WO2012160153A1 - Agents pour le traitement de tumeurs - Google Patents

Agents pour le traitement de tumeurs Download PDF

Info

Publication number
WO2012160153A1
WO2012160153A1 PCT/EP2012/059744 EP2012059744W WO2012160153A1 WO 2012160153 A1 WO2012160153 A1 WO 2012160153A1 EP 2012059744 W EP2012059744 W EP 2012059744W WO 2012160153 A1 WO2012160153 A1 WO 2012160153A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
product according
cancer
cpg
agent
Prior art date
Application number
PCT/EP2012/059744
Other languages
English (en)
Inventor
Antoine Carpentier
Original Assignee
Assistance Publique - Hopitaux De Paris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Assistance Publique - Hopitaux De Paris filed Critical Assistance Publique - Hopitaux De Paris
Priority to US14/119,657 priority Critical patent/US20140120088A1/en
Priority to EP12723201.5A priority patent/EP2714078A1/fr
Publication of WO2012160153A1 publication Critical patent/WO2012160153A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5154Antigen presenting cells [APCs], e.g. dendritic cells or macrophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/17Immunomodulatory nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/31Combination therapy

Definitions

  • the invention relates to the treatment of patients with a brain tumor or tumor meningitis, using a TRL9 receptor agonist agent in combination with an antiangiogenic product.
  • CpG-ODNs are short synthetic single-stranded DNA molecules containing a "C” cytosine followed by a “G” guanine.
  • the "p” refers to the phosphodiester spine of DNA, but most CpGs have a phosphorothioate backbone. When these CpG motifs are unmethylated, they have an immunostimulatory effect (Weiner et al., 1997, Proc Natl Acad Sci USA 94 (20): 10833-7).
  • CpG-ODNs are also described in the literature as immunostimulatory oligonucleotides.
  • CpG-ODN are TLR9 receptor agonists (Toll-like Receptor 9, also known as CD289, OMIM: 605474; MGI: 1932389; HomoloGene: 68126) which is expressed by dendritic cells and B cells (Rothenfusser et al. al., 2002 Human immunology 63 (12): 1-11).
  • Activation of TRL9 receptors of dendritic cells by CpG-ODN leads to the activation of these cells and the production of cytokines such as interleukin (IL) 12 or interferons (IFN) type I (such as IFN- ⁇ or IFN- ⁇ ).
  • IL interleukin
  • IFN interferons
  • CpG-ODN CpG-ODN
  • Clinical Cancer Research 2000 6: 2469-73
  • several clinical trials have been conducted in glioblastomas with this molecule, which has shown good tolerance, but still insufficient efficacy (Carpentier et al., Neuro-oncology, 2006 8: 60- 2006; Carpentier et al. ., 2010, op.cit.).
  • VEGF Vascular Endothelial Growth Factor
  • Bevacizumab marketed by Roche under the name Avastin
  • Avastin has already been obtained in several cancer indications, such as colon cancer, lung cancer and glioblastoma recurrence.
  • Tumor meningitis results from the invasion of intraventricular and meningeal spaces (subarachnoid spaces) by tumor cells (from a brain tumor or corresponding to a meningeal metastasis of a systemic cancer with or without cerebral localizations) .
  • the diagnosis is based on a lumbar puncture, and the use of MRI which can highlight tumor nodules or abnormal enhancement, particularly at the medullary level.
  • neoplastic meningitis secondary to solid tumors The prognosis of neoplastic meningitis secondary to solid tumors is catastrophic.
  • the majority of patients have a median spontaneous survival of about 4 months (between 3 and 7 months) but this figure varies according to the type of primary cancer (breast cancer: 7 months, small cell lung cancer: 4 months, melanoma : 3.6 months, malignant gliomas: 3 months)
  • No therapy is effective (with the exception of Methotrexate and Depocyte (Cytarabine) in hematological cancers).
  • Carpentier et al (“Intracerebral Administration of CpG Oligonucleotide for Patients with Recurrent Glioblastoma: a Phase II Study.”, Neuro-Oncology, 2010) discloses the use of CpG ODN for the treatment of brain tumor.
  • Chamberlain et al. (Cancer, 2010) ivulgue the use of anti VEGF antibodies to treat glioblastomas.
  • the associations discussed in Peak et al (op cit) are also mentioned. Others are suggested or tested (erlotinib, etoposide, fotemustine, carbamazepine).
  • bevacizumab to treat tumor meningitis is suggested.
  • Carpentier et al (Cancer Immunotherapy with CpG-ODN., Médecine Sciences, 2005) discusses the interest of immunostimulatory oligonucleotides in cancer immunotherapy.
  • the association of CpG ODNs with antigens, antibodies or dendritic cells is reported to be effective.
  • the associations discussed are OVA (melanoma), herceptin (breast cancer) and rituxan (non-Hodgkin lymphoma).
  • OVA melanoma
  • herceptin breast cancer
  • rituxan non-Hodgkin lymphoma
  • Zhao et al (“Carbon Nanotubes Enhance CpG Uptake and Potentate Antiglioma Immunity", Clinical Cancer Research, Feb. 15, 201 1) describes a study on the administration of CpG in the brain using carbon nanotubes (summary).
  • El Andaloussi et al (“Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and probongs survival of mite with experimental brain tumors", Glia, 2006) discloses the beneficial effect of CpG in an experimental model of brain tumor.
  • Sorrentino et al show that administration of CpG ODN increases VEGF production in a murine carcinoma model of the lung. This result is similar to those reported by Pinhal-Enfield et al (op.cit.). None of these documents describe or suggest the use of a combination of TRL9 receptor agonist and antiangiogenic agent for the treatment of a brain tumor or tumor meningitis, although many discuss interest of a combination of different drugs for the treatment of brain tumor. In particular, none of these documents makes it possible to envisage the unexpected effect reported in the present application, of synergy or cooperation between a TRL9 receptor agonist and antiangiogenic agent for the treatment of a brain tumor or a tumor. tumor meningitis.
  • TLR9 is restricted in humans mainly to B lymphocytes and plasmocytoid dendritic cells (pDC), whereas the expression is broader in mice including the myeloid lineage (macrophages, monocytes, myeloid dendritic cells). (Carpentier, 2003).
  • mice can not be generalized systematically in humans.
  • effective animal models combining CpG-ODN with other molecules (eg Damiano et al., (Clin Cancer Res 2006; 12: 577-583) which describes the combined use of CpG-ODN with cetuximab or gefitinib in xenograft models of colon cancers on nude mice) or the combination of bevacizumab with other molecules, the results of which could not be confirmed in humans.
  • the invention thus relates to a product containing at least one TRL9 (Toll-like Receptor 9) receptor agonist agent in combination with an antiangiogenic agent for its simultaneous therapeutic use, separated or spread over time in the treatment of a patient with a tumor.
  • This tumor is preferably a tumor meningitis or an intracerebral tumor.
  • This patient is of the human race.
  • said TRL9 receptor agonist agent is an oligonucleotide, and in particular a cytosine-phosphorothioate-guanine CpG-ODN, oligodeoxynucleotide containing non-methylated cytosines and guanines.
  • This agonist oligonucleotide TLR9 type "CpG-ODN" or not
  • the immunostimulatory properties of nucleic acids, and CpG-ODN in particular are generally related to unmethylated 5'-CG motifs, under-represented motifs in vertebrate DNA (Krieg AM et al Nature 1995, 374: 546-549)
  • CpG-ODN synthetic oligodeoxynucleotides
  • CpG-ODNs synthetic oligodeoxynucleotides containing such motifs
  • CpG-ODNs retain marked immunostimulatory properties, particularly phosphorothioate ODNs that are resistant to nucleases.
  • CpG-ODNs are internalized by cells by endocytosis and bind to TLR9 in endosomes. In humans, TLR9s are predominantly selectively by B cells and plasmocytoid dendritic cells (pDCs).
  • Activation of B cells by CpG-ODN results in secretion of cytokines such as IL-6 or IL-10, cell proliferation, inhibition of apoptosis induced by various agents and immunoglobulin secretion (Klinman, Nat Rev Immunol 2004, 4: 249-59, Krieg, Curr Oncol Rep 2004, 6: 88-95, Carpentier et al, Front Biosci 2003, 8: El 15-27).
