WO2012167579A1 - 电网输电线路监测方法和系统 - Google Patents

电网输电线路监测方法和系统 Download PDF

Info

Publication number
WO2012167579A1
WO2012167579A1 PCT/CN2011/083170 CN2011083170W WO2012167579A1 WO 2012167579 A1 WO2012167579 A1 WO 2012167579A1 CN 2011083170 W CN2011083170 W CN 2011083170W WO 2012167579 A1 WO2012167579 A1 WO 2012167579A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
transmission line
monitoring
measurement data
altimeter
Prior art date
Application number
PCT/CN2011/083170
Other languages
English (en)
French (fr)
Inventor
刘建明
李祥珍
甄岩
陈晰
曾令康
欧清海
何清素
Original Assignee
国网信息通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网信息通信有限公司 filed Critical 国网信息通信有限公司
Priority to US14/124,598 priority Critical patent/US9158036B2/en
Publication of WO2012167579A1 publication Critical patent/WO2012167579A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • G01W1/06Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed giving a combined indication of weather conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00024Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission by means of mobile telephony
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the invention relates to the technical field of power transmission equipment, and in particular to a power grid transmission line monitoring method and system.
  • High-voltage overhead transmission lines are prone to failures caused by meteorological conditions (such as high winds, ice and snow, etc.) and human factors, resulting in damage to transmission line equipment, affecting the safe operation of transmission lines, and causing large-scale power supply in severe cases, giving nationals
  • meteorological conditions such as high winds, ice and snow, etc.
  • human factors resulting in damage to transmission line equipment, affecting the safe operation of transmission lines, and causing large-scale power supply in severe cases, giving nationals
  • the economy has caused significant losses.
  • the breeze vibration caused by the breeze and the wind deviation of the wire are common hidden dangers on the high-voltage overhead line, which is the main cause of the fatigue breakage of the high-voltage overhead transmission line.
  • the duration is generally up to several.
  • Transmission lines such as breeze vibration, dancing, ice coating, wind bias, pollution, lightning strikes, etc., are mostly caused by the local adverse meteorological environment. China's vast territory, transmission lines with large points of dangerous points, long distance, difficult to monitor and maintain, etc., the fixed-point monitoring records provided by the meteorological station for a certain area can not fully accurately reflect the meteorological conditions of specific transmission line corridors. In addition, the historical meteorological data of the transmission line corridor is completely blank, which brings certain difficulties to the fault diagnosis, prevention and research of the transmission line.
  • the object of the present invention is to provide a grid transmission line monitoring method and system for monitoring the operational status of lines and grids in all directions.
  • the present invention provides a monitoring system for a power transmission line, comprising: a first integrated sensor disposed in an intermediate position between the two transmission towers, including an altimeter, a first acceleration sensor, and a temperature and humidity a sensor and a rain sensor; a second integrated sensor disposed at the cable joint of the transmission line, including a leakage current sensor, a tension sensor, and a wind speed and direction sensor; and a second acceleration sensor disposed between the transmission line cable connector and the first integrated sensor The middle position.
  • the monitoring system further includes a data processing device, the data processing device comprising: a sag condition acquisition module, configured to measure the measurement result according to the altimeter, the static information of the transmission line, the transmission capacity, and the temperature and humidity sensor and the rainfall sensor
  • the micro-meteorological condition obtains the sag condition of the transmission line
  • the wind yaw angle acquisition module is configured to obtain the transmission according to the altimeter and the measurement data of the first and second acceleration sensors, and the micro-meteorological conditions measured by the temperature and humidity sensor and the rainfall sensor.
  • a motion trajectory acquisition module configured to acquire a motion position trajectory of the power transmission line according to the measurement data of the first and second acceleration sensors
  • a vibration level and fatigue life acquisition module configured to be based on the first and second acceleration sensors
  • the measurement data, the measurement data of the wind speed and direction sensor, and the measurement data of the temperature and humidity sensor acquire the breeze vibration level and the fatigue life of the transmission line
  • the galloping state acquisition module is configured to obtain the maximum force condition of the transmission line according to the measurement data of the acceleration sensor, melt Maximum force, the measurement data of the altimeter and the microclimate conditions acquired transmission line galloping condition monitoring result
  • icing situation acquiring is configured to monitor the ice coating condition of the transmission line according to the measurement data of the leakage current sensor and the tension sensor.
  • the wind speed and direction sensor is an all solid state small ultrasonic resonance type wind speed and direction sensor.
  • the monitoring system further includes: a video monitoring device disposed on the power transmission tower, and transmitting information for monitoring the transmission line to the monitoring center through the wireless communication network.
  • the monitoring system further includes: a backbone node that receives data of the first integrated sensor, the second integrated sensor, and the second acceleration sensor, and transmits the first integrated sensor, the second integrated sensor, and the second acceleration through the communication network Data monitored by the sensor.
  • the monitoring system further includes: a communication module included in the first integrated sensor, the second integrated sensor, or the second acceleration sensor, configured to monitor the first integrated sensor, the second integrated sensor, or the second acceleration sensor Data is transmitted to the monitoring center via the communication network.
  • a communication module included in the first integrated sensor, the second integrated sensor, or the second acceleration sensor configured to monitor the first integrated sensor, the second integrated sensor, or the second acceleration sensor Data is transmitted to the monitoring center via the communication network.
  • the transmission of the monitoring data of the first integrated sensor, the second integrated sensor, and the second acceleration sensor conforms to a multi-hop networking protocol.
  • the monitoring system further includes: a fiber optic composite overhead ground wire (OPGW) disposed on the power line.
  • OPGW fiber optic composite overhead ground wire
  • the altimeter is a laser ranging altimeter.
  • the present invention also provides a monitoring method for a power transmission line, comprising: a measurement result according to an altimeter, a static information of a transmission line, a transmission capacity, and a micro-meteorometer measured by a temperature and humidity sensor and a rainfall sensor.
  • Conditionally monitor the sag condition of the transmission line monitor the wind yaw angle of the transmission line according to the measurement data of the altimeter and the acceleration sensor, and the micro-meteorological conditions measured by the temperature and humidity sensor and the rainfall sensor; monitor the transmission line according to the measurement data of the acceleration sensor Motion position trajectory; obtain the maximum force condition of the transmission line according to the measurement data of the acceleration sensor, combine the maximum force condition, the altimeter measurement data and the micro-meteorological condition to obtain the galloping state monitoring result of the transmission line; according to the acceleration sensor measurement data, the wind speed
  • the measurement data of the wind direction sensor and the measurement data of the temperature and humidity sensor monitor the breeze vibration level and fatigue life of the transmission line; the ice coating of the transmission line according to the measurement data of the leakage current sensor and the tension sensor Line monitoring.
  • the monitoring method further comprises: monitoring the transmission line, and monitoring the letter The information is transmitted to the monitoring center via the communication network.
  • the monitoring method further includes: receiving data monitored by an altimeter, an acceleration sensor, a wind speed and direction sensor, a temperature and humidity sensor, a leakage current sensor, and a tension sensor; and an altimeter, an acceleration sensor, a wind speed and direction sensor, a temperature and humidity sensor, and a leak
  • the data monitored by the current sensor and the tension sensor is transmitted to the monitoring center via the communication network.
  • monitoring the wind deflection angle of the transmission line includes: obtaining a first wind yaw angle according to the measurement data of the altimeter, the measurement data of the acceleration sensor, and the displacement model; acquiring the second height according to the current height and the historical height measured by the altimeter Wind declination; obtaining a third wind yaw angle according to video or image information; acquiring a fourth wind yaw angle according to wind speed and direction information, static information of the transmission line; merging the first, second, third and fourth wind yaw angles, obtaining Wind angle of the transmission line.
  • an online monitoring method and system for transmission lines based on sensor multi-dimensional sensing technology is proposed, which realizes transmission line sag, ice coating, wind deviation, wind swing Reliable online monitoring of, and other dances.
  • a temperature sensor, an acceleration sensor, a temperature and humidity sensor, a wind speed and direction sensor, and the like are disposed on the entire transmission line, and a cluster of sensors is formed by a convergence node on each tower, and a plurality of clusters constitute a line.
  • the network and the electric communication network constitute the entire intelligent grid transmission line online monitoring system, effectively preventing and reducing grid transmission line accidents.
  • FIG. 1 is a flow chart of a method for monitoring a power transmission line according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for monitoring a power transmission line of a power grid according to another embodiment of the present invention
  • FIG. 3 is a schematic diagram of a topology of a system network according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a monitoring system for a power transmission line according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a monitoring system for a power transmission line according to another embodiment of the present invention
  • FIG. 6 is a schematic diagram of a monitoring system according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a second integrated sensor according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a data processing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a method 100 of monitoring a grid transmission line in accordance with an embodiment of the present invention.
  • step 102 the sag condition of the transmission line is monitored based on the measurement results of the altimeter, the static information of the transmission line, the transmission capacity, and the micro-meteorological conditions measured by the temperature and humidity sensor and the rain sensor.
  • step 104 the wind angle of the transmission line is monitored based on the measurement data of the altimeter and the acceleration sensor, and the micro-meteorological conditions measured by the temperature and humidity sensor and the rain sensor.
  • step 106 the motion position trajectory of the transmission line is monitored based on the measurement data of the acceleration sensor.
  • step 107 the maximum force condition of the transmission line is obtained according to the measurement data of the acceleration sensor, and the maximum force condition, the measurement data of the altimeter and the micro-meteorological condition are combined to obtain the galloping state monitoring result of the transmission line.
  • step 108 the breeze vibration level and the fatigue life of the transmission line are monitored based on the measurement data of the acceleration sensor, the measurement data of the wind speed and direction sensor, and the measurement data of the temperature and humidity sensor.
  • step 110 the ice coating condition of the transmission line is monitored based on the measurement data of the leakage current sensor and the tension sensor.
  • Transmission line sag is the main indicator of line design and operation, and is related to the operational safety of the line, so it must be controlled within the scope of the design. Changes in line operating load and surrounding environment will cause changes in the arcing of the line. Excessive sag will not only cause accidents, but also limit the transmission capacity of the line.
  • the measurement of the sag of the transmission line can be measured by an altimeter, and the results estimated by the static information of the transmission line, the transmission capacity, the micro-meteorological conditions, etc., are obtained, and the current reliable sag state is obtained.
  • the measurement of the sag can be an important source of information for measuring the state of ice, wind, and gallop.
  • the height record can be a laser ranging altimeter.
  • measurements are based on altimeters and acceleration sensors (such as MEMS gyros)
  • the data as well as the micro-meteorological conditions measured by the temperature and humidity sensor and the rain sensor, monitor the wind angle of the transmission line.
  • the first wind angle can be obtained from the altimeter measurement data, the acceleration sensor measurement data, and the displacement model.
  • the second wind yaw angle is obtained from the current height and the historical height measured by the altimeter.
  • the third wind yaw angle is obtained from the video or image information.
  • the fourth wind yaw angle is obtained according to the wind speed and direction information and the static information of the transmission line. Then, the first, second, third and fourth wind angles are merged to obtain the wind angle of the transmission line.
  • step 206 the motion position trajectory of the transmission line is monitored based on the measurement data of the acceleration sensor.
  • the wire When the wire is blown by the side gust, its trajectory can be turned into a pendulum motion, usually the three-phase line oscillates in the same way.
  • the lateral acceleration of the wire By installing a three-axis accelerometer on the transmission line, the lateral acceleration of the wire can be monitored in real time. After the second integral, the trajectory of the movement position of the wire can be obtained. The system can synthesize the trajectory of the phase sensor at the same time to make the possible wire abnormally close. An alarm is generated.
  • the wind speed and direction sensor can monitor the wind speed and direction of the wind around the transmission line.
  • the wind speed and direction sensor may be an all solid state small ultrasonic resonance type wind speed and direction sensor for measuring wind speed and direction of the wind around the transmission line.
  • the measurement of the wind deviation of the wire and the wind speed and direction sensor calculated by the acceleration sensor deployed on the transmission line can provide a practical basis for the design of the transmission line and the wind deviation calibration, and assist the operation department in finding the fault point.
  • the monitoring center can observe, record, and collect the meteorological data of the area through which the transmission line passes, accumulate operational data, improve the wind deviation calculation method, and accurately record the maximum instantaneous wind speed and wind pressure unevenness coefficient on the transmission line tower. , the trajectory of the wire under strong wind, etc., to provide technical data for the development of reasonable design standards.
  • the breeze vibration level and the fatigue life of the transmission line are monitored based on the measurement data of the acceleration sensor, the measurement data of the wind speed and direction sensor, and the measurement data of the temperature and humidity sensor.
  • the vibration of the wire is monitored by a three-dimensional accelerometer, and the vibration frequency and amplitude of the recorded wire are analyzed.
  • the micro-meteorological parameters such as wind speed, wind direction, temperature and humidity, and the mechanical properties of the wire itself are combined with the line to analyze the line breeze vibration.
  • the level and fatigue life of the wire are monitored based on the measurement data of the acceleration sensor, the measurement data of the wind speed and direction sensor, and the measurement data of the temperature and humidity sensor.
  • the wire In the operation of the wire, the wire is subjected to several stress levels due to the superposition of vibration above the static tension.
  • a complex load series consisting of components, each component has a different number of vibration cycles at the same time that the wire runs.
  • Estimating the fatigue life of a wire with this series of loads can apply the cumulative damage theory.
  • the stress block diagram is the basis of the cumulative frequency curve.
  • the maximum force condition of the transmission line is obtained according to the measurement data of the acceleration sensor, and the maximum force condition, the measurement data of the altimeter, and the micro-meteorological condition are combined to obtain the galloping state monitoring result of the transmission line.
  • a three-dimensional acceleration sensor node is installed in a multi-point wire to monitor the wire galloping situation, collect three-axis acceleration information, and analyze the dance line according to the calculation and analysis of the monitoring point acceleration and the basic information of the line and the three-degree-of-freedom data model of the wire galloping.
  • the acceleration sensor can be used to trace the movement trajectory of a certain point of the wire, and the acceleration data can be double-integrated to obtain the position data.
  • approximate integration can be performed. Through calculation, the maximum moving distance of the wire can be accurately obtained. By measuring the maximum acceleration, the maximum force of the wire can be approximated, and the possible guiding data of the wire damage can be given. Because the wire dancing is affected by various parameters, in the actual system, wire dancing monitoring can integrate information such as micro-meteorology, altimeter, tower video, etc., and design a reasonable multi-source information fusion model to obtain reliable monitoring results of galloping state.
  • the icing condition of the transmission line is monitored based on the measured data of the leakage current sensor and the tension sensor.
  • an insulator leakage current sensor and a tension sensor node may be installed on the insulator of the transmission tower, and data such as tensile force and weight may be collected, and the calculation and determination may be made according to the correspondence between the tensile force, the weight and the icing condition.
  • real-time monitoring of line icing can also be used to monitor line icing conditions in real time.
  • the tension sensor can be activated to measure the insulator tension to accurately determine if there is ice. If there is no possibility of icing, power-consuming tensile measurements are not initiated, thereby extending the battery life of the insulator leakage current sensor and the tension sensor node.
  • the transmission line is monitored and the monitored information is transmitted to the monitoring center via the communication network.
  • a video surveillance device can be installed on an important large-span transmission tower to transmit photos, videos and other information to the monitoring center via a wireless communication network.
  • the monitoring center can grasp the situation of the transmission line at any time and around the clock, such as the formation and development of ice coating.
  • by comparing and analyzing the current image information acquired by the video monitoring device on the tower with the historical information it is possible to further confirm the sag and the icing of the line. Combined with micro-meteorological measurement data, it can be adjusted in time to increase the line current and increase the temperature of the wire to prevent the wire from being covered with ice.
  • step 214 receiving data monitored by an altimeter, an acceleration sensor, a wind speed and direction sensor, a temperature and humidity sensor, a leakage current sensor, and a tension sensor, and monitoring the altimeter, the acceleration sensor, the wind speed and direction sensor, the temperature and humidity sensor, the leakage current sensor, and the tension sensor
  • the data is transmitted to the monitoring center via the communication network.
  • the system network topology can be designed as a chain cluster structure, as shown in FIG.
  • FIG. 3 includes a sensing node 302, a backbone node 304, and a communication link 306.
  • Sensing node 302 can deploy various types of sensors such as altimeters, accelerometers, and the like.
  • backbone nodes 304 may be deployed on the transmission towers, and monitoring data may be collected from sensor nodes 302 within its communication range and sent to the background monitoring center via the communication network.
  • a one-way communication link 306 can be employed between the sensing node 302 and the backbone node 304, and the backbone node 304 can support multiple sensing nodes 302, such as 256.
  • the communication between the backbone nodes 304 can be a two-way communication link 306.
  • the backbone node 304 can form a chain topology multi-hop network.
  • a communication module can be added to a sensor node 302 to directly transmit data of the sensor to the monitoring center via the communication network.
  • the communication network may be a network such as TD-SCDMA or GSM, and may directly access the 3G mobile communication network, and may also be connected to the optical fiber composite overhead ground line (OPGW) optical network in a conditional tower.
  • OPGW optical fiber composite overhead ground line
  • steps 202-212 in the monitoring method 200 for grid transmission lines do not sequence, and each step can comprehensively prevent and reduce grid accidents.
  • the power transmission line monitoring system 400 includes a first integrated sensor 402, a second integrated sensor 404, and a second acceleration sensor 406.
  • the first integrated sensor 402 is disposed at an intermediate position between the two towers, including a height meter, a first acceleration sensor, a temperature and humidity sensor, and a rain sensor.
  • the second integrated sensor 404 is disposed at the cable joint of the transmission line, and includes a leakage current sensor, a tension sensor, and a wind speed and direction sensor.
  • the second acceleration sensor 406 is disposed at an intermediate position between the transmission line cable connector and the first integrated sensor.
  • FIG. 5 is a block diagram showing the construction of a monitoring system 500 for a power transmission line according to another embodiment of the present invention.
  • the power transmission line monitoring system 500 includes a first integrated sensor 502, a second integrated sensor 504, a second acceleration sensor 506, a video monitoring device 508, and a backbone node 510.
  • the first integrated sensor 502 disposed in the middle of the transmission line between the two towers, including high The meter, the first acceleration sensor, the temperature and humidity sensor, and the rain sensor.
  • the altimeter can be a laser ranging altimeter.
  • the first integrated sensor 502 may further include an energy supply module, a signal adjustment module, an A/D conversion module, a data processing device, and a data transmission module, as shown in FIG.
  • the second integrated sensor 504 is disposed at the power line cable joint, and includes a leakage current sensor, a tension sensor, and a wind speed and direction sensor.
  • the wind speed and direction sensor is an all solid state small ultrasonic resonance type wind speed and direction sensor.
  • the second integrated sensor 504 may further include an energy supply module, a signal adjustment module, an A/D conversion module, a data processing device, and a data transmission module, as shown in FIG.
  • the data processing device in the first integrated sensor 502 and the second integrated sensor 504 shown in FIG. 6 and FIG. 7 may be as shown in FIG. 8, including: a sag condition acquisition module 802, a wind yaw angle acquisition module 804, and a motion trajectory.
  • the sag condition acquisition module 802 is configured to obtain the sag condition of the transmission line according to the measurement result of the altimeter, the static information of the transmission line, the transmission capacity, and the micro-meteorological conditions measured by the temperature and humidity sensor and the rain sensor.
  • the wind yaw acquisition module 804 is configured to obtain the wind yaw angle of the transmission line according to the altimeter and the measurement data of the first and second acceleration sensors, and the micro weather conditions measured by the temperature and humidity sensor and the rain sensor.
  • the motion trajectory obtaining module 806 is configured to acquire a motion position trajectory of the power transmission line according to the measurement data of the first and second acceleration sensors.
  • the vibration level and fatigue life acquisition module 808 is configured to obtain the breeze vibration level and the fatigue life of the transmission line according to the measurement data of the first and second acceleration sensors, the measurement data of the wind speed and direction sensor, and the measurement data of the temperature and humidity sensor.
  • the galloping state obtaining module 810 is configured to obtain the maximum force condition of the transmission line according to the measurement data of the acceleration sensor, and combine the maximum force condition, the altimeter measurement data, and the micro weather condition to obtain the galloping state monitoring result of the transmission line.
  • the icing condition acquisition module 812 is configured to monitor the icing condition of the transmission line according to the measurement data of the leakage current sensor and the tension sensor.
  • the data processing apparatus can also be included in the backbone node 510 or the back-end monitoring center.
  • the second acceleration sensor 506 is disposed at an intermediate position of the transmission line between the transmission line cable connector and the first integrated sensor.
  • Three acceleration sensors can be deployed for each transmission line, one of which is integrated into the first integrated sensor 502, and the other two are deployed (eg, the second acceleration sensor 506) Both sides of an integrated sensor 502 are positioned intermediate the power line cable connector to the first integrated sensor 502.
  • the video monitoring device 508 is disposed on the transmission tower, and transmits information for monitoring the transmission line to the monitoring center via the wireless communication network.
  • the backbone node 510 receives data of the first integrated sensor 502, the second integrated sensor 504, the second acceleration sensor 506, and the video monitoring device 508, and transmits the first integrated sensor 502, the second integrated sensor 504, and the second acceleration through the communication network.
  • the first integrated sensor 502, the second integrated sensor 504, the second acceleration sensor 506, or the video monitoring device 508 can include a communication module for using the first integrated sensor
  • the monitoring data of the second integrated sensor 504, the second acceleration sensor 506 or the video monitoring device 508 is directly transmitted to the monitoring center through the communication network.
  • the transmission of monitoring data by the first integrated sensor 502, the second integrated sensor 504, the second acceleration sensor 506, and the video monitoring device 508 may be in accordance with a multi-hop networking protocol.
  • the communication network can be a TD-SCDMA network.
  • the transmission tower can also be connected to a fiber optic composite overhead ground line (OPGW).
  • OPGW fiber optic composite overhead ground line
  • a wireless transmission line online monitoring method and system based on sensor multi-dimensional sensing technology which realizes transmission line sag, ice coating, wind deviation, wind swing, Reliable online monitoring such as dancing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种用于电网输电线路的监测系统,包括第一综合传感器(402,502),布设于两个杆塔之间输电线路的中间位置,包括高度计、第一加速度传感器、温湿度传感器和雨量传感器;第二综合传感器(404,504),布设于输电线路电缆接头处,包括泄露电流传感器、拉力传感器和风速风向传感器;第二加速度传感器(406,506),布设于输电线路电缆接头到第一综合传感器(402,502)之间输电线路的中间位置。一种用于电网输电线路的监测方法,包括监测输电线路的弧垂状况、风偏角、运动位置轨迹、舞动状态、微风振动水平、疲劳寿命以及覆冰情况的步骤。所述用于电网输电线路的监测系统和方法基于传感器多维感知技术、通过结合无线传感器网络技术的优势有效预防和减少了电网输电线路的事故。

Description

电网输电线路监测方法和系统
技术领域
本发明涉及输电设备技术领域,特别是涉及一种电网输电线路监测方法和 系统。
背景技术
高压架空输电线路容易受到气象环境(如大风、 冰雪等)和人为因素影响 而引起故障, 从而导致输电线路设备损毁, 影响输电线路的安全运行, 严重时 还会导致大面积电力供应瘫痪, 给国民经济造成重大损失。 比如, 由微风造成 的微风振动、导线风偏是高压架空线路上普遍存在的隐患,是造成高压架空输 电线路疲劳断股的主要原因; 强风条件造成的线路舞动一旦形成,持续时间一 般可达数小时,对高压输电线路会造成极大的破坏作用; 雨雪天气造成的线路 覆冰, 杆塔拉线更容易结冰, 且对称的拉线结冰往往不平衡, 会导致杆塔的倾 斜, 这也是输电线路安全保障的巨大隐患。
输电线路微风振动、 舞动、 覆冰、 风偏、 污秽、 雷击等故障现象, 大多数 受当地恶劣气象环境影响所致。我国地域广大,输电线路具有危险点分散性大、 距离长、难以监控维护等特点, 由气象台提供的对某个地区的定时定点监测记 录并不能完全准确地反映特定输电线路走廊的气象条件。 另外,输电线路走廊 历史气象数据完全一片空白,给输电线路故障判断、预防及研究带来了一定的 困难。
2005年春节前后华中地区出现极为罕见的冻雨、 雨雪天气, 特别是湖南、 湖北两省分别遭受了 50年以来大面积、 长时间、 高强度的输电线路覆冰自然 灾害, 造成华中电网 500kV变电站发生设备故障 5次, 500kV交直流输电线 路共跳闸 18条 69次。 2008年 1月, 全国南方十几个省市遇到了罕见的冰雪 天气,输电线路受覆冰等影响出现大面积事故停电,给人民生活和社会造成十 分严重的不良影响。 湖北、 湖南、 河南、 江西、 四川、 重庆、 浙江、 安徽、 福 建、 江苏等地电网实施损失严重, 造成 36740条 10kV及以上电力线路、 2016 座 35kV及以上变电站停运, 10kV及以上杆塔倒塌及损坏 310321基,其中 110 一 500kV8381基, 从而导致电力供应短缺, 出现大面积停电状况。 仅国家电网 公司经营范围就有 545个县(区)、 2706万用户用电受到影响, 其中 80个县 (区)供电几乎全部中断, 直接财产损失 104.5亿元。
恶劣极端天气、外力破坏等对电力安全生产、 线路及塔基的安全具有重要 影响。因此,全方位监控线路和电网的运行状态,对于提高电力系统的安全性、 可靠性、 稳定性、 经济性十分重要。
发明内容
本发明的目的是提出一种电网输电线路监测方法和系统,以全方位监控线 路和电网的运行状态。
为实现上述目的,本发明提供了一种用于电网输电线路的监测系统,包括: 第一综合传感器, 布设于两个杆塔之间输电线路的中间位置, 包括高度计、 第 一加速度传感器、 温湿度传感器和雨量传感器; 第二综合传感器, 布设于输电 线路电缆接头处, 包括泄露电流传感器、拉力传感器和风速风向传感器; 第二 加速度传感器,布设于输电线路电缆接头到第一综合传感器之间输电线路的中 间位置。
在一个实施例中, 监测系统还包括数据处理装置, 数据处理装置包括: 弧 垂状况获取模块, 用于根据高度计的测量结果、 输电线路的静态信息、 传输容 量以及温湿度传感器和雨量传感器测得的微气象条件获取输电线路的弧垂状 况;风偏角获取模块,用于根据高度计和第一和第二加速度传感器的测量数据, 以及温湿度传感器和雨量传感器测得的微气象条件, 获取输电线路的风偏角; 运动轨迹获取模块,用于根据第一和第二加速度传感器的测量数据获取输电线 路的运动位置轨迹; 振动水平及疲劳寿命获取模块, 用于根据第一和第二加速 度传感器的测量数据、风速风向传感器的测量数据和温湿度传感器的测量数据 获取输电线路的微风振动水平和疲劳寿命; 舞动状态获取模块, 用于根据加速 度传感器的测量数据获取输电线路的最大受力情况, 融合最大受力情况、 高度 计的测量数据和微气象条件获取输电线路的舞动状态监测结果;覆冰情况获取 模块,用于根据泄露电流传感器和拉力传感器的测量数据对输电线路的覆冰情 况进行监测。
在一个实施例中,风速风向传感器为全固态小型超声波共振型风速风向传 感器。
在一个实施例中, 监测系统还包括: 视频监控装置, 布设于输电杆塔上, 将对输电线路进行监视的信息通过无线通信网络传送给监控中心。
在一个实施例中, 监测系统还包括: 骨干节点, 接收第一综合传感器、 第 二综合传感器和第二加速度传感器的数据,并通过通信网络传送第一综合传感 器、 第二综合传感器和第二加速度传感器监测的数据。
在一个实施例中, 监测系统还包括: 包含于第一综合传感器、 第二综合传 感器或第二加速度传感器的通信模块, 用于将第一综合传感器、第二综合传感 器或第二加速度传感器的监测数据通过通信网络传送给监控中心。
在一个实施例中, 第一综合传感器、 第二综合传感器和第二加速度传感器 的监测数据的传送符合多跳组网协议。
在一个实施例中, 监测系统还包括: 光纤复合架空地线 (OPGW ), 布设 于输电线路上。
在一个实施例中, 高度计为激光测距高度计。
为实现上述目的, 本发明还提供了一种用于电网输电线路的监测方法, 包 括: 根据高度计的测量结果、 输电线路的静态信息、 传输容量, 以及温湿度传 感器和雨量传感器测得的微气象条件监测输电线路的弧垂状况;根据高度计和 加速度传感器的测量数据, 以及温湿度传感器和雨量传感器测得的微气象条 件,监测输电线路的风偏角; 根据加速度传感器的测量数据监测输电线路的运 动位置轨迹; 根据加速度传感器的测量数据获取输电线路的最大受力情况, 融 合最大受力情况、高度计的测量数据和微气象条件获取输电线路的舞动状态监 测结果; 根据加速度传感器的测量数据、风速风向传感器的测量数据和温湿度 传感器的测量数据监测输电线路的微风振动水平和疲劳寿命;根据泄露电流传 感器和拉力传感器的测量数据对输电线路的覆冰情况进行监测。
在一个实施例中, 监测方法还包括: 对输电线路进行监视, 并将监视的信 息通过通信网络传送给监控中心。
在一个实施例中, 监测方法还包括: 接收高度计、 加速度传感器、 风速风 向传感器、 温湿度传感器、 泄露电流传感器和拉力传感器监测的数据; 将高度 计、 加速度传感器、 风速风向传感器、 温湿度传感器、 泄露电流传感器和拉力 传感器监测的数据通过通信网络传送给监控中心。
在一个实施例中,监测输电线路的风偏角, 包括:根据高度计的测量数据、 加速度传感器的测量数据、位移模型获取第一风偏角; 根据高度计测得的当前 高度和历史高度获取第二风偏角; 根据视频或图像信息获取第三风偏角; 根据 风速风向信息、 传输线路的静态信息获取第四风偏角; 融合第一、 第二、 第三 和第四风偏角, 获取输电线路的风偏角。
基于上述技术方案, 根据本发明的一方面, 通过结合无线传感器网络技术 的优势,提出基于传感器多维感知技术的输电线路在线监测方法和系统, 实现 输电线路弧垂、 覆冰、 风偏、 风摆、 舞动等的可靠在线监测。 根据本发明的另 一方面, 通过在整条输电线路上部署温度传感器、 加速度传感器、 温湿度传感 器、 风速风向传感器等, 并通过每个杆塔上的汇聚节点构成一个传感器簇, 多 个簇构成线状网络并通过电力通信网构成整个智能电网输电线路在线监测系 统, 有效预防和减少电网输电线路事故。
附图说明 图 1为根据本发明实施例的电网输电线路的监测方法的流程图;
图 2为根据本发明另一实施例的电网输电线路的监测方法的流程图; 图 3为根据本发明实施例的系统网络拓朴结构示意图;
图 4为根据本发明实施例的电网输电线路的监测系统的结构示意图; 图 5为根据本发明另一实施例的电网输电线路的监测系统的结构示意图; 图 6为根据本发明实施例的第一综合传感器的结构示意图;
图 7为根据本发明实施例的第二综合传感器的结构示意图;
图 8为根据本发明实施例的数据处理装置的结构示意图。
具体实施方式
下面参照附图对本发明进行更详细的描述,其中说明本发明的示例性实施 例。 在附图中, 相同的标号表示相同或者相似的组件或者元素。
图 1为根据本发明实施例的电网输电线路的监测方法 100的流程图。
在步骤 102中,根据高度计的测量结果、输电线路的静态信息、传输容量, 以及温湿度传感器和雨量传感器测得的微气象条件监测输电线路的弧垂状况。
在步骤 104中, 根据高度计和加速度传感器的测量数据, 以及温湿度传感 器和雨量传感器测得的微气象条件, 监测输电线路的风偏角。
在步骤 106中,根据加速度传感器的测量数据监测输电线路的运动位置轨 迹。
在步骤 107中,根据加速度传感器的测量数据获取输电线路的最大受力情 况, 融合最大受力情况、 高度计的测量数据和微气象条件获取输电线路的舞动 状态监测结果。
在步骤 108中, 根据加速度传感器的测量数据、 风速风向传感器的测量数 据和温湿度传感器的测量数据监测输电线路的微风振动水平和疲劳寿命。
在步骤 110中,根据泄露电流传感器和拉力传感器的测量数据对输电线路 的覆冰情况进行监测。
本领域的技术人员将可以理解,用于电网输电线路的监测方法 100的各步 骤并不分先后执行顺序, 各步骤能够综合实现预防和减少电网事故。
图 2为根据本发明另一实施例的电网输电线路的监测方法 200的流程图。 在步骤 202中,根据高度计的测量结果、输电线路的静态信息、传输容量, 以及温湿度传感器和雨量传感器测得的微气象条件监测输电线路的弧垂状况。 输电线路弧垂是线路设计和运行的主要指标, 关系到线路的运行安全, 因此必 须控制在设计规定的范围内。线路运行负荷和周围环境的变化都会造成线路弧 垂的变化, 过大的弧垂不但会造成事故隐患, 也会限制线路的输送能力。
在一个实施例中, 输电线路弧垂的测量可以以高度计测量为主, 融合由输 电线路静态信息、 传输容量、 微气象条件等估算出来的结果, 得出当前可靠的 导线弧垂状态。 弧垂的测量结果可以是覆冰、 风偏、 舞动等状态测量的重要信 息来源。 在一个实施例中, 高度记可以是激光测距高度计。
在步骤 204中, 根据高度计和加速度传感器(比如 MEMS陀螺 ) 的测量 数据, 以及温湿度传感器和雨量传感器测得的微气象条件,监测输电线路的风 偏角。 在一个实施例中, 可以根据高度计的测量数据、 加速度传感器的测量数 据、位移模型获取第一风偏角。根据高度计测得的当前高度和历史高度获取第 二风偏角。 根据视频或图像信息获取第三风偏角。 根据风速风向信息、 传输线 路的静态信息获取第四风偏角。 然后, 融合第一、 第二、 第三和第四风偏角, 获取输电线路的风偏角。
在步骤 206中,根据加速度传感器的测量数据监测输电线路的运动位置轨 迹。 当导线受到侧阵风吹拂的时候, 其摆动轨迹可以筒化为钟摆运动, 通常三 相线路按同样的方式摆动。当遇到侧阵风和垂直切变风复合类型的复杂气象情 况时, 有可能发生某二相线路的相向运动, 导致过度接近而发生短路事故。 通 过在输电线路上安装三轴加速度传感器可以实时监测导线的横向加速度,经过 二次积分可以得到导线的运动位置轨迹,系统综合各相传感器的同一时刻的运 动轨迹就可以对可能的导线异常接近给出告警。
在步骤 207中, 风速风向传感器可以监测输电线路周围的风速和风向。 在 一个实施例中,风速风向传感器可以是全固态小型超声波共振型风速风向传感 器, 用于对输电线路周围的风速和风向进行测量。
通过输电线路上部署的加速度传感器计算出的导线风偏以及风速风向传 感器的测量数据, 可以为输电线路的设计和风偏校验提供实测依据,协助运行 部门查找故障点。 另外, 可以通过监测中心对输电线路所经区域的气象资料的 观测、 记录、 收集, 积累运行资料, 完善风偏计算方法, 同时准确地记录输电 线路杆塔上的最大瞬时风速、 风压不均匀系数、 强风下的导线运动轨迹等, 为 制定合理的设计标准提供技术数据。
在步骤 208中, 根据加速度传感器的测量数据、 风速风向传感器的测量数 据和温湿度传感器的测量数据监测输电线路的微风振动水平和疲劳寿命。 比 如, 通过三维加速度传感器监测导线的振动情况, 分析记录导线的振动频率、 振幅, 结合线路周围的风速、 风向、 气温、 湿度等微气象环境参数以及导线本 身力学性能参数, 在线分析判断线路微风振动的水平和导线的疲劳寿命。
在导线运行中, 由于在静张力之上叠加了振动, 导线承受了由几种应力级 分量组成的复杂荷载系列,在导线运行的同一时间内,各个分量具有不同的振 动循环次数。估算一个具有这种荷载系列的导线疲劳使用寿命可以应用累积损 伤理论。应力框图是累积频率曲线的基础,通过对输电线路振动信号数据进行 时域和频域分析, 可以估算出同一时间内不同应力级的循环次数。 同时, 可以 观察各个频率分量上振动的大小,从而预防输电线路上可能产生的共振。 经过 估算可以得出疲劳寿命。 参照预测结果及专家知识库设置的提示、 预警、 报警 值可以给出检修建议。
在步骤 209中,根据加速度传感器的测量数据获取输电线路的最大受力情 况, 融合最大受力情况、 高度计的测量数据和微气象条件获取输电线路的舞动 状态监测结果。 比如,在一档导线中多点安装三维加速度传感器节点以监测导 线舞动情况, 采集三轴加速度信息,依据对监测点加速度的计算分析及线路基 本信息、导线舞动三自由度数据模型分析舞动线路的纵向、横向舞动半波数及 计算导线运行的轨迹相关参数, 进而根据历史经验和相关模型, 判断线路是否 发生舞动危害, 发出报警信息, 避免相间放电、 倒塔等事故的发生。
当输电线遇有风向与线路水平夹角大于 45度的大风时, 整档导线在强大 风力和导线本身机械应力的作用下将产生整体扭转与摆动,导线整体的这种扭 转和摆动随着持续风力的作用而逐渐加大,慢慢形成橢圓形的运动轨迹。 当扭 转加剧并导致导线以较低频率进行大幅度上下跳动,这时导线的扭摆现象已不 十分明显, 整档导线的状态表现为定向的波浪式运动, 当风力减弱时, 导线将 从上下跳动逐步恢复为扭转和摆动并逐渐减弱直至停止。 根据舞动的特点得 出, 在舞动剧烈运动的前期和后期, 线路的运动轨迹主要以摆动为主, 因此, 实时监测输电线路摆动的角度或者输电线上某点摆动的振幅,能够对线路起良 好的监控和预警作用。
利用加速度传感器可以描绘导线某点的运动轨迹,对加速度数据进行二重 积分即可得到位置数据。 此外, 由于加速度数据是不连续的, 可以进行近似积 分。 通过计算, 可以精确得出导线的最大运动距离, 通过测得的最大加速度, 可以近似推导该段导线的最大受力情况,从而可以给出导线受损可能的指导数 据。 由于导线舞动受各种参量的影响, 在实际系统中, 导线舞动监测可以融合 如微气象、 高度计、 塔架视频等的信息, 设计合理的多源信息融合模型, 获取 可靠的舞动状态监测结果。
在步骤 210中,根据泄露电流传感器和拉力传感器的测量数据对输电线路 的覆冰情况进行监测。 比如, 可以在输电杆塔的绝缘子上安装绝缘子泄露电流 传感器和拉力传感器节点, 采集拉力、 重量等数据, 根据拉力、 重量与覆冰状 况之间的对应关系进行计算判定。 另外,通过对线路弧垂的实时测量也可以对 线路覆冰情况进行实时监测。
通过实时测量环境温度、 湿度、 风速、 风向、 雨量等参数, 也可以判断是 否有结冰可能。如果可能结冰可以启动拉力传感器进行绝缘子拉力测量, 以精 确判断是否有结冰现象。 如果没有结冰可能, 就不启动耗费电力的拉力测量, 从而延长绝缘子泄露电流传感器和拉力传感器节点的电池寿命。
在步骤 212中, 对输电线路进行监视, 并将监视的信息通过通信网络传送 给监控中心。 比如, 在重要的大跨距输电杆塔上可以安装视频监控装置, 通过 无线通信网络将照片、视频等信息传往监控中心。进而,在监控中心可以随时、 全天候地掌握输电线路的情况, 比如覆冰的形成和发展情况等。 另外, 将塔架 上的视频监控装置获取的当前图像信息与历史信息进行比较、分析, 可以进一 步确认线路的弧垂以及覆冰情况。再辅以微气象测量数据, 能够及时适当的进 行调整, 增加线路电流, 提高导线温度, 以防止导线覆冰。
在步骤 214中, 接收高度计、 加速度传感器、 风速风向传感器、 温湿度传 感器、 泄露电流传感器和拉力传感器监测的数据, 将高度计、 加速度传感器、 风速风向传感器、温湿度传感器、 泄露电流传感器和拉力传感器监测的数据通 过通信网络传送给监控中心。
由于输电线路分布范围广, 跨越距离大, 为保证传感信息的有效传输, 避 免信息丟失,在传感网中可以采用多跳组网协议, 以多跳中继通信的方式使网 络具备更远的信息传输距离。通过电力专用通信网络或借助公网移动通信网络 实现传感信息的远距离传输, 提供更加灵活、 高速、 便捷的信息传输服务, 确 保信息传输的高效畅通,为输电线路现场与后台监控中心的互通互联提供可靠 优质的传输服务。依据输电线路应用场景, 可以设计系统网络拓朴为链状簇型 结构, 如图 3所示。
图 3包括传感节点 302、 骨干节点 304和通信链路 306。 传感节点 302可 以部署各类传感器比如高度计、 加速度传感器等。 在一个实施例中, 可以在输 电杆塔上布设骨干节点 304,从其通信范围内的各传感节点 302采集监测数据, 并将其通过通信网络发送给后台监控中心。 在一个实施例中, 传感节点 302 与骨干节点 304之间可以采用单向通信链路 306, 骨干节点 304能支持多个传 感节点 302, 如 256个。 在一个实施例中, 骨干节点 304之间的通信可以为双 向通信链路 306。 骨干节点 304可以构成链型拓朴多跳网络。 在另一个实施例 中, 可以在某个传感器节点 302上加装通信模块, 直接将传感器的数据通过通 信网络发送给监控中心。在一个实施例中,通信网络可以是 TD-SCDMA、 GSM 等网络, 可以直接接入 3G移动通信网络, 在有条件的杆塔也可以接入光纤复 合架空地线(OPGW ) 光网。
本领域的技术人员将可以理解,用于电网输电线路的监测方法 200中的步 骤 202-212并不分先后执行顺序, 各步骤能够综合实现预防和减少电网事故。
图 4为根据本发明实施例的电网输电线路的监测系统 400的结构示意图。 电网输电线路的监测系统 400包括第一综合传感器 402、 第二综合传感器 404 和第二加速度传感器 406。
第一综合传感器 402, 布设于两个杆塔之间输电线路的中间位置, 包括高 度计、 第一加速度传感器、 温湿度传感器和雨量传感器。
第二综合传感器 404,布设于输电线路电缆接头处, 包括泄露电流传感器、 拉力传感器和风速风向传感器。
第二加速度传感器 406, 布设于输电线路电缆接头到第一综合传感器之间 输电线路的中间位置。
图 5为根据本发明另一实施例的电网输电线路的监测系统 500的结构示意 图。 电网输电线路的监测系统 500包括第一综合传感器 502、 第二综合传感器 504、 第二加速度传感器 506、 视频监控装置 508、 骨干节点 510。
第一综合传感器 502, 布设于两个杆塔之间输电线路的中间位置, 包括高 度计、 第一加速度传感器、 温湿度传感器和雨量传感器。 在一个实施例中, 高 度计可以为激光测距高度计。 第一综合传感器 502还可以包括能量供应模块、 信号调整模块、 A/D转换模块、 数据处理装置、 数据传输模块, 如图 6所示。
第二综合传感器 504,布设于输电线路电缆接头处, 包括泄露电流传感器、 拉力传感器和风速风向传感器。在一个实施例中,风速风向传感器为全固态小 型超声波共振型风速风向传感器。第二综合传感器 504还可以包括能量供应模 块、 信号调整模块、 A/D转换模块、 数据处理装置、 数据传输模块, 如图 7所 示。
如图 6和图 7所示的第一综合传感器 502和第二综合传感器 504中的数据 处理装置可以如图 8所示,包括:弧垂状况获取模块 802、风偏角获取模块 804、 运动轨迹获取模块 806、 振动水平及疲劳寿命获取模块 808、 舞动状态获取模 块 810和 /或覆冰情况获取模块 812。 其中, 弧垂状况获取模块 802, 用于根据 高度计的测量结果、 输电线路的静态信息、 传输容量, 以及温湿度传感器和雨 量传感器测得的微气象条件获取输电线路的弧垂状况。 风偏角获取模块 804, 用于根据高度计和第一和第二加速度传感器的测量数据,以及温湿度传感器和 雨量传感器测得的微气象条件, 获取输电线路的风偏角。 运动轨迹获取模块 806, 用于根据第一和第二加速度传感器的测量数据获取输电线路的运动位置 轨迹。 振动水平及疲劳寿命获取模块 808, 用于根据第一和第二加速度传感器 的测量数据、风速风向传感器的测量数据和温湿度传感器的测量数据获取输电 线路的微风振动水平和疲劳寿命。 舞动状态获取模块 810, 用于根据加速度传 感器的测量数据获取输电线路的最大受力情况, 融合最大受力情况、 高度计的 测量数据和微气象条件获取输电线路的舞动状态监测结果。覆冰情况获取模块 812, 用于根据泄露电流传感器和拉力传感器的测量数据对输电线路的覆冰情 况进行监测。在一个实施例中,数据处理装置也可以包含于骨干节点 510或后 台监控中心。
第二加速度传感器 506, 布设于输电线路电缆接头到第一综合传感器之间 输电线路的中间位置。每条输电线路可以部署三个加速度传感器, 其中一个集 成到第一综合传感器 502中, 另外两个部署(如第二加速度传感器 506 )在第 一综合传感器 502的两侧,位置在输电线电缆接头到第一综合传感器 502的中 间位置。
视频监控装置 508, 布设于输电杆塔上, 将对输电线路进行监视的信息通 过无线通信网络传送给监控中心。
骨干节点 510, 接收第一综合传感器 502、 第二综合传感器 504、 第二加 速度传感器 506以及视频监控装置 508的数据,并通过通信网络传送第一综合 传感器 502、 第二综合传感器 504、 第二加速度传感器 506以及视频监控装置 508监测的数据。
在一个实施例中, 第一综合传感器 502、 第二综合传感器 504、 第二加速 度传感器 506或视频监控装置 508可以包括通信模块,用于将第一综合传感器
502、 第二综合传感器 504、 第二加速度传感器 506或视频监控装置 508的监 测数据通过通信网络直接传送给监控中心。
在一个实施例中, 第一综合传感器 502、 第二综合传感器 504、 第二加速 度传感器 506 以及视频监控装置 508的监测数据的传送可以符合多跳组网协 议。 通信网络可以为 TD-SCDMA网络。 在一个实施例中, 输电杆塔也可以接 入光纤复合架空地线 (OPGW )。
基于上述描述, 根据本发明的一方面, 通过结合无线传感器网络技术的优 势,提出基于传感器多维感知技术的输电线路在线监测方法和系统, 实现输电 线路弧垂、 覆冰、 风偏、 风摆、 舞动等的可靠在线监测。 通过在整条输电线路 上部署温度传感器、 加速度传感器、 温湿度传感器、 风速风向传感器等, 并通 过每个杆塔上的汇聚节点构成一个传感器簇,多个簇构成线状网络并通过电力 通信网构成整个智能电网输电线路在线监测系统,有效预防和减少电网输电线 路事故。
本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将 本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是 显然的。选择和描述实施例是为了更好说明本发明的原理和实际应用, 并且使 本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修 改的各种实施例。

Claims

权 利 要 求
1. 一种用于电网输电线路的监测系统, 其特征在于, 包括:
第一综合传感器,布设于两个杆塔之间输电线路的中间位置,包括高度计、 第一加速度传感器、 温湿度传感器和雨量传感器;
第二综合传感器, 布设于输电线路电缆接头处, 包括泄露电流传感器、 拉 力传感器和风速风向传感器;
第二加速度传感器,布设于输电线路电缆接头到所述第一综合传感器之间 输电线路的中间位置。
2. 根据权利要求 1所述的监测系统, 其特征在于, 还包括数据处理装置, 所述数据处理装置包括:
弧垂状况获取模块, 用于根据所述高度计的测量结果、输电线路的静态信 息、传输容量以及所述温湿度传感器和雨量传感器测得的微气象条件获取输电 线路的弧垂状况;
风偏角获取模块,用于根据所述高度计和所述第一和第二加速度传感器的 测量数据, 以及所述温湿度传感器和雨量传感器测得的微气象条件, 获取输电 线路的风偏角;
运动轨迹获取模块,用于根据所述第一和第二加速度传感器的测量数据获 取输电线路的运动位置轨迹;
振动水平及疲劳寿命获取模块,用于根据所述第一和第二加速度传感器的 测量数据、所述风速风向传感器的测量数据和温湿度传感器的测量数据获取输 电线路的微风振动水平和疲劳寿命;
舞动状态获取模块,用于根据所述加速度传感器的测量数据获取输电线路 的最大受力情况, 融合所述最大受力情况、所述高度计的测量数据和微气象条 件获取输电线路的舞动状态监测结果;
覆冰情况获取模块, 用于根据所述泄露电流传感器、拉力传感器的测量数 据对输电线路的覆冰情况进行监测。
3. 根据权利要求 1 所述的监测系统, 其特征在于, 所述风速风向传感器 为全固态小型超声波共振型风速风向传感器。
4. 根据权利要求 1所述的监测系统, 其特征在于, 还包括:
视频监控装置, 布设于输电杆塔上, 将对输电线路进行监视的信息通过无 线通信网络传送给监控中心。
5. 根据权利要求 1所述的监测系统, 其特征在于, 还包括:
骨干节点, 接收所述第一综合传感器、 第二综合传感器和第二加速度传感 器的数据, 并通过通信网络传送所述第一综合传感器、第二综合传感器和第二 加速度传感器监测的数据。
6. 根据权利要求 1所述的监测系统, 其特征在于, 还包括:
包含于所述第一综合传感器、第二综合传感器或第二加速度传感器的通信 模块, 用于将所述第一综合传感器、第二综合传感器或第二加速度传感器的监 测数据通过通信网络传送给监控中心。
7. 根据权利要求 5或 6所述的监测系统, 其特征在于, 所述第一综合传 感器、第二综合传感器和第二加速度传感器的监测数据的传送符合多跳组网协 议。
8. 根据权利要求 1所述的监测系统, 其特征在于, 还包括:
光纤复合架空地线(OPGW ), 布设于输电线路上。
9. 根据权利要求 1 所述的监测系统, 其特征在于, 所述高度计为激光测 距高度计。
10. 一种用于电网输电线路的监测方法, 其特征在于, 包括:
根据高度计的测量结果、 输电线路的静态信息、 传输容量, 以及温湿度传 感器和雨量传感器测得的微气象条件监测输电线路的弧垂状况;
根据所述高度计和加速度传感器的测量数据,以及所述温湿度传感器和雨 量传感器测得的微气象条件, 监测输电线路的风偏角;
根据所述加速度传感器的测量数据监测输电线路的运动位置轨迹; 根据所述加速度传感器的测量数据获取输电线路的最大受力情况,融合所 述最大受力情况、所述高度计的测量数据和微气象条件获取输电线路的舞动状 态监测结果;
根据所述加速度传感器的测量数据、风速风向传感器的测量数据和温湿度 传感器的测量数据监测输电线路的微风振动水平和疲劳寿命;
根据泄露电流传感器和拉力传感器的测量数据对输电线路的覆冰情况进 行监测。
11. 根据权利要求 10所述的监测方法, 其特征在于, 还包括:
对输电线路进行监视, 并将监视的信息通过通信网络传送给监控中心。
12. 根据权利要求 10所述的监测方法, 其特征在于, 还包括:
接收所述高度计、 加速度传感器、 风速风向传感器、 温湿度传感器、 泄露 电流传感器和拉力传感器监测的数据;
将所述高度计、 加速度传感器、 风速风向传感器、 温湿度传感器、 泄露电 流传感器和拉力传感器监测的数据通过通信网络传送给监控中心。
13. 根据权利要求 10所述的监测方法, 其特征在于, 所述监测输电线路 的风偏角, 包括:
根据所述高度计的测量数据、 所述加速度传感器的测量数据、位移模型获 取第一风偏角;
根据所述高度计测得的当前高度和历史高度获取第二风偏角;
根据视频或图像信息获取第三风偏角;
根据风速风向信息、 传输线路的静态信息获取第四风偏角;
融合所述第一、 第二、 第三和第四风偏角, 获取输电线路的所述风偏角。
PCT/CN2011/083170 2011-06-10 2011-11-29 电网输电线路监测方法和系统 WO2012167579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/124,598 US9158036B2 (en) 2011-06-10 2011-11-29 Method and system for monitoring power transmission line of power grid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110154537.X 2011-06-10
CN201110154537A CN102221381B (zh) 2011-06-10 2011-06-10 电网输电线路监测方法和系统

Publications (1)

Publication Number Publication Date
WO2012167579A1 true WO2012167579A1 (zh) 2012-12-13

Family

ID=44778001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083170 WO2012167579A1 (zh) 2011-06-10 2011-11-29 电网输电线路监测方法和系统

Country Status (3)

Country Link
US (1) US9158036B2 (zh)
CN (1) CN102221381B (zh)
WO (1) WO2012167579A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103310600A (zh) * 2013-05-31 2013-09-18 国家电网公司 电缆头连接点发热视频无线报警装置
CN104266678A (zh) * 2014-09-22 2015-01-07 国家电网公司 高压输电导线疲劳监测系统
CN106411411A (zh) * 2016-09-21 2017-02-15 广西大学 一种红外语音和数据传输通信系统
CN107462813A (zh) * 2017-09-05 2017-12-12 中铁第勘察设计院集团有限公司 接触网在线监测系统及其方法
CN108563870A (zh) * 2018-04-16 2018-09-21 中国电力工程顾问集团中南电力设计院有限公司 钢管塔杆件微风振动疲劳寿命的计算方法
CN113108915A (zh) * 2021-03-04 2021-07-13 国网浙江省电力有限公司嘉兴供电公司 一种适用混合电力线路的电缆温度智能监测系统
CN113340226A (zh) * 2021-06-24 2021-09-03 广东电网有限责任公司 输电线路杆塔的监测方法、装置、设备及介质
CN113588527A (zh) * 2021-06-21 2021-11-02 南方电网科学研究院有限责任公司 一种低风压导线老化试验系统及方法
CN113747387A (zh) * 2021-08-30 2021-12-03 国网山东省电力公司电力科学研究院 一种基于物联网控制的多方式输入终端及工作方法
CN114002569A (zh) * 2021-05-24 2022-02-01 沈阳达能电安全高新产业技术研究院有限公司 一种输电线路风速监测系统
CN114396859A (zh) * 2021-12-06 2022-04-26 清华大学 基于地线电磁信号的架空线路风偏监测方法及装置
CN115086904A (zh) * 2022-07-08 2022-09-20 东北农业大学 一种基于低功耗广域网的输电线路弧垂监测方法及系统
CN116153019A (zh) * 2023-02-13 2023-05-23 深圳崎点数据有限公司 一种基于云计算的电网灾害预警系统
CN116337154A (zh) * 2023-03-27 2023-06-27 成都铁路科创有限责任公司 一种接触网健康状态监测方法及系统

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221381B (zh) 2011-06-10 2012-10-03 国网信息通信有限公司 电网输电线路监测方法和系统
US20130054162A1 (en) 2011-08-31 2013-02-28 Tollgrade Communications, Inc. Methods and apparatus for determining conditions of power lines
CN102506788B (zh) * 2011-11-07 2013-12-25 四川省电力公司宜宾电业局 输电线路弧垂高度测量仪器
CN102447889A (zh) * 2011-11-09 2012-05-09 慈溪市供电局 一种点到多点指挥无线视频系统
CN103175571B (zh) * 2011-12-22 2016-06-01 中国科学院沈阳自动化研究所 基于物联网的输电线路智能监测系统
US9562925B2 (en) * 2012-02-14 2017-02-07 Tollgrade Communications, Inc. Power line management system
CN102818590A (zh) * 2012-07-29 2012-12-12 江苏大学 基于无线传感器网络的输电线路覆冰在线监测系统
CN102867399A (zh) * 2012-09-07 2013-01-09 浙江工业大学 基于无线传感器网络的高压电力线受力断裂监测系统
CN103017828A (zh) * 2012-12-12 2013-04-03 宝鸡供电局 微风振动对输电线路导线疲劳损伤的在线监测系统
US9198500B2 (en) 2012-12-21 2015-12-01 Murray W. Davis Portable self powered line mountable electric power line and environment parameter monitoring transmitting and receiving system
US9412254B1 (en) * 2013-03-15 2016-08-09 Jeffrey N. Weiss Downed item detector
CN103245379A (zh) * 2013-04-07 2013-08-14 上海申瑞继保电气有限公司 高压输电线实时状态监测方法
CN103268571B (zh) * 2013-04-28 2016-08-24 北京臻迪科技股份有限公司 电力设备状态显示方法和系统
CN103776492B (zh) * 2014-01-27 2016-09-07 国家电网公司 Opgw状态监测系统
CN103868580B (zh) * 2014-02-28 2016-05-25 西安工程大学 基于光纤的输电导线微风振动监测数字传感器及监测方法
US9972989B2 (en) 2014-03-31 2018-05-15 Aclara Technologies Llc Optical voltage sensing for underground medium voltage wires
CN103925947A (zh) * 2014-04-21 2014-07-16 浙江佳宝新纤维集团有限公司 一种快速测试纺丝风速和纺丝温度的高效装置
EP3186646B1 (en) 2014-08-29 2021-10-20 Aclara Technologies LLC Power extraction for a medium voltage sensor using a capacitive voltage divider
US9970759B2 (en) * 2014-09-02 2018-05-15 Electric Power Research Institute, Inc. Sensor and method for identifying downed power transmission conductors and structures
CN104281887A (zh) * 2014-09-16 2015-01-14 国家电网公司 一种配电网输电线疲劳指数预测方法
CN104375057A (zh) * 2014-11-07 2015-02-25 国网上海市电力公司 地下电力线路故障自动定位报警系统
US10197610B2 (en) * 2014-12-22 2019-02-05 Ampacimon S.A. Method and system for determining the thermal power line rating
CN104568108B (zh) * 2014-12-29 2017-10-27 北京国网富达科技发展有限责任公司 输电线路导地线舞动标准装置
CN104457590A (zh) * 2014-12-30 2015-03-25 上海电缆研究所 基于激光测距的导线弧垂监测装置及监测方法
CN104573980A (zh) * 2015-01-26 2015-04-29 国家电网公司 一种架空输电线路弧垂实时评估及预警方法
KR101552589B1 (ko) * 2015-06-12 2015-09-14 (주)선운 이앤지 지상라이다를 이용한 가공철탑전선의 이도, 실장 관측 및 산출방법
CN104991558A (zh) * 2015-07-03 2015-10-21 国家电网公司 一种电缆沟自动巡检装置
CN105553111A (zh) * 2015-12-17 2016-05-04 任荣源 输电线路实时风偏在线检测系统
CN105553101A (zh) * 2015-12-29 2016-05-04 安徽海兴泰瑞智能科技有限公司 一种电力输电线路智能检测方法
CN105571644B (zh) * 2016-01-19 2018-07-06 西安工程大学 一种绝缘子金属粉尘污秽在线监测装置及其监测方法
CA2956842A1 (en) * 2016-02-04 2017-08-04 Ampacimon S.A. Method and system for measuring/detecting ice or snow atmospheric accretion on overhead power lines
CN106093467A (zh) * 2016-02-23 2016-11-09 河南理工大学 输电网络运动在线监测系统及安全评估方法
CN105911406B (zh) * 2016-04-01 2018-07-13 河北工业大学 电网架空线路经树木接地故障预警系统及方法
US11176504B2 (en) 2016-04-22 2021-11-16 International Business Machines Corporation Identifying changes in health and status of assets from continuous image feeds in near real time
CN105974423A (zh) * 2016-04-27 2016-09-28 中国科学技术大学先进技术研究院 基于超声波测距的输电线弧垂测量方法及系统
CN106033499B (zh) * 2016-05-17 2019-04-12 西安交通大学 一种输电线路舞动监测装置监测结果的评估方法
CN106197536A (zh) * 2016-06-29 2016-12-07 安徽电信工程有限责任公司 一种通信铁塔的监测系统
CN105891537B (zh) * 2016-06-30 2019-06-28 广东电网有限责任公司电力科学研究院 一种输电线路杆塔的风速监测方法、装置及系统
CN106125082A (zh) * 2016-07-16 2016-11-16 国网山东省电力公司龙口市供电公司 一种架空线路接地测距装置
CN107643093A (zh) * 2016-07-21 2018-01-30 江苏大全封闭母线有限公司 管型母线湿度检测结构
CN106568482A (zh) * 2016-11-16 2017-04-19 合肥普望电子有限责任公司 一种配电网输电线路集中监控方法
CN106646115A (zh) * 2016-11-16 2017-05-10 合肥普望电子有限责任公司 一种输电线故障检测方法
JP2018084474A (ja) * 2016-11-24 2018-05-31 住友電気工業株式会社 電線監視システム
CN106790643A (zh) * 2017-01-12 2017-05-31 合肥工业大学 基于RFID和LoRa的输电线设备在线监测网络系统
CN106895877A (zh) * 2017-02-28 2017-06-27 国网河南省电力公司漯河供电公司 一种输电线路风摆预警系统
CN106937088A (zh) * 2017-03-13 2017-07-07 沈阳工程学院 800kV直流输电线路监测防护系统
SI25126A (sl) * 2017-04-26 2017-07-31 C & G D.O.O. Ljubljana Metoda za določitev dodatnih mehanskih obremenitev visokonapetostnega vodnika
US10049554B1 (en) * 2017-05-11 2018-08-14 International Business Machines Corporation Cable suspension detection
CN107843285B (zh) * 2017-10-20 2023-12-29 国网浙江省电力公司经济技术研究院 一种输电塔线的风致动力效应远程监测系统及应用
CN107894553B (zh) * 2017-11-07 2023-09-26 国网江苏省电力公司盐城供电公司 一种电力电缆监测分析装置
WO2019147965A1 (en) 2018-01-26 2019-08-01 LineVision, Inc. System and method for power transmission line monitoring
CN108416031B (zh) * 2018-03-12 2021-07-27 南京恩瑞特实业有限公司 气象多源探测资料融合分析系统
US11041771B2 (en) 2018-03-28 2021-06-22 Quanta Associates, L.P. Method and apparatus for determining line sag in a conductor span
CN108629118B (zh) * 2018-05-08 2021-05-28 广东电网有限责任公司电力科学研究院 一种输电杆塔结构防风监测方法、装置及系统
CN109253852B (zh) * 2018-09-25 2022-08-19 中国电力科学研究院有限公司 一种架空输电线路低温振动疲劳测试装置
CN109269744B (zh) * 2018-09-25 2022-08-19 中国电力科学研究院有限公司 一种架空输电线路低温振动疲劳测试装置和方法
CN109541602B (zh) * 2018-10-18 2020-03-13 国网山东省电力公司应急管理中心 一种多普勒雷达气象矢量化电网精细预警及调控系统
CN109507682A (zh) * 2018-11-02 2019-03-22 国网浙江省电力有限公司信息通信分公司 一种输电线路弧垂在线监测装置
CN109492756B (zh) * 2018-11-19 2022-06-10 中国气象局公共气象服务中心 基于深度学习的多要素导线舞动预警方法及相关装置
CN109738053B (zh) * 2018-11-28 2022-11-01 中国电力科学研究院有限公司 一种钢管混凝土输电杆塔自振周期确定方法及装置
IT201800011059A1 (it) * 2018-12-13 2020-06-13 C R M Consulenze Ricerche Mecc S R L Sistema di monitoraggio di movimento o vibrazione indotto da vento in almeno un cavo sospeso, in particolare un cavo aereo conduttore di una linea elettrica di trasmissione o distribuzione; relativo metodo e relativo sensore
CN110006525A (zh) * 2019-01-24 2019-07-12 广东省特种设备检测研究院珠海检测院 一种长输架空管道分布式应力振动在线监测系统及方法
CN109902948A (zh) * 2019-02-21 2019-06-18 国网山东省电力公司临沂供电公司 一种基于大数据的输电线路监测系统及方法
AU2020340970A1 (en) * 2019-09-05 2022-03-31 Aclara Technologies Llc System and method for sensing one or more power lines
CN111006657A (zh) * 2019-12-06 2020-04-14 国家电网公司 一种adss光缆弧垂动态监测系统
CN111189533B (zh) * 2019-12-26 2021-11-16 深圳供电局有限公司 外力入侵监测方法、装置、计算机设备和存储介质
CN111123410A (zh) * 2019-12-26 2020-05-08 国网北京市电力公司 降水量监测系统及方法、存储介质、处理器
CN113124759B (zh) * 2019-12-31 2023-10-27 国网北京市电力公司 弧垂的确定方法、装置、存储介质及电子装置
US20210219383A1 (en) * 2020-01-13 2021-07-15 Tricon Sales LLC System and method for powerline monitoring
US11211788B2 (en) * 2020-02-25 2021-12-28 Schweitzer Engineering Laboratories, Inc. Fire risk mitigation in electric power systems
CN113320445B (zh) * 2020-02-28 2022-12-30 中铁二院工程集团有限责任公司 一种接触网在线监测及隐患、故障智能判别预警系统
CN111159633A (zh) * 2020-03-03 2020-05-15 云南电网有限责任公司昆明供电局 一种输电线路通道风偏计算装置
US11422146B2 (en) * 2020-04-06 2022-08-23 Nec Corporation Wind speed measurement using distributed fiber optic sensing
CN111486896A (zh) * 2020-04-20 2020-08-04 南京环电科技有限公司 一种高压输电线路覆冰状态监测装置
CN111711958B (zh) * 2020-06-02 2022-08-09 福建永福电力设计股份有限公司 基于智慧输电线路多业务共用大芯数opgw接续点分布选择方法
CN111879689B (zh) * 2020-07-16 2023-04-07 武汉露能科技有限公司 一种多场景环境模拟实验系统
CN112161653B (zh) * 2020-09-07 2022-05-03 南方电网科学研究院有限责任公司 一种架空输电导线的风阻系数测量装置及方法
CN112165163A (zh) * 2020-09-21 2021-01-01 海南电网有限责任公司文昌供电局 一种架空输电线路在线监测装置
CN112188398B (zh) * 2020-09-25 2022-05-24 谢波林 输电线路防外力破坏方法及装置
CN112461295A (zh) * 2020-11-23 2021-03-09 国网安徽省电力有限公司电力科学研究院 一种10kV配电线路覆冰舞动状态监测系统
CN112363444A (zh) * 2020-11-24 2021-02-12 广东电网有限责任公司湛江供电局 一种配电网智能安全警示装置
CN112787403A (zh) * 2021-01-28 2021-05-11 图为信息科技(深圳)有限公司 配电网安全无人值守的监控方法及装置
CN112802004B (zh) * 2021-02-08 2023-07-11 国网黑龙江省电力有限公司电力科学研究院 便携式输电线路和杆塔健康智能视频检测装置
CN112964300B (zh) * 2021-02-09 2022-07-12 国网河北省电力有限公司衡水供电分公司 输电线路分布式光传感监测处置系统及方法
CN113109156B (zh) * 2021-03-15 2023-02-28 南方电网科学研究院有限责任公司 一种导地线风荷载测量方法、系统、装置和存储介质
EP4075109B1 (en) * 2021-04-12 2023-10-25 Ampacimon Sa Method and device for monitoring severity of vibration in overhead power lines
CN113483927B (zh) * 2021-06-18 2023-04-25 安徽龙联智能光电有限公司 一种架空电缆风摆监测方法、装置、系统及存储介质
US20230029221A1 (en) * 2021-07-22 2023-01-26 Nec Laboratories America, Inc Galloping monitoring of overhead transmission lines using distributed fiber optic sensing
CN113702764B (zh) * 2021-08-27 2023-05-26 中铁建电气化局集团第三工程有限公司 一种架空线缆断线监测与判别方法
CN113959558B (zh) * 2021-09-24 2024-01-16 深圳飞赛精密钣金技术有限公司 一种风偏、导地线振动监测方法、系统、装置及存储介质
CN113990034A (zh) * 2021-10-25 2022-01-28 国网四川省电力公司检修公司 基于rtk定位的输电检修安全预警方法、系统及终端
CN113949164B (zh) * 2021-10-27 2024-05-17 国网山东省电力公司日照供电公司 一种电网停电风险预警系统及方法
CN114111552A (zh) * 2021-11-29 2022-03-01 广州吉欧电子科技有限公司 一种基于gnss天线和mems的滑坡位移监测方法及设备
CN114279495A (zh) * 2021-12-16 2022-04-05 国网江苏省电力有限公司盐城供电分公司 一种用于架空线路舞动的监测系统
CN114719909B (zh) * 2022-04-19 2024-03-15 国网吉林省电力有限公司长春供电公司 一种基于大数据的输电线路铁塔姿态在线监测系统及方法
CN114894248A (zh) * 2022-04-21 2022-08-12 国网河北省电力有限公司邯郸供电分公司 一种线路监测方法、装置及系统
CN114777711B (zh) * 2022-06-22 2022-11-11 南方电网数字电网研究院有限公司 多参数融合的架空线路风偏距离测量与安全预警方法
CN115060326A (zh) * 2022-07-12 2022-09-16 四川鑫电电缆有限公司 一种电缆监控方法及系统
CN115497269A (zh) * 2022-09-21 2022-12-20 国网山东省电力公司日照供电公司 一种电网设施的预警方法及系统技术领域
CN115471970A (zh) * 2022-10-11 2022-12-13 杭州巨骐信息科技股份有限公司 一种电缆防外破监测设备
CN115388957B (zh) * 2022-10-26 2023-01-31 高勘(广州)技术有限公司 Opgw光缆覆冰的检测方法、装置、系统及存储介质
CN115659652B (zh) * 2022-10-28 2023-05-12 上海电力大学 一种台风作用下输电杆塔的生存率分析方法与系统
CN117097030B (zh) * 2023-10-19 2024-03-08 北京爱朗格瑞科技有限公司 一种用于电网配电终端的智能化运行监控系统
CN117273472B (zh) * 2023-11-23 2024-02-09 合肥优尔电子科技有限公司 一种电网运行风险监控管理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3386966B2 (ja) * 1996-12-17 2003-03-17 中部電力株式会社 架空送電線の事故検出位置標定システム
CN101915596A (zh) * 2010-07-26 2010-12-15 吕强 监测架空线缆的覆冰状态的方法和系统
CN201680859U (zh) * 2010-05-26 2010-12-22 西安工程大学 智能输电线路综合在线监测装置
CN201811758U (zh) * 2010-11-10 2011-04-27 武汉智慧城软件技术有限公司 风灾杆塔状况实时监测系统
CN102042885A (zh) * 2010-10-08 2011-05-04 电子科技大学 一种输电线路塔线体系状态监测装置
CN201852598U (zh) * 2010-09-28 2011-06-01 安徽鸿宇电气技术有限公司 输电线路覆冰监测系统
CN102221381A (zh) * 2011-06-10 2011-10-19 国网信息通信有限公司 电网输电线路监测方法和系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093342A (ja) * 2005-09-28 2007-04-12 Yokogawa Electric Corp 送電線の振動検出装置
CN101038186A (zh) * 2006-06-10 2007-09-19 伊仁图太 一种对输电线路覆冰及舞动的在线预警装置
US20090250449A1 (en) * 2008-04-02 2009-10-08 The Trustees Of Dartmouth College System And Method For Deicing Of Power Line Cables
CN101672666B (zh) * 2008-09-10 2013-03-20 华东电力试验研究院有限公司 输电线路覆冰融冰试验方法及其试验系统
CN101571413B (zh) * 2009-06-17 2011-02-09 西安工程大学 基于加速度传感器的输电线路舞动在线监测系统
WO2011153497A2 (en) * 2010-06-03 2011-12-08 The Trustees Of Dartmouth College System and method for de-icing conductive objects utilizing at least one variable resistance conductor with high frequency excitation
US20130066600A1 (en) * 2011-09-01 2013-03-14 Utility Risk Management Corporation, Llc Method and apparatus for real-time line rating of a transmission line
CN202630939U (zh) * 2012-04-28 2012-12-26 贵州电力试验研究院 一种输电线路覆冰实时监测装置
CN204043713U (zh) * 2014-08-28 2014-12-24 上海电力学院 一种输电线路覆冰在线监测装置
CN104180852A (zh) * 2014-08-28 2014-12-03 上海电力学院 一种输电线路覆冰在线监测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3386966B2 (ja) * 1996-12-17 2003-03-17 中部電力株式会社 架空送電線の事故検出位置標定システム
CN201680859U (zh) * 2010-05-26 2010-12-22 西安工程大学 智能输电线路综合在线监测装置
CN101915596A (zh) * 2010-07-26 2010-12-15 吕强 监测架空线缆的覆冰状态的方法和系统
CN201852598U (zh) * 2010-09-28 2011-06-01 安徽鸿宇电气技术有限公司 输电线路覆冰监测系统
CN102042885A (zh) * 2010-10-08 2011-05-04 电子科技大学 一种输电线路塔线体系状态监测装置
CN201811758U (zh) * 2010-11-10 2011-04-27 武汉智慧城软件技术有限公司 风灾杆塔状况实时监测系统
CN102221381A (zh) * 2011-06-10 2011-10-19 国网信息通信有限公司 电网输电线路监测方法和系统

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103310600A (zh) * 2013-05-31 2013-09-18 国家电网公司 电缆头连接点发热视频无线报警装置
CN104266678A (zh) * 2014-09-22 2015-01-07 国家电网公司 高压输电导线疲劳监测系统
CN106411411A (zh) * 2016-09-21 2017-02-15 广西大学 一种红外语音和数据传输通信系统
CN107462813A (zh) * 2017-09-05 2017-12-12 中铁第勘察设计院集团有限公司 接触网在线监测系统及其方法
CN108563870A (zh) * 2018-04-16 2018-09-21 中国电力工程顾问集团中南电力设计院有限公司 钢管塔杆件微风振动疲劳寿命的计算方法
CN108563870B (zh) * 2018-04-16 2022-08-19 中国电力工程顾问集团中南电力设计院有限公司 钢管塔杆件微风振动疲劳寿命的计算方法
CN113108915A (zh) * 2021-03-04 2021-07-13 国网浙江省电力有限公司嘉兴供电公司 一种适用混合电力线路的电缆温度智能监测系统
CN114002569A (zh) * 2021-05-24 2022-02-01 沈阳达能电安全高新产业技术研究院有限公司 一种输电线路风速监测系统
CN114002569B (zh) * 2021-05-24 2024-04-02 沈阳达能电安全高新产业技术研究院有限公司 一种输电线路风速监测系统
CN113588527A (zh) * 2021-06-21 2021-11-02 南方电网科学研究院有限责任公司 一种低风压导线老化试验系统及方法
CN113340226A (zh) * 2021-06-24 2021-09-03 广东电网有限责任公司 输电线路杆塔的监测方法、装置、设备及介质
CN113747387A (zh) * 2021-08-30 2021-12-03 国网山东省电力公司电力科学研究院 一种基于物联网控制的多方式输入终端及工作方法
CN113747387B (zh) * 2021-08-30 2023-07-14 国网山东省电力公司电力科学研究院 一种基于物联网控制的多方式输入终端及工作方法
CN114396859A (zh) * 2021-12-06 2022-04-26 清华大学 基于地线电磁信号的架空线路风偏监测方法及装置
CN114396859B (zh) * 2021-12-06 2023-04-25 清华大学 基于地线电磁信号的架空线路风偏监测方法及装置
CN115086904A (zh) * 2022-07-08 2022-09-20 东北农业大学 一种基于低功耗广域网的输电线路弧垂监测方法及系统
CN116153019A (zh) * 2023-02-13 2023-05-23 深圳崎点数据有限公司 一种基于云计算的电网灾害预警系统
CN116153019B (zh) * 2023-02-13 2023-08-22 深圳崎点数据有限公司 一种基于云计算的电网灾害预警系统
CN116337154A (zh) * 2023-03-27 2023-06-27 成都铁路科创有限责任公司 一种接触网健康状态监测方法及系统
CN116337154B (zh) * 2023-03-27 2024-04-19 成都铁路科创有限责任公司 一种接触网健康状态监测方法及系统

Also Published As

Publication number Publication date
CN102221381A (zh) 2011-10-19
US9158036B2 (en) 2015-10-13
CN102221381B (zh) 2012-10-03
US20140123750A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
WO2012167579A1 (zh) 电网输电线路监测方法和系统
Ou et al. Application of internet of things in smart grid power transmission
CN102042885B (zh) 一种输电线路塔线体系状态监测装置
Chen et al. Application of internet of things in power-line monitoring
CN201628558U (zh) 一种输电线路的数字化在线监测系统和监测装置
CN204012935U (zh) 一种基于层次化无线通信的架空输电线路在线巡监装置
CN109407128A (zh) 一种输电线路杆塔位移监测系统及方法
WO2019047653A1 (zh) 接触网在线监测系统及其方法
CN202928616U (zh) 输电线路导线覆冰及舞动在线监测系统
CN103292659B (zh) 基于角度传感器的输电线路导线弧垂测量方法
CN107036654B (zh) 架空输电导线风偏特性监测系统、测试方法和装置
CN109902948A (zh) 一种基于大数据的输电线路监测系统及方法
CN102353400A (zh) 架空输电线路覆冰状态监测方法及系统
CN104655182A (zh) 利用卫星精确定位系统监控架空输电线路状态的监测方法
CN115542074A (zh) 一种高压输电线路故障预警方法
CN106355322A (zh) 一种电网环境灾害在线监测平台
CN110082632A (zh) 一种输电线路故障监测装置及方法
CN104036627A (zh) 一种电力塔杆倾斜监测系统
CN107014435A (zh) 一种输电线路台风灾害观测塔
CN114636439A (zh) 一种基于云计算平台的物联网电力检测系统
CN103926484B (zh) 基于线路弧垂实时测量的输电线路动态增容方法
CN112165163A (zh) 一种架空输电线路在线监测装置
CN108548568A (zh) 一种具有受力监测的输电杆塔在线监测系统
CN105553101A (zh) 一种电力输电线路智能检测方法
CN103940397A (zh) 一种架空线路等值覆冰厚度的在线监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14124598

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867218

Country of ref document: EP

Kind code of ref document: A1