WO2012164921A1 - 放射線断層画像生成方法および放射線断層画像生成プログラム - Google Patents
放射線断層画像生成方法および放射線断層画像生成プログラム Download PDFInfo
- Publication number
- WO2012164921A1 WO2012164921A1 PCT/JP2012/003525 JP2012003525W WO2012164921A1 WO 2012164921 A1 WO2012164921 A1 WO 2012164921A1 JP 2012003525 W JP2012003525 W JP 2012003525W WO 2012164921 A1 WO2012164921 A1 WO 2012164921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tomographic image
- generated
- radiation
- image
- image generation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 109
- 230000005855 radiation Effects 0.000 title claims description 73
- 238000000605 extraction Methods 0.000 claims abstract description 29
- 238000000926 separation method Methods 0.000 claims abstract description 29
- 239000000126 substance Substances 0.000 claims abstract description 26
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 230000002093 peripheral effect Effects 0.000 claims description 16
- 238000003786 synthesis reaction Methods 0.000 claims description 16
- 230000002194 synthesizing effect Effects 0.000 claims description 4
- 239000002184 metal Substances 0.000 abstract description 55
- 238000012545 processing Methods 0.000 description 21
- 238000003325 tomography Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000002372 labelling Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910017435 S2 In Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/008—Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5252—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data removing objects from field of view, e.g. removing patient table from a CT image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5258—Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/025—Tomosynthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5205—Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5229—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
- A61B6/5235—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
Definitions
- the present invention relates to a radiation tomographic image generation method and a radiation tomographic image generation program for generating a tomographic image based on a plurality of radiation images acquired by radiation beams respectively irradiated from different directions on a subject.
- the present invention relates to a technique for generating a tomographic image of a subject including a portion that is different from a substance constituting a region of interest in the subject (for example, a substance having a higher density or a lower density than a substance constituting a living body).
- an X-ray tomography apparatus as a conventional radiation tomographic image generation apparatus.
- this X-ray tomography apparatus as shown in FIG. 7, an X-ray tube 101 and an X-ray detector 102 are disposed facing each other with a subject M interposed therebetween, and the X-ray tube 101 is placed in the longitudinal direction of the subject M.
- the X-ray detector 102 is interlocked so as to translate in a direction opposite to the translation of the X-ray tube 101.
- the X-ray irradiation angle to the subject M of the X-ray tube 101 is set so that arbitrary points on a specific tomographic plane (reference plane) of the subject M are always at the same position on the X-ray detector 102. Shooting continuously while changing.
- rotation body axis of a C arm (not shown) that holds the X-ray tube 101 and the X-ray detector 102 as shown in FIG.
- Various scanning trajectories such as circular arc movement (circular scanning) associated with z and a short axis perpendicular to the horizontal plane are realized.
- the X-ray tomography apparatus is also called “tomosynthesis”.
- an appropriate amount of each of a plurality of projection data (radiation images) acquired by X-ray beams irradiated from different directions (projection angles) to the subject is generated to generate a tomographic image.
- a reconstruction method called “shift addition method” that performs addition arithmetic processing while shifting, or an X-ray CT (X-ray CT) that generates a tomographic image by rotating an X-ray tube or an X-ray detector around the body axis of the subject.
- FBP Filtered Back Projection method
- filtered back projection method also called “filtered back projection method”
- the human body is taken as an example of the subject, there is a substance constituting a living body as a substance constituting a region of interest in the subject.
- a dense material absorbs radiation.
- the substance having a lower density than the substance constituting the living body transmits radiation.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a radiation tomographic image generation method and a radiation tomographic image generation program capable of reducing artifacts while maintaining high spatial resolution.
- the radiation tomographic image generation method is a radiation tomographic image generation method for generating a tomographic image based on a plurality of radiation images acquired by radiation beams irradiated from different directions to a subject.
- An extraction / separation process for extracting and separating an image different from a substance constituting a region of interest in a subject from the acquired radiation image, and the extraneous image extracted and separated in the extraction / separation process.
- a tomographic image generation step is a radiation tomographic image generation method for generating a tomographic image based on a plurality of radiation images acquired by radiation beams irradiated from different directions to a subject.
- the radiation tomographic image generation method in the extraction / separation step, an image different from the substance constituting the region of interest in the subject is extracted and separated from the acquired radiation image,
- the region interpolation step the heterogeneous image extracted and separated in the extraction and separation step is interpolated from the peripheral region to generate an interpolated image.
- a tomographic image is generated from the interpolation image generated by interpolating the heterogeneous region in the region interpolation step.
- a tomographic image is generated in the first tomographic image generation step from the interpolated image generated by the interpolation.
- artifacts due to the foreign matter for example, metal
- the region of interest can be observed near the foreign region.
- artifacts can be reduced while maintaining high spatial resolution.
- the heterogeneous projection data generation step of generating heterogeneous projection data which is heterogeneous projection data, from the difference between the acquired radiographic image and the interpolated image
- the heterogeneous projection data generation step A second tomographic image generation step that generates a tomographic image from heterogeneous projection data, and a tomographic image that combines the tomographic image generated in the first tomographic image generation step and the tomographic image generated in the second tomographic image generation step.
- a synthesis step is
- the radiographic image is data that includes a heterogeneous part and the interpolated image is data obtained by interpolating a heterogeneous area
- the projection data generated from the difference between the radiographic image and the interpolated image is a projection of only the heterogeneous area.
- Data ie, heterogeneous projection data. Therefore, when a tomographic image is generated from heterogeneous projection data in the second tomographic image generating step, the generated tomographic image becomes a tomographic image of only a heterogeneous region.
- the pixel value of the tomographic image may become a negative value. Therefore, in the second tomographic image generation step, the pixel value of the region in which the pixel value of the tomographic image generated by the FBP method is lower than a set reference value (for example, the pixel value is “0” or a positive value). Is replaced with a reference value to generate a tomographic image.
- the tomographic image synthesis step the tomographic image generated in the first tomographic image generation step and the tomographic image replaced with the reference value in the second tomographic image generation step are synthesized.
- the pixel value of the tomographic image does not become a negative value, and the foreign region and the other regions in the region of interest A natural tomographic image can be generated while the boundary with the region becomes clear.
- a tomographic image may be generated by a successive approximation method.
- the first tomographic image generation step may be combined with the FBP method. That is, in the first tomographic image generation step, a tomographic image is generated by the FBP method, and in the tomographic image synthesis step, the tomographic image generated by the FBP method in the first tomographic image generation step and the second tomographic image generation step are successively approximated.
- the tomographic image generated by the method is synthesized.
- a tomographic image may be generated by the FBP method, or a tomographic image may be generated by a successive approximation method.
- the projection data of the heterogeneous image may be extracted and separated from the acquired projection data of the radiographic image, or a tomographic image is generated from the acquired projection data of the radiographic image, and from the tomographic image. Extracting and separating the tomographic image of the heterogeneous image, and forward-projecting the tomographic image of the extracted heterogeneous image to generate projection data, thereby generating the projection data generated by the forward projection of the foreign image. Extraction and separation may be performed as projection data.
- the radiation tomographic image generation program is a computer for generating a radiation tomographic image for generating a tomographic image based on a plurality of radiation images acquired by radiation beams irradiated from different directions to a subject.
- An extraction / separation process for extracting and separating an image different from a substance constituting a region of interest in a subject from the acquired radiation image, and an extraction / separation process thereof Interpolating the extraneous area from the surrounding area with respect to the extraneous image extracted and separated in step (b) to generate an interpolated image, and the extraneous area is generated by interpolating in the interpolating step.
- a first tomographic image generation step for generating a tomographic image from the interpolation image, and causing a computer to execute the processing in these steps. It is characterized in.
- the extraneous region is interpolated in the region interpolation step with respect to the extraneous image extracted and separated in the extraction / separation step. If a tomographic image is generated from the generated interpolation image in the first tomographic image generation step, artifacts can be reduced while maintaining a high spatial resolution.
- the extraneous region is interpolated in the region interpolation step with respect to the extraneous image extracted and separated in the extraction / separation step. If a tomographic image is generated from the interpolation image generated in the first tomographic image generation step, artifacts can be reduced while maintaining a high spatial resolution.
- FIG. 1 It is a block diagram of the tomography apparatus which concerns on an Example. It is the flowchart which showed the flow of a series of radiation tomographic image generation by an image process part. It is the schematic which showed the flow of each image and each data. (A) to (d) are schematic diagrams for explaining the labeling of binarized data. It is the flowchart which showed the flow of a series of radiation tomographic image generation by the image process part which concerns on a modification. It is the schematic which showed the flow of each image and each data which concern on a modification. It is the side view which showed schematic structure of the conventional tomographic apparatus of linear scanning. It is the side view which showed schematic structure of the conventional tomographic apparatus of circular scanning.
- FIG. 1 is a block diagram of a tomography apparatus according to an embodiment.
- X-rays will be described as an example of radiation
- a human body will be described as an example of a subject.
- a substance constituting a living body will be taken as an example of a substance constituting a region of interest in a subject.
- the explanation will be made by taking, as an example, a high-density material such as a metal artificial joint, an external fixator, or a tooth filling as an extraneous portion.
- the tomography apparatus includes a top plate 1 on which a subject M is placed, an X-ray tube 2 that emits X-rays toward the subject M, and X-rays that have passed through the subject M.
- a flat panel X-ray detector hereinafter abbreviated as “FPD”) 3.
- the tomography apparatus generates a tube voltage and a tube current of the X-ray tube 2 as well as the top plate control unit 4 that controls the elevation and horizontal movement of the top plate 1, the FPD control unit 5 that controls the scanning of the FPD 3, and so on.
- An X-ray tube control unit 7 having a high voltage generation unit 6 to be generated, an A / D converter 8 that digitizes and extracts an X-ray detection signal that is a charge signal from the FPD 3, and an X output from the A / D converter 8
- An image processing unit 9 that performs various processes based on a line detection signal, a controller 10 that controls these components, a memory unit 11 that stores processed images, and an input unit that is used by an operator to perform input settings 12 and a monitor 13 for displaying processed images and the like.
- the top board control unit 4 horizontally moves the top board 1 to accommodate the subject M up to the imaging position, moves the top and bottom, rotates and horizontally moves the subject M to a desired position, or horizontally moves the subject M. Then, the image is picked up, or the image is moved horizontally after the image pickup is finished, and the control is performed to retract from the image pickup position.
- These controls are performed by controlling a top plate drive mechanism (not shown) including a motor and an encoder (not shown).
- the FPD control unit 5 performs control to translate the FPD 3 along the body axis z direction that is the longitudinal direction of the subject M. This control is performed by controlling an FPD drive mechanism (not shown) including a rack, pinion, motor, encoder (not shown), and the like.
- the high voltage generator 6 generates a tube voltage and a tube current for irradiating X-rays, and supplies them to the X-ray tube 2.
- the X-ray tube control unit 7 performs control to translate the X-ray tube 2 in the direction opposite to the translation of the FPD 3. This control is performed by controlling an X-ray tube driving unit (not shown) including a column, a screw rod, a motor, an encoder (not shown), and the like.
- the X-ray tube controller 7 controls the setting of the irradiation field of the collimator (not shown) on the X-ray tube 2 side.
- the irradiation field of view is set by controlling the collimator so as to irradiate fan beam-shaped X-rays extending in the body axis z direction.
- the image processing unit 9 and the controller 10 are configured by a central processing unit (CPU) and the like, and the memory unit 11 is a storage medium represented by ROM (Read-only Memory), RAM (Random-Access Memory), and the like. Etc.
- the input unit 12 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, a touch panel, and the like.
- a program or the like for performing various image processing is written and stored in a storage medium represented by a ROM or the like, and the program or the like is read from the storage medium and executed by the CPU of the image processing unit 9.
- Appropriate image processing is performed.
- by executing a program related to extraction / separation, region interpolation, first / second tomographic image generation, metal projection data generation, and tomographic image synthesis extraction / separation, region interpolation, or first / second Tomographic image generation, metal projection data generation, and tomographic image synthesis are performed.
- a program relating to extraction / separation, region interpolation, first / second tomographic image generation, metal projection data generation, and tomographic image synthesis corresponds to the radiation tomographic image generation program of the present invention.
- the memory unit 11 is configured to write and store each image processed by the image processing unit 9.
- the FPD control unit 5 and the X-ray tube control unit 7 are also composed of a CPU or the like, similar to the image processing unit 9 and the controller 10.
- FIG. 2 is a flowchart showing a flow of a series of radiation tomographic image generation by the image processing unit
- FIG. 3 is a schematic diagram showing a flow of each image and each data
- FIG. 4 is a binarized data. It is the schematic where it uses for description of labeling of.
- the radiation tomographic image generation in steps S1 to S6 shown in FIG. 2 is performed by the CPU of the image processing unit 9 executing a program.
- Step S1 Extraction and Separation
- the fan beam-shaped X-rays extending in the body axis z direction are irradiated from the X-ray tube 2.
- the FPD 3 detects X-ray beams respectively irradiated from different directions (projection angles) on the subject M.
- a plurality of X-ray images by X-ray beams irradiated on the subject M from different directions are acquired.
- the X-ray image is projection data projected on the detection surface of the FPD 3, and is assumed to be projection data P1 as shown in FIG.
- a method of extracting and separating an image of metal or the like for example, threshold processing is performed on the pixel value of the projection data P1, and “1” is added to a pixel value higher than the threshold, and the pixel value equal to or lower than the threshold
- a method of outputting binarized data with “0” added see binarized data D in FIG. 4A.
- the region of the image with “1” matches the region of the extracted metal or the like, and the region of the image with “0” matches the living tissue (FIG. 4 ( see b)).
- This binarized data is set as projection data P2 before interpolation as shown in FIG.
- the pre-interpolation projection data P2 corresponds to a foreign image in the present invention.
- Method A Thus, by performing threshold processing on the pixel value of the projection data P1 and outputting binarized data, the projection data P2 before interpolation is extracted and separated from the projection data P1. Note that the extraction and separation method is not limited to threshold processing.
- a graph cut method that extracts and separates based on the pixel value and the pixel value difference, and the spatial frequency is high at the boundary between the living tissue and the metal
- a substance constituting a region of interest in a subject a substance constituting a living body in this embodiment
- Is not particularly limited as long as it is a normal extraction / separation technique for extracting and separating a foreign image projection data P2 before interpolation in this embodiment.
- Method B In addition to directly extracting and separating the pre-interpolation projection data P2 from the projection data P1, a tomographic image is generated by reconstruction from the projection data P1, and the pre-interpolation tomographic image is extracted and separated from the tomographic image by, for example, threshold processing. Then, the projection data generated by forward projection may be extracted and separated as projection data P2 before interpolation by generating projection data by forward projecting the extracted tomographic image before interpolation.
- the reconstruction method as exemplified by the filtered back projection (FBP) method and the successive approximation method (for example, the above-mentioned LikelihoodliExpectation Maximization (ML-EM) method and the above-described shift addition method), etc.
- FBP filtered back projection
- ML-EM LikelihoodliExpectation Maximization
- shift addition method etc.
- This step S1 corresponds to the extraction / separation step in the present invention.
- Step S2 Region Interpolation A region such as metal is interpolated from the periphery of the pre-interpolation projection data P2 extracted and separated in step S1 to generate an interpolation image.
- This interpolation image is assumed as post-interpolation projection data P3 as shown in FIG.
- the post-interpolation projection data P3 corresponds to the interpolated image in the present invention.
- labeling is first performed on the pre-interpolation projection data P2, which is also binarized data.
- an image area namely, an area of metal or the like
- the image area is a square shape. It is not limited to this area.
- the area S of the image to which “1” is attached is a square area indicated by a thick frame.
- FIG. 4B “1” is attached within the region S (see FIG. 4A), and “0” is attached outside the region S.
- the pixel adjacent in the outer direction of the region S is “0”.
- the label is “2” (see FIG. 4C).
- FIG. 4C when the pixel adjacent to the outer side of the region S is “0” in the region S of the image to which “1” is attached, the label is set to “1” and the region S is outside.
- the label is “2”
- the label is “3” (FIG. 4 ( see d)).
- the labeling becomes higher toward the center side of the region S, and the label becomes lower toward the outside of the region S. Note that the labeling is not limited to the method shown in FIG.
- interpolation is performed from the peripheral area (peripheral pixels) in the projection data P1 using an interpolation formula such as the following formula (1).
- m-th label of the peripheral pixel is L m
- a label of the pixel of interest is taken as L n
- L m ⁇ m-th peripheral pixels than the label when (i.e. n-th pixel of L n the p m and p m 1 to the time towards the label is small)
- L m ⁇ L n that is, when it is larger or the same label m-th peripheral pixels than the label of the n-th pixel
- the number and range of peripheral pixels are arbitrarily determined.
- interpolation is performed using the pixel values of adjacent pixels as they are, or weighted addition is performed according to the distance between the pixel to be interpolated and the surrounding pixels.
- a normal region interpolation method such as interpolation by averaging.
- This step S2 corresponds to region interpolation in the present invention.
- Step S3 First Tomographic Image Generation
- a tomographic image is generated by reconstruction from the post-interpolation projection data P3 generated by interpolating a region such as metal in step S2.
- This tomographic image is defined as a first tomographic image P4 as shown in FIG.
- the reconstruction method is not particularly limited as long as it is a normal method for generating a tomographic image from projection data, as exemplified by the FBP method and the successive approximation method.
- the first tomographic image P4 corresponds to the tomographic image (generated in the first tomographic image generating step) in the present invention.
- This step S3 corresponds to the first tomographic image generation step in this invention.
- steps S4 and S5 are performed after step S3, but steps S4 and S5 can be performed even before step S3 is performed. Therefore, the present invention is not limited to the flowchart of FIG. 2, and step S3 may be performed after steps S4 and S5, or step S3 and steps S4 and S5 may be performed simultaneously in parallel.
- Step S4 Projection Data Generation for Metal etc.
- Metal projection data P5 which is projection data
- This metal projection data P5 corresponds to the heterogeneous projection data in this invention.
- This step S4 corresponds to the heterogeneous projection data generation step in this invention.
- Step S5 Second Tomographic Image Generation
- a tomographic image is generated by reconstruction from the metal projection data P5 generated in step S4.
- This tomographic image is a second tomographic image P6 as shown in FIG.
- the second tomographic image P6 corresponds to the tomographic image (generated in the second tomographic image generating step) in the present invention.
- the reconstruction method is not particularly limited as long as it is a normal method for generating a tomographic image from projection data as exemplified by the FBP method and the successive approximation method.
- the second tomographic image P6 is generated only by the FBP method in step S5, and the tomographic images P4 and P6 are simply added in step S6 described later. Since the metal projection data P5 that is the basis of the second tomographic image P6 is the difference between the projection data P1 and the post-interpolation projection data P3 that is the basis of the first tomographic image P4, This results in the original tomographic image from which artifacts are not removed. Therefore, when the first tomographic image P4 is generated by the FBP method in step S3, the second tomographic image P6 is generated by replacement with the FBP method and the reference value in step S5.
- the second tomographic image P6 is generated by replacement with the FBP method and the reference value.
- the pixel value of the tomographic image may become a negative value. Therefore, a tomographic image is generated by replacing the pixel value of the tomographic image generated by the FBP method with the reference value in the region where the pixel value of the tomographic image is lower than the set reference value, and the tomographic image replaced with the reference value.
- the image is a second tomographic image P6.
- the reference value pixel value may be normally set to “0”, but of course the reference value pixel value is a positive value. May be set.
- the first tomographic image P4 is generated by the FBP method in step S3
- the second tomographic image P6 is generated by the successive approximation method in step S5, and the tomographic images P4 and P6 are simply added to each other in step S6 described later. Even if they are combined, the tomographic image has reduced artifacts. Therefore, the first tomographic image P4 may be generated by the FBP method in step S3, and the second tomographic image P6 may be generated by the successive approximation method in step S5. Even when the successive approximation method is used in step S3, when the FBP method is used in step S5, the second tomographic image P6 is replaced with the above-described reference value.
- This step S5 corresponds to the second tomographic image generation step in this invention.
- Step S6 Tomographic image synthesis
- the first tomographic image P4 generated in step S3 and the second tomographic image P6 generated in step S5 are synthesized.
- the tomographic images P4 and P6 may be simply added and synthesized, or the second tomographic image P6.
- the threshold value processed may be added to the first tomographic image P4 and combined.
- the pixel values of the tomographic images P4 and P6 may be multiplied and multiplied to be combined.
- the synthesized tomographic image is defined as a synthesized tomographic image P7 as shown in FIG.
- the synthesized tomographic image P7 corresponds to the tomographic image (synthesized in the tomographic image synthesizing process) in the present invention.
- This step S6 corresponds to the tomographic image synthesis step in this invention.
- the substance constituting the region of interest in the subject is different (in this embodiment).
- An image of a high-density substance such as a metal is extracted and separated from the acquired radiation image (projection data P1 of an X-ray image in this embodiment), and the region in step S2
- the extraneous region is interpolated from the peripheral region with respect to the extraneous image (pre-interpolation projection data P2) extracted and separated in step S1.
- An interpolation image (in this embodiment, post-interpolation projection data P3) is generated. Then, in the first tomographic image generation in step S3, a tomographic image (main image) is generated from the interpolation image (post-interpolation projection data P3) generated by interpolating the extraneous region (region such as metal) by the region interpolation in step S2. In the embodiment, a first tomographic image P4) is generated. Since the extraneous region (region of metal, etc.) is interpolated by the region interpolation of step S2 with respect to the extraneous image extracted and separated by the extraction separation of step S1 (pre-interpolation projection data P2), it is generated by interpolation.
- first tomographic image P4 is generated in the first tomographic image generation in step S3 from the interpolated image (in this embodiment, post-interpolation projection data P3), artifacts due to the heterogeneity (metal in this embodiment) are generated.
- a region of interest a living tissue in this embodiment
- a foreign region near a region such as a metal.
- artifacts can be reduced while maintaining high spatial resolution.
- different projection data that is different projection data from the difference between the acquired radiation image (projection data P1 of the X-ray image) and the interpolation image (projection data P3 after interpolation).
- the tomographic image (this image is generated from the heterogeneous projection data (metal projection data P5) generated by the metal projection data generation in step S4 and the metal projection data generation in step S4 for generating the metal projection data P5).
- the radiographic image is data including a heterogeneous portion (metal or the like)
- the interpolation image is data obtained by interpolating a heterogeneous region (metal or the like). Therefore, the projection data generated from the difference between the radiation image (X-ray image projection data P1) and the interpolated image (post-interpolation projection data P3) is projection data of only a heterogeneous region (metal region).
- the tomographic image (second tomographic image P6) is generated from the heterogeneous projection data (metal projection data P5) in the second tomographic image generation in step S5, the generated tomographic image (second tomographic image P6) is heterogeneous.
- This is a tomographic image of only the region (region such as metal).
- both tomographic images (first / second tomographic images P4 and P6) generated in the first / second tomographic image generation in steps S3 and S5 are synthesized in the tomographic image synthesis in step S6, artifacts are reduced.
- the boundary between the heterogeneous region (metal region) and the other region (biological tissue in this embodiment) in the region of interest becomes clear.
- the pixel value of the tomographic image (second tomographic image P6) is generated. May be negative. Therefore, in the second tomographic image generation in step S5, the pixel value of the tomographic image generated by the FBP method is in the region where the pixel value is lower than the set reference value (for example, the pixel value is “0” or a positive value). A pixel value is replaced with a reference value, and a tomographic image is generated as a second tomographic image P6.
- the tomographic image (first tomographic image P4) generated in the first tomographic image generation in step S3 and the tomographic image replaced with the reference value in the second tomographic image generation in step S5 ( The second tomographic image P6) is synthesized.
- the tomographic image (second tomographic image P6) is generated from the heterogeneous projection data (metal projection data P5) by the FBP method in the second tomographic image generation in step S5, the tomographic image (second tomographic image P6).
- a natural tomographic image (in this embodiment) is obtained while the boundary between a foreign region (metal region) and another region (biological tissue) is clear in the region of interest without the pixel value of A composite tomographic image P7) can be generated.
- a tomographic image (second tomographic image P6) may be generated by a successive approximation method.
- the first tomographic image generation in step S3 may be combined with the FBP method. That is, in the first tomographic image generation in step S3, a tomographic image (first tomographic image P4) is generated by the FBP method, and in the tomographic image synthesis in step S6, the first tomographic image generation in step S3 is generated by the FBP method.
- the tomographic image (first tomographic image P4) and the tomographic image generated by the successive approximation method (second tomographic image P6) in the second tomographic image generation in step S5 are synthesized.
- a tomographic image (first tomographic image P4) may be generated by the FBP method, or a tomographic image (first tomographic image P4) is generated by the successive approximation method. Also good.
- projection data (projection data P2 before interpolation) of a foreign image may be extracted and separated from projection data (projection data P1) of the acquired radiation image (X-ray image), A tomographic image is generated from projection data (projection data P1) of the acquired radiation image (X-ray image), and a tomographic image (pre-interpolation tomographic image) of a heterogeneous image is extracted and separated from the tomographic image.
- the projection data generated by forward projecting the tomographic image of the different image (pre-interpolation tomographic image) to generate projection data is used as the projection data of the foreign image (projection data P2 before interpolation). And may be extracted and separated.
- the radiation tomographic image generation program according to the present embodiment is a plurality of radiation images (X-ray images) acquired by radiation beams (X-ray beams in the present embodiment) irradiated on the subject M from different directions.
- FIG. 2 is a radiation tomographic image generation program for causing a computer (a CPU of the image processing unit 9 in FIG. 1) to generate a radiation tomographic image based on the above, and the processing in steps S1 to S6 in FIG. Is executed by a computer (CPU of the image processing unit 9).
- the present invention is not limited to the above embodiment, and can be modified as follows.
- the X-ray is taken as an example of radiation, but it may be applied to radiation other than X-ray (for example, ⁇ -ray). Therefore, the present invention can also be applied to the case where transmission data is acquired by irradiating a subject with radiation of the same type as a radiopharmaceutical from an external radiation source in a nuclear medicine diagnostic apparatus.
- the present invention is used for a tomographic apparatus for linear scanning as shown in FIGS. 1 and 7, but may be applied to a tomographic apparatus for circular operation as shown in FIG.
- the human body is taken as an example of the subject
- the substance constituting the region of interest in the subject is taken as an example
- the substance constituting the living body is taken as an example.
- a high-density material such as a metal artificial joint, an external fixator, or a tooth filling has been described as an example.
- the present invention may be applied to a case of photographing a low-density material.
- the subject is other than a human body (for example, when the test target used in a nondestructive testing apparatus is a subject)
- an image that is different from the substance that forms the region of interest in the subject is extracted.
- it can be applied regardless of whether the density is high or low.
- step S4 metal projection data generation
- step S5 second tomographic image generation
- step S6 tomographic image synthesis
- steps S4 to S6 are performed.
- the metal projection data P5 and the second tomographic image P6 are generated, and the first / second tomographic images P4 and P6 are combined to generate the combined tomographic image P7.
- Steps S4 to S6 are not necessarily performed if it is not necessary to confirm the boundary between and other regions (in the embodiment, living tissue).
- step S1 extraction and separation
- step S2 region interpolation
- step S3 first tomographic image generation
- each step S1 to S3 in FIG. 5 and each image and each data in FIG. 6 are the same as each step S1 to S3 in FIG. 2 and each image and each data in FIG. Is omitted.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Pathology (AREA)
- High Energy & Nuclear Physics (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
すなわち、この発明に係る放射線断層画像生成方法は、被検体に対して互いに異なる方向からそれぞれ照射された放射線ビームによって取得された複数の放射線画像に基づいて断層画像を生成する放射線断層画像生成方法であって、被検体中の関心領域を構成する物質とは異質の画像を、取得された前記放射線画像から抽出分離する抽出分離工程と、その抽出分離工程で抽出分離された前記異質の画像に対して当該異質の領域をその周辺領域から補間して、補間画像を生成する領域補間工程と、その領域補間工程で当該異質の領域が補間されて生成された前記補間画像から断層画像を生成する第1断層画像生成工程とを備えることを特徴とするものである。
図1は、実施例に係る断層撮影装置のブロック図である。本実施例では放射線としてX線を例に採って説明するとともに、被検体として人体を例に採って説明し、被検体中の関心領域を構成する物質として生体を構成する物質を例に採って説明し、異質の部分として、金属製人工関節、創外固定器、歯の詰め物等の高密度な物質を例に採って説明する。
図1に示すように、X線管2およびFPD3を互いに逆方向に平行移動させつつ、X線管2から体軸z方向に広がりを有するファンビーム状のX線を照射することで、被検体Mに対して互いに異なる方向(投影角度)からそれぞれ照射されたX線ビームをFPD3が検出する。FPD3が検出することによって、被検体Mに対して互いに異なる方向からそれぞれ照射されたX線ビームによる複数のX線画像を取得する。X線画像は、FPD3の検出面に投影された投影データであり、図3に示すように投影データP1とする。
このように、投影データP1の画素値に対して閾値処理を行って2値化データを出力することで、投影データP1から補間前投影データP2を抽出分離する。なお、抽出分離の手法については、閾値処理に限定されない。生体組織と金属との境界では画素値差によるエッジがあるのを利用して、画素値および画素値差に基づいて抽出分離するグラフカット手法や、生体組織と金属との境界では空間周波数が高いのを利用して周波数帯域フィルタを用いて抽出分離する手法や、レベルセット法などに例示されるように、被検体中の関心領域を構成する物質(本実施例では生体を構成する物質)とは異質の画像(本実施例では補間前投影データP2)を抽出分離する通常の抽出分離の手法であれば、特に限定されない。
また、投影データP1から補間前投影データP2を直接的に抽出分離する以外にも、投影データP1から再構成により断層画像を生成し、その断層画像から補間前断層画像を例えば閾値処理により抽出分離して、その抽出された補間前断層画像を順投影して投影データを生成することによって、その順投影されて生成された投影データを補間前投影データP2として抽出分離してもよい。
ステップS1で抽出分離された補間前投影データP2に対して金属等の領域をその周辺から補間して、補間画像を生成する。この補間画像を、図3に示すように補間後投影データP3とする。補間後投影データP3は、この発明における補間画像に相当する。
ステップS2で金属等の領域が補間されて生成された補間後投影データP3から再構成により断層画像を生成する。この断層画像を、図3に示すように第1断層画像P4とする。再構成手法については、ステップS2でも述べたように、FBP法や逐次近似法などに例示されるように、投影データから断層画像を生成する通常の手法であれば、特に限定されない。第1断層画像P4は、この発明における(第1断層画像生成工程で生成された)断層画像に相当する。このステップS3は、この発明における第1断層画像生成工程に相当する。
一方、FPD3の検出により取得された投影データP1とステップS2で補間されて生成された補間後投影データP3との差分から、図3に示すように金属等の投影データである金属等投影データP5を生成する。この金属等投影データP5は、この発明における異質投影データに相当する。このステップS4は、この発明における異質投影データ生成工程に相当する。
ステップS4で生成された金属等投影データP5から再構成により断層画像を生成する。この断層画像を、図3に示すように第2断層画像P6とする。第2断層画像P6は、この発明における(第2断層画像生成工程で生成された)断層画像に相当する。再構成手法については、ステップS2、S3でも述べたように、FBP法や逐次近似法などに例示されるように、投影データから断層画像を生成する通常の手法であれば、特に限定されない。
ステップS3で生成された第1断層画像P4とステップS5で生成された第2断層画像P6とを合成する。第1/第2断層画像P4、P6において同じ画素における両方の画素値を単純に加算することで、断層画像P4、P6同士を単純に加算して合成してもよいし、第2断層画像P6に対して閾値処理を行ったものを第1断層画像P4と加算して合成してもよい。また、必要に応じて各断層画像P4、P6の各画素値に係数を乗じて加算して合成してもよい。合成された断層画像を、図3に示すように合成断層画像P7とする。合成断層画像P7は、この発明における(断層画像合成工程で合成された)断層画像に相当する。このステップS6は、この発明における断層画像合成工程に相当する。
P1 … 投影データ
P2 … 補間前投影データ
P3 … 補間後投影データ
P4 … 第1断層画像
P5 … 金属等投影データ
P6 … 第2断層画像
P7 … 合成断層画像
Claims (10)
- 被検体に対して互いに異なる方向からそれぞれ照射された放射線ビームによって取得された複数の放射線画像に基づいて断層画像を生成する放射線断層画像生成方法であって、
被検体中の関心領域を構成する物質とは異質の画像を、取得された前記放射線画像から抽出分離する抽出分離工程と、
その抽出分離工程で抽出分離された前記異質の画像に対して当該異質の領域をその周辺領域から補間して、補間画像を生成する領域補間工程と、
その領域補間工程で当該異質の領域が補間されて生成された前記補間画像から断層画像を生成する第1断層画像生成工程と
を備えることを特徴とする放射線断層画像生成方法。 - 請求項1に記載の放射線断層画像生成方法において、
取得された前記放射線画像と前記補間画像との差分から前記異質の投影データである異質投影データを生成する異質投影データ生成工程と、
その異質投影データ生成工程で生成された前記異質投影データから断層画像を生成する第2断層画像生成工程と、
前記第1断層画像生成工程で生成された前記断層画像と前記第2断層画像生成工程で生成された前記断層画像とを合成する断層画像合成工程と
を備えることを特徴とする放射線断層画像生成方法。 - 請求項2に記載の放射線断層画像生成方法において、
前記第2断層画像生成工程では、フィルタード・バックプロジェクション法により生成された断層画像の画素値が、設定された基準値よりも低くなる領域の当該画素値を前記基準値に置き換えて断層画像を生成し、
前記断層画像合成工程では、前記第1断層画像生成工程で生成された前記断層画像と前記第2断層画像生成工程で前記基準値に置き換えられた前記断層画像とを合成することを特徴とする放射線断層画像生成方法。 - 請求項2に記載の放射線断層画像生成方法において、
前記第2断層画像生成工程では、逐次近似法により前記断層画像を生成することを特徴とする放射線断層画像生成方法。 - 請求項4に記載の放射線断層画像生成方法において、
前記第1断層画像生成工程では、フィルタード・バックプロジェクション法により前記断層画像を生成し、
前記断層画像合成工程では、前記第1断層画像生成工程で前記フィルタード・バックプロジェクション法により生成された前記断層画像と前記第2断層画像生成工程で前記逐次近似法により生成された前記断層画像とを合成することを特徴とする放射線断層画像生成方法。 - 請求項1から請求項5のいずれかに記載の放射線断層画像生成方法において、
前記第1断層画像生成工程では、フィルタード・バックプロジェクション法により前記断層画像を生成することを特徴とする放射線断層画像生成方法。 - 請求項1から請求項5のいずれかに記載の放射線断層画像生成方法において、
前記第1断層画像生成工程では、逐次近似法により前記断層画像を生成することを特徴とする放射線断層画像生成方法。 - 請求項1から請求項7のいずれかに記載の放射線断層画像生成方法において、
前記抽出分離工程では、取得された前記放射線画像の投影データから前記異質の画像の投影データを抽出分離することを特徴とする放射線断層画像生成方法。 - 請求項1から請求項8のいずれかに記載の放射線断層画像生成方法において、
前記抽出分離工程では、取得された前記放射線画像の投影データから断層画像を生成し、その断層画像から前記異質の画像の断層画像を抽出分離して、その抽出された前記異質の画像の断層画像を順投影して投影データを生成することによって、その順投影されて生成された投影データを前記異質の画像の投影データとして抽出分離することを特徴とする放射線断層画像生成方法。 - 被検体に対して互いに異なる方向からそれぞれ照射された放射線ビームによって取得された複数の放射線画像に基づいて断層画像を生成する放射線断層画像生成をコンピュータに実行させるための放射線断層画像生成プログラムであって、
被検体中の関心領域を構成する物質とは異質の画像を、取得された前記放射線画像から抽出分離する抽出分離工程と、
その抽出分離工程で抽出分離された前記異質の画像に対して当該異質の領域をその周辺領域から補間して、補間画像を生成する領域補間工程と、
その領域補間工程で当該異質の領域が補間されて生成された前記補間画像から断層画像を生成する第1断層画像生成工程と
を備え、
これらの工程での処理をコンピュータに実行させることを特徴とする放射線断層画像生成プログラム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/116,272 US9147269B2 (en) | 2011-05-31 | 2012-05-30 | Radiation tomographic image generating method, and radiation tomographic image generating program |
JP2013517879A JP5725174B2 (ja) | 2011-05-31 | 2012-05-30 | 放射線断層画像生成方法および放射線断層画像生成プログラム |
EP12793501.3A EP2716226A4 (en) | 2011-05-31 | 2012-05-30 | METHOD FOR RADIATION TOMOGRAPHIC IMAGE GENERATION AND RADIATION TOMOGRAPHIC IMAGE GENERATION PROGRAM |
CN201280026498.8A CN103582456B (zh) | 2011-05-31 | 2012-05-30 | 放射线断层图像生成方法 |
KR1020137027512A KR101564155B1 (ko) | 2011-05-31 | 2012-05-30 | 방사선 단층 화상 생성 방법 및 방사선 단층 화상 생성 프로그램을 저장한 컴퓨터 판독가능 기록매체 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-122080 | 2011-05-31 | ||
JP2011122080 | 2011-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012164921A1 true WO2012164921A1 (ja) | 2012-12-06 |
Family
ID=47258794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/003525 WO2012164921A1 (ja) | 2011-05-31 | 2012-05-30 | 放射線断層画像生成方法および放射線断層画像生成プログラム |
Country Status (6)
Country | Link |
---|---|
US (1) | US9147269B2 (ja) |
EP (1) | EP2716226A4 (ja) |
JP (2) | JP5725174B2 (ja) |
KR (1) | KR101564155B1 (ja) |
CN (1) | CN103582456B (ja) |
WO (1) | WO2012164921A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014174553A1 (ja) * | 2013-04-25 | 2014-10-30 | 株式会社島津製作所 | 画像処理装置 |
CN104545962A (zh) * | 2013-10-16 | 2015-04-29 | 通用电气公司 | 可减少图像中的伪影的医学成像方法和系统 |
JP2016077813A (ja) * | 2014-10-22 | 2016-05-16 | 朝日レントゲン工業株式会社 | 画像処理装置、画像処理方法、及びx線撮影装置 |
JP2017202315A (ja) * | 2016-05-09 | 2017-11-16 | 東芝メディカルシステムズ株式会社 | 医用画像診断装置 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5657491B2 (ja) * | 2011-08-31 | 2015-01-21 | 富士フイルム株式会社 | 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影プログラム、及び放射線画像撮影方法 |
JP2013076679A (ja) * | 2011-09-30 | 2013-04-25 | Fujifilm Corp | 放射線画像検出装置、放射線画像検出方法およびプログラム |
JP6379785B2 (ja) * | 2014-07-18 | 2018-08-29 | コニカミノルタ株式会社 | 断層画像生成システム |
CN105326524B (zh) * | 2014-07-31 | 2018-10-26 | 通用电气公司 | 可减少图像中的伪影的医学成像方法和装置 |
WO2016044465A1 (en) | 2014-09-16 | 2016-03-24 | Sirona Dental, Inc. | Methods, systems, apparatuses, and computer programs for processing tomographic images |
WO2017102887A1 (en) | 2015-12-15 | 2017-06-22 | Koninklijke Philips N.V. | Streak artifact prediction |
CN105701847A (zh) * | 2016-01-14 | 2016-06-22 | 重庆大学 | 一种改进权系数矩阵的代数重建方法 |
WO2018128630A1 (en) * | 2017-01-09 | 2018-07-12 | Carestream Dental Technology Topco Limited | System for the detection and display of metal obscured regions in cone beam ct |
CN111339822B (zh) * | 2017-07-17 | 2023-06-30 | Oppo广东移动通信有限公司 | 活体检测方法及相关产品 |
WO2019118387A1 (en) * | 2017-12-11 | 2019-06-20 | Dentsply Sirona Inc. | Methods, systems, apparatuses, and computer program products for extending the field of view of a sensor and obtaining a synthetic radiagraph |
CN108577876B (zh) * | 2018-02-28 | 2020-10-27 | 西安交通大学 | 一种多边形静止ct及其工作方法 |
KR102080833B1 (ko) * | 2018-04-03 | 2020-02-24 | 경희대학교 산학협력단 | 메탈 아티팩트를 저감하는 엑스선 단층촬영 장치 및 그 동작 방법 |
US11222435B2 (en) * | 2019-11-11 | 2022-01-11 | James R. Glidewell Dental Ceramics, Inc. | Determining rotation axis from x-ray radiographs |
US11585766B2 (en) | 2020-05-29 | 2023-02-21 | James R. Glidewell Dental Ceramics, Inc. | CT scanner calibration |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0819533A (ja) * | 1994-07-05 | 1996-01-23 | Hitachi Medical Corp | X線ct装置 |
JPH10337287A (ja) * | 1997-06-09 | 1998-12-22 | Toshiba Corp | X線コンピュータ断層撮影装置 |
WO2010016425A1 (ja) * | 2008-08-07 | 2010-02-11 | 株式会社 日立メディコ | X線ct画像形成方法及びそれを用いたx線ct装置 |
JP2010099114A (ja) * | 2008-10-21 | 2010-05-06 | Yamatake Corp | Ct装置および金属形状抽出方法 |
JP2010529876A (ja) * | 2007-06-15 | 2010-09-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 画像内の高濃度領域を決定する装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1094539A (ja) * | 1996-09-24 | 1998-04-14 | Takashi Oe | ステレオ透視対応x線映像装置 |
FR2823345B1 (fr) * | 2001-04-09 | 2003-08-22 | Ge Med Sys Global Tech Co Llc | Procede d'amelioration de la qualite d'une image radiographique tridimensionnelle d'un objet et dispositif radiographique correspondant |
US6721387B1 (en) * | 2001-06-13 | 2004-04-13 | Analogic Corporation | Method of and system for reducing metal artifacts in images generated by x-ray scanning devices |
US7103135B2 (en) * | 2002-08-14 | 2006-09-05 | Koninklijke Philips Electronics, N.V. | Method and apparatus for generating an improved image of natural tissue in reconstructing body images from 3D-measurements |
JP4138558B2 (ja) * | 2003-04-03 | 2008-08-27 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 画像再構成装置、画像再構成方法および放射線断層像撮影装置 |
WO2005009206A2 (en) | 2003-06-25 | 2005-02-03 | Besson Guy M | Dynamic multi-spectral imaging system |
EP1714255B1 (en) * | 2004-02-05 | 2016-10-05 | Koninklijke Philips N.V. | Image-wide artifacts reduction caused by high attenuating objects in ct deploying voxel tissue class |
WO2006039809A1 (en) * | 2004-10-12 | 2006-04-20 | UNIVERSITé LAVAL | Method and apparatus for metal artifact reduction in computed tomography |
JP2006167161A (ja) * | 2004-12-16 | 2006-06-29 | Tokyo Institute Of Technology | X線ct画像再構成方法、装置及びx線ct画像再構成プログラムを記憶した記憶媒体 |
CN1940992A (zh) * | 2005-06-17 | 2007-04-04 | Cti分子成像公司 | Pet/ct成像中基于图像的伪影降低 |
US20060285737A1 (en) * | 2005-06-17 | 2006-12-21 | Hamill James J | Image-based artifact reduction in PET/CT imaging |
JP2008241376A (ja) * | 2007-03-27 | 2008-10-09 | Hitachi Ltd | X線ct画像再構成方法 |
JP5601675B2 (ja) * | 2008-02-29 | 2014-10-08 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | X線ct装置およびプログラム |
JP5493072B2 (ja) * | 2008-12-13 | 2014-05-14 | 国立大学法人徳島大学 | Ct装置、ct装置における画像再構成方法、及び電子回路部品 |
US8280135B2 (en) * | 2009-01-20 | 2012-10-02 | Mayo Foundation For Medical Education And Research | System and method for highly attenuating material artifact reduction in x-ray computed tomography |
DE102009032059A1 (de) * | 2009-07-07 | 2011-01-13 | Siemens Aktiengesellschaft | Sinogrammbearbeitung für die Metallartefaktreduktion in der Computertomographie |
US8498465B2 (en) * | 2009-09-29 | 2013-07-30 | The Board Of Trustees Of The Leland Stanford Junior University | Accurate determination of the shape and localization of metallic object(s) in X-ray CT imaging |
US8503750B2 (en) * | 2009-10-06 | 2013-08-06 | General Electric Company | Method and apparatus for reduction of metal artifacts in CT images |
US8768027B2 (en) * | 2010-02-23 | 2014-07-01 | Carestream Health, Inc. | Method and system for cone beam computed tomography high density object artifact reduction |
US8233586B1 (en) * | 2011-02-17 | 2012-07-31 | Franz Edward Boas | Iterative reduction of artifacts in computed tomography images using forward projection and an edge-preserving blur filter |
DE102011005715A1 (de) * | 2011-03-17 | 2012-09-20 | Siemens Aktiengesellschaft | Verfahren zum Gewinnen eines von Spuren eines Metallobjektes befreiten 3D-Bilddatensatzes |
-
2012
- 2012-05-30 WO PCT/JP2012/003525 patent/WO2012164921A1/ja active Application Filing
- 2012-05-30 EP EP12793501.3A patent/EP2716226A4/en not_active Ceased
- 2012-05-30 CN CN201280026498.8A patent/CN103582456B/zh active Active
- 2012-05-30 KR KR1020137027512A patent/KR101564155B1/ko active IP Right Grant
- 2012-05-30 US US14/116,272 patent/US9147269B2/en active Active
- 2012-05-30 JP JP2013517879A patent/JP5725174B2/ja active Active
-
2015
- 2015-04-02 JP JP2015076341A patent/JP6036901B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0819533A (ja) * | 1994-07-05 | 1996-01-23 | Hitachi Medical Corp | X線ct装置 |
JPH10337287A (ja) * | 1997-06-09 | 1998-12-22 | Toshiba Corp | X線コンピュータ断層撮影装置 |
JP2010529876A (ja) * | 2007-06-15 | 2010-09-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 画像内の高濃度領域を決定する装置 |
WO2010016425A1 (ja) * | 2008-08-07 | 2010-02-11 | 株式会社 日立メディコ | X線ct画像形成方法及びそれを用いたx線ct装置 |
JP2010099114A (ja) * | 2008-10-21 | 2010-05-06 | Yamatake Corp | Ct装置および金属形状抽出方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2716226A4 * |
TAKESHI SHIOMI: "Principle and Application of Tomosynthesis - New Technology Produced by FPD", JAPAN SOCIETY OF MEDICAL IMAGING AND INFORMATION SCIENCES MAGAZINE, vol. 24, no. 2, 2007, pages 22 - 27 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014174553A1 (ja) * | 2013-04-25 | 2014-10-30 | 株式会社島津製作所 | 画像処理装置 |
EP2989983A4 (en) * | 2013-04-25 | 2016-05-04 | Shimadzu Corp | IMAGE PROCESSING DEVICE |
JP5967298B2 (ja) * | 2013-04-25 | 2016-08-10 | 株式会社島津製作所 | 画像処理装置 |
US10395363B2 (en) | 2013-04-25 | 2019-08-27 | Shimadzu Corporation | Image processing device |
CN104545962A (zh) * | 2013-10-16 | 2015-04-29 | 通用电气公司 | 可减少图像中的伪影的医学成像方法和系统 |
JP2016077813A (ja) * | 2014-10-22 | 2016-05-16 | 朝日レントゲン工業株式会社 | 画像処理装置、画像処理方法、及びx線撮影装置 |
JP2017202315A (ja) * | 2016-05-09 | 2017-11-16 | 東芝メディカルシステムズ株式会社 | 医用画像診断装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103582456A (zh) | 2014-02-12 |
EP2716226A4 (en) | 2014-11-05 |
JPWO2012164921A1 (ja) | 2015-02-23 |
US9147269B2 (en) | 2015-09-29 |
KR101564155B1 (ko) | 2015-10-28 |
KR20130138308A (ko) | 2013-12-18 |
EP2716226A1 (en) | 2014-04-09 |
JP2015144862A (ja) | 2015-08-13 |
CN103582456B (zh) | 2017-09-08 |
JP5725174B2 (ja) | 2015-05-27 |
US20140169650A1 (en) | 2014-06-19 |
JP6036901B2 (ja) | 2016-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6036901B2 (ja) | 放射線断層画像撮影装置 | |
JP6747885B2 (ja) | 放射線診断装置及び放射線診断装置作動方法 | |
KR101576703B1 (ko) | 화상 처리 장치, 화상 처리 방법 및 컴퓨터 판독 가능 저장 매체 | |
KR101040488B1 (ko) | 방사선 촬상 장치 | |
KR101728046B1 (ko) | 단층 영상 복원 장치 및 그에 따른 단층 영상 복원 방법 | |
JP5122801B2 (ja) | マルチ・モダリティ撮像の方法及び装置 | |
US20080108895A1 (en) | Method and system for defining at least one acquisition and processing parameter in a tomosynthesis system | |
JP4537129B2 (ja) | トモシンセシス用途における対象物を走査するためのシステム | |
JP2008012319A (ja) | トモシンセシス・イメージング・システムでのアーティファクトを低減する方法及びシステム | |
JP2009095405A (ja) | X線ct装置 | |
EP2508133B1 (en) | X-ray computed tomographic imaging apparatus and method for same | |
US6751284B1 (en) | Method and system for tomosynthesis image enhancement using transverse filtering | |
US20070147576A1 (en) | X-ray ct apparatus and an image controlling method thereof | |
US9271691B2 (en) | Method and x-ray device to determine a three-dimensional target image data set | |
JP5097355B2 (ja) | 放射線断層撮影装置 | |
JP7483654B2 (ja) | 医用画像処理装置および医用画像処理方法 | |
JP4727982B2 (ja) | 多断層像構築方法およびデジタル3次元x線撮影装置 | |
JP2018143574A (ja) | X線ct装置及び画像処理方法 | |
JP5283882B2 (ja) | X線診断装置、画像処理装置及び画像再構成処理に用いられるフィルタ係数の算出プログラム | |
JP2024037308A (ja) | 医用画像処理装置および医用画像処理方法 | |
WO2015045165A1 (ja) | 放射線断層画像処理方法および放射線断層撮影装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12793501 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013517879 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137027512 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012793501 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14116272 Country of ref document: US |