WO2012164849A1 - タンパク質半導体の製造方法 - Google Patents

タンパク質半導体の製造方法 Download PDF

Info

Publication number
WO2012164849A1
WO2012164849A1 PCT/JP2012/003200 JP2012003200W WO2012164849A1 WO 2012164849 A1 WO2012164849 A1 WO 2012164849A1 JP 2012003200 W JP2012003200 W JP 2012003200W WO 2012164849 A1 WO2012164849 A1 WO 2012164849A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
protein
type
amino acid
protein semiconductor
Prior art date
Application number
PCT/JP2012/003200
Other languages
English (en)
French (fr)
Inventor
戸木田 裕一
義夫 後藤
イ ラ
啓 中丸
斉爾 山田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201280024516.9A priority Critical patent/CN103548166A/zh
Priority to EP12792862.0A priority patent/EP2717345A4/en
Priority to KR1020137030301A priority patent/KR20140026493A/ko
Priority to US14/119,130 priority patent/US20140183487A1/en
Publication of WO2012164849A1 publication Critical patent/WO2012164849A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/795Porphyrin- or corrin-ring-containing peptides
    • C07K14/80Cytochromes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/761Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/43Bipolar transistors, e.g. organic bipolar junction transistors [OBJT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a protein semiconductor manufacturing method, a protein semiconductor, a pn junction manufacturing method, a pn junction, a semiconductor device manufacturing method, a semiconductor device, an electronic device, and a protein semiconductor conductivity control method.
  • Protein is expected as a next-generation functional element or a material to replace a conventional semiconductor element using a semiconductor such as silicon. While miniaturization of conventional semiconductor elements is limited to a size of several tens of nm, proteins exhibit sophisticated and complicated functions at a much smaller size of 2 to 10 nm.
  • Non-Patent Document 1 It is known that proteins have semiconductor properties (see, for example, Non-Patent Document 1). However, its property is based on the fact that the band gap of the protein itself is 2 to 3 electron volts (eV). On the other hand, in order to manufacture a semiconductor element using a protein semiconductor, it is necessary to control the conductivity type of the protein semiconductor, that is, to be able to control the protein semiconductor to be p-type or n-type.
  • a problem to be solved by the present disclosure is to provide a protein semiconductor conductivity type control method, a protein semiconductor manufacturing method, and a protein semiconductor capable of easily controlling the protein semiconductor conductivity type.
  • Another problem to be solved by the present disclosure is to provide a method of manufacturing a pn junction using a protein semiconductor, a pn junction, a method of manufacturing a semiconductor device using the pn junction, a semiconductor device, and an electronic apparatus having the semiconductor device. is there.
  • This is a method for controlling the conductivity type of a protein semiconductor, which controls the conductivity type of the protein semiconductor by controlling the amount of charge of the entire amino acid residue.
  • the conductivity type of the protein semiconductor is p-type, n-type, or i-type.
  • this disclosure is a method for producing a protein semiconductor in which the conductivity type of the protein semiconductor is controlled by controlling the charge amount of the entire amino acid residue.
  • this disclosure It is a protein semiconductor whose conductivity type is controlled by controlling the charge amount of the entire amino acid residue.
  • a p-type protein semiconductor and an n-type protein semiconductor are produced by controlling the charge amount of the entire amino acid residue, and a pn junction is produced by joining these p-type protein semiconductor and n-type protein semiconductor to each other. It is a manufacturing method.
  • this disclosure is a pn junction produced by producing a p-type protein semiconductor and an n-type protein semiconductor by controlling the charge amount of the entire amino acid residue, and joining these p-type protein semiconductor and n-type protein semiconductor to each other.
  • this disclosure A process of producing a p-type protein semiconductor and an n-type protein semiconductor by controlling the charge amount of the entire amino acid residue, and producing a pn junction by joining the p-type protein semiconductor and the n-type protein semiconductor to each other.
  • a method for manufacturing a semiconductor device A process of producing a p-type protein semiconductor and an n-type protein semiconductor by controlling the charge amount of the entire amino acid residue, and producing a pn junction by joining the p-type protein semiconductor and the n-type protein semiconductor to each other.
  • this disclosure A semiconductor having a pn junction produced by producing a p-type protein semiconductor and an n-type protein semiconductor by controlling the amount of charge of the entire amino acid residue, and joining these p-type protein semiconductor and n-type protein semiconductor to each other Device.
  • this disclosure A semiconductor having a pn junction produced by producing a p-type protein semiconductor and an n-type protein semiconductor by controlling the amount of charge of the entire amino acid residue, and joining these p-type protein semiconductor and n-type protein semiconductor to each other An electronic device having a device.
  • acidic amino acid residues, basic amino acid residues and neutral amino acid residues contained in the protein may be used.
  • One or more of the groups are replaced with amino acid residues having properties that are different from their properties.
  • one or more of an acidic amino acid residue, a basic amino acid residue, and a neutral amino acid residue is added to the protein.
  • one or more of acidic amino acid residues, basic amino acid residues and neutral amino acid residues contained in the protein are deleted.
  • one or more of acidic amino acid residues, basic amino acid residues and neutral amino acid residues contained in the protein are chemically modified.
  • the polarity of the media surrounding the protein is controlled. You may combine these methods as needed.
  • the charge amount of the entire amino acid residue can be controlled by photodoping by irradiating the protein with light to generate electron-hole pairs.
  • the protein is preferably an electron transfer protein.
  • the electron transfer protein is generally an electron transfer protein containing a metal. This metal is preferably a transition metal having electrons in a high-energy orbit higher than the d orbit.
  • Electron transfer proteins include iron-sulfur proteins (eg, rubredoxin, ferric ferredoxin, triiron ferredoxin, tetrairon ferredoxin, etc.), blue copper proteins (eg, plastocyanin, azurin, pseudoazurin, plantacyanin, stellacyanin, Amishianin etc.), cytochrome compound (such as cytochrome c, metal-substituted cytochrome c, metal-substituted cytochrome c 552 the iron metal center of the heme of cytochrome c 552 was replaced by other metals, modified zinc porphyrin cytochrome c 552, cytochrome b, Cytochrome b 5 , cytochrome c 1
  • Absent For example, by using derivatives of these electron transfer proteins (skeleton amino acid residues chemically modified) or variants thereof (part of the backbone amino acid residues partially substituted with other amino acid residues) Also good. Metals such as metal-substituted cytochrome c, metal-substituted cytochrome c 552 , and metal-substituted cytochrome b 562 are selected as necessary.
  • the semiconductor device uses a pn junction (including a pin junction in which an intrinsic (i-type) protein semiconductor is sandwiched between a p-type protein semiconductor and an n-type protein semiconductor), basically any semiconductor device can be used. It may be something like this.
  • the semiconductor device is a light receiving element, a light emitting element, an electric field detecting element, a carrier traveling element (such as a transistor), or the like.
  • the electric field detection element can be constituted not only by a pn junction but also by using a single p-type protein semiconductor or a single n-type protein semiconductor.
  • the charge amount of the entire amino acid residue of the protein used as the starting material is determined as one of acidic amino acid residues, basic amino acid residues, and neutral amino acid residues contained in the protein.
  • the conductivity type of the obtained protein semiconductor can be controlled by controlling one or more by various methods such as substituting amino acid residues having properties different from their own properties.
  • the conductivity type of the protein semiconductor can be easily controlled.
  • a pn junction made of a protein semiconductor can be easily manufactured, and a novel semiconductor device can be easily realized using the pn junction.
  • a high-performance electronic device can be realized using this semiconductor device.
  • FIG. 3 is a schematic diagram showing the structure of zinc-substituted cytochrome b 562 and the positions of basic amino acid residues. It is a basic diagram which shows the structure of a zinc substituted cytochrome c, and the position of a neutral amino acid residue.
  • FIG. 3 is a schematic diagram showing the structure of zinc-substituted cytochrome b 562 and the positions of neutral amino acid residues.
  • FIG. 2 is a schematic diagram showing a structure of cytochrome b 562.
  • FIG. It is a basic diagram which shows typically a mode that cytochrome b 562 adsorb
  • FIG. 6 is a schematic diagram showing a current-voltage curve obtained using a zinc-substituted cytochrome b 562 immobilized gold drop electrode. It is an energy band figure at the time of zero bias of pn junction by this 3rd embodiment, and this pn junction. It is an energy band figure at the time of forward bias of pn junction by this 3rd embodiment, and this pn junction. It is an energy band figure at the time of reverse bias of pn junction by this 3rd embodiment, and this pn junction.
  • FIG. 1A shows an example of a protein semiconductor.
  • this protein semiconductor has basic amino acid residues (hereinafter simply referred to as basic residues) B, acidic amino acid residues (hereinafter simply referred to as acidic residues) A and neutrality.
  • Amino acid residues (hereinafter simply referred to as neutral residues) N are linked by peptide bonds.
  • the sequence order and number of the basic residue B, acidic residue A, and neutral residue N shown in FIG. 1A are only virtual, and the sequence order and number vary depending on the protein semiconductor.
  • Basic residue B is represented by a square, the acidic residue A by a triangular system, and the neutral residue N by a circle.
  • Basic residue B is a residue of lysine (Lys), arginine (Arg) or histidine (His).
  • Acidic residue A is a residue of glutamic acid (Glu) or aspartic acid (Asp).
  • Neutral residues N are serine (Ser), threonine (Thr), asparagine (Asn), glutamine (Gln), alanine (Ala), cysteine (Cys), glycine (Gly), isoleucine (Ile), leucine (Leu). ), Methionine (Met), phenylalanine (Phe), proline (Pro), tryptophan (Trp), tyrosine (Tyr) or valine (Val).
  • FIG. 1A A method for controlling the properties of the protein semiconductor shown in FIG. 1A will be described.
  • One or more of the basic residues B of the protein semiconductor shown in FIG. An example is shown in FIG. 1B.
  • the fifth basic residue B from the left of the protein semiconductor shown in FIG. Accordingly, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1B changes, specifically, decreases with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
  • the protein semiconductor shown in FIG. 1A has a p-type photocurrent response
  • the protein semiconductor shown in FIG. 1B changes to an n-type photocurrent response.
  • FIG. 1C One or more of the basic residues B of the protein semiconductor shown in FIG. An example is shown in FIG. 1C.
  • the fifth basic residue B from the left of the protein semiconductor shown in FIG. Thereby, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1C changes, specifically, decreases with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
  • the protein semiconductor shown in FIG. 1A has a p-type photocurrent response
  • the protein semiconductor shown in FIG. 1C changes to an n-type photocurrent response.
  • FIG. 1D One or more of the acidic residues A of the protein semiconductor shown in FIG. An example is shown in FIG. 1D.
  • the fourth acidic residue A from the left of the protein semiconductor shown in FIG. As a result, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1D changes, specifically increases, with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
  • the protein semiconductor shown in FIG. 1A has a p-type photocurrent response, whereas the protein semiconductor shown in FIG. 1D changes to an n-type photocurrent response.
  • FIG. 1E One or more of acidic residues A of the protein semiconductor shown in FIG. An example is shown in FIG. 1E.
  • the fourth acidic residue A from the left of the protein semiconductor shown in FIG. As a result, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1E changes, specifically increases, with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
  • the protein semiconductor shown in FIG. 1A has a p-type photocurrent response, whereas the protein semiconductor shown in FIG. 1E changes to an n-type photocurrent response.
  • FIG. 1F One or more neutral residues N of the protein semiconductor shown in FIG. An example is shown in FIG. 1F.
  • the third neutral residue N from the left of the protein semiconductor shown in FIG. As a result, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1F changes, specifically increases, with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
  • the protein semiconductor shown in FIG. 1A has a p-type photocurrent response, whereas the protein semiconductor shown in FIG. 1F changes to an n-type photocurrent response.
  • FIG. 1G One or more of the neutral residues N of the protein semiconductor shown in FIG. An example is shown in FIG. 1G.
  • the third neutral residue N from the left of the protein semiconductor shown in FIG. Accordingly, the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1G changes, specifically, decreases with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
  • the protein semiconductor shown in FIG. 1A has a p-type photocurrent response
  • the protein semiconductor shown in FIG. 1G changes to an n-type photocurrent response.
  • One or more of the basic residues B of the protein semiconductor shown in FIG. 1A are neutralized or acidified by chemical modification.
  • one or a plurality of acidic residues A of the protein semiconductor shown in FIG. 1A are neutralized or basified by chemical modification.
  • one or more neutral residues N of the protein semiconductor shown in FIG. 1A are acidified or basified by chemical modification.
  • the fifth basic residue B from the left of the protein semiconductor shown in FIG. 1A is chemically modified to be changed to a neutral residue or an acidic residue.
  • the total charge amount of the amino acid residues of the protein semiconductor changes, specifically decreases with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
  • the protein semiconductor shown in FIG. 1A has a p-type photocurrent response, whereas the protein semiconductor changes to an n-type photocurrent response.
  • the fourth acidic residue A from the left of the protein semiconductor shown in FIG. 1A is chemically modified to be changed to a neutral residue or a basic residue.
  • the total charge amount of amino acid residues of the protein semiconductor changes, specifically increases, with respect to the total charge amount of amino acid residues of the protein semiconductor shown in FIG. 1A.
  • the protein semiconductor shown in FIG. 1A has an n-type photocurrent response, whereas the protein semiconductor changes to a p-type photocurrent response.
  • the third neutral residue N from the left of the protein semiconductor shown in FIG. 1A is chemically modified to be changed into a basic residue or an acidic residue.
  • the total charge amount of the amino acid residues of the protein semiconductor changes, specifically increases or decreases with respect to the total charge amount of the amino acid residues of the protein semiconductor shown in FIG. 1A.
  • the protein semiconductor shown in FIG. 1A has an n-type photocurrent response, whereas the protein semiconductor changes to a p-type photocurrent response.
  • Examples of chemical modification methods are as follows. Acetylation of lysine residue (Lys) ⁇ Succinylation of serine residue (Ser) ⁇ Succinylation of threonine residue (Thr) ⁇ Disulfation of cysteine residues (Cys) ⁇ Esterification of aspartic acid residue (Asp) ⁇ Amidation of aspartic acid residue (Asp) ⁇ Esterification of glutamine residue (Glu) ⁇ Amidation of glutamine residue (Gln) ⁇ Phosphorylation of tyrosine residue (Tyr) -Phosphorylation of serine residue (Ser)
  • the polarity of the medium surrounding the protein semiconductor shown in FIG. 1A is controlled.
  • the medium surrounding the protein semiconductor may be liquid, gel, or solid.
  • the protein semiconductor shown in FIG. 1A is surrounded by a highly basic buffer solution, basic solution, basic polymer, or the like.
  • the protein semiconductor shown in FIG. 1A is surrounded by a highly acidic buffer solution, acidic solution, acidic polymer, or the like.
  • the protein semiconductor shown in FIG. 1A has a p-type photocurrent response, whereas the protein semiconductor changes to an n-type photocurrent response.
  • the protein semiconductor shown in FIG. 1A has an n-type photocurrent response, but changes to a p-type photocurrent response.
  • Zinc-substituted cytochrome c exhibits a p-type photocurrent response.
  • a p-type photocurrent response is converted to an n-type photocurrent response by replacing one or more of the basic residues of zinc-substituted cytochrome c with an acidic or neutral residue.
  • the amino acid sequence (one-letter code) of zinc-substituted cytochrome c is as follows.
  • the number of amino acid residues of zinc-substituted cytochrome c is 104.
  • FIG. 2 shows the position of the basic residue of zinc-substituted cytochrome c.
  • the basic residues of zinc-substituted cytochrome c are lysine (K for one letter symbol, Lys for three letter symbol) and arginine (R for one letter symbol, Arg for three letter symbol), and the residue numbers are as follows: is there. ⁇ Lysine 5, 7, 8, 13, 22, 25, 27, 39, 53, 55, 60, 72, 73, 79, 86, 87, 88, 99, 100 ⁇ Arginine 38, 91
  • Zinc-substituted cytochrome b 562 exhibits a p-type photocurrent response.
  • the p-type photocurrent response is converted to an n-type photocurrent response.
  • the amino acid sequence (single letter symbol) of zinc-substituted cytochrome b 562 is as follows.
  • the number of amino acid residues of zinc-substituted cytochrome b 562 is 106.
  • the acidic residues of zinc-substituted cytochrome b 562 are glutamic acid and aspartic acid, and the residue numbers are as follows. ⁇ Glutamic acid 4, 8, 18, 49, 57, 81, 86, 92 Aspartic acid 2, 5, 12, 21, 28, 39, 50, 54, 60, 66, 73, 74
  • Example 3 A p-type photocurrent response is converted to an n-type photocurrent response by neutralizing or acidifying one or more of the basic residues of zinc-substituted cytochrome c by chemical modification.
  • the position of the basic residue of zinc-substituted cytochrome c is as shown in FIG. 2, and the residue numbers of lysine and arginine, which are basic residues, are as described above.
  • a basic residue is converted into a neutral residue by introducing a neutral one as R by acetylation of a basic lysine residue. Specifically, for example, by introducing a non-charged substituent such as a methyl group or an ethyl group as R, a basic residue is converted to a neutral residue.
  • an acidic group such as a sulfonylmethylene group or a carbonylmethylene group is introduced as R.
  • Zinc-substituted cytochrome b 562 exhibits an n-type photocurrent response. By neutralizing or basifying one or more of the acidic residues of zinc-substituted cytochrome b 562 by chemical modification, the n-type photocurrent response is converted to a p-type photocurrent response.
  • the position of the acidic residue of zinc-substituted cytochrome b 562 is as shown in FIG. 3, and the residue numbers of glutamic acid and aspartic acid, which are acidic residues, are as described above.
  • an acidic residue is converted to a neutral residue by introducing a neutral one as R by esterification or amidation of glutamic acid or aspartic acid which is an acidic residue.
  • a neutral one as R for example, a non-charged substituent such as a methyl group or an ethyl group is introduced as R.
  • a basic group is introduced as R.
  • Example 5 By acidifying one or more of the neutral residues of zinc-substituted cytochrome c by chemical modification, a p-type photocurrent response is converted to an n-type photocurrent response. For example, it is acidified by phosphorylating threonine and tyrosine having an OH group, which are neutral residues.
  • FIG. 4 shows the positions of threonine and tyrosine, which are neutral residues having an OH group of zinc-substituted cytochrome c, and the residue numbers of threonine and tyrosine are as follows. Threonine 19, 28, 40, 47, 49, 58, 63, 78, 89, 102 Tyrosine 48, 67, 74, 97
  • Zinc-substituted cytochrome b 562 exhibits an n-type photocurrent response.
  • an n-type photocurrent response is converted to a p-type photocurrent response.
  • serine, threonine and tyrosine having an OH group which are neutral residues, are acidified by phosphorylation.
  • FIG. 5 shows the positions of threonine, tyrosine and serine, which are neutral residues having an OH group of zinc-substituted cytochrome b 562 , and the residue numbers are as follows. ⁇ Threonine 9, 31, 44, 96, 97 ⁇ Tyrosine 101, 105 ⁇ Serine 52, 55
  • Example 7 By surrounding the zinc-substituted cytochrome c with a highly basic buffer solution, basic solution, or basic polymer, the p-type photocurrent response is converted into an n-type photocurrent response.
  • Example 8 By surrounding the zinc-substituted cytochrome b 562 with a highly acidic buffer solution, acidic solution or acidic polymer, the n-type photocurrent response is converted into a p-type photocurrent response.
  • the preculture liquid cultured overnight at 37 ° C. in 100 mL of LB-Amp medium was transferred to Terrific broth 4 L (2 L ⁇ 2) and cultured at 37 ° C. for 5 to 6 hours.
  • 70 g of red cells could be obtained.
  • the frozen cells were suspended in 200 mL of 10 mM Tris-HCl (pH 8.0) containing 1 mM EDTA, 1 mM PMSF, 0.2 mg / mL Lysozyme, DTT (appropriate), and DNase (appropriate), and the cells were pulverized with ultrasonic waves.
  • 2M phosphoric acid was added to the centrifugal supernatant to adjust the pH to 4.55, and unnecessary proteins were spun down.
  • This sample was subjected to CM52 anion exchange column chromatography (column volume 80 mL, 50 to 150 mM KCl linear gradient / 50 mM potassium phosphate (pH 4.55)), Sephadex G50 Fine gel filtration chromatography (column volume 480 mL, 50 mM Tris-HCl). , 0.1 mM EDTA pH 8.0), and about 80 mg of cytochrome b 562 could be obtained.
  • the absorption spectrum of purified cytochrome b 562 is shown in FIG.
  • the measurement was performed in a state in which purified cytochrome b 562 was immersed in a 10 mM sodium phosphate (pH 7.0) buffer.
  • cytochrome b 562 was an oxidized form having absorption peaks at 418 nm and 532 nm.
  • dithionite was added to the buffer to obtain a reduced type, absorption peaks at 426 nm, 531 nm, and 562 nm were confirmed.
  • the amino acid sequence of the obtained cytochrome b 562 is as follows. In this amino acid sequence, underlined heme ligands methionine 7 and histidine 102 and isoleucine 17 play an important role, as described below.
  • FIGS. 7A, 7B and 7C show the crystal structure of cytochrome b 562 determined by X-ray crystal structure analysis in 1979 (see Non-Patent Document 3).
  • FIG. 7A shows a ribbon model, and shows heme and its ligand amino acid in a stick model.
  • FIG. 7B shows the charge distribution when cytochrome b 562 is in the same direction as FIG. 7A, and the portion surrounded by the elliptical broken line is the heme-propionic acid exposed surface that is most strongly negatively charged (FIG. 7C). But the same).
  • Figure 7C shows the charge distribution in the state rotated 180 degrees around the vertical axis cytochrome b 562 from the state of FIG. 7B (the back side of the cytochrome b 562 in the state shown in FIG. 7B).
  • cytochrome b 562 has a four-helix bundle structure and one molecule of prosthetic group heme. The heme propionic acid is exposed to stick out of the molecule. From the charge distribution shown in FIG. 7B, it can be seen that the heme propionate site has a strong negative charge. Therefore, when the surface of the gold electrode is positively charged, cytochrome b 562 can be adsorbed to the gold electrode at the heme propionate site.
  • FIG. 8 A schematic diagram thereof is shown in FIG. 8 (only the hem is shown by a stick model).
  • a self-assembled monolayer 13 having a positive charge on the outermost surface is formed on the gold electrode 11, and the positive charge on the outermost surface of the self-assembled monolayer 13 and the heme propion of cytochrome b 562 are formed.
  • Cytochrome b 562 is adsorbed to the self-assembled monolayer 13 by electrostatic attraction acting between the negative charges of the acid sites.
  • a gold drop electrode having a diameter of 2 mm was formed as a gold electrode.
  • This gold drop electrode was washed with hot concentrated sulfuric acid (120 ° C.), and the roughness (roughness) of the surface of the gold drop electrode was increased by oxidation-reduction cycle treatment in sulfuric acid.
  • This gold drop electrode is immersed in a 0.1 mM 11-aminoundecanethiol (H 2 N—C 11 -SH) / ethanol solution for 16 hours or more at room temperature, and H 2 as a self-assembled monolayer 13 is formed on the surface of the gold drop electrode.
  • An N—C 11 —SH film was formed.
  • the gold drop electrode thus formed with the H2 N—C11-SH film is dried by applying compressed air, soaked in 60 ⁇ L of 50 ⁇ M cytochrome b 562 /4.4 mM potassium phosphate (pH 7.2) solution, and incubated overnight at 4 ° C. did.
  • FIG. 9 shows a cyclic voltammogram measured by immersing the incubated gold drop electrode in 10 mM sodium phosphate (pH 7.0). The potential sweep rate is 1 V / s. As shown in FIG. 9, an adsorption-type cyclic voltammogram was obtained.
  • the effective surface area of cytochrome b 562 on the surface of the gold drop electrode is 1.7 ⁇ 0.6 pmol / cm 2
  • the redox potential is ⁇ 4 ⁇ 11 mV vs Ag / AgCl
  • the electron transfer rate constant between the cytochrome b 562 and the gold drop electrode was 90 ⁇ 12 s ⁇ 1 .
  • FIG. 9 shows a cyclic voltammogram when 11-aminoundecanethiol is mixed with 10% hydroxyundecanethiol.
  • Zinc protoporphyrin IX (ZnPP) was dissolved in dimethyl sulfoxide, and 2 equivalents were added to the apocytochrome b 562 solution.
  • the protein fraction was recovered using a Bio-gel P10 desalting column previously equilibrated with 50 mM Tris-HCl (pH 8.0) and 0.1 mM EDTA, and purified zinc-substituted cytochrome b 562 (Zn -Cyt b 562 ).
  • the absorption spectrum of the obtained zinc-substituted cytochrome b 562 is shown in FIG.
  • the measurement was performed in a state where zinc-substituted cytochrome b 562 was immersed in a 10 mM sodium phosphate (pH 7.0) buffer.
  • FIG. 10 there are absorption peaks at 280 nm, 357 nm, 429 nm, 554 nm, and 593 nm, and the positions coincide with those of Non-Patent Document 4.
  • the ratio of the absorbance at a wavelength of 429 nm to the absorbance at a wavelength of 554 nm was 11.05.
  • This gold drop electrode was washed with hot concentrated sulfuric acid (120 ° C.), and the roughness (roughness) of the surface of the gold drop electrode was increased by oxidation-reduction cycle treatment in sulfuric acid.
  • This gold drop electrode is immersed in a 0.1 mM 11-aminoundecanethiol (H 2 N—C 11 -SH) / ethanol solution for 16 hours or more at room temperature, and H 2 as a self-assembled monolayer 13 is formed on the surface of the gold drop electrode.
  • An N—C 11 —SH film was formed.
  • the gold drop electrode thus formed with the H 2 N—C 11 —SH film was dried by applying compressed air and then soaked in 60 ⁇ L of a 50 ⁇ M zinc-substituted cytochrome b 562 /4.4 mM potassium phosphate (pH 7.2) solution. Incubated overnight at 0 ° C.
  • the photocurrent measurement was performed in 10 mM sodium phosphate (pH 7.0) purged with nitrogen using Ag / AgCl as a reference electrode and a Pt mesh electrode as a counter electrode.
  • FIG. 11 shows the measurement results of photocurrent (photocurrent real-time waveform) at bias voltages of 300 mV, 0 mV, and ⁇ 300 mV.
  • FIG. 11 is a plot of current values with respect to time when light having a wavelength of 420 nm is irradiated for 30 seconds and turned off for 10 seconds. As shown in FIG. 11, a cathodic photocurrent was observed in this bias voltage range. The photocurrent action spectrum is shown in FIG. As shown in FIG.
  • the wavelengths showing the peak current are 418 to 420 nm, 550 nm, and 586 nm, which are greatly different from the absorption maximum wavelengths 429 nm, 554 nm, and 593 nm in the solution ultraviolet visible absorption spectrum of zinc-substituted cytochrome b 562 shown in FIG. ing.
  • the ratio of the photocurrent at a wavelength of 418 to 420 nm to the photocurrent at a wavelength of 550 nm is 3.7, which is much lower than the ratio of the photocurrent in the absorption spectrum shown in FIG.
  • a graph in which the photocurrent value at a wavelength of 420 nm is plotted against the potential E is shown in FIG. In FIG.
  • the conductivity type of the protein semiconductor can be easily controlled by controlling the charge amount of the entire amino acid residue of the protein semiconductor by various methods.
  • Second Embodiment> [Producing method of protein semiconductor and protein semiconductor]
  • a protein semiconductor having a desired conductivity type specifically, a p-type protein semiconductor, an n-type protein semiconductor, or the like using the protein semiconductor conductivity type control method according to the first embodiment Produces i-type protein semiconductors.
  • a p-type protein semiconductor, an n-type protein semiconductor, or an i-type protein semiconductor can be easily produced. For this reason, at least a part of the constituent elements of the electronic circuit is formed using a p-type protein semiconductor, an n-type protein semiconductor, an i-type protein semiconductor, or a pn junction obtained by joining a p-type protein semiconductor and an n-type protein semiconductor. be able to.
  • Third Embodiment> [Method of manufacturing pn junction and pn junction]
  • the p-type protein semiconductor and the n-type protein semiconductor produced according to the second embodiment are joined together to produce a pn junction.
  • FIG. 14A The pn junction thus manufactured is shown in FIG. 14A.
  • this pn junction is a p-type protein semiconductor 21 and an n-type protein semiconductor 22 joined together.
  • the p-type protein semiconductor 21 and the n-type protein semiconductor 22 are manufactured by controlling the total charge amount of the entire amino acid residue. Characterized by the polarity of the surface charge.
  • the surface of the p-type protein semiconductor 21 has a positive charge (+)
  • the surface of the n-type protein semiconductor 22 has a negative charge ( ⁇ ).
  • the position of the molecular orbitals, and hence the energy band can be controlled by controlling the surface charge of the protein semiconductor.
  • FIG. 14B shows the energy band of the pn junction at the time of zero bias.
  • the p-type protein semiconductor 21 is formed with a p-channel 21a that becomes a hole movement path by molecular orbitals
  • the n-type protein semiconductor 22 has an n-channel 22a that becomes an electron movement path by molecular orbitals. Is formed.
  • the energy of the n channel 22a is higher than the energy of the p channel 21a.
  • FIG. 15A shows a pn junction when a forward bias is applied.
  • FIG. 15B shows the energy band of the pn junction when forward bias is applied.
  • holes (h + ) move from the p channel 21a to the junction of the pn junction, and electrons (e ⁇ ) move from the n channel 22a.
  • a current flows through the pn junction, and some electrons and holes recombine.
  • FIG. 16A shows a pn junction when a reverse bias is applied.
  • FIG. 16B shows the energy band of the pn junction when a reverse bias is applied.
  • FIGS. 16A and 16B when a reverse bias is applied, both holes and electrons move away from the pn junction, so that almost no current flows through the pn junction. From the above, it can be seen that this pn junction works in the same manner as a conventional pn junction using silicon or the like.
  • Non-Patent Document 6 the mechanism of intramolecular charge (electron or hole) transfer of protein semiconductors is described in Non-Patent Document 6 and Patent Document 2. According to this, when a protein semiconductor is photoexcited, transition of electrons between molecular orbitals occurs, and as a result, electrons or holes move from one part of the protein semiconductor to another part.
  • p-type zinc-substituted cytochrome c is used as the p-type protein semiconductor 21
  • n-type zinc-substituted cytochrome b 562 is used as the n-type protein semiconductor 22, for example.
  • the entrance and exit of the p channel in the p-type zinc-substituted cytochrome c is a porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Lys7 (FIG. 17) or a porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Asn54 (FIG. 18).
  • the molecular orbitals of the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Lys7 shown in FIG. 17 are the orbital numbers 3268 and 3270, respectively, and the hole transition rate between the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Lys7 is 2.0 ⁇ 10. 10 sec -1, the distance between them is 16.5A.
  • the molecular orbitals of the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Asn54 shown in FIG. 18 are orbital numbers 3272 and 3271, respectively, and the transition speed of holes between the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Asn54 is 1.5 ⁇ 10. 11 sec ⁇ 1 , the distance between them is 17.2 km.
  • the n-channel entrance / exit of the p-type zinc-substituted cytochrome b 562 is a porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Gly70 (FIG. 19) or a porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Pro56 (FIG. 20).
  • the molecular orbitals of the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Gly70 shown in FIG. 19 are orbital numbers 3329 and 3331, respectively, and the transition rate of electrons between the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Gly70 is 5.3 ⁇ 10 11. sec ⁇ 1 , the distance between them is 16.1 km.
  • the molecular orbitals of the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Pro56 shown in FIG. 20 are orbital numbers 3329 and 3332, respectively, and the transition rate of electrons between the porphyrin ring (Por ⁇ + Zn—S ⁇ ) and Pro56 is 1.3 ⁇ 10 11. sec ⁇ 1 , the distance between them is 21.3 mm.
  • a pn junction in which the p-type protein semiconductor 21 and the n-type protein semiconductor 22 are joined to each other can be realized.
  • the pn junction can obtain the following advantages. That is, since the size of the p-type protein semiconductor 21 and the n-type protein semiconductor 22 is 2 to 10 nm, the pn junction can have a size of 4 to 20 nm, and can be configured extremely finely. For this reason, when integrating the pn junction, the integration density can be extremely increased.
  • this pn junction unlike a conventionally known pn junction using silicon or the like, since there is no space charge region in the junction, the movement time of electrons and holes across the junction is extremely short, and thus the response speed is very fast. Further, since the size of the p-type protein semiconductor 21 and the n-type protein semiconductor 22 is as small as 2 to 10 nm, there is no problem of the influence of impurities unlike a conventionally known pn junction using silicon or the like. Therefore, it is possible to increase the quantum efficiency when the pn junction is operated in the forward bias mode.
  • this light emitting element is configured by a pn junction in which a p-type protein semiconductor 21 and an n-type protein semiconductor 22 are joined to each other.
  • the pn junction is forward biased, specifically, the potential of the p-type protein semiconductor 21 between the p-type protein semiconductor 21 and the n-type protein semiconductor 22 is higher than that of the n-type protein semiconductor 22.
  • a forward current flows through the pn junction.
  • electrons (e ⁇ ) are injected from the p-type protein semiconductor 21 and holes (h + ) are injected from the n-type protein semiconductor 22 into the junction of the pn junction, respectively.
  • Photons (h ⁇ ) are generated by the recombination of the holes.
  • light is extracted from the light emitting element.
  • the energy difference between the p channel 21a and the channel 22a is determined by the voltage applied to the pn junction. Therefore, by controlling the voltage applied to the pn junction, it is possible to control the energy difference between the p-channel 21a and the channel 22a, and thus the wavelength of light extracted from this light-emitting element. In other words, the emission wavelength of this light emitting element is variable depending on the voltage applied to the pn junction.
  • electrons (e ⁇ ) injected from the p-type protein semiconductor 21 and holes (h + ) injected from the n-type protein semiconductor 22 are efficiently regenerated at the junction of the pn junction. Since they are coupled, a highly efficient light-emitting element can be obtained.
  • the energy of the p-channel 21a and the n-channel 22a can be controlled by controlling the surface charges of the p-type protein semiconductor 21 and the n-type protein semiconductor 22.
  • a plurality of types of n-type protein semiconductors 22 are manufactured so that the energy of the n-type protein semiconductor 22 in the n-channel 22a gradually decreases, and the plurality of types of n-type protein semiconductors 22 are connected to the n-channel 22a. Bonding is performed sequentially so that the energy decreases stepwise.
  • FIG. 22 shows the n-type quantum cascade laser thus obtained.
  • a plurality of types of p-type protein semiconductors 21 are manufactured so that the energy of the p-type protein semiconductor 21 in the p-channel 21a gradually decreases, and the energy of the p-channel 21a is changed to the plurality of types of p-type protein semiconductors 21. Join sequentially so as to lower in stages.
  • FIG. 23 shows the p-type quantum cascade laser thus obtained.
  • the n channel 22 a having the highest energy between the n-type protein semiconductor 22 at one end and the n-type protein semiconductor 22 at the other end is the highest.
  • a voltage is applied so that the potential of the n-type protein semiconductor 22 is lower than that of the n-type protein semiconductor 22 having the lowest energy of the n-channel 22a.
  • electrons transition from the n-channel 22a of the n-type protein semiconductor 22 having the highest energy of the n-channel 22a to the n-channel 22a of the n-type protein semiconductor 22 having the next highest energy of the n-channel 22a.
  • Photons (h ⁇ ) of energy corresponding to the energy difference between the n-channels 22 a are generated from the junction of the type protein semiconductor 22. Similarly, electrons transition between n-channels 22a of a pair of n-type protein semiconductors 22 adjacent to each other, and photons having energy corresponding to the energy difference between them are generated.
  • the wavelengths of light generated from each junction can be made different from each other.
  • this n-type quantum cascade laser it is possible to take out a plurality of lights having different emission wavelengths, and it is possible to obtain a wavelength-tunable n-type quantum cascade laser by selecting the emission wavelength to be taken out.
  • the energy of the p channel 21a is the lowest between the p-type protein semiconductor 21 at one end and the p-type protein semiconductor 21 at the other end.
  • a voltage is applied so that the p-type protein semiconductor 21 has a lower potential than the p-type protein semiconductor 21 having the highest energy of the p-channel 21a.
  • holes transit from the p-channel 21a of the p-type protein semiconductor 21 having the lowest energy of the p-channel 21a to the p-channel 21a of the p-type protein semiconductor 21 having the lowest energy of the p-channel 21a.
  • Photons (h ⁇ ) of energy corresponding to the energy difference between the p-channels 21 a are generated from the junction of the p-type protein semiconductor 21. Similarly, electrons transition between the p-channels 21a of a pair of p-type protein semiconductors 21 adjacent to each other, and photons having energy corresponding to the energy difference between them are generated.
  • the energy difference between the p-channels 21a of the pair of p-type protein semiconductors 21 adjacent to each other is made different from each other, the wavelengths of the light generated from each junction can be made different from each other. For this reason, according to this p-type quantum cascade laser, a plurality of lights having different emission wavelengths can be extracted, and a wavelength-variable p-type quantum cascade laser can be obtained by selecting the emission wavelength to be extracted.
  • an n-type or p-type quantum cascade laser with high efficiency and variable wavelength can be obtained. be able to.
  • this bulk heterojunction photoelectric conversion element includes, for example, a network-like conductive polymer and / or polymer semiconductor 31 and one or a plurality of p-type or n-type protein semiconductors 32 that are intertwined with each other. And has a structure in which a heterojunction is formed.
  • the protein semiconductor 32 has a long-lived excited state, and a dye 32a serving as a luminescence center is encapsulated in a polypeptide 32b and oriented at a predetermined position.
  • the “long life” of the dye 32a having a long-life excitation state means a general excitation life for a dye having fluorescence or phosphorescence, and is typically several tens of picoseconds or more.
  • the present invention is not limited to this.
  • the conductive polymer and / or polymer semiconductor 31 and the protein semiconductor 32 are bonded to each other by a non-covalent bond or a covalent bond.
  • Non-covalent bonds are, for example, electrostatic interactions, van der Waals interactions, hydrogen bond interactions, charge transfer interactions, and the like.
  • the conductive polymer and / or polymer semiconductor 31 and the protein semiconductor 32 may be bonded to each other by a linker (not shown).
  • the conductive polymer and / or polymer semiconductor 31 may be p-type or n-type.
  • Conductive polymers are roughly classified into hydrocarbon-based conductive polymers and heteroatom-containing conductive polymers.
  • hydrocarbon-based conductive polymer include polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene, polynaphthalene and the like.
  • Examples of the heteroatom-containing conductive polymer include polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, and polyisothianaphthene.
  • the bulk heterojunction photoelectric conversion element is formed on a substrate as necessary for the purpose of mechanically supporting the bulk heterojunction photoelectric conversion element.
  • a conventionally well-known thing can be used as a board
  • the material of the transparent substrate is selected as necessary, and examples thereof include transparent inorganic materials such as quartz and glass, and transparent plastics.
  • a transparent plastic substrate is used as the flexible transparent substrate.
  • the transparent plastic examples include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetyl cellulose, brominated phenoxy, aramids, polyimides, polystyrenes, polyarylates, Examples include polysulfones and polyolefins.
  • a silicon substrate is used as the opaque substrate.
  • FIG. 25 schematically shows an example of a state in which the conductive polymer and / or polymer semiconductor 31 and the protein semiconductor 32 are bonded to each other by non-covalent bonding.
  • FIG. 26 schematically shows an example in which the conductive polymer and / or polymer semiconductor 31 and the protein semiconductor 32 are bonded to each other by the linker 33.
  • linker 33 a conventionally known linker can be used, and is appropriately selected according to the conductive polymer and / or the polymer semiconductor 31 and the protein semiconductor 32.
  • FIG. 27 shows an example of the energy band of this bulk heterojunction photoelectric conversion element.
  • the HOMO (highest occupied orbit) and LUMO (lowest unoccupied orbit) of the protein semiconductor 32 are HOMO of the conductive polymer and / or the polymer semiconductor 31 and Higher than LUMO.
  • the protein semiconductor 32 is n-type.
  • the conductive polymer and / or polymer semiconductor 31 serves as an acceptor, and the protein semiconductor 32 serves as a donor.
  • the n-type protein semiconductor 32 as a donor absorbs light incident from the outside, electrons (indicated by black circles in FIG.
  • FIG. 28 shows another example of the energy band of this bulk heterojunction photoelectric conversion element.
  • the HOMO and LUMO of the conductive polymer and / or the polymer semiconductor 31 are higher than the HOMO and LUMO of the protein semiconductor 32.
  • the protein semiconductor 32 is p-type.
  • the conductive polymer and / or polymer semiconductor 31 serves as a donor, and the protein semiconductor 32 serves as an acceptor.
  • the conductive polymer and / or polymer semiconductor 31 serving as a donor absorbs light incident from the outside, electrons are transferred from HOMO in the conductive polymer and / or polymer semiconductor 31.
  • excitons are formed. This electron moves to LUMO of the p-type protein semiconductor 32 which is an acceptor. As a result, a charge separation state in which the conductive polymer and / or the polymer semiconductor 31 has a positive charge (holes) and the protein semiconductor 32 has a negative charge (electrons) is generated. After the charge separation state is generated in this way, the holes move in the HOMO of the conductive polymer and / or the polymer semiconductor 31, and the electrons move in the protein semiconductor 32 and are taken out to the outside, and a photocurrent is obtained. It is done.
  • p-type polyaniline sulfonic acid PASA
  • poly (3-hexylthiophene) (P3HT) Etc As the n-type conductive polymer and / or polymer semiconductor 31, for example, Poly (p-pyridyl vinylene) Poly (isothianaphthene) can be used.
  • this bulk heterojunction photoelectric conversion element As the p-type conductive polymer and / or polymer semiconductor 31, p-type polyaniline sulfonic acid (PASA) is used. Zinc-substituted cytochrome c is used as the protein semiconductor 32.
  • PASA p-type polyaniline sulfonic acid
  • Zinc-substituted cytochrome c is used as the protein semiconductor 32.
  • a protein semiconductor solution is prepared by dissolving zinc-substituted cytochrome c in water. Also, a polyaniline sulfonic acid (PASA) is dissolved in water to prepare a PASA solution. The PASA solution thus prepared was added to the protein semiconductor solution to prepare a protein semiconductor-polymer aqueous solution.
  • PASA polyaniline sulfonic acid
  • the pH of the protein semiconductor-polymer aqueous solution can be controlled by neutralizing the sulfonic acid group of PASA in the protein semiconductor-polymer aqueous solution with an alkali such as sodium hydroxide (NaOH).
  • an alkali such as sodium hydroxide (NaOH).
  • an advantage that a highly efficient bulk heterojunction photoelectric conversion element can be obtained can be obtained.
  • This bulk heterojunction photoelectric conversion element can be used as a light receiving element (photosensor), a solar cell, or the like.
  • an electric field detection element is composed of a pn junction in which a p-type protein semiconductor, an n-type protein semiconductor, or a p-type protein semiconductor and an n-type protein semiconductor are joined together.
  • H H 0 + H 1 It is expressed.
  • H 0 a zeroth-order Hamiltonian
  • H 1 a first-order Hamiltonian (first-order perturbation)
  • H 1 is a value obtained by multiplying the dipole moment in the z direction by the electric field ⁇
  • H 1 ez ⁇ It is expressed.
  • e is an electronic charge.
  • FIG. 29 shows molecular orbital energies of zinc-substituted cytochrome c and zinc-substituted cytochrome b 562 .
  • VB represents a valence band
  • CB represents a conduction band.
  • the number written beside the molecular orbital is the number of the molecular orbital.
  • the four molecular orbitals 3268, 3272, 3297 and 3299 are porphyrin ⁇ or ⁇ * orbitals, and the other molecular orbitals are those of amino acid residues.
  • the four molecular orbitals 3302, 3304, 3326 and 3329 are porphyrin ⁇ or ⁇ * orbitals, and the other molecular orbitals are those of amino acid residues. Since these four molecular orbitals are directional, the influence of the electric field varies greatly depending on the direction of the applied electric field, but the other molecular orbitals are isotropic, so the influence of the electric field occurs on average. Therefore, while the band shift of amino acid residues is average, these four molecular orbitals are greatly shifted when an electric field is applied from the z direction, in other words, when the pz orbital is a ⁇ orbital. On the other hand, when an electric field is applied from the x direction or the y direction, these four molecular orbitals are hardly affected.
  • the relationship between the amino acid residue band in FIG. 29 and the above-described four molecular orbitals can be greatly changed by applying an electric field.
  • an electric field when an electric field is applied from the z direction, it works as an n-type protein semiconductor, and when an electric field is applied from the x direction or the y direction, it works as a p-type protein semiconductor, or is almost a photocurrent. May not be available.
  • the intensity of the electric field is 1 MV / m, for example, it is considered that a band shift of, for example, about 0.01 eV to 0.1 eV can occur.
  • a novel electric field detection element can be obtained.
  • the electric field can be detected using the above phenomenon by arranging the electric field detection element at a site where the electric field to be measured is to be detected. Since this electric field detection element can be configured as extremely small as several nanometers to several tens of nanometers, it is possible to measure an electric field in a nanometer-size microscopic area, which has been difficult in the past, or Distribution can be measured with high accuracy.
  • This electric field detection element is particularly suitable for use in measuring a strong electric field.
  • a bipolar transistor In the eighth embodiment, a bipolar transistor will be described.
  • a pnp bipolar transistor can be formed by sequentially joining a p-type protein semiconductor, an n-type protein semiconductor, and a p-type protein semiconductor.
  • an npn bipolar transistor can be formed by sequentially joining an n-type protein semiconductor, a p-type protein semiconductor, and an n-type protein semiconductor.
  • a novel bipolar transistor can be obtained.
  • this bipolar transistor can be used for various applications, it can be used as, for example, a phototransistor.
  • a thyristor In the ninth embodiment, a thyristor will be described.
  • This thyristor is, for example, a pnpn-type thyristor configured by sequentially joining a p-type protein semiconductor, an n-type protein semiconductor, a p-type protein semiconductor, and an n-type protein semiconductor.
  • a new thyristor can be obtained.
  • This thyristor can be used for various applications.
  • FIG. 30 is a circuit diagram showing a photosensor according to the tenth embodiment. As shown in FIG. 30, this photosensor includes a photodiode 71 composed of a bulk heterojunction photoelectric conversion element according to the sixth embodiment, and a single electron transistor 72 for amplifying the output of the photodiode 71. It is configured.
  • the single electron transistor 72 is composed of a micro tunnel junction J 1 on the drain side and a micro tunnel junction J 2 on the source side.
  • the capacitances of these micro tunnel junctions J 1 and J 2 are C 1 and C 2 , respectively.
  • one electrode of the photodiode 71 is grounded via the load resistor R L , and the other electrode is connected to a positive power supply that supplies a positive voltage V PD for biasing the photodiode 72.
  • the source of the single electron transistor 72 is grounded, and its drain is connected to a positive power supply that supplies a positive voltage Vcc via an output resistor Rout .
  • the electrode on the load resistance RL side of the photodiode 71 and the gate of the single electron transistor 72 are connected to each other via a capacitor Cg .
  • the capacitor Cg is charged by the voltage generated at both ends of the load resistance RL when the photodiode 71 is irradiated with light and a photocurrent flows, and the capacitor Cg is charged.
  • a gate voltage V g is applied to the gate of the single electron transistor 72 via g .
  • the photodiode 71 and the single electron transistor 72 are capacitively coupled as described above. Since the voltage gain at this time is given by C g / C 1 , the element connected to the next stage of the photosensor is driven by sufficiently reducing the capacitance C 1 of the minute tunnel junction J 1 . The output voltage Vout having a sufficiently large level can be easily obtained.
  • a novel photosensor using a protein semiconductor that can be stably used for a long time can be realized.
  • the photosensor is configured to amplify the output of the photodiode 71 by a single electron transistor 72. For this reason, compared with the conventional general photosensor which amplifies the output of a photodiode with the conventional normal transistor, the speed-up of photosensor, high sensitivity, and low power consumption can be achieved.
  • FIG. 31 In this inverter circuit, a photoelectric conversion element 101 and a load resistor R L having the same configuration as the bulk heterojunction photoelectric conversion element according to the sixth embodiment are connected in series. A predetermined positive power supply voltage V DD is applied to one end of the load resistor RL , and the electrode is grounded.
  • the photoelectric conversion element 101 When the photoelectric conversion element 101 is irradiated with light having an absorption wavelength of the photoelectric conversion element 101 as signal light, the photoelectric conversion element 101 is turned on and a photocurrent flows, whereby an output voltage Vout from an electrode (not shown) is at a low level. When the light irradiation is stopped, the photoelectric conversion element 101 is turned off and the photocurrent does not flow, so that the output voltage Vout from the electrode becomes a high level.
  • a novel inverter circuit using a protein semiconductor that can be stably used for a long period of time can be configured, and various circuits such as a logic circuit can be configured using the inverter circuit. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thyristors (AREA)
  • Bipolar Transistors (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

本発明は、タンパク質半導体の導電型を容易に制御することができるタンパク質半導体の導電型の制御方法、これを利用したタンパク質半導体の製造方法およびpn接合の製造方法を提供するものである。本発明は、アミノ酸残基全体の電荷量を制御することによりタンパク質半導体の導電型を制御し、p型タンパク質半導体あるいはn型タンパク質半導体を製造し、p型タンパク質半導体とn型タンパク質半導体とを用いてpn接合を製造する。アミノ酸残基全体の電荷量の制御は、タンパク質に含まれる酸性、塩基性又は中性のアミノ酸残基のうちの1つ又は複数個を自身の性質と異なる性質を有するアミノ酸残基に置換したり、タンパク質に含まれる酸性、塩基性又は中性のアミノ酸残基のうちの1つ又は複数個を化学修飾したり、タンパク質の周りを囲む媒体の極性を制御したりする。

Description

[規則37.2に基づきISAが決定した発明の名称] タンパク質半導体の製造方法
 本開示は、タンパク質半導体の製造方法、タンパク質半導体、pn接合の製造方法、pn接合、半導体装置の製造方法、半導体装置、電子機器およびタンパク質半導体の導電型の制御方法に関する。
 タンパク質はシリコンなどの半導体を用いた従来の半導体素子に代わる次世代の機能素子あるいはその材料として期待されている。従来の半導体素子の微細化は数十nmのサイズが限界とされるなか、タンパク質は2~10nmというはるかに小さいサイズで高度で複雑な機能を発揮する。
 タンパク質が半導体の性質を持つことは公知である(例えば、非特許文献1参照)。しかしながら、その性質は、あくまでもタンパク質自身のバンドギャップが2~3電子ボルト(eV)であることが根拠とされている。一方、タンパク質半導体を用いて半導体素子を製造するためには、タンパク質半導体の導電型を制御すること、すなわちタンパク質半導体をp型またはn型に制御することができることが必要である。
特開2007-220445号公報 特開2009-21501号公報
D.D.Eley, R.B.Leslie: "Electronic Aspects of Biochemistry",Academic Press, New York(1964)p.105 Nikkila,H.,Gennis,R.B.,and Sliger,S.G.Eur.J.Biochem.202,309(1991) Mathews,F.S.,Bethge,P.H.,and Czerwinski,E.W.J.Biol.Chem.254,1699(1979) Hamachi,I.,Takashima,H.,Tsukiji,S.Shinkai,S.,Nagamune,T.andOishi,S.Chem.Lett.1999,551(1999) Itagaki,E.,Palmer,G.and Hager,L.P.J.Biol.Chem.242,2272(1967) Tokita,Y.and 4 others,J.Am.Chem.Soc.130,5302(2008)
 しかしながら、本発明者らが知る限り、これまで、タンパク質半導体の導電型を制御する手段はなかった。
 そこで、本開示が解決しようとする課題は、タンパク質半導体の導電型を容易に制御することができるタンパク質半導体の導電型の制御方法、タンパク質半導体の製造方法およびタンパク質半導体を提供することである。
 本開示が解決しようとする他の課題は、タンパク質半導体によるpn接合の製造方法およびpn接合ならびにこのpn接合を用いる半導体装置の製造方法および半導体装置ならびにこの半導体装置を有する電子機器を提供することである。
 上記課題および他の課題は、添付図面を参照した本明細書の記述から明らかとなるであろう。
 上記課題を解決するために、本開示は、
 アミノ酸残基全体の電荷量を制御することによりタンパク質半導体の導電型を制御するタンパク質半導体の導電型の制御方法である。
 ここで、タンパク質半導体の導電型は、p型またはn型あるいはi型である。
 また、本開示は、
 アミノ酸残基全体の電荷量を制御することによりタンパク質半導体の導電型を制御するタンパク質半導体の製造方法である。
 また、本開示は、
 アミノ酸残基全体の電荷量を制御することにより導電型を制御したタンパク質半導体である。
 また、本開示は、
 アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することによりpn接合を製造するpn接合の製造方法である。
 また、本開示は、
 アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合である。
 また、本開示は、
 アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することによりpn接合を製造する工程を有する半導体装置の製造方法である。
 また、本開示は、
 アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合を有する半導体装置である。
 また、本開示は、
 アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合を有する半導体装置を有する電子機器である。
 タンパク質、より詳細にはタンパク質のポリペプチド部分のアミノ酸残基全体の電荷量を制御するためには、例えば、タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を自身の性質と異なる性質を有するアミノ酸残基に置換する。あるいは、タンパク質に酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を付加する。あるいは、タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を欠損させる。あるいは、タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を化学修飾する。あるいは、タンパク質の周りを囲む媒体の極性を制御する。必要に応じて、これらの方法を組み合わせてもよい。また、場合によっては、タンパク質に光を照射して電子-正孔対を発生させることによる光ドーピングによりアミノ酸残基全体の電荷量を制御することも可能である。
 本開示において、タンパク質は、好適には電子伝達タンパク質である。電子伝達タンパク質は、一般的には金属を含む電子伝達タンパク質である。この金属は、好適には、d軌道以上の高エネルギーの軌道に電子を有する遷移金属である。電子伝達タンパク質は、鉄-硫黄タンパク質類(例えば、ルブレドキシン、二鉄フェレドキシン、三鉄フェレドキシン、四鉄フェレドキシンなど)、ブルー銅タンパク質類(例えば、プラストシアニン、アズリン、シュードアズリン、プランタシアニン、ステラシアニン、アミシアニンなど)、チトクロム類(例えば、チトクロムc、金属置換チトクロムc、チトクロムc552 のヘムの中心金属の鉄を他の金属で置換した金属置換チトクロムc552 、修飾亜鉛ポルフィリンチトクロムc552 、チトクロムb、チトクロムb5 、チトクロムc1 、チトクロムa、チトクロムa3 、チトクロムf、チトクロムb6 、チトクロムb562 、金属置換チトクロムb562 、亜鉛クロリンチトクロムb562 など)であるが、これらに限定されるものではない。例えば、これらの電子伝達タンパク質の誘導体(骨格のアミノ酸残基が化学修飾されたもの)またはその変異体(骨格のアミノ酸残基の一部が他のアミノ酸残基に置換されたもの)を用いてもよい。金属置換チトクロムc、金属置換チトクロムc552 、金属置換チトクロムb562 などの金属は、必要に応じて選ばれるが、例えば、亜鉛(Zn)、ベリリウム(Be)、ストロンチウム(Sr)、ニオブ(Nb)、バリウム(Ba)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、カドミウム(Cd)、アンチモン(Sb)、トリウム(Th)、鉛(Pb)などである。
 半導体装置は、pn接合(p型タンパク質半導体とn型タンパク質半導体との間に真性(i型)のタンパク質半導体が挟まれたpin接合も含むものとする)を用いるものである限り、基本的にはどのようなものであってもよい。半導体装置は、具体的には、受光素子、発光素子、電場検出素子、キャリア走行素子(トランジスタなど)などである。ここで、電場検出素子は、pn接合だけでなく、p型タンパク質半導体単体あるいはn型タンパク質半導体単体を用いることによっても構成することができる。
 上述の本開示においては、出発物質として用いるタンパク質のアミノ酸残基全体の電荷量を、そのタンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を自身の性質と異なる性質を有するアミノ酸残基に置換するなどの種々の方法で制御することにより、得られるタンパク質半導体の導電型を制御することができる。
 本開示によれば、タンパク質半導体の導電型を容易に制御することができる。この制御方法を用いてタンパク質半導体によるpn接合を容易に製造することができ、このpn接合を用いて新規な半導体装置を容易に実現することができる。そして、この半導体装置を用いて高性能の電子機器を実現することができる。
第1の実施の形態によるタンパク質半導体の導電型の制御方法を説明するための略線図である。 亜鉛置換チトクロムcの構造および塩基性のアミノ酸残基の位置を示す略線図である。 亜鉛置換チトクロムb562 の構造および塩基性のアミノ酸残基の位置を示す略線図である。 亜鉛置換チトクロムcの構造および中性のアミノ酸残基の位置を示す略線図である。 亜鉛置換チトクロムb562 の構造および中性のアミノ酸残基の位置を示す略線図である。 精製されたチトクロムb562 の吸収スペクトルを示す略線図である。 チトクロムb562 の構造を示す略線図である。 チトクロムb562 が自己組織化単分子膜を介して金電極に吸着した様子を模式的に示す略線図である。 チトクロムb562 固定化金ドロップ電極を用いて得られたサイクリックボルタモグラムを示す略線図である。 亜鉛置換チトクロムb562 の吸収スペクトルを示す略線図である。 亜鉛置換チトクロムb562 固定化金ドロップ電極を用いて得られた光電流リアルタイムウェーブフォームを示す略線図である。 亜鉛置換チトクロムb562 固定化金ドロップ電極を用いて得られた光電流アクションスペクトルを示す略線図である。 亜鉛置換チトクロムb562 固定化金ドロップ電極を用いて得られた電流-電圧曲線を示す略線図である。 第3の実施の形態によるpn接合およびこのpn接合のゼロバイアス時のエネルギーバンド図である。 第3の実施の形態によるpn接合およびこのpn接合の順方向バイアス時のエネルギーバンド図である。 第3の実施の形態によるpn接合およびこのpn接合の逆方向バイアス時のエネルギーバンド図である。 第3の実施の形態によるpn接合を構成するタンパク質半導体として用いられるp型の亜鉛置換チトクロムcにおけるpチャネルの出入り口の間の正孔移動を説明するための略線図である。 第3の実施の形態によるpn接合を構成するタンパク質半導体として用いられるp型の亜鉛置換チトクロムcにおけるpチャネルの出入り口の間の正孔移動を説明するための略線図である。 第3の実施の形態によるpn接合を構成するタンパク質半導体として用いられるp型の亜鉛置換チトクロムb562 におけるnチャネルの出入り口の間の電子移動を説明するための略線図である。 第3の実施の形態によるpn接合を構成するタンパク質半導体として用いられるp型の亜鉛置換チトクロムb562 におけるnチャネルの出入り口の間の電子移動を説明するための略線図である。 第4の実施の形態による発光素子を示す略線図である。 第5の実施の形態によるn型量子カスケードレーザを示す略線図である。 第5の実施の形態によるp型量子カスケードレーザを示す略線図である。 第6の実施の形態によるバルクヘテロ接合型光電変換素子を示す略線図である。 第6の実施の形態によるバルクヘテロ接合型光電変換素子の構造例を示す略線図である。 第6の実施の形態によるバルクヘテロ接合型光電変換素子の他の構造例を示す略線図である。 第6の実施の形態によるバルクヘテロ接合型光電変換素子の一例のエネルギーバンド図である。 第6の実施の形態によるバルクヘテロ接合型光電変換素子の他の例のエネルギーバンド図である。 第9の実施の形態による電場検出素子を構成するタンパク質半導体のエネルギーバンド図である。 第10の実施の形態によるフォトセンサーを示す略線図である。 第11の実施の形態によるインバータ回路を示す略線図である。
 以下、発明を実施するための形態(以下「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(タンパク質半導体の導電型の制御方法)
2.第2の実施の形態(タンパク質半導体の製造方法およびタンパク質半導体)
3.第3の実施の形態(pn接合の製造方法およびpn接合)
4.第4の実施の形態(発光素子)
5.第5の実施の形態(量子カスケードレーザ)
6.第6の実施の形態(バルクヘテロ接合型光電変換素子)
7.第7の実施の形態(電場検出素子)
8.第8の実施の形態(バイポーラトランジスタ)
9.第9の実施の形態(サイリスタ)
10.第10の実施の形態(フォトセンサー)
11.第11の実施の形態(インバータ回路)
〈1.第1の実施の形態〉
[タンパク質半導体の導電型の制御方法]
 図1Aにタンパク質半導体の一例を示す。
 図1Aに示すように、このタンパク質半導体は、塩基性のアミノ酸残基(以下、単に塩基性残基という。)B、酸性のアミノ酸残基(以下、単に酸性残基という。)Aおよび中性のアミノ酸残基(以下、単に中性残基という。)Nがペプチド結合により結合したものである。図1Aに示す塩基性残基B、酸性残基Aおよび中性残基Nの配列順序および個数は仮想的なものに過ぎず、配列順序および個数はタンパク質半導体によって異なる。便宜上、塩基性残基Bは四角形、酸性残基Aは三角系、中性残基Nは円形で表す。塩基性残基Bは、リシン(Lys)、アルギニン(Arg)またはヒスチジン(His)の残基である。酸性残基Aは、グルタミン酸(Glu)またはアスパラギン酸(Asp)の残基である。中性残基Nは、セリン(Ser)、スレオニン(Thr)、アスパラギン(Asn)、グルタミン(Gln)、アラニン(Ala)、システイン(Cys)、グリシン(Gly)、イソロイシン(Ile)、ロイシン(Leu)、メチオニン(Met)、フェニルアラニン(Phe)、プロリン(Pro)、トリプトファン(Trp)、チロシン(Tyr)またはバリン(Val)の残基である。
 図1Aに示すタンパク質半導体の性質を制御する方法について説明する。
1.図1Aに示すタンパク質半導体の塩基性残基Bの1つまたは複数個を酸性残基Aに置換する。
 図1Bにその一例を示す。図1Bに示すように、図1Aに示すタンパク質半導体の左から5番目の塩基性残基Bを酸性残基Aに置換する。これによって、この図1Bに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には減少する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であるのに対し、図1Bに示すタンパク質半導体はn型の光電流応答に変化する。
2.図1Aに示すタンパク質半導体の塩基性残基Bの1つまたは複数個を中性残基Nに置換する。
 図1Cにその一例を示す。図1Cに示すように、図1Aに示すタンパク質半導体の左から5番目の塩基性残基Bを中性残基Nに置換する。これによって、この図1Cに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には減少する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であるのに対し、図1Cに示すタンパク質半導体はn型の光電流応答に変化する。
3.図1Aに示すタンパク質半導体の酸性残基Aの1つまたは複数個を塩基性残基Bに置換する。
 図1Dにその一例を示す。図1Dに示すように、図1Aに示すタンパク質半導体の左から4番目の酸性残基Aを中性残基Nに置換する。これによって、この図1Dに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には増加する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であったのに対し、図1Dに示すタンパク質半導体はn型の光電流応答に変化する。
4.図1Aに示すタンパク質半導体の酸性残基Aの1つまたは複数個を中性残基Nに置換する。
 図1Eにその一例を示す。図1Eに示すように、図1Aに示すタンパク質半導体の左から4番目の酸性残基Aを中性残基Nに置換する。これによって、この図1Eに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には増加する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であったのに対し、図1Eに示すタンパク質半導体はn型の光電流応答に変化する。
5.図1Aに示すタンパク質半導体の中性残基Nの1つまたは複数個を塩基性残基Bに置換する。
 図1Fにその一例を示す。図1Fに示すように、図1Aに示すタンパク質半導体の左から3番目の中性残基Nを塩基性残基Bに置換する。これによって、この図1Fに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には増加する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であったのに対し、図1Fに示すタンパク質半導体はn型の光電流応答に変化する。
6.図1Aに示すタンパク質半導体の中性残基Nの1つまたは複数個を酸性残基Aに置換する。
 図1Gにその一例を示す。図1Gに示すように、図1Aに示すタンパク質半導体の左から3番目の中性残基Nを酸性残基Aに置換する。これによって、この図1Gに示すタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には減少する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であったのに対し、図1Gに示すタンパク質半導体はn型の光電流応答に変化する。
7.図1Aに示すタンパク質半導体の塩基性残基Bの1つまたは複数個を化学修飾により中性化または酸性化する。あるいは、図1Aに示すタンパク質半導体の酸性残基Aの1つまたは複数個を化学修飾により中性化または塩基性化する。あるいは、図1Aに示すタンパク質半導体の中性残基Nの1つまたは複数個を化学修飾により酸性化または塩基性化する。
 例えば、図1Aに示すタンパク質半導体の左から5番目の塩基性残基Bを化学修飾することにより中性残基または酸性残基に変える。これによって、このタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には減少する。この結果、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であるのに対し、このタンパク質半導体はn型の光電流応答に変化する。
 あるいは、例えば、図1Aに示すタンパク質半導体の左から4番目の酸性残基Aを化学修飾することにより中性残基または塩基性残基に変える。これによって、このタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には増加する。この結果、例えば、図1Aに示すタンパク質半導体がn型の光電流応答であるのに対し、このタンパク質半導体はp型の光電流応答に変化する。
 あるいは、例えば、図1Aに示すタンパク質半導体の左から3番目の中性残基Nを化学修飾することにより塩基性残基または酸性残基に変える。これによって、このタンパク質半導体のアミノ酸残基の総電荷量は、図1Aに示すタンパク質半導体のアミノ酸残基の総電荷量に対して変化、具体的には増加または減少する。この結果、例えば、図1Aに示すタンパク質半導体がn型の光電流応答であるのに対し、このタンパク質半導体はp型の光電流応答に変化する。
 化学修飾法の例を挙げると次の通りである。
・リシン残基(Lys)のアセチル化
Figure JPOXMLDOC01-appb-C000001
・セリン残基(Ser)のスクシニル化
Figure JPOXMLDOC01-appb-C000002
・スレオニン残基(Thr)のスクシニル化
Figure JPOXMLDOC01-appb-C000003
・システイン残基(Cys)のジスルフィド化
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
・アスパラギン酸残基(Asp)のエステル化
Figure JPOXMLDOC01-appb-C000007
・アスパラギン酸残基(Asp)のアミド化
Figure JPOXMLDOC01-appb-C000008
・グルタミン残基(Glu)のエステル化
Figure JPOXMLDOC01-appb-C000009
・グルタミン残基(Gln)のアミド化
Figure JPOXMLDOC01-appb-C000010
・チロシン残基(Tyr)のリン酸化
Figure JPOXMLDOC01-appb-C000011
・セリン残基(Ser)のリン酸化
Figure JPOXMLDOC01-appb-C000012
8.図1Aに示すタンパク質半導体の周りを囲む媒体の極性を制御する。
 タンパク質半導体の周りを囲む媒体は液体、ゲル、固体のいずれであってもよい。
 例えば、図1Aに示すタンパク質半導体の周りを塩基性度の高い緩衝溶液や塩基性溶液や塩基性ポリマーなどで囲む。あるいは、例えば、図1Aに示すタンパク質半導体の周りを酸性度の高い緩衝溶液や酸性溶液や酸性ポリマーなどで囲む。これによって、例えば、図1Aに示すタンパク質半導体がp型の光電流応答であるのに対し、このタンパク質半導体はn型の光電流応答に変化する。あるいは、図1Aに示すタンパク質半導体がn型の光電流応答であるのに対し、p型の光電流応答に変化する。
[実施例1]
 亜鉛置換チトクロムcはp型の光電流応答を示す。
 亜鉛置換チトクロムcの塩基性残基の1つまたは複数個を酸性残基または中性残基に置換することにより、p型の光電流応答をn型の光電流応答に変換する。
 亜鉛置換チトクロムcのアミノ酸配列(1文字記号)は下記の通りである。亜鉛置換チトクロムcのアミノ酸残基数は104である。
GDVEKGKKIF VQKCAQCHTV EKGGKHKTGP
NLHGLFGRKT GQAPGFTYTD ANKNKGITWK
EETLMEYLEN PKKYIPGTKM IFAGIKKKTE
REDLIAYLKK ATNE
 図2に亜鉛置換チトクロムcの塩基性残基の位置を示す。亜鉛置換チトクロムcの塩基性残基はリシン(1文字記号ではK、3文字記号ではLys)およびアルギニン(1文字記号ではR、3文字記号ではArg)であり、残基番号は次の通りである。
・リシン 5、7、8、13、22、25、27、39、53、55、60、72、73、79、86、87、88、99、100
・アルギニン 38、91
[実施例2]
 亜鉛置換チトクロムb562 はp型の光電流応答を示す。
 亜鉛置換チトクロムb562 の酸性残基の1つまたは複数個を塩基性残基または中性残基に置換することにより、p型の光電流応答をn型の光電流応答に変換する。
 亜鉛置換チトクロムb562 のアミノ酸配列(1文字記号)は下記の通りである。亜鉛置換チトクロムb562 のアミノ酸残基数は106である。
ADLEDNMETL NDNLKVIEKA DNAAQVKDAL
TKMRAAALDA QKATPPKLED KSPDSPEMKD
FRHGFDILVG QIDDALKLAN EGKVKEAQAA
AEQLKTTRNA YHQKYR
 図3に亜鉛置換チトクロムb562 の塩基性残基の位置を示す。亜鉛置換チトクロムb562 の酸性残基はグルタミン酸およびアスパラギン酸であり、残基番号は次の通りである。
・グルタミン酸 4、8、18、49、57、81、86、92
・アスパラギン酸 2、5、12、21、28、39、50、54、60、66、73、74
[実施例3]
 亜鉛置換チトクロムcの塩基性残基の1つまたは複数個を化学修飾により中性化または酸性化することにより、p型の光電流応答をn型の光電流応答に変換する。
 亜鉛置換チトクロムcの塩基性残基の位置は図2に示す通りであり、塩基性残基であるリシンおよびアルギニンの残基番号は既に述べた通りである。
 例えば、塩基性残基であるリシン残基のアセチル化によりRとして中性のものを導入することにより、塩基性残基を中性残基に変換する。具体的には、例えば、Rとしてメチル基やエチル基などの電荷を帯びない置換基を導入することにより、塩基性残基を中性残基に変換する。また、塩基性残基を酸性化する場合は、Rとして酸性基、例えばスルホニルメチレン基やカルボニルメチレン基などを導入する。
[実施例4]
 亜鉛置換チトクロムb562 はn型の光電流応答を示す。
 亜鉛置換チトクロムb562 の酸性残基の1つまたは複数個を化学修飾により中性化または塩基性化することにより、n型の光電流応答をp型の光電流応答に変換する。
 亜鉛置換チトクロムb562 の酸性残基の位置は図3に示す通りであり、酸性残基であるグルタミン酸およびアスパラギン酸の残基番号は既に述べた通りである。
 例えば、酸性残基であるグルタミン酸またはアスパラギン酸のエステル化あるいはアミド化によりRとして中性のものを導入することにより、酸性残基を中性残基に変換する。具体的には、例えば、Rとしてメチル基やエチル基などの電荷を帯びない置換基を導入する。または、酸性残基を塩基性残基に変換する場合は、Rとして塩基性基を導入する。
[実施例5]
 亜鉛置換チトクロムcの中性残基の1つまたは複数個を化学修飾により酸性化することにより、p型の光電流応答をn型の光電流応答に変換する。例えば、中性残基である、OH基を持つスレオニンおよびチロシンをリン酸化することで酸性化する。
 図4に亜鉛置換チトクロムcのOH基を持つ中性残基であるトレオニンおよびチロシンの位置を示し、トレオニンおよびチロシンの残基番号は次の通りである。
・トレオニン 19、28、40、47、49、58、63、78、89、102
・チロシン 48、67、74、97
[実施例6]
 亜鉛置換チトクロムb562 はn型の光電流応答を示す。
 亜鉛置換チトクロムb562 の中性残基の1つまたは複数個を化学修飾により塩基性化することにより、n型の光電流応答をp型の光電流応答に変換する。例えば、中性残基である、OH基を持つセリン、トレオニンおよびチロシンはリン酸化することで酸性化する。
 図5に亜鉛置換チトクロムb562 のOH基を持つ中性残基であるスレオニン、チロシンおよびセリンの位置を示し、残基番号は次の通りである。
・スレオニン 9、31、44、96、97
・チロシン 101、105
・セリン 52、55
[実施例7]
 亜鉛置換チトクロムcの周りを塩基性度の高い緩衝溶液あるいは塩基性溶液あるいは塩基性ポリマーで囲むことにより、p型の光電流応答をn型の光電流応答に変換する。
[実施例8]
 亜鉛置換チトクロムb562 の周りを酸性度の高い緩衝溶液あるいは酸性溶液あるいは酸性ポリマーで囲むことにより、n型の光電流応答をp型の光電流応答に変換する。
[亜鉛置換チトクロムb562 の調製方法]
 ここで、亜鉛置換チトクロムb562 の調製方法およびその性質について説明する。
a.大腸菌由来チトクロムb562 の発現・精製方法
 大腸菌由来チトクロムb562 の構造遺伝子を組み込んだプラスミド(Cyt-b562/pKK223-3)を作製し、大腸菌JM109株に形質転換した。発現・精製方法は非特許文献2に準じた。
 LB-Amp培地100mLで37℃、オーバーナイト培養した前培養液を、Terrific broth 4L(2L×2)に移し、37℃で5~6時間培養した。0.2mMのIPTGを加え、さらに25℃で18時間培養することで、赤色の菌体70gを得ることができた。凍結した菌体を1mM EDTA、1mM PMSF、0.2mg/mL Lysozyme、DTT(適当)、DNase(適当)を含む10mM Tris-HCl(pH8.0)200mLに懸濁し、超音波で細胞粉砕した。
 遠心上澄みに2Mリン酸を加えてpH4.55に調整し、不要タンパク質を遠心沈殿させた。このサンプルを、CM52陰イオン交換カラムクロマトグラフィー(カラム体積80mL、50~150mM KCl linear gradient/50mMリン酸カリウム(pH4.55))、Sephadex G50 Fineゲルろ過クロマトグラフィー(カラム体積480mL、50mM Tris-HCl、0.1mM EDTA pH8.0)により精製し、約80mgのチトクロムb562 を得ることができた。
 精製されたチトクロムb562 の吸収スペクトルを図6に示す。測定は、精製されたチトクロムb562 を10mMリン酸ナトリウム(pH7.0)緩衝液中に浸漬した状態で行った。図6に示すように、精製された状態では、チトクロムb562 は、418nm、532nmに吸収ピークのある酸化型であった。緩衝液に少量のジチオナイトを加えて還元型としたところ、426nm、531nm、562nmの吸収ピークが確認された。
 得られたチトクロムb562 のアミノ酸配列は下記のとおりである。このアミノ酸配列では、後述のように、下線を付したヘムの配位子メチオニン7およびヒスチジン102と、イソロイシン17とが重要な役割を果たす。
ADLEDNMETL NDNLKVIEKA DNAAQVKDAL TKMRAAALDA QKATPPKLED KSPDSPEMKD FRHGFDILVG QIDDALKLAN EGKVKEAQAA AEQLKTTRNA YHQKYR
b.チトクロムb562 の金ドロップ電極への固定化
 1979年にX線結晶構造解析により決定されたチトクロムb562 の結晶構造(非特許文献3参照)を図7A、BおよびCに示す。ここで、図7Aはリボンモデルを示し、ヘムとその配位子アミノ酸を棒モデルで示す。図7Bはチトクロムb562 が図7Aと同じ向きの時の電荷分布を示し、楕円状の破線で囲まれた部分が一番強く負に帯電しているヘム-プロピオン酸露出面である(図7Cでも同様)。図7Cはチトクロムb562 を図7Bの状態から縦軸の周りに180度回転させた状態(図7Bに示す状態のチトクロムb562 の裏側)の電荷分布を示す。図7A、BおよびCに示すように、チトクロムb562 は4ヘリックスバンドル構造を有し、補欠分子族ヘムを1分子有する。そのヘムのプロピオン酸は分子から足を出すように露出している。図7Bに示す電荷分布を見ると、ちょうどそのヘムのプロピオン酸サイトに強い負電荷を持つことが分かる。したがって、金電極の表面に正電荷を持たせると、チトクロムb562 をヘムのプロピオン酸サイトで金電極に吸着させることができる。その模式図を図8に示す(ヘムのみ棒モデルで示す)。この例では、金電極11上に、最表面に正電荷を有する自己組織化単分子膜13を形成し、この自己組織化単分子膜13の最表面の正電荷とチトクロムb562 のヘムのプロピオン酸サイトの負電荷との間に働く静電引力によりチトクロムb562 が自己組織化単分子膜13に吸着している。
 金電極として直径2mmの金ドロップ電極を形成した。
 この金ドロップ電極を熱濃硫酸(120℃)で洗浄し、硫酸中の酸化還元サイクル処理で金ドロップ電極の表面のラフネス(粗さ)を増した。この金ドロップ電極を0.1mM 11-アミノウンデカンチオール(H2 N-C11-SH)/エタノール溶液に室温で16時間以上浸し、金ドロップ電極の表面に自己組織化単分子膜13としてH2 N-C11-SH膜を形成した。こうしてH2 N-C11-SH膜を形成した金ドロップ電極に圧縮エアを当てて乾燥後、50μMチトクロムb562 /4.4mMリン酸カリウム(pH7.2)溶液60μLにソーキングし、4℃で一昼夜インキュベートした。
 インキュベートした金ドロップ電極を10mMリン酸ナトリウム(pH7.0)中に浸漬して測定したサイクリックボルタモグラムを図9に示す。電位掃引速度は1V/sである。図9に示すように、吸着型のサイクリックボルタモグラムが得られた。金ドロップ電極の表面のチトクロムb562 の有効表面積は1.7±0.6pmol/cm2 、酸化還元電位は-4±11mV vs Ag/AgCl、チトクロムb562 -金ドロップ電極間の電子伝達速度定数は90±12s-1であった。同様の吸着効果は、金ドロップ電極の表面に形成する11-アミノウンデカンチオールに0~10%のヒドロキシウンデカンチオールを混在させても得られる。図9に、11-アミノウンデカンチオールに10%のヒドロキシウンデカンチオールを混在させた場合のサイクリックボルタモグラムを示す。
c.亜鉛置換チトクロムb562 の調製
 亜鉛置換チトクロムb562 の調製法はすでにHamachiらによる報告(非特許文献4)があるため、それに準じて亜鉛置換チトクロムb562 の調製を行った。
 まず、チトクロムb562 水溶液(33μM)3mLに、1M塩酸を加え、pHを2~3に調整した。このチトクロムb562 水溶液に、あらかじめ水冷しておいた2-ブタノンを3mL加え、穏やかに攪拌してチトクロムb562 からヘムを抽出し、ブタノン層をピペッティングで取り除いた(非特許文献5参照)。ブタノン層が色を呈さなくなるまで、この抽出操作を繰り返した。こうしてヘムの抽出操作を繰り返した水溶液に1M Tris-HCl(pH8.0)を極少量加え、pHを7~8に調整後、超純水に対して透析(2L×5回)を行い、アポチトクロムb562 を得た。
 亜鉛プロトポルフィリンIX(ZnPP)をジメチルスルホキシドに溶かし、上記のアポチトクロムb562 溶液に2等量加えていった。これを、あらかじめ50mM Tris-HCl(pH8.0)、0.1mM EDTAで平衡化しておいたBio-gel P10脱塩カラムを用いて、タンパク質画分を回収し、精製亜鉛置換チトクロムb562 (Zn-Cyt b562 )を得た。
 得られた亜鉛置換チトクロムb562 の吸収スペクトルを図10に示す。測定は、亜鉛置換チトクロムb562 を10mMリン酸ナトリウム(pH7.0)緩衝液中に浸漬した状態で行った。図10に示すように、280nm、357nm、429nm、554nm、593nmに吸収ピークがあり、その位置は非特許文献4と一致していた。また、波長554nmでの吸光度に対する波長429nmでの吸光度の比(A429/A554)は11.05であった。
d.亜鉛置換チトクロムb562 の金ドロップ電極への固定化と光電流測定
 金電極11として直径2mmの金ドロップ電極を形成した。
 この金ドロップ電極を熱濃硫酸(120℃)で洗浄し、硫酸中の酸化還元サイクル処理で金ドロップ電極の表面のラフネス(粗さ)を増した。この金ドロップ電極を0.1mM 11-アミノウンデカンチオール(H2 N-C11-SH)/エタノール溶液に室温で16時間以上浸し、金ドロップ電極の表面に自己組織化単分子膜13としてH2 N-C11-SH膜を形成した。こうしてH2 N-C11-SH膜を形成した金ドロップ電極に圧縮エアを当てて乾燥後、50μM亜鉛置換チトクロムb562 /4.4mMリン酸カリウム(pH7.2)溶液60μLにソーキングし、4℃で一昼夜インキュベートした。
 光電流測定は、窒素パージしておいた10mMリン酸ナトリウム(pH7.0)中で、参照電極としてAg/AgClを用い、対極としてPtメッシュ電極を用いて行った。
 バイアス電圧300mV、0mV、-300mVにおける光電流の測定結果(光電流リアルタイムウェーブフォーム)を図11に示す。図11は、波長420nmの光を30秒照射し、10秒オフしたときの電流値を時間に対してプロットしたものである。図11に示すように、このバイアス電圧の範囲では、全てカソーディックな光電流が観測された。光電流アクションスペクトルを図12に示す。図12に示すように、ピーク電流を示す波長は418~420nm、550nm、586nmであり、図13に示す亜鉛置換チトクロムb562 の溶液紫外可視吸収スペクトルにおける吸収極大波長429nm、554nm、593nmと大きく異なっている。また、波長550nmにおける光電流に対する波長418~420nmにおける光電流の比は3.7であり、図10に示す吸収スペクトルにおけるその光電流の比11.05に対して大きく下回っている。波長420nmにおける光電流値を電位Eに対してプロットしたグラフを図13に示す。図13において、電流-電圧曲線に付けた数字はデータ取得順を示す。特許文献1によれば、亜鉛置換チトクロムcを金電極に固定化した場合には-100mV(vs Ag/AgCl)付近にスレッショルドを持ち、この電位を境に光電流の反転が見られるのに対し、図13に示すように、亜鉛置換チトクロムb562 ではそれが見られない。また、フェロシアン化カリウムを加えてもこの光電流はエンハンスされない。これは特許文献1とは異なる。
 以上のように、この第1の実施の形態によれば、タンパク質半導体のアミノ酸残基全体の電荷量を種々の方法により制御することにより、タンパク質半導体の導電型を容易に制御することができる。
〈2.第2の実施の形態〉
[タンパク質半導体の製造方法およびタンパク質半導体]
 第2の実施の形態においては、第1の実施の形態によるタンパク質半導体の導電型の制御方法を用いて所望の導電型のタンパク質半導体、具体的には、p型タンパク質半導体、n型タンパク質半導体またはi型タンパク質半導体を製造する。
 この第2の実施の形態によれば、p型タンパク質半導体、n型タンパク質半導体またはi型タンパク質半導体を容易に製造することができる。このため、電子回路の構成素子の少なくとも一部をこれらのp型タンパク質半導体、n型タンパク質半導体またはi型タンパク質半導体あるいはp型タンパク質半導体とn型タンパク質半導体とを接合したpn接合を用いて形成することができる。
〈3.第3の実施の形態〉
[pn接合の製造方法およびpn接合]
 第3の実施の形態においては、第2の実施の形態により製造されたp型タンパク質半導体およびn型タンパク質半導体を互いに接合してpn接合を製造する。
 こうして製造されるpn接合を図14Aに示す。図14Aに示すように、このpn接合は、p型タンパク質半導体21とn型タンパク質半導体22とが互いに接合したものである。上述のようにp型タンパク質半導体21およびn型タンパク質半導体22はアミノ酸残基全体の総電荷量を制御することより製造されたものであるが、p型タンパク質半導体21およびn型タンパク質半導体22はそれぞれ表面電荷の極性に特徴がある。具体的には、図14Aに示すように、p型タンパク質半導体21の表面は正電荷(+)を帯びており、n型タンパク質半導体22の表面は負電荷(-)を帯びている。言い換えれば、タンパク質半導体の表面電荷を制御することにより分子軌道の位置、したがってエネルギーバンドを制御することができる。
 図14Bに、ゼロバイアス時におけるpn接合のエネルギーバンドを示す。図14Bに示すように、p型タンパク質半導体21には分子軌道により正孔の移動経路となるpチャネル21aが形成され、n型タンパク質半導体22には分子軌道により電子の移動経路となるnチャネル22aが形成されている。nチャネル22aのエネルギーはpチャネル21aのエネルギーよりも高い。
 図15Aに順方向バイアス印加時におけるpn接合を示す。また、図15Bに順方向バイアス印加時におけるpn接合のエネルギーバンドを示す。図15AおよびBに示すように、順方向バイアス印加時においては、pn接合の接合部にpチャネル21aから正孔(h+ )が移動し、かつnチャネル22aから電子(e- )が移動することにより、pn接合を通って電流が流れ、一部の電子および正孔は再結合する。
 図16Aに逆方向バイアス印加時におけるpn接合を示す。また、図16Bに逆方向バイアス印加時におけるpn接合のエネルギーバンドを示す。図16AおよびBに示すように、逆方向バイアス印加時においては、正孔および電子ともpn接合の接合部から離れる方向に移動するため、pn接合を通って電流はほとんど流れない。
 以上より、このpn接合は、シリコンなどを用いた従来のpn接合と同様に働くことが分かる。
 なお、タンパク質半導体の分子内電荷(電子または正孔)移動のメカニズムについては非特許文献6および特許文献2に記載されている。これによれば、タンパク質半導体が光励起されたときに分子軌道間の電子の遷移が起き、その結果、このタンパク質半導体のある部位から他の部位に電子または正孔が移動する。
 このpn接合の具体例について説明する。
 p型タンパク質半導体21として例えばp型の亜鉛置換チトクロムcを用い、n型タンパク質半導体22として例えばn型の亜鉛置換チトクロムb562 を用いる。
 p型の亜鉛置換チトクロムcにおけるpチャネルの出入り口は、ポルフィリン環(Porπ+Zn-Sπ)とLys7(図17)あるいはポルフィリン環(Porπ+Zn-Sπ)とAsn54(図18)である。図17に示すポルフィリン環(Porπ+Zn-Sπ)およびLys7の分子軌道はそれぞれ軌道番号3268および3270であり、ポルフィリン環(Porπ+Zn-Sπ)とLys7との間の正孔の遷移速度は2.0×1010sec-1、両者の距離は16.5Åである。図18に示すポルフィリン環(Porπ+Zn-Sπ)およびAsn54の分子軌道はそれぞれ軌道番号3272および3271であり、ポルフィリン環(Porπ+Zn-Sπ)とAsn54との間の正孔の遷移速度は1.5×1011sec-1、両者の距離は17.2Åである。
 p型の亜鉛置換チトクロムb562 におけるnチャネルの出入り口は、ポルフィリン環(Porπ+Zn-Sπ)とGly70(図19)あるいはポルフィリン環(Porπ+Zn-Sπ)とPro56(図20)である。図19に示すポルフィリン環(Porπ+Zn-Sπ)およびGly70の分子軌道はそれぞれ軌道番号3329および3331であり、ポルフィリン環(Porπ+Zn-Sπ)とGly70との間の電子の遷移速度は5.3×1011sec-1、両者の距離は16.1Åである。図20に示すポルフィリン環(Porπ+Zn-Sπ)およびPro56の分子軌道はそれぞれ軌道番号3329および3332であり、ポルフィリン環(Porπ+Zn-Sπ)とPro56との間の電子の遷移速度は1.3×1011sec-1、両者の距離は21.3Åである。
 この第3の実施の形態によれば、p型タンパク質半導体21とn型タンパク質半導体22とが互いに接合したpn接合を実現することができる。このpn接合は従来のpn接合と同様な利点を有することに加えて、次のような利点を得ることができる。すなわち、このpn接合は、p型タンパク質半導体21およびn型タンパク質半導体22のサイズが2~10nmであることから、4~20nmのサイズとすることができ、極めて微細に構成することができる。このため、このpn接合を集積化する場合、その集積密度を極めて大きくすることができる。このpn接合では、シリコンなど用いた従来公知のpn接合と異なり接合部に空間電荷領域がないため、接合部を横切る電子および正孔の移動時間が極めて短く、したがって応答速度が極めて速い。また、p型タンパク質半導体21およびn型タンパク質半導体22のサイズが2~10nmと極めて小さいため、シリコンなど用いた従来公知のpn接合と異なり不純物の影響の問題がない。したがって、このpn接合を順方向バイアスモードで動作させるときの量子効率を大きくすることができる。
〈4.第4の実施の形態〉
[発光素子]
 第4の実施の形態においては、第3の実施の形態によるpn接合を用いた発光素子について説明する。
 この発光素子は、図14Aに示すように、p型タンパク質半導体21とn型タンパク質半導体22とが互いに接合したpn接合により構成される。
[発光素子の動作]
 この発光素子の動作時には、pn接合を順方向バイアス、具体的にはp型タンパク質半導体21とn型タンパク質半導体22との間にp型タンパク質半導体21の方がn型タンパク質半導体22よりも電位が高くなるような電圧を印加することにより、pn接合に順方向電流を流す。この際、図21に示すように、pn接合の接合部にp型タンパク質半導体21から電子(e- )、n型タンパク質半導体22から正孔(h+ )がそれぞれ注入され、これらの電子および正孔が再結合することにより光子(hν)が発生する。こうして、発光素子から光が取り出される。
 この発光素子においては、pチャネル21aとチャネル22aとのエネルギー差はpn接合に印加する電圧によって決定される。このため、pn接合に印加する電圧を制御することによって、pチャネル21aとチャネル22aとのエネルギー差、したがってこの発光素子から取り出される光の波長を制御することができる。言い換えれば、この発光素子の発光波長はpn接合に印加する電圧によって可変である。また、この発光素子においては、p型タンパク質半導体21から注入される電子(e- )とn型タンパク質半導体22から注入される正孔(h+ )とはpn接合の接合部で効率的に再結合するため、高効率の発光素子を得ることができる。
 この第4の実施の形態によれば、第3の実施の形態と同様な利点に加えて、高効率でしかも波長可変の発光素子を得ることができるという利点を得ることができる。
〈5.第5の実施の形態〉
[量子カスケードレーザ]
 第5の実施の形態においては、n型タンパク質半導体またはp型タンパク質半導体を用いた量子カスケードレーザについて説明する。
 上述のように、pチャネル21aおよびnチャネル22aのエネルギーは、p型タンパク質半導体21およびn型タンパク質半導体22の表面電荷を制御することにより制御することができる。
 そこで、例えば、n型タンパク質半導体22のnチャネル22aのエネルギーが段階的に低くなるように複数種類のn型タンパク質半導体22を製造し、これらの複数種類のn型タンパク質半導体22をnチャネル22aのエネルギーが段階的に低くなるように順次接合する。図22にこうして得られたn型量子カスケードレーザを示す。あるいは、p型タンパク質半導体21のpチャネル21aのエネルギーが段階的に低くなるように複数種類のp型タンパク質半導体21を製造し、これらの複数種類のp型タンパク質半導体21をpチャネル21aのエネルギーが段階的に低くなるように順次接合する。図23にこうして得られたp型量子カスケードレーザを示す。
 図22に示すように、n型量子カスケードレーザにおいては、一方の末端のn型タンパク質半導体22と他方の末端のn型タンパク質半導体22との間に、nチャネル22aのエネルギーが最も高い方のn型タンパク質半導体22の方がnチャネル22aのエネルギーが最も低い方のn型タンパク質半導体22よりも低電位となるように電圧を印加する。この際、nチャネル22aのエネルギーが最も高い方のn型タンパク質半導体22のnチャネル22aから次にnチャネル22aのエネルギーが高いn型タンパク質半導体22のnチャネル22aに電子が遷移し、これらのn型タンパク質半導体22の接合部からそれらのnチャネル22aのエネルギー差に相当するエネルギーの光子(hν)が発生する。同様にして、互いに隣接する一対のn型タンパク質半導体22のnチャネル22a間で電子が遷移し、それらのエネルギー差に相当するエネルギーの光子が発生する。互いに隣接する一対のn型タンパク質半導体22のnチャネル22a間のエネルギー差が互いに異なるようにすると、各接合部から発生する光の波長が互いに異なるようにすることができる。このため、このn型量子カスケードレーザによれば、発光波長が互いに異なる複数の光を取り出すことができ、取り出す発光波長を選択することにより波長可変のn型量子カスケードレーザを得ることができる。
 同様に、図23に示すように、p型量子カスケードレーザにおいては、一方の末端のp型タンパク質半導体21と他方の末端のp型タンパク質半導体21との間に、pチャネル21aのエネルギーが最も低い方のp型タンパク質半導体21の方がpチャネル21aのエネルギーが最も高い方のp型タンパク質半導体21よりも低電位となるように電圧を印加する。この際、pチャネル21aのエネルギーが最も低い方のp型タンパク質半導体21のpチャネル21aから次にpチャネル21aのエネルギーが低いp型タンパク質半導体21のpチャネル21aに正孔が遷移し、これらのp型タンパク質半導体21の接合部からそれらのpチャネル21aのエネルギー差に相当するエネルギーの光子(hν)が発生する。同様にして、互いに隣接する一対のp型タンパク質半導体21のpチャネル21a間で電子が遷移し、それらのエネルギー差に相当するエネルギーの光子が発生する。互いに隣接する一対のp型タンパク質半導体21のpチャネル21a間のエネルギー差が互いに異なるようにすると、各接合部から発生する光の波長が互いに異なるようにすることができる。このため、このp型量子カスケードレーザによれば、発光波長が互いに異なる複数の光を取り出すことができ、取り出す発光波長を選択することにより波長可変のp型量子カスケードレーザを得ることができる。
 この第5の実施の形態によれば、第3の実施の形態と同様な利点に加えて、高効率でしかも波長可変のn型またはp型の量子カスケードレーザを得ることができるという利点を得ることができる。
〈6.第6の実施の形態〉
[バルクヘテロ接合型光電変換素子]
 第6の実施の形態においては、バルクヘテロ接合型光電変換素子について説明する。
 図24はこのバルクヘテロ接合型光電変換素子を示す。
 図24に示すように、このバルクヘテロ接合型光電変換素子は、例えばネットワーク状の導電性ポリマーおよび/または高分子半導体31と、一つまたは複数のp型またはn型のタンパク質半導体32とが互いに入り組んでヘテロ接合が形成された構造を有する。タンパク質半導体32は、長寿命励起状態を有し、発光中心となる色素32aがポリペプチド32bに包被され、所定の位置に配向したものである。ここで、長寿命励起状態を有する色素32aの「長寿命」とは、蛍光性ないしは燐光性を有するような色素に一般的な励起寿命を意味し、典型的には数十ピコ秒以上であるが、これに限定されるものではない。典型的には、導電性ポリマーおよび/または高分子半導体31とタンパク質半導体32とは、非共有結合または共有結合により互いに結合している。非共有結合は、例えば、静電相互作用、ファンデルワールス相互作用、水素結合相互作用、電荷移動相互作用などである。導電性ポリマーおよび/または高分子半導体31とタンパク質半導体32とは、リンカー(図示せず)により互いに結合してもよい。
 導電性ポリマーおよび/または高分子半導体31は、p型であってもn型であってもよい。導電性ポリマーは、大きく分けて炭化水素系導電性ポリマーとヘテロ原子含有系導電性ポリマーとがある。炭化水素系導電性ポリマーとしては、例えば、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン、ポリナフタレンなどが挙げられる。ヘテロ原子含有系導電性ポリマーとしては、例えば、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテンなどが挙げられる。
 このバルクヘテロ接合型光電変換素子は、このバルクヘテロ接合型光電変換素子を機械的に支持するためなどの目的により、必要に応じて基板上に形成される。基板としては従来公知のものを用いることができ、必要に応じて選ばれ、透明基板であっても不透明基板であってもよい。透明基板の材料は必要に応じて選ばれるが、例えば、石英やガラスなどの透明無機材料や透明プラスチックなどが挙げられる。フレキシブルな透明基板としては透明プラスチック基板が用いられる。透明プラスチックとしては、例えば、ポリエチレンテレフタラート、ポリエチレンナフタラート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリフッ化ビニリデン、アセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルホン類、ポリオレフィン類などが挙げられる。不透明基板としては例えばシリコン基板が用いられる。
 図25に、導電性ポリマーおよび/または高分子半導体31とタンパク質半導体32とが非共有結合により互いに結合している様子の一例を模式的に示す。また、図26に、導電性ポリマーおよび/または高分子半導体31とタンパク質半導体32とがリンカー33により互いに結合している様子の一例を模式的に示す。
 リンカー33としては従来公知のものを用いることができ、導電性ポリマーおよび/または高分子半導体31とタンパク質半導体32とに応じて適宜選ばれる。
 図27にこのバルクヘテロ接合型光電変換素子のエネルギーバンドの一例を示す。図27に示すように、このバルクヘテロ接合型光電変換素子においては、タンパク質半導体32のHOMO(最高被占軌道)およびLUMO(最低空軌道)は、導電性ポリマーおよび/または高分子半導体31のHOMOおよびLUMOよりも高い。この場合、タンパク質半導体32はn型である。導電性ポリマーおよび/または高分子半導体31はアクセプター、タンパク質半導体32はドナーとして働く。このバルクヘテロ接合型光電変換素子においては、ドナーであるn型のタンパク質半導体32が外部から入射した光を吸収すると、このタンパク質半導体32内で電子(図27中、黒丸で示す)がHOMOからLUMOへ励起され、励起子が形成される。この電子は、アクセプターであるp型の導電性ポリマーおよび/または高分子半導体31のLUMOに移動する。この結果、タンパク質半導体32が正の電荷(正孔)を有し、導電性ポリマーおよび/または高分子半導体31が負の電荷(電子)を有する電荷分離状態が生成する。こうして電荷分離状態が生成された後、正孔はタンパク質半導体32内を移動し、電子は導電性ポリマーおよび/または高分子半導体31内を移動してそれぞれ外部に取り出され、光電流が得られる。
 図28にこのバルクヘテロ接合型光電変換素子のエネルギーバンドの別の例を示す。図28に示すように、このバルクヘテロ接合型光電変換素子においては、導電性ポリマーおよび/または高分子半導体31のHOMOおよびLUMOは、タンパク質半導体32のHOMOおよびLUMOよりも高い。この場合、タンパク質半導体32はp型である。導電性ポリマーおよび/または高分子半導体31はドナー、タンパク質半導体32はアクセプターとして働く。このバルクヘテロ接合型光電変換素子においては、ドナーである導電性ポリマーおよび/または高分子半導体31が外部から入射した光を吸収すると、この導電性ポリマーおよび/または高分子半導体31内で電子がHOMOからLUMOへ励起され、励起子が形成される。この電子は、アクセプターであるp型のタンパク質半導体32のLUMOに移動する。この結果、導電性ポリマーおよび/または高分子半導体31が正の電荷(正孔)を有し、タンパク質半導体32が負の電荷(電子)を有する電荷分離状態が生成する。こうして電荷分離状態が生成された後、正孔は導電性ポリマーおよび/または高分子半導体31のHOMO内を移動し、電子はタンパク質半導体32内を移動してそれぞれ外部に取り出され、光電流が得られる。
 p型の導電性ポリマーおよび/または高分子半導体31としては、p型のポリアニリンスルホン酸(PASA)
Figure JPOXMLDOC01-appb-C000013
やポリ[2-メトキシ-5-(2’-エチル-ヘキシルオキシ)-1,4-フェニレンビニレン](poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene ],MEH-PPV)
Figure JPOXMLDOC01-appb-C000014
やポリ(3-ヘキシルチオフェン)(poly(3-hexylthiophene),P3HT)
Figure JPOXMLDOC01-appb-C000015
などである。n型の導電性ポリマーおよび/または高分子半導体31としては、例えば、Poly(p-pyridyl vinylene)Poly(isothianaphthene)を用いることができる。
 このバルクヘテロ接合型光電変換素子の具体例について説明する。
 p型の導電性ポリマーおよび/または高分子半導体31として、p型のポリアニリンスルホン酸(PASA)を用いる。タンパク質半導体32として亜鉛置換チトクロムcを用いる。
 亜鉛置換チトクロムcを水に溶かしてタンパク質半導体溶液を調製する。また、ポリアニリンスルホン酸(PASA)を水に溶かしてPASA溶液を調製する。こうして調製されたPASA溶液を上記のタンパク質半導体溶液に添加してタンパク質半導体-ポリマー水溶液を調製した。
 このタンパク質半導体-ポリマー水溶液におけるPASAのスルホン酸基をアルカリ、例えば水酸化ナトリウム(NaOH)で中和することにより、このタンパク質半導体-ポリマー水溶液のpHを制御することができる。こうしてアルカリとスルホン酸基との最適比を選択することにより、亜鉛置換チトクロムcのバンド位置(LUMOおよびHOMOのエネルギー)を、このバルクヘテロ接合型光電変換素子の量子効率が最大になるように制御することができる。
 この第6の実施の形態によれば、第3の実施の形態と同様な利点に加えて、高効率のバルクヘテロ接合型光電変換素子を得ることができるという利点を得ることができる。このバルクヘテロ接合型光電変換素子は受光素子(フォトセンサー)や太陽電池などとして用いることができる。
〈7.第7の実施の形態〉
[電場検出素子]
 第7の実施の形態においては、電場検出素子について説明する。
 この電場検出素子は、p型タンパク質半導体、n型タンパク質半導体またはp型タンパク質半導体とn型タンパク質半導体とを互いに接合したpn接合により構成される。
 この電場検出素子の動作について説明する。
 電場中におけるこの電場検出素子のハミルトニアンをHで表すと、
 H=H0 +H1 
と表される。ここで、H0 は0次のハミルトニアン、H1 は一次のハミルトニアン(一次の摂動)である。H1 はz方向の双極子モーメントに電場εを掛けた値であり、
 H1 =ezε
と表される。ここで、eは電子電荷である。
 図29に、亜鉛置換チトクロムcおよび亜鉛置換チトクロムb562 の分子軌道のエネルギーを示す。VBは価電子帯、CBは伝導帯を示す。分子軌道の横に記載されている数字は分子軌道の番号である。亜鉛置換チトクロムcにおいては、四つの分子軌道3268、3272、3297および3299がポルフィリンのπ軌道かπ*軌道であり、その他の分子軌道はアミノ酸残基のものである。同様に、亜鉛置換チトクロムb562 においては、四つの分子軌道3302、3304、3326および3329ポルフィリンのπ軌道かπ*軌道であり、その他の分子軌道はアミノ酸残基のものである。これらの四つの分子軌道は方向性があるので、印加される電場の方向によって電場の影響は大きく変わるが、その他の分子軌道は等方的であるので、電場の影響は平均的に起こる。したがって、アミノ酸残基のバンドシフトは平均的であるのに対し、これらの四つの分子軌道は、z方向から電場が印加されれば、言い換えると、pz軌道をπ軌道とすると、大きくシフトする。これに対し、x方向やy方向から電場が印加された場合には、これらの四つの分子軌道はほとんど影響を受けない。
 以上により、図29のアミノ酸残基のバンドと上述の四つの分子軌道との関係は電場の印加によって大きく変わり得る。例えば、z方向から電場が印加されるとn型のタンパク質半導体として働くものが、x方向やy方向から電場が印加されるとp型のタンパク質半導体として働くようになったり、あるいは、ほとんど光電流が得られないようになったりする。電場の強度が例えば1MV/mであるとすると、例えば0.01eVから0.1eV程度のバンドシフトは起こり得ると考えられる。
 以上のように、この第7の実施の形態によれば、新規な電場検出素子を得ることができる。この電場検出素子によれば、測定対象の電場を検出しようとする部位にこの電場検出素子を配置することより、以上の現象を利用して電場を検出することができる。この電場検出素子は大きさが数nmから数十nmと極微小に構成することができるため、従来は困難であったナノメートルサイズの極微領域の電場を測定することができ、あるいは、電場の分布を高精度に測定することができる。この電場検出素子は、特に強電場の測定に用いて好適なものである。
〈8.第8の実施の形態〉
[バイポーラトランジスタ]
 第8の実施の形態においては、バイポーラトランジスタについて説明する。
 p型タンパク質半導体、n型タンパク質半導体およびp型タンパク質半導体を順次接合することによりpnp型バイポーラトランジスタを構成することができる。あるいは、n型タンパク質半導体、p型タンパク質半導体およびn型タンパク質半導体を順次接合することによりnpn型バイポーラトランジスタを構成することができる。
 この第8の実施の形態によれば、新規なバイポーラトランジスタを得ることができる。このバイポーラトランジスタは種々の用途に用いることができるが、例えばフォトトランジスタとして用いることができる。
〈9.第9の実施の形態〉
[サイリスタ]
 第9の実施の形態においては、サイリスタについて説明する。
 このサイリスタは、例えば、p型タンパク質半導体、n型タンパク質半導体、p型タンパク質半導体およびn型タンパク質半導体を順次接合することにより構成されるpnpn型サイリスタである。
 この第9の実施の形態によれば、新規なサイリスタを得ることができる。このサイリスタは種々の用途に用いることができる。
〈10.第10の実施の形態〉
[フォトセンサー]
 図30は第10の実施の形態によるフォトセンサーを示す回路図である。
 図30に示すように、このフォトセンサーは、第6の実施の形態によるバルクヘテロ接合型光電変換素子からなるフォトダイオード71と、このフォトダイオード71の出力を増幅するための単一電子トランジスタ72とにより構成されている。単一電子トランジスタ72はドレイン側の微小トンネル接合J1 とソース側の微小トンネル接合J2 とにより構成されている。これらの微小トンネル接合J1 、J2 の容量をそれぞれC1 、C2 とする。例えば、フォトダイオード71の一方の電極は負荷抵抗RL を介して接地されており、他方の電極はフォトダイオード72をバイアスするための正電圧VPDを供給する正極電源に接続されている。一方、単一電子トランジスタ72のソースは接地されており、そのドレインは出力抵抗Rout を介して正電圧Vccを供給する正極電源に接続されている。そして、フォトダイオード71の負荷抵抗RL 側の電極と単一電子トランジスタ72のゲートとが容量Cg を介して互いに接続されている。
 上述のように構成されたこのフォトセンサーにおいては、フォトダイオード71に光が照射されて光電流が流れたときに負荷抵抗RL の両端に発生する電圧により容量Cg が充電され、この容量Cg を介して単一電子トランジスタ72のゲートにゲート電圧Vg が印加される。そして、この容量Cg に蓄積された電荷量の変化ΔQ=Cg ΔVg を測定することによりゲート電圧Vg の変化ΔVg を測定する。ここで、フォトダイオード71の出力を増幅するために用いられている単一電子トランジスタ72は、従来のトランジスタの例えば100万倍もの感度で、容量Cg に蓄積された電荷量の変化ΔQ=Cg ΔVg を測定することができることができるものである。すなわち、単一電子トランジスタ72は微小なゲート電圧Vg の変化ΔVg を測定することができるため、負荷抵抗RL の値を小さくすることができる。これによって、フォトセンサーの大幅な高感度化および高速化を図ることができる。また、単一電子トランジスタ72側では帯電効果により熱雑音が抑制されるので、増幅回路側で発生する雑音を抑制することができる。さらに、単一電子トランジスタ72はその基本動作において一個の電子のトンネル効果しか用いないので、極めて低消費電力である。
 このフォトセンサーにおいては、上述のようにフォトダイオード71と単一電子トランジスタ72とは容量結合されている。このときの電圧利得はCg /C1 で与えられるため、微小トンネル接合J1 の容量C1 を十分に小さくしておくことにより、このフォトセンサーの次段に接続される素子を駆動するのに十分な大きさの出力電圧Vout を容易に得ることができる。
 以上のように、この第10の実施形態によれば、長期安定利用可能な、タンパク質半導体を用いた新規なフォトセンサーを実現することができる。また、このフォトセンサーは、単一電子トランジスタ72によりフォトダイオード71の出力を増幅するように構成されている。このため、従来の通常のトランジスタによりフォトダイオードの出力を増幅する従来の一般的なフォトセンサーに比べて、フォトセンサーの大幅な高速化、高感度化および低消費電力化を図ることができる。
〈11.第11の実施の形態〉
[インバータ回路]
 次に、第11の実施の形態によるインバータ回路について説明する。
 このインバータ回路を図31に示す。図31に示すように、このインバータ回路においては、第6の実施の形態によるバルクヘテロ接合型光電変換素子と同様な構成の光電変換素子101と負荷抵抗RL とが直列に接続されている。負荷抵抗RL の一端に所定の正の電源電圧VDDが印加されるとともに、電極が接地される。光電変換素子101に信号光としてこの光電変換素子101の吸収波長の光を照射すると光電変換素子101がオンして光電流が流れることにより電極(図示せず)からの出力電圧Vout はローレベルとなり、光の照射を止めると光電変換素子101がオフして光電流が流れなくなることにより電極からの出力電圧Vout はハイレベルとなる。
 この第9の実施形態によれば、長期安定利用可能な、タンパク質半導体を用いた新規なインバータ回路を構成することができ、このインバータ回路を用いて論理回路などの各種の回路を構成することができる。
 以上、実施の形態および実施例について具体的に説明したが、本開示は、上述の実施の形態および実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施の形態および実施例において挙げた数値、構造、構成、形状、材料などはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、構成、形状、材料などを用いてもよい。
 11…金電極、13…自己組織化単分子膜、21…p型タンパク質半導体、21a…pチャネル、22…n型タンパク質半導体、22a…nチャネル、31…導電性ポリマーおよび/または高分子半導体、32…タンパク質半導体

Claims (13)

  1.  アミノ酸残基全体の電荷量を制御することによりタンパク質半導体の導電型を制御するタンパク質半導体の製造方法。
  2.  タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を自身の性質と異なる性質を有するアミノ酸残基に置換し、または、タンパク質に酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を付加し、または、タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を欠損させ、または、タンパク質に含まれる酸性のアミノ酸残基、塩基性のアミノ酸残基および中性のアミノ酸残基のうちの1つまたは複数個を化学修飾し、または、タンパク質の周りを囲む媒体の極性を制御することにより、アミノ酸残基全体の電荷量を制御する請求項1記載のタンパク質半導体の製造方法。
  3.  上記タンパク質は電子伝達タンパク質である請求項2記載のタンパク質半導体の製造方法。
  4.  上記電子伝達タンパク質は金属を含む請求項3記載のタンパク質半導体の製造方法。
  5.  上記電子伝達タンパク質は亜鉛置換チトクロムcまたは亜鉛置換チトクロムb562 である請求項4記載のタンパク質半導体の製造方法。
  6.  アミノ酸残基全体の電荷量を制御することにより導電型を制御したタンパク質半導体。
  7.  アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することによりpn接合を製造するpn接合の製造方法。
  8.  アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合。
  9.  アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することによりpn接合を製造する工程を有する半導体装置の製造方法。
  10.  上記半導体装置は受光素子または発光素子である請求項9記載の半導体装置の製造方法。
  11.  アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合を有する半導体装置。
  12.  アミノ酸残基全体の電荷量を制御することによりp型タンパク質半導体およびn型タンパク質半導体を製造し、これらのp型タンパク質半導体およびn型タンパク質半導体を互いに接合することにより製造されるpn接合を有する半導体装置を有する電子機器。
  13.  アミノ酸残基全体の電荷量を制御することによりタンパク質半導体の導電型を制御するタンパク質半導体の導電型の制御方法。
PCT/JP2012/003200 2011-05-27 2012-05-16 タンパク質半導体の製造方法 WO2012164849A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280024516.9A CN103548166A (zh) 2011-05-27 2012-05-16 制造蛋白质半导体的方法
EP12792862.0A EP2717345A4 (en) 2011-05-27 2012-05-16 PROCESS FOR PRODUCING A PROTEIN SEMICONDUCTOR
KR1020137030301A KR20140026493A (ko) 2011-05-27 2012-05-16 단백질 반도체의 제조 방법
US14/119,130 US20140183487A1 (en) 2011-05-27 2012-05-16 Method of manufacturing protein semiconductor, protein semiconductor, method of manufacturing pn junction, pn junction, method of manufacturing semiconductor apparatus, semiconductor apparatus, electronic apparatus, and method of controlling conductivity type of protein semiconductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011119329A JP2012248684A (ja) 2011-05-27 2011-05-27 タンパク質半導体の製造方法、タンパク質半導体、pn接合の製造方法、pn接合、半導体装置の製造方法、半導体装置、電子機器およびタンパク質半導体の導電型の制御方法
JP2011-119329 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012164849A1 true WO2012164849A1 (ja) 2012-12-06

Family

ID=47258726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003200 WO2012164849A1 (ja) 2011-05-27 2012-05-16 タンパク質半導体の製造方法

Country Status (6)

Country Link
US (1) US20140183487A1 (ja)
EP (1) EP2717345A4 (ja)
JP (1) JP2012248684A (ja)
KR (1) KR20140026493A (ja)
CN (1) CN103548166A (ja)
WO (1) WO2012164849A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310569A (ja) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp 素子分離構造
JPS6319855A (ja) * 1986-07-11 1988-01-27 Mitsubishi Electric Corp 生物電気素子
JPS6319867A (ja) * 1986-07-11 1988-01-27 Mitsubishi Electric Corp 抵抗素子
JPH0428165A (ja) * 1990-05-24 1992-01-30 Komatsu Ltd タンパク質を電子素子とする電極系
JP2007220445A (ja) 2006-02-16 2007-08-30 Sony Corp 光電変換素子、半導体装置および電子機器
JP2009021501A (ja) 2007-07-13 2009-01-29 Sony Corp 分子素子、単分子光スイッチ素子、機能素子、分子ワイヤーおよび電子機器
US20090305432A1 (en) * 2005-10-17 2009-12-10 Lance Liotta Polypeptide Molecular Switch
JP2010251533A (ja) * 2009-04-16 2010-11-04 Sony Corp 分子素子、撮像素子、光センサーおよび電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8624227B2 (en) * 2005-02-22 2014-01-07 Ramot At Tel-Aviv University Ltd. Optoelectronic device and method of fabricating the same
US9023989B2 (en) * 2008-02-19 2015-05-05 University Of Connecticut Protein-based photovoltaics and methods of use
JP5560727B2 (ja) * 2009-08-28 2014-07-30 ソニー株式会社 非接液全固体型タンパク質光電変換素子およびその製造方法ならびに電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310569A (ja) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp 素子分離構造
JPS6319855A (ja) * 1986-07-11 1988-01-27 Mitsubishi Electric Corp 生物電気素子
JPS6319867A (ja) * 1986-07-11 1988-01-27 Mitsubishi Electric Corp 抵抗素子
JPH0428165A (ja) * 1990-05-24 1992-01-30 Komatsu Ltd タンパク質を電子素子とする電極系
US20090305432A1 (en) * 2005-10-17 2009-12-10 Lance Liotta Polypeptide Molecular Switch
JP2007220445A (ja) 2006-02-16 2007-08-30 Sony Corp 光電変換素子、半導体装置および電子機器
JP2009021501A (ja) 2007-07-13 2009-01-29 Sony Corp 分子素子、単分子光スイッチ素子、機能素子、分子ワイヤーおよび電子機器
JP2010251533A (ja) * 2009-04-16 2010-11-04 Sony Corp 分子素子、撮像素子、光センサーおよび電子機器

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
D.D.ELEY, R.B.LESLIE: "Electronic Aspects of Biochemistry", 1964, ACADEMIC PRESS, pages: 105
HAMACHI,I.; TAKASHIMA,H.; TSUKIJI,S.SHINKAI,S.,NAGAMUNE,T.; OIS HI,S., CHEM.LETT., 1999, pages 551
ITAGAKI,E.; PALMER,G.; HAGER,L.P., J.BIOL.CHEM., vol. 242, 1967, pages 2272
MATHEWS,F.S.; BETHGE,P.H.; CZERWINSKI,E.W., J.BIOL.CHEM., vol. 254, 1979, pages 1699
NIKKILA,H.; GENNIS,R.B.; SLIGER,S.G., EUR.J.BIOCHEM., vol. 202, 1991, pages 309
See also references of EP2717345A4
TATSURO GODA ET AL.: "Molecularly Engineered Charge-Conversion of Proteins for Sensitive Biosensing", ANALYTICAL CHEMISTRY, vol. 82, no. 21, 1 December 2010 (2010-12-01), pages 8946 - 8953, XP055136748 *
TOKITA, Y. AND 4 OTHERS, J.AM.CHEM.SOC., vol. 130, 2008, pages 5302

Also Published As

Publication number Publication date
KR20140026493A (ko) 2014-03-05
EP2717345A4 (en) 2014-11-05
JP2012248684A (ja) 2012-12-13
EP2717345A1 (en) 2014-04-09
CN103548166A (zh) 2014-01-29
US20140183487A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
Miao et al. Recent progress on highly sensitive perovskite photodetectors
Baeg et al. Organic light detectors: photodiodes and phototransistors
Nagy et al. Photosynthetic machineries in nano-systems
Tan et al. Generation of alternating current in response to discontinuous illumination by photoelectrochemical cells based on photosynthetic proteins
Bristow et al. Nonfullerene-based organic photodetectors for ultrahigh sensitivity visible light detection
Dastoor et al. Understanding and improving solid-state polymer/C60-fullerene bulk-heterojunction solar cells using ternary porphyrin blends
JP5580976B2 (ja) 有機薄膜太陽電池
CN101866755B (zh) 分子器件、成像器件、光传感器以及电子设备
Buscemi et al. Chlorophylls as molecular semiconductors: introduction and state of art
Roslan et al. Investigation of VTP: PC71BM organic composite as highly responsive organic photodetector
Qadir et al. Binary blend based dye sensitized photo sensor using PCPDTBT and MEH-PPV composite as a light sensitizer
US8952357B2 (en) Cytochrome c552 color imaging element and method of manufacturing the same, cytochrome c552 photosensor and method of manufacturing the same, cytochrome c552 photoelectric transducer and method of manufacturing the same, and cytochrome c552 electronic device
Erten et al. Bilayer heterojunction solar cell based on naphthalene bis-benzimidazole
JP2008522428A (ja) 隔離された光合成複合体を使用する固体感光性デバイス
WO2012164849A1 (ja) タンパク質半導体の製造方法
Yang et al. Opposite photocurrent response to ultraviolet and visible light
Ravi et al. Electronics, photonics, and device physics in protein biophotovoltaics
Weng et al. Organic ternary bulk heterojunction broadband photodetectors based on nonfullerene acceptors with a spectral response range from 200 to 1050 nm
Hasobe et al. Fullerene-based supramolecular nanoclusters with poly [2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene] for light energy conversion
JP2011233692A (ja) 光電変換素子、有機太陽電池及びそれらを用いた光電変換装置
Guo Low noise, high detectivity photodetectors based on organic materials
US20120138770A1 (en) Non-wetted all solid protein photoelectric conversion device, method of manufacturing the same, and electronic device
Chamola et al. Organic Solar Cells: Structural Variety, Effect of Layers, and Applications
Kaushik et al. Organic solar cells: design, synthesis and characterization
Nagy et al. No alternatives to photosynthesis: from molecules to nanostructures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012792862

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137030301

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14119130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE