WO2012160905A1 - 太陽光集光システム - Google Patents

太陽光集光システム Download PDF

Info

Publication number
WO2012160905A1
WO2012160905A1 PCT/JP2012/060325 JP2012060325W WO2012160905A1 WO 2012160905 A1 WO2012160905 A1 WO 2012160905A1 JP 2012060325 W JP2012060325 W JP 2012060325W WO 2012160905 A1 WO2012160905 A1 WO 2012160905A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
target angle
reflecting mirror
component
target
Prior art date
Application number
PCT/JP2012/060325
Other languages
English (en)
French (fr)
Inventor
和彦 櫻井
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to KR1020137033828A priority Critical patent/KR20140037134A/ko
Priority to US14/118,237 priority patent/US20140116422A1/en
Priority to EP12790133.8A priority patent/EP2716993A4/en
Priority to CN201280024798.2A priority patent/CN103562652B/zh
Publication of WO2012160905A1 publication Critical patent/WO2012160905A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/80Accommodating differential expansion of solar collector elements
    • F24S40/85Arrangements for protecting solar collectors against adverse weather conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/60Arrangements for controlling solar heat collectors responsive to wind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar light collecting system using a heliostat.
  • One system that acquires electrical energy or heat energy is a system that uses sunlight.
  • Some types of solar light utilization systems include a light collection system that collects sunlight at a single point in order to efficiently use sunlight.
  • a device called a heliostat is known to collect sunlight at a single point.
  • the heliostat is composed of a reflecting mirror (usually a gentle concave mirror) and an actuator for adjusting the direction of the reflecting mirror.
  • the heliostat adjusts the direction of the reflector in synchronization with the movement of the sun so that the reflected light always gathers at the receiver arranged at a predetermined point (target point). In order to always direct the reflected light to the receiver, it is necessary to precisely control the direction of the reflecting mirror. Unlike a power generation system in which a solar panel is generally directed to the sun, heliostats require high control accuracy.
  • Non-patent document 1 “PERFORMANCE OF SOLAR CONCENTRATOR CONTROL SYSTEM”, Kenneth W. Stone, Charles W. Lopez, Proceedings of Joint Solar Engineering Conference, ASME 1994.
  • the direction (azimuth angle and angle of attack) of the reflector is basically determined based on the position of the sun (azimuth angle and angle of attack). That is, based on the position of the sun, the direction of the reflecting mirror is adjusted so that the reflected light is directed toward the receiver. However, if the wind is strong, the reflecting mirror may be tilted by the wind pressure, and the reflected light may be displaced from the receiver. If the reflected light slightly deviates from the receiver, the light collection efficiency will be extremely reduced.
  • This specification provides the sunlight condensing system provided with the structure which correct
  • the solar light collecting system disclosed in this specification includes a heliostat and a controller.
  • the heliostat has an actuator that adjusts the direction of the reflecting mirror.
  • the actuator may typically be a motor.
  • the controller outputs a target angle command to the actuator.
  • the system disclosed in the present specification further includes an anemometer, and the controller determines a target angle command value based on the position of the sun and the wind direction and the wind speed measured by the anemometer. To do.
  • the target angle command determined by the controller is obtained by adding the second target angle component determined based on the wind direction and the wind speed to the first target angle component determined from the position of the sun.
  • the first target angle component is determined such that the reflected light travels to a predetermined target position (receiver position).
  • the target angle second component corresponds to the estimated value of the torsion angle between the actuator output shaft and the reflecting mirror support shaft caused by the wind pressure. The presence of the second component of the target angle corrects the deviation of the direction of the reflected light due to the wind pressure. Since the actuator and the reflecting mirror support shaft are connected via a speed reducer, the “twist angle” corresponds to the twist angle between the input shaft and the output shaft of the speed reducer.
  • the technology disclosed in this specification is suitable for a system that does not directly measure the direction of the reflecting mirror. More specifically, the technology disclosed in this specification is based on the case where the controller has an open loop control system that does not feed back the angle of the actuator output shaft or the angle of the reflector, or the rotation angle of the output shaft of the actuator. This is effective when a feedback control system that controls the actuator so that the deviation of the target angle becomes zero is effective.
  • the second component of the target angle compensates the tilt of the reflecting mirror due to the wind pressure.
  • FIG. 1 shows a schematic diagram of a solar concentrating power generation system 100 of the embodiment.
  • the solar light collecting power generation system 100 is simply referred to as the system 100.
  • This system 100 collects sunlight at a receiver 9 by a plurality of heliostats 2 to generate electricity.
  • the receiver 9 is provided with a vaporizer, and water is heated by the heat of the collected sunlight to generate steam.
  • the steam is sent to a turbine generator (not shown) through the power tower 8. Steam generated by sunlight drives the turbine and generates electric power.
  • a solar tracking sensor 6 that measures the position (azimuth angle and angle of attack) of sunlight
  • an anemometer 4 that measures the wind direction and speed of the wind that flows in the vicinity of the system 100
  • a heliostat 2 A controller 10 for controlling
  • the heliostat 2 includes a motor 23 and a speed reducer 25, and the direction of the reflecting mirror 26 can be adjusted by them.
  • the controller 10 mainly acquires the position of the sun from the sensor data of the sun tracking sensor 6, and controls the direction of the reflecting mirror 26 so that the reflected sunlight reaches the receiver 9. Specifically, the controller 10 calculates a target angle of the reflecting mirror from the position of the sun and the position of the receiver 9, and outputs the angle as a command value (target angle command) to the driver of the motor 23.
  • the reflecting mirror 26 is slightly concavely curved so that the reflected light is focused at the position of the receiver 9.
  • the controller 10 obtains wind direction and wind speed data of the wind flowing in the vicinity of the system 100 from the sensor data of the wind direction anemometer 4 and is calculated based on the sensor data of the solar tracking sensor 6 based on the data. Correct the target angle command.
  • the correction value is set to a magnitude that compensates for the angle at which the reflecting mirror 26 tilts in response to wind pressure.
  • the controller 10 calculates a target angle command including a correction value for each of the plurality of heliostats and sends it to the motor driver of each heliostat.
  • Each heliostat 2 includes a biaxial drive mechanism of azimuth and angle of attack, and a target angle command is also calculated for each axis. However, for the sake of simplicity, the following description will be made assuming that the driving shaft of the reflecting mirror is one axis.
  • FIG. 2 shows a control block diagram of the controller 10 and the heliostat 2.
  • FIG. 2 shows a control block for one heliostat. A similar control block is provided for each heliostat.
  • the angle of the reflector calculated so that the sunlight reaches the receiver 9 based on the sensor data of the sun tracking sensor 6 is referred to as a target angle first component Ar1
  • the inclination of the reflector due to the wind direction and the wind pressure is compensated.
  • the compensation value is referred to as a target angle second component Ar2.
  • a value obtained by adding the target angle first component Ar1 and the target angle second component Ar2 corresponds to the target angle Ar.
  • the reflecting mirror 26 is connected to the output shaft of the speed reducer 25 via the support shaft 27.
  • the output shaft 23 a of the motor 23 is connected to the input shaft of the speed reducer 25.
  • the reflecting mirror 26 is connected to the motor 23 via the speed reducer 25.
  • the reducer 25 has a reduction ratio of about 8000 as an example.
  • An angle sensor 24 is provided on the output shaft 23 a of the motor 23.
  • the angle sensor 24 is specifically an encoder and outputs 100 pulses per rotation of the output shaft. In other words, the resolution of this encoder is 100 PPR (Pulse Per Rotation).
  • the resolution corresponding to the reduction gear output shaft of this encoder is 800,000 PPR.
  • the sensor data of the angle sensor 24 encoder
  • the controller 10 controls the motor based on the sensor data of the angle sensor 24.
  • the system 100 compensates for the twist generated between the input shaft and the output shaft of the speed reducer based on the wind direction and the wind speed measured by the wind direction anemometer 4.
  • the sensor data of the angle sensor 24 indicates the rotation angle of the output shaft of the motor 23. This angle is sent to the conversion unit 21.
  • the rotation angle of the output shaft of the motor 23 is converted into the angle of the reflecting mirror 26 and output.
  • the output of the converter 21 is used for feedback control of the motor 23 as an estimated angle of the reflecting mirror.
  • the motor 23 is driven by the driver 22.
  • the driver 22 receives an angle command from the controller 10 and drives the motor 23 according to the angle command.
  • the motor 23 is current controlled (ie, torque controlled) by the driver 22, but details are omitted in FIG. 2, and it is assumed that the motor 23 and the driver 22 are driven by an angle command. Continue the explanation.
  • the controller 10 will be described.
  • the controller 10 acquires sensor data of the sun tracking sensor 6, and the first arithmetic unit 34 calculates a reflector angle (target angle first component Ar ⁇ b> 1) that directs reflected light toward the receiver 9. Since the calculation for calculating the angle of the reflecting mirror from the position of the sun and the position of the receiver 9 is also performed in a normal light collecting system, detailed description thereof is omitted.
  • the second arithmetic unit 32 of the controller 10 calculates a compensation value (target angle second component Ar2) for compensating the tilt of the reflecting mirror caused by the wind pressure based on the sensor data of the anemometer 4.
  • the target angle second component Ar2 will be specifically described later.
  • the target angle first component Ar1 and the second component Ar2 are added to become the target angle command value Ar.
  • the controller 10 controls the heliostat 2 so that the angle of the reflecting mirror 26 matches the target angle command Ar.
  • the motor 23 stops at an angle corresponding to the estimated angle (As1 + As2) of the reflecting mirror.
  • the angle As1 represents the actual angle of the reflecting mirror corresponding to the target angle first component Ar1
  • the angle As2 represents the actual angle corresponding to the target angle second component Ar2.
  • a compensation value (target angle second component A2) for compensating the tilt of the reflecting mirror caused by the wind direction and the wind speed will be described. If there is no wind, the angle of the reflecting mirror 26 can be represented by a value obtained by multiplying the rotation angle of the motor output shaft 23a by the reduction ratio of the reduction gear 25. At this time, the actual angle As of the reflecting mirror 26 is equal to the target angle Ar. Further, since the sensor data of the anemometer 4 is zero, the target angle second component Ar2 is zero. That is, if there is no wind, the target angle command Ar output from the controller 10 is Ar1, and the actual angle of the reflecting mirror is also a value corresponding to the target angle first component Ar1, that is, the angle As1. If the actual angle of the reflecting mirror is As1, the reflected light is accurately directed to the receiver 9.
  • wind pressure load F Since the reflector is a huge flat plate, considerable force is generated when it receives wind pressure. This force is hereinafter referred to as wind pressure load F.
  • a twist occurs between the output shaft of the motor (input shaft of the speed reducer) and the reflecting mirror support shaft (output shaft of the speed reducer). Therefore, a deviation occurs between the estimated angle of the reflecting mirror based on the sensor data of the angle sensor 24 that measures the angle of the output shaft 23a of the motor 23 and the actual angle.
  • the target angle second component Ar2 compensates for this deviation.
  • FIG. 3 is a view of the reflecting mirror 26 as viewed from the longitudinal direction of the support shaft 27.
  • the wind pressure load F received by the reflecting mirror 26 due to the wind pressure can be expressed by the following equation (Equation 1).
  • the variable q is called the design speed pressure and represents the influence of the wind speed V.
  • the design speed pressure q is given by the following equation (Equation 2).
  • Equation 2 E is an environment variable, and I is a usage variable. Equations 1 and 2 are described in detail in Japanese Industrial Standards (JIS). The wind power coefficient Cw, environment variable E, and application variable I are also defined in JIS. Please refer to “JIS C 8955” for details.
  • the angle Ar2 obtained by (Equation 4) corresponds to the target angle second component.
  • the wind speed V is included in the design speed pressure q.
  • An angle Ta formed by the plane of the reflecting mirror 26 and the wind direction is equal to the wind direction.
  • the wind speed V and the wind direction Ta are measured by the wind direction anemometer 4.
  • the 2 calculates a compensation value for compensating for the tilt of the reflecting mirror due to the wind direction and the wind pressure, that is, the target angle second component Ar2 based on (Equation 4).
  • the target angle command value Ar Ar1 + Ar2
  • the output shaft 23a of the motor 23 has an angle corresponding to the target angle command value Ar.
  • the angle of the output shaft 23a at this time should correspond to the angle As1 + As2 of the reflector support shaft.
  • the angle of the reflecting mirror support shaft 27 is not actually As1 + As2.
  • the reflector support shaft 27 is twisted by an angle As2 due to wind pressure. Since this twist angle As2 is canceled by the target angle second component Ar2, the angle of the realized mirror is eventually As1.
  • the angle of the reflecting mirror 26 is As1 even in the wind, and the reflected light is accurately directed to the receiver.
  • the receiver of the reflected light can be accurately received even in the wind by adjusting the angle of the reflecting mirror by the target angle command value including the compensation value (target angle second component) that cancels the inclination of the reflecting mirror caused by the wind pressure. 9 can be directed.
  • the sun tracking sensor is used to acquire the position of the sun.
  • the position of the sun may be calculated from GPS data (latitude, longitude, date and time).
  • the target angle command output by the controller 10 may include a third component in addition to the target angle first component Ar1 and the second component Ar2.
  • the target angle third component is set to a magnitude that compensates for the tilt of the reflecting mirror caused by the weight of the reflecting mirror.
  • the torsional rigidity K between the motor output shaft 23a (the reducer input shaft) and the reflector support shaft 27 (the reducer output shaft) may be obtained in advance by experiments or the like.

Abstract

 風圧による反射鏡の傾きを補正する仕組みを備えた太陽光集光システムを提供する。 太陽光集光システム100は、ヘリオスタット2と風向風速計4とコントローラ10を備える。ヘリオスタット2は、反射鏡26の向きを調整するモータ23を有する。コントローラ10は、モータ23に対して目標角度指令を出力する。目標角度は、目標角度第1成分と目標角度第2成分を含む。目標角度第1成分は、反射光が予め定められたターゲット位置に向かうように定められる。目標角度第2成分は、風向風速計6によって計測された風向及び風速に基づいて、風圧によって生じるアクチュエータ出力軸から反射鏡支持軸の間のねじれ角の推定値に対応して定められる。

Description

太陽光集光システム
 本出願は、2011年5月24日に出願された日本国特許出願第2011-115395号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用される。本発明はヘリオスタットを用いた太陽光集光システムに関する。
 電気エネルギ或いは熱エネルギを取得するシステムの一つに、太陽光を利用するシステムがある。ある種の太陽光利用システムは、太陽光を効率よく利用するため、太陽光を一点に集める集光システムを備える。太陽光を一点に集めるのに、ヘリオスタットと呼ばれるデバイスが知られている。ヘリオスタットは、反射鏡(通常は緩やかな凹面鏡)と、その反射鏡の向きを調整するアクチュエータから構成される。
 ヘリオスタットは、反射光が常に予め定められた一点(ターゲットポイント)に配置されたレシーバに集まるように、太陽の動きに同期して反射鏡の向きを調整する。反射光を常にレシーバに向けるには、反射鏡の向きを精密に制御する必要がある。太陽電池パネルを概ね太陽に向ければよい発電システムと異なり、ヘリオスタットでは高い制御精度が要求される。ヘリオスタットの制御性能についての考察が、非特許文献1:“PERFORMANCE OF SOLAR CONCENTRATOR CONTROL SYSTEM”, Kenneth W. Stone, Charles W. Lopez, Proceedings of Joint Solar Engineering Conference, ASME 1994 に紹介されている。
 非特許文献1で紹介されているように、反射鏡の向き(方位角と迎角)は、基本的に太陽の位置(方位角と迎角)に基づいて決定される。即ち、太陽の位置に基づき、反射光がレシーバに向かうように反射鏡の向きが調整される。しかしながら、風が強いと風圧によって反射鏡が傾き、反射光がレシーバからずれてしてしまう虞がある。反射光がレシーバからわずかでもずれると集光効率が極端に落ちてしまう。本明細書は、風圧による反射光の向きのずれを補正する仕組みを備えた太陽光集光システムを提供する。
 本明細書が開示する太陽光集光システムは、ヘリオスタットとコントローラを備える。ヘリオスタットは、前述したように、反射鏡の向きを調整するアクチュエータを有する。アクチュエータは典型的にはモータでよい。コントローラは、アクチュエータに対して目標角度指令を出力する。本明細書が開示するシステムはさらに風向風速計を備えており、コントローラが、太陽の位置と、風向風速計によって計測された風向及び風速に基づいて、目標角度指令値を決定することを特徴とする。
 より具体的には、コントローラが決定する目標角度指令は、太陽の位置から決定される目標角度第1成分に、風向と風速に基づいて決定される目標角度第2成分を加えたものである。目標角度第1成分は、反射光が予め定められたターゲット位置(レシーバの位置)に向かうように定められる。目標角度第2成分は、風圧によって生じるアクチュエータ出力軸から反射鏡支持軸の間のねじれ角の推定値に対応する。この目標角度第2成分の存在が、風圧による反射光の向きのずれを補正する。なお、アクチュエータと反射鏡支持軸は減速機を介して連結されているので、「ねじれ角」は、減速機の入力軸と出力軸との間のねじれ角にも相当する。
 本明細書が開示する技術は、反射鏡の向きをダイレクトに計測しないシステムに好適である。より具体的には、本明細書が開示する技術は、コントローラが、アクチュエータ出力軸の角度又は反射鏡の角度をフィードバックしないオープンループの制御系を有する場合、或いは、アクチュエータの出力軸の回転角と目標角度の偏差がゼロとなるようにアクチュエータを制御するフィードバック制御系を有する場合に有効である。本明細書が開示するシステムは、反射鏡の向きをダイレクトに計測してフィードバックする代わりに、目標角度第2成分が風圧による反射鏡の傾きを補償する。
太陽光集光システムの全体図である。 ヘリオスタットの制御ブロック図である。 風圧に起因して反射鏡支持軸に加わるモーメントを説明する図である。
 図1に、実施例の太陽光集光発電システム100の概略図を示す。以下、太陽光集光発電システム100を単にシステム100と称する。このシステム100は、複数のヘリオスタット2によって太陽光をレシーバ9に集めて発電する。レシーバ9には気化装置が配置されており、集められた太陽光の熱によって水が加熱され、蒸気が生成される。蒸気はパワータワー8を通じてタービン発電機(不図示)に送られる。太陽光によって生成した蒸気がタービンを駆動し、電力を発生する。
 システム100には他に、太陽光の位置(方位角と迎角)を計測する太陽追尾センサ6、システム100の付近を流れる風の風向と風速を計測する風向風速計4、及び、ヘリオスタット2を制御するコントローラ10を備える。
 ヘリオスタット2には、モータ23と減速機25が内蔵されており、それらによって反射鏡26の向きを調整することができる。コントローラ10は、主として、太陽追尾センサ6のセンサデータから太陽の位置を取得し、太陽光の反射光がレシーバ9に到達するように、反射鏡26の向きを制御する。具体的にはコントローラ10は、太陽の位置とレシーバ9の位置から反射鏡の目標角度を算出し、その角度を指令値(目標角度指令)としてモータ23のドライバへ出力する。なお、反射鏡26は僅かに凹面に湾曲しており、レシーバ9の位置において反射光が焦点を結ぶようになっている。
 また、コントローラ10は、風向風速計4のセンサデータからシステム100の付近に流れる風の風向と風速のデータを取得し、それらのデータに基づいて、太陽追尾センサ6のセンサデータに基づいて算出された目標角度指令を補正する。補正値は、風圧を受けて反射鏡26が傾く角度を補償する大きさに定められる。コントローラ10は、複数のヘリオスタットの夫々に対して、補正値を含む目標角度指令を算出し、各ヘリオスタットのモータのドライバへ送る。なお、各ヘリオスタット2は、方位角と迎角の2軸の駆動機構を備えており、目標角度指令も各軸毎に算出される。しかし以下では説明を簡単にするため、反射鏡の駆動軸を1軸と仮定して説明する。
 図2に、コントローラ10とヘリオスタット2の制御ブロック図を示す。なお、図2は、一つのヘリオスタットについての制御ブロックを示している。同様の制御ブロックが各ヘリオスタットに用意されている。以下、太陽追尾センサ6のセンサデータに基づいて太陽光がレシーバ9に到達するように算出される反射鏡の角度を目標角度第1成分Ar1と称し、風向と風圧による反射鏡の傾きを補償する補償値を目標角度第2成分Ar2と称する。目標角度第1成分Ar1と目標角度第2成分Ar2を加えた値が目標角度Arに相当する。
 図2を参照して先にヘリオスタット2の構造について説明する。反射鏡26は、支持軸27を介して減速機25の出力軸に連結している。他方、モータ23の出力軸23aは減速機25の入力軸に連結している。別言すれば、反射鏡26は減速機25を介してモータ23に連結している。減速機25は、一例として、8000程度の減速比を有する。モータ23の出力軸23aには角度センサ24が備えられている。角度センサ24は、具体的にはエンコーダであり、出力軸1回転当たり100パルスを出力する。別言すれば、このエンコーダの分解能は100PPR(Pulse Per Rotation)である。減速比が8000の場合、このエンコーダの減速機出力軸相当の分解能は、800,000PPRとなる。ただし、後述するように、反射鏡26が受ける風圧の影響により減速機の入力軸と出力軸の間にはねじれが生じるため、角度センサ24(エンコーダ)のセンサデータを反射鏡の現実の傾斜角とみなすことはできない。それでもコントローラ10は、角度センサ24のセンサデータに基づいてモータを制御する。システム100は、減速機の入力軸と出力軸の間に生じるねじれは風向風速計4で計測した風向と風速に基づいて補償する。
 前述したように、角度センサ24のセンサデータはモータ23の出力軸の回転角度を示している。この角度は、変換部21に送られる。変換部21では、モータ23の出力軸の回転角度を反射鏡26の角度に換算して出力する。変換部21の出力は、反射鏡の推定角としてモータ23のフィードバック制御に用いられる。
 モータ23は、ドライバ22によって駆動される。ドライバ22は、コントローラ10から角度指令を受け、その角度指令に応じてモータ23を駆動する。なお、具体的には、モータ23はドライバ22によって電流制御(即ちトルク制御)されるが、図2では詳細を省略しており、モータ23とドライバ22は角度指令で駆動されると仮定して説明を続ける。
 コントローラ10について説明する。コントローラ10は、太陽追尾センサ6のセンサデータを取得し、第1演算ユニット34が、反射光をレシーバ9へ向ける反射鏡角度(目標角度第1成分Ar1)を算出する。太陽の位置とレシーバ9の位置から反射鏡の角度を算出する演算は、通常の集光システムでも実施されているので詳しい説明は省略する。
 また、コントローラ10の第2演算ユニット32は、風向風速計4のセンサデータに基づき、風圧によって生じる反射鏡の傾きを補償する補償値(目標角度第2成分Ar2)を算出する。目標角度第2成分Ar2については後に具体的に説明する。目標角度第1成分Ar1と第2成分Ar2は加算され、目標角度指令値Arとなる。コントローラ10内では、目標角度指令値Arと角度センサ24のセンサデータに基づく反射鏡の推定角の差分をドライバ22に送る。従って、コントローラ10は、反射鏡26の角度が目標角度指令Arに一致するようにヘリオスタット2を制御する。モータ23は、反射鏡の推定角度(As1+As2)に相当する角度で停止する。以下、角度As1は、目標角度第1成分Ar1に対応した反射鏡の現実の角度を表し、角度As2は、目標角度第2成分Ar2に対応した現実の角度を表す。
 風向と風速に起因する反射鏡の傾きを補償する補償値(目標角度第2成分A2)について説明する。今、風がなければ、反射鏡26の角度は、モータ出力軸23aの回転角に減速機25の減速比を乗じた値で表すことができる。このとき、反射鏡26の現実の角度Asは、目標角度Arに等しい。また、風向風速計4のセンサデータがゼロであるので、目標角度第2成分Ar2はゼロである。即ち、風がなければ、コントローラ10が出力する目標角度指令ArはAr1であり、反射鏡の現実の角度も目標角度第1成分Ar1に対応した値、即ち角度As1となる。反射鏡の現実の角度がAs1であれば、反射光は正確にレシーバ9に向かう。
 反射鏡は巨大な平板であるので、風圧を受けると相当の力が発生する。この力を以下、風圧荷重Fと称する。この風圧荷重Fを受け、モータの出力軸(減速機の入力軸)と反射鏡支持軸(減速機の出力軸)の間にねじれが生じる。そのため、モータ23の出力軸23aの角度を計測する角度センサ24のセンサデータに基づいた反射鏡の推定角度と実際の角度にずれが生じる。目標角度第2成分Ar2は、このずれを補償するものである。
 図3を参照して、目標角度第2成分Ar2の算出過程の一例を説明する。なお、繰り返すが、本実施例では説明を分かりやすくするため、反射鏡の回転を1軸に限定して説明する。図3は、反射鏡26を、その支持軸27の長手方向から見た図である。風圧によって反射鏡26が受ける風圧荷重Fは、次の式(数1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、係数Cwは風力係数であり、受圧面(反射鏡の表面)が矩形の場合はCw=1.2である。変数Awは、受圧面の面積である。図3に示すように、反射鏡26の平面と風向のなす角度をTaとし、反射鏡の面積をSとすると、Aw=S×cos(Ta)である。変数qは設計用速度圧と呼ばれており、風速Vの影響を表す。設計用速度圧qは、次の式(数2)によって与えられる。
Figure JPOXMLDOC01-appb-M000002
 (数2)において、Eは環境変数であり、Iは用途変数である。数1、数2は、日本工業規格(JIS)で詳しく説明されている。風力係数Cw、環境変数E、及び、用途変数IについてもJISにて定義されている。詳しくは「JIS C 8955」を参照されたい。
 図3に示すように、風圧荷重Fは、反射鏡26の中心Cに集中作用すると仮定する。反射鏡26を支持する支持軸27の中心から反射鏡中心Cまでの距離をdとすると、風圧に起因して支持軸27に作用するモーメントMは、次の式(数3)で求まる。
Figure JPOXMLDOC01-appb-M000003
 このモーメントMによって支持軸27がねじられる。今、モータの出力軸23a(減速機の入力軸)と反射鏡支持軸27(減速機の出力軸)の間のねじれ剛性をKとすると、風圧に起因するねじれ角度As2(反射鏡の傾き)は、M=K×As2で表される。結局、風圧に起因する反射鏡の傾きAr2は、次の式(数4)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 (数4)で求まる角度Ar2が、目標角度第2成分に相当する。(数2)に示したように、設計用速度圧qには風速Vが含まれる。また、反射鏡26の平面と風向のなす角度Taは、風向と等しい。風速Vと風向Taは、風向風速計4で計測される。
 図2の第2演算ユニット32は、(数4)に基づいて、風向と風圧による反射鏡の傾きを補償する補償値、即ち目標角度第2成分Ar2を算出する。図2に示すように、目標角度指令値Ar=Ar1+Ar2のとき、モータ23の出力軸23aは、目標角度指令値Arに対応する角度となる。このときの出力軸23aの角度は、反射鏡支持軸の角度As1+As2に相当するはずである。ただし、モータ23の出力軸23aから反射鏡の支持軸27の間には風圧によるねじれが生じるため、現実には反射鏡支持軸27の角度はAs1+As2にならない。反射鏡支持軸27は、風圧によって角度As2だけねじれる。このねじれ角As2は目標角度第2成分Ar2によって相殺されるので、結局、実現される反射鏡の角度はAs1となる。こうして、風の中でも反射鏡26の角度はAs1となり、反射光は正確にレシーバに向かうことになる。
 以上のとおり、風圧に起因する反射鏡の傾きを相殺する補償値(目標角度第2成分)を含む目標角度指令値によって反射鏡の角度を調整することによって、風の中でも反射光の正確にレシーバ9に向けることができる。
 実施例のシステム100について留意点を述べる。実施例のシステム100では、モータの出力軸の回転角度のフィードバック制御を採用した。モータドライバの性能が十分に高い場合には、モータ出力軸の回転角についてはオープンループ制御を採用してもよい。
 また、実施例では、太陽の位置を取得するのに太陽追尾センサを使用したが、これに代えて、GPSデータ(緯度、経度、日時)から計算で太陽の位置を求めてもよい。
 また、コントローラ10が出力する目標角度指令は、目標角度第1成分Ar1、第2成分Ar2に加えて、第3成分を含んでもよい。ここで、目標角度第3成分は、反射鏡の自重によって生じる反射鏡の傾きを補償する大きさに定められる。
 モータの出力軸23a(減速機の入力軸)と反射鏡支持軸27(減速機の出力軸)の間のねじれ剛性Kは、実験等により予め求めておけばよい。
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (4)

  1.  反射鏡の向きを調整するアクチュエータを有するヘリオスタットと、
     アクチュエータに対して目標角度指令を出力するコントローラと、
     風向風速計と、
    を備えており、
     コントローラは、太陽の位置と、風向風速計によって計測された風向及び風速に基づいて、目標角度指令値を決定することを特徴とする太陽光集光システム。
  2.  コントローラが決定する目標角度指令は、太陽の位置から決定される目標角度第1成分に、風向と風速に基づいて決定される目標角度第2成分を加えたものであることを特徴とする請求項1に記載の太陽光集光システム。
  3.  アクチュエータの出力軸の回転角を計測する角度センサをさらに備えており、コントローラは、角度センサによって計測される計測角と目標角度の偏差がゼロとなるようにアクチュエータを制御することを特徴とする請求項1又は2に記載の太陽光集光システム。
  4.  目標角度第1成分は、反射光が予め定められたターゲット位置に向かうように定められ、目標角度第2成分は、風圧によって生じるアクチュエータ出力軸から反射鏡支持軸の間のねじれ角の推定値に対応することを特徴とする請求項1から3のいずれか1項に記載の太陽光集光システム。
PCT/JP2012/060325 2011-05-24 2012-04-17 太陽光集光システム WO2012160905A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137033828A KR20140037134A (ko) 2011-05-24 2012-04-17 태양광 집광 시스템
US14/118,237 US20140116422A1 (en) 2011-05-24 2012-04-17 Solar concentrating system
EP12790133.8A EP2716993A4 (en) 2011-05-24 2012-04-17 SYSTEM FOR COLLECTING SOLAR LIGHT
CN201280024798.2A CN103562652B (zh) 2011-05-24 2012-04-17 太阳光聚光系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-115395 2011-05-24
JP2011115395A JP5813372B2 (ja) 2011-05-24 2011-05-24 太陽光集光システム

Publications (1)

Publication Number Publication Date
WO2012160905A1 true WO2012160905A1 (ja) 2012-11-29

Family

ID=47216990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060325 WO2012160905A1 (ja) 2011-05-24 2012-04-17 太陽光集光システム

Country Status (6)

Country Link
US (1) US20140116422A1 (ja)
EP (1) EP2716993A4 (ja)
JP (1) JP5813372B2 (ja)
KR (1) KR20140037134A (ja)
CN (1) CN103562652B (ja)
WO (1) WO2012160905A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727689A (zh) * 2013-12-25 2014-04-16 青海中控太阳能发电有限公司 一种可有效降低镜场风抗的防风装置及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110088684A1 (en) * 2009-10-16 2011-04-21 Raja Singh Tuli Solar Energy Concentrator
CN103605376B (zh) * 2013-10-22 2016-08-17 齐凤河 定点反射式太阳光跟踪系统
US10594253B2 (en) * 2017-02-02 2020-03-17 Kinematics, Llc Distributed torque single axis solar tracker
CN107514823B (zh) * 2017-08-10 2019-12-31 中广核工程有限公司 一种旋转式光热电站吸热器及均匀吸热控制方法
CN111765657B (zh) * 2020-07-07 2023-08-22 上海晶电新能源有限公司 一种定日镜光路闭环控制系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542615A (ja) * 1999-04-21 2002-12-10 シングルトン.ジェファーソン ソーラ・コレクタおよびトラッカ機構
WO2006025449A1 (ja) * 2004-08-31 2006-03-09 Tokyo Institute Of Technology 太陽光集熱器、太陽光集光用反射装置、太陽光集光システムおよび太陽光エネルギ利用システム
JP2007180484A (ja) * 2005-09-28 2007-07-12 Tec Okazaki:Kk 太陽追尾システム
JP2008270698A (ja) * 2007-04-19 2008-11-06 Daulenc Co Ltd 太陽光発電装置
JP2009109136A (ja) * 2007-10-31 2009-05-21 Mitsui Eng & Shipbuild Co Ltd 太陽光追尾センサの方位設定・計測・再調整方法及び太陽光集光装置
JP2010002164A (ja) * 2008-06-23 2010-01-07 Kokusai Gijutsu Kaihatsu Co Ltd 太陽熱収集システム
JP2010007976A (ja) * 2008-06-27 2010-01-14 Mitsui Eng & Shipbuild Co Ltd ヘリオスタットの校正方法とその校正装置
JP2010159962A (ja) * 2010-01-12 2010-07-22 Mitsui Eng & Shipbuild Co Ltd 太陽光追尾センサの再調整方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221912A (ja) * 1985-03-28 1986-10-02 Agency Of Ind Science & Technol 太陽追尾型コレクタの制御方法
US5404868A (en) * 1992-03-31 1995-04-11 Vedanta Society Of Western Washington Apparatus using a balloon supported reflective surface for reflecting light from the sun
JP3315108B1 (ja) * 2001-09-05 2002-08-19 元春 小国 シーソー式ソーラー発電温水器システム
US7380549B1 (en) * 2006-08-21 2008-06-03 Ratliff George D Solar energy concentrator for power plants
US8365719B2 (en) * 2007-08-07 2013-02-05 Angeles Technologies, Inc. Multi-receiver heliostat system architecture
CN101521477A (zh) * 2007-12-04 2009-09-02 张玉良 低成本太阳能跟踪聚光发电方法
US7705277B2 (en) * 2008-02-04 2010-04-27 Envision Solar, Llc Sun tracking solar panels
AU2009271609A1 (en) * 2008-07-16 2010-01-21 Sopogy, Inc. Solar thermal energy array and drive
US8193477B2 (en) * 2009-05-19 2012-06-05 Emcore Solar Power, Inc. Periodic alignment adjustment techniques for terrestrial solar arrays
US9995507B2 (en) * 2009-04-15 2018-06-12 Richard Norman Systems for cost-effective concentration and utilization of solar energy
MX2012003353A (es) * 2009-09-23 2013-02-15 Eagle Eye Res Inc Sistema concentrador solar con reflectores primarios fijos y espejo secundario de articulacion.
CN103026144A (zh) * 2010-07-26 2013-04-03 亮源工业(以色列)有限公司 用于太阳跟踪组件的风响应操作的系统、方法和设备
US20110232630A1 (en) * 2011-06-03 2011-09-29 Jason Tsao Solar collector/wind deflector conversion of a solar and wind converter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542615A (ja) * 1999-04-21 2002-12-10 シングルトン.ジェファーソン ソーラ・コレクタおよびトラッカ機構
WO2006025449A1 (ja) * 2004-08-31 2006-03-09 Tokyo Institute Of Technology 太陽光集熱器、太陽光集光用反射装置、太陽光集光システムおよび太陽光エネルギ利用システム
JP2007180484A (ja) * 2005-09-28 2007-07-12 Tec Okazaki:Kk 太陽追尾システム
JP2008270698A (ja) * 2007-04-19 2008-11-06 Daulenc Co Ltd 太陽光発電装置
JP2009109136A (ja) * 2007-10-31 2009-05-21 Mitsui Eng & Shipbuild Co Ltd 太陽光追尾センサの方位設定・計測・再調整方法及び太陽光集光装置
JP2010002164A (ja) * 2008-06-23 2010-01-07 Kokusai Gijutsu Kaihatsu Co Ltd 太陽熱収集システム
JP2010007976A (ja) * 2008-06-27 2010-01-14 Mitsui Eng & Shipbuild Co Ltd ヘリオスタットの校正方法とその校正装置
JP2010159962A (ja) * 2010-01-12 2010-07-22 Mitsui Eng & Shipbuild Co Ltd 太陽光追尾センサの再調整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716993A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727689A (zh) * 2013-12-25 2014-04-16 青海中控太阳能发电有限公司 一种可有效降低镜场风抗的防风装置及方法
CN103727689B (zh) * 2013-12-25 2016-01-20 青海中控太阳能发电有限公司 一种可有效降低镜场风抗的防风装置及方法

Also Published As

Publication number Publication date
CN103562652A (zh) 2014-02-05
EP2716993A4 (en) 2015-03-04
JP2012242057A (ja) 2012-12-10
US20140116422A1 (en) 2014-05-01
JP5813372B2 (ja) 2015-11-17
EP2716993A1 (en) 2014-04-09
CN103562652B (zh) 2016-02-10
KR20140037134A (ko) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5813372B2 (ja) 太陽光集光システム
Yao et al. A multipurpose dual-axis solar tracker with two tracking strategies
US10006665B2 (en) Solar tracker drive
Chong et al. General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector
US8881415B2 (en) Solar system alignment tool and method
WO2011111511A1 (ja) 太陽光発電システムおよび給電システム
TW201344131A (zh) 太陽能發電機組之自動追日調控裝置
JP5063701B2 (ja) 追尾装置のための組み込まれた制御部および調整部を有する変換器
Zhang et al. Error analysis and auto correction of hybrid solar tracking system using photo sensors and orientation algorithm
US10190801B1 (en) Solar heating apparatus
WO2012077285A1 (ja) ヘリオスタットおよび太陽光集光システム
JP5036668B2 (ja) 太陽光発電装置
CN109506380B (zh) 用于控制抛物槽式太阳能收集器的太阳能跟踪装置和热太阳能热系统
JP2016183800A (ja) 太陽光集光システムおよびヘリオスタット
JP5153953B1 (ja) ヘリオスタット及びその制御方法
KR20080052923A (ko) 광센서를 이용한 판체형 태양추적장치 및 이를 이용한태양전지 구동 시스템
CN108803679B (zh) 双面光伏组件的最大发电量角度跟踪方法和控制器
Elgeziry et al. Designing a Dual-axis Open-loop solar tracker for CPV applications
JP2014511023A (ja) 太陽光集光器フレーム
Chong et al. Open-loop azimuth-elevation sun-tracking system using on-axis general sun-tracking formula for achieving tracking accuracy of below 1 mrad
Prinsloo et al. Mechatronic platform with 12m2 solar thermal concentrator for rural power generation in Africa
US9732990B2 (en) Biased drive assemblies for heliostats
KR20120139297A (ko) 태양광 트래커
EP2390747A2 (en) Method for positioning a surface in relation to a light source using sensors
JP2019090375A (ja) 風力発電システム及びその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790133

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14118237

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137033828

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012790133

Country of ref document: EP