WO2012164694A1 - 無線通信システム、移動局、基地局、及び無線通信方法 - Google Patents

無線通信システム、移動局、基地局、及び無線通信方法 Download PDF

Info

Publication number
WO2012164694A1
WO2012164694A1 PCT/JP2011/062543 JP2011062543W WO2012164694A1 WO 2012164694 A1 WO2012164694 A1 WO 2012164694A1 JP 2011062543 W JP2011062543 W JP 2011062543W WO 2012164694 A1 WO2012164694 A1 WO 2012164694A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
base station
lte
mobile station
station
Prior art date
Application number
PCT/JP2011/062543
Other languages
English (en)
French (fr)
Inventor
大知 安岡
勝彦 千葉
豊田 稔
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013517752A priority Critical patent/JPWO2012164694A1/ja
Priority to PCT/JP2011/062543 priority patent/WO2012164694A1/ja
Priority to EP11866451.5A priority patent/EP2717629A1/en
Publication of WO2012164694A1 publication Critical patent/WO2012164694A1/ja
Priority to US14/085,430 priority patent/US20140080482A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration

Definitions

  • the present invention relates to a radio communication system, a mobile station, a base station, and a radio communication method.
  • FIG. 18 is a diagram for explaining a conventional technique for switching between wireless communication systems.
  • a mobile station that can communicate with either 3G or LTE wireless communication system is assumed.
  • the mobile station transmits a signal (RRC Connection Request) for requesting connection to a 3G base station BTS (Base Transceiver Station).
  • RRC Connection Request a signal for requesting connection to a 3G base station BTS (Base Transceiver Station).
  • the 3G-side BTS transmits a signal (RRC Connection Reject) rejecting the connection request from the mobile station and the LTE base station in the vicinity of the mobile station.
  • the frequency number is notified (U2).
  • the frequency number notified at this time is, for example, EARFCN (E-UTRAN Absolute Radio Frequency Channel Number), and the mobile station searches for the LTE base station with which the mobile station can communicate from the center frequency identified by the number. To do.
  • the mobile station selects an LTE base station with the highest received radio wave intensity as a connection destination from the searched LTE base stations, and requests a connection to the base station (RRC Connection Request). Send. Thereby, the mobile station starts communication with the LTE base station having a higher communication speed.
  • the above-described technology is effective when the LTE base station is in a state where it can communicate with the mobile station that has requested connection.
  • the 3G base station that refuses the connection notifies the mobile station of the frequency number of the nearby LTE base station, but does not notify the mobile station whether or not communication is possible. Therefore, when the LTE base station becomes unable to communicate for some reason, the mobile station may not be able to detect the LTE base station as a connection destination even if it receives the frequency number of the LTE base station. If the mobile station cannot detect the connected LTE base station, the mobile station will request connection to the 3G base station again, but the 3G base station detects that an LTE base station exists in the vicinity. Therefore, the connection with the mobile station is rejected and the connection with the LTE base station is prompted. Thereby, the retry of the connection between the mobile station and the base station increases, and the processing load of the wireless communication system including the mobile station and the base station increases.
  • the disclosed technology has been made in view of the above, and an object thereof is to provide a wireless communication system, a mobile station, a base station, and a wireless communication method capable of reducing the processing load.
  • a wireless communication system disclosed in the present application includes, in one aspect, a mobile station, a first base station, and a second base station.
  • the first base station communicates with the mobile station using a first communication method.
  • the second base station communicates with the mobile station using a second communication method.
  • the mobile station includes a determination unit and a notification unit.
  • the determination unit determines whether communication with the second base station using the second communication method is possible.
  • the notification unit determines that the communication is impossible by the determination unit, when the communication unit transmits a communication request to the first base station, the notification unit cannot communicate with the second base station. , Notify the first base station.
  • the first base station communicates with the mobile station using the first communication method in response to the communication request without requesting the mobile station to communicate with the second base station.
  • a communication unit is notifying
  • the processing load can be reduced.
  • FIG. 1 is a diagram illustrating a functional configuration of a wireless communication system.
  • FIG. 2 is a diagram illustrating an example of data storage in the communication quality information storage unit.
  • FIG. 3 is a diagram illustrating a part of a message transmitted and received by the 3G communication unit.
  • FIG. 4 is a diagram illustrating a hardware configuration of the mobile station.
  • FIG. 5 is a diagram illustrating a hardware configuration of the LTE base station.
  • FIG. 6 is a flowchart for explaining the operation of the wireless communication system when communication is not possible due to the occurrence of RLF.
  • FIG. 7 is a flowchart for explaining the operation of clearing the communication quality information storage unit when the mobile station detects a cell with good communication quality.
  • FIG. 1 is a diagram illustrating a functional configuration of a wireless communication system.
  • FIG. 2 is a diagram illustrating an example of data storage in the communication quality information storage unit.
  • FIG. 3 is a diagram illustrating a part of a message transmitted and received by the
  • FIG. 8 is a flowchart for explaining the operation of clearing the communication quality information storage unit when the mobile station starts packet communication normally by the 3G communication unit.
  • FIG. 9 is a flowchart for explaining the operation of the wireless communication system when communication is not possible due to the occurrence of RLF during handover.
  • FIG. 10 is a flowchart for explaining the operation of the wireless communication system in the case where communication is not possible due to the failure to establish the RRC connection.
  • FIG. 11 is a flowchart for explaining the operation of the wireless communication system when communication is not possible due to failure to establish a default bearer.
  • FIG. 12 is a flowchart for explaining the operation of the wireless communication system in the case where communication is not possible due to the failure of RAB setting.
  • FIG. 13 is a flowchart for explaining the operation of the wireless communication system when communication is not possible due to LTE cell restriction.
  • FIG. 14 is a flowchart for explaining the operation of the wireless communication system when communication is not possible due to LTE access restriction.
  • FIG. 15 is a flowchart for explaining an operation of clearing the communication quality information storage unit when the mobile station detects cancellation of cell restriction or access restriction.
  • FIG. 16 is a flowchart for explaining an operation in which the mobile station generates an RRC Connection Request addressed to the 3G base station.
  • FIG. 17 is a flowchart for explaining the operation after the 3G base station receives the RRC Connection Request from the mobile station.
  • FIG. 18 is a diagram for explaining a conventional technique for switching between wireless communication systems.
  • FIG. 1 is a diagram illustrating a configuration of a wireless communication system.
  • the wireless communication system 1 includes a mobile station 10, an LTE base station 20, and a 3G base station 30, which will be described later.
  • the mobile station 10 can perform wireless communication with each of the LTE base stations 20 and 3G base stations 30.
  • the LTE base station 20 is wiredly connected to an MME (Mobility Management Entity) 40 by IP (Internet Protocol).
  • the 3G base station 30 is wiredly connected to an RNC (Radio Network Controller) 50 by ATM (Asynchronous Transfer Mode) or IP.
  • MME Mobility Management Entity
  • IP Internet Protocol
  • RNC Radio Network Controller
  • the mobile station 10 is a terminal (so-called dual mode terminal) capable of communicating with both the conventional 3G base station 30 and the higher-speed LTE base station 20.
  • the mobile station 10 includes an LTE communication quality detection unit 11, a communication control unit 12, a 3G communication quality detection unit 13, a communication quality information storage unit 14, a 3G communication unit 15, and an LTE communication. Part 16.
  • Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the LTE communication quality detection unit 11 When a failure factor such as RLF (Radio Link Failure) occurs during packet communication with the LTE base station 20, the LTE communication quality detection unit 11 performs a cell of the LTE base station 20 in communication (hereinafter referred to as “ The communication quality failure of “LTE cell” is detected. The LTE communication quality detection unit 11 outputs the detection result to the communication control unit 12. When the LTE communication quality detection unit 11 cannot detect a cell with good communication quality among the LTE cells, the LTE communication quality detection unit 11 notifies the communication control unit 12 that the LTE cell cannot be detected.
  • RLF Radio Link Failure
  • the communication control unit 12 instructs the LTE communication quality detection unit 11 to perform a cell search in order to detect the presence / absence of a cell with good communication quality among other LTE cells with which the mobile station 10 can communicate. Similarly, the communication control unit 12 detects the presence or absence of a 3G cell with good communication quality with respect to the cell of the 3G base station 30 (hereinafter, abbreviated as “3G cell” as necessary). A cell search is instructed to the detection unit 13. In addition, when it is determined that only the 3G cell can be used, the communication control unit 12 performs a RAT (Radio Access Technology) change from LTE to 3G. The communication control unit 12 instructs the 3G communication unit 15 to transmit a message including an RRC (Radio Resource Control) Connection Request.
  • RRC Radio Resource Control
  • the 3G communication quality detection unit 13 notifies the communication control unit 12 that a 3G cell has been detected when a cell with good communication quality is detected among the 3G cells with which the mobile station 10 can communicate.
  • the 3G communication quality detection unit 13 detects the 3G cell that can be communicated and determines whether or not the communication quality of the 3G cell is good.
  • the CQI (Channel Quality Indicator) value of the mobile station 10 for the 3G base station 30 Based on. That is, the 3G communication quality detection unit 13 measures the CQI value based on the received radio wave intensity from the 3G base station 30 or the SIR (Signal to Interference Ratio) estimated value, and the value exceeds a predetermined threshold value. Determines that the communication quality of the 3G cell is good.
  • the communication quality information storage unit 14 stores information indicating that the LTE cell cannot be detected (RAT change information) as a failure factor of the LTE cell in accordance with the RAT change by the communication control unit 12.
  • FIG. 2 is a diagram illustrating an example of data storage in the communication quality information storage unit 14.
  • the communication quality information storage unit 14 includes an EARFCN storage area 141 and an LTE failure factor storage area 142.
  • the EARFCN storage area 141 information for identifying the center frequency assigned to each LTE base station is stored as “EARFCN”.
  • EARFCN is identified by the last number (1 to n) attached to the LTE frequency number. Note that n is a natural number representing the maximum number of neighboring cells of the LTE base station 20.
  • LTE failure factor storage area 142 information indicating the failure factor of the LTE base station having the corresponding EARFCN is stored as “LTE failure factor”.
  • EARFCN is “all LTE frequency numbers”
  • network access restriction is stored as a failure factor that disables communication of LTE base stations corresponding to all frequency numbers regardless of the LTE frequency numbers.
  • EARFCN is a specific LTE frequency number identified by 1 to n
  • Information such as “cell cannot be detected” or “cell regulation” is stored.
  • the communication quality information storage unit 14 manages the failure factor of each LTE base station for each frequency number that is identification information.
  • the 3G communication unit 15 transmits / receives various signals including messages to / from the 3G base station 30 using, for example, 3G wireless communication technology.
  • FIG. 3 is a diagram illustrating a part of a message transmitted and received by the 3G communication unit 15.
  • the message transmitted / received by the 3G communication unit 15 is, for example, an RRC Connection Request (3G) Rel-8 message.
  • “Pre-redirection info” 151 that constitutes a part of the “Information Element / Group name”, “Need”, “Multi”, “Type and Reference”, “Semantics description”, as shown in FIG. , “Version” data storage areas.
  • N described in FIG. 3 represents the maximum number of neighboring cells of the LTE base station 20.
  • the LTE communication unit 16 transmits / receives various signals including messages to / from the LTE base station 20 using, for example, LTE (3.9G) wireless communication technology.
  • LTE Long Term Evolution
  • FIG. 4 is a diagram illustrating a hardware configuration of the mobile station 10.
  • the mobile station 10 physically includes a system LSI (Large Scale Integration) 10a, a DAC (Digital-to-Analog Converter) / ADC (Analog-to-Digital Converter) 10b, It has a frequency converter 10c and an RF (Radio Frequency) circuit 10d.
  • the RF circuit 10d has an antenna 10e.
  • the mobile station 10 further includes a CPU (Central Processing Unit) 10f, an SDRAM (Synchronous Dynamic Random Access Memory) 10g, and a DSP (Digital Signal Processor) 10h.
  • CPU Central Processing Unit
  • SDRAM Serial RAM
  • DSP Digital Signal Processor
  • Each functional component (see FIG. 1) of the mobile station 10 described above is realized by hardware described below (see FIG. 4). That is, the LTE communication quality detection unit 11, the communication control unit 12, and the 3G communication quality detection unit 13 are realized by the CPU 10f or the DSP 10h as hardware.
  • the communication quality information storage unit 14 is realized by the SDRAM 10g.
  • the 3G communication unit 15 and the LTE communication unit 16 are realized by the system LSI 10a, the DAC / ADC 10b, the frequency converter 10c, the RF circuit 10d, and the antenna 10e.
  • the LTE base station 20 includes a communication unit 21.
  • the communication unit 21 performs wireless communication using the LTE method with the LTE communication unit 16 of the mobile station 10.
  • the 3G base station 30 includes a communication unit 31.
  • the communication unit 31 performs 3G wireless communication with the 3G communication unit 15 of the mobile station 10. Specifically, when the communication unit 31 receives a communication request from the mobile station 10 and receives a notification that communication with the LTE base station 20 is impossible, the communication unit 31 communicates with the mobile station 10 with the LTE base station 20. In response to the communication request, communication with the mobile station 10 is performed using the 3G method.
  • FIG. 5 is a diagram illustrating a hardware configuration of the LTE base station 20.
  • the CPU 20b, the SDRAM 20c, the FPGA (Field Programmable Gate Array) 20d, and the DSP 20e are physically connected to various signals and data via an interface 20a such as a switch. Are connected to enable input / output.
  • the LTE base station 20 physically includes a DAC / ADC 20f, a frequency converter 20g, and an RF circuit 20h.
  • the RF circuit 20h has an antenna 20i.
  • the hardware configuration of the LTE base station 20 has been described above, but the 3G base station 30 also has the same configuration as that of the LTE base station 20 physically, so the same reference numerals are used for the common components. A detailed description is omitted while being used.
  • the communication unit 21 (see FIG. 1) of the LTE base station 20 is realized by a DAC / ADC 20f as hardware, a frequency converter 20g, an RF circuit 20h, and an antenna 20i (see FIG. 5).
  • the communication unit 31 (see FIG. 1) of the 3G base station 30 is realized by a DAC / ADC 20f as hardware, a frequency converter 20g, an RF circuit 20h, and an antenna 20i (see FIG. 5).
  • the RNC 50 includes a message transmission / reception unit 51 and a communication control unit 52 as shown in FIG. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the message transmission / reception unit 51 receives a message transmitted from the mobile station 10 via the 3G base station 30 and outputs the received message to the communication control unit 52.
  • the communication control unit 52 analyzes the message input from the message transmission / reception unit 51. When the message is an RRC Connection Request, the communication control unit 52 determines whether the request is a request for packet communication, and the source mobile station performs LTE communication. It is determined whether it corresponds to. If both are true as a result of the determination, the communication control unit 52 confirms whether or not there is Redirection error cause information in the RRC Connection Request.
  • FIG. 6 is a diagram illustrating the operation of the wireless communication system when communication is not possible due to the occurrence of RLF.
  • the LTE communication quality detection unit 11 CPU 10f or DSP 10h
  • the mobile station 10 detects the RLF of the LTE cell during packet communication with the LTE base station 20 (S1), it searches for other connectable cells (cell search).
  • cell search cell search
  • S2 As a result of the search, when the mobile station 10 detects a 3G cell (S3; No), the mobile station 10 stores the information “LTE cell cannot be detected” in the communication quality information storage unit 14 (SDRAM 10g) (S4).
  • SDRAM 10g communication quality information storage unit 14
  • Information indicating that “LTE cell detection is not possible” is information indicating that the mobile station 10 has changed the radio communication method with the base station from LTE to 3G RAT, and the LTE failure factor storage area 142 of the communication quality information storage unit 14. Is remembered. As a result, the RAT change process in the mobile station 10 is completed (S5).
  • the LTE communication quality detection unit 11 (CPU 10f or DSP 10h) of the mobile station 10 detects another connectable LTE cell (S3; Yes)
  • the LTE communication unit 16 (system LSI 10a, DAC) / ADC 10b, frequency converter 10c, RF circuit 10d, antenna 10e) reconnects (hands over) to the LTE base station whose communication area is the cell (S6).
  • FIG. 7 is a flowchart for explaining the operation of clearing the communication quality information storage unit 14 when the mobile station 10 detects a cell with good communication quality.
  • the LTE communication quality detection unit 11 CPU 10f or DSP 10h
  • the LTE communication quality detection unit 11 determines whether or not the communication quality of the LTE cell is good (S11).
  • S11 the communication quality of the LTE cell is good
  • S12 Each process of S11 and S12 is performed by the LTE communication quality detection unit 11 based on the received radio wave intensity from the LTE base station 20 and the SIR estimated value.
  • the LTE communication quality detection unit 11 (CPU 10f or DSP 10h) of the mobile station 10 is stored in the communication quality information storage unit 14.
  • the LTE failure factor or EARFCN information is cleared (S13).
  • the communication quality information storage unit 14 is initialized. If the communication quality of the LTE cell is not good as a result of the determination in S12 (S12; No), the LTE communication quality detection unit 11 (CPU 10f or DSP 10h) of the mobile station 10 clears the communication quality information storage unit 14. Instead, the series of processing ends.
  • FIG. 8 is a flowchart for explaining the operation of clearing the communication quality information storage unit 14 when the mobile station starts packet communication normally by the 3G communication unit.
  • the 3G communication unit 15 system LSI 10a, DAC / ADC 10b, frequency converter 10c, RF circuit 10d, antenna 10e
  • the packet communication is performed by the 3G base station. It is determined whether or not the communication is with 30 (S22). As a result of the determination, when the communication is with the 3G base station 30 (S22; Yes), the 3G communication quality detection unit 13 (CPU 10f or DSP 10h) of the mobile station 10 is stored in the communication quality information storage unit 14.
  • the information on LTE failure factor or EARFCN is cleared (S23).
  • the communication quality information storage unit 14 is initialized. If the result of determination in S22 is that communication is not with the 3G base station 30 (S22; No), the 3G communication quality detection unit 13 (CPU 10f or DSP 10h) of the mobile station 10 clears the communication quality information storage unit 14. Without processing.
  • FIG. 9 is a diagram illustrating the operation of the wireless communication system when communication is not possible due to the occurrence of RLF during handover.
  • the LTE communication quality detection unit 11 CPU 10f or DSP 10h
  • the mobile station 10 detects the RLF of the LTE cell during packet communication with the LTE base station 20 and during the handover process (S31), A cell is searched (cell search) (S32).
  • the mobile station 10 detects a 3G cell (S33; No)
  • the mobile station 10 stores the information “LTE cell cannot be detected” in the communication quality information storage unit 14 (SDRAM 10g) (S34).
  • Information indicating that “LTE cell detection is not possible” is information indicating that the mobile station 10 has changed the radio communication method with the base station from LTE to 3G RAT, and the LTE failure factor storage area 142 of the communication quality information storage unit 14. Is remembered. At the same time, the mobile station 10 stores “EARFCN of the handover source LTE base station 20 that was in communication” and “EARFCN of the handover destination LTE base station” in the EARFCN storage area 141 of the communication quality information storage unit 14. (S34). Thereby, the mobile station 10 completes the RAT change process (S35).
  • the LTE communication quality detection unit 11 (CPU 10f or DSP 10h) of the mobile station 10 detects another connectable LTE cell (S33; Yes)
  • the LTE communication unit 16 (system LSI 10a, DAC) / ADC 10b, frequency converter 10c, RF circuit 10d, antenna 10e) reconnects (hands over) to the LTE base station whose communication area is the cell (S36).
  • FIG. 10 is a diagram illustrating an operation of the wireless communication system when communication is not possible due to failure in establishing RRC Connection.
  • the LTE communication unit 16 system LSI 10a, DAC / ADC 10b, frequency converter 10c, RF circuit 10d, antenna 10e
  • the communication quality detection unit 11 CPU 10f or DSP 10h searches for other connectable cells (cell search) (S42).
  • the mobile station 10 when the mobile station 10 detects a 3G cell (S43; No), the mobile station 10 stores the information “LTE cell not detectable” in the communication quality information storage unit 14 (SDRAM 10g) (S44).
  • Information indicating that “LTE cell detection is not possible” is information indicating that the mobile station 10 has changed the radio communication method with the base station from LTE to 3G RAT, and the LTE failure factor storage area 142 of the communication quality information storage unit 14. Is remembered.
  • the mobile station 10 stores “EARFCN of the LTE base station that failed to establish RRC Connection” in the EARFCN storage area 141 of the communication quality information storage unit 14 (S44).
  • the mobile station 10 completes the RAT change process by the communication control unit 12 (S45). If the LTE communication quality detection unit 11 (CPU 10f or DSP 10h) of the mobile station 10 detects another connectable LTE cell in S43 (S43; Yes), the LTE communication unit 16 (system LSI 10a, DAC) / ADC 10b, frequency converter 10c, RF circuit 10d, antenna 10e) reconnects (hands over) to the LTE base station whose communication area is the cell (S46).
  • the LTE communication quality detection unit 11 CPU 10f or DSP 10h
  • FIG. 11 illustrates the operation of the wireless communication system when communication is not possible due to failure to establish a default bearer. It is assumed that the LTE communication unit 16 (system LSI 10a, DAC / ADC 10b, frequency converter 10c, RF circuit 10d, antenna 10e) of the mobile station 10 has successfully established RRC Connection while in the LTE cell ( S51). Thereafter, before the mobile station 10 starts communication with the LTE base station 20, the communication control unit 12 (CPU 10f or DSP 10h) establishes a default bearer between the mobile station 10, the LTE base station 20, and the MME 40 due to some factor.
  • the LTE communication unit 16 system LSI 10a, DAC / ADC 10b, frequency converter 10c, RF circuit 10d, antenna 10e
  • a search for other connectable cells is started (S53).
  • cell search a search for other connectable cells
  • the mobile station 10 stores information on “LTE side network abnormality” in the communication quality information storage unit 14 (SDRAM 10g) ( S55).
  • Information on “LTE side network anomaly” is information indicating that the mobile station 10 has changed the radio communication method with the base station from LTE to 3G, and the LTE failure factor storage area 142 of the communication quality information storage unit 14. Is remembered.
  • the mobile station 10 stores “EARFCN of the LTE base station that failed to establish the default bearer” in the EARFCN storage area 141 of the communication quality information storage unit 14 (S55). Thereby, the mobile station 10 completes the RAT change process by the communication control unit 12 (S56).
  • the LTE communication quality detection unit 11 CPU 10f or DSP 10h
  • the LTE communication unit 16 system LSI 10a, DAC / ADC 10b, frequency
  • the converter 10c, the RF circuit 10d, and the antenna 10e) reconnect (handover) to the LTE base station whose communication area is the cell (S57).
  • FIG. 12 illustrates the operation of the wireless communication system in the case where communication is not possible due to a failure in setting an RAB (Radio Access Bearer).
  • the LTE communication unit 16 system LSI 10a, DAC / ADC 10b, frequency converter 10c, RF circuit 10d, antenna 10e
  • the communication control unit 12 sets the RAB between the mobile station 10, the LTE base station 20, and the MME 40 for some reason. If unsuccessful (S62), search for other connectable cells (cell search) is started (S63).
  • the mobile station 10 stores information on “LTE side network abnormality” in the communication quality information storage unit 14 (SDRAM 10g) ( S65).
  • Information on “LTE side network anomaly” is information indicating that the mobile station 10 has changed the radio communication method with the base station from LTE to 3G, and the LTE failure factor storage area 142 of the communication quality information storage unit 14. Is remembered. Further, the mobile station 10 stores “EARFCN of LTE base station that failed to set RAB” in the EARFCN storage area 141 of the communication quality information storage unit 14 (S65). Thereby, the mobile station 10 completes the RAT change process (S66).
  • the LTE communication quality detection unit 11 (CPU 10f or DSP 10h) detects another connectable LTE cell (S64; Yes)
  • the LTE communication unit 16 (system LSI 10a, DAC / ADC 10b, frequency)
  • the converter 10c, the RF circuit 10d, and the antenna 10e) reconnect (handover) to the LTE base station whose communication area is the cell (S67).
  • FIG. 13 illustrates the operation of the wireless communication system when communication is not possible due to LTE cell restrictions.
  • the communication control unit 12 CPU 10f or DSP 10h
  • the communication quality information storage unit 14 is referred to (S72)
  • S73 It is determined whether there is an LTE cell other than the currently regulated cell (S73).
  • S73 if there is another LTE cell capable of communication (S73; Yes), the mobile station 10 stores “LTE cell restriction” and EARFCN information of the cell in the communication quality information storage unit 14 (SDRAM 10g). (S74).
  • the “LTE cell restriction” information is stored in the LTE failure factor storage area 142 of the communication quality information storage unit 14 as information indicating that the mobile station 10 has changed the radio communication method with the base station from LTE to 3G.
  • the EARFCN information of the cell to be regulated is stored in the EARFCN storage area 141 of the communication quality information storage unit 14 (SDRAM 10g).
  • SDRAM 10g the communication quality information storage unit 14
  • FIG. 14 illustrates the operation of the wireless communication system when communication is not possible due to LTE access restrictions.
  • the communication control unit 12 CPU 10f or DSP 10h
  • the mobile station 10 receives an access restriction notification from the LTE network side (LTE base station 20, MME 40) in the RRC idle state while waiting for the LTE cell (S81), connection is possible.
  • Search for another cell (cell search) (S82). If the mobile station 10 detects a 3G cell as a result of the search (S83; No), the mobile station 10 stores information on “LTE side network access restriction” in the communication quality information storage unit 14 (SDRAM 10g) (S84). .
  • SDRAM 10g communication quality information storage unit 14
  • the information on “LTE side network access restriction” is information indicating that the mobile station 10 has changed the radio communication scheme with the base station from LTE to 3G, and is an LTE failure factor storage area in the communication quality information storage unit 14. 142. Thereby, the mobile station 10 completes the RAT change process by the communication control unit 12 (S85). If the mobile station 10 detects an LTE cell in S83 (S83; Yes), the processes in S84 and S85 described above are omitted, and the series of processes is terminated.
  • FIG. 15 is a flowchart for explaining the operation of clearing the communication quality information storage unit 14 when the mobile station 10 detects the release of cell restriction or access restriction.
  • the LTE communication quality detection unit 11 CPU 10f or DSP 10h
  • the communication quality information storage unit 14 is initialized.
  • RRC connection request transmission / reception processing of an RRC connection request (RRC connection request) between the mobile station 10 and the 3G base station 30 will be described with reference to FIGS. 16 and 17.
  • FIG. 16 is a flowchart for explaining an operation in which the mobile station 10 generates an RRC Connection Request addressed to the 3G base station 30.
  • the communication control unit 12 (CPU 10f or DSP 10h) of the mobile station 10 refers to the communication quality information storage unit 14 before transmitting the RRC Connection Request (T1), and confirms the LTE failure factor and EARFCN settings at the current time. (T2).
  • the communication control unit 12 (CPU 10f or DSP 10h) of the mobile station 10 pre-redirection info 151 (FIG. 3) included in the RRC Connection Request. (Refer to "Redirection error cause area") Set information on "LTE cell not detectable” (T3). This completes the editing of the existing RRC Connection Request (T4).
  • the communication control unit 12 (CPU 10f or DSP 10h) of the mobile station 10 sends an RRC Connection Request.
  • the following information is set in (T5). That is, the communication control unit 12 (CPU 10f or DSP 10h) of the mobile station 10 corresponds to “LTE cell not detected” in the Redirection error cause area of the Pre-redirection info 151 (see FIG. 3) included in the RRC Connection Request and the cell.
  • Each information with “EARFCN” is set. This completes the editing of the existing RRC Connection Request (T6).
  • the communication control unit 12 (CPU 10f or DSP 10h) of the mobile station 10 Set the following information in RRC Connection Request (T7). That is, the communication control unit 12 (CPU 10f or DSP 10h) of the mobile station 10 responds to the “LTE side network error” in the Redirection error cause area of the Pre-redirection info 151 (see FIG. 3) included in the RRC Connection Request. Each information with “EARFCN” is set. This completes the editing of the existing RRC Connection Request (T8).
  • the communication control unit 12 (CPU 10f or DSP 10h) of the mobile station 10 Set the following information in RRC Connection Request (T9). That is, the communication control unit 12 (CPU 10f or DSP 10h) of the mobile station 10 sets “LTE cell restriction” in the Redirection error cause area of the Pre-redirection info 151 (see FIG. 3) included in the RRC Connection Request and the restriction target cell. Each information with the corresponding “EARFCN” is set. This completes the editing of the existing RRC Connection Request (T10).
  • the communication control unit 12 (CPU 10f or DSP 10h) of the mobile station 10 sends an RRC Connection Request.
  • the following information is set in (T11). That is, the communication control unit 12 (CPU 10f or DSP 10h) of the mobile station 10 sets “LTE side network access restriction” information in the Redirection error cause area of the Pre-redirection info 151 (see FIG. 3) included in the RRC Connection Request. . This completes the editing of the existing RRC Connection Request (T12).
  • the communication control unit 12 (CPU 10f) of the mobile station 10 is stored.
  • the DSP 10h) completes editing the existing RRC Connection Request without setting any information in the Redirection error cause area of the RRC Connection Request (T13).
  • the RRC Connection Request that has been edited is transmitted from the mobile station 10 to the 3G base station 30 by the 3G communication unit 15.
  • FIG. 17 is a flowchart for explaining the operation after the 3G base station 30 receives the RRC Connection Request from the mobile station 10.
  • the communication unit 31 DAC / ADC 20f, frequency converter 20g, RF circuit 20h, and antenna 20i
  • the 3G base station 30 determines whether or not the call requested by the signal is a “packet call” (T22). As a result of the determination, if the call requested by the RRC Connection Request signal is a packet call (T22; Yes), the 3G base station 30 determines that the source mobile station 10 is based on LTE based on the information included in the signal.
  • the LTE communication unit 16 (system LSI 10a, DAC / ADC 10b, frequency converter 10c, RF circuit 10d, antenna 10e) of the mobile station 10 can communicate with LTE base stations including the LTE base station 20. Therefore, the communication unit 31 (the DAC / ADC 20f, the frequency converter 20g, the RF circuit 20h, and the antenna 20i) of the 3G base station 30 determines the LTE failure factor and the EARFCN in the RRC Connection Request transmitted from the mobile station 10. The setting contents are confirmed (T24).
  • the 3G base station 30 sets up a voice call line with the mobile station 10 (T25). .
  • the communication unit 31 DAC / ADC 20f and frequency converter of the 3G base station 30 20g, the RF circuit 20h, and the antenna 20i) start conventional packet communication with the mobile station 10 (T26).
  • the 3G base station 30 performs the following operations. That is, the communication unit 31 (DAC / ADC 20f, frequency converter 20g, RF circuit 20h, and antenna 20i) of the 3G base station 30 is connected from the mobile station 10 even when the mobile station 10 has LTE transition capability. The reply of the signal rejecting the request (RRC Connection Reject) is suppressed (T27). As a result, the communication unit 31 of the 3G base station 30 starts packet communication with the mobile station 10 in accordance with the connection request from the mobile station 10.
  • the 3G base station 30 performs the following operation. That is, the 3G base station 30 determines the presence / absence of an LTE cell in which the mobile station 10 can communicate based on the information of the EARFCN (T28).
  • the communication unit 31 of the 3G base station 30 (DAC / ADC 20f, frequency converter 20g, RF circuit 20h, The antenna 20i) returns the EARFCN of the LTE base station with which the mobile station 10 can communicate, to the mobile station 10 with a signal (RRC Connection Reject) rejecting the connection request (T29).
  • RRC Connection Reject rejecting the connection request (T29).
  • a previous LTE base station is determined, and packet communication is started with the LTE base station.
  • the 3G base station 30 executes the following operation. That is, the communication unit 31 (DAC / ADC 20f, frequency converter 20g, RF circuit 20h, and antenna 20i) of the 3G base station 30 is transmitted from the mobile station 10 even when the mobile station 10 has the LTE transition capability. Responding to the RRC Connection Request signal (sending RRC Connection Reject) is suppressed (T30). As a result, the communication unit 31 of the 3G base station 30 starts packet communication with the mobile station 10 in accordance with the connection request from the mobile station 10.
  • the 3G base station 30 performs the following operation. That is, the 3G base station 30 determines the presence / absence of an LTE cell in which the mobile station 10 can communicate based on the information of the EARFCN (T32).
  • the communication unit 31 of the 3G base station 30 (DAC / ADC 20f, frequency converter 20g, RF circuit 20h, The antenna 20i) returns the EARFCN of the LTE base station with which the mobile station 10 is communicable on a signal (RRC Connection Reject) rejecting the connection request to the mobile station 10 (T33).
  • RRC Connection Reject rejecting the connection request to the mobile station 10 (T33).
  • the LTE communication unit 16 system LSI 10a, DAC / ADC 10b, frequency converter 10c, RF circuit 10d, antenna 10e
  • a new connection is made based on the EARFCN included in the signal.
  • a previous LTE base station is determined, and packet communication is started with the LTE base station.
  • the 3G base station 30 executes the following operation. That is, the communication unit 31 (DAC / ADC 20f, frequency converter 20g, RF circuit 20h, and antenna 20i) of the 3G base station 30 responds to the RRC Connection Request signal transmitted from the mobile station 10 (RRC Connection Reject (Transmission) is not performed (T34), and packet communication with the mobile station 10 is started in accordance with the connection request from the mobile station 10.
  • the communication unit 31 DAC / ADC 20f, frequency converter 20g, RF circuit 20h, and antenna 20i
  • the 3G base station 30 performs the following operations. Execute. That is, the communication unit 31 (DAC / ADC 20f, frequency converter 20g, RF circuit 20h, and antenna 20i) of the 3G base station 30 returns a signal (RRC Connection Reject) rejecting the connection request from the mobile station 10. Without performing this, packet communication with the mobile station 10 is started in accordance with the connection request (T35).
  • the communication unit 31 DAC / ADC 20f, frequency converter 20g, RF circuit 20h, and antenna 20i
  • the 3G base station 30 performs the following operation. Execute. That is, the communication unit 31 (DAC / ADC 20f, frequency converter 20g, RF circuit 20h, and antenna 20i) of the 3G base station 30 sends a signal (RRC Connection Reject) that rejects a connection request from the mobile station 10, A reply is made to the mobile station 10 (T36).
  • the communication unit 31 DAC / ADC 20f, frequency converter 20g, RF circuit 20h, and antenna 20i
  • the mobile station 10 the 3G base station 30 that communicates with the mobile station 10 using the 3G scheme, and the mobile station 10 that uses the LTE scheme It has the LTE base station 20 which communicates.
  • the mobile station 10 includes a communication control unit 12 and a 3G communication unit 15.
  • the communication control unit 12 determines whether communication with the LTE base station 20 using the LTE scheme is possible.
  • the 3G communication unit 15 indicates that communication with the LTE base station 20 is impossible when transmitting a communication request to the 3G base station 30. Notify the base station 30.
  • the 3G base station 30 communicates with the mobile station 10 using the 3G method in response to the communication request without requesting the mobile station 10 to communicate with the LTE base station 20.
  • the wireless communication system 1 when the mobile station 10 becomes unable to wirelessly communicate with the LTE base station 20 due to various failure factors, and the RAT is changed from LTE to 3G, the 3G base Connect to station 30 or another LTE base station.
  • the wireless communication system 1 reduces the network load and the connection delay between the mobile station 10 and the base station, and realizes improved call processing serviceability.
  • the mobile station 10 When the mobile station 10 transmits a communication request to the 3G base station 30, the mobile station 10 notifies the 3G base station 30 of the frequency number of the LTE base station 20. Accordingly, the 3G base station 30 can easily identify what frequency number the mobile station 10 cannot communicate with the LTE base station 20 having based on the frequency number of the LTE base station 20. . Further, the 3G base station 30 detects an LTE base station in the vicinity of the own station, and determines whether there is an LTE base station other than the frequency number of the LTE base station 20 among the detected LTE base stations.
  • the 3G base station 30 rejects (rejects) communication with the mobile station 10 and moves the frequency number of the LTE base station. Notify the station 10. As a result, the 3G base station 30 prompts the mobile station 10 to connect to the LTE base station having a frequency number different from the frequency number for which communication was not possible. On the other hand, if there is no LTE base station other than the frequency number of the LTE base station 20 as a result of the determination, the 3G base station 30 does not reject (reject) the communication with the mobile station 10 and the mobile station 10 Start communication with. Therefore, even when communication with the LTE base station 20 is not possible, the mobile station 10 starts communication with another LTE base station having higher communication quality than the 3G base station 30 as much as possible. be able to.
  • the 3G communication unit 15 of the mobile station 10 is not the identification information of the LTE base station 20 that has become unable to communicate with the 3G base station 30, but the EARFCN that is the center frequency number of the LTE base station 20 Is sent together with the RRC Connection Request.
  • the 3G base station 30 receives the EARFCN transmitted from the mobile station 10, the 3G base station 30 confirms whether or not there is an LTE base station having a center frequency other than the EARFCN among the LTE base stations around the LTE base station 20.
  • the 3G base station 30 connects to the mobile station 10 if there is no peripheral LTE base station other than the EARFCN notified from the mobile station 10.
  • the 3G base station 30 returns the EARFCN of the peripheral LTE base station to the mobile station 10.
  • the mobile station 10 that has received the EARFCN response returns an LTE base station with good communication quality based on the received radio wave intensity and the SIR estimated value from among a plurality of LTE base stations assigned the center frequency identified by the EARFCN. Select. This selection process is performed by the LTE communication quality detection unit 11. Then, the mobile station 10 starts communication with the LTE base station by the LTE communication unit 16.
  • the mobile station 10 does not directly receive the LTE base station ID notification from the 3G base station 30, but once receives the EARFCN notification and sets the LTE base station having the EARFCN as the center frequency as a candidate for the connection destination.
  • the number of LTE base stations that are connection destination candidates is, for example, eight per EARFCN.
  • the mobile station 10 further specifies an LTE base station having the best communication quality as a communication partner from among a plurality of LTE base stations narrowed down as connection destination candidates by the LTE communication quality detection unit 11.
  • the communication environment of the mobile station 10 changes from moment to moment depending on various conditions such as movement speed, shielding, interference, and presence / absence of reflection.
  • the wireless communication system 1 stops the notification from the 3G base station 30 to the mobile station 10 in the notification of the EARFCN, and selects the best base station from the LTE base stations having the notified EARFCN. The mobile station 10 itself is selected.
  • the mobile station 10 can select another LTE base station that is optimal for the mobile station 10 as a communication partner. Therefore, the mobile station 10 can perform packet communication with an LTE base station with higher communication quality among LTE base stations capable of performing higher-speed communication than the 3G base station 30. As a result, speeding up of the wireless communication system 1 is realized.
  • the operation of the wireless communication system according to each of the above-described failure factors is not necessarily executed individually, and may be executed by combining a plurality of operations. Further, the number and order of the combinations can be selected as appropriate.
  • wireless communication system 10 mobile station 10a system LSI 10b DAC / ADC 10c Frequency converter 10d RF circuit 10e Antenna 11 LTE communication quality detection unit 12 Communication control unit 13 3G communication quality detection unit 14 Communication quality information storage unit 141 EARFCN storage area 142 LTE failure factor storage area 15 3G communication unit 16 LTE communication unit 20 LTE base station 20a interface 20b CPU 20c SDRAM 20d FPGA 20e DSP 20f DAC / ADC 20g Frequency converter 20h RF circuit 20i Antenna 21 Communication unit 30 3G base station 31 Communication unit 40 MME 50 RNC 51 Message Transmission / Reception Unit 52 Communication Control Unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線通信システム(1)は、移動局(10)と、3G方式を用いて移動局(10)と通信する3G基地局(30)と、LTE方式を用いて移動局(10)と通信するLTE基地局(20)とを有する。移動局(10)は、通信制御部(12)と3G通信部(15)とを有する。通信制御部(12)は、LTE方式を用いたLTE基地局(20)との通信の可否を判定する。3G通信部(15)は、通信制御部(12)により上記通信が不可と判定された場合、3G基地局(30)に対して通信要求を送信する際、LTE基地局(20)との通信が不可であることを、3G基地局(30)に通知する。3G基地局(30)は、移動局(10)に対してLTE基地局(20)との通信を要求することなく、上記通信要求に応じて、3G方式を用いて移動局(10)と通信する。

Description

無線通信システム、移動局、基地局、及び無線通信方法
 本発明は、無線通信システム、移動局、基地局、及び無線通信方法に関する。
 従来、無線通信技術の発展に伴い、従来の無線通信ネットワークから、より通信速度の高い無線通信ネットワークへの切替えが進められている。例えば近年では、3G(Generation)ネットワークから、LTE(Long Time Evolution)ネットワークへの移行が急速に進められているが、未だ全ての移動局や基地局が、LTEネットワークを利用して無線通信を行う状況には至っていない。その結果、1つのエリアにおいて、異なる通信方式のネットワークが共存することがある。
 上述のような異なる通信方式のネットワークが共存する環境下において、LTEネットワークによる通信の可能な移動局は、通信速度や無線リソースの効率利用の観点から、3GではなくLTEネットワークにより通信することが望ましい。このようなLTEネットワークによる通信を実現するために、複数の無線通信方式を切り替える技術が提案されている。図18は、従来における、無線通信方式の切替え技術を説明するための図である。図18においては、3G、LTEの何れの無線通信方式でも通信可能な移動局を想定する。
 図18のU1では、移動局が、3Gの基地局であるBTS(Base Transceiver Station)に対して、接続を要求する信号(RRC Connection Request)を送信する。3G側のBTSは、自局の近傍にLTEの基地局が存在する場合には、移動局からの接続要求を拒否する信号(RRC Connection Reject)を送信すると共に、移動局近傍のLTE基地局の周波数番号を通知する(U2)。このとき通知される周波数番号は、例えば、EARFCN(E-UTRAN Absolute Radio Frequency Channel Number)であり、移動局は、かかる番号により識別される中心周波数から、自局が通信可能なLTE基地局を探索する。U3では、移動局は、探索されたLTE基地局の中から、受信電波強度の最も高いLTE基地局を接続先として選定し、当該基地局に対して、接続を要求する信号(RRC Connection Request)を送信する。これにより、移動局は、より通信速度の高いLTE基地局との通信を開始する。
特開2010-245888号公報 特開2010-258898号公報
3GPP TS 25.331 V10.2.0(2010-12)
 上述した技術は、LTE基地局が、接続を要求した移動局と通信可能な状況にある場合には有効である。しかしながら、接続を拒否した3G基地局は、近傍のLTE基地局の周波数番号を移動局に通知するものの、通信の可否までを考慮して通知するものではない。したがって、何らかの要因でLTE基地局が通信不能となった場合、移動局は、LTE基地局の周波数番号を受信しても、当該LTE基地局を接続先として検知できない可能性がある。移動局が接続先のLTE基地局を検知できない場合、移動局は、再び3G基地局に対して接続を要求することになるが、3G基地局は、近傍にLTE基地局が存在することを検知していることから、移動局との接続を拒否し、LTE基地局との接続を促す。これにより、移動局、基地局間における接続のリトライが増加し、移動局、基地局を含む無線通信システムの処理負荷が増大する。
 開示の技術は、上記に鑑みてなされたものであって、処理負荷を低減することができる無線通信システム、移動局、基地局、及び無線通信方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本願の開示する無線通信システムは、一つの態様において、移動局と、第1の基地局と、第2の基地局とを有する。前記第1の基地局は、第1の通信方式を用いて前記移動局と通信する。前記第2の基地局は、第2の通信方式を用いて前記移動局と通信する。前記移動局は、判定部と通知部とを有する。前記判定部は、前記第2の通信方式を用いた前記第2の基地局との通信の可否を判定する。前記通知部は、前記判定部により前記通信が不可と判定された場合、前記第1の基地局に対して通信要求を送信する際、前記第2の基地局との通信が不可であることを、前記第1の基地局に通知する。前記第1の基地局は、前記移動局に対して前記第2の基地局との通信を要求することなく、前記通信要求に応じて、前記第1の通信方式を用いて前記移動局と通信する通信部を有する。
 本願の開示する無線通信システムの一つの態様によれば、処理負荷を低減することができるという効果を奏する。
図1は、無線通信システムの機能的構成を示す図である。 図2は、通信品質情報記憶部におけるデータ格納例を示す図である。 図3は、3G通信部により送受信されるメッセージの一部を示す図である。 図4は、移動局のハードウェア構成を示す図である。 図5は、LTE基地局のハードウェア構成を示す図である。 図6は、RLF発生に起因する通信不能の場合における無線通信システムの動作を説明するためのフローチャートである。 図7は、移動局が通信品質の良好なセルを検出した契機で通信品質情報記憶部をクリアする動作を説明するためのフローチャートである。 図8は、移動局が3G通信部によりパケット通信を正常に開始した契機で通信品質情報記憶部をクリアする動作を説明するためのフローチャートである。 図9は、ハンドオーバ中のRLF発生に起因する通信不能の場合における無線通信システムの動作を説明するためのフローチャートである。 図10は、RRC Connectionの確立失敗に起因する通信不能の場合における無線通信システムの動作を説明するためのフローチャートである。 図11は、デフォルトベアラの確立失敗に起因する通信不能の場合における無線通信システムの動作を説明するためのフローチャートである。 図12は、RABの設定失敗に起因する通信不能の場合における無線通信システムの動作を説明するためのフローチャートである。 図13は、LTEセル規制に起因する通信不能の場合における無線通信システムの動作を説明するためのフローチャートである。 図14は、LTEアクセス規制に起因する通信不能の場合における無線通信システムの動作を説明するためのフローチャートである。 図15は、移動局がセル規制またはアクセス規制の解除を検知した契機で通信品質情報記憶部をクリアする動作を説明するためのフローチャートである。 図16は、移動局が、3G基地局宛のRRC Connection Requestを生成する動作を説明するためのフローチャートである。 図17は、3G基地局が移動局からRRC Connection Requestを受信した後の動作を説明するためのフローチャートである。 図18は、従来における、無線通信方式の切替え技術を説明するための図である。
 以下に、本願の開示する無線通信システム、移動局、基地局、及び無線通信方法の実施例について、図面を参照しながら詳細に説明する。なお、この実施例により、本願の開示する無線通信システム、移動局、基地局、及び無線通信方法が限定されるものではない。
 まず、本願の開示する一実施例に係る無線通信システムの機能的構成を説明する。図1は、無線通信システムの構成を示す図である。図1に示すように、無線通信システム1は、後述する移動局10とLTE基地局20と3G基地局30とを有する。移動局10は、LTE基地局20、3G基地局30の各基地局と無線通信が可能である。更に、LTE基地局20は、IP(Internet Protocol)により、MME(Mobility Management Entity)40と有線接続されている。そして、3G基地局30は、ATM(Asynchronous Transfer Mode)またはIPにより、RNC(Radio Network Controller)50と有線接続されている。
 移動局10は、従来の3G基地局30と、より高速なLTE基地局20との双方の基地局と通信可能な端末(所謂、デュアルモード端末)である。移動局10は、図1に示すように、LTE通信品質検出部11と、通信制御部12と、3G通信品質検出部13と、通信品質情報記憶部14と、3G通信部15と、LTE通信部16とを有する。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。
 LTE通信品質検出部11は、LTE基地局20とのパケット通信中に、RLF(Radio Link Failure)等の障害要因が発生すると、通信中のLTE基地局20のセル(以下、必要に応じて「LTEセル」と略記する。)の通信品質不良を検出する。LTE通信品質検出部11は、当該検出結果を通信制御部12に出力する。LTE通信品質検出部11は、LTEセルの中に、通信品質が良好なセルを検出できない場合、LTEセルの検出が不可であることを、通信制御部12に通知する。
 通信制御部12は、移動局10の通信可能な他のLTEセルの中に、通信品質の良好なセルの有無を検知するため、LTE通信品質検出部11に対し、セルサーチを指示する。通信制御部12は、3G基地局30のセル(以下、必要に応じて「3Gセル」と略記する。)についても同様に、通信品質が良好な3Gセルの有無を検知するため、3G通信品質検出部13に対し、セルサーチを指示する。また、通信制御部12は、3Gセルのみ使用可能と判定した場合、LTEから3GへのRAT(Radio Access Technology)変更を行う。通信制御部12は、3G通信部15に対し、RRC(Radio Resource Control) Connection Requestを含むメッセージの送信を指示する。
 3G通信品質検出部13は、移動局10の通信可能な3Gセルの中に、通信品質の良好なセルを検出した場合、3Gセルが検出されたことを通信制御部12に通知する。通信可能な3Gセルの検出、及び3Gセルの通信品質が良好であるか否かの判定は、3G通信品質検出部13が、3G基地局30に対する自移動局10のCQI(Channel Quality Indicator)値に基づいて行う。すなわち、3G通信品質検出部13は、3G基地局30からの受信電波強度あるいはSIR(Signal to Interference Ratio)推定値を基にCQI値を測定し、その値が所定の閾値を超えている場合には、その3Gセルの通信品質が良好であると判定する。
 通信品質情報記憶部14は、通信制御部12によるRAT変更に伴い、LTEセルの障害要因として、LTEセル検出不可を示す情報(RAT変更情報)を記憶する。図2は、通信品質情報記憶部14におけるデータ格納例を示す図である。図2に示すように、通信品質情報記憶部14は、EARFCN格納領域141と、LTE障害要因格納領域142とを有する。EARFCN格納領域141には、各LTE基地局に割り当てられた中心周波数を識別するための情報が「EARFCN」として格納されている。EARFCNは、LTE周波数番号に付された末尾の数字(1~n)により識別される。なお、nは、LTE基地局20の周辺セルの最大数を表す自然数である。LTE障害要因格納領域142には、対応するEARFCNを有するLTE基地局の障害要因を示す情報が「LTE障害要因」として格納されている。
 例えば、EARFCNが「全てのLTE周波数番号」である場合、LTE周波数番号に拘らず、全ての周波数番号に対応するLTE基地局が通信不能となる障害要因として、「ネットワークアクセス規制」が格納される。また、これとは反対に、EARFCNが、1~nで識別される特定のLTE周波数番号である場合には、当該周波数番号に対応するLTE基地局のみが通信不能となるLTE障害要因として、「セル検出不可」あるいは「セル規制」といった情報が格納される。このように、通信品質情報記憶部14は、各LTE基地局の障害要因を、その識別情報である周波数番号毎に管理する。
 3G通信部15は、例えば、3Gの無線通信技術により、3G基地局30との間で、メッセージを含む各種信号の送受信を行う。図3は、3G通信部15により送受信されるメッセージの一部を示す図である。3G通信部15により送受信されるメッセージは、例えば、RRC Connection Request(3G)Rel-8メッセージである。更に、その一部を構成する“Pre-redirection info”151は、図3に示すように、“Information Element/Group name”、“Need”、“Multi”、“Type and Reference”、“Semantics description”、“Version”の各データ格納領域から構成される。なお、図3に記載のNは、LTE基地局20の周辺セルの最大数を表す。
 LTE通信部16は、例えば、LTE(3.9G)の無線通信技術により、LTE基地局20との間で、メッセージを含む各種信号の送受信を行う。
 続いて、移動局10、LTE基地局20、及び3G基地局30のハードウェア構成を説明する。図4は、移動局10のハードウェア構成を示す図である。図4に示すように、移動局10においては、物理的には、システムLSI(Large Scale Integration)10aと、DAC(Digital-to-Analog Converter)/ADC(Analog-to-Digital Converter)10bと、周波数変換器10cと、RF(Radio Frequency)回路10dとを有する。RF回路10dは、アンテナ10eを有する。移動局10は、更に、CPU(Central Processing Unit)10fと、SDRAM(Synchronous Dynamic Random Access Memory)10gと、DSP(Digital Signal Processor)10hとを有する。
 上述した移動局10の各機能的構成部分(図1参照)は、以下に記載するハードウェア(図4参照)によって実現される。すなわち、LTE通信品質検出部11と、通信制御部12と、3G通信品質検出部13とは、ハードウェアとしてのCPU10fまたはDSP10hにより実現される。通信品質情報記憶部14は、SDRAM10gにより実現される。また、3G通信部15と、LTE通信部16とは、システムLSI10aと、DAC/ADC10bと、周波数変換器10cと、RF回路10dと、アンテナ10eとにより実現される。
 図1に戻り、LTE基地局20は、通信部21を有する。通信部21は、移動局10のLTE通信部16との間で、LTE方式による無線通信を行う。3G基地局30は、通信部31を有する。通信部31は、移動局10の3G通信部15との間で、3G方式による無線通信を行う。具体的には、通信部31は、移動局10から通信要求を受信する際、LTE基地局20との通信が不可であることの通知を受けると、移動局10に対してLTE基地局20との通信を要求することなく、上記通信要求に応じて、3G方式を用いて移動局10との通信を行う。
 図5は、LTE基地局20のハードウェア構成を示す図である。図5に示すように、基地局20においては、物理的には、CPU20bと、SDRAM20cと、FPGA(Field Programmable Gate Array)20dと、DSP20eとが、スイッチ等のインタフェース20aを介して各種信号やデータの入出力が可能なように接続されている。更に、LTE基地局20は、物理的には、DAC/ADC20fと、周波数変換器20gと、RF回路20hとを有する。RF回路20hは、アンテナ20iを有する。以上、LTE基地局20のハードウェア構成を説明したが、3G基地局30についても、物理的には、LTE基地局20と同様の構成を有するので、共通する構成部分には同一の参照符号を用いると共に、詳細な説明は省略する。
 LTE基地局20の通信部21(図1参照)は、ハードウェアとしてのDAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i(図5参照)とにより実現される。また、3G基地局30の通信部31(図1参照)は、ハードウェアとしてのDAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i(図5参照)とにより実現される。
 RNC50は、図1に示すように、メッセージ送受信部51と通信制御部52とを有する。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。メッセージ送受信部51は、例えば、移動局10から送信されるメッセージを、3G基地局30を介して受信し、受信されたメッセージを通信制御部52に出力する。通信制御部52は、例えば、メッセージ送受信部51から入力されたメッセージを解析し、メッセージがRRC Connection Requestである場合、当該Requestがパケット通信に対する要求であるか、及び送信元の移動局がLTE通信に対応しているかを判定する。当該判定の結果、共に真の場合、通信制御部52は、上記RRC Connection RequestにおけるRedirection error cause情報の有無を確認する。
 次に、通信不能となる要因(障害要因)毎に無線通信システム1の動作を説明する。
(1.RLF発生に起因する通信不能の場合)
 図6は、RLF発生に起因する通信不能の場合における無線通信システムの動作を示す図である。移動局10のLTE通信品質検出部11(CPU10fまたはDSP10h)は、LTE基地局20とのパケット通信中に、LTEセルのRLFを検出すると(S1)、接続可能な他のセルを探索(セルサーチ)する(S2)。探索の結果、移動局10が3Gセルを検出した場合(S3;No)、移動局10は、通信品質情報記憶部14(SDRAM10g)に“LTEセル検出不可”の情報を記憶する(S4)。“LTEセル検出不可”の情報は、移動局10が、基地局との無線通信方式を、LTEから3GへRAT変更したことを示す情報として、通信品質情報記憶部14のLTE障害要因格納領域142に記憶される。その結果、移動局10におけるRAT変更処理が完了する(S5)。なお、S3において、移動局10のLTE通信品質検出部11(CPU10fまたはDSP10h)が、接続可能な他のLTEセルを検出した場合(S3;Yes)には、LTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)は、そのセルを通信エリアとするLTE基地局に再接続(ハンドオーバ)する(S6)。
 図7は、移動局10が通信品質の良好なセルを検出した契機で通信品質情報記憶部14をクリアする動作を説明するためのフローチャートである。移動局10のLTE通信品質検出部11(CPU10fまたはDSP10h)は、パケット通信中に、通信可能なLTEセルを検出すると(S11)、LTEセルの通信品質が良好であるか否かを判定する(S12)。S11及びS12の各処理は、LTE通信品質検出部11が、LTE基地局20からの受信電波強度やSIR推定値に基づき、実行する。上記判定の結果、LTEセルの通信品質が良好である場合(S12;Yes)、移動局10のLTE通信品質検出部11(CPU10fまたはDSP10h)は、通信品質情報記憶部14に格納されている、LTE障害要因またはEARFCNの情報をクリアする(S13)。これにより、通信品質情報記憶部14が初期化される。なお、S12における判定の結果、LTEセルの通信品質が良好でない場合(S12;No)、移動局10のLTE通信品質検出部11(CPU10fまたはDSP10h)は、通信品質情報記憶部14をクリアすることなく、一連の処理を終了する。
 図8は、移動局が3G通信部によりパケット通信を正常に開始した契機で通信品質情報記憶部14をクリアする動作を説明するためのフローチャートである。移動局10の3G通信部15(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)は、パケット通信網への接続を完了すると(S21)、そのパケット通信が3G基地局30との通信であるか否かを判定する(S22)。当該判定の結果、3G基地局30との通信である場合(S22;Yes)、移動局10の3G通信品質検出部13(CPU10fまたはDSP10h)は、通信品質情報記憶部14に格納されている、LTE障害要因またはEARFCNの情報をクリアする(S23)。これにより、通信品質情報記憶部14が初期化される。なお、S22における判定の結果、3G基地局30との通信でない場合(S22;No)、移動局10の3G通信品質検出部13(CPU10fまたはDSP10h)は、通信品質情報記憶部14をクリアすることなく、処理を終了する。
(2.ハンドオーバ中のRLF発生(ハンドオーバ失敗)に起因する通信不能の場合)
 図9は、ハンドオーバ中のRLF発生に起因する通信不能の場合における無線通信システムの動作を示す図である。移動局10のLTE通信品質検出部11(CPU10fまたはDSP10h)は、LTE基地局20とのパケット通信中、かつ、ハンドオーバ処理中に、LTEセルのRLFを検出すると(S31)、接続可能な他のセルを探索(セルサーチ)する(S32)。探索の結果、移動局10が3Gセルを検出した場合(S33;No)、移動局10は、通信品質情報記憶部14(SDRAM10g)に“LTEセル検出不可”の情報を記憶する(S34)。“LTEセル検出不可”の情報は、移動局10が、基地局との無線通信方式を、LTEから3GへRAT変更したことを示す情報として、通信品質情報記憶部14のLTE障害要因格納領域142に記憶される。併せて、移動局10は、通信品質情報記憶部14のEARFCN格納領域141に“通信中であったハンドオーバ元のLTE基地局20のEARFCN”及び“ハンドオーバ先のLTE基地局のEARFCN”を記憶する(S34)。これにより、移動局10は、RAT変更処理を完了する(S35)。なお、S33において、移動局10のLTE通信品質検出部11(CPU10fまたはDSP10h)が、接続可能な他のLTEセルを検出した場合(S33;Yes)には、LTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)は、そのセルを通信エリアとするLTE基地局に再接続(ハンドオーバ)する(S36)。
(3.RRC Connectionの確立失敗に起因する通信不能の場合)
 図10は、RRC Connectionの確立失敗に起因する通信不能の場合における無線通信システムの動作を示す図である。移動局10のLTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)が、LTEセルに在圏中に、RRC Connectionの確立に失敗すると(S41)、LTE通信品質検出部11(CPU10fまたはDSP10h)は、接続可能な他のセルを探索(セルサーチ)する(S42)。探索の結果、移動局10が3Gセルを検出した場合(S43;No)、移動局10は、通信品質情報記憶部14(SDRAM10g)に“LTEセル検出不可”の情報を記憶する(S44)。“LTEセル検出不可”の情報は、移動局10が、基地局との無線通信方式を、LTEから3GへRAT変更したことを示す情報として、通信品質情報記憶部14のLTE障害要因格納領域142に記憶される。併せて、移動局10は、通信品質情報記憶部14のEARFCN格納領域141に“RRC Connectionの確立に失敗したLTE基地局のEARFCN”を記憶する(S44)。これにより、移動局10は、通信制御部12によるRAT変更処理を完了する(S45)。なお、S43において、移動局10のLTE通信品質検出部11(CPU10fまたはDSP10h)が、接続可能な他のLTEセルを検出した場合(S43;Yes)には、LTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)は、そのセルを通信エリアとするLTE基地局に再接続(ハンドオーバ)する(S46)。
(4.デフォルトベアラの確立失敗に起因する通信不能の場合)
 図11は、デフォルトベアラの確立失敗に起因する通信不能の場合における無線通信システムの動作を説明する。移動局10のLTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)が、LTEセルに在圏中に、RRC Connectionを正常に確立した場合を想定する(S51)。その後、移動局10がLTE基地局20との通信を開始する前に、通信制御部12(CPU10fまたはDSP10h)が、何らかの要因により、移動局10、LTE基地局20、MME40間のデフォルトベアラの確立に所定時間失敗すると(S52)、接続可能な他のセルの探索(セルサーチ)を開始する(S53)。探索の結果、3G通信品質検出部13が3Gセルを検出した場合(S54;No)、移動局10は、通信品質情報記憶部14(SDRAM10g)に“LTE側ネットワーク異常”の情報を記憶する(S55)。“LTE側ネットワーク異常”の情報は、移動局10が、基地局との無線通信方式を、LTEから3GへRAT変更したことを示す情報として、通信品質情報記憶部14のLTE障害要因格納領域142に記憶される。併せて、移動局10は、通信品質情報記憶部14のEARFCN格納領域141に“デフォルトベアラの確立に失敗したLTE基地局のEARFCN”を記憶する(S55)。これにより、移動局10は、通信制御部12によるRAT変更処理を完了する(S56)。なお、S54において、LTE通信品質検出部11(CPU10fまたはDSP10h)が、接続可能な他のLTEセルを検出した場合(S54;Yes)には、LTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)は、そのセルを通信エリアとするLTE基地局に再接続(ハンドオーバ)する(S57)。
(5.RABの設定失敗に起因する通信不能の場合)
 図12は、RAB(Radio Access Bearer)の設定失敗に起因する通信不能の場合における無線通信システムの動作を説明する。移動局10のLTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)が、LTEセルに在圏中に、RRC Connectionを正常に確立したとする(S61)。その後、移動局10がLTE基地局20との通信を開始する前に、通信制御部12(CPU10fまたはDSP10h)が、何らかの要因により、移動局10、LTE基地局20、MME40間のRABの設定に失敗すると(S62)、接続可能な他のセルの探索(セルサーチ)を開始する(S63)。探索の結果、3G通信品質検出部13が3Gセルを検出した場合(S64;No)、移動局10は、通信品質情報記憶部14(SDRAM10g)に“LTE側ネットワーク異常”の情報を記憶する(S65)。“LTE側ネットワーク異常”の情報は、移動局10が、基地局との無線通信方式を、LTEから3GへRAT変更したことを示す情報として、通信品質情報記憶部14のLTE障害要因格納領域142に記憶される。また、移動局10は、通信品質情報記憶部14のEARFCN格納領域141に“RABの設定に失敗したLTE基地局のEARFCN”を記憶する(S65)。これにより、移動局10は、RAT変更処理を完了する(S66)。なお、S64において、LTE通信品質検出部11(CPU10fまたはDSP10h)が、接続可能な他のLTEセルを検出した場合(S64;Yes)には、LTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)は、そのセルを通信エリアとするLTE基地局に再接続(ハンドオーバ)する(S67)。
(6.LTEセル規制に起因する通信不能の場合)
 図13は、LTEセル規制に起因する通信不能の場合における無線通信システムの動作を説明する。移動局10の通信制御部12(CPU10fまたはDSP10h)は、LTEセル待受け中のRRCアイドル状態において、LTEセルの規制を検知すると(S71)、通信品質情報記憶部14を参照して(S72)、現在規制中のセル以外に通信可能なLTEセルが有るか否かを判定する(S73)。当該判定の結果、通信可能な他のLTEセルがある場合(S73;Yes)、移動局10は、通信品質情報記憶部14(SDRAM10g)に“LTEセル規制”とそのセルのEARFCNの情報を記憶する(S74)。“LTEセル規制”の情報は、移動局10が、基地局との無線通信方式を、LTEから3GへRAT変更したことを示す情報として、通信品質情報記憶部14のLTE障害要因格納領域142に記憶される。また、規制対象セルのEARFCNの情報は、通信品質情報記憶部14(SDRAM10g)のEARFCN格納領域141に記憶される。その結果、移動局10におけるRAT変更処理が完了する(S75)。なお、S73において、規制対象外の接続可能なLTEセルが存在しない場合(S73;No)には、上述したS74の処理を省略して、S75の処理に移行する。
(7.LTEアクセス規制に起因する通信不能の場合)
 図14は、LTEアクセス規制に起因する通信不能の場合における無線通信システムの動作を説明する。移動局10の通信制御部12(CPU10fまたはDSP10h)は、LTEセル待受け中のRRCアイドル状態において、LTEネットワーク側(LTE基地局20、MME40)からアクセス規制の通知を受けると(S81)、接続可能な他のセルを探索(セルサーチ)する(S82)。探索の結果、移動局10が3Gセルを検出した場合(S83;No)、移動局10は、通信品質情報記憶部14(SDRAM10g)に“LTE側ネットワークアクセス規制”の情報を記憶する(S84)。“LTE側ネットワークアクセス規制”の情報は、移動局10が、基地局との無線通信方式を、LTEから3GへRAT変更したことを示す情報として、通信品質情報記憶部14のLTE障害要因格納領域142に記憶される。これにより、移動局10は、通信制御部12によるRAT変更処理を完了する(S85)。なお、S83において、移動局10がLTEセルを検出した場合(S83;Yes)には、上述したS84、S85の各処理を省略して、一連の処理を終了する。
 図15は、移動局10がセル規制またはアクセス規制の解除を検知した契機で通信品質情報記憶部14をクリアする動作を説明するためのフローチャートである。移動局10のLTE通信品質検出部11(CPU10fまたはDSP10h)は、パケット通信中に、LTEのセル規制またはアクセス規制の解除を検知すると(S91)、通信品質情報記憶部14に格納されている、LTE障害要因またはEARFCNの情報をクリアする(S92)。これにより、通信品質情報記憶部14が初期化される。
 次に、移動局10、3G基地局30間におけるRRC Connection Request(RRC接続要求)の送受信処理について、図16、図17を参照しながら説明する。
 図16は、移動局10が、3G基地局30宛のRRC Connection Requestを生成する動作を説明するためのフローチャートである。T1では、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection Requestの送信に先立ち、通信品質情報記憶部14を参照し(T1)、現時点におけるLTE障害要因とEARFCNの設定を確認する(T2)。通信品質情報記憶部14内の情報が“セル検出不可”のみである場合には、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection Requestに含まれるPre-redirection info151(図3参照)のRedirection error cause領域に“LTEセル検出不可”の情報を設定する(T3)。これにより、既存のRRC Connection Requestの編集が完了する(T4)。
 T2における設定確認の結果、通信品質情報記憶部14内の情報が“セル検出不可”及び“EARFCN”である場合には、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection Requestに以下の情報を設定する(T5)。すなわち、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection Requestに含まれるPre-redirection info151(図3参照)のRedirection error cause領域に“LTEセル検出不可”とそのセルに対応する“EARFCN”との各情報を設定する。これにより、既存のRRC Connection Requestの編集が完了する(T6)。
 また、T2における設定確認の結果、通信品質情報記憶部14内の情報がLTEの“ネットワーク異常”及び“EARFCN”である場合には、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection Requestに以下の情報を設定する(T7)。すなわち、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection Requestに含まれるPre-redirection info151(図3参照)のRedirection error cause領域に“LTE側ネットワーク異常”と当該異常に対応する“EARFCN”との各情報を設定する。これにより、既存のRRC Connection Requestの編集が完了する(T8)。
 更に、T2における設定確認の結果、通信品質情報記憶部14内の情報がLTEの“セル規制”及び“EARFCN”である場合には、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection Requestに以下の情報を設定する(T9)。すなわち、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection Requestに含まれるPre-redirection info151(図3参照)のRedirection error cause領域に“LTEセル規制”と当該規制対象のセルに対応する“EARFCN”との各情報を設定する。これにより、既存のRRC Connection Requestの編集が完了する(T10)。
 また、T2における設定確認の結果、通信品質情報記憶部14内の情報がLTEの“ネットワークアクセス規制”である場合には、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection Requestに以下の情報を設定する(T11)。すなわち、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection Requestに含まれるPre-redirection info151(図3参照)のRedirection error cause領域に“LTE側ネットワークアクセス規制”の情報を設定する。これにより、既存のRRC Connection Requestの編集が完了する(T12)。
 なお、T2における設定確認の結果、通信品質情報記憶部14のEARFCN格納領域141とLTE障害要因格納領域142とに、情報が記憶されていない場合には、移動局10の通信制御部12(CPU10fまたはDSP10h)は、RRC Connection RequestのRedirection error cause領域に、何れの情報も設定しない状態で、既存のRRC Connection Requestの編集を完了する(T13)。編集が完了したRRC Connection Requestは、3G通信部15により、移動局10から3G基地局30に送信される。
 図17は、3G基地局30が移動局10からRRC Connection Requestを受信した後の動作を説明するためのフローチャートである。T21では、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)が、移動局10から送信されたRRC Connection Request信号を受信する。3G基地局30は、当該信号の要求する呼が“パケット呼”であるか否かの判定を行う(T22)。当該判定の結果、RRC Connection Request信号の要求する呼がパケット呼である場合(T22;Yes)、3G基地局30は、上記信号に含まれる情報を基に、送信元の移動局10がLTEによる通信が可能であるか否か(LTE遷移能力の有無)を判定する(T23)。本実施例では、移動局10のLTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)は、LTE基地局20を含むLTE基地局との通信が可能であるので、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)は、移動局10から送信されたRRC Connection RequestにおけるLTE障害要因とEARFCNの設定内容を確認する(T24)。
 なお、T22における判定の結果、接続要求呼が音声呼であった場合(T22;No)には、3G基地局30は、移動局10との間に音声通話用の回線を設定する(T25)。また、T23における判定の結果、接続を要求した移動局にLTE遷移能力が無いと判定された場合(T23;No)には、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)は、移動局10との間で、従来のパケット通信を開始する(T26)。
 続いて、T24における設定確認の結果、T21で3G基地局30の受信したRRC Connection Requestに含まれる、LTE障害要因またはEARFCNの情報が“セル検出不可”のみである場合には、3G基地局30は、以下の動作を実行する。すなわち、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)は、移動局10にLTE遷移能力がある場合でも、移動局10からの接続要求を拒否する信号(RRC Connection Reject)の返信を抑止する(T27)。その結果、3G基地局30の通信部31は、移動局10からの接続要求に従い、移動局10との間でパケット通信を開始する。
 また、T24における設定確認の結果、RRC Connection Requestの中に、“セル検出不可”及び“EARFCN”の各情報が含まれる場合には、3G基地局30は、以下の動作を実行する。すなわち、3G基地局30は、当該EARFCNの情報を基に、移動局10の通信可能なLTEセルの有無を判定する(T28)。当該判定の結果、移動局10の通信可能なLTEセルがある場合には(T28;Yes)、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)は、移動局10の通信可能なLTE基地局のEARFCNを、接続要求を拒否する信号(RRC Connection Reject)に乗せて、移動局10に返信する(T29)。移動局10のLTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)は、RRC Connection Reject信号を受信すると、当該信号に含まれるEARFCNに基づき、新たな接続先となるLTE基地局を決定し、当該LTE基地局との間でパケット通信を開始する。一方、T28における判定の結果、移動局10の通信可能なLTEセルが存在しない場合には(T28;No)、3G基地局30は、以下の動作を実行する。すなわち、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)は、移動局10にLTE遷移能力がある場合でも、移動局10から送信されたRRC Connection Request信号に対する返信(RRC Connection Rejectの送信)を抑止する(T30)。その結果、3G基地局30の通信部31は、移動局10からの接続要求に従い、移動局10との間でパケット通信を開始する。
 更に、T24における設定確認の結果、T21で3G基地局30の受信したRRC Connection Requestの中に、LTEの“ネットワーク異常”及び“EARFCN”の各情報が含まれる場合には、3G基地局30は、以下の動作を実行する。すなわち、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)は、移動局10からの接続要求を拒否する信号(RRC Connection Reject)を返信することなく、当該接続要求に従い、移動局10との間でパケット通信を開始する(T31)。
 また、T24における設定確認の結果、RRC Connection Requestの中に、LTEの“セル規制”及び“EARFCN”の各情報が含まれる場合には、3G基地局30は、以下の動作を実行する。すなわち、3G基地局30は、当該EARFCNの情報を基に、移動局10の通信可能なLTEセルの有無を判定する(T32)。当該判定の結果、移動局10の通信可能なLTEセルがある場合には(T32;Yes)、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)は、移動局10の通信可能なLTE基地局のEARFCNを、接続要求を拒否する信号(RRC Connection Reject)に乗せて、移動局10に返信する(T33)。移動局10のLTE通信部16(システムLSI10a、DAC/ADC10b、周波数変換器10c、RF回路10d、アンテナ10e)は、RRC Connection Reject信号を受信すると、当該信号に含まれるEARFCNに基づき、新たな接続先となるLTE基地局を決定し、当該LTE基地局との間でパケット通信を開始する。一方、T32における判定の結果、移動局10の通信可能なLTEセルが存在しない場合には(T32;No)、3G基地局30は、以下の動作を実行する。すなわち、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)は、移動局10から送信されたRRC Connection Request信号に対する返信(RRC Connection Rejectの送信)を行わず(T34)、移動局10からの接続要求に従い、移動局10との間でパケット通信を開始する。
 更に、T24における設定確認の結果、T21で3G基地局30の受信したRRC Connection Requestの中に、LTEの“ネットワークアクセス規制”の情報が含まれる場合には、3G基地局30は、以下の動作を実行する。すなわち、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)は、移動局10からの接続要求を拒否する信号(RRC Connection Reject)を返信することなく、当該接続要求に従い、移動局10との間でパケット通信を開始する(T35)。
 なお、T24における設定確認の結果、T21で3G基地局30の受信したRRC Connection Requestの中に、LTE障害要因またはEARFCNの情報が含まれていない場合には、3G基地局30は、以下の動作を実行する。すなわち、3G基地局30の通信部31(DAC/ADC20fと、周波数変換器20gと、RF回路20hと、アンテナ20i)は、移動局10からの接続要求を拒否する信号(RRC Connection Reject)を、移動局10に返信する(T36)。
 以上説明したように、本実施例に係る無線通信システム1によれば、移動局10と、3G方式を用いて移動局10と通信する3G基地局30と、LTE方式を用いて移動局10と通信するLTE基地局20とを有する。移動局10は、通信制御部12と3G通信部15とを有する。通信制御部12は、LTE方式を用いたLTE基地局20との通信の可否を判定する。3G通信部15は、通信制御部12により上記通信が不可と判定された場合、3G基地局30に対して通信要求を送信する際、LTE基地局20との通信が不可であることを、3G基地局30に通知する。3G基地局30は、移動局10に対してLTE基地局20との通信を要求することなく、上記通信要求に応じて、3G方式を用いて移動局10と通信する。つまり、無線通信システム1においては、移動局10が、各種の障害要因により、LTE基地局20との無線通信が不可の状態となり、LTEから3GにRAT変更した際、上述した手順により、3G基地局30あるいは他のLTE基地局と接続する。これにより、無線通信システム1は、ネットワーク負荷の低減、及び、移動局10と基地局との接続遅延の低減を図ると共に、呼処理のサービス性向上を実現する。
 移動局10は、3G基地局30に対して通信要求を送信する際、LTE基地局20の周波数番号を、3G基地局30に通知する。これにより、3G基地局30は、LTE基地局20の周波数番号に基づき、移動局10が、如何なる周波数番号を有するLTE基地局20との通信が不可であるかを、容易に識別することができる。更に、3G基地局30は、自局周辺におけるLTE基地局を検出し、検出されたLTE基地局の中に、LTE基地局20の周波数番号以外のLTE基地局が有るか否かを判定する。判定の結果、LTE基地局20の周波数番号以外のLTE基地局が有る場合には、3G基地局30は、移動局10との通信を拒否(リジェクト)し、そのLTE基地局の周波数番号を移動局10に通知する。これにより、3G基地局30は、移動局10に対して、通信が不可であった周波数番号とは異なる周波数番号のLTE基地局への接続を促す。反対に、上記判定の結果、LTE基地局20の周波数番号以外のLTE基地局が無い場合には、3G基地局30は、移動局10との通信を拒否(リジェクト)することなく、移動局10との通信を開始する。したがって、移動局10は、LTE基地局20との通信が不可であった場合でも、可能な限り、3G基地局30よりも通信品質の高い他のLTE基地局との間で、通信を開始することができる。
 本実施例では、移動局10の3G通信部15は、3G基地局30に対して、通信不能となったLTE基地局20の識別情報ではなく、当該LTE基地局20の中心周波数番号であるEARFCNを、RRC Connection Requestと共に送信する。3G基地局30は、移動局10から送信されたEARFCNを受信すると、LTE基地局20の周辺のLTE基地局の中から、当該EARFCN以外を中心周波数とするLTE基地局の存否を確認する。3G基地局30は、移動局10から通知されたEARFCN以外の周辺LTE基地局が無ければ、移動局10と接続する。これに対して、移動局10から通知されたEARFCN以外のEARFCNを有する周辺LTE基地局が有れば、3G基地局30は、かかる周辺LTE基地局のEARFCNを、移動局10に返信する。EARFCNの返信を受けた移動局10は、当該EARFCNにより識別される中心周波数を割り当てられた複数のLTE基地局の中から、受信電波強度やSIR推定値に基づき、通信品質の良好なLTE基地局を選択する。この選択処理は、LTE通信品質検出部11が行う。そして、移動局10は、LTE通信部16により、当該LTE基地局との通信を開始する。
 すなわち、移動局10は、3G基地局30からLTE基地局IDの通知を直接受けるのではなく、一旦EARFCNの通知を受け、そのEARFCNを中心周波数とするLTE基地局を接続先の候補とする。接続先候補となるLTE基地局の数は、例えば、1つのEARFCNにつき8つである。移動局10は、LTE通信品質検出部11により、接続先候補として絞り込まれた複数のLTE基地局の中から、更に、通信品質の最も良いLTE基地局を通信相手として特定する。移動局10の通信環境は、移動速度や、遮蔽物、干渉、反射の有無といった諸条件により、時々刻々と変化するものである。したがって、移動局10が、周辺LTE基地局の中から何れの基地局と通信を行うのが最も望ましいかを、3G基地局30側で正確に把握し、移動局10に通知することは困難である。換言すれば、仮に、3G基地局30が、移動局10の接続先とするLTE基地局のIDを指定した場合、そのLTE基地局が、移動局10にとって最良の通信相手ではない可能性がある。そこで、本実施例に係る無線通信システム1は、3G基地局30から移動局10への通知を、EARFCNの通知に留め、通知されたEARFCNを有するLTE基地局の中から最良の基地局を、移動局10自身に選択させるものとした。これにより、移動局10は、LTE基地局20との通信が不能となった場合でも、移動局10にとって最適な別のLTE基地局を、通信相手として選択することができる。したがって、移動局10は、3G基地局30よりも高速な通信の可能なLTE基地局の中でも、より通信品質の高いLTE基地局との間で、パケット通信を行うことが可能となる。その結果、無線通信システム1の高速化が実現される。
 なお、上述した各障害要因に応じた無線通信システムの動作は、各々が個別に実行されるとは限らず、複数の動作を組み合わせて実行されるものとしてもよい。また、その組合せの数や順序についても、適宜選定可能である。
 1 無線通信システム
 10 移動局
 10a システムLSI
 10b DAC/ADC
 10c 周波数変換器
 10d RF回路
 10e アンテナ
 11 LTE通信品質検出部
 12 通信制御部
 13 3G通信品質検出部
 14 通信品質情報記憶部
 141 EARFCN格納領域
 142 LTE障害要因格納領域
 15 3G通信部
 16 LTE通信部
 20 LTE基地局
 20a インタフェース
 20b CPU
 20c SDRAM
 20d FPGA
 20e DSP
 20f DAC/ADC
 20g 周波数変換器
 20h RF回路
 20i アンテナ
 21 通信部
 30 3G基地局
 31 通信部
 40 MME
 50 RNC
 51 メッセージ送受信部
 52 通信制御部

Claims (5)

  1.  移動局と、
     第1の通信方式を用いて前記移動局と通信する第1の基地局と、
     第2の通信方式を用いて前記移動局と通信する第2の基地局と
     を有する無線通信システムにおいて、
     前記移動局は、
     前記第2の通信方式を用いた前記第2の基地局との通信の可否を判定する判定部と、
     前記判定部により前記通信が不可と判定された場合、前記第1の基地局に対して通信要求を送信する際、前記第2の基地局との通信が不可であることを、前記第1の基地局に通知する通知部とを有し、
     前記第1の基地局は、
     前記移動局に対して前記第2の基地局との通信を要求することなく、前記通信要求に応じて、前記第1の通信方式を用いて前記移動局と通信する通信部
     を有することを特徴とする無線通信システム。
  2.  前記移動局の通知部は、前記第1の基地局に対して通信要求を送信する際、前記第2の基地局の周波数番号を、前記第1の基地局に通知することを特徴とする請求項1に記載の無線通信システム。
  3.  第1の通信方式を用いて第1の基地局と通信すると共に、第2の通信方式を用いて第2の基地局と通信する移動局において、
     前記第2の通信方式を用いた前記第2の基地局との通信の可否を判定する判定部と、
     前記判定部により前記通信が不可と判定された場合、前記第1の基地局に対して通信要求を送信する際、前記第2の基地局との通信が不可であることを、前記第1の基地局に通知する通知部と
     を有することを特徴とする移動局。
  4.  第1の通信方式を用いて移動局と通信する第1の基地局において、
     前記移動局から通信要求を受信する際、第2の基地局との通信が不可であることの通知を受けると、前記移動局に対して前記第2の基地局との通信を要求することなく、前記通信要求に応じて、前記第1の通信方式を用いて前記移動局と通信する通信部
     を有することを特徴とする基地局。
  5.  移動局と、
     第1の通信方式を用いて前記移動局と通信する第1の基地局と、
     第2の通信方式を用いて前記移動局と通信する第2の基地局と
     を有する無線通信システムにおける無線通信方法において、
     前記移動局は、
     前記第2の通信方式を用いた前記第2の基地局との通信の可否を判定し、
     前記通信が不可と判定された場合、前記第1の基地局に対して通信要求を送信する際、前記第2の基地局との通信が不可であることを、前記第1の基地局に通知し、
     前記第1の基地局は、
     前記移動局に対して前記第2の基地局との通信を要求することなく、前記通信要求に応じて、前記第1の通信方式を用いて前記移動局と通信する
     ことを特徴とする無線通信方法。
PCT/JP2011/062543 2011-05-31 2011-05-31 無線通信システム、移動局、基地局、及び無線通信方法 WO2012164694A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013517752A JPWO2012164694A1 (ja) 2011-05-31 2011-05-31 無線通信システム、移動局、基地局、及び無線通信方法
PCT/JP2011/062543 WO2012164694A1 (ja) 2011-05-31 2011-05-31 無線通信システム、移動局、基地局、及び無線通信方法
EP11866451.5A EP2717629A1 (en) 2011-05-31 2011-05-31 Wireless communication system, mobile station, base station, and wireless communication method
US14/085,430 US20140080482A1 (en) 2011-05-31 2013-11-20 Radio communications system, mobile station, base station, and radio communications method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062543 WO2012164694A1 (ja) 2011-05-31 2011-05-31 無線通信システム、移動局、基地局、及び無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/085,430 Continuation US20140080482A1 (en) 2011-05-31 2013-11-20 Radio communications system, mobile station, base station, and radio communications method

Publications (1)

Publication Number Publication Date
WO2012164694A1 true WO2012164694A1 (ja) 2012-12-06

Family

ID=47258579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062543 WO2012164694A1 (ja) 2011-05-31 2011-05-31 無線通信システム、移動局、基地局、及び無線通信方法

Country Status (4)

Country Link
US (1) US20140080482A1 (ja)
EP (1) EP2717629A1 (ja)
JP (1) JPWO2012164694A1 (ja)
WO (1) WO2012164694A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140120391A (ko) * 2013-03-28 2014-10-14 삼성전자주식회사 이동 통신 시스템에서 호 전환을 위한 이동 단말의 주파수 선택 방법 및 장치
JP2014204341A (ja) * 2013-04-05 2014-10-27 株式会社Nttドコモ 移動通信方法及び移動通信端末
JP2016037388A (ja) * 2014-08-11 2016-03-22 株式会社日立ビルシステム エレベーターの遠隔監視装置
JP2016540433A (ja) * 2014-01-02 2016-12-22 インテル・コーポレーション ユーザ機器(ue)アイドルモード測定による無線セルラーネットワークの改良カバレッジ推定
US9549264B2 (en) 2013-02-15 2017-01-17 Samsung Electronics Co., Ltd. Portable terminal for controlling hearing aid and method therefor
US10015677B2 (en) 2014-01-02 2018-07-03 Intel Corporation Coverage estimation of wireless cellular networks by user equipment (UE) idle mode measurements

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9775102B2 (en) * 2014-07-29 2017-09-26 Aruba Networks, Inc. Estimating a relative difference between signal strengths of wireless signals received by a device
CN108322246B (zh) * 2017-01-18 2021-05-04 北京小米移动软件有限公司 确定通信波束的方法及装置
JP2022042714A (ja) * 2020-09-03 2022-03-15 株式会社Jvcケンウッド 通信装置、通信方法、および通信プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004247A (ja) * 2008-06-19 2010-01-07 Kyocera Corp 無線通信システム、基地局装置、デュアルモード移動局装置、および無線通信方法
JP2010245888A (ja) 2009-04-07 2010-10-28 Ntt Docomo Inc ユーザ端末及び基地局、並びに方法
JP2010258898A (ja) 2009-04-27 2010-11-11 Ntt Docomo Inc 移動通信方法及び無線アクセスネットワーク装置
JP2011045033A (ja) * 2009-08-24 2011-03-03 Ntt Docomo Inc 移動局及び通信方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4283587B2 (ja) * 2003-04-22 2009-06-24 株式会社エヌ・ティ・ティ・ドコモ 無線端末、通信システムおよび位置登録先切替え方法
JP5228684B2 (ja) * 2008-08-07 2013-07-03 富士通株式会社 通信端末、基地局、通信端末の通信方法、基地局の通信方法、通信システム
JP5264451B2 (ja) * 2008-12-03 2013-08-14 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、移動局及びネットワーク装置
JP5205236B2 (ja) * 2008-12-04 2013-06-05 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、移動局及びネットワーク装置
JP4637252B2 (ja) * 2009-06-26 2011-02-23 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、移動局及び無線基地局

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004247A (ja) * 2008-06-19 2010-01-07 Kyocera Corp 無線通信システム、基地局装置、デュアルモード移動局装置、および無線通信方法
JP2010245888A (ja) 2009-04-07 2010-10-28 Ntt Docomo Inc ユーザ端末及び基地局、並びに方法
JP2010258898A (ja) 2009-04-27 2010-11-11 Ntt Docomo Inc 移動通信方法及び無線アクセスネットワーク装置
JP2011045033A (ja) * 2009-08-24 2011-03-03 Ntt Docomo Inc 移動局及び通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TS 25.331 V10.2.0, December 2010 (2010-12-01)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9549264B2 (en) 2013-02-15 2017-01-17 Samsung Electronics Co., Ltd. Portable terminal for controlling hearing aid and method therefor
KR20140120391A (ko) * 2013-03-28 2014-10-14 삼성전자주식회사 이동 통신 시스템에서 호 전환을 위한 이동 단말의 주파수 선택 방법 및 장치
EP2979498A4 (en) * 2013-03-28 2016-11-02 Samsung Electronics Co Ltd METHOD AND APPARATUS FOR CALL REDIRECTION FREQUENCY SELECTION IN A MOBILE COMMUNICATION SYSTEM
KR102052333B1 (ko) * 2013-03-28 2019-12-06 삼성전자주식회사 이동 통신 시스템에서 호 전환을 위한 이동 단말의 주파수 선택 방법 및 장치
JP2014204341A (ja) * 2013-04-05 2014-10-27 株式会社Nttドコモ 移動通信方法及び移動通信端末
JP2016540433A (ja) * 2014-01-02 2016-12-22 インテル・コーポレーション ユーザ機器(ue)アイドルモード測定による無線セルラーネットワークの改良カバレッジ推定
US9716559B2 (en) 2014-01-02 2017-07-25 Intel Corporation Coverage estimation of wireless cellular networks by user equipment (UE) idle mode measurements
US10015677B2 (en) 2014-01-02 2018-07-03 Intel Corporation Coverage estimation of wireless cellular networks by user equipment (UE) idle mode measurements
TWI637606B (zh) * 2014-01-02 2018-10-01 英特爾股份有限公司 藉由用戶設備(ue)閒置模式測量之無線蜂巢式網路的改良的覆蓋估計
JP2016037388A (ja) * 2014-08-11 2016-03-22 株式会社日立ビルシステム エレベーターの遠隔監視装置

Also Published As

Publication number Publication date
EP2717629A1 (en) 2014-04-09
US20140080482A1 (en) 2014-03-20
JPWO2012164694A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2012164694A1 (ja) 無線通信システム、移動局、基地局、及び無線通信方法
CN110169131B (zh) 下一代系统的rat间切换
RU2767981C2 (ru) Способ обработки информации и соответствующее устройство
US10849037B2 (en) Data transmission method, base station, and terminal equipment
US9980159B2 (en) RRC re-establishment on secondary eNodeB for dual connectivity
JP6146832B2 (ja) デバイス間通信のハンドオーバのための方法及び装置
US9883422B2 (en) Method and apparatus for enhanced connection control
RU2563803C2 (ru) Перемещение пользовательского оборудования в сеть радиодоступа с отличающейся технологией радиодоступа
EP2735209B1 (en) A method of sharing information between base stations associated with different network technologies and corresponding base stations
US8270980B2 (en) Controlling handover
US8600385B2 (en) Interface establishing method in radio communication system, management apparatus and radio node apparatus in radio communication system
JP2017524321A (ja) 中継端末の再選方法及び装置
US20210120620A1 (en) Communication Method and Apparatus
US20200288365A1 (en) Radio resource control rrc configuration method and related device
US20110044290A1 (en) Communication terminal apparatus and handover method
WO2011136104A1 (ja) 移動局及び無線制御装置
US11368888B2 (en) Mobile communication system and apparatus
EP1986454A1 (en) A method and a system for initalizing a handover of a mobile station
JP6864106B2 (ja) デュアルプロトコルスタックユーザ機器と、無線アクセス電気通信ネットワークの2つのベースバンドユニットとの間のデュアルコネクティビティのための、方法およびデバイス
WO2020193626A1 (en) Optional sending of complete message in conditional handover
EP2858414B1 (en) Method and apparatus for implementing voice service fallback
WO2022083469A1 (zh) 一种mro临界场景的判定方法、装置及设备
US20230262545A1 (en) Link recovery via cells prepared with information for handovers including cho and daps
WO2022160117A1 (en) Method and apparatus for handover and reestablishment in a wireless communication system
JP7498256B2 (ja) 無線通信ネットワークの条件付き構成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE