WO2012164849A1 - タンパク質半導体の製造方法 - Google Patents
タンパク質半導体の製造方法 Download PDFInfo
- Publication number
- WO2012164849A1 WO2012164849A1 PCT/JP2012/003200 JP2012003200W WO2012164849A1 WO 2012164849 A1 WO2012164849 A1 WO 2012164849A1 JP 2012003200 W JP2012003200 W JP 2012003200W WO 2012164849 A1 WO2012164849 A1 WO 2012164849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor
- protein
- type
- amino acid
- protein semiconductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 324
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 318
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 317
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 91
- 230000002378 acidificating effect Effects 0.000 claims abstract description 38
- 230000007935 neutral effect Effects 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 24
- 108010075028 Cytochromes b Proteins 0.000 claims description 70
- 102100025287 Cytochrome b Human genes 0.000 claims description 69
- 102100030497 Cytochrome c Human genes 0.000 claims description 32
- 108010075031 Cytochromes c Proteins 0.000 claims description 32
- 238000005304 joining Methods 0.000 claims description 14
- 230000027756 respiratory electron transport chain Effects 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 2
- 235000018102 proteins Nutrition 0.000 description 267
- 230000004044 response Effects 0.000 description 43
- 229910052737 gold Inorganic materials 0.000 description 30
- 239000010931 gold Substances 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 29
- 230000005684 electric field Effects 0.000 description 29
- 229920000642 polymer Polymers 0.000 description 29
- 229920001940 conductive polymer Polymers 0.000 description 27
- 238000010586 diagram Methods 0.000 description 27
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 26
- 238000004776 molecular orbital Methods 0.000 description 20
- -1 etc.) Proteins 0.000 description 15
- 150000004032 porphyrins Chemical group 0.000 description 14
- 238000001514 detection method Methods 0.000 description 12
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 10
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 9
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 8
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 8
- 239000004473 Threonine Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 238000007385 chemical modification Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 150000003278 haem Chemical class 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 7
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 7
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 7
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 239000002094 self assembled monolayer Substances 0.000 description 7
- 239000013545 self-assembled monolayer Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000000862 absorption spectrum Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 6
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 235000003704 aspartic acid Nutrition 0.000 description 5
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 5
- 235000013922 glutamic acid Nutrition 0.000 description 5
- 239000004220 glutamic acid Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- DIXRLQJYISYSEL-UHFFFAOYSA-N 11-aminoundecane-1-thiol Chemical compound NCCCCCCCCCCCS DIXRLQJYISYSEL-UHFFFAOYSA-N 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 4
- 108010052832 Cytochromes Proteins 0.000 description 4
- 102000018832 Cytochromes Human genes 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 239000007853 buffer solution Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 150000002343 gold Chemical class 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 125000005647 linker group Chemical group 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000767 polyaniline Polymers 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000001488 sodium phosphate Substances 0.000 description 4
- 229910000162 sodium phosphate Inorganic materials 0.000 description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- 101100289894 Caenorhabditis elegans lys-7 gene Proteins 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 108010074122 Ferredoxins Proteins 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Substances CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- 230000009435 amidation Effects 0.000 description 3
- 238000007112 amidation reaction Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229910000160 potassium phosphate Inorganic materials 0.000 description 3
- 235000011009 potassium phosphates Nutrition 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OMEBWCFMNYDCFP-UHFFFAOYSA-N 1-sulfanylundecan-1-ol Chemical compound CCCCCCCCCCC(O)S OMEBWCFMNYDCFP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 108010075027 Cytochromes a Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 108090000035 Pseudoazurin Proteins 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 238000001720 action spectrum Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000003637 basic solution Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 230000035322 succinylation Effects 0.000 description 2
- 238000010613 succinylation reaction Methods 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- FUTVBRXUIKZACV-UHFFFAOYSA-J zinc;3-[18-(2-carboxylatoethyl)-8,13-bis(ethenyl)-3,7,12,17-tetramethylporphyrin-21,24-diid-2-yl]propanoate Chemical compound [Zn+2].[N-]1C2=C(C)C(CCC([O-])=O)=C1C=C([N-]1)C(CCC([O-])=O)=C(C)C1=CC(C(C)=C1C=C)=NC1=CC(C(C)=C1C=C)=NC1=C2 FUTVBRXUIKZACV-UHFFFAOYSA-J 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 108010007337 Azurin Proteins 0.000 description 1
- 108010075021 Cytochromes f Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010081409 Iron-Sulfur Proteins Proteins 0.000 description 1
- 102000005298 Iron-Sulfur Proteins Human genes 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 108091016161 Plantacyanin Proteins 0.000 description 1
- 108090000051 Plastocyanin Proteins 0.000 description 1
- 229920000000 Poly(isothianaphthene) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 101710093642 Stellacyanin Proteins 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- YIYFFLYGSHJWFF-UHFFFAOYSA-N [Zn].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical class [Zn].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 YIYFFLYGSHJWFF-UHFFFAOYSA-N 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 125000006355 carbonyl methylene group Chemical group [H]C([H])([*:2])C([*:1])=O 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- SURLGNKAQXKNSP-DBLYXWCISA-N chlorin Chemical compound C\1=C/2\N/C(=C\C3=N/C(=C\C=4NC(/C=C\5/C=CC/1=N/5)=CC=4)/C=C3)/CC\2 SURLGNKAQXKNSP-DBLYXWCISA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- YPCJZFIQGJRGNV-IBGZPJMESA-N naphthalen-1-yl (2s)-2-acetamido-3-(4-hydroxyphenyl)propanoate Chemical compound C([C@H](NC(=O)C)C(=O)OC=1C2=CC=CC=C2C=CC=1)C1=CC=C(O)C=C1 YPCJZFIQGJRGNV-IBGZPJMESA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000323 polyazulene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000015 polydiacetylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000417 polynaphthalene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000276 potassium ferrocyanide Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 108060007223 rubredoxin Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/795—Porphyrin- or corrin-ring-containing peptides
- C07K14/80—Cytochromes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/761—Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/43—Bipolar transistors, e.g. organic bipolar junction transistors [OBJT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present disclosure relates to a protein semiconductor manufacturing method, a protein semiconductor, a pn junction manufacturing method, a pn junction, a semiconductor device manufacturing method, a semiconductor device, an electronic device, and a protein semiconductor conductivity control method.
- Protein is expected as a next-generation functional element or a material to replace a conventional semiconductor element using a semiconductor such as silicon. While miniaturization of conventional semiconductor elements is limited to a size of several tens of nm, proteins exhibit sophisticated and complicated functions at a much smaller size of 2 to 10 nm.
- Non-Patent Document 1 It is known that proteins have semiconductor properties (see, for example, Non-Patent Document 1). However, its property is based on the fact that the band gap of the protein itself is 2 to 3 electron volts (eV). On the other hand, in order to manufacture a semiconductor element using a protein semiconductor, it is necessary to control the conductivity type of the protein semiconductor, that is, to be able to control the protein semiconductor to be p-type or n-type.
- a problem to be solved by the present disclosure is to provide a protein semiconductor conductivity type control method, a protein semiconductor manufacturing method, and a protein semiconductor capable of easily controlling the protein semiconductor conductivity type.
- Another problem to be solved by the present disclosure is to provide a method of manufacturing a pn junction using a protein semiconductor, a pn junction, a method of manufacturing a semiconductor device using the pn junction, a semiconductor device, and an electronic apparatus having the semiconductor device. is there.
- This is a method for controlling the conductivity type of a protein semiconductor, which controls the conductivity type of the protein semiconductor by controlling the amount of charge of the entire amino acid residue.
- the conductivity type of the protein semiconductor is p-type, n-type, or i-type.
- this disclosure is a method for producing a protein semiconductor in which the conductivity type of the protein semiconductor is controlled by controlling the charge amount of the entire amino acid residue.
- this disclosure It is a protein semiconductor whose conductivity type is controlled by controlling the charge amount of the entire amino acid residue.
- a p-type protein semiconductor and an n-type protein semiconductor are produced by controlling the charge amount of the entire amino acid residue, and a pn junction is produced by joining these p-type protein semiconductor and n-type protein semiconductor to each other. It is a manufacturing method.
- this disclosure is a pn junction produced by producing a p-type protein semiconductor and an n-type protein semiconductor by controlling the charge amount of the entire amino acid residue, and joining these p-type protein semiconductor and n-type protein semiconductor to each other.
- this disclosure A process of producing a p-type protein semiconductor and an n-type protein semiconductor by controlling the charge amount of the entire amino acid residue, and producing a pn junction by joining the p-type protein semiconductor and the n-type protein semiconductor to each other.
- a method for manufacturing a semiconductor device A process of producing a p-type protein semiconductor and an n-type protein semiconductor by controlling the charge amount of the entire amino acid residue, and producing a pn junction by joining the p-type protein semiconductor and the n-type protein semiconductor to each other.
- this disclosure A semiconductor having a pn junction produced by producing a p-type protein semiconductor and an n-type protein semiconductor by controlling the amount of charge of the entire amino acid residue, and joining these p-type protein semiconductor and n-type protein semiconductor to each other Device.
- this disclosure A semiconductor having a pn junction produced by producing a p-type protein semiconductor and an n-type protein semiconductor by controlling the amount of charge of the entire amino acid residue, and joining these p-type protein semiconductor and n-type protein semiconductor to each other An electronic device having a device.
- acidic amino acid residues, basic amino acid residues and neutral amino acid residues contained in the protein may be used.
- One or more of the groups are replaced with amino acid residues having properties that are different from their properties.
- one or more of an acidic amino acid residue, a basic amino acid residue, and a neutral amino acid residue is added to the protein.
- one or more of acidic amino acid residues, basic amino acid residues and neutral amino acid residues contained in the protein are deleted.
- one or more of acidic amino acid residues, basic amino acid residues and neutral amino acid residues contained in the protein are chemically modified.
- the polarity of the media surrounding the protein is controlled. You may combine these methods as needed.
- the charge amount of the entire amino acid residue can be controlled by photodoping by irradiating the protein with light to generate electron-hole pairs.
- the protein is preferably an electron transfer protein.
- the electron transfer protein is generally an electron transfer protein containing a metal. This metal is preferably a transition metal having electrons in a high-energy orbit higher than the d orbit.
- Electron transfer proteins include iron-sulfur proteins (eg, rubredoxin, ferric ferredoxin, triiron ferredoxin, tetrairon ferredoxin, etc.), blue copper proteins (eg, plastocyanin, azurin, pseudoazurin, plantacyanin, stellacyanin, Amishianin etc.), cytochrome compound (such as cytochrome c, metal-substituted cytochrome c, metal-substituted cytochrome c 552 the iron metal center of the heme of cytochrome c 552 was replaced by other metals, modified zinc porphyrin cytochrome c 552, cytochrome b, Cytochrome b 5 , cytochrome c 1
- Absent For example, by using derivatives of these electron transfer proteins (skeleton amino acid residues chemically modified) or variants thereof (part of the backbone amino acid residues partially substituted with other amino acid residues) Also good. Metals such as metal-substituted cytochrome c, metal-substituted cytochrome c 552 , and metal-substituted cytochrome b 562 are selected as necessary.
- the semiconductor device uses a pn junction (including a pin junction in which an intrinsic (i-type) protein semiconductor is sandwiched between a p-type protein semiconductor and an n-type protein semiconductor), basically any semiconductor device can be used. It may be something like this.
- the semiconductor device is a light receiving element, a light emitting element, an electric field detecting element, a carrier traveling element (such as a transistor), or the like.
- the electric field detection element can be constituted not only by a pn junction but also by using a single p-type protein semiconductor or a single n-type protein semiconductor.
- the charge amount of the entire amino acid residue of the protein used as the starting material is determined as one of acidic amino acid residues, basic amino acid residues, and neutral amino acid residues contained in the protein.
- the conductivity type of the obtained protein semiconductor can be controlled by controlling one or more by various methods such as substituting amino acid residues having properties different from their own properties.
- the conductivity type of the protein semiconductor can be easily controlled.
- a pn junction made of a protein semiconductor can be easily manufactured, and a novel semiconductor device can be easily realized using the pn junction.
- a high-performance electronic device can be realized using this semiconductor device.
- FIG. 3 is a schematic diagram showing the structure of zinc-substituted cytochrome b 562 and the positions of basic amino acid residues. It is a basic diagram which shows the structure of a zinc substituted cytochrome c, and the position of a neutral amino acid residue.
- FIG. 3 is a schematic diagram showing the structure of zinc-substituted cytochrome b 562 and the positions of neutral amino acid residues.
- FIG. 2 is a schematic diagram showing a structure of cytochrome b 562.
- FIG. It is a basic diagram which shows typically a mode that cytochrome b 562 adsorb
- FIG. 6 is a schematic diagram showing a current-voltage curve obtained using a zinc-substituted cytochrome b 562 immobilized gold drop electrode. It is an energy band figure at the time of zero bias of pn junction by this 3rd embodiment, and this pn junction. It is an energy band figure at the time of forward bias of pn junction by this 3rd embodiment, and this pn junction. It is an energy band figure at the time of reverse bias of pn junction by this 3rd embodiment, and this pn junction.
- FIG. 1A shows an example of a protein semiconductor.
- this protein semiconductor has basic amino acid residues (hereinafter simply referred to as basic residues) B, acidic amino acid residues (hereinafter simply referred to as acidic residues) A and neutrality.
- Amino acid residues (hereinafter simply referred to as neutral residues) N are linked by peptide bonds.
- the sequence order and number of the basic residue B, acidic residue A, and neutral residue N shown in FIG. 1A are only virtual, and the sequence order and number vary depending on the protein semiconductor.
- Basic residue B is represented by a square, the acidic residue A by a triangular system, and the neutral residue N by a circle.
- Basic residue B is a residue of lysine (Lys), arginine (Arg) or histidine (His).
- Acidic residue A is a residue of glutamic acid (Glu) or aspartic acid (Asp).
- Neutral residues N are serine (Ser), threonine (Thr), asparagine (Asn), glutamine (Gln), alanine (Ala), cysteine (Cys), glycine (Gly), isoleucine (Ile), leucine (Leu). ), Methionine (Met), phenylalanine (Phe), proline (Pro), tryptophan (Trp), tyrosine (Tyr) or valine (Val).
- FIG. 1A A method for controlling the properties of the protein semiconductor shown in FIG. 1A will be described.
- One or more of the basic residues B of the protein semiconductor shown in FIG. An example is shown in FIG. 1B.
- the fifth basic residue B from the left of the protein semiconductor shown in FIG. Accordingly, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1B changes, specifically, decreases with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
- the protein semiconductor shown in FIG. 1A has a p-type photocurrent response
- the protein semiconductor shown in FIG. 1B changes to an n-type photocurrent response.
- FIG. 1C One or more of the basic residues B of the protein semiconductor shown in FIG. An example is shown in FIG. 1C.
- the fifth basic residue B from the left of the protein semiconductor shown in FIG. Thereby, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1C changes, specifically, decreases with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
- the protein semiconductor shown in FIG. 1A has a p-type photocurrent response
- the protein semiconductor shown in FIG. 1C changes to an n-type photocurrent response.
- FIG. 1D One or more of the acidic residues A of the protein semiconductor shown in FIG. An example is shown in FIG. 1D.
- the fourth acidic residue A from the left of the protein semiconductor shown in FIG. As a result, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1D changes, specifically increases, with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
- the protein semiconductor shown in FIG. 1A has a p-type photocurrent response, whereas the protein semiconductor shown in FIG. 1D changes to an n-type photocurrent response.
- FIG. 1E One or more of acidic residues A of the protein semiconductor shown in FIG. An example is shown in FIG. 1E.
- the fourth acidic residue A from the left of the protein semiconductor shown in FIG. As a result, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1E changes, specifically increases, with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
- the protein semiconductor shown in FIG. 1A has a p-type photocurrent response, whereas the protein semiconductor shown in FIG. 1E changes to an n-type photocurrent response.
- FIG. 1F One or more neutral residues N of the protein semiconductor shown in FIG. An example is shown in FIG. 1F.
- the third neutral residue N from the left of the protein semiconductor shown in FIG. As a result, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1F changes, specifically increases, with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
- the protein semiconductor shown in FIG. 1A has a p-type photocurrent response, whereas the protein semiconductor shown in FIG. 1F changes to an n-type photocurrent response.
- FIG. 1G One or more of the neutral residues N of the protein semiconductor shown in FIG. An example is shown in FIG. 1G.
- the third neutral residue N from the left of the protein semiconductor shown in FIG. Accordingly, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1G changes, specifically, decreases with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
- the protein semiconductor shown in FIG. 1A has a p-type photocurrent response
- the protein semiconductor shown in FIG. 1G changes to an n-type photocurrent response.
- One or more of the basic residues B of the protein semiconductor shown in FIG. 1A are neutralized or acidified by chemical modification.
- one or a plurality of acidic residues A of the protein semiconductor shown in FIG. 1A are neutralized or basified by chemical modification.
- one or more neutral residues N of the protein semiconductor shown in FIG. 1A are acidified or basified by chemical modification.
- the fifth basic residue B from the left of the protein semiconductor shown in FIG. 1A is chemically modified to be changed to a neutral residue or an acidic residue.
- the total charge amount of the amino acid residues of the protein semiconductor changes, specifically decreases with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
- the protein semiconductor shown in FIG. 1A has a p-type photocurrent response, whereas the protein semiconductor changes to an n-type photocurrent response.
- the fourth acidic residue A from the left of the protein semiconductor shown in FIG. 1A is chemically modified to be changed to a neutral residue or a basic residue.
- the total charge amount of amino acid residues of the protein semiconductor changes, specifically increases, with respect to the total charge amount of amino acid residues of the protein semiconductor shown in FIG. 1A.
- the protein semiconductor shown in FIG. 1A has an n-type photocurrent response, whereas the protein semiconductor changes to a p-type photocurrent response.
- the third neutral residue N from the left of the protein semiconductor shown in FIG. 1A is chemically modified to be changed into a basic residue or an acidic residue.
- the total charge amount of the amino acid residues of the protein semiconductor changes, specifically increases or decreases with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
- the protein semiconductor shown in FIG. 1A has an n-type photocurrent response, whereas the protein semiconductor changes to a p-type photocurrent response.
- Examples of chemical modification methods are as follows. Acetylation of lysine residue (Lys) ⁇ Succinylation of serine residue (Ser) ⁇ Succinylation of threonine residue (Thr) ⁇ Disulfation of cysteine residues (Cys) ⁇ Esterification of aspartic acid residue (Asp) ⁇ Amidation of aspartic acid residue (Asp) ⁇ Esterification of glutamine residue (Glu) ⁇ Amidation of glutamine residue (Gln) ⁇ Phosphorylation of tyrosine residue (Tyr) -Phosphorylation of serine residue (Ser)
- the polarity of the medium surrounding the protein semiconductor shown in FIG. 1A is controlled.
- the medium surrounding the protein semiconductor may be liquid, gel, or solid.
- the protein semiconductor shown in FIG. 1A is surrounded by a highly basic buffer solution, basic solution, basic polymer, or the like.
- the protein semiconductor shown in FIG. 1A is surrounded by a highly acidic buffer solution, acidic solution, acidic polymer, or the like.
- the protein semiconductor shown in FIG. 1A has a p-type photocurrent response, whereas the protein semiconductor changes to an n-type photocurrent response.
- the protein semiconductor shown in FIG. 1A has an n-type photocurrent response, but changes to a p-type photocurrent response.
- Zinc-substituted cytochrome c exhibits a p-type photocurrent response.
- a p-type photocurrent response is converted to an n-type photocurrent response by replacing one or more of the basic residues of zinc-substituted cytochrome c with an acidic or neutral residue.
- the amino acid sequence (one-letter code) of zinc-substituted cytochrome c is as follows.
- the number of amino acid residues of zinc-substituted cytochrome c is 104.
- FIG. 2 shows the position of the basic residue of zinc-substituted cytochrome c.
- the basic residues of zinc-substituted cytochrome c are lysine (K for one letter symbol, Lys for three letter symbol) and arginine (R for one letter symbol, Arg for three letter symbol), and the residue numbers are as follows: is there. ⁇ Lysine 5, 7, 8, 13, 22, 25, 27, 39, 53, 55, 60, 72, 73, 79, 86, 87, 88, 99, 100 ⁇ Arginine 38, 91
- Zinc-substituted cytochrome b 562 exhibits a p-type photocurrent response.
- the p-type photocurrent response is converted to an n-type photocurrent response.
- the amino acid sequence (single letter symbol) of zinc-substituted cytochrome b 562 is as follows.
- the number of amino acid residues of zinc-substituted cytochrome b 562 is 106.
- the acidic residues of zinc-substituted cytochrome b 562 are glutamic acid and aspartic acid, and the residue numbers are as follows. ⁇ Glutamic acid 4, 8, 18, 49, 57, 81, 86, 92 Aspartic acid 2, 5, 12, 21, 28, 39, 50, 54, 60, 66, 73, 74
- Example 3 A p-type photocurrent response is converted to an n-type photocurrent response by neutralizing or acidifying one or more of the basic residues of zinc-substituted cytochrome c by chemical modification.
- the position of the basic residue of zinc-substituted cytochrome c is as shown in FIG. 2, and the residue numbers of lysine and arginine, which are basic residues, are as described above.
- a basic residue is converted into a neutral residue by introducing a neutral one as R by acetylation of a basic lysine residue. Specifically, for example, by introducing a non-charged substituent such as a methyl group or an ethyl group as R, a basic residue is converted to a neutral residue.
- an acidic group such as a sulfonylmethylene group or a carbonylmethylene group is introduced as R.
- Zinc-substituted cytochrome b 562 exhibits an n-type photocurrent response. By neutralizing or basifying one or more of the acidic residues of zinc-substituted cytochrome b 562 by chemical modification, the n-type photocurrent response is converted to a p-type photocurrent response.
- the position of the acidic residue of zinc-substituted cytochrome b 562 is as shown in FIG. 3, and the residue numbers of glutamic acid and aspartic acid, which are acidic residues, are as described above.
- an acidic residue is converted to a neutral residue by introducing a neutral one as R by esterification or amidation of glutamic acid or aspartic acid which is an acidic residue.
- a neutral one as R for example, a non-charged substituent such as a methyl group or an ethyl group is introduced as R.
- a basic group is introduced as R.
- Example 5 By acidifying one or more of the neutral residues of zinc-substituted cytochrome c by chemical modification, a p-type photocurrent response is converted to an n-type photocurrent response. For example, it is acidified by phosphorylating threonine and tyrosine having an OH group, which are neutral residues.
- FIG. 4 shows the positions of threonine and tyrosine, which are neutral residues having an OH group of zinc-substituted cytochrome c, and the residue numbers of threonine and tyrosine are as follows. Threonine 19, 28, 40, 47, 49, 58, 63, 78, 89, 102 Tyrosine 48, 67, 74, 97
- Zinc-substituted cytochrome b 562 exhibits an n-type photocurrent response.
- an n-type photocurrent response is converted to a p-type photocurrent response.
- serine, threonine and tyrosine having an OH group which are neutral residues, are acidified by phosphorylation.
- FIG. 5 shows the positions of threonine, tyrosine and serine, which are neutral residues having an OH group of zinc-substituted cytochrome b 562 , and the residue numbers are as follows. ⁇ Threonine 9, 31, 44, 96, 97 ⁇ Tyrosine 101, 105 ⁇ Serine 52, 55
- Example 7 By surrounding the zinc-substituted cytochrome c with a highly basic buffer solution, basic solution, or basic polymer, the p-type photocurrent response is converted into an n-type photocurrent response.
- Example 8 By surrounding the zinc-substituted cytochrome b 562 with a highly acidic buffer solution, acidic solution or acidic polymer, the n-type photocurrent response is converted into a p-type photocurrent response.
- the preculture liquid cultured overnight at 37 ° C. in 100 mL of LB-Amp medium was transferred to Terrific broth 4 L (2 L ⁇ 2) and cultured at 37 ° C. for 5 to 6 hours.
- 70 g of red cells could be obtained.
- the frozen cells were suspended in 200 mL of 10 mM Tris-HCl (pH 8.0) containing 1 mM EDTA, 1 mM PMSF, 0.2 mg / mL Lysozyme, DTT (appropriate), and DNase (appropriate), and the cells were pulverized with ultrasonic waves.
- 2M phosphoric acid was added to the centrifugal supernatant to adjust the pH to 4.55, and unnecessary proteins were spun down.
- This sample was subjected to CM52 anion exchange column chromatography (column volume 80 mL, 50 to 150 mM KCl linear gradient / 50 mM potassium phosphate (pH 4.55)), Sephadex G50 Fine gel filtration chromatography (column volume 480 mL, 50 mM Tris-HCl). , 0.1 mM EDTA pH 8.0), and about 80 mg of cytochrome b 562 could be obtained.
- the absorption spectrum of purified cytochrome b 562 is shown in FIG.
- the measurement was performed in a state in which purified cytochrome b 562 was immersed in a 10 mM sodium phosphate (pH 7.0) buffer.
- cytochrome b 562 was an oxidized form having absorption peaks at 418 nm and 532 nm.
- dithionite was added to the buffer to obtain a reduced type, absorption peaks at 426 nm, 531 nm, and 562 nm were confirmed.
- the amino acid sequence of the obtained cytochrome b 562 is as follows. In this amino acid sequence, underlined heme ligands methionine 7 and histidine 102 and isoleucine 17 play an important role, as described below.
- FIGS. 7A, 7B and 7C show the crystal structure of cytochrome b 562 determined by X-ray crystal structure analysis in 1979 (see Non-Patent Document 3).
- FIG. 7A shows a ribbon model, and shows heme and its ligand amino acid in a stick model.
- FIG. 7B shows the charge distribution when cytochrome b 562 is in the same direction as FIG. 7A, and the portion surrounded by the elliptical broken line is the heme-propionic acid exposed surface that is most strongly negatively charged (FIG. 7C). But the same).
- Figure 7C shows the charge distribution in the state rotated 180 degrees around the vertical axis cytochrome b 562 from the state of FIG. 7B (the back side of the cytochrome b 562 in the state shown in FIG. 7B).
- cytochrome b 562 has a four-helix bundle structure and one molecule of prosthetic group heme. The heme propionic acid is exposed to stick out of the molecule. From the charge distribution shown in FIG. 7B, it can be seen that the heme propionate site has a strong negative charge. Therefore, when the surface of the gold electrode is positively charged, cytochrome b 562 can be adsorbed to the gold electrode at the heme propionate site.
- FIG. 8 A schematic diagram thereof is shown in FIG. 8 (only the hem is shown by a stick model).
- a self-assembled monolayer 13 having a positive charge on the outermost surface is formed on the gold electrode 11, and the positive charge on the outermost surface of the self-assembled monolayer 13 and the heme propion of cytochrome b 562 are formed.
- Cytochrome b 562 is adsorbed to the self-assembled monolayer 13 by electrostatic attraction acting between the negative charges of the acid sites.
- a gold drop electrode having a diameter of 2 mm was formed as a gold electrode.
- This gold drop electrode was washed with hot concentrated sulfuric acid (120 ° C.), and the roughness (roughness) of the surface of the gold drop electrode was increased by oxidation-reduction cycle treatment in sulfuric acid.
- This gold drop electrode is immersed in a 0.1 mM 11-aminoundecanethiol (H 2 N—C 11 -SH) / ethanol solution for 16 hours or more at room temperature, and H 2 as a self-assembled monolayer 13 is formed on the surface of the gold drop electrode.
- An N—C 11 —SH film was formed.
- the gold drop electrode thus formed with the H2 N—C11-SH film is dried by applying compressed air, soaked in 60 ⁇ L of 50 ⁇ M cytochrome b 562 /4.4 mM potassium phosphate (pH 7.2) solution, and incubated overnight at 4 ° C. did.
- FIG. 9 shows a cyclic voltammogram measured by immersing the incubated gold drop electrode in 10 mM sodium phosphate (pH 7.0). The potential sweep rate is 1 V / s. As shown in FIG. 9, an adsorption-type cyclic voltammogram was obtained.
- the effective surface area of cytochrome b 562 on the surface of the gold drop electrode is 1.7 ⁇ 0.6 pmol / cm 2
- the redox potential is ⁇ 4 ⁇ 11 mV vs Ag / AgCl
- the electron transfer rate constant between the cytochrome b 562 and the gold drop electrode was 90 ⁇ 12 s ⁇ 1 .
- FIG. 9 shows a cyclic voltammogram when 11-aminoundecanethiol is mixed with 10% hydroxyundecanethiol.
- Zinc protoporphyrin IX (ZnPP) was dissolved in dimethyl sulfoxide, and 2 equivalents were added to the apocytochrome b 562 solution.
- the protein fraction was recovered using a Bio-gel P10 desalting column previously equilibrated with 50 mM Tris-HCl (pH 8.0) and 0.1 mM EDTA, and purified zinc-substituted cytochrome b 562 (Zn -Cyt b 562 ).
- the absorption spectrum of the obtained zinc-substituted cytochrome b 562 is shown in FIG.
- the measurement was performed in a state where zinc-substituted cytochrome b 562 was immersed in a 10 mM sodium phosphate (pH 7.0) buffer.
- FIG. 10 there are absorption peaks at 280 nm, 357 nm, 429 nm, 554 nm, and 593 nm, and the positions coincide with those of Non-Patent Document 4.
- the ratio of the absorbance at a wavelength of 429 nm to the absorbance at a wavelength of 554 nm was 11.05.
- This gold drop electrode was washed with hot concentrated sulfuric acid (120 ° C.), and the roughness (roughness) of the surface of the gold drop electrode was increased by oxidation-reduction cycle treatment in sulfuric acid.
- This gold drop electrode is immersed in a 0.1 mM 11-aminoundecanethiol (H 2 N—C 11 -SH) / ethanol solution for 16 hours or more at room temperature, and H 2 as a self-assembled monolayer 13 is formed on the surface of the gold drop electrode.
- An N—C 11 —SH film was formed.
- the gold drop electrode thus formed with the H 2 N—C 11 —SH film was dried by applying compressed air and then soaked in 60 ⁇ L of a 50 ⁇ M zinc-substituted cytochrome b 562 /4.4 mM potassium phosphate (pH 7.2) solution. Incubated overnight at 0 ° C.
- the photocurrent measurement was performed in 10 mM sodium phosphate (pH 7.0) purged with nitrogen using Ag / AgCl as a reference electrode and a Pt mesh electrode as a counter electrode.
- FIG. 11 shows the measurement results of photocurrent (photocurrent real-time waveform) at bias voltages of 300 mV, 0 mV, and ⁇ 300 mV.
- FIG. 11 is a plot of current values with respect to time when light having a wavelength of 420 nm is irradiated for 30 seconds and turned off for 10 seconds. As shown in FIG. 11, a cathodic photocurrent was observed in this bias voltage range. The photocurrent action spectrum is shown in FIG. As shown in FIG.
- the wavelengths showing the peak current are 418 to 420 nm, 550 nm, and 586 nm, which are greatly different from the absorption maximum wavelengths 429 nm, 554 nm, and 593 nm in the solution ultraviolet visible absorption spectrum of zinc-substituted cytochrome b 562 shown in FIG. ing.
- the ratio of the photocurrent at a wavelength of 418 to 420 nm to the photocurrent at a wavelength of 550 nm is 3.7, which is much lower than the ratio of the photocurrent in the absorption spectrum shown in FIG.
- a graph in which the photocurrent value at a wavelength of 420 nm is plotted against the potential E is shown in FIG. In FIG.
- the conductivity type of the protein semiconductor can be easily controlled by controlling the charge amount of the entire amino acid residue of the protein semiconductor by various methods.
- Second Embodiment> [Producing method of protein semiconductor and protein semiconductor]
- a protein semiconductor having a desired conductivity type specifically, a p-type protein semiconductor, an n-type protein semiconductor, or the like using the protein semiconductor conductivity type control method according to the first embodiment Produces i-type protein semiconductors.
- a p-type protein semiconductor, an n-type protein semiconductor, or an i-type protein semiconductor can be easily produced. For this reason, at least a part of the constituent elements of the electronic circuit is formed using a p-type protein semiconductor, an n-type protein semiconductor, an i-type protein semiconductor, or a pn junction obtained by joining a p-type protein semiconductor and an n-type protein semiconductor. be able to.
- Third Embodiment> [Method of manufacturing pn junction and pn junction]
- the p-type protein semiconductor and the n-type protein semiconductor produced according to the second embodiment are joined together to produce a pn junction.
- FIG. 14A The pn junction thus manufactured is shown in FIG. 14A.
- this pn junction is a p-type protein semiconductor 21 and an n-type protein semiconductor 22 joined together.
- the p-type protein semiconductor 21 and the n-type protein semiconductor 22 are manufactured by controlling the total charge amount of the entire amino acid residue. Characterized by the polarity of the surface charge.
- the surface of the p-type protein semiconductor 21 has a positive charge (+)
- the surface of the n-type protein semiconductor 22 has a negative charge ( ⁇ ).
- the position of the molecular orbitals, and hence the energy band can be controlled by controlling the surface charge of the protein semiconductor.
- FIG. 14B shows the energy band of the pn junction at the time of zero bias.
- the p-type protein semiconductor 21 is formed with a p-channel 21a that becomes a hole movement path by molecular orbitals
- the n-type protein semiconductor 22 has an n-channel 22a that becomes an electron movement path by molecular orbitals. Is formed.
- the energy of the n channel 22a is higher than the energy of the p channel 21a.
- FIG. 15A shows a pn junction when a forward bias is applied.
- FIG. 15B shows the energy band of the pn junction when forward bias is applied.
- holes (h + ) move from the p channel 21a to the junction of the pn junction, and electrons (e ⁇ ) move from the n channel 22a.
- a current flows through the pn junction, and some electrons and holes recombine.
- FIG. 16A shows a pn junction when a reverse bias is applied.
- FIG. 16B shows the energy band of the pn junction when a reverse bias is applied.
- FIGS. 16A and 16B when a reverse bias is applied, both holes and electrons move away from the pn junction, so that almost no current flows through the pn junction. From the above, it can be seen that this pn junction works in the same manner as a conventional pn junction using silicon or the like.
- Non-Patent Document 6 the mechanism of intramolecular charge (electron or hole) transfer of protein semiconductors is described in Non-Patent Document 6 and Patent Document 2. According to this, when a protein semiconductor is photoexcited, transition of electrons between molecular orbitals occurs, and as a result, electrons or holes move from one part of the protein semiconductor to another part.
- p-type zinc-substituted cytochrome c is used as the p-type protein semiconductor 21
- n-type zinc-substituted cytochrome b 562 is used as the n-type protein semiconductor 22, for example.
- the entrance and exit of the p channel in the p-type zinc-substituted cytochrome c is a porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Lys7 (FIG. 17) or a porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Asn54 (FIG. 18).
- the molecular orbitals of the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Lys7 shown in FIG. 17 are the orbital numbers 3268 and 3270, respectively, and the hole transition rate between the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Lys7 is 2.0 ⁇ 10. 10 sec -1, the distance between them is 16.5A.
- the molecular orbitals of the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Asn54 shown in FIG. 18 are orbital numbers 3272 and 3271, respectively, and the transition speed of holes between the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Asn54 is 1.5 ⁇ 10. 11 sec ⁇ 1 , the distance between them is 17.2 km.
- the n-channel entrance / exit of the p-type zinc-substituted cytochrome b 562 is a porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Gly70 (FIG. 19) or a porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Pro56 (FIG. 20).
- the molecular orbitals of the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Gly70 shown in FIG. 19 are orbital numbers 3329 and 3331, respectively, and the transition rate of electrons between the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Gly70 is 5.3 ⁇ 10 11. sec ⁇ 1 , the distance between them is 16.1 km.
- the molecular orbitals of the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Pro56 shown in FIG. 20 are orbital numbers 3329 and 3332, respectively, and the transition rate of electrons between the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Pro56 is 1.3 ⁇ 10 11. sec ⁇ 1 , the distance between them is 21.3 mm.
- a pn junction in which the p-type protein semiconductor 21 and the n-type protein semiconductor 22 are joined to each other can be realized.
- the pn junction can obtain the following advantages. That is, since the size of the p-type protein semiconductor 21 and the n-type protein semiconductor 22 is 2 to 10 nm, the pn junction can have a size of 4 to 20 nm, and can be configured extremely finely. For this reason, when integrating the pn junction, the integration density can be extremely increased.
- this pn junction unlike a conventionally known pn junction using silicon or the like, since there is no space charge region in the junction, the movement time of electrons and holes across the junction is extremely short, and thus the response speed is very fast. Further, since the size of the p-type protein semiconductor 21 and the n-type protein semiconductor 22 is as small as 2 to 10 nm, there is no problem of the influence of impurities unlike a conventionally known pn junction using silicon or the like. Therefore, it is possible to increase the quantum efficiency when the pn junction is operated in the forward bias mode.
- this light emitting element is configured by a pn junction in which a p-type protein semiconductor 21 and an n-type protein semiconductor 22 are joined to each other.
- the pn junction is forward biased, specifically, the potential of the p-type protein semiconductor 21 between the p-type protein semiconductor 21 and the n-type protein semiconductor 22 is higher than that of the n-type protein semiconductor 22.
- a forward current flows through the pn junction.
- electrons (e ⁇ ) are injected from the p-type protein semiconductor 21 and holes (h + ) are injected from the n-type protein semiconductor 22 into the junction of the pn junction, respectively.
- Photons (h ⁇ ) are generated by the recombination of the holes.
- light is extracted from the light emitting element.
- the energy difference between the p channel 21a and the channel 22a is determined by the voltage applied to the pn junction. Therefore, by controlling the voltage applied to the pn junction, it is possible to control the energy difference between the p-channel 21a and the channel 22a, and thus the wavelength of light extracted from this light-emitting element. In other words, the emission wavelength of this light emitting element is variable depending on the voltage applied to the pn junction.
- electrons (e ⁇ ) injected from the p-type protein semiconductor 21 and holes (h + ) injected from the n-type protein semiconductor 22 are efficiently regenerated at the junction of the pn junction. Since they are coupled, a highly efficient light-emitting element can be obtained.
- the energy of the p-channel 21a and the n-channel 22a can be controlled by controlling the surface charges of the p-type protein semiconductor 21 and the n-type protein semiconductor 22.
- a plurality of types of n-type protein semiconductors 22 are manufactured so that the energy of the n-type protein semiconductor 22 in the n-channel 22a gradually decreases, and the plurality of types of n-type protein semiconductors 22 are connected to the n-channel 22a. Bonding is performed sequentially so that the energy decreases stepwise.
- FIG. 22 shows the n-type quantum cascade laser thus obtained.
- a plurality of types of p-type protein semiconductors 21 are manufactured so that the energy of the p-type protein semiconductor 21 in the p-channel 21a gradually decreases, and the energy of the p-channel 21a is changed to the plurality of types of p-type protein semiconductors 21. Join sequentially so as to lower in stages.
- FIG. 23 shows the p-type quantum cascade laser thus obtained.
- the n channel 22 a having the highest energy between the n-type protein semiconductor 22 at one end and the n-type protein semiconductor 22 at the other end is the highest.
- a voltage is applied so that the potential of the n-type protein semiconductor 22 is lower than that of the n-type protein semiconductor 22 having the lowest energy of the n-channel 22a.
- electrons transition from the n-channel 22a of the n-type protein semiconductor 22 having the highest energy of the n-channel 22a to the n-channel 22a of the n-type protein semiconductor 22 having the next highest energy of the n-channel 22a.
- Photons (h ⁇ ) of energy corresponding to the energy difference between the n-channels 22 a are generated from the junction of the type protein semiconductor 22. Similarly, electrons transition between n-channels 22a of a pair of n-type protein semiconductors 22 adjacent to each other, and photons having energy corresponding to the energy difference between them are generated.
- the wavelengths of light generated from each junction can be made different from each other.
- this n-type quantum cascade laser it is possible to take out a plurality of lights having different emission wavelengths, and it is possible to obtain a wavelength-tunable n-type quantum cascade laser by selecting the emission wavelength to be taken out.
- the energy of the p channel 21a is the lowest between the p-type protein semiconductor 21 at one end and the p-type protein semiconductor 21 at the other end.
- a voltage is applied so that the p-type protein semiconductor 21 has a lower potential than the p-type protein semiconductor 21 having the highest energy of the p-channel 21a.
- holes transit from the p-channel 21a of the p-type protein semiconductor 21 having the lowest energy of the p-channel 21a to the p-channel 21a of the p-type protein semiconductor 21 having the lowest energy of the p-channel 21a.
- Photons (h ⁇ ) of energy corresponding to the energy difference between the p-channels 21 a are generated from the junction of the p-type protein semiconductor 21. Similarly, electrons transition between the p-channels 21a of a pair of p-type protein semiconductors 21 adjacent to each other, and photons having energy corresponding to the energy difference between them are generated.
- the energy difference between the p-channels 21a of the pair of p-type protein semiconductors 21 adjacent to each other is made different from each other, the wavelengths of the light generated from each junction can be made different from each other. For this reason, according to this p-type quantum cascade laser, a plurality of lights having different emission wavelengths can be extracted, and a wavelength-variable p-type quantum cascade laser can be obtained by selecting the emission wavelength to be extracted.
- an n-type or p-type quantum cascade laser with high efficiency and variable wavelength can be obtained. be able to.
- this bulk heterojunction photoelectric conversion element includes, for example, a network-like conductive polymer and / or polymer semiconductor 31 and one or a plurality of p-type or n-type protein semiconductors 32 that are intertwined with each other. And has a structure in which a heterojunction is formed.
- the protein semiconductor 32 has a long-lived excited state, and a dye 32a serving as a luminescence center is encapsulated in a polypeptide 32b and oriented at a predetermined position.
- the “long life” of the dye 32a having a long-life excitation state means a general excitation life for a dye having fluorescence or phosphorescence, and is typically several tens of picoseconds or more.
- the present invention is not limited to this.
- the conductive polymer and / or polymer semiconductor 31 and the protein semiconductor 32 are bonded to each other by a non-covalent bond or a covalent bond.
- Non-covalent bonds are, for example, electrostatic interactions, van der Waals interactions, hydrogen bond interactions, charge transfer interactions, and the like.
- the conductive polymer and / or polymer semiconductor 31 and the protein semiconductor 32 may be bonded to each other by a linker (not shown).
- the conductive polymer and / or polymer semiconductor 31 may be p-type or n-type.
- Conductive polymers are roughly classified into hydrocarbon-based conductive polymers and heteroatom-containing conductive polymers.
- hydrocarbon-based conductive polymer include polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene, polynaphthalene and the like.
- Examples of the heteroatom-containing conductive polymer include polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, and polyisothianaphthene.
- the bulk heterojunction photoelectric conversion element is formed on a substrate as necessary for the purpose of mechanically supporting the bulk heterojunction photoelectric conversion element.
- a conventionally well-known thing can be used as a board
- the material of the transparent substrate is selected as necessary, and examples thereof include transparent inorganic materials such as quartz and glass, and transparent plastics.
- a transparent plastic substrate is used as the flexible transparent substrate.
- the transparent plastic examples include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetyl cellulose, brominated phenoxy, aramids, polyimides, polystyrenes, polyarylates, Examples include polysulfones and polyolefins.
- a silicon substrate is used as the opaque substrate.
- FIG. 25 schematically shows an example of a state in which the conductive polymer and / or polymer semiconductor 31 and the protein semiconductor 32 are bonded to each other by non-covalent bonding.
- FIG. 26 schematically shows an example in which the conductive polymer and / or polymer semiconductor 31 and the protein semiconductor 32 are bonded to each other by the linker 33.
- linker 33 a conventionally known linker can be used, and is appropriately selected according to the conductive polymer and / or the polymer semiconductor 31 and the protein semiconductor 32.
- FIG. 27 shows an example of the energy band of this bulk heterojunction photoelectric conversion element.
- the HOMO (highest occupied orbit) and LUMO (lowest unoccupied orbit) of the protein semiconductor 32 are HOMO of the conductive polymer and / or the polymer semiconductor 31 and Higher than LUMO.
- the protein semiconductor 32 is n-type.
- the conductive polymer and / or polymer semiconductor 31 serves as an acceptor, and the protein semiconductor 32 serves as a donor.
- the n-type protein semiconductor 32 as a donor absorbs light incident from the outside, electrons (indicated by black circles in FIG.
- FIG. 28 shows another example of the energy band of this bulk heterojunction photoelectric conversion element.
- the HOMO and LUMO of the conductive polymer and / or the polymer semiconductor 31 are higher than the HOMO and LUMO of the protein semiconductor 32.
- the protein semiconductor 32 is p-type.
- the conductive polymer and / or polymer semiconductor 31 serves as a donor, and the protein semiconductor 32 serves as an acceptor.
- the conductive polymer and / or polymer semiconductor 31 serving as a donor absorbs light incident from the outside, electrons are transferred from HOMO in the conductive polymer and / or polymer semiconductor 31.
- excitons are formed. This electron moves to LUMO of the p-type protein semiconductor 32 which is an acceptor. As a result, a charge separation state in which the conductive polymer and / or the polymer semiconductor 31 has a positive charge (holes) and the protein semiconductor 32 has a negative charge (electrons) is generated. After the charge separation state is generated in this way, the holes move in the HOMO of the conductive polymer and / or the polymer semiconductor 31, and the electrons move in the protein semiconductor 32 and are taken out to the outside, and a photocurrent is obtained. It is done.
- p-type polyaniline sulfonic acid PASA
- poly (3-hexylthiophene) (P3HT) Etc As the n-type conductive polymer and / or polymer semiconductor 31, for example, Poly (p-pyridyl vinylene) Poly (isothianaphthene) can be used.
- this bulk heterojunction photoelectric conversion element As the p-type conductive polymer and / or polymer semiconductor 31, p-type polyaniline sulfonic acid (PASA) is used. Zinc-substituted cytochrome c is used as the protein semiconductor 32.
- PASA p-type polyaniline sulfonic acid
- Zinc-substituted cytochrome c is used as the protein semiconductor 32.
- a protein semiconductor solution is prepared by dissolving zinc-substituted cytochrome c in water. Also, a polyaniline sulfonic acid (PASA) is dissolved in water to prepare a PASA solution. The PASA solution thus prepared was added to the protein semiconductor solution to prepare a protein semiconductor-polymer aqueous solution.
- PASA polyaniline sulfonic acid
- the pH of the protein semiconductor-polymer aqueous solution can be controlled by neutralizing the sulfonic acid group of PASA in the protein semiconductor-polymer aqueous solution with an alkali such as sodium hydroxide (NaOH).
- an alkali such as sodium hydroxide (NaOH).
- an advantage that a highly efficient bulk heterojunction photoelectric conversion element can be obtained can be obtained.
- This bulk heterojunction photoelectric conversion element can be used as a light receiving element (photosensor), a solar cell, or the like.
- an electric field detection element is composed of a pn junction in which a p-type protein semiconductor, an n-type protein semiconductor, or a p-type protein semiconductor and an n-type protein semiconductor are joined together.
- H H 0 + H 1 It is expressed.
- H 0 a zeroth-order Hamiltonian
- H 1 a first-order Hamiltonian (first-order perturbation)
- H 1 is a value obtained by multiplying the dipole moment in the z direction by the electric field ⁇
- H 1 ez ⁇ It is expressed.
- e is an electronic charge.
- FIG. 29 shows molecular orbital energies of zinc-substituted cytochrome c and zinc-substituted cytochrome b 562 .
- VB represents a valence band
- CB represents a conduction band.
- the number written beside the molecular orbital is the number of the molecular orbital.
- the four molecular orbitals 3268, 3272, 3297 and 3299 are porphyrin ⁇ or ⁇ * orbitals, and the other molecular orbitals are those of amino acid residues.
- the four molecular orbitals 3302, 3304, 3326 and 3329 are porphyrin ⁇ or ⁇ * orbitals, and the other molecular orbitals are those of amino acid residues. Since these four molecular orbitals are directional, the influence of the electric field varies greatly depending on the direction of the applied electric field, but the other molecular orbitals are isotropic, so the influence of the electric field occurs on average. Therefore, while the band shift of amino acid residues is average, these four molecular orbitals are greatly shifted when an electric field is applied from the z direction, in other words, when the pz orbital is a ⁇ orbital. On the other hand, when an electric field is applied from the x direction or the y direction, these four molecular orbitals are hardly affected.
- the relationship between the amino acid residue band in FIG. 29 and the above-described four molecular orbitals can be greatly changed by applying an electric field.
- an electric field when an electric field is applied from the z direction, it works as an n-type protein semiconductor, and when an electric field is applied from the x direction or the y direction, it works as a p-type protein semiconductor, or is almost a photocurrent. May not be available.
- the intensity of the electric field is 1 MV / m, for example, it is considered that a band shift of, for example, about 0.01 eV to 0.1 eV can occur.
- a novel electric field detection element can be obtained.
- the electric field can be detected using the above phenomenon by arranging the electric field detection element at a site where the electric field to be measured is to be detected. Since this electric field detection element can be configured as extremely small as several nanometers to several tens of nanometers, it is possible to measure an electric field in a nanometer-size microscopic area, which has been difficult in the past, or Distribution can be measured with high accuracy.
- This electric field detection element is particularly suitable for use in measuring a strong electric field.
- a bipolar transistor In the eighth embodiment, a bipolar transistor will be described.
- a pnp bipolar transistor can be formed by sequentially joining a p-type protein semiconductor, an n-type protein semiconductor, and a p-type protein semiconductor.
- an npn bipolar transistor can be formed by sequentially joining an n-type protein semiconductor, a p-type protein semiconductor, and an n-type protein semiconductor.
- a novel bipolar transistor can be obtained.
- this bipolar transistor can be used for various applications, it can be used as, for example, a phototransistor.
- a thyristor In the ninth embodiment, a thyristor will be described.
- This thyristor is, for example, a pnpn-type thyristor configured by sequentially joining a p-type protein semiconductor, an n-type protein semiconductor, a p-type protein semiconductor, and an n-type protein semiconductor.
- a new thyristor can be obtained.
- This thyristor can be used for various applications.
- FIG. 30 is a circuit diagram showing a photosensor according to the tenth embodiment. As shown in FIG. 30, this photosensor includes a photodiode 71 composed of a bulk heterojunction photoelectric conversion element according to the sixth embodiment, and a single electron transistor 72 for amplifying the output of the photodiode 71. It is configured.
- the single electron transistor 72 is composed of a micro tunnel junction J 1 on the drain side and a micro tunnel junction J 2 on the source side.
- the capacitances of these micro tunnel junctions J 1 and J 2 are C 1 and C 2 , respectively.
- one electrode of the photodiode 71 is grounded via the load resistor R L , and the other electrode is connected to a positive power supply that supplies a positive voltage V PD for biasing the photodiode 72.
- the source of the single electron transistor 72 is grounded, and its drain is connected to a positive power supply that supplies a positive voltage Vcc via an output resistor Rout .
- the electrode on the load resistance RL side of the photodiode 71 and the gate of the single electron transistor 72 are connected to each other via a capacitor Cg .
- the capacitor Cg is charged by the voltage generated at both ends of the load resistance RL when the photodiode 71 is irradiated with light and a photocurrent flows, and the capacitor Cg is charged.
- a gate voltage V g is applied to the gate of the single electron transistor 72 via g .
- the photodiode 71 and the single electron transistor 72 are capacitively coupled as described above. Since the voltage gain at this time is given by C g / C 1 , the element connected to the next stage of the photosensor is driven by sufficiently reducing the capacitance C 1 of the minute tunnel junction J 1 . The output voltage Vout having a sufficiently large level can be easily obtained.
- a novel photosensor using a protein semiconductor that can be stably used for a long time can be realized.
- the photosensor is configured to amplify the output of the photodiode 71 by a single electron transistor 72. For this reason, compared with the conventional general photosensor which amplifies the output of a photodiode with the conventional normal transistor, the speed-up of photosensor, high sensitivity, and low power consumption can be achieved.
- FIG. 31 In this inverter circuit, a photoelectric conversion element 101 and a load resistor R L having the same configuration as the bulk heterojunction photoelectric conversion element according to the sixth embodiment are connected in series. A predetermined positive power supply voltage V DD is applied to one end of the load resistor RL , and the electrode is grounded.
- the photoelectric conversion element 101 When the photoelectric conversion element 101 is irradiated with light having an absorption wavelength of the photoelectric conversion element 101 as signal light, the photoelectric conversion element 101 is turned on and a photocurrent flows, whereby an output voltage Vout from an electrode (not shown) is at a low level. When the light irradiation is stopped, the photoelectric conversion element 101 is turned off and the photocurrent does not flow, so that the output voltage Vout from the electrode becomes a high level.
- a novel inverter circuit using a protein semiconductor that can be stably used for a long period of time can be configured, and various circuits such as a logic circuit can be configured using the inverter circuit. it can.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Peptides Or Proteins (AREA)
- Electroluminescent Light Sources (AREA)
- Thyristors (AREA)
- Bipolar Transistors (AREA)
- Photovoltaic Devices (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
そこで、本開示が解決しようとする課題は、タンパク質半導体の導電型を容易に制御することができるタンパク質半導体の導電型の制御方法、タンパク質半導体の製造方法およびタンパク質半導体を提供することである。
上記課題および他の課題は、添付図面を参照した本明細書の記述から明らかとなるであろう。
アミノ酸残基全体の電荷量を制御することによりタンパク質半導体の導電型を制御するタンパク質半導体の導電型の制御方法である。
ここで、タンパク質半導体の導電型は、p型またはn型あるいはi型である。
アミノ酸残基全体の電荷量を制御することによりタンパク質半導体の導電型を制御するタンパク質半導体の製造方法である。
アミノ酸残基全体の電荷量を制御することにより導電型を制御したタンパク質半導体である。
アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することによりpn接合を製造するpn接合の製造方法である。
アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合である。
アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することによりpn接合を製造する工程を有する半導体装置の製造方法である。
アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合を有する半導体装置である。
アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合を有する半導体装置を有する電子機器である。
1.第1の実施の形態(タンパク質半導体の導電型の制御方法)
2.第2の実施の形態(タンパク質半導体の製造方法およびタンパク質半導体)
3.第3の実施の形態(pn接合の製造方法およびpn接合)
4.第4の実施の形態(発光素子)
5.第5の実施の形態(量子カスケードレーザ)
6.第6の実施の形態(バルクヘテロ接合型光電変換素子)
7.第7の実施の形態(電場検出素子)
8.第8の実施の形態(バイポーラトランジスタ)
9.第9の実施の形態(サイリスタ)
10.第10の実施の形態(フォトセンサー)
11.第11の実施の形態(インバータ回路)
[タンパク質半導体の導電型の制御方法]
図1Aにタンパク質半導体の一例を示す。
図1Aに示すように、このタンパク質半導体は、塩基性のアミノ酸残基(以下、単に塩基性残基という。)B、酸性のアミノ酸残基(以下、単に酸性残基という。)Aおよび中性のアミノ酸残基(以下、単に中性残基という。)Nがペプチド結合により結合したものである。図1Aに示す塩基性残基B、酸性残基Aおよび中性残基Nの配列順序および個数は仮想的なものに過ぎず、配列順序および個数はタンパク質半導体によって異なる。便宜上、塩基性残基Bは四角形、酸性残基Aは三角系、中性残基Nは円形で表す。塩基性残基Bは、リシン(Lys)、アルギニン(Arg)またはヒスチジン(His)の残基である。酸性残基Aは、グルタミン酸(Glu)またはアスパラギン酸(Asp)の残基である。中性残基Nは、セリン(Ser)、スレオニン(Thr)、アスパラギン(Asn)、グルタミン(Gln)、アラニン(Ala)、システイン(Cys)、グリシン(Gly)、イソロイシン(Ile)、ロイシン(Leu)、メチオニン(Met)、フェニルアラニン(Phe)、プロリン(Pro)、トリプトファン(Trp)、チロシン(Tyr)またはバリン(Val)の残基である。
1.図1Aに示すタンパク質半導体の塩基性残基Bの1つまたは複数個を酸性残基Aに置換する。
図1Bにその一例を示す。図1Bに示すように、図1Aに示すタンパク質半導体の左から5番目の塩基性残基Bを酸性残基Aに置換する。これによって、この図1Bに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には減少する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であるのに対し、図1Bに示すタンパク質半導体はn型の光電流応答に変化する。
図1Cにその一例を示す。図1Cに示すように、図1Aに示すタンパク質半導体の左から5番目の塩基性残基Bを中性残基Nに置換する。これによって、この図1Cに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には減少する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であるのに対し、図1Cに示すタンパク質半導体はn型の光電流応答に変化する。
図1Dにその一例を示す。図1Dに示すように、図1Aに示すタンパク質半導体の左から4番目の酸性残基Aを中性残基Nに置換する。これによって、この図1Dに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には増加する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であったのに対し、図1Dに示すタンパク質半導体はn型の光電流応答に変化する。
図1Eにその一例を示す。図1Eに示すように、図1Aに示すタンパク質半導体の左から4番目の酸性残基Aを中性残基Nに置換する。これによって、この図1Eに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には増加する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であったのに対し、図1Eに示すタンパク質半導体はn型の光電流応答に変化する。
図1Fにその一例を示す。図1Fに示すように、図1Aに示すタンパク質半導体の左から3番目の中性残基Nを塩基性残基Bに置換する。これによって、この図1Fに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には増加する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であったのに対し、図1Fに示すタンパク質半導体はn型の光電流応答に変化する。
図1Gにその一例を示す。図1Gに示すように、図1Aに示すタンパク質半導体の左から3番目の中性残基Nを酸性残基Aに置換する。これによって、この図1Gに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には減少する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であったのに対し、図1Gに示すタンパク質半導体はn型の光電流応答に変化する。
・リシン残基(Lys)のアセチル化
タンパク質半導体の周りを囲む媒体は液体、ゲル、固体のいずれであってもよい。
例えば、図1Aに示すタンパク質半導体の周りを塩基性度の高い緩衝溶液や塩基性溶液や塩基性ポリマーなどで囲む。あるいは、例えば、図1Aに示すタンパク質半導体の周りを酸性度の高い緩衝溶液や酸性溶液や酸性ポリマーなどで囲む。これによって、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であるのに対し、このタンパク質半導体はn型の光電流応答に変化する。あるいは、図1Aに示すタンパク質半導体がn型の光電流応答であるのに対し、p型の光電流応答に変化する。
亜鉛置換チトクロムcはp型の光電流応答を示す。
亜鉛置換チトクロムcの塩基性残基の1つまたは複数個を酸性残基または中性残基に置換することにより、p型の光電流応答をn型の光電流応答に変換する。
GDVEKGKKIF VQKCAQCHTV EKGGKHKTGP
NLHGLFGRKT GQAPGFTYTD ANKNKGITWK
EETLMEYLEN PKKYIPGTKM IFAGIKKKTE
REDLIAYLKK ATNE
・リシン 5、7、8、13、22、25、27、39、53、55、60、72、73、79、86、87、88、99、100
・アルギニン 38、91
亜鉛置換チトクロムb562 はp型の光電流応答を示す。
亜鉛置換チトクロムb562 の酸性残基の1つまたは複数個を塩基性残基または中性残基に置換することにより、p型の光電流応答をn型の光電流応答に変換する。
TKMRAAALDA QKATPPKLED KSPDSPEMKD
FRHGFDILVG QIDDALKLAN EGKVKEAQAA
AEQLKTTRNA YHQKYR
・グルタミン酸 4、8、18、49、57、81、86、92
・アスパラギン酸 2、5、12、21、28、39、50、54、60、66、73、74
亜鉛置換チトクロムcの塩基性残基の1つまたは複数個を化学修飾により中性化または酸性化することにより、p型の光電流応答をn型の光電流応答に変換する。
亜鉛置換チトクロムb562 はn型の光電流応答を示す。
亜鉛置換チトクロムb562 の酸性残基の1つまたは複数個を化学修飾により中性化または塩基性化することにより、n型の光電流応答をp型の光電流応答に変換する。
亜鉛置換チトクロムcの中性残基の1つまたは複数個を化学修飾により酸性化することにより、p型の光電流応答をn型の光電流応答に変換する。例えば、中性残基である、OH基を持つスレオニンおよびチロシンをリン酸化することで酸性化する。
・トレオニン 19、28、40、47、49、58、63、78、89、102
・チロシン 48、67、74、97
亜鉛置換チトクロムb562 はn型の光電流応答を示す。
亜鉛置換チトクロムb562 の中性残基の1つまたは複数個を化学修飾により塩基性化することにより、n型の光電流応答をp型の光電流応答に変換する。例えば、中性残基である、OH基を持つセリン、トレオニンおよびチロシンはリン酸化することで酸性化する。
・スレオニン 9、31、44、96、97
・チロシン 101、105
・セリン 52、55
亜鉛置換チトクロムcの周りを塩基性度の高い緩衝溶液あるいは塩基性溶液あるいは塩基性ポリマーで囲むことにより、p型の光電流応答をn型の光電流応答に変換する。
亜鉛置換チトクロムb562 の周りを酸性度の高い緩衝溶液あるいは酸性溶液あるいは酸性ポリマーで囲むことにより、n型の光電流応答をp型の光電流応答に変換する。
ここで、亜鉛置換チトクロムb562 の調製方法およびその性質について説明する。
a.大腸菌由来チトクロムb562 の発現・精製方法
大腸菌由来チトクロムb562 の構造遺伝子を組み込んだプラスミド(Cyt-b562/pKK223-3)を作製し、大腸菌JM109株に形質転換した。発現・精製方法は非特許文献2に準じた。
1979年にX線結晶構造解析により決定されたチトクロムb562 の結晶構造(非特許文献3参照)を図7A、BおよびCに示す。ここで、図7Aはリボンモデルを示し、ヘムとその配位子アミノ酸を棒モデルで示す。図7Bはチトクロムb562 が図7Aと同じ向きの時の電荷分布を示し、楕円状の破線で囲まれた部分が一番強く負に帯電しているヘム-プロピオン酸露出面である(図7Cでも同様)。図7Cはチトクロムb562 を図7Bの状態から縦軸の周りに180度回転させた状態(図7Bに示す状態のチトクロムb562 の裏側)の電荷分布を示す。図7A、BおよびCに示すように、チトクロムb562 は4ヘリックスバンドル構造を有し、補欠分子族ヘムを1分子有する。そのヘムのプロピオン酸は分子から足を出すように露出している。図7Bに示す電荷分布を見ると、ちょうどそのヘムのプロピオン酸サイトに強い負電荷を持つことが分かる。したがって、金電極の表面に正電荷を持たせると、チトクロムb562 をヘムのプロピオン酸サイトで金電極に吸着させることができる。その模式図を図8に示す(ヘムのみ棒モデルで示す)。この例では、金電極11上に、最表面に正電荷を有する自己組織化単分子膜13を形成し、この自己組織化単分子膜13の最表面の正電荷とチトクロムb562 のヘムのプロピオン酸サイトの負電荷との間に働く静電引力によりチトクロムb562 が自己組織化単分子膜13に吸着している。
この金ドロップ電極を熱濃硫酸(120℃)で洗浄し、硫酸中の酸化還元サイクル処理で金ドロップ電極の表面のラフネス(粗さ)を増した。この金ドロップ電極を0.1mM 11-アミノウンデカンチオール(H2 N-C11-SH)/エタノール溶液に室温で16時間以上浸し、金ドロップ電極の表面に自己組織化単分子膜13としてH2 N-C11-SH膜を形成した。こうしてH2 N-C11-SH膜を形成した金ドロップ電極に圧縮エアを当てて乾燥後、50μMチトクロムb562 /4.4mMリン酸カリウム(pH7.2)溶液60μLにソーキングし、4℃で一昼夜インキュベートした。
亜鉛置換チトクロムb562 の調製法はすでにHamachiらによる報告(非特許文献4)があるため、それに準じて亜鉛置換チトクロムb562 の調製を行った。
金電極11として直径2mmの金ドロップ電極を形成した。
[タンパク質半導体の製造方法およびタンパク質半導体]
第2の実施の形態においては、第1の実施の形態によるタンパク質半導体の導電型の制御方法を用いて所望の導電型のタンパク質半導体、具体的には、p型タンパク質半導体、n型タンパク質半導体またはi型タンパク質半導体を製造する。
[pn接合の製造方法およびpn接合]
第3の実施の形態においては、第2の実施の形態により製造されたp型タンパク質半導体およびn型タンパク質半導体を互いに接合してpn接合を製造する。
以上より、このpn接合は、シリコンなどを用いた従来のpn接合と同様に働くことが分かる。
p型タンパク質半導体21として例えばp型の亜鉛置換チトクロムcを用い、n型タンパク質半導体22として例えばn型の亜鉛置換チトクロムb562 を用いる。
p型の亜鉛置換チトクロムcにおけるpチャネルの出入り口は、ポルフィリン環(Porπ+Zn-Sπ)とLys7(図17)あるいはポルフィリン環(Porπ+Zn-Sπ)とAsn54(図18)である。図17に示すポルフィリン環(Porπ+Zn-Sπ)およびLys7の分子軌道はそれぞれ軌道番号3268および3270であり、ポルフィリン環(Porπ+Zn-Sπ)とLys7との間の正孔の遷移速度は2.0×1010sec-1、両者の距離は16.5Åである。図18に示すポルフィリン環(Porπ+Zn-Sπ)およびAsn54の分子軌道はそれぞれ軌道番号3272および3271であり、ポルフィリン環(Porπ+Zn-Sπ)とAsn54との間の正孔の遷移速度は1.5×1011sec-1、両者の距離は17.2Åである。
[発光素子]
第4の実施の形態においては、第3の実施の形態によるpn接合を用いた発光素子について説明する。
この発光素子は、図14Aに示すように、p型タンパク質半導体21とn型タンパク質半導体22とが互いに接合したpn接合により構成される。
この発光素子の動作時には、pn接合を順方向バイアス、具体的にはp型タンパク質半導体21とn型タンパク質半導体22との間にp型タンパク質半導体21の方がn型タンパク質半導体22よりも電位が高くなるような電圧を印加することにより、pn接合に順方向電流を流す。この際、図21に示すように、pn接合の接合部にp型タンパク質半導体21から電子(e- )、n型タンパク質半導体22から正孔(h+ )がそれぞれ注入され、これらの電子および正孔が再結合することにより光子(hν)が発生する。こうして、発光素子から光が取り出される。
[量子カスケードレーザ]
第5の実施の形態においては、n型タンパク質半導体またはp型タンパク質半導体を用いた量子カスケードレーザについて説明する。
[バルクヘテロ接合型光電変換素子]
第6の実施の形態においては、バルクヘテロ接合型光電変換素子について説明する。
図24はこのバルクヘテロ接合型光電変換素子を示す。
p型の導電性ポリマーおよび/または高分子半導体31として、p型のポリアニリンスルホン酸(PASA)を用いる。タンパク質半導体32として亜鉛置換チトクロムcを用いる。
[電場検出素子]
第7の実施の形態においては、電場検出素子について説明する。
この電場検出素子は、p型タンパク質半導体、n型タンパク質半導体またはp型タンパク質半導体とn型タンパク質半導体とを互いに接合したpn接合により構成される。
電場中におけるこの電場検出素子のハミルトニアンをHで表すと、
H=H0 +H1
と表される。ここで、H0 は0次のハミルトニアン、H1 は一次のハミルトニアン(一次の摂動)である。H1 はz方向の双極子モーメントに電場εを掛けた値であり、
H1 =ezε
と表される。ここで、eは電子電荷である。
[バイポーラトランジスタ]
第8の実施の形態においては、バイポーラトランジスタについて説明する。
p型タンパク質半導体、n型タンパク質半導体およびp型タンパク質半導体を順次接合することによりpnp型バイポーラトランジスタを構成することができる。あるいは、n型タンパク質半導体、p型タンパク質半導体およびn型タンパク質半導体を順次接合することによりnpn型バイポーラトランジスタを構成することができる。
[サイリスタ]
第9の実施の形態においては、サイリスタについて説明する。
このサイリスタは、例えば、p型タンパク質半導体、n型タンパク質半導体、p型タンパク質半導体およびn型タンパク質半導体を順次接合することにより構成されるpnpn型サイリスタである。
[フォトセンサー]
図30は第10の実施の形態によるフォトセンサーを示す回路図である。
図30に示すように、このフォトセンサーは、第6の実施の形態によるバルクヘテロ接合型光電変換素子からなるフォトダイオード71と、このフォトダイオード71の出力を増幅するための単一電子トランジスタ72とにより構成されている。単一電子トランジスタ72はドレイン側の微小トンネル接合J1 とソース側の微小トンネル接合J2 とにより構成されている。これらの微小トンネル接合J1 、J2 の容量をそれぞれC1 、C2 とする。例えば、フォトダイオード71の一方の電極は負荷抵抗RL を介して接地されており、他方の電極はフォトダイオード72をバイアスするための正電圧VPDを供給する正極電源に接続されている。一方、単一電子トランジスタ72のソースは接地されており、そのドレインは出力抵抗Rout を介して正電圧Vccを供給する正極電源に接続されている。そして、フォトダイオード71の負荷抵抗RL 側の電極と単一電子トランジスタ72のゲートとが容量Cg を介して互いに接続されている。
[インバータ回路]
次に、第11の実施の形態によるインバータ回路について説明する。
このインバータ回路を図31に示す。図31に示すように、このインバータ回路においては、第6の実施の形態によるバルクヘテロ接合型光電変換素子と同様な構成の光電変換素子101と負荷抵抗RL とが直列に接続されている。負荷抵抗RL の一端に所定の正の電源電圧VDDが印加されるとともに、電極が接地される。光電変換素子101に信号光としてこの光電変換素子101の吸収波長の光を照射すると光電変換素子101がオンして光電流が流れることにより電極(図示せず)からの出力電圧Vout はローレベルとなり、光の照射を止めると光電変換素子101がオフして光電流が流れなくなることにより電極からの出力電圧Vout はハイレベルとなる。
例えば、上述の実施の形態および実施例において挙げた数値、構造、構成、形状、材料などはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、構成、形状、材料などを用いてもよい。
Claims (13)
- アミノ酸残基全体の電荷量を制御することによりタンパク質半導体の導電型を制御するタンパク質半導体の製造方法。
- タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を自身の性質と異なる性質を有するアミノ酸残基に置換し、または、タンパク質に酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を付加し、または、タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を欠損させ、または、タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を化学修飾し、または、タンパク質の周りを囲む媒体の極性を制御することにより、アミノ酸残基全体の電荷量を制御する請求項1記載のタンパク質半導体の製造方法。
- 上記タンパク質は電子伝達タンパク質である請求項2記載のタンパク質半導体の製造方法。
- 上記電子伝達タンパク質は金属を含む請求項3記載のタンパク質半導体の製造方法。
- 上記電子伝達タンパク質は亜鉛置換チトクロムcまたは亜鉛置換チトクロムb562 である請求項4記載のタンパク質半導体の製造方法。
- アミノ酸残基全体の電荷量を制御することにより導電型を制御したタンパク質半導体。
- アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することによりpn接合を製造するpn接合の製造方法。
- アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合。
- アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することによりpn接合を製造する工程を有する半導体装置の製造方法。
- 上記半導体装置は受光素子または発光素子である請求項9記載の半導体装置の製造方法。
- アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合を有する半導体装置。
- アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合を有する半導体装置を有する電子機器。
- アミノ酸残基全体の電荷量を制御することによりタンパク質半導体の導電型を制御するタンパク質半導体の導電型の制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280024516.9A CN103548166A (zh) | 2011-05-27 | 2012-05-16 | 制造蛋白质半导体的方法 |
EP12792862.0A EP2717345A4 (en) | 2011-05-27 | 2012-05-16 | PROCESS FOR PRODUCING A PROTEIN SEMICONDUCTOR |
KR1020137030301A KR20140026493A (ko) | 2011-05-27 | 2012-05-16 | 단백질 반도체의 제조 방법 |
US14/119,130 US20140183487A1 (en) | 2011-05-27 | 2012-05-16 | Method of manufacturing protein semiconductor, protein semiconductor, method of manufacturing pn junction, pn junction, method of manufacturing semiconductor apparatus, semiconductor apparatus, electronic apparatus, and method of controlling conductivity type of protein semiconductor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011119329A JP2012248684A (ja) | 2011-05-27 | 2011-05-27 | タンパク質半導体の製造方法、タンパク質半導体、pn接合の製造方法、pn接合、半導体装置の製造方法、半導体装置、電子機器およびタンパク質半導体の導電型の制御方法 |
JP2011-119329 | 2011-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012164849A1 true WO2012164849A1 (ja) | 2012-12-06 |
Family
ID=47258726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/003200 WO2012164849A1 (ja) | 2011-05-27 | 2012-05-16 | タンパク質半導体の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140183487A1 (ja) |
EP (1) | EP2717345A4 (ja) |
JP (1) | JP2012248684A (ja) |
KR (1) | KR20140026493A (ja) |
CN (1) | CN103548166A (ja) |
WO (1) | WO2012164849A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6310569A (ja) * | 1986-07-01 | 1988-01-18 | Mitsubishi Electric Corp | 素子分離構造 |
JPS6319855A (ja) * | 1986-07-11 | 1988-01-27 | Mitsubishi Electric Corp | 生物電気素子 |
JPS6319867A (ja) * | 1986-07-11 | 1988-01-27 | Mitsubishi Electric Corp | 抵抗素子 |
JPH0428165A (ja) * | 1990-05-24 | 1992-01-30 | Komatsu Ltd | タンパク質を電子素子とする電極系 |
JP2007220445A (ja) | 2006-02-16 | 2007-08-30 | Sony Corp | 光電変換素子、半導体装置および電子機器 |
JP2009021501A (ja) | 2007-07-13 | 2009-01-29 | Sony Corp | 分子素子、単分子光スイッチ素子、機能素子、分子ワイヤーおよび電子機器 |
US20090305432A1 (en) * | 2005-10-17 | 2009-12-10 | Lance Liotta | Polypeptide Molecular Switch |
JP2010251533A (ja) * | 2009-04-16 | 2010-11-04 | Sony Corp | 分子素子、撮像素子、光センサーおよび電子機器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8624227B2 (en) * | 2005-02-22 | 2014-01-07 | Ramot At Tel-Aviv University Ltd. | Optoelectronic device and method of fabricating the same |
US9023989B2 (en) * | 2008-02-19 | 2015-05-05 | University Of Connecticut | Protein-based photovoltaics and methods of use |
JP5560727B2 (ja) * | 2009-08-28 | 2014-07-30 | ソニー株式会社 | 非接液全固体型タンパク質光電変換素子およびその製造方法ならびに電子機器 |
-
2011
- 2011-05-27 JP JP2011119329A patent/JP2012248684A/ja not_active Ceased
-
2012
- 2012-05-16 WO PCT/JP2012/003200 patent/WO2012164849A1/ja active Application Filing
- 2012-05-16 US US14/119,130 patent/US20140183487A1/en not_active Abandoned
- 2012-05-16 KR KR1020137030301A patent/KR20140026493A/ko not_active Application Discontinuation
- 2012-05-16 EP EP12792862.0A patent/EP2717345A4/en not_active Withdrawn
- 2012-05-16 CN CN201280024516.9A patent/CN103548166A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6310569A (ja) * | 1986-07-01 | 1988-01-18 | Mitsubishi Electric Corp | 素子分離構造 |
JPS6319855A (ja) * | 1986-07-11 | 1988-01-27 | Mitsubishi Electric Corp | 生物電気素子 |
JPS6319867A (ja) * | 1986-07-11 | 1988-01-27 | Mitsubishi Electric Corp | 抵抗素子 |
JPH0428165A (ja) * | 1990-05-24 | 1992-01-30 | Komatsu Ltd | タンパク質を電子素子とする電極系 |
US20090305432A1 (en) * | 2005-10-17 | 2009-12-10 | Lance Liotta | Polypeptide Molecular Switch |
JP2007220445A (ja) | 2006-02-16 | 2007-08-30 | Sony Corp | 光電変換素子、半導体装置および電子機器 |
JP2009021501A (ja) | 2007-07-13 | 2009-01-29 | Sony Corp | 分子素子、単分子光スイッチ素子、機能素子、分子ワイヤーおよび電子機器 |
JP2010251533A (ja) * | 2009-04-16 | 2010-11-04 | Sony Corp | 分子素子、撮像素子、光センサーおよび電子機器 |
Non-Patent Citations (8)
Title |
---|
D.D.ELEY, R.B.LESLIE: "Electronic Aspects of Biochemistry", 1964, ACADEMIC PRESS, pages: 105 |
HAMACHI,I.; TAKASHIMA,H.; TSUKIJI,S.SHINKAI,S.,NAGAMUNE,T.; OIS HI,S., CHEM.LETT., 1999, pages 551 |
ITAGAKI,E.; PALMER,G.; HAGER,L.P., J.BIOL.CHEM., vol. 242, 1967, pages 2272 |
MATHEWS,F.S.; BETHGE,P.H.; CZERWINSKI,E.W., J.BIOL.CHEM., vol. 254, 1979, pages 1699 |
NIKKILA,H.; GENNIS,R.B.; SLIGER,S.G., EUR.J.BIOCHEM., vol. 202, 1991, pages 309 |
See also references of EP2717345A4 |
TATSURO GODA ET AL.: "Molecularly Engineered Charge-Conversion of Proteins for Sensitive Biosensing", ANALYTICAL CHEMISTRY, vol. 82, no. 21, 1 December 2010 (2010-12-01), pages 8946 - 8953, XP055136748 * |
TOKITA, Y. AND 4 OTHERS, J.AM.CHEM.SOC., vol. 130, 2008, pages 5302 |
Also Published As
Publication number | Publication date |
---|---|
KR20140026493A (ko) | 2014-03-05 |
EP2717345A4 (en) | 2014-11-05 |
JP2012248684A (ja) | 2012-12-13 |
EP2717345A1 (en) | 2014-04-09 |
CN103548166A (zh) | 2014-01-29 |
US20140183487A1 (en) | 2014-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Miao et al. | Recent progress on highly sensitive perovskite photodetectors | |
Baeg et al. | Organic light detectors: photodiodes and phototransistors | |
Nagy et al. | Photosynthetic machineries in nano-systems | |
Tan et al. | Generation of alternating current in response to discontinuous illumination by photoelectrochemical cells based on photosynthetic proteins | |
Bristow et al. | Nonfullerene-based organic photodetectors for ultrahigh sensitivity visible light detection | |
Dastoor et al. | Understanding and improving solid-state polymer/C60-fullerene bulk-heterojunction solar cells using ternary porphyrin blends | |
JP5580976B2 (ja) | 有機薄膜太陽電池 | |
CN101866755B (zh) | 分子器件、成像器件、光传感器以及电子设备 | |
Buscemi et al. | Chlorophylls as molecular semiconductors: introduction and state of art | |
Roslan et al. | Investigation of VTP: PC71BM organic composite as highly responsive organic photodetector | |
Qadir et al. | Binary blend based dye sensitized photo sensor using PCPDTBT and MEH-PPV composite as a light sensitizer | |
US8952357B2 (en) | Cytochrome c552 color imaging element and method of manufacturing the same, cytochrome c552 photosensor and method of manufacturing the same, cytochrome c552 photoelectric transducer and method of manufacturing the same, and cytochrome c552 electronic device | |
Erten et al. | Bilayer heterojunction solar cell based on naphthalene bis-benzimidazole | |
JP2008522428A (ja) | 隔離された光合成複合体を使用する固体感光性デバイス | |
WO2012164849A1 (ja) | タンパク質半導体の製造方法 | |
Yang et al. | Opposite photocurrent response to ultraviolet and visible light | |
Ravi et al. | Electronics, photonics, and device physics in protein biophotovoltaics | |
Weng et al. | Organic ternary bulk heterojunction broadband photodetectors based on nonfullerene acceptors with a spectral response range from 200 to 1050 nm | |
Hasobe et al. | Fullerene-based supramolecular nanoclusters with poly [2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene] for light energy conversion | |
JP2011233692A (ja) | 光電変換素子、有機太陽電池及びそれらを用いた光電変換装置 | |
Guo | Low noise, high detectivity photodetectors based on organic materials | |
US20120138770A1 (en) | Non-wetted all solid protein photoelectric conversion device, method of manufacturing the same, and electronic device | |
Chamola et al. | Organic Solar Cells: Structural Variety, Effect of Layers, and Applications | |
Kaushik et al. | Organic solar cells: design, synthesis and characterization | |
Nagy et al. | No alternatives to photosynthesis: from molecules to nanostructures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12792862 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012792862 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137030301 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14119130 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |