WO2012168495A1 - Obtención de oligosacaridos mediante un procedimiento biotecnológico - Google Patents

Obtención de oligosacaridos mediante un procedimiento biotecnológico Download PDF

Info

Publication number
WO2012168495A1
WO2012168495A1 PCT/ES2011/070403 ES2011070403W WO2012168495A1 WO 2012168495 A1 WO2012168495 A1 WO 2012168495A1 ES 2011070403 W ES2011070403 W ES 2011070403W WO 2012168495 A1 WO2012168495 A1 WO 2012168495A1
Authority
WO
WIPO (PCT)
Prior art keywords
lacto
activity
beta
neotetraose
tetraose
Prior art date
Application number
PCT/ES2011/070403
Other languages
English (en)
French (fr)
Other versions
WO2012168495A9 (es
Inventor
Esther MATENCIO HILLA
Verónica NAVARRO BARRERA
María ENRIQUE LÓPEZ
Marta Tortajada Serra
Dunja LUKOVIC
Diego RODRÍGUEZ JIMENEZ
Daniel RAMÓN VIDAL
Beatriz ÁLVAREZ PÉREZ
Original Assignee
Hero Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hero Ag filed Critical Hero Ag
Priority to ES11867262.5T priority Critical patent/ES2671555T3/es
Priority to DK11867262.5T priority patent/DK2722394T3/en
Priority to PCT/ES2011/070403 priority patent/WO2012168495A1/es
Priority to CN201180071512.1A priority patent/CN103764835B/zh
Priority to EP11867262.5A priority patent/EP2722394B1/en
Priority to PL11867262T priority patent/PL2722394T3/pl
Publication of WO2012168495A1 publication Critical patent/WO2012168495A1/es
Publication of WO2012168495A9 publication Critical patent/WO2012168495A9/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01146Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,3-N-acetylglucosaminyltransferase (2.4.1.146)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase

Definitions

  • the present invention relates to obtaining certain oligosaccharides present in breast milk, specifically lacto-N-neotetraose and lacto-N-tetraose, by a biotechnological process.
  • Oligosaccharides are short chain carbohydrates (degree of polymerization from 2 to 7) that are found naturally in fruits, vegetables, human milk and honey. They are considered important due to their biological and physiological properties, as functional ingredients and particularly for their prebiotic activity.
  • oligosaccharides present in human milk play an important biological role since they are probably related to the prevention of infections in newborns by preventing the adhesion of certain pathogens (viruses and bacteria) to the intestinal epithelium, firing the immune system locally and acting as prebiotics
  • Breast milk contains more than 130 different oligosaccharides, which constitute the third component of it. Its total concentration decreases as the course of breastfeeding progresses, so that it contains less than half a year than in the first weeks of life. There are quantitative and qualitative differences between oligosaccharides detected in the milk of different mammals.
  • the major monomers of human milk oligosaccharides are D-glucose, D-galactose, N-acetyl glucosamine, L-fucose and N-acetyl neuraminic. All of them undergo modifications due to the addition of groups of L-fucose and / or sialic acid, generating the so-called neutral or acid oligosaccharides, respectively, of those described between 150 and 200. Its concentration in milk decreases as it progresses Lactation but in the first months they seem to have a relevant physiological role.
  • oligosaccharides are formed from lactose by means of glucosyltransferases (GT), so that those formed mostly in human milk are Lacto-N-triosa and Lacto-N-tetraosa and the different isomers of the Lacto-N-fucopentaose.
  • GT glucosyltransferases
  • the undigested oligosaccharide fraction in breast milk it stimulates the growth of bifidobacteria in the colon, and this flora could have beneficial effects of protection against enteric infections.
  • oligosaccharides are a major component of the innate immune system by which the mother protects her child from pathogens (enteric or from another location) during breastfeeding.
  • the second would be chemical synthesis. Although possible, its cost is high and its efficiency low.
  • the third alternative is based on the use of enzymes to produce different oligosaccharides from lactose.
  • This strategy is based on the use of different glycosidases or glycosyltransferases from various sources (microorganisms or mammals).
  • glycosyltransferases is preferable given their greater efficacy but, since many of them come from mammals, their cost is very high. Therefore, we work on the expression of the genes that encode any of these enzymes in different microorganisms (Escherichia coli, Pichia pastor ⁇ s and Saccharomyces cerevisia) in order to overproduce them, although the leap to semi-industrial scaling has never been made.
  • the last strategy is to build, through genetic engineering techniques, mycoorganisms capable of generating oligosaccharides.
  • the first advances have been achieved by expressing three genes of Neisser ⁇ a meningitiditis that encode an N-acetyl glucosamine transferase, a galactosyl transferase and a sialyl transferase, in a strain of E.coli in which the expression of the gene encoding the transporter of lactose can be induced by glycerol.
  • this approach has been successful, the commercialization of the product obtained for infant feeding seems complex when pathogenic bacteria are used as donors and gene receptors and generate ingredients obtained from genetically modified organisms that would require specific labeling.
  • JP 1 1253191 A which provides a method for enzymatically synthesizing lacto-N-tetraose, suitable for use in food and medicine, in any quantity.
  • the method comprises the reaction of UDP-GIcNac on lactose in the presence of beta-1,3-N-acetylglucosaminyl transferase to synthesize lacto-N-triosa followed by binding with galactose in the presence of beta-galactosidase, thus obtaining lacto- N-tetraose
  • US 2007/0275881 A1 refers to pharmaceutical compositions and their use in the treatment of infectious diseases.
  • the compositions contain peptides linked to oligosaccharides of interest, such as, Lacto-N-tetraose and Lacto-N-neotetraose. The preparation of these oligosaccharides in yeasts in the presence of the corresponding glycosyltranferases is described.
  • US 7,521, 212 B1 relates to the production of oligopolysaccharides through a microbiological process, in which, for example, lactose-N-neotetraose is obtained, in the presence of lactose and GIcNAc and beta-1 enzymes -3-Nacethylglucosaminyltransferase and beta-1 -4-galactosyltransferase.
  • lactose-N-neotetraose is obtained, in the presence of lactose and GIcNAc and beta-1 enzymes -3-Nacethylglucosaminyltransferase and beta-1 -4-galactosyltransferase.
  • lactose-N-neotetraose is obtained, in the presence of lactose and GIcNAc and beta-1 enzymes -3-Nacethylglucosaminyltransferase and beta-1
  • the genetic sequences of enzymes such as beta-acetylglucosaminyltransferase are selected from eukaryotic or prokaryotic species and inserted into the pronus of the embryo that will give rise to the transgenic animal.
  • Document ES 2 162 619 T3 describes an apparatus and method for obtaining oligosaccharide compositions in three steps, using glucosaminyltransferases and galactosyltransferases of human origin and US 5,879,912 describes a method for synthesizing oligosaccharides, polysaccharides, glycolipids and glycoproteins.
  • the synthesis of lacto-N-neotetraose in the presence of two cell cultures that provide the two enzymes with glycosyltransferase activity to form the beta-Gal 1 -4 GIcNAc and beta-GIcNAc 1 -3 bond in the presence of UPD-GIcNAc and lactose is described. . OBJECT OF THE INVENTION
  • the present invention relates to the development of a biotechnological production method of certain oligosaccharides present in breast milk, specifically the production of the lacto-N-neotetraose and lacto-N-tetraose oligosaccharides from lacto-N-triosa obtained from supernatants of culture enriched in the appropriate enzymes to generate them from their precursors: lactose and N-acetyl-glucosamine.
  • Figure 1 Enzymatic formation of oligosaccharides: lacto-N-triosa, lacto-N-neotetraose and lacto-N-tetraose.
  • Figure 2 N-acetyl-glucosaminidase activity detection plate assay.
  • Figure 3 Effect of temperature and culture medium on the activity of the A. niger nag A enzyme recovered from the culture broth of the recombinant S.cerevisiae strain. (Ex. 4)
  • Figure 4 Determination of beta-galactosidase activity in culture broth (A) or cell suspension (B) of S. cerevisiae or P.pastoris recombinants for the lacZ enzyme of S. thermophilus. (E. 5)
  • Figure 6 Plaque assay for detection of beta-galactosidase activity in E.coli transformants for the lacZde S. thermophilus gene (Ex. 7)
  • Figure 9 Process for obtaining lacto-N-tetraose and lacto-N-neotetraose in two sequential stages. (Ex. 10) DETAILED DESCRIPTION OF THE INVENTION
  • the oligosaccharides to be obtained in the present invention are the lacto-N-neotetraose and lacto-N-tetraose tetrasaccharides. These tetrasaccharides are present in breast milk, and are formed by a unit of lactose, to which N-acetylglucosamine (beta-1-3 linkage) is added, which generates lacto-N-triosa.
  • Lacto-N-neotetraose (beta 1 -4 link) and Lacto-N-tetraose (beta 1 -3 link) can be obtained.
  • Tetrasaccharides are therefore produced by means of two sequential activities, a beta - (1, 3) -N-acetylglucosaminyltransferase, and then a beta- (1, 3) or beta- (1, 4) galactosyltransferase activity.
  • the enzymes necessary to produce the lacto-N-triosa, lacto-N-tetraose and lacto-N-neotetraose oligosaccharides are produced and secreted to the breeding broth by genetically modified S. cerevisiae yeasts.
  • S. cerevisiae yeasts To use a microorganism that produces enzymes for human consumption, a series of legal requirements must be met, which focus on that such microorganism must be included in the so-called "GRAS" list (generally aknowledged as secur), that is, that it meets certain security requirements
  • GRAS microorganisms approved for the food industry There are about 50 GRAS microorganisms approved for the food industry.
  • the origin of the genes encoding both enzymatic activities is fixed in GRAS microorganisms to avoid rejection problems.
  • the selected genes are: nagA of Aspergillus niger, and lacZde Streptococcus thermophilus.
  • the enzymatic activity necessary for the first stage of the process has been shown present in bovine serum, colostrum, and the enzymes encoded by the nagA genes of the fungi Aspergillus oryzae and Aspergillus nidulans (two enzymes with N-acetyl-glucosaminidase activity).
  • the second stage is carried out by a galactosyltransferase enzyme. This activity has been demonstrated in some beta-galactosidases of bacterial and fungal origin (A. oryzae, Bifidobacterium bifidum, Bacillus circulans).
  • the gene encoding the enzyme beta-galactosidase (lacZ) of the bacterium S. thermophilus has been selected as the origin of the galactosyltransferase activity, since said gene encodes this activity in other bacteria lactic, and it is known that S. thermophilus is able to catalyze transglycosylation reactions by acting on lactose (Smart 1991, Reuter et al 1999).
  • lacZ beta-galactosidase
  • the three most widely studied secretion signal peptides for S. cerevisiae are that of the oc factor (Brake ei a / .1989), SEQ ID NO: 3, that of the SUC2 invertase (Perlman et al. 1982), SEQ ID NO : 4, and that of acidic phosphatase PH05 (Arima et al. 1983), SEQ ID NO: 5.
  • the genes encoding the nagA and lacZ enzymes can be expressed in the S.cerevisiae transformant, which can be obtained by inserting the DNA of the present invention into two vectors and introducing them into a host.
  • the first methods of transformation of S.cerevisiae involved the removal of the cell wall to produce spheroplasts that could incorporate DNA after treatment with calcium and polyethylene glycol (Hinnen et al. 1978).
  • the transformants were plated in isotonic selective medium for cell wall regeneration. Subsequently, a more practical method was developed in which intact cells become competent by treatment with lithium ions (Ito e ⁇ al. 1983).
  • the vectors to be used for this purpose can be any of those capable of expressing the genes encoding the enzymes in appropriate hosts.
  • plasmid, bacteriophage or cosmid vectors there may be mentioned: plasmid, bacteriophage or cosmid vectors.
  • said vectors will comprise a regulatory factor such as a promoter; at a short distance from the promoter they must have a region that, when transcribing, supplies the ribosome entry site; and finally they must contain an origin of replication that allows their multiplication within the host.
  • the vectors selected for each protein have different selection marker genes in order to rescue different auxotrophies, which allows the simultaneous introduction of both vectors into the same host and selection in a single step.
  • the most widely used selection markers for S.cerevisiae are LEU2, TRP1, URA3 and HIS3, used in the corresponding mutant strains that are auxotrophs for leucine, tryptophan, uracil and histidine, respectively (Beggs 1978; Rose et al. 1984; Struhl et al. 1980; Tschumper et al. 1980).
  • auxotrophic strains are available and their selection requires the use of minimal growth medium in the absence of the relevant nutrient.
  • Yeast Genetics Stock Culture Center of the American Type Culture Collection (k ü>: £ www ; a ice ; 0 £ ⁇ ; EUROSCARF
  • Schimmelcultures i> ⁇ .; C ⁇ and Culture Collection of Saccharomyces cerevisiae (http: //www.natur.cuni.ez/fccm/federacs.htm#dgub.).
  • yeasts As the host in which an expression vector containing the DNA of the invention has to be introduced, yeasts, bacteria and insect, mammalian cell cultures, etc. can be mentioned.
  • the use of S. cerevisiae yeast is preferred, but Schizosaccharomyces pombe, P. pastoris, E. coli, Bacillus subtilis, S. thermophilus, etc. are also proposed.
  • N-acetylglucosaminidase hydrolytic activity of the enzyme expressed in the transformants obtained, by plaque assay or in liquid medium using the synthetic substrates methylumbelilferil (MU) -N-acetylglucosamine or p-nitrophenyl (PNP) -N-acetylglucosamine, respectively (Borooah et al. 1961).
  • MU methylumbelilferil
  • PNP p-nitrophenyl
  • Methylumbelliferone is a fluorescent, fluorescent compound when illuminated with a 366 nm UV light lamp.
  • the liquid test allows the quantification of the activity by analyzing the absorbance at 405 nm due to the release of p-nitrophenol, a colored compound that in alkaline solution absorbs at a wavelength of 405 nm, as a consequence of the N-acetyl hydrolytic activity -glucosaminidase.
  • the liquid test allows the quantification of the activity by analyzing the absorbance at 405 nm due to the release of p-nitrophenol, a colored compound that in alkaline solution absorbs at a wavelength of 405 nm, as a consequence of the beta-galactosidase hydrolytic activity .
  • the plaque assay allows rapid selection of those clones with greater gene expression. While the test in liquid medium allows the quantification of the activity, as well as its secretion, since the activity in the culture broth and in the isolated cells is independently analyzed.
  • plasmids to be used may be those belonging to the collection described in Mumberg et al. (1995), composed of series of expression vectors with combinations of four promoters, two origins of replication and four different markers. Using these vectors it is possible to control gene expression at different levels, controlling the level of transcription as well as the copy number of the recombinant gene.
  • the final process of obtaining the oligosaccharides of interest will consist of two phases, the first one that will last from 70 to 74 hours at 43-47 5 C, preferably, 72 hours at 45 5 C, in which lacto-N- will be generated triosa from its precursors lactose and N-acetyl-glucosamine using the nagA activity of culture broths or cell extracts (in case the protein is secreted or not, respectively) or purified protein.
  • this phase it is possible to purify lacto-N-triosa or continue the process with a second phase to generate lacto-N-tetraose and lacto-N-neotetraose.
  • This second phase will last 36 hours at 45 5 C in which lacto-N-tetraose and lacto-N-neotetraose will be generated from lacto-N-triosa and galactose, present in the reaction broth resulting from the first phase, using the lacZ activity of a culture broth or cell extract, depending on whether the recombinant enzyme is secreted or not, or where appropriate, purified protein.
  • the microbiological process for obtaining lacto-N-tetraose and lacto-N-neotetraose has been carried out, so that lacto-N-tetraose and lacto-N-neotetraose are obtained in I live in a range of 1 to 100 grams per liter of reaction broth in two sequential stages from culture broth enriched in nagA activity and cell extract with lacZ activity from a single strain that expresses and secretes nagA and that expresses and does not secret lacZ.
  • the possibility of carrying out the reaction is also contemplated using the activity of the two enzymes simultaneously present in the same culture broth or in the same cell extract with lacZ activity from a single strain that expresses and secret nagA and lacZ.
  • the oligosaccharides obtained according to the present invention are extracted and purified from the reaction medium through usual techniques known in the state of the art. As a preferred technique for the purification of oligosaccharides, chromatographic separation is used on activated carbon (Whistler et al. 1950).
  • these oligosaccharides can be incorporated as food ingredients in food products for consumption.
  • the gene encoding the N-acetyl-glucosaminidase activity in A. niger is identified by homology with the nagA gene of A.nidulans.
  • the protein resulting from its expression corresponds to SEQ ID NO: 6
  • At least 2 possible orthologous genes to nagA of A. nidulans appear. Between the two, it is decided to clone the gene whose sequence is SEQ ID NO: 1, due to its greater homology and description in the databases as a gene coding for a putative activity N-acetyl-glucosaminidase. The alignment of the amino acid sequences encoded by both genes shows a homology of 71.3%. Cloning was performed by polymerase chain reaction (PCR) from genomic DNA from A. niger, following the method and materials described in Mull ⁇ s e ⁇ a / (1986).
  • PCR polymerase chain reaction
  • Example 2 Nucleotide sequence of the lacZde S. thermophilus gene.
  • the lacZ gene sequence encoding the S. thermophilus ⁇ -galactosidase enzyme is identified and available in the databases and corresponds to SEQ ID NO: 2.
  • the protein is described as a tetramer of approximately 124 kDa.
  • the lacZ gene was cloned by polymerase chain reaction (PCR) from DNA genomic of S. thermophilus, following the method and materials described in Mull ⁇ s et al (1986).
  • Example 3 Determination of the N-acetyl-qlucosaminidase activity in plaque of the A. niger nag A gene overexpressed in S. cerevisiae.
  • the transformants generated with the plasmid p415GPD-nagA-LEU2 are grown in haploid strain BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) on rich YPD medium, formulated with 10 g / l yeast extract (Scharlau Chemie SA), 20 g / l of bacteriological peptone (Pronadisa) and 20 g / l glucose (Panreac Qu ⁇ mica SAU) as a carbon source, solidified with 2% agar (Pronadisa).
  • a liquid solution of the methylumbelliferyl (MU) -N-acetyl-glucosamine substrate is poured onto the plate at a concentration of 1 mM in 45 mM citrate buffer with 1% agarose at pH 4.8, incubated at 50 5 C for 30 minutes protected from light and observed under UV light.
  • the N-acetyl-glucosaminidase activity causes the formation of methylumberylferone, which is a fluorogenic compound, fluorescent when illuminated with a 366 nm UV light lamp.
  • Example 4 Effect of temperature and culture medium on the activity of the A. niger nag A enzyme recovered from the culture broth of the recombinant S. cerevisiae strain.
  • a recombinant strain generated by transformation of haploid strain BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) was used with plasmid p415GPD-nagA-LEU2.
  • the transformants were selected in synthetic SD medium based on 6.7 g / l nitrogen base for yeast without amino acids (Difco) and supplemented with 20 g / l glucose (Panreac Qu ⁇ mica SAU) as carbon source and 200 mg / l of histidine (Merck), uracil (Calbiochem) and methionine (Fluka) as nutritional requirements.
  • the cells were cultured in parallel in minimal selective medium and in rich medium.
  • SD synthetic medium based on 6.7 g / l of nitrogen base was used for yeast without amino acids (Difco) and supplemented with 20 g / l glucose (Panreac Qu ⁇ mica SAU) as carbon source and 200 mg / l of histidine (Merck), uracil (Calbiochem) and methionine (Fluka) as nutritional requirements; YPD formulated with 10 g / l of yeast extract (Scharlau Chemie SA), 20 g / l of bacteriological peptone (Pronadisa) and 20 g / l of glucose (Panreac Qu ⁇ mica SAU) was used as a rich medium.
  • the culture broth resulting from the growth of the strain in both media was tested for N-acetyl-glucosaminidase activity in liquid medium using p-nitrophenyl (PNP) -N-acetyl-glucosamine as the reaction substrate.
  • PNP p-nitrophenyl
  • An aliquot of each culture broth was used and diluted in citrate / phosphate buffer 0.09 M at pH 4.8 in the presence of the substrate, incubating at 30 5 C for 30 minutes.
  • the hydrolytic activity N-acetyl-glucosaminidase was quantified by determining the absorbance at 405 nm due to the release of p-nitrophenol, a colored compound that in alkaline solution absorbs at a wavelength of 405 nm, as a consequence thereof.
  • the activity is almost three times higher in the culture supernatant when the strain is grown in rich medium than in minimal selective medium, showing an influence of the culture medium in the expression and / or secretion of the nagA enzyme.
  • the selected transformant was grown in YPD rich medium formulated with 10 g / l of yeast extract (Scharlau Chemie SA), 20 g / l of bacteriological peptone (Pronadisa) and 20 g / l of glucose (Panreac Qu ⁇ mica SAU) as a carbon source, in parallel to 3 different temperatures: 28, 30 and 32 5 C.
  • the culture broth was analyzed for its hydrolytic activity N-acetyl-glucosaminidase in liquid medium.
  • Recombinant strains of S.cerevisiae and P. pastor ⁇ s were generated by transformation of haploid strain BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) with plasmid p416GPD-lacZ-URA3 and wild haploid strain X-33 with plasmid pPICzaB respectively.
  • S.cerevisiae transformants were selected in synthetic SD medium based on 6.7 g / l nitrogen base for yeast without amino acids (Difco) and supplemented with 20 g / l glucose (Panreac Qu ⁇ mica SAU) as carbon source and 200 mg / l histidine (Merck), leucine (Merck) and methionine (Fluka) as nutritional requirements.
  • the P.pastoris transformants were selected in YPDS medium formulated with 10 g / l yeast extract (Scharlau Chemie SA), 20 g / l bacteriological peptone (Pronadisa), 20 g / l glucose (Panreac Qu ⁇ mica SAU) as carbon source, 1 M sorbitol (Applichem VWR) and 100 ⁇ g / ml Zeocin (Invivogen).
  • Beta-galactosidase hydrolytic activity was determined in the culture broths as well as in a cell suspension.
  • Galactopyranoside incubating at 55 5 C for 30 minutes - for this the indicated amount of broth or cell suspension in 100 mM phosphate buffer at pH 7 in the presence of p-nitrophenyl substrate (PNP) was diluted.
  • the beta-galactosidase hydrolytic activity was quantified by determining the absorbance at 405 nm due to the release of p-nitrophenol, a colored compound that in alkaline solution absorbs at a wavelength of 405 nm, as a consequence thereof.
  • Example 6 Subcellular localization of lacZ in recombinant lacZ of S.thermophilus in S. cerevisiae
  • the recombinant S.cerevisiae strain was generated by transformation of haploid strain BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) with plasmid p416GPD-lacZ-URA3 and selection in synthetic SD medium based on 6.7 g / l nitrogen base for yeast without amino acids (Difco) and supplemented with 20 g / l glucose (Panreac Qu ⁇ mica SAU) as a source of carbon and 200 mg / l histidine (Merck), leucine (Merck) and methionine (Fluka) as nutritional requirements.
  • haploid strain BY4741 MATa HIS3D1 LEU2D0 MET15D0 URA3D0
  • plasmid p416GPD-lacZ-URA3 selection in synthetic SD medium based on 6.7 g / l nitrogen base for yeast without amino acids (Difco) and supplemented with 20 g
  • the recombinant was grown in YPD rich medium formulated with 10 g / l yeast extract (Scharlau Chemie SA), 20 g / l bacteriological peptone (Pronadisa) and 20 g / l glucose (Panreac Qu ⁇ mica SAU) as a carbon source at 28 5 C.
  • beta-galactosidase hydrolytic activity was carried out in liquid medium, diluting each sample in 100 mM phosphate buffer at pH 7 in the presence of the p-nitrophenyl (PNP) -galactopyranoside substrate and incubating at 55 5 C for 30 minutes.
  • the beta-galactosidase hydrolytic activity was quantified by determining the absorbance at 405 nm due to the release of p-nitrophenol, a colored compound that in alkaline solution absorbs at a wavelength of 405 nm, as a consequence thereof.
  • Example 7 Determination of beta-qalactosidase plaque activity of the lacZde S. thermophilus gene overexpressed in E. coli.
  • An E. coli transformant is generated for the S.thermophilus lacZ gene by transformation of strain DH5oc (fhuA2 (argF-lacZ) U169 phoA glnV44 V80 A (lacZ) M15 gyrA96 recA 1 relA 1 endA 1 thi-1 hsdR17) with plasmid p416GPD-lacZ URA3 and selection in LB medium formulated with 5 g / l of yeast extract (Scharlau Chemie SA), 10 g / l of tryptone (Scharlau Chemie SA), 10 g / l of sodium chloride (NaCI) and ampicillin (Calbiochem) at a concentration of 100 mg / l.
  • a liquid solution of the methylumbelilferil (MU) - galactopyranoside substrate is poured onto the plate at a concentration of 1 mM in 100 mM phosphate buffer with 1% agarose at pH 6, incubated at 50 5 C for 30 minutes protected from light and It is observed under UV light.
  • the beta-galactosidase activity causes the formation of methylumbelylferone, which is a fluorescent, fluorescent compound when illuminated with a 366 nm UV light lamp.
  • Example 8 Obtaining lacto-N-triosa in vivo from culture broth enriched in naq A activity and its precursors: lactose and N-acetyl-qlucosamine.
  • a recombinant strain generated by transformation of haploid strain BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) was used with plasmid p415GPD-nagA-LEU2.
  • the transformants were selected in synthetic SD medium based on 6.7 g / l nitrogen base for yeast without amino acids (Difco) and supplemented with 20 g / l glucose (Panreac Qu ⁇ mica SAU) as carbon source and 200 mg / l of histidine (Merck), uracil (Calbiochem) and methionine (Fluka) as nutritional requirements.
  • the selected transformant was grown to OD 40 in batch in 4xYPD medium formulated with 40 g / l yeast extract (Scharlau Chemie SA), 80 g / l bacteriological peptone (Pronadisa) and 80 g / l glucose (Panreac Qu ⁇ mica SAU ) as a carbon source at 28 5 C until saturation.
  • the presence of the nag A enzyme in the culture supernatant was checked by determining the hydrolytic activity N-acetyl-glucosaminidase in an aliquot of the broth culture diluted in citrate / phosphate buffer 0,09M at pH 4.8 in the presence of the substrate, incubating at 30 5 C for 30 minutes.
  • the N-acetyl-glucosaminidase hydrolytic activity was quantified by determining the absorbance at 405 nm due to the release of p-nitrophenol, a colored compound that in alkaline solution absorbs at a wavelength of 405 nm, as a consequence thereof.
  • Example 10 Obtaining lacto-N-tetraose and lacto-N-neotetraose in vivo in two sequential stages from culture broth enriched in naqA activity and cell extract with lacZ activity from a single strain that expresses and secretes naqA and that express and not secret lacZ
  • Haploid strain BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) was transformed with plasmids p415GPD-nagA-LEU2 and p416GPD-lacZ-URA4 simultaneously.
  • the transformants were selected in synthetic SD medium based on 6.7 g / l nitrogen base for yeast without amino acids (Difco) and supplemented with 20 g / l glucose (Panreac Qu ⁇ mica SAU) as carbon source and 200 mg / l of histidine (Merck) and methionine (Fluka) as nutritional requirements.
  • the high density strain is grown in 4xYPD medium formulated with 40 g / l of yeast extract (Scharlau Chemie SA), 80 g / l of bacteriological peptone (Pronadisa) and 80 g / l of glucose (Panreac Qu ⁇ mica SAU) as a carbon source at 28 5 C until saturation.
  • yeast extract Scharlau Chemie SA
  • 80 g / l of bacteriological peptone Pronadisa
  • 80 g / l of glucose Panreac Qu ⁇ mica SAU
  • nucleotide sequence of the yeast PH05 gene a putative precursor of repressible acid phosphatase contains a signal peptide. Nucleic Acids Res. 1983 Mar 25; 1 1 (6): 1657-72.
  • beta-N-acetylglucosaminidase encoding gene nagA Cloning and overexpression of beta-N-acetylglucosaminidase encoding gene nagA from Aspergillus oryzae and enzyme-catalyzed synthesis of human milk oligosaccharide. Biosci Biotechnol Biochem. 2003 Mar; 67 (3): 646-50.
  • Struhl K Davis RW. A physical, genetic and transcriptional map of the cloned his3 gene region of Saccharomyces cerevisiae. J Mol Biol. 1980 Jan 25; 136 (3): 309-32.
  • Tschumper G Carbon J. Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRPI gene. Gene. 1980 Jul; 10 (2): 157-66.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

Obtención de oligosacáridos mediante un procedimiento biotecnológico, se refiere al desarrollo de un método de producción biotecnológico de determinados oligosacáridos presentes en leche materna, concretamente la producción de los oligosacáridos lacto-N-neotetraosa y lacto-N-tetraosa a partir de lacto-N-triosa obtenida de sobrenadantes de cultivo enriquecidos en las enzimas adecuadas para generarlos a partir de sus precursores: lactosa y N-acetil-glucosamina.

Description

OBTENCIÓN DE OLIGOSACARIDOS MEDIANTE
UN PROCEDIMIENTO BIOTECNOLÓGICO
SECTOR TÉCNICO DE LA INVENCIÓN La presente invención se refiere a la obtención de determinados oligosacáridos presentes en la leche materna, concretamente la lacto-N-neotetraosa y la lacto-N- tetraosa, mediante un proceso biotecnológico.
ANTECEDENTES DE LA INVENCIÓN
Los oligosacáridos son carbohidratos de cadena corta (grado de polimerización de 2 a 7) que se encuentran de forma natural en frutas, verduras, leche humana y miel. Son considerados importantes debido a sus propiedades biológicas y fisiológicas, como ingredientes funcionales y particularmente por su actividad prebiótica.
Los oligosacáridos presentes en la leche humana cumplen un papel biológico importante ya que probablemente están relacionados con la prevención de infecciones en los recién nacidos al evitar la adhesión de ciertos patógenos (virus y bacterias) al epitelio intestinal, disparar el sistema inmune localmente y actuar como prebióticos. La leche materna contiene más de 130 oligosacáridos distintos, que constituyen el tercer componente de ésta. Su concentración total disminuye a medida que avanza el curso de la lactancia, de modo que al año contiene menos de la mitad que en las primeras semanas de vida. Existen diferencias cuantitativas y cualitativas entre los oligosacáridos detectados en la leche de los distintos mamíferos. Los monómeros mayoritarios de los oligosacáridos de la leche humana son D-glucosa, D-galactosa, N- acetil glucosamina, L-fucosa y N-acetil neuramínico. Todos ellos sufren modificaciones por la adición de grupos de L-fucosa y/o ácido siálico, generando los llamados oligosacáridos neutros o ácidos, respectivamente, de los que se han descrito entre 150 y 200. Su concentración en la leche decrece a medida que avanza la lactación pero en los primeros meses parecen tener un papel fisiológico relevante.
Los oligosacáridos neutros más importantes se forman a partir de la lactosa por medio de glucosiltransferasas (GT), de modo que los que se forman mayoritariamente en la leche humana son Lacto-N-triosa y Lacto-N-tetraosa y los distintos isómeros de la Lacto-N-fucopentaosa. La fracción de oligosacáridos no digerida en la leche materna estimula el crecimiento de bifidobacterias en el colon, y esta flora podría tener efectos beneficiosos de protección frente a infecciones entéricas. Así, los oligosacáridos son un componente principal del sistema inmunológico innato por el cual la madre protege a su hijo de patógenos (entéricos o de otra localización) durante la lactancia.
Es destacable que ninguno de estos productos se encuentra en la leche de cabra, oveja o vaca. Además, estas moléculas no están presentes en las leches artificiales, por lo que su adición a las mismas tiene evidente interés social y económico. En este sentido existirían cuatro posibilidades para su producción y posterior utilización, i) La primera sería su purificación a partir de la leche humana. Esta alternativa resulta inabordable dada la carencia de materia prima.
ii) La segunda sería la síntesis química. Aunque es posible, su coste es alto y su eficacia baja.
iii) La tercera alternativa se basa en el uso de enzimas para producir distintos oligosacáridos a partir de lactosa. Esta estrategia se basa en el uso de distintas glicosidasas o glicosiltransferasas provenientes de diversos orígenes (microorganismos o mamíferos). Es preferible el uso de glicosiltransferasas dada su mayor eficacia pero, dado que muchas de ellas provienen de mamíferos, su costo es muy elevado. Por ello se trabaja en la expresión de los genes que codifican alguno de estos enzimas en distintos microorganismos (Escherichia coli, Pichia pastorís y Saccharomyces cerevisia ) con el fin de sobreproducirlos, aunque nunca se ha dado el salto al escalado semi-industrial.
iv) Finalmente, la última estrategia pasa por construir mediante técnicas de ingeniería genética, micoorganismos capaces de generar los oligosacáridos. En este sentido se han logrado los primeros avances expresando tres genes de Neissería meningitiditis que codifican una N-acetil glucosamino transferasa, una galactosil transferasa y una sialil transferasa, en una cepa de E.coli en la que la expresión del gen que codifica el transportador de lactosa puede inducirse por glicerol. Aunque este abordaje ha tenido éxito, la comercialización del producto obtenido para la alimentación infantil parece compleja al utilizarse bacterias patógenas como donadoras y receptoras de genes y generar ingredientes obtenidos a partir de organismos genéticamente modificados que requerirían un etiquetado específico. También se han logrado construir diferentes bacterias transgénicas que, al crecer en un termentador y permeabilizarse, son capaces de producir cada una de ellas diferentes actividades enzimáticas y precursores implicados en la síntesis de los oligosacáridos de interés. Dicho abordaje implica cuatro microorganismos distintos dificultando su posible aplicación industrial. Respecto al estado de la técnica descrito en documentos de patente existen algunos procesos precedentes, como por ejemplo, el JP 1 1253191 A que proporciona un método para sintetizar enzimáticamente lacto-N-tetraosa, adecuada para utilizarse en alimentos y medicamentos, en cualquier cantidad. El método comprende la reacción de UDP-GIcNac sobre la lactosa en presencia de beta-1 ,3-N- acetilglucosaminil transferasa para sintetizar lacto-N-triosa seguido de la unión con galactosa en presencia de beta-galactosidasa, obteniéndose así la lacto-N-tetraosa. El documento US 2007/0275881 A1 se refiere a composiciones farmacéuticas y su uso en el tratamiento de enfermedades infecciosas. Las composiciones contienen péptidos unidos a oligosacáridos de interés, tales como, Lacto-N-tetraosa y Lacto-N- neotetraosa. Se describe la obtención de estos oligosacáridos en levaduras en presencia de las correspondientes glicosiltranferasas.
La invención del documento US 7,521 ,212 B1 se refiere a la producción de oligopolisacáridos a través de un proceso microbiológico, en el cual, por ejemplo, se obtiene lactosa-N-neotetraosa, en presencia de lactosa y GIcNAc y las enzimas beta- 1 -3-Nacetilglucosaminiltransferasa y beta-1 -4-galactosiltransferasa. Se describe también la obtención del producto intermedio Lacto-N-triosa. El documento US 6,204,431 B1 se refiere a métodos para producir mamíferos no humanos transgénicos capaces de producir ciertos oligosacáridos en la leche. A los efectos de la invención descrita en el citado documento se seleccionan las secuencias genéticas de enzimas, tales como beta-acetilglucosaminiltransferasa a partir de especies eucariotas o procariotas y se insertan en el pronúcleo del embrión que dará lugar al animal transgénico.
El documento ES 2 162 619 T3 describe un aparato y un método para la obtención de composiciones de oligosacáridos en tres pasos, utilizando glucosaminiltransferasas y galactosiltransferasas de origen humano y el documento US 5,879,912 describe un método para sintetizar oligosacáridos, polisacáridos, glicolípidos y glicoproteínas. Se describe le síntesis de lacto-N-neotetraosa en presencia de dos cultivos celulares que proveen las dos enzimas con actividad glicosiltransferasa para formar el enlace beta- Gal 1 -4 GIcNAc y beta-GIcNAc 1 -3 en presencia de UPD-GIcNAc y lactosa. OBJETO DE LA INVENCIÓN
La presente invención se refiere al desarrollo de un método de producción biotecnológico de determinados oligosacáridos presentes en leche materna, concretamente la producción de los oligosacáridos lacto-N-neotetraosa y lacto-N- tetraosa a partir de lacto-N-triosa obtenida de sobrenadantes de cultivo enriquecidos en las enzimas adecuadas para generarlos a partir de sus precursores: lactosa y N- acetil-glucosamina. DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : Formación enzimática de los oligosacáridos: lacto-N-triosa, lacto-N- neotetraosa y lacto-N-tetraosa.
Figura 2: Ensayo en placa de detección de actividad N-acetil-glucosaminidasa. (Ej.3) Figura 3: Efecto de la temperatura y el medio de cultivo en la actividad de la enzima nag A de A.niger recuperada del caldo de cultivo de la cepa recombinante de S.cerevisiae. (Ej. 4)
Figura 4: Determinación de actividad beta-galactosidasa en caldo de cultivo (A) o suspensión celular (B) de recombinantes de S. cerevisiae o P.pastoris para la enzima lacZ de S. thermophilus. (E . 5)
Figura 5: Localización subcelular de lacZ de S. thermophilus sobreexpresado en S. cerevisiae. (Ej. 6)
Figura 6: Ensayo en placa de detección de actividad beta-galactosidasa en transformantes de E.coli para el gen lacZde S. thermophilus (Ej. 7)
Figura 7: Proceso de obtención de lacto-N-triosa en caldo de cultivo. (Ej. 8)
Figura 8: Influencia de la concentración de sustratos en la producción de lacto-N-triosa in vivo en caldo de cultivo. (Ej. 9)
Figura 9: Proceso de obtención de lacto-N-tetraosa y lacto-N-neotetraosa en dos etapas secuenciales. (Ej. 10) DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Los oligosacáridos a obtener en la presente invención son los tetrasacáridos lacto-N- neotetraosa y lacto-N-tetraosa. Estos tetrasacáridos se encuentran presentes en la leche materna, y están formados por una unidad de lactosa, a la que se adiciona N- acetilglucosamina (enlace beta 1 -3), lo que genera lacto-N-triosa. A partir de Lacto-N- triosa, y en presencia de beta-galactosiltransferasa puede obtenerse Lacto-N- neotetraosa (enlace beta 1 -4) y Lacto - N-tetraosa (enlace beta 1 -3). Los tetrasacáridos se producen por tanto por medio de dos actividades secuenciales, una beta -(1 ,3)-N-acetilglucosaminiltransferasa, y después una actividad beta-(1 ,3) ó beta- (1 ,4) galactosiltransferasa.
El procedimiento sigue el esquema simplificado de las reacciones enzimáticas de transglicosilación necesarias para la síntesis de los oligosacáridos de interés, es decir, la lacto-N-neotetraosa y lacto-N-tetraosa, así como la lacto-N-triosa como intermediaria. (Figura 1 ).
Las enzimas necesarias para producir los oligosacáridos lacto-N-triosa, lacto-N- tetraosa y lacto-N-neotetraosa son producidas y secretadas al caldo de cultivo por levaduras de la especie S. cerevisiae modificadas genéticamente. Para usar un microorganismo que produzca enzimas de consumo humano, se deben de cumplir una serie de requisitos legales, que se centran en que tal microorganismo debe figurar en la llamada lista "GRAS" (generally aknowledged as secur ), es decir, que cumpla ciertos requisitos de seguridad. Existen unos 50 microorganismos GRAS aprobados para la industria alimentaria. En la presente invención, el origen de los genes codificantes de ambas actividades enzimáticas se fija en microorganismos GRAS para evitar problemas de rechazo. Los genes seleccionados son: nagA de Aspergillus niger, y lacZde Streptococcus thermophilus.
La actividad enzimática necesaria para la primera etapa del proceso se ha demostrado presente en suero bovino, calostro, y las enzimas codificadas por los genes nagA de los hongos Aspergillus oryzae y Aspergillus nidulans (dos enzimas con actividad N- acetil-glucosaminidasa).
Por similitud con las especies en las que se han identificado genes codificantes de glucosaminiltransferasas (Matsuo 2003), disponibilidad pública de su secuencia y estatus GRAS, se selecciona como origen de esta actividad enzimática a utilizar en el proceso objeto de la invención, el hongo A. niger. Conviene señalar que aunque esta actividad se ha detectado en la especie A. niger, el gen correspondiente no ha sido identificado en su secuencia genómica. Por ello, a los efectos de la presente invención, ha sido necesario identificar previamente el gen ortólogo al gen nagA de A. nidulans en A. niger. La secuencia nucleotídica del gen nagA de A.niger se muestra en SEQ ID NO:1 .
La segunda etapa se lleva a cabo por una enzima galactosiltransferasa. Esta actividad se ha demostrado en algunas beta-galactosidasas de origen bacteriano y fúngico (A. oryzae, Bifidobacterium bifidum, Bacillus circulans).
En este caso se ha seleccionado como origen de la actividad galactosiltransferasa a utilizar en el proceso objeto de la invención el gen codificante de la enzima beta- galactosidasa (lacZ) de la bacteria S. thermophilus, puesto que dicho gen codifica esta actividad en otras bacterias lácticas, y es sabido que S. thermophilus es capaz de catalizar reacciones de transglicosilación al actuar sobre la lactosa (Smart 1991 , Reuter et al 1999). El gen lacZ se encuentra identificado en la secuencia genómica de S. thermophilus y se ilustra en la SEQ ID NO:2.
Por otra parte, para conseguir que las enzimas clonadas sean secretadas al caldo de cultivo por S. cerevisiae, es necesario fusionarlas a un péptido-señal de secreción. Los tres péptidos-señal de secreción más ampliamente estudiados para S. cerevisiae son el del factor oc (Brake eí a/.1989), SEQ ID NO:3, el de la invertasa SUC2 (Perlman et al. 1982), SEQ ID NO:4, y el de la fosfatasa ácida PH05 (Arima et al. 1983), SEQ ID NO:5.
Así, los genes que codifican las enzimas nagA y lacZ pueden expresarse en el transformante de S.cerevisiae, que se puede obtener insertando el ADN de la presente invención en dos vectores e introduciendo los mismos en un hospedador. Los primeros métodos de transformación de S.cerevisiae implicaban la eliminación de la pared celular para producir esferoplastos que pudieran incorporar ADN tras tratamiento de los mismos con calcio y polietilenglicol (Hinnen et al. 1978). Los transformantes se plaqueaban en medio selectivo isotónico para la regeneración de la pared celular. Posteriormente se desarrolló un método más práctico en el que las células intactas se hacen competentes por tratamiento con iones de litio (Ito eí al. 1983). Este método se utiliza actualmente a pesar del hecho de que tiene una menor eficiencia que el anterior; sin embargo, una modificación que utiliza DMSO permite un incremento de hasta 25 veces de la frecuencia de transformación. Más recientemente, se viene utilizando un tercer método, electroporación, obteniéndose eficiencias muy elevadas (Meilhoc et al. 1990).
Los vectores a usar para este propósito pueden ser cualquiera de los capaces de expresar los genes que codifican las enzimas en hospedadores apropiados. Como ejemplo de dichos vectores, pueden mencionarse: vectores plasmídico, bacteriófago o cósmido. Generalmente dichos vectores comprenderán un factor regulador tal como un promotor; a corta distancia del promotor deben tener una región que al transcribirse suministre el sitio de entrada al ribosoma; y finalmente deben contener un origen de replicación que permita su multiplicación dentro del huésped. Además, los vectores seleccionados para cada proteína cuentan con genes marcadores de selección diferentes con el fin de rescatar diferentes auxotrofías, lo cual permite la introducción simultánea de ambos vectores en un mismo hospedador y selección en un único paso. Los marcadores de selección más ampliamente utilizados para S.cerevisiae son LEU2, TRP1 , URA3 y HIS3, utilizados en las correspondientes cepas mutantes que son auxótrofas para leucina, triptófano, uracilo e histidina, respectivamente (Beggs 1978; Rose et al. 1984; Struhl et al. 1980; Tschumper et al. 1980). Tales cepas auxótrofas están disponibles y su selección requiere el uso de medio mínimo de crecimiento en ausencia del nutriente relevante. Como fuentes de obtención de dichas cepas podemos mencionar las siguientes colecciones de cultivos tipo: Yeast Genetics Stock Culture Center of the American Type Culture Collection (k ü > :£w w w; a ice ;0£ ^ ; EUROSCARF
(httfi:ff s^.m^^ Research Genetics
Figure imgf000009_0001
National Collection of Yeast
Cultures
Figure imgf000009_0002
Centraalbureau voor
Schimmelcultures ( i > ^ . ;c^ y Culture Collection of Saccharomyces cerevisiae (http://www.natur.cuni.ez/fccm/federacs.htm#dgub.).
Como hospedador en el que tiene que introducirse un vector de expresión que contiene el ADN de la invención pueden mencionarse: levaduras, bacterias y cultivos celulares de insecto, mamífero, etc. Se contempla como preferente la utilización de la levadura S. cerevisiae, pero también se propone Schizosaccharomyces pombe, P. pastoris, E. coli, Bacillus subtilis, S. thermophilus, etc.
Para comprobar la expresión del gen nagA en el hospedador es posible ensayar la actividad hidrolítica N-acetilglucosaminidasa de la enzima expresada en los transformantes obtenidos, mediante ensayo en placa o en medio líquido, utilizando los sustratos sintéticos metilumbelilferil (MU)-N-acetilglucosamina ó p-nitrofenil (PNP)-N- acetilglucosamina, respectivamente (Borooah et al. 1961 ). En el caso de ensayo en placa se detecta cualitativamente, mediante análisis de fluorescencia bajo luz UV, la formación de metilumbeliferona como consecuencia de la actividad hidrolítica N-acetil- glucosaminidasa. La metilumbeliferona es un compuesto fluorogénico, fluorescente al iluminarse con una lámpara de luz UV de 366 nm. El ensayo en líquido permite la cuantificación de la actividad analizando la absorbancia a 405 nm debida a la liberación de p-nitrofenol, compuesto coloreado que en solución alcalina absorbe a una longitud de onda de 405 nm, como consecuencia de la actividad hidrolítica N- acetil-glucosaminidasa.
De la misma manera, para comprobar la expresión del gen lacZ es posible ensayar la actividad hidrolítica beta-galactosidasa de la enzima expresada en los transformantes obtenidos, mediante ensayo en placa o en medio líquido, con los sustratos sintéticos metilumbelilferil (MU)-galactósido o p-nitrofenil (PNP)-galactopiranósido, respectivamente. (Maruhn 1976). En el caso de ensayo en placa se detecta cualitativamente mediante análisis de fluorescencia bajo luz UV la formación de metilumbeliferona como consecuencia de la actividad hidrolítica beta-galactosidasa. La metilumbeliferona es un compuesto fluorogénico, fluorescente al iluminarse con una lámpara de luz UV de 366 nm. El ensayo en líquido permite la cuantificación de la actividad analizando la absorbancia a 405 nm debida a la liberación de p-nitrofenol, compuesto coloreado que en solución alcalina absorbe a una longitud de onda de 405 nm, como consecuencia de la actividad hidrolítica beta-galactosidasa.
El ensayo en placa permite una rápida selección de aquellos clones con mayor expresión de los genes. Mientras que el ensayo en medio líquido permite la cuantificación de la actividad, así como de su secreción, puesto que se analiza de manera independiente la actividad en el caldo de cultivo y en las células aisladas.
Una vez comprobada la actividad de las enzimas recombinantes seleccionadas es posible llegar a expresar éstas simultáneamente en una misma cepa utilizando plásmidos que rescaten distintas auxotrofías. Como plásmidos a utilizar pueden ser los pertenecientes a la colección descrita en Mumberg et al. (1995), compuesta por series de vectores de expresión con combinaciones de cuatro promotores, dos orígenes de replicación y cuatro marcadores diferentes. Utilizando estos vectores es posible controlar la expresión génica a diferentes niveles, controlando el nivel de transcripción así como el número de copia del gen recombinante. Una vez seleccionados los transformantes con mayor actividad de cada enzima o con actividades simultáneas en una misma cepa, es posible hacer crecer éstos a alta densidad obteniendo caldos de cultivo con actividades enzimáticas elevadas o grandes cantidades de células con actividad intracelular en el caso de que la enzima no se secrete. Estos caldos de cultivo o extractos celulares se pueden utilizar directamente como lecho de reacción in vivo para la obtención de los oligosacáridos de interés a partir de sus precursores lactosa y N-acetil-glucosamina, sin necesidad de llevar a cabo una purificación de las proteínas correspondientes. Alternativamente pueden purificarse las enzimas para su utilización en la obtención de los oligosacáridos de interés.
Así el proceso final de obtención de los oligosacáridos de interés constará de dos fases, una primera que durará de 70 a 74 horas a 43-475C, preferiblemente, 72 horas a 455C, en la cual se generará lacto-N-triosa a partir de sus precursores lactosa y N- acetil-glucosamina utilizando la actividad nagA de caldos de cultivo o extractos celulares (en caso de que la proteína se secrete o no, respectivamente) o proteína purificada. Finalizada esta fase es posible purificar la lacto-N-triosa o continuar el proceso con una segunda fase para generar lacto-N-tetraosa y lacto-N-neotetraosa. Esta segunda fase durará 36 horas a 455C en la cual se generará lacto-N-tetraosa y lacto-N-neotetraosa a partir de lacto-N-triosa y galactosa, presentes en el caldo de reacción resultante de la primera fase, utilizando la actividad lacZ de un caldo de cultivo o extracto celular, según se secrete o no la enzima recombinante, o en su caso, proteína purificada.
En una realización preferente de la invención, se ha llevado a cabo el procedimiento microbiológico para la obtención de lacto-N-tetraosa y lacto-N-neotetraosa, de forma que la lacto-N-tetraosa y lacto-N-neotetraosa se obtienen in vivo en un rango de 1 a 100 gramos por litro de caldo de reacción en dos etapas secuenciales a partir de caldo de cultivo enriquecido en actividad nagA y extracto celular con actividad lacZ provenientes de una única cepa que expresa y secreta nagA y que expresa y no secreta lacZ.
A los efectos de la presente invención, se contempla también la posibilidad de llevar a cabo la reacción utilizando la actividad de las dos enzimas simultáneamente presentes en un mismo caldo de cultivo o en un mismo extracto celular con actividad lacZ provenientes de una única cepa que expresa y secreta nagA y lacZ. Finalmente, los oligosacáridos obtenidos de acuerdo a la presente invención son extraídos y purificados del medio de reacción a través de técnicas habituales conocidas del estado de la técnica. Como técnica de preferencia para la purificación de los oligosacáridos se utiliza la separación cromatográfica en carbón activado (Whistler et al. 1950).
Una vez purificados, estos oligosacáridos pueden ser incorporados como ingredientes alimenticios en productos alimenticios para su consumo.
EJEMPLOS Ejemplo 1 : Secuencia de nucleótidos del gen nagA de A. niger. (Fiq.2)
Se identifica el gen codificante de la actividad N-acetil-glucosaminidasa en A. niger por homología con el gen nagA de A.nidulans. La secuencia de dicho gen de referencia está disponible y anotada en las bases de datos ( úffi J á^ db=protein&id=10039359). La proteína resultante de su expresión corresponde con la SEQ ID NO:6
Al comparar la secuencia de aminoácidos anterior con el genoma disponible de A. niger en las bases de datos
Figure imgf000012_0001
aparecen al menos 2 posibles genes ortólogos a nagA de A. nidulans. De entre los dos, se decide clonar el gen cuya secuencia es SEQ ID NO:1 , por su mayor homología y descripción en las bases de datos como gen codificante de una actividad putativa N- acetil-glucosaminidasa. El alineamiento de las secuencias de aminoácidos codificadas por ambos genes muestra una homología del 71 .3%. El clonaje se realizó mediante la reacción en cadena de la polimerasa (PCR) a partir de ADN genómico de A. niger, siguiendo el método y materiales descrito en Mullís eí a/ (1986).
Ejemplo 2: Secuencia de nucleótidos del gen lacZde S. thermophilus.
La secuencia del gen lacZ codificante de la enzima β-galactosidasa de S. thermophilus está identificada y disponible en las bases de datos y corresponde con SEQ ID NO:2. La proteína está descrita como un tetrámero de 124 kDa aproximadamente. Se clonó el gen lacZ mediante la reacción en cadena de la polimerasa (PCR) a partir de ADN genómico de S. thermophilus, siguiendo el método y materiales descrito en Mullís et al (1986).
Ejemplo 3: Determinación de la actividad N-acetil-qlucosaminidasa en placa del gen nag A de A. niger sobreexpresado en S. cerevisiae.
Se crecen los transformantes generados con el plásmido p415GPD-nagA-LEU2 en la cepa haploide BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) sobre medio rico YPD, formulado con 10 g/l de extracto de levadura (Scharlau Chemie S.A.), 20 g/l de peptona bacteriológica (Pronadisa) y 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono, solidificado con agar al 2% (Pronadisa).
Sobre la placa se vierte una solución licuada del sustrato metilumbeliferil (MU)-N- acetil-glucosamina a una concentración de 1 mM en tampón citrato 45 mM con 1 % de agarosa a pH 4,8, se incuba a 505C durante 30 minutos protegida de la luz y se observa bajo luz UV. La actividad N-acetil-glucosaminidasa provoca la formación de metilumberilferona, que es un compuesto fluorogénico, fluorescente al iluminarse con una lámpara de luz UV de 366 nm.
Como se muestra en la Figura 2, se observa un halo fluorescente alrededor de aquellos clones capaces de secretar la enzima nagA (A) frente a cepas control que no expresan nagA (B). Ejemplo 4: Efecto de la temperatura y el medio de cultivo en la actividad la enzima nag A de A.niger recuperada del caldo de cultivo de la cepa recombinante de S. cerevisiae.
Con el fin de optimizar la expresión del gen nagA en S. cerevisiae, se estudió si la composición del medio y/o la temperatura de crecimiento pueden influenciar en la expresión y/o secreción de la enzima.
Para ello se utilizó una cepa recombinante generada mediante transformación de la cepa haploide BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) con el plásmido p415GPD-nagA-LEU2. Los transformantes se seleccionaron en medio sintético SD basado en 6,7 g/l de base de nitrógeno para levadura sin aminoácidos (Difco) y suplementado con 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono y 200 mg/l de histidina (Merck), uracilo (Calbiochem) y metionina (Fluka) como requerimientos nutricionales. En primer lugar se cultivaron las células en paralelo en medio mínimo selectivo y en medio rico. Como medio mínimo se utilizó medio sintético SD basado en 6,7 g/l de base de nitrógeno para levadura sin aminoácidos (Difco) y suplementado con 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono y 200 mg/l de histidina (Merck), uracilo (Calbiochem) y metionina (Fluka) como requerimientos nutricionales; como medio rico se utilizó YPD formulado con 10 g/l de extracto de levadura (Scharlau Chemie S.A.), 20 g/l de peptona bacteriológica (Pronadisa) y 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono.
El caldo de cultivo resultante del crecimiento de la cepa en ambos medios se ensayó para la actividad N-acetil-glucosaminidasa en medio líquido utilizando p-nitrofenil (PNP)-N-acetil-glucosamina como sustrato de la reacción. Para ello se utilizó una alícuota de cada caldo de cultivo y se diluyó en tampón citrato/fosfato 0,09 M a pH 4,8 en presencia del sustrato, incubando a 305C durante 30 minutos. La actividad hidrolítica N-acetil-glucosaminidasa se cuantificó mediante la determinación de la absorbancia a 405 nm debida a la liberación de p-nitrofenol, compuesto coloreado que en solución alcalina absorbe a una longitud de onda de 405 nm, como consecuencia de la misma.
Como se observa en la Figura 3, la actividad es casi tres veces superior en el sobrenadante de cultivo cuando se crece la cepa en medio rico que en medio mínimo selectivo, poniendo de manifiesto una influencia del medio de cultivo en la expresión y/o secreción de la enzima nagA.
En cuanto a la temperatura de crecimiento, el transformante seleccionado se creció en medio rico YPD formulado con 10 g/l de extracto de levadura (Scharlau Chemie S.A.), 20 g/l de peptona bacteriológica (Pronadisa) y 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono, en paralelo a 3 temperaturas diferentes: 28, 30 y 325C. El caldo de cultivo se analizó en cuanto a su actividad hidrolítica N-acetil- glucosaminidasa en medio líquido. Para ello se utilizó una alícuota del caldo de cultivo y se diluyó en tampón citrato/fosfato 0,09 M a pH 4,8 en presencia del sustrato p- nitrofenil (PNP)-N-acetil-glucosamina, incubando a 305C durante 30 minutos. La actividad hidrolítica N-acetil-glucosaminidasa se cuantificó mediante la determinación de la absorbancia a 405 nm debida a la liberación de p-nitrofenol, compuesto coloreado que en solución alcalina absorbe a una longitud de onda de 405 nm, como consecuencia de la misma. Como se muestra en la Figura 3 la actividad que se recupera en el sobrenadante de cultivo se ve incrementada a medida que disminuye la temperatura de crecimiento, llegando a ser un 50% superior cuando se disminuye la temperatura de crecimiento de 32 a 285C. Por tanto, se establece una temperatura de crecimiento óptima para la expresión y secreción de nagA de entre 26 y 305C.
Como se muestra en la Figura 4 se recupera hasta 3 veces más actividad N-acetil- glucosaminidasa en el caldo de cultivo cuando se crece el transformante nagA en medio rico y más de 4 veces más actividad cuando además se disminuye la temperatura de crecimiento a 285C. Ejemplo 5: Determinación de actividad β-qalactosidasa del gen lacZ de S.thermophilus sobreexpresado en las levaduras S. cerevisiae v P. Pastorís
Se generaron cepas recombinantes de S.cerevisiae y P. pastorís, por transformación de la cepa haploide BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) con el plásmido p416GPD-lacZ-URA3 y de la cepa haploide silvestre X-33 con el plásmido pPICzaB-lacZ, respectivamente. Los transformantes de S.cerevisiae se seleccionaron en medio sintético SD basado en 6,7 g/l de base de nitrógeno para levadura sin aminoácidos (Difco) y suplementado con 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono y 200 mg/l de histidina (Merck), leucina (Merck) y metionina (Fluka) como requerimientos nutricionales. Los transformantes de P.pastoris se seleccionaron en medio YPDS formulado con 10 g/l de extracto de levadura (Scharlau Chemie S.A.), 20 g/l de peptona bacteriológica (Pronadisa), 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono, 1 M de sorbitol (Applichem VWR) y 100 μg/ml de Zeocina (Invivogen).
Se llevó a cabo un crecimiento en los medios indicados y se determinó la actividad hidrolítica beta-galactosidasa en los caldos de cultivo así como en una suspensión celular. Para ello se diluyó la cantidad indicada de caldo o de suspensión celular en tampón fosfato 100 mM a pH 7 en presencia del sustrato p-nitrofenil (PNP)- galactopiranósido, incubando a 555C durante 30 minutos. La actividad hidrolítica beta- galactosidasa se cuantificó mediante la determinación de la absorbancia a 405 nm debida a la liberación de p-nitrofenol, compuesto coloreado que en solución alcalina absorbe a una longitud de onda de 405 nm, como consecuencia de la misma.
Como se muestra en la Figura 4, no se detecta actividad beta-galactosidasa en los sobrenadantes de cultivo ni en el caso del recombinante de P. pastorís ni en el de S. cerevisiae (A). Los niveles de actividad en las suspensiones celulares son similares en los dos organismos (B).
Ejemplo 6: Localización subcelular de lacZ en recombinantes de lacZ de S.thermophilus en S. cerevisiae
Se generó la cepa recombinante de S.cerevisiae mediante transformación de la cepa haploide BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) con el plásmido p416GPD-lacZ-URA3 y selección en medio sintético SD basado en 6,7 g/l de base de nitrógeno para levadura sin aminoácidos (Difco) y suplementado con 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono y 200 mg/l de histidina (Merck), leucina (Merck) y metionina (Fluka) como requerimientos nutricionales.
El recombinante se creció en medio rico YPD formulado con 10 g/l de extracto de levadura (Scharlau Chemie S.A.), 20 g/l de peptona bacteriológica (Pronadisa) y 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono a 285C. Se separaron tres muestras con el mismo número de células: se preparó una suspensión de células enteras con una de ellas para analizar la actividad en la pared celular; se prepararon protoplastos con otra de las muestras mediante tratamiento de las células con 3 mg/ml de zimoliasa 20T (Seikagaku) durante 15 minutos a 375C, para evaluar la actividad lacZ en la membrana plasmática; y finalmente, se lisó mecánicamente la tercera muestra y se preparó un extracto celular en el que evaluar la actividad lacZ citoplásmica. Las tres muestras se prepararon en el mismo volumen.
Con una porción de cada una de las muestras se llevó a cabo un ensayo de determinación de actividad hidrolítica beta-galactosidasa en medio líquido, diluyendo cada muestra en tampón fosfato 100 mM a pH 7 en presencia del sustrato p-nitrofenil (PNP)-galactopiranósido e incubando a 555C durante 30 minutos. La actividad hidrolítica beta-galactosidasa se cuantificó mediante la determinación de la absorbancia a 405 nm debida a la liberación de p-nitrofenol, compuesto coloreado que en solución alcalina absorbe a una longitud de onda de 405 nm, como consecuencia de la misma.
Como se observa en la Figura 5 se recupera 3 veces más actividad en el lisado celular que en la pared celular. La actividad en la membrana celular determinada a partir de los protoplastos preparados es muy pequeña. Por tanto, la actividad lacZ en este recombinante se encuentra principalmente en el citoplasma celular y una pequeña porción se encuentra retenida en la pared celular. Ejemplo 7: Determinación de la actividad beta-qalactosidasa en placa del gen lacZde S. thermophilus sobreexpresado en E. coli.
Se genera un transformante de E. coli para el gen lacZ de S.thermophilus mediante transformación de la cepa DH5oc (fhuA2 (argF-lacZ)U169 phoA glnV44 V80 A(lacZ)M15 gyrA96 recA 1 relA 1 endA 1 thi-1 hsdR17 ) con el plásmido p416GPD-lacZ URA3 y selección en medio LB formulado con 5 g/l de extracto de levadura (Scharlau Chemie S.A.), 10 g/l de triptona (Scharlau Chemie S.A.), 10 g/l de cloruro sódico (NaCI) y ampicilina (Calbiochem) a una concentración de 100 mg/l.
Sobre la placa se vierte una solución licuada del sustrato metilumbelilferil (MU)- galactopiranosido a una concentración de 1 mM en tampón fosfato 100 mM con 1 % de agarosa a pH 6, se incuba a 505C durante 30 minutos protegida de la luz y se observa bajo luz UV. La actividad beta-galactosidasa provoca la formación de metilumbelilferona, que es un compuesto fluorogénico, fluorescente al iluminarse con una lámpara de luz UV de 366 nm.
Como se muestra en la Figura 6 se observa un halo fluorescente alrededor de aquellos clones capaces de secretar la enzima lacZ (A) frente a cepas control que no expresan lacZ (B).
Ejemplo 8: Obtención de lacto-N-triosa in vivo a partir de caldo de cultivo enriquecido en actividad naq A y de sus precursores: lactosa y N-acetil-qlucosamina.
Para llevar a cabo la reacción de obtención de lacto-N-triosa se utilizó una cepa recombinante generada mediante transformación de la cepa haploide BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) con el plásmido p415GPD-nagA-LEU2. Los transformantes se seleccionaron en medio sintético SD basado en 6,7 g/l de base de nitrógeno para levadura sin aminoácidos (Difco) y suplementado con 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono y 200 mg/l de histidina (Merck), uracilo (Calbiochem) y metionina (Fluka) como requerimientos nutricionales.
El transformante seleccionado se creció hasta OD 40 en lote en medio 4xYPD formulado con 40 g/l de extracto de levadura (Scharlau Chemie S.A.), 80 g/l de peptona bacteriológica (Pronadisa) y 80 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono a 285C hasta saturación.
Se comprobó la presencia de la enzima nag A en el sobrenadante de cultivo, mediante determinación de la actividad hidrolítica N-acetil-glucosaminidasa en una alícuota del caldo de cultivo diluida en tampón citrato/fosfato 0,09M a pH 4,8 en presencia del sustrato, incubando a 305C durante 30 minutos. La actividad hidrolítica N-acetil- glucosaminidasa se cuantificó mediante la determinación de la absorbancia a 405 nm debida a la liberación de p-nitrofenol, compuesto coloreado que en solución alcalina absorbe a una longitud de onda de 405 nm, como consecuencia de la misma.
Posteriormente, como se esquematiza en la Figura 7 se adicionó directamente al medio de cultivo lactosa y N-acetil-glucosamina a alta concentración (330 g/l y 100 g/l respectivamente) y se incubó a 455C durante 72 horas. Una fracción del sobrenadante se filtró y se analizó mediante HPLC la presencia de lacto-N-triosa en el mismo. Ejemplo 9: Influencia de la concentración de sustratos en la producción de lacto-N- triosa in vivo en caldo de cultivo.
Con el fin de optimizar el proceso de producción de lacto-N-triosa in vivo, se llevó a cabo ensayos como los descritos anteriormente con cantidades decrecientes de los sustratos lactosa y N-acetil-glucosamina. Se utilizó como referencia la reacción llevada a cabo con 416 g/l de lactosa y 125 g/l de N-acetil-glucosamina y en paralelo se llevaron a cabo reacciones con el 50%, 33%, 25%, 10% y 1 % de sustratos.
Como se observa en la Figura 8, el rendimiento de la reacción disminuye a medida que disminuye la concentración de sustratos en el medio. Sin embargo esta tendencia no es proporcional, perdiéndose únicamente un 7% de producto para una disminución de hasta el 50% en la concentración de sustratos y un 33% con una disminución de hasta el 99%.
Ejemplo 10: Obtención de lacto-N-tetraosa v lacto-N-neotetraosa in vivo en dos etapas secuenciales a partir de caldo de cultivo enriquecido en actividad naqA y extracto celular con actividad lacZ provenientes de una única cepa que expresa y secreta naqA y que expresa y no secreta lacZ
Se transformó la cepa haploide BY4741 (MATa HIS3D1 LEU2D0 MET15D0 URA3D0) con los plásmidos p415GPD-nagA-LEU2 y p416GPD-lacZ-URA4 simultáneamente. Los transformantes se seleccionaron en medio sintético SD basado en 6,7 g/l de base de nitrógeno para levadura sin aminoácidos (Difco) y suplementado con 20 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono y 200 mg/l de histidina (Merck) y metionina (Fluka) como requerimientos nutricionales. La cepa obtenida, recombinante para las dos enzimas, secreta únicamente la proteína nagA. Esto permite separar las dos actividades en un mismo cultivo, la actividad nagA se enriquece en el caldo de cultivo y la actividad lacZ en el interior celular.
Como se muestra en la Figura 9, se crece la cepa a alta densidad en medio 4xYPD formulado con 40 g/l de extracto de levadura (Scharlau Chemie S.A.), 80 g/l de peptona bacteriológica (Pronadisa) y 80 g/l de glucosa (Panreac Química S.A.U.) como fuente de carbono a 285C hasta saturación. Entonces se separaron las células del sobrenadante de cultivo. A este último se le adicionó lactosa y N-acetil- glucosamina a una concentración de 330 g/L y 100 g/L, respectivamente y se incubó a 455C durante 72 horas. Posteriormente, las células se lisaron y se preparó un extracto celular que se adicionó a la reacción incubándose durante 36 horas más a la misma temperatura. Una fracción del caldo de reacción se filtró y se analizó mediante HPLC la presencia de lacto-N-tetraosa y lacto-N-neotetraosa en el mismo. La cantidad de lacto-N-tetraosa y lacto-N-neotetraosa se determinó en 3,5 gramos por litro de caldo de reacción.
REFERENCIAS
Arima K, Oshima T, Kubota I, Nakamura N, Mizunaga T, Toh-e A. The nucleotide sequence of the yeast PH05 gene: a putative precursor of repressible acid phosphatase contains a signal peptide. Nucleic Acids Res. 1983 Mar 25;1 1 (6):1657-72.
- Beggs JD. Transformation of yeast by a replicating hybrid plasmid. Nature. 1978 Sep 14;275(5676):104-9.
Borooah J, Leaback DH, Walker PG. Studies on glucosaminidase. 2. Substrates for N-acetyl-beta-glucosaminidase. Biochem J. 1961 Jan;78(1 ):106-10.
Brake AJ. Secretion of heterologous proteins directed by the yeast alpha-f actor leader. Biotechnology. 1989;13:269-80.
Hinnen A, Hicks JB, Fink GR. Transformation of yeast. Proc Nati Acad Sci USA. 1978 Apr;75(4):1929-33.
Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1 ):163-8.
- Maruhn D. Rapid colorimetric assay of beta-galactosidase and N-acetyl-beta- glucosaminidase in human uriñe. Clin Chim Acta. 1976 Dec;73(3):453-61 .
- Matsuo I, Kim S, Yamamoto Y, Ajisaka K, Maruyama Jl, Nakajima H, Kitamoto K.
Cloning and overexpression of beta-N-acetylglucosaminidase encoding gene nagA from Aspergillus oryzae and enzyme-catalyzed synthesis of human milk oligosaccharide. Biosci Biotechnol Biochem. 2003 Mar;67(3):646-50.
- Meilhoc E, Masson JM, Teissié J. High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology (N Y). 1990 Mar;8(3):223-7.
Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995 Apr;156(1 ):1 19-22.
Mullís K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986 51 Pt 1 :263-73.
Perlman D, Halvorson HO, Cannon LE. Presecretory and cytoplasmic invertase polypeptides encoded by distinct mRNAs derived from the same structural gene differ by a signal sequence. Proc Nati Acad Sci U S A. 1982 Feb;79(3):781 -5. Reuter S, Rusborg A, Zimmermann W. β-Galactooligosaccharide synthesis with β- galactosidases from Sulfolobus solfataricus, Aspergillus oryzae, and Escherichia coli. Enzyme and Microbial Technology. 1999 Sep;25 (6):509-16.
Rose M, Grisafi P, Botstein D. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene. 1984 Jul-Aug;29(1 -2):1 13-24.
Smart JB. Transferase reactions of the β-galactosidase from Streptococcus thermophilus. Applied Microbiology and Biotechnology 1991 34 (4):495-501 .
Struhl K, Davis RW. A physical, genetic and transcriptional map of the cloned his3 gene región of Saccharomyces cerevisiae. J Mol Biol. 1980 Jan 25;136(3):309-32. Tschumper G, Carbón J. Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRPI gene. Gene. 1980 Jul;10(2):157-66.
Whistler RL, Durso DF. Chromatographic separation of sugars on charcoal. Journal of the American Chemical Society 1950 Feb;72:677-679
Mullís K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H., "Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction" Cold Spring Harb Symp Quant Biol. 1986;51 Pt 1 :263-73

Claims

REIVINDICACIONES
Un procedimiento para producir lacto-N-triosa y/o lacto-N-tetraosa y/o lacto N- neotetraosa, que comprende llevar a cabo una reacción utilizando al menos un cultivo de microorganismos que proporcionan las actividades de las enzimas responsables de la producción de lacto-N-triosa y/o lacto-N-tetraosa y/o lacto N-neotetraosa, a partir de lactosa, que comprende:
a) adición de N-acetilglucosamina en presencia de beta-(1 ,3)-N- acetilglucosaminiltransferasa para formar lacto-N-triosa, y
b) adición de galactosa en presencia de beta-galactosiltransferasa para formar lacto-N-tetraosa y/o lacto-N-neotetraosa,
c) dejar que se acumule lacto-N-triosa y/o lacto-N-tetraosa y/o lacto N- neotetraosa, y
d) recuperar lacto-N-triosa y/o lacto-N-tetraosa y/o lacto N-neotetraosa de dicha mezcla de reacción.
Procedimiento microbiológico, según la reivindicación 1 , caracterizado por que las enzimas necesarias para producir la lacto-N-triosa, y/o lacto-N-tetraosa y/o lacto-N-neotetraosa son producidas por levaduras de la especie S. cerevisiae modificadas genéticamente.
Procedimiento microbiológico según la reivindicación 2, caracterizado por que al menos una levadura de la especie S.cerevisiae porta un vector recombinante que comprende el gen nagA de Aspergillus niger SEQ ID NO:1 que expresa un enzima con actividad beta-1 -3 N-acetilglucosaminiltransferasa.
Procedimiento microbiológico según la reivindicación 2, caracterizado por que al menos una levadura de la especie S.cerevisiae porta un vector recombinante que comprende el gen lacZ de Streptococcus thermophilus SEQ ID NO:2 que expresa un enzima con actividad beta-galactosiltransferasa.
Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado por que una sola levadura de la especie S. cerevisiae es portadora de uno o más vectores que comprenden los genes nagA de Aspergillus niger SEQ ID NO:1 que expresa un enzima con actividad beta-1 -3 N-acetilglucosaminiltransferasa y lacZ de Streptococcus thermophilus SEQ ID NO:2 que expresa un enzima con actividad beta-galactosiltransferasa.
Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado por que la actividad enzimática N-acetilglucosaminiltransferasa y/o beta-galactosiltransferasa es recuperada del caldo de cultivo, extracto celular o enzimas purificadas del medio de cultivo.
Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado por que dicha etapa (a) del procedimiento tiene una duración aproximada de 70 a 74 horas a una temperatura de 435C a 475C.
Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado por que dicha etapa (a) del procedimiento tiene una duración de aproximadamente 72 horas a una temperatura de 455C.
9. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado por que adicionalmente comprende una etapa de extracción y purificación de lacto-N-triosa obtenida en la etapa (a).
10. Procedimiento microbiológico según cualquiera de las reivindicaciones anteriores, caracterizado por que la enzima beta-galactosiltransferasa utilizada en la etapa b) es beta-1 -3 galactosiltransferasa para formar lacto-N-tetraosa y/o beta- 1 -4 galactosiltransferasa para formar lacto-N-neotetraosa.
1 1 . Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque lacto-N-tetraosa y/o lacto-N-neotetraosa se obtienen in vivo a partir de caldo de cultivo enriquecido en actividad nagA y extracto celular con actividad lacZ provenientes de una única cepa de levadura de la especie
S.cerevisiae que expresa y secreta nagA SEQ ID NO:1 y que expresa y no secreta lacZ SEQ ID NO:2.
2. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado por que lacto-N-tetraosa y/o lacto-N-neotetraosa se obtienen in vivo a partir de caldo de cultivo enriquecido en actividad nagA y extracto celular con actividad lacZ provenientes de una única cepa de levadura de la especie S.cerevisiae que expresa y secreta nagA SEQ ID NO.1 y que expresa y si secreta lacZ SEQ ID NO.2.
3. Lacto-N-triosa, lacto-N-tetraosa y/o lacto N-neotetraosa obtenidas de acuerdo con el procedimiento de las reivindicaciones 1 a 12 para su uso como ingrediente alimenticio en productos de alimentación.
PCT/ES2011/070403 2011-06-07 2011-06-07 Obtención de oligosacaridos mediante un procedimiento biotecnológico WO2012168495A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES11867262.5T ES2671555T3 (es) 2011-06-07 2011-06-07 Obtención de oligosacáridos mediante un proceso biotecnológico
DK11867262.5T DK2722394T3 (en) 2011-06-07 2011-06-07 OBJECTIVES OF OLIGOSACCHARIDES BY A BIOTECHNOLOGICAL PROCEDURE
PCT/ES2011/070403 WO2012168495A1 (es) 2011-06-07 2011-06-07 Obtención de oligosacaridos mediante un procedimiento biotecnológico
CN201180071512.1A CN103764835B (zh) 2011-06-07 2011-06-07 通过生物技术方法获取低聚糖
EP11867262.5A EP2722394B1 (en) 2011-06-07 2011-06-07 Obtaining oligosaccharides by means of a biotechnological process
PL11867262T PL2722394T3 (pl) 2011-06-07 2011-06-07 Otrzymywanie oligosacharydów za pomocą procesu biotechnologicznego

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070403 WO2012168495A1 (es) 2011-06-07 2011-06-07 Obtención de oligosacaridos mediante un procedimiento biotecnológico

Publications (2)

Publication Number Publication Date
WO2012168495A1 true WO2012168495A1 (es) 2012-12-13
WO2012168495A9 WO2012168495A9 (es) 2013-09-06

Family

ID=47295521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070403 WO2012168495A1 (es) 2011-06-07 2011-06-07 Obtención de oligosacaridos mediante un procedimiento biotecnológico

Country Status (6)

Country Link
EP (1) EP2722394B1 (es)
CN (1) CN103764835B (es)
DK (1) DK2722394T3 (es)
ES (1) ES2671555T3 (es)
PL (1) PL2722394T3 (es)
WO (1) WO2012168495A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015032413A1 (en) * 2013-09-06 2015-03-12 Glycom A/S Fermentative production of oligosaccharides

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2896628T3 (pl) 2014-01-20 2019-03-29 Jennewein Biotechnologie Gmbh Sposób wydajnego oczyszczania obojętnych oligosacharydów ludzkiego mleka (HMO) z fermentacji mikrobiologicznej
US20170204443A1 (en) * 2014-07-14 2017-07-20 Basf Se Biotechnological production of lnt, lnnt and the fucosylated derivatives thereof
EP3141610A1 (en) 2015-09-12 2017-03-15 Jennewein Biotechnologie GmbH Production of human milk oligosaccharides in microbial hosts with engineered import / export
DE202017007248U1 (de) 2016-04-19 2020-04-23 Glycom A/S Abtrennung von Oligosacchariden aus der Fermentationsbrühe
WO2017221208A1 (en) * 2016-06-24 2017-12-28 Glycom A/S Compositions comprising hmos, their production and use for the prevention and/or treatment of viral and/or bacterial infections
US11142541B2 (en) 2017-06-30 2021-10-12 Glycom A/S Purification of oligosaccharides
EP3652189A4 (en) 2017-07-12 2021-04-21 Glycom A/S AMORPHIC MIXTURE CONSISTING OF A NEUTRAL MONO- OR OLIGOSACCHARIDE AND A NON-GLUCIDIC ACID COMPONENT
EP3670662A1 (en) * 2018-12-20 2020-06-24 Basf Se Enzymatic hexosaminidation of lactose
CN116249781A (zh) * 2020-08-10 2023-06-09 因比奥斯公司 在细胞中的含有GlcNAc的生物产品的产生
DK3954778T3 (da) * 2020-08-10 2023-12-18 Inbiose Nv Produktion af en blanding af neutrale ikke-fucosylerede oligosaccharider af en celle
CN111979168B (zh) * 2020-08-17 2022-07-22 江南大学 一种提高乳酰-n-三糖ii产量的基因工程菌及生产方法
CN116042562B (zh) * 2022-03-11 2023-10-20 山东恒鲁生物科技有限公司 重组酵母菌及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879912A (en) 1993-07-15 1999-03-09 Neose Technologies, Inc. Method of synthesizing saccharide compositions
JPH11253191A (ja) 1998-03-13 1999-09-21 Meiji Milk Prod Co Ltd ラクト−n−テトラオースの合成法
US6204431B1 (en) 1994-03-09 2001-03-20 Abbott Laboratories Transgenic non-human mammals expressing heterologous glycosyltransferase DNA sequences produce oligosaccharides and glycoproteins in their milk
ES2162619T3 (es) 1991-12-20 2002-01-01 Univ Pennsylvania Procedimiento para obtener glucosiltransferasas.
US20070275881A1 (en) 2003-12-05 2007-11-29 Morrow Ardythe L Oligosaccharide Compositions and Use Thereof in the Treatment of Infection
US7521212B1 (en) 1999-07-07 2009-04-21 Centre National De La Recherche Scientifique (Cnrs) Method for producing oligopolysaccharides
US20100019648A1 (en) * 2007-03-29 2010-01-28 Hiroshi Yasuda Electron gun and electron beam exposure apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2162619T3 (es) 1991-12-20 2002-01-01 Univ Pennsylvania Procedimiento para obtener glucosiltransferasas.
US5879912A (en) 1993-07-15 1999-03-09 Neose Technologies, Inc. Method of synthesizing saccharide compositions
US6204431B1 (en) 1994-03-09 2001-03-20 Abbott Laboratories Transgenic non-human mammals expressing heterologous glycosyltransferase DNA sequences produce oligosaccharides and glycoproteins in their milk
JPH11253191A (ja) 1998-03-13 1999-09-21 Meiji Milk Prod Co Ltd ラクト−n−テトラオースの合成法
US7521212B1 (en) 1999-07-07 2009-04-21 Centre National De La Recherche Scientifique (Cnrs) Method for producing oligopolysaccharides
US20070275881A1 (en) 2003-12-05 2007-11-29 Morrow Ardythe L Oligosaccharide Compositions and Use Thereof in the Treatment of Infection
US20100019648A1 (en) * 2007-03-29 2010-01-28 Hiroshi Yasuda Electron gun and electron beam exposure apparatus

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
ARIMA K; OSHIMA T; KUBOTA; NAKAMURA N; MIZUNAGA T; TOH-E A: "The nucleotide sequence of the yeast PH05 gene: a putative precursor of repressible acid phosphatase contains a signal peptide", NUCLEIC ACIDS RES., vol. 11, no. 6, 25 March 1983 (1983-03-25), pages 1657 - 72
BEGGS JD: "Transformation of yeast by a replicating hybrid plasmid", NATURE, vol. 275, no. 5676, 14 September 1978 (1978-09-14), pages 104 - 9, XP000886788, DOI: doi:10.1038/275104a0
BOROOAH J; LEABACK DH; WALKER PG: "Studies on glucosaminidase. 2. Substrates for N-acetyl-beta-glucosaminidase", BIOCHEM J., vol. 78, no. 1, January 1961 (1961-01-01), pages 106 - 10
BRAKE AJ: "Secretion of heterologous proteins directed by the yeast alpha-factor leader", BIOTECHNOLOGY, vol. 13, 1989, pages 269 - 80
DATABASE WPI Week 199950, 6 February 2012 Derwent World Patents Index; AN 1999-583703, XP055139135 *
HINNEN A; HICKS JB; FINK GR: "Transformation of yeast", PROC NATL ACAD SCI USA., vol. 75, no. 4, April 1978 (1978-04-01), pages 1929 - 33, XP002336016, DOI: doi:10.1073/pnas.75.4.1929
ITO H; FUKUDA Y; MURATA K; KIMURA A: "Transformation of intact yeast cells treated with alkali cations", J BACTERIOL., vol. 153, no. 1, January 1983 (1983-01-01), pages 163 - 8, XP001313409
MARUHN D: "Rapid colorimetric assay of beta-galactosidase and N-acetyl-beta-glucosaminidase in human urine", CLIN CHIM ACTA, vol. 73, no. 3, December 1976 (1976-12-01), pages 453 - 61, XP024786027, DOI: doi:10.1016/0009-8981(76)90147-9
MATSUO , KIM S; YAMAMOTO Y; AJISAKA K; MARUYAMA JI; NAKAJIMA H; KITAMOTO K: "Cloning and overexpression of beta-N-acetylglucosaminidase encoding gene nagA from Aspergillus oryzae and enzyme-catalyzed synthesis of human milk oligosaccharide", BIOSCI BIOTECHNOL BIOCHEM., vol. 67, no. 3, March 2003 (2003-03-01), pages 646 - 50, XP009130482, DOI: doi:10.1271/bbb.67.646
MATSUO, I. ET AL.: "Cloning and overexpression of beta-N-acetylglucosaminidase encoding gene nagA from Aspergillus oryzae and enzyme-catalyzed synthesis of human milk oligosaccharide", BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, vol. 67, no. 3, March 2003 (2003-03-01), pages 646 - 650, XP009130482 *
MEILHOC E; MASSON JM; TEISSIE J: "High efficiency transformation of intact yeast cells by electric field pulses", BIOTECHNOLOGY (NY, vol. 8, no. 3, March 1990 (1990-03-01), pages 223 - 7, XP002214474, DOI: doi:10.1038/nbt0390-223
MIYAZAKI, T. ET AL.: "Enzymatic synthesis of lacto-N-difucohexaose I which binds to Helicobacter pylori.", METHODS IN ENZYMOLOGY, vol. 480, 2010, pages 511 - 524, XP008164122 *
MULLIS K; FALOONA F; SCHARF S; SAIKI R; HORN G; ERLICH H.: "Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction", COLD SPRING HARB SYMP QUANT BIOL., vol. 51, 1986, pages 263 - 73, XP001152869
MULLIS K; FALOONA F; SCHARF S; SAIKI R; HORN G; ERLICH H: "Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction", COLD SPRING HARB SYMP QUANT BIOL., vol. 51, 1986, pages 263 - 73, XP001152869
MUMBERG D; MÜLLER R; FUNK M: "Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds", GENE, vol. 156, no. 1, April 1995 (1995-04-01), pages 1 19 - 22, XP004042399, DOI: doi:10.1016/0378-1119(95)00037-7
MURATA, T. ET AL.: "Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose.", GLYCOCONJUGATE JOURNAL., vol. 16, no. 3, March 1999 (1999-03-01), pages 189 - 195, XP008029474 *
PERLMAN D; HALVORSON HO; CANNON LE: "Presecretory and cytoplasmic invertase polypeptides encoded by distinct mRNAs derived from the same structural gene differ by a signal sequence", PROC NATL ACAD SCI USA., vol. 79, no. 3, February 1982 (1982-02-01), pages 781 - 5
REUTER S; RUSBORG A; ZIMMERMANN W: "?-Galactooligosaccharide synthesis with ?- galactosidases from Sulfolobus solfataricus, Aspergillus oryzae, and Escherichia coli", ENZYME AND MICROBIAL TECHNOLOGY, vol. 25, no. 6, September 1999 (1999-09-01), pages 509 - 16, XP000914149, DOI: doi:10.1016/S0141-0229(99)00074-5
ROSE M; GRISAFI P; BOTSTEIN D: "Structure and function of the yeast URA3 gene: expression in Escherichia coli", GENE, vol. 29, no. 1-2, July 1984 (1984-07-01), pages 113 - 24, XP023538881, DOI: doi:10.1016/0378-1119(84)90172-0
SMART JB: "Transferase reactions of the ?-galactosidase from Streptococcus thermophilus", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 34, no. 4, 1991, pages 495 - 501
STRUHL K; DAVIS RW: "A physical, genetic and transcriptional map of the cloned his3 gene region of Saccharomyces cerevisiae", J MOL BIOL., vol. 136, no. 3, 25 January 1980 (1980-01-25), pages 309 - 32, XP024021451, DOI: doi:10.1016/0022-2836(80)90376-9
TSCHUMPER G; CARBON J: "Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRPI gene", GENE, vol. 10, no. 2, July 1980 (1980-07-01), pages 157 - 66, XP023542039, DOI: doi:10.1016/0378-1119(80)90133-X
WHISTLER RL; DURSO DF: "Chromatographic separation of sugars on charcoal", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 72, February 1950 (1950-02-01), pages 677 - 679, XP055060186, DOI: doi:10.1021/ja01158a009

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015032413A1 (en) * 2013-09-06 2015-03-12 Glycom A/S Fermentative production of oligosaccharides
US10364449B2 (en) 2013-09-06 2019-07-30 Glycom A/S Fermentative production of oligosaccharides

Also Published As

Publication number Publication date
CN103764835B (zh) 2016-08-17
EP2722394B1 (en) 2018-03-21
DK2722394T3 (en) 2018-06-18
EP2722394A1 (en) 2014-04-23
ES2671555T3 (es) 2018-06-07
WO2012168495A9 (es) 2013-09-06
PL2722394T3 (pl) 2018-09-28
CN103764835A (zh) 2014-04-30
EP2722394A4 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
ES2671555T3 (es) Obtención de oligosacáridos mediante un proceso biotecnológico
US11466302B2 (en) Production of steviol glycosides in recombinant hosts
KR100637410B1 (ko) 신규한 효모 변이주 및 포유류형 당쇄를 함유하는당단백질의 제조방법
Yuzbashev et al. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica
Rubio-Texeira Endless versatility in the biotechnological applications of Kluyveromyces LAC genes
CN108699549B (zh) β-半乳糖苷酶
US20220064686A1 (en) Use of substrate importers for the export of oligosaccharides
TW201209160A (en) Improved glycosylation of proteins in host cells
CN107278232A (zh) 由核苷酸活化的糖产生游离形式的单糖的发酵方法
Zhang et al. Engineering thermotolerant Yarrowia lipolytica for sustainable biosynthesis of mannitol and fructooligosaccharides
Rauter et al. Synthesis of benzyl β-d-galactopyranoside by transgalactosylation using a β-galactosidase produced by the over expression of the Kluyveromyces lactis LAC4 gene in Arxula adeninivorans
US7285404B1 (en) Cyclic depsipeptide synthetase and method for recombinant production
JP2770010B2 (ja) 酵母のマンノース−1−リン酸転移を正に制御する遺伝子ならびにこの遺伝子の欠損変異株を利用する高マンノース型中性糖鎖の製造方法
JP2024505126A (ja) シアル酸付加hmoの産生における新規の主要ファシリテータースーパーファミリー(mfs)タンパク質(fred)
KR102237465B1 (ko) 이눌로수크라제 활성이 도입된 효모 및 이를 이용한 프럭토올리고사카라이드 생산방법
WO2012060389A1 (ja) シゾサッカロミセス属酵母の形質転換体およびその製造方法
ES2319489B1 (es) Cepas de levadura capaces de secretar beta-galactosidasa al medio y su uso para la produccion de biomasa, etanol, beta-galactosidasa y proteinas de interes.
Vidra et al. Systematic Investigation of Ergosterol Fermentation by Kluyveromyces marxianus Y. 00243 via Statistical Design
US20230366002A1 (en) Recombinant yeast for the production of oligopeptide
EP4341418A2 (en) Methods of producing hmo blend profiles with lnfp-i and 2'-fl as the predominant compounds
JP2024521548A (ja) 主要な化合物としてlnfp-i及び2’-flを有するhmoブレンドプロファイルを生成する方法
CN116042562A (zh) 重组酵母菌及其应用
Mhlongo Over-expression of FLO genes in Saccharomyces cerevisiae BY4742 strains bearing a deletion in genes related to cell wall biogenesis.
JP2013034391A (ja) グルタチオンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867262

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE