WO2012164597A1 - Control device for elevator - Google Patents

Control device for elevator Download PDF

Info

Publication number
WO2012164597A1
WO2012164597A1 PCT/JP2011/002964 JP2011002964W WO2012164597A1 WO 2012164597 A1 WO2012164597 A1 WO 2012164597A1 JP 2011002964 W JP2011002964 W JP 2011002964W WO 2012164597 A1 WO2012164597 A1 WO 2012164597A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
control
supply means
switching element
Prior art date
Application number
PCT/JP2011/002964
Other languages
French (fr)
Japanese (ja)
Inventor
一宏 大津
高木 宏之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013517679A priority Critical patent/JP5637307B2/en
Priority to PCT/JP2011/002964 priority patent/WO2012164597A1/en
Priority to EP11866585.0A priority patent/EP2716588B1/en
Priority to CN201180071173.7A priority patent/CN103562108B/en
Priority to KR1020137031362A priority patent/KR101521374B1/en
Publication of WO2012164597A1 publication Critical patent/WO2012164597A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • B66B1/308Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor with AC powered elevator drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an elevator control device.
  • the main circuit of the elevator has a converter that converts the AC power source into DC, a capacitor that converts the pulsating voltage of the converter output into a smooth DC voltage, and converts the DC voltage into an arbitrary AC voltage with a power semiconductor element. It is equipped with an inverter that converts it. Here, it is composed of a power semiconductor element, and is generally a voltage-driven semiconductor such as an IGBT. In order to drive this semiconductor, a gate power supply that changes the gate voltage positively or negatively is required. The malfunction of the power semiconductor element is prevented by making the gate voltage negative when the elevator is not in operation. However, when the main power supply of the elevator is turned off, the output of the gate power supply is lost. For this reason, since a negative bias cannot be applied to the gate, if the voltage of the main circuit capacitor is not discharged before this, a malfunction of the gate can cause a bus short circuit by the semiconductor element.
  • a conventional elevator control device generates an inverter that controls a motor for driving an elevator by converting a DC voltage smoothed by a capacitor into an arbitrary AC voltage, and is generated during regenerative operation of the motor.
  • an elevator control device comprising a regenerative power consuming resistor that consumes the regenerative power via a regenerative current conducting element and a charging circuit for precharging the capacitor.
  • a voltage comparison circuit that sends output to the voltage comparison circuit, and a charge storage capacitor that supplies accumulated charge to the voltage comparison circuit as a power source when the power is shut off, and the regenerative current conducting element is made conductive by the output of the voltage comparison circuit. ing.
  • the forced discharge of the capacitor when the power is shut off is forcibly discharged by the regenerative power processing circuit, so that the forced discharge of the capacitor is simplified.
  • the present invention has been made to solve the above-described problem.
  • An elevator control apparatus capable of appropriately controlling a semiconductor element by supplying power to a control means for controlling the semiconductor element when a main power source is lost. It is a challenge.
  • An elevator control apparatus includes a converter that converts electric power from an AC power source into DC by a semiconductor element, a capacitor that smoothes the DC, and the DC that is converted into an arbitrary AC by a switching element.
  • An inverter that drives a motor that operates a car; a control unit that controls on / off of the switching element; a control power unit that is generated based on the AC power source and supplies a DC power source to the control unit;
  • a storage battery that supplies power to the control power supply means when the AC power supply is lost, a first voltage detection means that detects a first voltage value that is an output of the control power supply means, and the first voltage value
  • First determining means for determining whether or not is less than or equal to a first threshold value, and when the first voltage value is less than or equal to the first threshold value, It is obtained and a supply means for supplying.
  • the first determination means determines whether or not the first voltage value of the control power supply means is equal to or lower than the first threshold value, and the supply means is equal to or lower than the first threshold value. Power from the storage battery is supplied to the control means. Therefore, even if the output voltage of the control power supply means decreases due to a power failure or the like, power supply can be continued from the storage battery to the control means, so that the switching element can be appropriately controlled by the control means.
  • An elevator control apparatus includes: a discharge unit that discharges a charge of a capacitor based on a loss of an AC power supply; a second voltage detection unit that detects a second voltage value of the capacitor; and the second voltage. And a second judging means for judging whether or not the value is higher than a second threshold, and the supply means further supplies the control means from the storage battery when the second voltage value is higher than the second threshold. It is preferable to supply electric power.
  • the supply means supplies power from the storage battery to the control means only when the second voltage value of the capacitor is larger than the second threshold value. Therefore, the supply means can supply power from the storage battery to the control means only when the current that can flow when the power supply is short-circuited by the switching element that constitutes the inverter is large, so that the storage capacity and the like can be reduced.
  • the control power supply means in the elevator control apparatus has at least first and second control power supply means, and outputs of the respective control power supply means are connected in parallel.
  • the first control power supply means is connected to the control means.
  • a DC voltage is supplied, and the supply means supplies the DC voltage to the control means via the second control power supply means when the first voltage value is equal to or lower than a first threshold value. .
  • the control apparatus of the present elevator even if the first control power supply means fails, the power can be supplied from the second control power supply means to the control means, so that the reliability against the failure of the control power supply means is improved.
  • the output voltage of the second control power supply means be lower than the output voltage of the first control power supply means.
  • the first control power supply means when the first control power supply means is in a normal operating state, the first control power supply means only supplies power to the control means, and the second control power supply means supplies power to the control means. Do not supply.
  • the output voltage of the second control power supply becomes higher than the output voltage of the first control power supply means, power is supplied from the second control power supply means to the control means, so the power capacity of the second control power supply means is increased. Can be small.
  • the first control power supply means in the elevator control apparatus generates a first positive bias voltage for turning on the switching element and a first negative bias voltage for turning off the switching element.
  • the second control power supply means preferably generates only the second negative bias voltage for turning off the switching element. According to the control apparatus for the elevator, the negative bias voltage is generated by the first and second control power supply means. Therefore, even if the first control power supply means fails, the negative bias voltage generated from the second control power supply means. Thus, the switching element can be reliably turned off, and the second control power supply means can be simplified.
  • the switching element in the elevator control device preferably includes an upper arm and a lower arm, and the switching element of the lower arm is preferably turned off by a second negative bias voltage.
  • the elevator control apparatus since the negative bias voltage generation of the switching element forming the lower arm of the inverter is made double, even if the first control power supply means fails, the inverter as a whole is surely turned off. And the second control power supply means can be further simplified.
  • the second control power supply means in the elevator control device is a first control power supply means for generating only one second negative bias voltage and supplying the second negative bias voltage to a plurality of lower arm switching elements.
  • An application unit that is always connected to the output and applies the second negative bias voltage to the switching element of the other lower arm when the first determination unit determines that the first threshold value is less than or equal to the first threshold value; preferable.
  • the elevator control device of the present invention when the main power supply is lost, power can be supplied to the control means for controlling the switching element such as an inverter, so that the switching means can be appropriately controlled by the control means.
  • FIG. 1 is an overall view of an elevator according to an embodiment of the present invention. It is an internal block diagram of the gate power supply shown in FIG. It is a general view of the elevator by other embodiment of this invention. It is a general view of the elevator by other embodiment of this invention.
  • FIG. 5 is an internal connection diagram of first and second gate power supply circuits shown in FIG. 4.
  • FIG. 5 is an internal connection diagram of other first and second gate power supply circuits.
  • FIG. 5 is an internal connection diagram of other first and second gate power supply circuits.
  • FIG. 5 is an internal connection diagram of other first and second gate power supply circuits.
  • FIG. 1 is an overall view of an elevator according to an embodiment of the present invention
  • FIG. 2 is an internal configuration diagram of a gate power supply circuit shown in FIG.
  • the elevator has an end of the counterweight 3 connected to one end of the rope 5, the other end of the rope 5 connected to the car 9, and the rope 5 is in contact with the groove of the sheave 7 of the hoisting machine.
  • the car 9 is moved up and down by a motor 11 that rotates the sheave 7 of the hoisting machine.
  • the elevator control device smoothes the pulsating component by converting the three-phase AC power source 22 into a normally open main power switch S1 and a converter 24 that converts the pulsating component into direct current having a pulsating component through the normally open contact 22 of the electromagnetic switch.
  • the circuit includes a capacitor 26 for converting to direct current and a semiconductor element 28a for converting the direct current to an arbitrary alternating voltage, and an inverter 28 for driving the motor 11.
  • a switching element 31 made of a semiconductor of the inverter 28 is provided by a gate drive circuit 60. ON / OFF controlled.
  • a charge / discharge circuit 35 that charges and discharges the capacitor 26 via the main power switch S ⁇ b> 1 is connected to both ends of the capacitor 26.
  • a gate power supply 50 is provided as a DC power supply for the gate drive circuit 60 via the main power switch S1, and a backup storage battery 52 is connected to the gate power supply circuit 50 via the supply switch Se. Yes. And it has the control apparatus 70 of the elevator which generates the control command signal which controls the gate drive circuit 60 and the charging / discharging circuit 35.
  • the first voltage detector 61 that detects the first voltage value that is the output voltage of the gate power supply circuit 50, and whether or not the detected first voltage value is equal to or less than the first threshold value, The first determination unit 83 supplies the power from the storage battery 52 to the gate drive circuit 60 by closing the supply switch Se from the open state when the threshold value is 1 or less.
  • the gate power supply circuit has a diode 54 connected to one end of the supply switch Se connected to one end of the input of the DC / DC converter 58, and a main power switch S ⁇ b> 1 input to the AC / DC converter 52. It is connected to the. One end of the input of the DC / DC converter 58 and the other end of the input of the DC / DC converter 58 are connected to the output of the AC / DC converter 52 via a diode 56.
  • the gate power supply 50 is supplied with power from the power supply having the higher voltage of the AC / DC converter 52 or the storage battery 52 to the DC / DC converter 58. Is formed.
  • the main power switch S1 and the normally open contact 22 are opened from the closed state due to a power failure, and the charge of the capacitor 26 is discharged by the charge / discharge circuit 35.
  • the output voltage of the gate power supply circuit 50 decreases.
  • the first voltage detection unit 80 detects the first voltage value as the output voltage and inputs it to the first determination unit 83.
  • the determination unit 83 determines whether or not the first voltage value is equal to or lower than the first threshold value. When the first voltage value is equal to or lower than the first threshold value, the supply switch Se is closed from the open state, and the power from the storage battery 52 is supplied to the gate drive circuit 60. Supply. Therefore, even when a power failure occurs, the gate drive circuit 60 can be normally controlled, so that the switching element 31 of the inverter 30 can also be controlled.
  • the elevator control apparatus includes a converter 24 that converts electric power from the three-phase AC power source 20 into direct current using a semiconductor element, a capacitor 26 that smoothes the direct current, and direct current is converted into arbitrary alternating current using a semiconductor element 28a.
  • the inverter 30 that drives the motor 11 that operates the elevator car 9 as well as the conversion, the gate drive circuit 60 that serves as a control means for controlling the switching element 31, and the AC power supply 22, and the gate drive circuit
  • a gate power supply circuit 50 as a control power supply means for supplying DC power to 60, a storage battery 52 for supplying power to the gate power supply circuit 50 when the AC power is lost, and a first voltage that is output from the gate power supply circuit 50
  • a first voltage detector 80 for detecting a value, and a first determination for determining whether or not the first voltage value is equal to or less than a first threshold value. 83, but the first voltage value with the supply switch Se as supply means for supplying power from the battery 52 to the gate drive circuit 60 becomes below a first threshold.
  • the first determination unit 83 determines whether or not the first voltage value of the gate power supply circuit 50 is equal to or lower than the first threshold value.
  • the power from the storage battery 52 is supplied to the gate drive circuit 60 by closing from the open state. Therefore, even if the output voltage of the gate power supply circuit 50 decreases due to a power failure or the like, power supply can be continued from the storage battery 52 to the gate drive circuit 60, so that the switching element 31 can be appropriately controlled by the gate drive circuit 60.
  • FIG. 3 is an overall view of an elevator according to another embodiment of the present invention.
  • the second voltage detector 180 detects the second voltage value of the capacitor 26, and the second determination unit 183 determines that the first voltage value is less than or equal to the first threshold value and the second voltage value. Is higher than the second threshold value, the supply switch Se is closed from the open state to supply power from the storage battery 52 to the gate drive circuit 60.
  • the elevator control apparatus configured as described above operates in the same manner as in the first embodiment. ⁇ When power failure occurs> When the main power switch S1 and the normally open contact 22 are opened from the closed state due to a power failure, the charge of the capacitor 26 is discharged by the charge / discharge circuit 35. On the other hand, the output voltage of the gate power supply circuit 50 decreases.
  • the first voltage detector 80 detects the first voltage value as the output voltage
  • the second voltage detector 180 detects the voltage across the capacitor 26 and inputs it to the second determination unit 183.
  • the second determination unit 183 determines whether or not the first voltage value is less than or equal to the first threshold, determines whether or not the second voltage value is higher than the second threshold, and determines the first voltage
  • the switch S2 is closed from the open state, and the gate drive circuit 60 is supplied with power from the storage battery 52.
  • the gate drive circuit 60 can be controlled normally, and the gate drive is performed when the voltage across the capacitor 26 is higher than the second threshold, that is, considering the magnitude of the short-circuit current. Electric power from the storage battery 52 is supplied to the circuit 60.
  • the elevator control device includes a charge / discharge circuit 35 that discharges the electric charge of the capacitor 26 based on the loss of the three-phase AC power supply 20, and a second voltage detection unit that detects the second voltage value of the capacitor 26. 180, and a second determination unit 183 that determines whether or not the second voltage value is higher than the second threshold value.
  • the supply switch Se has a first voltage value equal to or lower than the first threshold value, When the voltage value of 2 is higher than the second threshold value, it is preferable to supply power from the storage battery 52 to the gate drive circuit 60. That is, since the power from the storage battery 52 is supplied to the gate drive circuit 60 only when the voltage value of the capacitor 26 is higher than the second threshold value, the capacity of the battery 52 can be reduced.
  • FIG. 4 is an overall view of an elevator according to another embodiment of the present invention
  • FIG. 5 is an internal connection diagram of the first and second gate power supply circuits shown in FIG. 4, the same reference numerals as those in FIG. 1 denote the same parts.
  • the number of the gate power supply circuit 50 is one.
  • the first power supply circuit 150 and the second gate power supply circuit 250 are provided. Therefore, the gate power supply circuits 150 and 250 are a dual system.
  • the inverter 30 includes an upper arm 32 and a lower arm 34 each including a switching element 31.
  • the upper arm 32 includes switching elements 31uu, 32uv, 31uw, and the lower arm 34 includes a switching element 31du, 31 dv, 31 dw.
  • the voltage monitoring unit 200 detects the output voltage values of the first and second gate power supply circuits 150 and 250, and shuts off the gate driving circuit 60 when the two output voltage values fall below a predetermined threshold value. It is formed so as to generate an interruption signal.
  • the first and second gate power supply circuits 150 and 250 are flyback type, and have six power supply output units for driving the six switching elements 31 of the inverter 30.
  • the first gate power supply circuit 150 applies a voltage from the three-phase AC power supply to the capacitor 154 through the three-phase full-wave bridge 152.
  • a primary winding of the transformer 158 and a switching semiconductor element 156 are connected to both ends of the capacitor 154.
  • Each first power supply output unit generates a positive bias voltage for turning on the switching elements 31 of the upper arm 32 and the lower arm 34, and generates a negative bias voltage for turning off the switching elements 31.
  • one end of a diode D11 (D12 to D16) is connected to one end of the secondary winding of the transformer 158, and one end of a diode D21 (D22 to D26) is connected to the other end.
  • One end of each of the two smoothing capacitors C11 (C12 to C16) and C21 (C22 to C26) is connected from the center point of the secondary winding.
  • the other end of the smoothing capacitor C11 (C12 to C16) is connected to the other end of the diode D11 (D12 to D16), and the other end of C21 (C22 to C26) is connected to the diode D21 (D22 to D26). ing.
  • the second gate power supply circuit 250 applies a voltage from the battery 52 to the capacitor 254.
  • the primary winding of the transformer 158 and the switching semiconductor element 256 are connected to both ends of the capacitor 254.
  • Each power supply output unit generates a positive bias voltage for turning on the switching element 31 constituting the inverter 30 and a pair of two windings 12 for generating a negative bias voltage for turning off the switching element 31.
  • one end of the secondary winding of the transformer 258 is connected to one end of the diode D31 (D32 to D36), and the other end of the diode D41 (D42 to D46).
  • One end is connected, and one end of each of the two smoothing capacitors C31 (C32 to C36) and C41 (C42 to C46) is connected from the center point of the secondary winding.
  • the other end of the smoothing capacitor C31 (C32 to C36) is connected to the other end of the diode D31 (D32 to D36), and the other end of the capacitor C41 (C42 to C46) is connected to the diode D41 (D42 to D46).
  • the output of the second power output unit is always connected in parallel to the first power output unit.
  • the positive bias voltage of the first gate power supply circuit 150 is V1-1
  • the negative bias voltage is V2-1
  • the positive bias voltage of the second gate power supply circuit 250 is V1-2
  • the negative bias voltage is V2.
  • the absolute value of each output voltage has the following relationship.
  • Embodiment 4 FIG.
  • both the first gate power supply circuit 150 and the second gate power supply circuit 250 have a positive bias voltage and a negative bias voltage.
  • the second gate power supply circuit 1250 is formed so as to generate only the negative bias voltage without generating the positive bias voltage.
  • Each negative bias voltage that is an output of the power supply output unit is always connected in parallel with each negative bias voltage of the corresponding first power supply output unit. According to the elevator control device having such a configuration, a double system of negative bias voltage is secured.
  • the negative bias voltage of the first gate power supply circuit 150 can be generated, so that the negative bias voltage can be applied from the second gate power supply circuit 1250 to the switching element 31 of the inverter 30, so that the switching element 31 can be securely connected. Can be turned off.
  • this embodiment can be simplified because the second gate power supply circuit 1250 can omit the generation of the positive bias voltage as compared with the third embodiment.
  • Embodiment 5 FIG.
  • the second gate power supply circuit 2250 is an inverter as shown in FIG. Only three negative bias voltages of the switching element 31 applied to the lower arm 34 are generated. Three negative bias voltages serving as outputs of the second power output unit are always connected in parallel to the corresponding negative bias voltages of the first power output unit. According to the elevator control device having such a configuration, the double system of the negative bias voltage related to the switching element 31 applied to the lower arm 34 of the inverter 30 is secured, so the corresponding negative voltage of the first gate power supply circuit 150 is secured.
  • this embodiment can eliminate the generation of the three negative bias voltages of the switching element 31 applied to the upper arm 32 of the inverter 30, and thus the configuration of the second gate power supply circuit 2250. Can be simplified.
  • Embodiment 6 FIG.
  • the second gate power supply circuit 2250 generates only three negative bias voltages of the switching element 31 applied to the lower arm 34 of the inverter 30, and the second power supply output section
  • the three negative bias voltages to be output are always connected in parallel to the corresponding negative bias voltages of the corresponding first power supply output unit.
  • FIG. 3250 is formed so as to generate only one negative bias voltage corresponding to the switching element 31 of the lower arm 34 of the inverter 30, and the negative bias voltage of the first gate power supply circuit 150 to which the negative bias voltage corresponds. Always connected to the voltage output.
  • the output of the other negative bias voltage input to the two switching elements 31 of the lower arm 34 constituting the inverter 30 is connected via the switches S1 to S4.
  • the elevator control apparatus having such a configuration, when the corresponding negative bias voltage generator of the first gate power supply circuit 150 detects a failure, the switches S1 to S4 are turned on to turn on the second gate power supply circuit 3250. Since the corresponding negative bias voltage can be applied to the switching element 31 of the lower arm 34, malfunction of the switching element 31 can be prevented. Thereby, compared with the fifth embodiment, this embodiment can eliminate the generation of the two negative bias voltages of the switching element 31 applied to the lower arm 34 of the inverter 30, and therefore the configuration of the second gate power supply circuit Can be simplified.
  • the switching element 31 constituting the inverter 30 shown in the first to sixth embodiments may be made of silicon, it is preferably formed of a wide band gap semiconductor having a larger band gap than silicon.
  • the wide band gap semiconductor include silicon carbide, a gallium nitride-based material, and diamond. Since the switching element 31 formed of such a wide band gap semiconductor has a high voltage resistance and a high allowable current density, the switching element 31 can be reduced in size, and the reduced switching element 31 is used. As a result, an inverter incorporating these elements can be miniaturized. Furthermore, even if the switching element 31 forming the inverter 30 in the first to sixth embodiments is formed of a wide bandgap semiconductor or the AC power source is lost, the switching element 31 can be appropriately controlled.
  • the present invention can be applied to an elevator control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)
  • Power Conversion In General (AREA)

Abstract

The present invention comprises the following: a converter (24) that converts electrical power from an alternating current power source (20) into a direct current; a capacitor (26) that smoothes the direct current; an inverter (30) that converts the direct current to an alternating current by way of a switching element (31) that is turned ON/OFF by a gate driver circuit (60), and that drives a motor (11) which operates an elevator car (9); a gate power source circuit (50) which provides a direct current power source for the gate driver circuit (60), where the direct current is generated on the basis of the alternating current power source (20); a storage battery (52) that provides an electrical power source for the gate driver circuit (60) when the alternating current power source (20) has failed; a voltage detector (80) that detects the output of the gate driver circuit (60); a determining unit (83) that determines whether the detected voltage value is equal to or below a threshold value; and a supply switch (Se) that supplies electrical power to the gate driver circuit (60) from the storage battery (52) if the detected voltage value is equal to or below the threshold value.

Description

エレベータの制御装置Elevator control device
 本発明は、エレベータの制御装置に関するものである。 The present invention relates to an elevator control device.
エレベータの主回路は、交流電源を直流にするコンバータを有しており、このコンバータ出力の脈動電圧を平滑な直流電圧にするコンデンサを有し、該直流電圧を任意の交流電圧にパワー半導体素子を用いて変換するインバータを備えている。ここで、パワー半導体素子から成り、一般的にIGBTなどの電圧駆動型半導体で、これを駆動するためにはゲートの電圧を正・負に変化させるゲート電源が必要となる。
エレベータが動作時以外はゲートの電圧を負にすることによりパワー半導体素子の誤動作を防止している。しかし、エレベータの主電源をオフにするとゲート電源の出力も喪失する。このため、ゲートに負バイアスができなくなるので、これより先に主回路コンデンサの電圧を放電しないとゲートの誤動作により、半導体素子によって母線短絡を引き起こし得る。
The main circuit of the elevator has a converter that converts the AC power source into DC, a capacitor that converts the pulsating voltage of the converter output into a smooth DC voltage, and converts the DC voltage into an arbitrary AC voltage with a power semiconductor element. It is equipped with an inverter that converts it. Here, it is composed of a power semiconductor element, and is generally a voltage-driven semiconductor such as an IGBT. In order to drive this semiconductor, a gate power supply that changes the gate voltage positively or negatively is required.
The malfunction of the power semiconductor element is prevented by making the gate voltage negative when the elevator is not in operation. However, when the main power supply of the elevator is turned off, the output of the gate power supply is lost. For this reason, since a negative bias cannot be applied to the gate, if the voltage of the main circuit capacitor is not discharged before this, a malfunction of the gate can cause a bus short circuit by the semiconductor element.
従来のエレベータの制御装置は、下記特許文献1に示すように、コンデンサにより平滑化した直流電圧を任意の交流電圧に変換してエレベータ駆動用のモータを制御するインバータと、モータの回生運転時に生じる回生電力を回生電流通電素子を介して消費する回生電力消費抵抗と、コンデンサを予め充電しておくための充電回路とからなるエレベータの制御装置において、コンデンサの電圧が充電回路の出力電圧より大きいときに出力を送出する電圧比較回路と、電源遮断時に電圧比較回路に蓄積電荷を電源として供給する電荷蓄積用コンデンサとを備え、回生電流通電素子を電圧比較回路の出力によって導通する、ものが知られている。
このようなエレベータの制御装置によれば、電源遮断時のコンデンサの強制放電を回生電力処理回路によって強制放電するようにしたので、コンデンサの強制放電が簡易になる。
 
As shown in Patent Document 1 below, a conventional elevator control device generates an inverter that controls a motor for driving an elevator by converting a DC voltage smoothed by a capacitor into an arbitrary AC voltage, and is generated during regenerative operation of the motor. When the voltage of the capacitor is larger than the output voltage of the charging circuit in an elevator control device comprising a regenerative power consuming resistor that consumes the regenerative power via a regenerative current conducting element and a charging circuit for precharging the capacitor. A voltage comparison circuit that sends output to the voltage comparison circuit, and a charge storage capacitor that supplies accumulated charge to the voltage comparison circuit as a power source when the power is shut off, and the regenerative current conducting element is made conductive by the output of the voltage comparison circuit. ing.
According to such an elevator control device, the forced discharge of the capacitor when the power is shut off is forcibly discharged by the regenerative power processing circuit, so that the forced discharge of the capacitor is simplified.
特開平6-9164号公報Japanese Patent Laid-Open No. 6-9164
しかしながら、上記エレベータの制御装置では、主電源が喪失してもインバータ等を成す半導体素子を制御する制御電源の出力が喪失する前に、コンバータの出力電圧を平滑にするコンデンサに蓄積された電荷が放電されることが確実に担保されていないという課題を有している。 However, in the above elevator control device, even if the main power is lost, the charge accumulated in the capacitor that smoothes the output voltage of the converter is reduced before the output of the control power source that controls the semiconductor elements forming the inverter or the like is lost. There is a problem that it is not guaranteed to be discharged.
本発明は、上記課題を解決するためになされたもので、主電源が喪失した際に、半導体素子を制御する制御手段に電源供給することにより半導体素子を適切に制御し得るエレベータの制御装置をえることを課題としている。 The present invention has been made to solve the above-described problem. An elevator control apparatus capable of appropriately controlling a semiconductor element by supplying power to a control means for controlling the semiconductor element when a main power source is lost. It is a challenge.
本発明に係るエレベータの制御装置は、交流電源からの電力を半導体素子により直流に変換するコンバータと、該直流を平滑にするコンデンサと、前記直流をスイッチング素子により任意の交流に変換すると共に、エレベータのかごを動作するモータを駆動するインバータと、前記スイッチング素子をオン・オフ制御する制御手段と、前記交流電源に基づいて生成されると共に、前記制御手段に直流電源を供給する制御電源手段と、前記交流電源が喪失した時に、該制御電源手段に電源を供給する蓄電池と、該制御電源手段の出力となる第1の電圧値を検出する第1の電圧検出手段と、前記第1の電圧値が第1の閾値以下か否かを判断する第1の判断手段と、前記第1の電圧値が第1の閾値以下になると前記制御手段に前記蓄電池からの電力を供給する供給手段と、を備えたものである。
本発明のエレベータの制御装置によれば、第1の判断手段は、制御電源手段の第1の電圧値が第1の閾値以下か否かを判断し、供給手段は第1の閾値以下になると制御手段に蓄電池からの電力を供給する。したがって、停電時などで制御電源手段の出力電圧が低下しても、蓄電池から制御手段に電力供給を継続できるので、制御手段によりスイッチング素子を適切に制御し得る。
An elevator control apparatus according to the present invention includes a converter that converts electric power from an AC power source into DC by a semiconductor element, a capacitor that smoothes the DC, and the DC that is converted into an arbitrary AC by a switching element. An inverter that drives a motor that operates a car; a control unit that controls on / off of the switching element; a control power unit that is generated based on the AC power source and supplies a DC power source to the control unit; A storage battery that supplies power to the control power supply means when the AC power supply is lost, a first voltage detection means that detects a first voltage value that is an output of the control power supply means, and the first voltage value First determining means for determining whether or not is less than or equal to a first threshold value, and when the first voltage value is less than or equal to the first threshold value, It is obtained and a supply means for supplying.
According to the elevator control apparatus of the present invention, the first determination means determines whether or not the first voltage value of the control power supply means is equal to or lower than the first threshold value, and the supply means is equal to or lower than the first threshold value. Power from the storage battery is supplied to the control means. Therefore, even if the output voltage of the control power supply means decreases due to a power failure or the like, power supply can be continued from the storage battery to the control means, so that the switching element can be appropriately controlled by the control means.
本発明に係るエレベータの制御装置は、交流電源の喪失に基づいてコンデンサの電荷を放電する放電手段と、コンデンサの第2の電圧値を検出する第2の電圧検出手段と、前記第2の電圧値が第2の閾値より高いか否かを判断する第2の判断手段と、を備え、供給手段は、さらに前記第2の電圧値が第2の閾値より高いと、制御手段に蓄電池からの電力を供給する、ことが好ましい。
本エレベータの制御装置によれば、供給手段は、さらにコンデンサの第2の電圧値が第2の閾値より大きい場合に限り、制御手段に蓄電池からの電力を供給する。したがって、インバータを成すスイッチング素子によって電源短絡の際に流れ得る電流などが大きい場合に限り、供給手段は、制御手段に蓄電池からの電力を供給可能とするので、蓄電容量などを減少できる。
An elevator control apparatus according to the present invention includes: a discharge unit that discharges a charge of a capacitor based on a loss of an AC power supply; a second voltage detection unit that detects a second voltage value of the capacitor; and the second voltage. And a second judging means for judging whether or not the value is higher than a second threshold, and the supply means further supplies the control means from the storage battery when the second voltage value is higher than the second threshold. It is preferable to supply electric power.
According to the control apparatus for the elevator, the supply means supplies power from the storage battery to the control means only when the second voltage value of the capacitor is larger than the second threshold value. Therefore, the supply means can supply power from the storage battery to the control means only when the current that can flow when the power supply is short-circuited by the switching element that constitutes the inverter is large, so that the storage capacity and the like can be reduced.
本発明に係るエレベータの制御装置における制御電源手段は、少なくとも第1及び第2の制御電源手段を有すると共に、それぞれの出力が並列接続されており、前記第1の制御電源手段は、制御手段に直流電圧を供給しており、供給手段は、前記第1の電圧値が第1の閾値以下になると前記第2の制御電源手段を介して前記制御手段に前記直流電圧を供給する、ことが好ましい。
 本エレベータの制御装置によれば、第1の制御電源手段が故障しても、第2の制御電源手段から制御手段に電源供給できるので、制御電源手段の故障に対する信頼性が向上する。
The control power supply means in the elevator control apparatus according to the present invention has at least first and second control power supply means, and outputs of the respective control power supply means are connected in parallel. The first control power supply means is connected to the control means. Preferably, a DC voltage is supplied, and the supply means supplies the DC voltage to the control means via the second control power supply means when the first voltage value is equal to or lower than a first threshold value. .
According to the control apparatus of the present elevator, even if the first control power supply means fails, the power can be supplied from the second control power supply means to the control means, so that the reliability against the failure of the control power supply means is improved.
本発明に係るエレベータの制御装置における第2の制御電源手段の出力電圧は、第1の制御電源手段の出力電圧よりも低くする、ことが好ましい。
本エレベータの制御装置によれば、第1の制御電源手段が正常な動作状態では、第1の制御電源手段から制御手段へ電源供給するのみで、第2の制御電源手段からは制御手段に電源供給しない。そして、第1の制御電源手段の出力電圧よりも第2の制御電源の出力電圧が高くなると、第2の制御電源手段から制御手段に電源供給するので、第2の制御電源手段の電源容量を小さくできる。
In the elevator control apparatus according to the present invention, it is preferable that the output voltage of the second control power supply means be lower than the output voltage of the first control power supply means.
According to this elevator control device, when the first control power supply means is in a normal operating state, the first control power supply means only supplies power to the control means, and the second control power supply means supplies power to the control means. Do not supply. When the output voltage of the second control power supply becomes higher than the output voltage of the first control power supply means, power is supplied from the second control power supply means to the control means, so the power capacity of the second control power supply means is increased. Can be small.
本発明に係るエレベータの制御装置における第1の制御電源手段は、スイッチング素子をオンするための第1の正バイアス電圧と、前記スイッチング素子をオフするための第1の負バイアス電圧とを発生しており、第2の制御電源手段は、スイッチング素子をオフするための第2の負バイアス電圧をのみを発生する、ことが好ましい。
本エレベータの制御装置によれば、第1及び第2の制御電源手段により負バイアス電圧を発生するので、第1の制御電源手段が故障しても第2の制御電源手段から発生した負バイアス電圧によりスイッチング素子のオフを確実にできると共に、第2の制御電源手段を簡易にできる。
The first control power supply means in the elevator control apparatus according to the present invention generates a first positive bias voltage for turning on the switching element and a first negative bias voltage for turning off the switching element. The second control power supply means preferably generates only the second negative bias voltage for turning off the switching element.
According to the control apparatus for the elevator, the negative bias voltage is generated by the first and second control power supply means. Therefore, even if the first control power supply means fails, the negative bias voltage generated from the second control power supply means. Thus, the switching element can be reliably turned off, and the second control power supply means can be simplified.
本発明に係るエレベータの制御装置におけるスイッチング素子は、上側アームと下側アームとを備えており、第2の負バイアス電圧により前記下側アームの前記スイッチング素子をオフする、ことが好ましい。
本エレベータの制御装置によれば、インバータの下側アームを成すスイッチング素子の負バイアス電圧の発生を二重系にするので、第1の制御電源手段が故障してもインバータ全体としてのオフを確実にできると共に、第2の制御電源手段をさらに簡易にできる。
The switching element in the elevator control device according to the present invention preferably includes an upper arm and a lower arm, and the switching element of the lower arm is preferably turned off by a second negative bias voltage.
According to the elevator control apparatus, since the negative bias voltage generation of the switching element forming the lower arm of the inverter is made double, even if the first control power supply means fails, the inverter as a whole is surely turned off. And the second control power supply means can be further simplified.
本発明に係るエレベータの制御装置における第2の制御電源手段は、第2の負バイアス電圧を一つのみを発生すると共に、複数の下側アームのスイッチング素子に供給する第1の制御電源手段の出力に常時接続されており、第1の判断手段が第1の閾値以下と判断すると、前記第2の負バイアス電圧を他の下側アームの前記スイッチング素子に印加する印加手段を、備えることが好ましい。
これにより、上記二重系を得るので、第1の制御電源手段が故障しても下側アームのスイッチング素子をオフすることによりインバータ全体としてのオフを確実にできると共に、第2の制御電源手段は負バイアス電圧を一つのみ発生すればよいので、より一層簡易にできる。
The second control power supply means in the elevator control device according to the present invention is a first control power supply means for generating only one second negative bias voltage and supplying the second negative bias voltage to a plurality of lower arm switching elements. An application unit that is always connected to the output and applies the second negative bias voltage to the switching element of the other lower arm when the first determination unit determines that the first threshold value is less than or equal to the first threshold value; preferable.
As a result, the dual system is obtained, so that even if the first control power supply means fails, the switching of the lower arm can be turned off to ensure that the inverter as a whole is turned off and the second control power supply means. Since only one negative bias voltage needs to be generated, this can be further simplified.
本発明のエレベータの制御装置によれば、主電源が喪失した際に、インバータ等のスイッチング素子を制御する制御手段に電源供給することができるので、制御手段によりスイッチング素子を適切に制御し得る。 According to the elevator control device of the present invention, when the main power supply is lost, power can be supplied to the control means for controlling the switching element such as an inverter, so that the switching means can be appropriately controlled by the control means.
本発明の一実施の形態によるエレベータの全体図である。1 is an overall view of an elevator according to an embodiment of the present invention. 図1に示すゲート電源の内部構成図である。It is an internal block diagram of the gate power supply shown in FIG. 本発明の他の実施の形態によるエレベータの全体図である。It is a general view of the elevator by other embodiment of this invention. 本発明の他の実施の形態によるエレベータの全体図である。It is a general view of the elevator by other embodiment of this invention. 図4に示す第1及び第2のゲート電源回路の内部結線図である。FIG. 5 is an internal connection diagram of first and second gate power supply circuits shown in FIG. 4. 他の第1及び第2のゲート電源回路の内部結線図である。FIG. 5 is an internal connection diagram of other first and second gate power supply circuits. 他の第1及び第2のゲート電源回路の内部結線図である。FIG. 5 is an internal connection diagram of other first and second gate power supply circuits. 他の第1及び第2のゲート電源回路の内部結線図である。FIG. 5 is an internal connection diagram of other first and second gate power supply circuits.
 9 かご、11 モータ、20 三相交流電源、24 コンバータ、26 コンデンサ、28 インバータ、28a 半導体素子、50 ゲート電源、52 蓄電池、60 ゲート駆動回路、61 第1の電圧検出部、81 第1の判断部、162 第2の電圧検出部、182 第2の判断部、Se 救出スイッチ。 9 car, 11 motor, 20 three-phase AC power supply, 24 converter, 26 capacitor, 28 inverter, 28a semiconductor element, 50 gate power supply, 52 storage battery, 60 gate drive circuit, 61 1st voltage detector, 81 1st judgment Part, 162 second voltage detection part, 182 second judgment part, Se rescue switch.
実施の形態1.
本発明の一実施の形態を図1及び図2によって説明する。図1は本発明の実施の一実施の形態によるエレベータの全体図、図2は図1に示すゲート電源回路の内部構成図である。
図1において、エレベータは、釣合い錘3の端がロープ5の一端に接続され、ロープ5の他端がかご9に接続され、ロープ5が巻上機の綱車7の溝と接触しており、巻上機の綱車7を回転するモータ11によりかご9が昇降するように形成されている。
Embodiment 1 FIG.
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall view of an elevator according to an embodiment of the present invention, and FIG. 2 is an internal configuration diagram of a gate power supply circuit shown in FIG.
In FIG. 1, the elevator has an end of the counterweight 3 connected to one end of the rope 5, the other end of the rope 5 connected to the car 9, and the rope 5 is in contact with the groove of the sheave 7 of the hoisting machine. The car 9 is moved up and down by a motor 11 that rotates the sheave 7 of the hoisting machine.
エレベータの制御装置は、三相交流電源22を常開の主電源スイッチS1と,電磁開閉器の常開接点22を介して脈動分を有する直流に変換するコンバータ24と、脈動分を平滑化して直流にするコンデンサ26と、該直流を任意の交流電圧に変換する半導体素子28aを有すると共に、モータ11を駆動するインバータ28とを備え、インバータ28の半導体から成るスイッチング素子31がゲート駆動回路60によってオン・オフ制御される。主電源スイッチS1を介してコンデンサ26を充電すると共に、放電する充放電回路35がコンデンサ26の両端に接続されている。
同様に、主電源スイッチS1を介してゲート駆動回路60の直流電源となるゲート電源50を有しており、ゲート電源回路50には、バックアップ用の蓄電池52が供給スイッチSeを介して接続されている。
そして、ゲート駆動回路60及び充放電回路35を制御する制御指令信号を発生するエレベータの制御装置70を有している。
The elevator control device smoothes the pulsating component by converting the three-phase AC power source 22 into a normally open main power switch S1 and a converter 24 that converts the pulsating component into direct current having a pulsating component through the normally open contact 22 of the electromagnetic switch. The circuit includes a capacitor 26 for converting to direct current and a semiconductor element 28a for converting the direct current to an arbitrary alternating voltage, and an inverter 28 for driving the motor 11. A switching element 31 made of a semiconductor of the inverter 28 is provided by a gate drive circuit 60. ON / OFF controlled. A charge / discharge circuit 35 that charges and discharges the capacitor 26 via the main power switch S <b> 1 is connected to both ends of the capacitor 26.
Similarly, a gate power supply 50 is provided as a DC power supply for the gate drive circuit 60 via the main power switch S1, and a backup storage battery 52 is connected to the gate power supply circuit 50 via the supply switch Se. Yes.
And it has the control apparatus 70 of the elevator which generates the control command signal which controls the gate drive circuit 60 and the charging / discharging circuit 35.
 また、ゲート電源回路50の出力電圧となる第1の電圧値を検出する第1の電圧検出器61と、検出された第1の電圧値が第1の閾値以下か否かを判断し、第1の閾値以下になると供給スイッチSeを開放から閉成してゲート駆動回路60に蓄電池52からの電力を供給する第1の判断部83を有している。 In addition, the first voltage detector 61 that detects the first voltage value that is the output voltage of the gate power supply circuit 50, and whether or not the detected first voltage value is equal to or less than the first threshold value, The first determination unit 83 supplies the power from the storage battery 52 to the gate drive circuit 60 by closing the supply switch Se from the open state when the threshold value is 1 or less.
図2において、ゲート電源回路は、供給スイッチSeの一端に接続されたダイオード54がDC/DC変換器58の入力の一端に接続されていて、主電源スイッチS1がAC/DC変換器52の入力に接続されている。AC/DC変換器52の出力には、ダイオード56を介してDC/DC変換器58の入力の一端と、DC/DC変換器58の入力の他端とが接続されている。ゲート電源50は、供給スイッチSeが閉成している状態において、AC/DC変換器52、蓄電池52のいずれか高い方の電圧を有する電源からDC/DC変換器58に電源が供給されるように形成されている。 In FIG. 2, the gate power supply circuit has a diode 54 connected to one end of the supply switch Se connected to one end of the input of the DC / DC converter 58, and a main power switch S <b> 1 input to the AC / DC converter 52. It is connected to the. One end of the input of the DC / DC converter 58 and the other end of the input of the DC / DC converter 58 are connected to the output of the AC / DC converter 52 via a diode 56. In the state where the supply switch Se is closed, the gate power supply 50 is supplied with power from the power supply having the higher voltage of the AC / DC converter 52 or the storage battery 52 to the DC / DC converter 58. Is formed.
上記のように構成されたエレベータの制御装置の動作を図1及び図2によって説明する。
<通常時>
主電源スイッチS1を投入すると共に、常開接点22を開放から閉成すると、ゲート電源50には、交流電圧が入力して直流電圧をゲート駆動回路60に供給している。一方、三相交流電源をコンバータ24により直流を得てインバータ30に入力する。ゲート駆動回路60がエレベータの制御装置70からの指令信号によりインバータ30を制御してモータ11を停止又は駆動している。
The operation of the elevator control apparatus configured as described above will be described with reference to FIGS.
<Normal time>
When the main power switch S1 is turned on and the normally open contact 22 is closed from the open state, an AC voltage is input to the gate power supply 50 and a DC voltage is supplied to the gate drive circuit 60. On the other hand, a three-phase AC power is obtained by the converter 24 and input to the inverter 30. The gate drive circuit 60 controls the inverter 30 by a command signal from the elevator control device 70 to stop or drive the motor 11.
<停電発生時>
停電により主電源スイッチS1及び常開接点22を閉成から開放してコンデンサ26の電荷を充放電回路35により放電する。一方、ゲート電源回路50の出力電圧が低下する。第1の電圧検出部80が該出力電圧としての第1の電圧値を検出して第1の判断部83に入力する。判断部83は、第1の電圧値が第1の閾値以下か否かを判断し、第1の閾値以下になると供給スイッチSeを開放から閉成してゲート駆動回路60に蓄電池52からの電力を供給する。したがって、停電が発生した時でも、ゲート駆動回路60を正常に制御し得るので、インバータ30のスイッチング素子31も制御できる。
<When power failure occurs>
The main power switch S1 and the normally open contact 22 are opened from the closed state due to a power failure, and the charge of the capacitor 26 is discharged by the charge / discharge circuit 35. On the other hand, the output voltage of the gate power supply circuit 50 decreases. The first voltage detection unit 80 detects the first voltage value as the output voltage and inputs it to the first determination unit 83. The determination unit 83 determines whether or not the first voltage value is equal to or lower than the first threshold value. When the first voltage value is equal to or lower than the first threshold value, the supply switch Se is closed from the open state, and the power from the storage battery 52 is supplied to the gate drive circuit 60. Supply. Therefore, even when a power failure occurs, the gate drive circuit 60 can be normally controlled, so that the switching element 31 of the inverter 30 can also be controlled.
上記実施形態によるエレベータの制御装置は、三相交流電源20からの電力を半導体素子により直流に変換するコンバータ24と、該直流を平滑にするコンデンサ26と、直流を半導体素子28aにより任意の交流に変換すると共に、エレベータのかご9を動作するモータ11を駆動するインバータ30と、スイッチング素子31を制御する制御手段としてのゲート駆動回路60と、交流電源22に基づいて生成されると共に、ゲート駆動回路60に直流電源を供給する制御電源手段としてのゲート電源回路50と、交流電源が喪失した時に、ゲート電源回路50に電源を供給する蓄電池52と、ゲート電源回路50の出力となる第1の電圧値を検出する第1の電圧検出部80と、第1の電圧値が第1の閾値以下か否かを判断する第1の判断部83と、第1の電圧値が第1の閾値以下になるとゲート駆動回路60に蓄電池52からの電力を供給する供給手段としての供給スイッチSeとを備えたものである。 The elevator control apparatus according to the above embodiment includes a converter 24 that converts electric power from the three-phase AC power source 20 into direct current using a semiconductor element, a capacitor 26 that smoothes the direct current, and direct current is converted into arbitrary alternating current using a semiconductor element 28a. The inverter 30 that drives the motor 11 that operates the elevator car 9 as well as the conversion, the gate drive circuit 60 that serves as a control means for controlling the switching element 31, and the AC power supply 22, and the gate drive circuit A gate power supply circuit 50 as a control power supply means for supplying DC power to 60, a storage battery 52 for supplying power to the gate power supply circuit 50 when the AC power is lost, and a first voltage that is output from the gate power supply circuit 50 A first voltage detector 80 for detecting a value, and a first determination for determining whether or not the first voltage value is equal to or less than a first threshold value. 83, but the first voltage value with the supply switch Se as supply means for supplying power from the battery 52 to the gate drive circuit 60 becomes below a first threshold.
エレベータの制御装置によれば、第1の判断部83は、ゲート電源回路50の第1の電圧値が第1の閾値以下か否かを判断し、第1の閾値以下になると供給スイッチSeを開放から閉成してゲート駆動回路60に蓄電池52からの電力を供給する。したがって、停電時などでゲート電源回路50の出力電圧が低下しても、蓄電池52からゲート駆動回路60に電力供給を継続できるので、ゲート駆動回路60によりスイッチング素子31を適切に制御し得る。 According to the elevator control apparatus, the first determination unit 83 determines whether or not the first voltage value of the gate power supply circuit 50 is equal to or lower than the first threshold value. The power from the storage battery 52 is supplied to the gate drive circuit 60 by closing from the open state. Therefore, even if the output voltage of the gate power supply circuit 50 decreases due to a power failure or the like, power supply can be continued from the storage battery 52 to the gate drive circuit 60, so that the switching element 31 can be appropriately controlled by the gate drive circuit 60.
実施の形態2.
本発明の他の実施の形態を図3によって説明する。図3は本発明の他の実施の形態によるエレベータの全体図である。図3中、図1と同一符号は同一部分を示し、説明を省略する。
図3において、第2の電圧検出器180はコンデンサ26の第2の電圧値を検出し、第2の判断部183は、第1の電圧値が第1の閾値以下で、第2の電圧値が第2の閾値より高いと、供給スイッチSeを開放から閉成してゲート駆動回路60に蓄電池52からの電力を供給するように形成されている。
Embodiment 2.
Another embodiment of the present invention will be described with reference to FIG. FIG. 3 is an overall view of an elevator according to another embodiment of the present invention. In FIG. 3, the same reference numerals as those in FIG.
In FIG. 3, the second voltage detector 180 detects the second voltage value of the capacitor 26, and the second determination unit 183 determines that the first voltage value is less than or equal to the first threshold value and the second voltage value. Is higher than the second threshold value, the supply switch Se is closed from the open state to supply power from the storage battery 52 to the gate drive circuit 60.
上記のように構成されたエレベータの制御装置は、通常時は上記実施の形態1と同様に動作する。
<停電発生時>
停電により主電源スイッチS1及び常開接点22を閉成から開放すると、コンデンサ26の電荷が充放電回路35により放電する。一方、ゲート電源回路50の出力電圧が低下する。この出力電圧としての第1の電圧値を第1の電圧検出器80、コンデンサ26の両端電圧を第2の電圧検出器180がそれぞれ検出して第2の判断部183に入力する。第2の判断部183は、第1の電圧値が第1の閾値以下か否かを判断すると共に、第2の電圧値が第2の閾値より高いか否かを判断し、第1の電圧値が第1の閾値以下で、第2の電圧値が第2の閾値より高くなるとスイッチS2を開放から閉成してゲート駆動回路60に蓄電池52からの電力を供給する。これにより、停電が発生した時でも、ゲート駆動回路60を正常に制御し得ると共に、コンデンサ26の両端電圧が第2の閾値よりも高い時、すなわち、短絡電流の大きさを考慮してゲート駆動回路60に蓄電池52からの電力を供給する。
The elevator control apparatus configured as described above operates in the same manner as in the first embodiment.
<When power failure occurs>
When the main power switch S1 and the normally open contact 22 are opened from the closed state due to a power failure, the charge of the capacitor 26 is discharged by the charge / discharge circuit 35. On the other hand, the output voltage of the gate power supply circuit 50 decreases. The first voltage detector 80 detects the first voltage value as the output voltage, and the second voltage detector 180 detects the voltage across the capacitor 26 and inputs it to the second determination unit 183. The second determination unit 183 determines whether or not the first voltage value is less than or equal to the first threshold, determines whether or not the second voltage value is higher than the second threshold, and determines the first voltage When the value is equal to or lower than the first threshold value and the second voltage value is higher than the second threshold value, the switch S2 is closed from the open state, and the gate drive circuit 60 is supplied with power from the storage battery 52. Thereby, even when a power failure occurs, the gate drive circuit 60 can be controlled normally, and the gate drive is performed when the voltage across the capacitor 26 is higher than the second threshold, that is, considering the magnitude of the short-circuit current. Electric power from the storage battery 52 is supplied to the circuit 60.
上記実施形態によるエレベータの制御装置は、三相交流電源20の喪失に基づいてコンデンサ26の電荷を放電する充放電回路35と、コンデンサ26の第2の電圧値を検出する第2の電圧検出部180と、第2の電圧値が第2の閾値より高いか否かを判断する第2の判断部183とを備え、供給スイッチSeは、第1の電圧値が第1の閾値以下で、第2の電圧値が第2の閾値より高いと、ゲート駆動回路60に蓄電池52からの電力を供給する、ことが好ましい。
すなわち、コンデンサ26の電圧値が第2の閾値よりも高い場合に限り、ゲート駆動回路60に蓄電池52からの電力を供給するので、畜電池52の容量を減少し得る。
The elevator control device according to the above embodiment includes a charge / discharge circuit 35 that discharges the electric charge of the capacitor 26 based on the loss of the three-phase AC power supply 20, and a second voltage detection unit that detects the second voltage value of the capacitor 26. 180, and a second determination unit 183 that determines whether or not the second voltage value is higher than the second threshold value. The supply switch Se has a first voltage value equal to or lower than the first threshold value, When the voltage value of 2 is higher than the second threshold value, it is preferable to supply power from the storage battery 52 to the gate drive circuit 60.
That is, since the power from the storage battery 52 is supplied to the gate drive circuit 60 only when the voltage value of the capacitor 26 is higher than the second threshold value, the capacity of the battery 52 can be reduced.
実施の形態3.
本発明の他の実施の形態を図4及び図5によって説明する。図4は本発明の他の実施の形態によるエレベータの全体図、図5は図4に示す第1及び第2のゲート電源回路の内部結線図である。図4中、図1と同一符号は同一部分を示す。
 実施形態1及び2では、ゲート電源回路50は一つであったが、本実施の形態では、図4に示すように第1のゲート電源回路150と第2のゲート電源回路250とを有していて、ゲート電源回路150,250を二重系としている。インバータ30は、スイッチング素子31から成る上側アーム32と下側アーム34とを有しており、上側アーム32は、スイッチング素子31uu,32uv,31uwを有し、下側アーム34は、スイッチング素子31du,31dv,31dwを有している。
電圧監視部200は、第1及び第2のゲート電源回路150,250のそれぞれの出力電圧値を検知すると共に、二つの出力電圧値が予め定められた閾値よりも低下するとゲート駆動回路60を遮断する遮断信号を発生するように形成されている。
Embodiment 3 FIG.
Another embodiment of the present invention will be described with reference to FIGS. 4 is an overall view of an elevator according to another embodiment of the present invention, and FIG. 5 is an internal connection diagram of the first and second gate power supply circuits shown in FIG. 4, the same reference numerals as those in FIG. 1 denote the same parts.
In the first and second embodiments, the number of the gate power supply circuit 50 is one. However, in the present embodiment, as shown in FIG. 4, the first power supply circuit 150 and the second gate power supply circuit 250 are provided. Therefore, the gate power supply circuits 150 and 250 are a dual system. The inverter 30 includes an upper arm 32 and a lower arm 34 each including a switching element 31. The upper arm 32 includes switching elements 31uu, 32uv, 31uw, and the lower arm 34 includes a switching element 31du, 31 dv, 31 dw.
The voltage monitoring unit 200 detects the output voltage values of the first and second gate power supply circuits 150 and 250, and shuts off the gate driving circuit 60 when the two output voltage values fall below a predetermined threshold value. It is formed so as to generate an interruption signal.
図5において、第1及び第2のゲート電源回路150,250はフライバック式で、インバータ30の六つのスイッチング素子31を駆動するために六つの電源出力部を有している。第1のゲート電源回路150は、三相交流電源から三相全波ブリッジ152を介してコンデンサ154に電圧を印加している。コンデンサ154の両端には、トランス158の一次巻線とスイッチング用の半導体素子156とが接続されている。各第1の電源出力部は、上側アーム32及び下側アーム34のスイッチング素子31をオンするための正バイアス電圧を発生すると共に、該スイッチング素子31をオフするための負バイアス電圧を発生するために二巻線を一対として12巻線を有している。 In FIG. 5, the first and second gate power supply circuits 150 and 250 are flyback type, and have six power supply output units for driving the six switching elements 31 of the inverter 30. The first gate power supply circuit 150 applies a voltage from the three-phase AC power supply to the capacitor 154 through the three-phase full-wave bridge 152. A primary winding of the transformer 158 and a switching semiconductor element 156 are connected to both ends of the capacitor 154. Each first power supply output unit generates a positive bias voltage for turning on the switching elements 31 of the upper arm 32 and the lower arm 34, and generates a negative bias voltage for turning off the switching elements 31. There are 12 windings with two windings as a pair.
第1の電源出力部は、トランス158の二次巻線の一端には、ダイオードD11(D12~D16)の一端が接続されており、他端には、ダイオードD21(D22~D26)の一端が接続されており、二次巻線の中央点から二つの平滑用のコンデンサC11(C12~C16),C21(C22~C26)のそれぞれの一端が接続されている。平滑用のコンデンサC11(C12~C16)の他端にダイオードD11(D12~D16)の他端が接続されており、C21(C22~C26)の他端にダイオードD21(D22~D26)が接続されている。 In the first power output unit, one end of a diode D11 (D12 to D16) is connected to one end of the secondary winding of the transformer 158, and one end of a diode D21 (D22 to D26) is connected to the other end. One end of each of the two smoothing capacitors C11 (C12 to C16) and C21 (C22 to C26) is connected from the center point of the secondary winding. The other end of the smoothing capacitor C11 (C12 to C16) is connected to the other end of the diode D11 (D12 to D16), and the other end of C21 (C22 to C26) is connected to the diode D21 (D22 to D26). ing.
第2のゲート電源回路250は電池52からコンデンサ254に電圧を印加している。コンデンサ254の両端には、トランス158の一次巻線とスイッチング用の半導体素子256とが接続されている。各電源出力部は、インバータ30を成すスイッチング素子31をオンするための正バイアス電圧を発生すると共に、該スイッチング素子31をオフするための負バイアス電圧を発生するために二巻線を一対として12巻線有している。
そして、第2の電源出力部は、トランス258の二次巻線の一端には、ダイオードD31(D32~D36)の一端が接続されており、他端には、ダイオードD41(D42~D46)の一端が接続されており、二次巻線の中央点から二つの平滑用のコンデンサC31(C32~C36),C41(C42~C46)のそれぞれの一端が接続されている。平滑用のコンデンサC31(C32~C36)の他端にダイオードD31(D32~D36)の他端が接続されており、コンデンサC41(C42~C46)の他端にダイオードD41(D42~D46)が接続されている。
なお、第2の電源出力部の出力が第1の電源出力部に並列に常時接続されている。
The second gate power supply circuit 250 applies a voltage from the battery 52 to the capacitor 254. The primary winding of the transformer 158 and the switching semiconductor element 256 are connected to both ends of the capacitor 254. Each power supply output unit generates a positive bias voltage for turning on the switching element 31 constituting the inverter 30 and a pair of two windings 12 for generating a negative bias voltage for turning off the switching element 31. Has windings.
In the second power output unit, one end of the secondary winding of the transformer 258 is connected to one end of the diode D31 (D32 to D36), and the other end of the diode D41 (D42 to D46). One end is connected, and one end of each of the two smoothing capacitors C31 (C32 to C36) and C41 (C42 to C46) is connected from the center point of the secondary winding. The other end of the smoothing capacitor C31 (C32 to C36) is connected to the other end of the diode D31 (D32 to D36), and the other end of the capacitor C41 (C42 to C46) is connected to the diode D41 (D42 to D46). Has been.
The output of the second power output unit is always connected in parallel to the first power output unit.
第1のゲート電源回路150の正バイアス用電圧をV1-1、負バイアス用電圧をV2-1とし、第2のゲート電源回路250の正バイアス用電圧をV1-2、負バイアス用電圧をV2-2とした場合、それぞれの出力電圧の絶対値が下記の関係になるようにしている。
|V1-1|>|V1-2|、|V2-1|>|V2-2|
このような関係を有することにより、第1のゲート電源回路150が故障していない通常状態においては、第2のゲート電源回路250の出力電流が流れないように形成されている。
The positive bias voltage of the first gate power supply circuit 150 is V1-1, the negative bias voltage is V2-1, the positive bias voltage of the second gate power supply circuit 250 is V1-2, and the negative bias voltage is V2. In the case of -2, the absolute value of each output voltage has the following relationship.
| V1-1 |> | V1-2 |, | V2-1 |> | V2-2 |
By having such a relationship, in a normal state where the first gate power supply circuit 150 has not failed, the output current of the second gate power supply circuit 250 does not flow.
このように構成されたエレベータの制御装置の動作を図4及び図5によって説明する。
<通常時>
主電源スイッチS1を投入すると共に、常開接点22を開放から閉成すると、第1のゲート電源回路150には、交流電圧が入力して直流電圧をゲート駆動回路60に供給している。一方、三相交流電源をコンバータ24により直流を得てインバータ30に入力する。第1のゲート駆動回路150が制御装置70からの指令信号によりインバータ30を制御してモータ11を停止又は駆動している。
<異常時>
いま、何らかの原因により第1のゲート電源回路150の電圧が第2のゲート電源回路250の出力電圧よりも低下すると、第2のゲート電源回路250の出力によって、インバータ30を構成するスイッチング素子31にゲート信号を入力する。したがって、第1のゲート電源回路150が故障しても、第2のゲート電源回路250からゲート駆動回路60を介してインバータ30を駆動できる。
また、停電発生時には、蓄電池52を入力源としているので、第2のゲート電源回路250からゲート駆動回路60を介してインバータ30を駆動できる。
The operation of the elevator control apparatus configured as described above will be described with reference to FIGS.
<Normal time>
When the main power switch S <b> 1 is turned on and the normally open contact 22 is closed from the open state, an AC voltage is input to the first gate power supply circuit 150 and a DC voltage is supplied to the gate drive circuit 60. On the other hand, a three-phase AC power is obtained by the converter 24 and input to the inverter 30. The first gate drive circuit 150 controls the inverter 30 by a command signal from the control device 70 to stop or drive the motor 11.
<In case of abnormality>
If the voltage of the first gate power supply circuit 150 is lower than the output voltage of the second gate power supply circuit 250 for some reason, the output of the second gate power supply circuit 250 causes the switching element 31 constituting the inverter 30 to Input a gate signal. Therefore, even if the first gate power supply circuit 150 fails, the inverter 30 can be driven from the second gate power supply circuit 250 via the gate drive circuit 60.
Moreover, since the storage battery 52 is used as an input source when a power failure occurs, the inverter 30 can be driven from the second gate power supply circuit 250 via the gate drive circuit 60.
実施の形態4.
実施形態3では、図5に示すようにゲート電源回路を二重系とするために第1のゲート電源回路150と第2のゲート電源回路250とを共に、正バイアス電圧と負バイアス電圧とを発生したが、本実施の形態では、図6に示すように第2のゲート電源回路1250は、正バイアス電圧を発生することなく、負バイアス電圧のみを発生するように形成されており、第2の電源出力部の出力となる各負バイアス電圧が対応する第1の電源出力部の各負バイアス電圧に並列に常時接続されている。
 このような構成によるエレベータの制御装置によれば、負バイアス電圧の二重系が担保される。これにより、第1のゲート電源回路150の負バイアス電圧が発生できなくても、第2のゲート電源回路1250から負バイアス電圧をインバータ30のスイッチング素子31に印加できるので、スイッチング素子31を確実にオフできる。
これにより、本実施の形態は実施の形態3に比較して、第2のゲート電源回路1250は正バイアス電圧の発生を省略できるので、簡易にできる。
Embodiment 4 FIG.
In the third embodiment, as shown in FIG. 5, in order to make the gate power supply circuit a dual system, both the first gate power supply circuit 150 and the second gate power supply circuit 250 have a positive bias voltage and a negative bias voltage. In the present embodiment, as shown in FIG. 6, the second gate power supply circuit 1250 is formed so as to generate only the negative bias voltage without generating the positive bias voltage. Each negative bias voltage that is an output of the power supply output unit is always connected in parallel with each negative bias voltage of the corresponding first power supply output unit.
According to the elevator control device having such a configuration, a double system of negative bias voltage is secured. Thereby, even if the negative bias voltage of the first gate power supply circuit 150 cannot be generated, the negative bias voltage can be applied from the second gate power supply circuit 1250 to the switching element 31 of the inverter 30, so that the switching element 31 can be securely connected. Can be turned off.
Thus, this embodiment can be simplified because the second gate power supply circuit 1250 can omit the generation of the positive bias voltage as compared with the third embodiment.
実施の形態5.
実施形態4では、図6に示すようにゲート電源回路の負バイアス電圧側のみを二重系としたが、本実施の形態では、図7に示すように第2のゲート電源回路2250は、インバータの下側アーム34にかかるスイッチング素子31の三つの負バイアス電圧のみを発生するように形成されている。第2の電源出力部の出力となる三つの負バイアス電圧が対応する第1の電源出力部の各負バイアス電圧に並列に常時接続されている。
このような構成によるエレベータの制御装置によれば、インバータ30の下側アーム34にかかるスイッチング素子31に関する負バイアス電圧の二重系が担保されるので、第1のゲート電源回路150の対応する負バイアス電圧の発生部が故障しても、第2のゲート電源回路2250から対応する負バイアス電圧を下側アーム34のスイッチング素子31に印加できるので、スイッチング素子31の誤動作を防止できる。
これにより、本実施の形態は実施の形態4に比較して、インバータ30の上側アーム32にかかるスイッチング素子31の三つの負バイアス電圧の発生を省略できるので、第2のゲート電源回路2250の構成を簡易にできる。
Embodiment 5 FIG.
In the fourth embodiment, as shown in FIG. 6, only the negative bias voltage side of the gate power supply circuit is a dual system, but in this embodiment, the second gate power supply circuit 2250 is an inverter as shown in FIG. Only three negative bias voltages of the switching element 31 applied to the lower arm 34 are generated. Three negative bias voltages serving as outputs of the second power output unit are always connected in parallel to the corresponding negative bias voltages of the first power output unit.
According to the elevator control device having such a configuration, the double system of the negative bias voltage related to the switching element 31 applied to the lower arm 34 of the inverter 30 is secured, so the corresponding negative voltage of the first gate power supply circuit 150 is secured. Even if the bias voltage generation unit fails, the corresponding negative bias voltage can be applied from the second gate power supply circuit 2250 to the switching element 31 of the lower arm 34, so that malfunction of the switching element 31 can be prevented.
Thereby, compared with the fourth embodiment, this embodiment can eliminate the generation of the three negative bias voltages of the switching element 31 applied to the upper arm 32 of the inverter 30, and thus the configuration of the second gate power supply circuit 2250. Can be simplified.
実施の形態6.
実施形態5では、図7に示すように第2のゲート電源回路2250は、インバータ30の下側アーム34にかかるスイッチング素子31の三つの負バイアス電圧のみを発生し、第2の電源出力部の出力となる三つの負バイアス電圧が対応する第1の電源出力部の各負バイアス電圧に並列に常時接続されているが、本実施の形態では、図8に示すように第2のゲート電源回路3250は、インバータ30の下側アーム34のスイッチング素子31に対応する一つの負バイアス電圧のみを発生するように形成されており、該負バイアス電圧が対応する第1のゲート電源回路150の負バイアス電圧の出力に常時接続されている。
そして、インバータ30を成す下側アーム34の二つのスイッチング素子31に入力する他の負バイアス電圧の出力にスイッチS1~S4を介して接続されている。
Embodiment 6 FIG.
In the fifth embodiment, as shown in FIG. 7, the second gate power supply circuit 2250 generates only three negative bias voltages of the switching element 31 applied to the lower arm 34 of the inverter 30, and the second power supply output section The three negative bias voltages to be output are always connected in parallel to the corresponding negative bias voltages of the corresponding first power supply output unit. In the present embodiment, as shown in FIG. 3250 is formed so as to generate only one negative bias voltage corresponding to the switching element 31 of the lower arm 34 of the inverter 30, and the negative bias voltage of the first gate power supply circuit 150 to which the negative bias voltage corresponds. Always connected to the voltage output.
The output of the other negative bias voltage input to the two switching elements 31 of the lower arm 34 constituting the inverter 30 is connected via the switches S1 to S4.
このような構成によるエレベータの制御装置によれば、第1のゲート電源回路150の対応する負バイアス電圧の発生部が故障を検知すると、スイッチS1~S4をオンして第2のゲート電源回路3250から対応する負バイアス電圧を下側アーム34のスイッチング素子31に印加できるので、スイッチング素子31の誤動作を防止できる。
これにより、本実施の形態は実施の形態5に比較して、インバータ30の下側アーム34にかかるスイッチング素子31の二つの負バイアス電圧の発生を省略できるので、第2のゲート電源回路の構成を簡易にできる。
According to the elevator control apparatus having such a configuration, when the corresponding negative bias voltage generator of the first gate power supply circuit 150 detects a failure, the switches S1 to S4 are turned on to turn on the second gate power supply circuit 3250. Since the corresponding negative bias voltage can be applied to the switching element 31 of the lower arm 34, malfunction of the switching element 31 can be prevented.
Thereby, compared with the fifth embodiment, this embodiment can eliminate the generation of the two negative bias voltages of the switching element 31 applied to the lower arm 34 of the inverter 30, and therefore the configuration of the second gate power supply circuit Can be simplified.
また、上記実施形態1~6に示すインバータ30を成すスイッチング素子31は珪素でも良いが、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成することが好ましい。ワイドバンドギャップ半導体としては、例えば、炭化珪素、窒化ガリウム系材料又はダイヤモンドがある。
このようなワイドバンドギャップ半導体によって形成されたスイッチング素子31は、耐電圧性が高く、許容電流密度も高いため、スイッチング素子31の小型化が可能であり、これら小型化されたスイッチング素子31を用いることにより、これらの素子を組み込んだインバータが小型化できる。
さらに、上記実施形態1~6にインバータ30を成すスイッチング素子31をワイドバンドギャップ半導体により形成しても、交流電源が喪失しても、適切にスイッチング素子31を制御し得る。
Further, although the switching element 31 constituting the inverter 30 shown in the first to sixth embodiments may be made of silicon, it is preferably formed of a wide band gap semiconductor having a larger band gap than silicon. Examples of the wide band gap semiconductor include silicon carbide, a gallium nitride-based material, and diamond.
Since the switching element 31 formed of such a wide band gap semiconductor has a high voltage resistance and a high allowable current density, the switching element 31 can be reduced in size, and the reduced switching element 31 is used. As a result, an inverter incorporating these elements can be miniaturized.
Furthermore, even if the switching element 31 forming the inverter 30 in the first to sixth embodiments is formed of a wide bandgap semiconductor or the AC power source is lost, the switching element 31 can be appropriately controlled.
本発明は、エレベータの制御装置に適用できる。 The present invention can be applied to an elevator control device.

Claims (8)

  1. 交流電源からの電力を半導体素子により直流に変換するコンバータと、
    該直流を平滑にするコンデンサと、
    前記直流をスイッチング素子により任意の交流に変換すると共に、エレベータのかごを動作するモータを駆動するインバータと、
    前記スイッチング素子をオン・オフ制御する制御手段と、
    前記交流電源に基づいて生成されると共に、前記制御手段に直流電源を供給する制御電源手段と、
    前記交流電源が喪失した時に、該制御電源手段に電源を供給する蓄電池と、
    該制御電源手段の出力となる第1の電圧値を検出する第1の電圧検出手段と、
    前記第1の電圧値が第1の閾値以下か否かを判断する第1の判断手段と、
    前記第1の電圧値が第1の閾値以下になると前記制御手段に前記蓄電池からの電力を供給する供給手段と、
    を備えたことを特徴とするエレベータの制御装置。
    A converter that converts power from an AC power source into DC by a semiconductor element;
    A capacitor for smoothing the direct current;
    An inverter that drives the motor that operates the elevator car, while converting the direct current into arbitrary alternating current by a switching element;
    Control means for on / off control of the switching element;
    Control power supply means that is generated based on the AC power supply and supplies DC power to the control means;
    A storage battery for supplying power to the control power means when the AC power is lost;
    First voltage detection means for detecting a first voltage value which is an output of the control power supply means;
    First determination means for determining whether or not the first voltage value is equal to or lower than a first threshold;
    Supply means for supplying power from the storage battery to the control means when the first voltage value is equal to or lower than a first threshold;
    An elevator control device comprising:
  2. 前記交流電源の喪失に基づいて前記コンデンサの電荷を放電する放電手段と、
    前記コンデンサの第2の電圧値を検出する第2の電圧検出手段と、
    前記第2の電圧値が第2の閾値より高いか否かを判断する第2の判断手段と、を備え、
    前記供給手段は、さらに前記第2の電圧値が第2の閾値より高いと、前記制御手段に前記蓄電池からの電力を供給する、
    ことを特徴とする請求項1に記載のエレベータの制御装置。
    Discharging means for discharging the charge of the capacitor based on the loss of the AC power supply;
    Second voltage detecting means for detecting a second voltage value of the capacitor;
    Second determination means for determining whether or not the second voltage value is higher than a second threshold;
    The supply means supplies power from the storage battery to the control means when the second voltage value is higher than a second threshold value.
    The elevator control device according to claim 1.
  3. 前記制御電源手段は、少なくとも第1及び第2の制御電源手段を有すると共に、それぞれの出力が並列接続されており、前記第1の制御電源手段は、前記制御手段に直流電圧を供給しており、
    前記供給手段は、前記第1の電圧値が第1の閾値以下になると前記第2の制御電源手段を介して前記制御手段に前記直流電源を供給する、
    ことを特徴とする請求項1又は2に記載のエレベータの制御装置。
    The control power supply means has at least first and second control power supply means, and outputs thereof are connected in parallel, and the first control power supply means supplies a DC voltage to the control means. ,
    The supply means supplies the DC power to the control means via the second control power supply means when the first voltage value is equal to or lower than a first threshold value.
    The elevator control device according to claim 1 or 2.
  4. 前記第2の制御電源手段の出力電圧は、前記第1の制御電源手段の出力電圧よりも低くする、
    ことを特徴とする請求項1又は2に記載のエレベータの制御装置。
    The output voltage of the second control power supply means is lower than the output voltage of the first control power supply means;
    The elevator control device according to claim 1 or 2.
  5. 前記第1の制御電源手段は、前記スイッチング素子をオンするための第1の正バイアス電圧と、前記スイッチング素子をオフするための第1の負バイアス電圧とを発生しており、
    前記第2の制御電源手段は、前記スイッチング素子をオフするための第2の負バイアス電圧をのみを発生する、
    ことを特徴とする請求項4に記載のエレベータの制御装置。
    The first control power supply means generates a first positive bias voltage for turning on the switching element and a first negative bias voltage for turning off the switching element,
    The second control power supply means generates only a second negative bias voltage for turning off the switching element;
    The elevator control device according to claim 4.
  6. 前記スイッチング素子は、上側アームと下側アームとを備えており、
    前記第2の負バイアス電圧により前記下側アームの前記スイッチング素子をオフする、
    ことを特徴とする請求項5に記載のエレベータの制御装置。
    The switching element includes an upper arm and a lower arm,
    Turning off the switching element of the lower arm by the second negative bias voltage;
    The elevator control device according to claim 5.
  7. 前記第2の制御電源手段は、前記第2の負バイアス電圧を一つのみを発生すると共に、複数の前記下側アームの前記スイッチング素子に供給する前記第1の制御電源手段の出力に常時接続されており、
    前記第1の判断手段が第1の閾値以下と判断すると、前記第2の負バイアス電圧を他の下側アームの前記スイッチング素子に印加する印加手段を、
    備えたことを特徴とする請求項5に記載のエレベータの制御装置。
    The second control power supply means generates only one second negative bias voltage and is always connected to the outputs of the first control power supply means for supplying the switching elements of the lower arms. Has been
    When the first determining means determines that the first threshold value is less than or equal to the first threshold value, the applying means for applying the second negative bias voltage to the switching element of the other lower arm,
    The elevator control device according to claim 5, further comprising an elevator control device.
  8. 前記スイッチング素子はワイドバンドギャップ半導体によって形成されている、
    ことを特徴とする請求項1から7のいずれか一つに記載のエレベータの制御装置。
    The switching element is formed of a wide band gap semiconductor.
    The elevator control device according to any one of claims 1 to 7.
PCT/JP2011/002964 2011-05-27 2011-05-27 Control device for elevator WO2012164597A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013517679A JP5637307B2 (en) 2011-05-27 2011-05-27 Elevator control device
PCT/JP2011/002964 WO2012164597A1 (en) 2011-05-27 2011-05-27 Control device for elevator
EP11866585.0A EP2716588B1 (en) 2011-05-27 2011-05-27 Control device for elevator
CN201180071173.7A CN103562108B (en) 2011-05-27 2011-05-27 Elevator control gear
KR1020137031362A KR101521374B1 (en) 2011-05-27 2011-05-27 Control device for elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002964 WO2012164597A1 (en) 2011-05-27 2011-05-27 Control device for elevator

Publications (1)

Publication Number Publication Date
WO2012164597A1 true WO2012164597A1 (en) 2012-12-06

Family

ID=47258494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002964 WO2012164597A1 (en) 2011-05-27 2011-05-27 Control device for elevator

Country Status (5)

Country Link
EP (1) EP2716588B1 (en)
JP (1) JP5637307B2 (en)
KR (1) KR101521374B1 (en)
CN (1) CN103562108B (en)
WO (1) WO2012164597A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183702A (en) * 2013-03-21 2014-09-29 Hitachi Automotive Systems Ltd Electric power conversion system
WO2015094272A1 (en) * 2013-12-19 2015-06-25 Otis Elevator Company System and method for limiting over-voltage in power supply system
US10020765B2 (en) 2015-12-30 2018-07-10 Mitsubishi Electric Corporation Excitation device of AC exciter
US20190263628A1 (en) * 2016-10-27 2019-08-29 Inventio Ag Elevator system having a circuit with a switch monitored by means of an ac voltage signal
US20200122961A1 (en) * 2018-10-19 2020-04-23 Otis Elevator Company Power supply to ac loads during power source failure in elevator system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108349692B (en) * 2015-11-12 2019-11-12 因温特奥股份公司 Monitoring unit and method for lift facility
CN106301000B (en) * 2016-08-11 2018-11-23 珠海格力电器股份有限公司 converter and control unit thereof
US20240275314A1 (en) * 2023-02-09 2024-08-15 Otis Elevator Company Elevator machine braking

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168825A (en) * 1988-12-20 1990-06-28 Fujitsu Ltd Backup power source system
JPH069164A (en) 1992-06-29 1994-01-18 Mitsubishi Electric Corp Control method and device of elevator
JP2005137179A (en) * 2003-10-31 2005-05-26 Sumitomo Electric Ind Ltd Power conversion device and method therefor
JP2005192298A (en) * 2003-12-25 2005-07-14 Meidensha Corp Backup method for inverter dc power supply in elevator, and device for the method
JP2008131724A (en) * 2006-11-20 2008-06-05 Yaskawa Electric Corp Switching power supply device
JP2010016994A (en) * 2008-07-03 2010-01-21 Hitachi Industrial Equipment Systems Co Ltd Power converter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154380A (en) * 1982-03-09 1983-09-13 Mitsubishi Electric Corp Controller for ac elevator
JPH0583991A (en) * 1991-09-20 1993-04-02 Mitsubishi Electric Corp Elevator controller
JP3309648B2 (en) * 1995-06-22 2002-07-29 三菱電機株式会社 Elevator control device
CN1356255A (en) * 2000-12-04 2002-07-03 奥蒂斯电梯公司 Controller for elevator
JP2005162442A (en) * 2003-12-04 2005-06-23 Mitsubishi Electric Corp Elevator device
JP4986541B2 (en) * 2006-08-31 2012-07-25 東芝エレベータ株式会社 Elevator control device
CN101687610B (en) * 2007-06-14 2012-07-04 三菱电机株式会社 Elevator
JP2009035408A (en) * 2007-08-03 2009-02-19 Toshiba Elevator Co Ltd Elevator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168825A (en) * 1988-12-20 1990-06-28 Fujitsu Ltd Backup power source system
JPH069164A (en) 1992-06-29 1994-01-18 Mitsubishi Electric Corp Control method and device of elevator
JP2005137179A (en) * 2003-10-31 2005-05-26 Sumitomo Electric Ind Ltd Power conversion device and method therefor
JP2005192298A (en) * 2003-12-25 2005-07-14 Meidensha Corp Backup method for inverter dc power supply in elevator, and device for the method
JP2008131724A (en) * 2006-11-20 2008-06-05 Yaskawa Electric Corp Switching power supply device
JP2010016994A (en) * 2008-07-03 2010-01-21 Hitachi Industrial Equipment Systems Co Ltd Power converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716588A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183702A (en) * 2013-03-21 2014-09-29 Hitachi Automotive Systems Ltd Electric power conversion system
WO2015094272A1 (en) * 2013-12-19 2015-06-25 Otis Elevator Company System and method for limiting over-voltage in power supply system
CN105849023A (en) * 2013-12-19 2016-08-10 奥的斯电梯公司 System and method for limiting over-voltage in power supply system
US9938115B2 (en) 2013-12-19 2018-04-10 Otis Elevator Company System and method for limiting over-voltage in power supply system
US10020765B2 (en) 2015-12-30 2018-07-10 Mitsubishi Electric Corporation Excitation device of AC exciter
US20190263628A1 (en) * 2016-10-27 2019-08-29 Inventio Ag Elevator system having a circuit with a switch monitored by means of an ac voltage signal
US20200122961A1 (en) * 2018-10-19 2020-04-23 Otis Elevator Company Power supply to ac loads during power source failure in elevator system

Also Published As

Publication number Publication date
EP2716588B1 (en) 2017-04-05
EP2716588A4 (en) 2015-02-18
KR20140018354A (en) 2014-02-12
EP2716588A1 (en) 2014-04-09
JP5637307B2 (en) 2014-12-10
CN103562108B (en) 2015-12-16
JPWO2012164597A1 (en) 2014-07-31
CN103562108A (en) 2014-02-05
KR101521374B1 (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP5637307B2 (en) Elevator control device
US7813847B2 (en) Electric car controller
US10259326B2 (en) Car control device
JP5240685B2 (en) elevator
US20170361713A1 (en) Power conversion system
US10525838B2 (en) Power conversion system
JP5441481B2 (en) Inverter device failure diagnosis method
JP5166389B2 (en) Motor drive power supply and regeneration method using the power supply
JP6533548B2 (en) Passenger conveyor
JP2015073423A (en) Power conversion system for motor car
JP6150017B2 (en) Driving device, matrix converter and elevator system
JP2010041806A (en) Power supply for electric railcar
FI122048B (en) The transportation system
JP2007028752A (en) Elevator motor controller
JP2012147571A (en) Inverter apparatus and motor drive system
JP6786268B2 (en) Power storage system
US20240178646A1 (en) Motor drive device provided with charging control unit
JP2014233120A (en) Inverter device
WO2012131880A1 (en) Alternating current motor drive device
JP7207044B2 (en) motor drive
JP2014009041A (en) Elevator control device
JPH07252073A (en) Controller of man conveyor
JP6815762B2 (en) Power conversion system
WO2009101859A1 (en) Inverter device and method for controlling the same
JP6477385B2 (en) Elevating mechanism and power supply control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517679

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011866585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011866585

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137031362

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE