并确定变形程度超过预设预警阈值,则根据变形数据确定滑体发生变形的持续时间,以及根据持续时间确定预警级别,并发布包含预警级别的预警信息。
具体地,可根据声发射参数和滑坡的水平位移、倾斜角度数据和滑体的水平位移、力学测量数据和下滑力/垂直位移等之间的关系,确定出滑体的变形程度,并确定变形程度超过预设预警阈值,则根据变形数据确定滑体发生变形的持续时间,以及根据持续时间确定预警级别,并发布包含预警级别的预警信息。
可以理解的是,滑体的变形程度超过预设预警阈值,表示滑体当前处于不稳定状态,此时,触发相应级别的警报,并有针对性地开展边坡防护和应急疏散等处置工作。
可以理解的是,在本实施例中,如果确定变形程度超过预设的报警阈值,则生成报警信号,并发布报警信号。
其中,报警阈值对应的滑体变形程度大于预警阈值对应的滑体变形程度。
其中,可以理解的是,本实施例的报警信号也是可以传输到远端和/或近端的信息发布终端的。
本申请的有益效果为:本申请以拉胀结构的理念设计监测装置的结构,将相对柔性的 锚索作为深部监测的主体,外加套筒形成可活动的结构。随着滑坡体的运动变形,锚索以及滑动头在套筒内缓慢滑移,套筒会被逐渐胀开而不会被突然拉断。监测装置总体上具有抗弯曲、抗剪切和抗拉伸的效果,有望解决深部大变形监测装置寿命短和量程短的问题。锚索和外部套筒共同组成了波导,在波导和橡胶管之间的空隙填充足量颗粒物,形成有源波导,使得声发射主要来源于装置本身,基本排除了外部地质环境差异性的影响,使得监测装置的适用性更广、应用更简单。声发射传感器可以监测到边坡的微小变形等前兆信号,有望实现滑坡初始演化阶段的超前预警。倾斜角传感器可以测得套筒的倾斜角度,进而根据套筒长度等信息可以反演出套筒在边坡体内的状态,实现监测装置的透明可视化。
综上,本申请在边坡深部大变形监测中不易被损坏,并且能实现声发射、力学、变形等多元参数的测量,并结合声发射、力学、变形等多元参数确定滑体的变形程度是否超过预警阈值,实现滑坡演化过程的综合监测预警和稳固防护。
在本申请的描述中,需要理解的是,术语“中心”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实 现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种滑坡柔性监测装置,其特征在于,所述滑坡包括滑床和滑体,于所述滑床和所述滑体之间的交界面形成滑面,所述装置包括:
    套筒,所述套筒内限定出彼此连通的上腔室和下腔室,其中,所述上腔室的内径大于所述下腔室的内径;
    锚索,所述锚索设于所述下腔室内且其下端伸出所述下腔室外,所述锚索在所述套筒内可向下单向运动,所述锚索的底端设置有锚固端,所述锚索贯穿所述滑体并通过所述锚固端固定在所述滑床上,所述套筒的长度小于所述锚索的长度;
    滑动头,所述滑动头与所述锚索的顶端相连,所述滑动头初始状态设于所述上腔室内,可向下做单向运动;
    橡胶管,所述橡胶管套在所述套筒外侧,所述橡胶管贯穿所述滑体并终止于所述滑床,所述橡胶管与所述套筒之间存在空隙,所述空隙用于填充颗粒物;
    套筒盖,所述套筒盖紧固在所述套筒上且封盖所述上腔室;
    声发射传感器,所述声发射传感器设于所述套筒盖的上表面。
  2. 如权利要求1所述的装置,其特征在于,所述装置还包括:
    倾斜角传感器,所述倾斜角传感器设于所述上腔室内。
  3. 如权利要求1或2所述的装置,其特征在于,所述装置还包括:
    力学测量模块,所述力学测量模块设于所述上腔室外。
  4. 如权利要求3所述的装置,其特征在于,所述上腔室外套有垫座和螺母,所述螺母设置在所述垫座的上方,所述垫座露出所述滑体的地表面,所述力学测量模块位于所述垫座和螺母之间。
  5. 如权利要求4所述的装置,其特征在于,所述力学测量模块包括振弦式测力计。
  6. 如权利要求5所述的装置,其特征在于,所述振弦式测力计的形状为环形,所述振弦式测力计沿所述上腔室外部周向设置。
  7. 如权利要求1-6任一项所述的装置,其特征在于,所述锚索的材料包括钢质材料。
  8. 一种通过如权利要求1至7中任一项所述的滑坡柔性监测装置进行滑坡监测的方法,其特征在于,所述方法包括:
    获取声发射传感器输出的声发射参数;
    根据所述声发射参数,确定滑体的变形数据;
    如果所述变形数据超过预警阈值,则根据所述变形数据确定所述滑体发生变形的持续时间;
    根据所述持续时间确定预警级别,并发布包含所述预警级别的预警信息。
  9. 如权利要求8所述的方法,其特征在于,在所述滑坡柔性监测装置还包括倾斜角传感器时,所述方法还包括:
    获取所述倾斜角传感器输出的倾斜角度数据;
    根据所述倾斜角度数据和所述声发射参数,确定滑体的变形数据。
  10. 如权利要求9所述的方法,其特征在于,在所述滑坡柔性监测装置还包括力学测量模块时,所述方法还包括:
    获取所述力学测量模块输出的力学测量数据;
    根据所述力学测量数据、所述声发射参数和所述倾斜角度数据,确定滑体的变形数据。
  11. 如权利要求8-10任一项所述的方法,其特征在于,所述发布包含所述预警级别的预警信息,包括:
    将所述预警信息传输至远端和/或近端的信息发布终端进行预警发布,或者,
    由设置在所述滑坡柔性监测装置中的信息发布模块直接发布包含所述预警级别的预警信息;或者,
    将所述预警信息上传至上层系统,并由上层系统发布所述预警信息。
  12. 如权利要求11所述的方法,其特征在于,所述将所述预警信息传输至远端和/或近端的信息发布终端进行预警发布,包括:
    根据所述预警级别,确定将所述预警信息传输至远端和/或近端的信息发布终端进行预警发布。
  13. 如权利要求8-10任一项所述的方法,其特征在于,所述方法还包括:
    如果确定所述变形数据超过报警阈值,则生成报警信号,并发布所述报警信号,其中,所述报警阈值对应的滑体变形程度大于所述预警阈值对应的滑体变形程度。
PCT/CN2020/122519 2019-10-29 2020-10-21 滑坡柔性监测装置及其方法 WO2021083008A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911038348.9A CN110836651B (zh) 2019-10-29 2019-10-29 滑坡柔性监测装置及其方法
CN201911038348.9 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021083008A1 true WO2021083008A1 (zh) 2021-05-06

Family

ID=69575757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122519 WO2021083008A1 (zh) 2019-10-29 2020-10-21 滑坡柔性监测装置及其方法

Country Status (2)

Country Link
CN (1) CN110836651B (zh)
WO (1) WO2021083008A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110836651B (zh) * 2019-10-29 2021-03-16 清华大学 滑坡柔性监测装置及其方法
CN112133062B (zh) * 2020-09-25 2022-05-27 重庆地质矿产研究院 一种基于多监测点协同作用的滑坡整体稳定性预警方法
US11771183B2 (en) 2021-12-16 2023-10-03 Joon Bu Park Negative Poisson's ratio materials for fasteners
CN116448050B (zh) * 2023-06-16 2023-08-18 四川川核地质工程有限公司 一种用于滑坡变形的监测装置及监测方法
CN117630042B (zh) * 2024-01-25 2024-04-02 北京森源达生态环境股份有限公司 一种边坡生态修复稳定性检测方法及设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086584A2 (en) * 2009-01-29 2010-08-05 Loughborough University Apparatus and method for monitoring soil slope displacement rate by detecting acoustic emissions
WO2012171155A1 (zh) * 2011-06-13 2012-12-20 中国矿业大学(北京) 恒阻大变形缆索及其恒阻装置
CN103104271A (zh) * 2013-02-21 2013-05-15 中国矿业大学 一种锚索断裂冲击缓冲保护装置
CN105421326A (zh) * 2015-12-15 2016-03-23 东南大学 一种利用声发射技术的土坡稳定性监测仪
CN106066388A (zh) * 2016-07-04 2016-11-02 河北稳控科技有限公司 自主式边坡监测系统
CN106295040A (zh) * 2016-08-17 2017-01-04 中国科学院、水利部成都山地灾害与环境研究所 滑坡灾害监测预警地表测斜仪阈值判定方法
CN207676462U (zh) * 2017-12-20 2018-07-31 杭州鲁尔物联科技有限公司 一种滑坡监测预警装置及系统
CN109487786A (zh) * 2018-11-30 2019-03-19 中国建筑第七工程局有限公司 一种新型大变形锚索构件
CN110320279A (zh) * 2019-05-06 2019-10-11 清华大学 基于有源波导声发射技术的滑坡监测方法
CN110836651A (zh) * 2019-10-29 2020-02-25 清华大学 滑坡柔性监测装置及其方法
CN210534963U (zh) * 2019-10-29 2020-05-15 清华大学 边坡多元参数测量装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455717B2 (ja) * 2010-03-10 2014-03-26 日鐵住金建材株式会社 斜面安定化システム
CN202124865U (zh) * 2011-06-22 2012-01-25 南通海洲建设集团有限公司 无砂水泥管深井降水井口快速封堵装置
CN103791805B (zh) * 2014-01-15 2018-07-27 重庆市高新工程勘察设计院有限公司 滑坡深部位移监测系统
JP6280386B2 (ja) * 2014-02-18 2018-02-14 日立造船株式会社 構造物の不陸計測方法及び装置
CN105971027B (zh) * 2016-05-30 2017-09-29 江西理工大学 一种用于识别岩质边坡滑移面的声发射监测方法
CN107246008B (zh) * 2017-06-30 2019-10-01 浙江大学 一种边坡防护的自排水锚索系统的施工方法
CN108560525B (zh) * 2018-04-28 2020-09-01 四川理工学院 一种边坡防护监测装置的基准检测结构
CN109115145B (zh) * 2018-05-25 2019-08-20 中国地质大学(武汉) 一种嵌入式滑坡深部大变形监测装置及方法
CN208736396U (zh) * 2018-09-11 2019-04-12 长江水利委员会长江科学院 堆积体滑坡大变形柔性监测装置
CN109238187A (zh) * 2018-10-26 2019-01-18 中铁二院成都勘察设计研究院有限责任公司 一种滑坡监测系统及其方法
CN110006383B (zh) * 2019-03-27 2021-12-14 中国地质大学(武汉) 一种适用于滑坡深部大位移的监测装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086584A2 (en) * 2009-01-29 2010-08-05 Loughborough University Apparatus and method for monitoring soil slope displacement rate by detecting acoustic emissions
WO2012171155A1 (zh) * 2011-06-13 2012-12-20 中国矿业大学(北京) 恒阻大变形缆索及其恒阻装置
CN103104271A (zh) * 2013-02-21 2013-05-15 中国矿业大学 一种锚索断裂冲击缓冲保护装置
CN105421326A (zh) * 2015-12-15 2016-03-23 东南大学 一种利用声发射技术的土坡稳定性监测仪
CN106066388A (zh) * 2016-07-04 2016-11-02 河北稳控科技有限公司 自主式边坡监测系统
CN106295040A (zh) * 2016-08-17 2017-01-04 中国科学院、水利部成都山地灾害与环境研究所 滑坡灾害监测预警地表测斜仪阈值判定方法
CN207676462U (zh) * 2017-12-20 2018-07-31 杭州鲁尔物联科技有限公司 一种滑坡监测预警装置及系统
CN109487786A (zh) * 2018-11-30 2019-03-19 中国建筑第七工程局有限公司 一种新型大变形锚索构件
CN110320279A (zh) * 2019-05-06 2019-10-11 清华大学 基于有源波导声发射技术的滑坡监测方法
CN110836651A (zh) * 2019-10-29 2020-02-25 清华大学 滑坡柔性监测装置及其方法
CN210534963U (zh) * 2019-10-29 2020-05-15 清华大学 边坡多元参数测量装置

Also Published As

Publication number Publication date
CN110836651A (zh) 2020-02-25
CN110836651B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2021083008A1 (zh) 滑坡柔性监测装置及其方法
US10139269B2 (en) Detecting broadside acoustic signals with a fiber optical distributed acoustic sensing (DAS) assembly
JP5455717B2 (ja) 斜面安定化システム
KR100943166B1 (ko) 광섬유 변위계 및 이를 이용한 사면 안전 감시 시스템
US20070251326A1 (en) Pressure sensitive cable device for monitoring rock and soil displacement
Dixon et al. Stability monitoring of a rail slope using acoustic emission
JP3894494B2 (ja) 土砂災害予知システム、地域情報提供システム及び土砂災害予知方法
CN110220978B (zh) 一种用于尾矿库坝体溃坝预警的纵向导波监测方法
KR20110004176A (ko) 경사 센서를 이용한 구조물의 안전 진단 시스템
CN110243946B (zh) 一种用于尾矿库坝体溃坝预警的弯曲导波监测方法
US7832274B1 (en) System and method for pneumatic scour detection
JP2015145592A (ja) 地盤状態監視システムおよび地盤状態監視方法
KR101129870B1 (ko) 센서를 이용한 이종 시설물의 원격 모니터링 방법
CN112797929B (zh) 岩土体变形监测装置及方法
KR101584963B1 (ko) Gps를 사용한 경사면의 붕괴 조짐을 예측하는 장치 및 방법
CN107782284A (zh) 一种大坝变形监测系统
Smith et al. Inclinometer casings retrofitted with acoustic real-time monitoring systems
JP2000046528A (ja) 光ファイバセンサを用いた歪み計測方法
CN106906824B (zh) 分布式光纤预应力智能监测锚索
US20080092656A1 (en) System for Monitoring Level Variations in a Soil Subjected to Erosive and Sedimentary Agents, and Monitoring Method and Element
JP2005257602A (ja) 孔径変化測定器
CN214224029U (zh) 岩土体变形监测装置
JP2004293277A (ja) 岩盤内の破壊進行面検出システム
HU206161B (en) Device for indicating kinetic processes in situ, in a solid medium
Tamate et al. Monitoring shear strain in shallow subsurface using mini pipe strain meter for detecting potential threat of slope failure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881453

Country of ref document: EP

Kind code of ref document: A1