  • cytokines such as TNF ⁇ , interferon alpha or gamma, IL-6 or IL-12 and the expression of co-stimulatory molecules ( CD40, CD80, CD86) and CCR7, a receptor controlling migration to ganglion T regions.
  • co-stimulatory molecules CD40, CD80, CD86
  • CCR7 a receptor controlling migration to ganglion T regions.
  • the secretion of IL-12 and IFN gamma directs the immune response to the Th1 profile, and can even transform a Th2 response into Th1.
  • oligonucleotide The biological activity of an oligonucleotide depends on many variables, still imperfectly known, such as the chemical modifications of the backbone, the sequence of nucleotides surrounding the CpG motif or the number of CpG motifs. Some immunostimulatory oligonucleotides without CpG motifs have thus been described (US 20040006032).
  • the most CpG-ODN frequently used are phosphorothioate oligodeoxynucleotides, or mixed phosphorothioate / phosphodiester oligodeoxynucleotides (for example phosphorothioate / phosphodiester ends, or phosphorothioate ODNs, with the exception of cytosine-guanosine linkages which are phosphodiesters).
  • the oligodeoxynucleotides synthesized can also be purified according to their stereoisomerism to modify or improve their biological activity.
  • Type B (or “K)
  • Type A (or “D) ODNs are characterized by strong activation of NK and secretion of interferon alpha by pDCs.
  • Type C ODNs Combine the Properties of the 2 Previous Types Reviews have been published (Klinman, Nat Rev Immunol 2004, 4: 249-59, Krieg Curr Oncol Rep 2004, 6: 88-95).
  • CpG-ODNs A new class of CpG-ODNs, called class P, has recently been described (Samulowitz et al., Oligonucleotides, 2010 Apr; 20 (2): 93-101). These oligonucleotides contain two palindromic sequences and can thus form multimeric units. The efficiency of these class P molecules (especially as regards the ability to induce the expression of type I interferons) is greater than that of C-type CpG-ODNs.
  • Angiogenesis is a process that describes the growth of new blood vessels (neovascularization) from preexisting vessels. This process is controlled by different activators and inhibitors produced by healthy and tumor cells.
  • the activators include pro-angiogenic molecules (VEGF, FGF (Fibroblast Growth Factor), PDGF (Platelet-Derived Growth Factor)), inhibitors of anti-angiogenic molecules (angiostatin, thrombospondin).
  • anti-angiogenic agent any endogenous or exogenous agent capable of inhibiting angiogenesis.
  • any inhibitor of VEGF, FGF or PDGF may be mentioned.
  • This anti-angiogenic agent is preferably an inhibitor of VEGF, that is to say an agent limiting or inhibiting the action of endogenous VEGF.
  • the VEGF inhibitory agent may be an antibody (such as bevacizumab, monoclonal antibody) or a small organic molecule (such as sorafenib or sunitinib that inhibit VEGF receptors but also other receptors).
  • Other types of agents may also be mentioned, such as aflibercept, a fusion protein being developed by Sanofi Aventis, which "traps" VEGF or prolactin.
  • the VEGF inhibitor is preferably a monoclonal antibody.
  • said tumor is a benign or malignant primary brain tumor, such as a meningioma, a glial tumor (glioma), a medulloblastoma, or a pineal region tumor.
  • a benign or malignant primary brain tumor such as a meningioma, a glial tumor (glioma), a medulloblastoma, or a pineal region tumor.
  • the tumor is in particular an anaplastic glioma, such as anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic mixed glioma, or a glioblastoma.
  • anaplastic glioma such as anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic mixed glioma, or a glioblastoma.
  • said tumor is a metastatic brain extension of an extra-brain cancer, such as lung cancer, breast cancer, digestive cancer, melanoma or gynecological cancer.
  • an extra-brain cancer such as lung cancer, breast cancer, digestive cancer, melanoma or gynecological cancer.
  • said tumor is a tumor meningitis consecutive to a primary brain tumor, or a subarachnoid metastasis of an extra-cerebral cancer.
  • said tumor meningitis is consecutive to a benign or malignant primary brain tumor selected from a meningioma, a tumor glial (glioma), medulloblastoma, pineal region tumor, anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic mixed glioma, and glioblastoma.
  • a benign or malignant primary brain tumor selected from a meningioma, a tumor glial (glioma), medulloblastoma, pineal region tumor, anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic mixed glioma, and glioblastoma.
  • Said meningitis may also be consecutive to meningeal metastasis of lung cancer, breast cancer, digestive cancer (in particular colon or stomach cancer), melanoma or of a gynecological cancer.
  • said tumor is lung cancer (including small cell cancer), breast cancer, digestive cancer (including colon or stomach cancer), melanoma or gynecological cancer.
  • the agents making up the combination are administered to the patient after the completion of the antitumor treatment, in particular when the antitumor treatment is surgical excision, or radiotherapy, the administration of anti-cancer substances such as chemotherapy. , immunotherapy or any other form of treatment (ultrasound, electromagnetic fields), or a combination of these treatments.
  • the invention also relates to a method of treating a tumor patient (as defined above) comprising the step of administering a TRL9 receptor agonist agent in combination with an antiangiogenic agent patient audit.
  • the TRL9 receptor agonist agent is administered at a frequency of between once a week and once every two months, preferably between once a week and once a month, more preferably once every two weeks.
  • This agent is preferably administered intrathecally for brain tumors and tumor meningitis and / or subcutaneously.
  • this agent is preferably administered from local way (especially directly in the tumor for solid tumors, or near the tumor), to induce immunostimulation in the vicinity of the tumor. It is therefore in a form suitable for such administration intrathecally and / or subcutaneously, or in a form suitable for intravenous administration.
  • the anti-angiogenic agent is administered according to the recommendations of each molecule.
  • bevacizumab is administered at a frequency between once a week and once every two months, preferably once every two weeks.
  • the dose of use is determined by the practitioner, and is generally less than 15 mg / kg, more particularly 10 mg / kg.
  • the anti-angiogenic agent is administered intravenously.
  • Figure 1 Effect of anti-VEGF vaccination combined with local immunotherapy on tumor growth in a model of subcutaneous syngeneic glioma in rats.
  • Figure 2 Effect of anti-VEGF vaccination combined with local immunotherapy on animal survival in a rat subcutaneous syngeneic glioma model. (Animals are sacrificed when tumors reach 30mm in diameter).
  • Figure 3 Evolution of brain MRI in a patient as treatment progresses. The treatment administered between each MRI (compound used and number of injections) is specified. Examples
  • the CpG-ODNs used have the sequence SEQ ID No. 1, on a phosphorothioate backbone.
  • Example 1 Rats were immunized against VEGF-A using a recombinant VEGF protein and an immune adjuvant (polyarginine). This administration of VEGF thus induces an immune response which ultimately leads to an anti-angiogenic effect.
  • an immune adjuvant polyarginine
  • Figures 1 and 2 show that in a syngeneic glioma model
  • Example 2 Four patients had high-grade glioma with meningeal extension.
  • the treatment protocol for the patients was as follows:
  • Novel Toll-Like Receptor 9 Agonist Induces Epidermal Growth Factor Receptor (EGFR) Inhibition and Synergistic Antitumor Activity with EGFR Inhibitors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Endocrinology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention se rapporte au traitement de patients présentant une tumeur cérébrale ou une méningite tumorale, par utilisation d'un agent agoniste du récepteur TRL9 en combinaison avec un produit anti-angiogénique.

Description

AGENTS POUR LE TRAITEMENT DE TUMEURS
L'invention se rapporte au traitement de patients présentant une tumeur cérébrale ou une méningite tumorale, par utilisation d'un agent agoniste du récepteur TRL9 en combinaison avec un produit anti-angiogénique.
Au cours des dernières années, les essais cliniques dans le domaine de l'immunothérapie anticancéreuse se sont multipliés. Bien que les approches utilisées se soient parfois révélées efficaces en terme d'induction d'une réponse immune chez les patients, la proportion de patients développant une réponse clinique objective est quant à elle demeurée très faible.
Ainsi, une approche d'immunothérapie de patients présentant un glioblastome récurrent par injection locale d'oligodéoxynucléotides présentant au moins un di-nucléotide CpG (Cytosine-phosphorothioate-Guanine) (CpG-ODN) (Carpentier ei a/., Neuro Oncol. 2010 Apr;12(4):401 -8) a été testée. Cette étude n'a pas permis d'atteindre le bénéfice attendu en termes de survie des patients, bien que certains patients aient présenté une survie à long terme.
Les CpG-ODN sont des courtes molécules d'ADN simple brin de synthèse contenant une cytosine «C» suivie d'une guanine "G". Le «p» se réfère à la colonne vertébrale phosphodiester de l'ADN, mais la plupart des CpG ont un squelette phosphorothioate. Lorsque ces motifs CpG ne sont pas méthylés, ils ont un effet immunostimulant (Weiner et al., 1997, Proc. Natl Acad Sci USA 94 (20): 10833-7).
Ces CpG-ODN sont aussi décrits dans la littérature comme des oligonucléotides immunostimulants.
Les CpG-ODN sont des agonistes du récepteur TLR9 (Toll-like Receptor 9, aussi connu en tant que CD289, OMIM: 605474 ; MGI: 1932389 ; HomoloGene: 68126) qui est exprimé par les cellules dendritiques et les lymphocytes B (Rothenfusser et al., 2002 Human immunology 63 (12): 1 1 1 1-9).
L'activation des récepteurs TRL9 des cellules dendritiques par les CpG- ODN mène à l'activation de ces cellules et à la production de cytokines telles que l'interleukine (IL) 12 ou les interférons (IFN) de type I (tels que l'IFN-α ou l'IFN-β).
L'administration de CpG-ODN dans ou à proximité d'une tumeur permet d'induire le rejet tumoral dans de multiples modèles animaux (Carpentier et al., Clinical Cancer Research, 2000 6: 2469-73 ; Carpentier et al., Front Biosci. 2003 8: E1 15-27). Chez l'homme, plusieurs essais cliniques ont été réalisés dans les glioblastomes avec cette molécule, laquelle a montré une bonne tolérance, mais une efficacité encore insuffisante (Carpentier et al., Neuro-oncology, 2006 8: 60- 2006 ; Carpentier et al., 2010 op. cit.).
Le VEGF (Vascular Endothelial Growth Factor) est un agent pro- angiogénique qui joue un rôle clé dans la croissance tumorale. Un anticorps monoclonal dirigé contre le VEGF, le Bevacizumab, commercialisé par la société Roche sous le nom d'Avastin, a déjà obtenu ΓΑΜΜ dans plusieurs indications de cancer, tels que le cancer du colon, le cancer du poumon et le glioblastome en récidive.
Un essai de phase III utilisant cet anticorps dans l'indication contre les glioblastomes de novo, en association avec le traitement standard de cette pathologie (radiothérapie et témozolomide) est actuellement en cours. Il n'a pas d'indication reconnue dans les méningites tumorales.
Les méningites tumorales résultent de l'envahissement des espaces intraventriculaires et méningés (espaces sous-arachnoïdiens) par des cellules tumorales (provenant d'une tumeur cérébrale ou correspondant à une métastase méningée d'un cancer systémique s'accompagnant ou non de localisations cérébrales). Le diagnostic repose sur une ponction lombaire, et l'utilisation de l'IRM qui peut mettre en évidence des nodules tumoraux ou des prises de contraste anormales, notamment au niveau médullaire.
Le pronostic des méningites néoplasiques secondaires aux tumeurs solides est catastrophique. La majorité des patients présentent une médiane de survie spontanée de 4 mois environ (comprise entre 3 et 7 mois) mais ce chiffre varie selon le type de cancer primitif (cancers du sein : 7 mois, cancers bronchiques à petites cellules : 4 mois, mélanome : 3,6 mois, gliomes malins : 3 mois) Aucune thérapeutique n'est efficace (à l'exception du méthotrexate et du Depocyte (Cytarabine) dans les cancers hématologiques).
Ainsi, il n'existe pas à ce jour de traitement pour la plupart des méningites tumorales, qui pourraient permettre de soulager les patients et/ou augmenter leur survie (Recht et Phuphanich Expert Rev Neurother 2004 Jul; 4(4 Suppl): SI 1 -7 ; Glantz et al, Clin Cancer Res. 1999 Nov; 5(1 1 ):3394-402 ; Siegal J Neurooncol 1998 Jun-Jul;38(2-3): 15-17 ; Chamberlain. Neurosurgery. 2003, 52:324-29). Peak et al ("Robe of bevacizumab therapy in the management of glioblastoma", Cancer Management and Research, 2010) divulgue l'utilisation d'anticorps anti VEGF pour traiter des glioblastomes. Différentes associations d'anticorps anti VEGF avec irinotecan, temozolomide, de la chimiothérapie et des anticoagulants sont discutées, ainsi que leur intérêt.
Carpentier et al ("Intracerebral administration of CpG oligonucleotide for patients with récurrent glioblastoma: a phase II study.", Neuro-Oncology, 2010) divulgue l'utilisation de CpG ODN pour le traitement de tumeur cérébrale.
Chamberlain et al ("Ernerging clinical principles on the use of bevacizumab for the treatment of malignant gliomas", Cancer, 2010) ivulgue l'utilisation d'anticorps anti VEGF pour traiter des glioblastomes. Les associations discutées dans Peak et al (op. cit.) sont également mentionnées. D'autres sont suggérées ou testées (erlotinib, etoposide, fotemustine, carbamazepine). L'utilisation de bevacizumab pour traiter une méningite tumorale est suggérée.
Carpentier et al ("Cancer immunotherapy with CpG-ODN.", Médecine Sciences, 2005) discute de l'intérêt des oligonucléotides immunostimulants dans l'immunothérapie des cancers. L'association des CpG ODN avec des antigènes, des anticorps ou des cellules dendritiques est rapportée être efficace. Les associations discutées sont OVA (mélanome), herceptin (cancer du sein) et rituxan (lymphome non-hodgkinien). L'utilisation de CpG pour le traitement de tumeur cérébrale est évoquée.
Pinhal-Enfield et al ("An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors.", The American Journal of Pathology, 2003) montre que des agonistes de TLR2, TLR4, TLR7 et TLR9 augmentent l'expression du VEGF dans des macrophages murins, induisant un changement de leur phénotype de l'inflammation vers l'angiogenèse. Bien qu'un tel mécanisme puisse être d'intérêt dans le traitement de certaines maladies, ni la tumeur cérébrale ni la méningite tumorale ne sont citées. Ce document suggère que les agonistes du TLR9 induisent l'angiogenèse.
Zhao et al ("Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity", Clinical Cancer Research, 15 février 201 1 ) décrit une étude portant sur l'administration de CpG dans le cerveau à l'aide de nanotubes de carbone (résumé). El Andaloussi et al ("Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and probongs the survival of mite with expérimental brain tumors", Glia, 2006) divulgue l'effet bénéfique de CpG dans un modèle expérimental de tumeur cérébrale.
Sorrentino et al (Int J Cancer. 201 1 Jun 15;128 (12) :2815-22) montrent que l'administration de CpG ODN augmente la production de VEGF dans un modèle murin de carcinome du poumon. Ce résultat est à rapprocher de ceux rapportés par Pinhal-Enfield et al (op. cit.). Aucun de ces documents ne décrit ni ne suggère l'utilisation d'un mélange d'agoniste du récepteur TRL9 et d'agent anti angiogénique pour le traitement d'une tumeur cérébrale ou d'une méningite tumorale, bien que beaucoup discutent de l'intérêt d'une association de différents médicaments pour le traitement de tumeur cérébrale. En particulier, aucun de ces documents ne permet d'envisager l'effet inattendu rapporté dans la présente demande, de synergie ou coopération entre un agoniste du récepteur TRL9 et d'agent anti angiogénique pour le traitement d'une tumeur cérébrale ou d'une méningite tumorale.
Les résultats rapportés dans la présente demande montrent que l'utilisation d'un agent agoniste du TRL-9 et d'un agent anti-angiogénique permet d'améliorer la survie de patients présentant des méningites tumorales, et qu'il permet de contrôler l'évolution d'une tumeur dans un modèle animal pertinent.
Damiano et al (Proc. Natl. Acad. Sci. USA 2007, 104(30), 12468-12473) décrivent l'utilisation combinée d'un CpG-ODN et du bevacizumab dans un modèle animal (souris nude) sur une xénogreffe d'une tumeur du colon. Toutefois, les CpG-ODN sont injectés de manière intrapéritonéale, ce qui ne correspond pas à une utilisation clinique appropriée. De plus, les ODN phosphorothioates ne passent pas la barrière hématro-encaphalique (Agrawal, 1991 ), ce qui ne permet pas d'extrapoler ces résultats aux tumeurs situées en intracérébral. Enfin, l'expression de TLR9 est restreinte chez l'homme principalement aux lymphocytes B et aux cellules dendritiques plasmocytoïdes (pDC), alors que l'expression est plus large chez la souris incluant la lignée myéloïde (macrophages, monocytes, cellules dendritiques myéloïdes) (Carpentier, 2003).
Ainsi les résultats obtenus chez la souris ne peuvent pas être généralisés de façon systématique chez l'homme. Il existe d'ailleurs de nombreux exemples de modèles animaux efficaces combinant des CpG-ODN avec d'autres molécules (par exemple Damiano et al., (Clin Cancer Res 2006;12:577-583) qui décrit l'utilisation combinée de CpG-ODN avec le cetuximab ou le géfitinib dans des modèles de xénogreffes de cancers du colon sur souris nude) ou la combinaison de bevacizumab avec d'autres molécules , dont les résultats n'ont pas pu être confirmés chez l'homme. Un autre exemple, parmi d'autres, est celui de la combinaison [agoniste TLR9 + chimiothérapie par dacarbazine (DTIC)], prometteuse dans un modèle de mélanome chez l'animal (Najar et Dutz, 2008) mais sans efficacité dans un essai randomisé chez l'homme ( Weber et al, 2009) La demande WO 2004/103301 mentionne également que l'on pourrait utiliser des CpG-ODN avec le bevacizumab, mais ne fournit pas d'exemple de combinaison avec cet anticorps. De plus, aucun des résultats rapportés l'a été chez l'homme. Ainsi les résultats de l'art antérieur obtenus chez l'animal ne peuvent pas être généralisés ni chez l'homme, ni dans le cas des tumeurs intracérébrales. La présente demande rapporte, pour la première fois et de façon surprenante, l'efficacité de la combinaison CpG-ODN + anti-VEGF a la fois chez l'homme, dans le cadre d'un essai clinique, et dans un modèle animal
L'invention se rapporte ainsi à un produit contenant au moins un agent agoniste du récepteur TRL9 (Toll-like Receptor 9) en combinaison avec un agent anti-angiogénique pour son utilisation thérapeutique simultanée, séparée ou étalée dans le temps dans le traitement d'un patient atteint d'une tumeur. Cette tumeur est de préférence une méningite tumorale ou une tumeur intracérébrale. Ce patient est du genre humain.
Dans un mode de réalisation particulier ledit agent agoniste du récepteur TRL9 est un oligonucléotide, et notamment un CpG-ODN, oligodéoxynucléotide cytosine-phosphorothioate-guanine contenant des cytosines et guanines non- méthylées.
Cet oligonucléotide agoniste du TLR9, de type « CpG-ODN » ou non
(certains peuvent avoir des motifs qui ne sont pas des motifs CpG en tant que tels, mais qui incluent des modifications de motifs CpG) est donc un oligonucléotide que l'on peut qualifier d'immunostimulant,
Ainsi que vu plus haut, les propriétés immunostimulantes des acides nucléiques, et des CpG-ODN en particulier sont généralement en rapport avec des motifs 5'-CG non méthylés, motifs sous-représentés dans l'ADN des vertébrés (Krieg AM et al. Nature 1995; 374: 546-549)
Diverses demandes de brevets ou brevets décrivent de tells oligonucléotides : on peut ainsi citer US 20040006034, US 20030212029, US 6,653,292, US 6,239,1 16, US 6,207,646, US 6,194,388, US 6,429,199, US 6,406,705, US 6,218,371 , US 6,214,806, US 6,218,371 , 6,727,230, WO 01/51500, WO 03/035695, EP 1 162982.
Ainsi, les oligodésoxynucléotides synthétiques (ODN) contenant de tels motifs (CpG-ODN) gardent des propriétés immunostimulantes marquées, particulièrement les ODN phosphorothioates qui sont résistants aux nucléases. Les CpG-ODN sont internalisées par les cellules par endocytose et se lient au TLR9 dans les endosomes. Chez l'homme, les TLR9 sont de façon prédominante sélectivement par les lymphocytes B et les cellules dendritiques plasmocytoïdes (pDC).
L'activation des lymphocytes B par les CpG-ODN résulte en une sécrétion de cytokines comme l'IL-6 ou l'IL-10, une prolifération cellulaire, une inhibition de l'apoptose induite par divers agents et une sécrétion d'immunoglobulines (Klinman, Nat Rev Immunol 2004 ; 4: 249-59 ; Krieg, Curr Oncol Rep 2004 ; 6: 88-95 ; Carpentier et al, Front Biosci 2003 ; 8: El 15-27).
L'activation des cellules dendritiques plasmocytoïdes humaines entraîne leur maturation, la sécrétion de nombreuses cytokines comme le TNFa, l'interféron alpha ou gamma, l'IL-6 ou l'IL-12 et l'expression de molécules de co-stimulation (CD40, CD80, CD86) et de CCR7, un récepteur contrôlant la migration vers les zones T ganglionnaires. La sécrétion d'IL-12 et d'IFN gamma oriente la réponse immunitaire vers le profil Th1 , et peut même transformer une réponse Th2 en Th1.
L'activité biologique d'un oligonucléotide dépend de nombreuses variables, encore imparfaitement connues, comme par exemple les modifications chimiques du squelette, la séquence des nucléotides entourant le motif CpG ou le nombre de motifs CpG. Quelques oligonucléotides immunostimulants sans motifs CpG ont ainsi été décrits (US 20040006032).
La modification chimique du squelette naturellement constitué dans l'ADN par les liaisons phophodiesters (sensibles aux nucléases), joue un rôle important à la fois en améliorant la stabilité de l'ODN mais aussi en modifiant ses propriétés immunostimulantes. Plusieurs types d'oligonucléotides stabilisés ont ainsi été créés (lyer (1999) Curr Opinion Mol Therap 1 ; 344-358). Les CpG-ODN les plus fréquemment utilisés sont les oligodésoxynucléotides phosphorothioates, ou des oligodésoxynucléotides mixtes phosphorothioates /phosphodiesters (par exemple extrémités phosphorothioates/centre phosphodiester ; ou des ODN phosphorothioates, à l'exception des liaisons cytosine-guanosine qui sont phosphodiesters). Les oligodésoxynucléotides synthétisés peuvent également être purifiés en fonction de leur stéréoisomérie pour modifier ou améliorer leur activité biologique. L'activité immunostimulante d'oligonucléotides synthétiques très modifiés, en raison de la présence de bases purines ou pyrimidines non naturelles (US 20030181406 ; US 20020137714 ; US 6,562,798 ; US 20030186912), de molécules chimériques ADN/ARN ou d'ODN-linker-ODN (US 20040052763 ; US 20030225016 ; US 20030199466 ; US 20030175731 ; Wagner. Curr Opin Immunol. 2008 Aug;20(4):396-400 ; Struthers et al., Cell Immunol. 2010 Mar 10) ou l'adjonction de ligands non oligonucléotidiques a également été rapportée (revue par Uhlmann et Vollmer, Curr. Opin. Drug Discov. Devel., 2003, 6, 204-217).
Plusieurs familles de CpG-ODN ont déjà été caractérisées. La plus classique, dénommée " type B " (ou " K "), se caractérise par une forte activation des lymphocytes B et des cellules dendritiques. Les ODN de " type A " (ou " D ") se caractérisent par une forte activation des NK et une sécrétion d'interféron alpha par les pDC. Les ODN de type C combinent les propriétés des 2 types précédents Des revues à ce sujet ont été publiées (Klinman, Nat Rev Immunol 2004; 4: 249-59 ; Krieg Curr Oncol Rep 2004; 6: 88-95).
On a décrit récemment une nouvelle classe de CpG-ODNs, appelée classe P (Samulowitz et al., Oligonucleotides. 2010 Apr;20(2):93-101 ). Ces oligonucléotides contiennent deux séquences palindromiques et peuvent ainsi former des unités multimériques. L'efficacité de ces molécules de classe P (notamment pour ce qui est de la capacité à induire l'expression d'interférons de type I) est supérieure à celle des CpG-ODN de type C. Dans un mode de réalisation particulière, on utilise un CpG-ODN de séquence SEQ ID N° 1 , 5'-TAAACGTTATAACGTTATGACGTCAT-3' dans lequel le squelette est phosphorothioate.
L'angiogenèse est un processus décrivant la croissance de nouveaux vaisseaux sanguins (néovascularisation) à partir de vaisseaux préexistants. Ce processus est contrôlé par différents activateurs et inhibiteurs produits par les cellules saines et tumorales. Les activateurs sont notamment des molécules pro-angiogéniques (VEGF, FGF (Fibroblast Growth Factor), PDGF (Platelet-Derived Growth Factor)), les inhibiteurs des molécules anti-angiogéniques (angiostatine, thrombospondine).
Par agent anti-angiogénique, on entend tout agent endogène ou exogène susceptible d'inhiber l'angiogenèse. On peut notamment citer tout inhibiteur du VEGF, du FGF ou du PDGF.
Un certain nombre d'agents inhibiteurs de l'angiogenèse sont connus. A titre d'illustration, on peut citer une revue sur ces produits (Samant et Shevde Oncotarget. 201 1 Mar;2(3): 122-34 : Récent Advances in Anti-Angiogenic Therapy of Cancer).
Cet agent anti-angiogénique est préférentiellement un inhibiteur du VEGF, c'est-à-dire un agent limitant ou inhibant l'action du VEGF endogène. L'agent inghibiteur du VEGF peut être un anticorps (tel que le bevacizumab, anticorps monoclonal) ou une petite molécule organique (telle que le sorafenib ou le sunitinib qui inhibent les récepteurs du VEGF mais également d'autres récepteurs). On peut également citer d'autres types d'agents, tels que l'aflibercept, protéine de fusion en développement chez Sanofi Aventis, qui «piège » le VEGF ou la prolactine.
L'inhibiteur du VEGF est préférentiellement un anticorps monoclonal.
Dans un mode de réalisation préféré, ladite tumeur est une tumeur cérébrale primitive bénigne ou maligne, comme un méningiome, une tumeur gliale (gliome), un médulloblastome, ou une tumeur de la région pinéale.
Dans ce mode de réalisation particulier, la tumeur est notamment un gliome anaplasique, comme un astrocytome anaplasique, un oligodendrogliome anaplasique, un gliome mixte anaplasique, ou un glioblastome.
Dans un autre mode der réalisation, ladite tumeur est une extension cérébrale métastastique d'un cancer extra cérébral, tel qu'un cancer du poumon, un cancer du sein, un cancer digestif, un mélanome ou un cancer gynécologique.
Dans un autre mode de réalisation préféré, ladite tumeur est une méningite tumorale consécutive à une tumeur cérébrale primitive, ou une métastase méningée d'un cancer extra cérébral.
En particulier, ladite méningite tumorale est consécutive à une tumeur primitive cérébrale bénigne ou maligne, choisie parmi un méningiome, une tumeur gliale (gliome), un médulloblastome, une tumeur de la région pinéale, un astrocytome anaplasique, un oligodendrogliome anaplasique, un gliome mixte anaplasique, et un glioblastome.
Ladite méningite tumorale peut également être consécutive à une métastase méningée d'un cancer du poumon, d'un cancer du sein, d'un cancer digestif (notamment d'un cancer du colon ou de l'estomac), d'un mélanome ou d'un cancer gynécologique.
Dans un autre mode de réalisation, ladite tumeur est un cancer du poumon (notamment un cancer à petites cellules), un cancer du sein, un cancer digestif (notamment un cancer du colon ou de l'estomac), un mélanome ou un cancer gynécologique
Dans un mode de réalisation particulier, les agents composant l'association sont administrés au patient après la réalisation du traitement antitumoral, en particulier lorsque le traitement antitumoral est une exérèse chirurgicale, ou une radiothérapie, l'administration de substances anti-cancéreuses comme une chimiothérapie, une immunothérapie ou toute autre forme de traitement (ultrasons, champs électromagnétiques), ou une combinaison de ces traitements.
Il est également possible de procéder à l'administration de la combinaison d'agents selon l'invention de façon concomitante à l'administration d'autres agents antitumoraux, ou avant un autre traitement antitumoral, tel que mentionné ci- dessus.
L'invention se rapporte également à une méthode de traitement d'un patient atteint d'une tumeur (telle que défini plus haut) comprenant l'étape d'administration d'un agent agoniste du récepteur TRL9 en combinaison avec un agent anti- angiogénique audit patient.
L'administration de ces composés n'est pas nécessairement concomitante. Dans un mode de réalisation préféré, on administre l'agent agoniste du récepteur TRL9 à une fréquence comprise entre une fois par semaine et une fois tous les deux mois, de préférence entre une fois par semaine et une fois par mois, de façon plus préférée, une fois toutes les deux semaines. On utilise une dose comprise entre 0,5 à 40 mg, de préférence comprise entre 10 et 20 mg d'oligonucléotide. Cet agent est administré de préférence par voie intrathécale pour les tumeurs cérébrales et les méningites tumorales et/ou voie sous-cutanée. Pour d'autres types de tumeurs, cet agent est préférentiellement administré de façon locale (notamment directement dans la tumeur pour les tumeurs solides, ou à proximité de la tumeur), afin d'induire l'immunostimulation dans le voisinage de la tumeur. Il se présente donc sous une forme adaptée à une telle administration par voie intrathécale et/ou voie sous-cutanée, ou sous une forme adaptée à une administration par voie intraveineuse.
L'agent anti-angiogénique est administré suivant les recommandations de chaque molécule. Ainsi, le bevacizumab est administré à une fréquence comprise entre une fois par semaine et une fois tous les deux mois, de préférence 1 fois toutes les deux semaines. La dose d'utilisation est déterminée par le praticien, et est généralement inférieure à 15 mg/kg, plus particulièrement de 10mg/kg. Dans un mode de réalisation préféré, l'agent anti-angiogénique est administré par voie intraveineuse.
Description des Figures
Figure 1 : Effet d'une vaccination anti-VEGF combinée avec une immunothérapie locale sur la croissance tumorale dans un modèle de gliome syngénique sous- cutané chez le Rat. Cercles blancs : contrôle ; carrés blancs : immunisation anti- VEGF ; cercles noirs : CpG-ODN ; carrés noirs : immunisation anti-VEGF + CpG- ODN.
Figure 2 : Effet d'une vaccination anti-VEGF combinée avec une immunothérapie locale sur la survie des animaux dans un modèle de gliome syngénique sous- cutané chez le Rat. (les animaux sont sacrifiés lorsque les tumeurs atteignent 30mm de diamètre). Cercles blancs : contrôle ; carrés blancs : immunisation anti- VEGF ; cercles noirs : CpG-ODN ; carrés noirs : immunisation anti-VEGF + CpG- ODN.
Figure 3 : évolution des IRM cérébrales chez un patient au fur et à mesure du traitement. Le traitement administré entre chaque IRM (composé utilisé et nombre d'injections) est précisé. Exemples
Dans l'ensemble des exemples, les CpG-ODN utilisés présentent la séquence SEQ ID N° 1 , sur un squelette phosphorothioate.
Exemple 1 Des rats ont été immunisés contre le VEGF-A au moyen d'une protéine VEGF recombinante et d'un adjuvant immunitaire (polyarginine). Cette administration de VEGF induit ainsi une réponse immunitaire qui mène in fine à un effet anti-angiogénique.
Les Figures 1 et 2 montrent que, dans un modèle de gliome syngénique
(RG2- Rat Fischer), cette vaccination anti-VEGF agit en synergie avec un traitement par immunothérapie locale (injections péri-tumorales de CpG-ODN) pour inhiber la croissance tumorale et augmenter la survie des animaux. Le traitement (vaccination et/ou immunothérapie locale) a été administré 7 jours après l'implantation de la tumeur RG2 et répété 14 jours plus tard (n = 12 animaux par groupe).
Protocole
Animaux: rats femelles Fisher de 5 semaines
A jours -5 ou -7, inoculation sous-cutanée de 100,000 cellules de Gliome de Rat (RG2) (flanc gauche).
A jours 0 et 14, injection sous-cutanée distante du vaccine anti-VEGF (hVEGF-A+ adjuvant) et injection péritumorale de CpG-ODN.
Figure imgf000012_0001
Tableau I - Résumé du protocole appliqué aux souris On a mesuré la croissance tumorale (2 fois par semaine) et observé la survie des animaux (euthanasie lorsque le diamètre tumoral excède 30 mm)
Ainsi, la combinaison d'un produit injecté induisant une immunité contre le VEGF (donc induisant in fine un effet anti-angiogénique) et d'un agoniste des TLR9 permet bien de contrôler la tumeur dans ce modèle murin.
Exemple 2 Quatre patients présentaient un gliome de haut grade avec une extension méningée. Le protocole de traitement des patients était le suivant :
- Injection de 0,3 mg/kg de CpG-ODN en sous-cutané à J0, J7, J14, J21 et J28 (plafonnée à 25mg par injection, pour les patients > 83kg)
- Administration de CpG-ODN (7mg) par voie intrathécale (dans le liquide céphalorachidien) à trois reprises, à deux semaines d'intervalle entre chaque injection (J0, J14 et J28). (Chez 2 patients, ces injections intrathécales ont été poursuivies toutes les 2 à 4 semaines, pendant plusieurs mois). (D'autres injections intrathécales de quantités supérieures de CpG-ODN (14mg, ou 17mg), toujours en trois étapes à deux semaines d'intervalle entre chaque injection sont actuellement testées, chez d'autres patients dans le cadre d'un essai clinique.)
- Perfusions d'Avastin en intraveineux de 5 à 10 mg/kg toutes les 2 semaines, débutées suivant les cas avant, pendant ou après le début des CpG- ODN.
Parmi ces 4 patients, 2 ont présenté une évolution remarquable : alors que la médiane de survie chez de tels patients est de l'ordre de 3 mois, ils ont présenté une amélioration clinique et radiologique, et sont étaient presque asymptomatiques, 6 et 7 mois respectivement après le début du traitement combiné. Ces patients avaient reçu différentes séries de trois injections de CpG selon le protocole indiqué ci-dessus (7 mg de CpG par injection).
Cet effet ne peut être attribué aux CpG seuls, les 2 patients ayant seulement présenté une légère progression sous CpG, avant le début du traitement combiné avec le bevacizumab. Le bevacizumab pourrait en théorie être a l'origine d'une telle stabilisation, mais un des patients a présenté une progression sous entretien par bevacizumab seul, puis une réponse à la reprise des CpG en intrathécal (Figure 2). Ainsi, chez ce patient au moins, la combinaison des CpG et de l'Avastin semble être à l'origine de cette efficacité.
Références
Carpentier et al. (2000). Successful treatment of intracranial gliomas in rats with oligodeosynucleotides containing CpG motifs. Clinical Cancer Research, 6: 2469- 73.
Carpentier et al. (2003). CpG-oligonucleotides for cancer immunotherapy: review of the literature and potential applications in malignant glioma. Front Biosci. 8: E1 15- 27. Carpentier et al. (2006). Phase I trial of a CpG oligodeoxynucleotide for patients with récurrent glioblastoma. Neuro-oncology, 8: 60-6.
Carpentier et al., Neuro Oncol. 2010 Apr;12(4):401 -8)
Chamberlain. Neurosurgery. 2003, 52:324-29
Damiano et al Clin Cancer Res 2006;12:577-583. Novel Toll-Like Receptor 9 Agonist Induces Epidermal Growth Factor Receptor (EGFR) Inhibition and Synergistic Antitumor Activity with EGFR Inhibitors
Damiano et al. Proc. Natl. Acad. Sci. USA 2007, 104(30), 12468-12473
Glantz. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res. I 999 Nov; 5(1 1 ):3394-402.
Iver et al. Nucleotide analogs as novel anti-hepatitis B virus agents. Curr Opin Pharmacol. 2005 Oct;5(5):520-8. Review
Klinman. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol. 2004 Apr;4(4):249-58. Review. No abstract available.
Krieg et al. CpG motifs in bacterial DNA trigger direct B-cell activation, Nature. 1995 Apr 6;374(6522):546-9.
Krieg. Antitumor applications of stimulating toll-like receptor 9 with CpG oligodeoxynucleotides. Curr Oncol Rep. 2004 Mar;6(2):88-95.
Recht et Phuphanich : Treatment of neoplastic meningitis: what is the standard of care? Expert Rev Neurother 2004 Jul; 4(4 Suppl): SI 1 -7.
Rothenfusser et al., 2002 Human immunology 63 (12): 1 1 1 1-9.
Samulowitz et al., Oligonucleotides. 2010 Apr;20(2):93-101 A novel class of immune-stimulatory CpG oligodeoxynucleotides unifies high potency in type I interferon induction with preferred structural properties.
Siegal : Leptomeningeal métastases: rationale for systemic chémotherapy or what is the rôle of intra-'CSF-chemotherapy? J Neurooncol I 998 Jun-Jul;38(2-3): 15 1 -7.
Struthers et al. Synthesis and immunological activities of novel agonists of toll-like receptor 9. Cell Immunol. 2010 Mar 10.
Uhlmann et Vollmer, Curr. Opin. Drug Discov. Devel., 2003, 6, 204-217). Récent advances in the development of immunostimulatory oligonucleotides.
Wagner. The sweetness of the DNA backbone drives Toll-like receptor 9. Curr Opin
Immunol. 2008 Aug;20(4):396-400
Weiner et al., 1997, Proc. Natl Acad Sci USA 94 (20): 10833-7)

Claims

REVENDICATIONS
1 . Produit contenant au moins un agent agoniste du récepteur TRL9 (Toll-like Receptor 9) en combinaison avec un agent anti-angiogénique pour son utilisation thérapeutique simultanée, séparée ou étalée dans le temps dans le traitement d'un patient atteint d'une tumeur cérébrale ou d'une méningite tumorale.
2. Produit selon la revendication 1 , caractérisé en ce que ledit agent agoniste du récepteur TRL9 est un oligonucléotide.
3. Produit selon la revendication 2, caractérisé en ce que ledit oligonucléotide est un oligodéoxynucléotide cytosine-phosphorothioate-guanine contenant des cytosines et guanines non-méthylées.
4. Produit selon l'une des revendications 2 ou 3, caractérisé en ce que ledit oligonucléotide présente un squelette phosphorothioate.
5. Produit selon l'une des revendications 2 à 4, caractérisé en ce que ledit oligonucléotide est la séquence SEQ ID N° 1 .
6. Produit selon la revendication 1 , caractérisé en ce que ledit agent anti- angiogénique est un inhibiteur du VEGF (Vascular Endothelial Growth Factor).
7. Produit selon la revendication 6, caractérisé en ce que ledit agent inhibiteur du VEGF est un anticorps.
8. Produit selon la revendication 7, caractérisé en ce que ledit anticorps est le bevacizumab.
9. Produit selon l'une des revendications 1 à 8, caractérisée en ce que ladite tumeur est un gliome ou un glioblastome.
10. Produit selon l'une des revendications 1 à 8, caractérisée en ce que ladite tumeur est une extension cérébrale métastastique d'un cancer extra cérébral, tel qu'un cancer du poumon, un cancer du sein, un cancer digestif, mélanome ou un cancer gynécologique.
1 1 . Produit selon l'une des revendications 1 à 8, caractérisé en ce que ladite tumeur est une méningite tumorale consécutive à une tumeur cérébrale primitive, ou une métastase méningée d'un cancer extra cérébral.
12. Produit selon la revendication 1 1 , caractérisé en ce que ladite méningite tumorale est consécutive à une tumeur primitive cérébrale bénigne ou maligne, choisie parmi un méningiome, une tumeur gliale (gliome), un médulloblastome, une tumeur de la région pinéale, un astrocytome anaplasique, un oligodendrogliome anaplasique, un gliome mixte anaplasique, et un glioblastome.
13. Produit selon la revendication 1 1 , caractérisé en ce que ladite méningite tumorale est consécutive à une métastase méningée d'un cancer du poumon, d'un cancer du sein, d'un cancer digestif, d'un mélanome ou d'un cancer gynécologique.
14. Produit selon l'une des revendications 1 à 13, caractérisé en ce que l'agent agoniste du récepteur TRL9 est administré par voie intrathécale et/ou voie sous-cutanée.
15. Produit selon l'une des revendications 1 à 14, caractérisé en ce que l'agent anti-angiogénique est administré par voie intraveineuse.
16. Produit selon l'une des revendications 1 à 15, caractérisé en ce que l'agent agoniste du récepteur TRL9 est administré par voie intrathécale à une fréquence comprise entre une fois par semaine et une fois tous les deux mois.
17. Produit selon l'une des revendications 1 à 15, caractérisé en ce que l'agent agoniste du récepteur TRL9 est administré à une dose comprise entre 0,5 et 40 mg.
PCT/EP2012/059744 2011-05-24 2012-05-24 Agents pour le traitement de tumeurs WO2012160153A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/119,657 US20140120088A1 (en) 2011-05-24 2012-05-24 Agents for the treatment of tumors
EP12723201.5A EP2714078A1 (fr) 2011-05-24 2012-05-24 Agents pour le traitement de tumeurs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1154531A FR2975600B1 (fr) 2011-05-24 2011-05-24 Agents pour le traitement de tumeurs
FRFR11/54531 2011-05-24

Publications (1)

Publication Number Publication Date
WO2012160153A1 true WO2012160153A1 (fr) 2012-11-29

Family

ID=46148883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/059744 WO2012160153A1 (fr) 2011-05-24 2012-05-24 Agents pour le traitement de tumeurs

Country Status (4)

Country Link
US (1) US20140120088A1 (fr)
EP (1) EP2714078A1 (fr)
FR (1) FR2975600B1 (fr)
WO (1) WO2012160153A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095459A4 (fr) * 2014-01-15 2017-08-23 Shin Nippon Biomedical Laboratories, Ltd. Adjuvant d'acide nucléique chiral ayant un effet antitumoral et agent antitumoral
EP3095461A4 (fr) * 2014-01-15 2017-08-23 Shin Nippon Biomedical Laboratories, Ltd. Adjuvant d'acide nucléique chiral possédant une activité d'induction d'immunité, et activateur d'induction d'immunité
EP3095460A4 (fr) * 2014-01-15 2017-08-23 Shin Nippon Biomedical Laboratories, Ltd. Adjuvant d'acide nucléique chiral ayant une activité anti-allergique, et agent anti-allergique

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2744987C (fr) 2008-12-02 2018-01-16 Chiralgen, Ltd. Procede pour la synthese d'acides nucleiques modifies par des atomes de phosphore
BR112012000828A8 (pt) 2009-07-06 2017-10-10 Ontorii Inc Novas pró-drogas de ácido nucleico e métodos de uso das mesmas
WO2012039448A1 (fr) 2010-09-24 2012-03-29 株式会社キラルジェン Groupe auxiliaire asymétrique
US9605019B2 (en) 2011-07-19 2017-03-28 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
KR20220139425A (ko) 2012-07-13 2022-10-14 웨이브 라이프 사이언시스 리미티드 키랄 제어
AU2013288048A1 (en) 2012-07-13 2015-01-22 Wave Life Sciences Ltd. Asymmetric auxiliary group
AR095882A1 (es) * 2013-04-22 2015-11-18 Hoffmann La Roche Terapia de combinación de anticuerpos contra csf-1r humano con un agonista de tlr9
AR097584A1 (es) 2013-09-12 2016-03-23 Hoffmann La Roche Terapia de combinación de anticuerpos contra el csf-1r humano y anticuerpos contra el pd-l1 humano
PT3094728T (pt) 2014-01-16 2022-05-19 Wave Life Sciences Ltd Desenho quiral
US20190134190A1 (en) * 2016-05-04 2019-05-09 Transgene Sa Combination therapy with cpg tlr9 ligand
CN109790220A (zh) 2016-08-25 2019-05-21 豪夫迈·罗氏有限公司 与巨噬细胞激活剂组合的抗csf-1r抗体的间歇给药
MX2019002925A (es) * 2016-09-15 2019-09-05 Idera Pharmaceuticals Inc Modulacion inmune con agonistas de tlr9 para el tratamiento del cancer.
EP3558360A1 (fr) 2016-12-22 2019-10-30 F. Hoffmann-La Roche AG Traitement de tumeurs par un anticorps anti-csf1r en association avec un anticorps anti-pd-l1 après l'échec d'un traitement anti-pd-l1/pd1
CN110678182B (zh) * 2017-02-24 2022-08-23 大邱庆北尖端医疗产业振兴财团 含有能够穿透血脑屏障的化合物作为预防或治疗脑癌的有效成分的药物组合物

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194388B1 (en) 1994-07-15 2001-02-27 The University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6214806B1 (en) 1997-02-28 2001-04-10 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders
US6218371B1 (en) 1998-04-03 2001-04-17 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
WO2001051500A1 (fr) 2000-01-14 2001-07-19 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Oligonucleotide synthetique et son utilisation pour induire une reaction immunitaire
EP1162982A2 (fr) 1999-03-19 2001-12-19 Assistance Publique, Hopitaux De Paris Utilisation d'oligonucleotides stabilises pour la preparation d'un medicament a action antitumorale
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6429199B1 (en) 1994-07-15 2002-08-06 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US20020137714A1 (en) 2000-09-26 2002-09-26 Kandimalla Ekambar R. Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes
WO2003035695A2 (fr) 2001-07-26 2003-05-01 Tanox, Inc. Agents pouvant activer ou inhiber le recepteur 9 de type toll
US6562798B1 (en) 1998-06-05 2003-05-13 Dynavax Technologies Corp. Immunostimulatory oligonucleotides with modified bases and methods of use thereof
US20030175731A1 (en) 2001-06-21 2003-09-18 Fearon Karen L. Chimeric immunomodulatory compounds and methods of using the same - I
US20030181406A1 (en) 2000-12-08 2003-09-25 Christian Schetter CpG-like nucleic acids and methods of use thereof
US20030186912A1 (en) 2000-01-26 2003-10-02 Sudhir Agrawal Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides
US20030212029A1 (en) 2001-04-30 2003-11-13 Sudhir Agrawal Modulation of oligonucleotides CpG-mediated immune stimulation by positional modification of nucleosides
US20030225016A1 (en) 2001-06-21 2003-12-04 Fearon Karen L. Chimeric immunomodulatory compounds and methods of using the same - III
US20040006034A1 (en) 1998-06-05 2004-01-08 Eyal Raz Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
US20040006032A1 (en) 2002-05-30 2004-01-08 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
US20040052763A1 (en) 2000-06-07 2004-03-18 Mond James J. Immunostimulatory RNA/DNA hybrid molecules
US6727230B1 (en) 1994-03-25 2004-04-27 Coley Pharmaceutical Group, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
WO2004103301A2 (fr) 2003-05-16 2004-12-02 Hybridon, Inc. Traitement synergique du cancer utilisant des immunomeres en association a des agents chimiotherapeutiques

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605138B2 (en) * 2002-07-03 2009-10-20 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
WO2006010838A2 (fr) * 2004-06-25 2006-02-02 Institut Gustave Roussy Produits contenant au moins un principe actif anticancereux peu diffusible et un principe actif immunostimulant
RU2008118144A (ru) * 2005-11-11 2009-11-20 Пфайзер Инк. (US) Комбинации иммуномодулирующих олигоодезоксинуклеотидов и способы их применения
ES2572356T3 (es) * 2007-11-09 2016-05-31 Peregrine Pharmaceuticals Inc Composiciones de anticuerpos dirigidos contra VEGF y procedimientos
WO2009155332A1 (fr) * 2008-06-17 2009-12-23 Cedars-Sinai Medical Center Ligands de récepteurs de type toll utilisés comme adjuvants à une vaccinothérapie pour les tumeurs cérébrales
AU2009333559B2 (en) * 2008-12-09 2015-03-12 Gilead Sciences, Inc. Modulators of toll-like receptors
EP3718405A1 (fr) * 2009-05-27 2020-10-07 PTC Therapeutics, Inc. Procédés pour le traitement du cancer et de maladies non néoplasiques
US8829020B2 (en) * 2009-07-16 2014-09-09 Mallinckrodt Llc Compounds and compositions for use in phototherapy and in treatment of ocular neovascular disease and cancers
US20130210896A1 (en) * 2011-11-09 2013-08-15 City Of Hope Immunotheraphy of Brain Tumors Using a Nanoparticle CpG Delivery System

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727230B1 (en) 1994-03-25 2004-04-27 Coley Pharmaceutical Group, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US6429199B1 (en) 1994-07-15 2002-08-06 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US6194388B1 (en) 1994-07-15 2001-02-27 The University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US6653292B1 (en) 1994-07-15 2003-11-25 University Of Iowa Research Foundation Method of treating cancer using immunostimulatory oligonucleotides
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6214806B1 (en) 1997-02-28 2001-04-10 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6218371B1 (en) 1998-04-03 2001-04-17 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
US6562798B1 (en) 1998-06-05 2003-05-13 Dynavax Technologies Corp. Immunostimulatory oligonucleotides with modified bases and methods of use thereof
US20040006034A1 (en) 1998-06-05 2004-01-08 Eyal Raz Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
EP1162982A2 (fr) 1999-03-19 2001-12-19 Assistance Publique, Hopitaux De Paris Utilisation d'oligonucleotides stabilises pour la preparation d'un medicament a action antitumorale
WO2001051500A1 (fr) 2000-01-14 2001-07-19 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Oligonucleotide synthetique et son utilisation pour induire une reaction immunitaire
US20030186912A1 (en) 2000-01-26 2003-10-02 Sudhir Agrawal Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides
US20040052763A1 (en) 2000-06-07 2004-03-18 Mond James J. Immunostimulatory RNA/DNA hybrid molecules
US20020137714A1 (en) 2000-09-26 2002-09-26 Kandimalla Ekambar R. Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes
US20030181406A1 (en) 2000-12-08 2003-09-25 Christian Schetter CpG-like nucleic acids and methods of use thereof
US20030212029A1 (en) 2001-04-30 2003-11-13 Sudhir Agrawal Modulation of oligonucleotides CpG-mediated immune stimulation by positional modification of nucleosides
US20030175731A1 (en) 2001-06-21 2003-09-18 Fearon Karen L. Chimeric immunomodulatory compounds and methods of using the same - I
US20030225016A1 (en) 2001-06-21 2003-12-04 Fearon Karen L. Chimeric immunomodulatory compounds and methods of using the same - III
US20030199466A1 (en) 2001-06-21 2003-10-23 Fearon Karen L. Chimeric immunomodulatory compounds and methods of using the same - ll
WO2003035695A2 (fr) 2001-07-26 2003-05-01 Tanox, Inc. Agents pouvant activer ou inhiber le recepteur 9 de type toll
US20040006032A1 (en) 2002-05-30 2004-01-08 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
WO2004103301A2 (fr) 2003-05-16 2004-12-02 Hybridon, Inc. Traitement synergique du cancer utilisant des immunomeres en association a des agents chimiotherapeutiques

Non-Patent Citations (52)

* Cited by examiner, † Cited by third party
Title
ABDELJABAR EL ANDALOUSSI ET AL: "Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors", GLIA, vol. 54, no. 6, 1 November 2006 (2006-11-01), pages 526 - 535, XP055014910, ISSN: 0894-1491, DOI: 10.1002/glia.20401 *
CARPENTIER ALEXANDRE ET AL: "Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study.", NEURO-ONCOLOGY APR 2010 LNKD- PUBMED:20308317, vol. 12, no. 4, April 2010 (2010-04-01), pages 401 - 408, XP002666157, ISSN: 1523-5866 *
CARPENTIER ANTOINE F: "[Cancer immunotherapy with CpG-ODN].", MÉDECINE SCIENCES : M/S JAN 2005 LNKD- PUBMED:15639024, vol. 21, no. 1, January 2005 (2005-01-01), pages 73 - 77, XP002666155, ISSN: 0767-0974 *
CARPENTIER ET AL., CLINICAL CANCER RESEARCH, vol. 6, 2000, pages 2469 - 73
CARPENTIER ET AL., FRONT BIOSCI, vol. 8, 2003, pages EL 15 - 27
CARPENTIER ET AL., FRONT BIOSCI., vol. 8, 2003, pages E115 - 27
CARPENTIER ET AL., NEURO ONCOL., vol. 12, no. 4, April 2010 (2010-04-01), pages 401 - 8
CARPENTIER ET AL., NEURO-ONCOLOGY, vol. 8, 2006, pages 60 - 2006
CARPENTIER ET AL.: "Cancer immunotherapy with CpG-ODN.", MÉDECINE SCIENCES, 2005
CARPENTIER ET AL.: "CpG-oligonucleotides for cancer immunotherapy: review of the literature and potential applications in malignant glioma", FRONT BIOSCI., vol. 8, 2003, pages E115 - 27, XP003009180, DOI: doi:10.2741/934
CARPENTIER ET AL.: "Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase Il study.", NEURO-ONCOLOGY, 2010
CARPENTIER ET AL.: "Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma", NEURO-ONCOLOGY, vol. 8, 2006, pages 60 - 6
CARPENTIER ET AL.: "Successful treatment of intracranial gliomas in rats with oligodeosynucleotides containing CpG motifs", CLINICAL CANCER RESEARCH, vol. 6, 2000, pages 2469 - 73
CHAMBERLAIN ET AL.: "Ernerging clinical principles on the use of bevacizumab for the treatment of malignant gliomas", CANCER, 2010
CHAMBERLAIN, NEUROSURGERY, vol. 52, 2003, pages 324 - 29
D. ZHAO ET AL: "Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity", CLINICAL CANCER RESEARCH, vol. 17, no. 4, 15 February 2011 (2011-02-15), pages 771 - 782, XP055014912, ISSN: 1078-0432, DOI: 10.1158/1078-0432.CCR-10-2444 *
DAMIANO ET AL., CLIN CANCER RES, vol. 12, 2006, pages 577 - 583
DAMIANO ET AL., PROC. NATL. ACAD. SCI. USA, vol. 104, no. 30, 2007, pages 12468 - 12473
EL ANDALOUSSI ET AL.: "Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and probongs the survival of mite with experimental brain tumors", GLIA, 2006
GLANTZ ET AL., CLIN CANCER RES., vol. 5, no. 11, November 1999 (1999-11-01), pages 3394 - 402
GLANTZ.: "A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors", CLIN CANCER RES., vol. 5, no. 11, November 1999 (1999-11-01), pages 3394 - 402
KLINMAN, NAT REV IMMUNOL, vol. 4, 2004, pages 249 - 59
KLINMAN: "Immunotherapeutic uses of CpG oligodeoxynucleotides", NAT REV IMMUNOL., vol. 4, no. 4, April 2004 (2004-04-01), pages 249 - 58, XP003006450, DOI: doi:10.1038/nri1329
KRIEG AM ET AL., NATURE, vol. 374, 1995, pages 546 - 549
KRIEG CURR ONCOL REP, vol. 6, 2004, pages 88 - 95
KRIEG ET AL.: "CpG motifs in bacterial DNA trigger direct B-cell activation", NATURE, vol. 374, no. 6522, 6 April 1995 (1995-04-06), pages 546 - 9, XP002587320
KRIEG, CURR ONCOL REP, vol. 6, 2004, pages 88 - 95
KRIEG.: "Antitumor applications of stimulating toll-like receptor 9 with CpG oligodeoxynucleotides", CURR ONCOL REP., vol. 6, no. 2, March 2004 (2004-03-01), pages 88 - 95, XP009056484
LYER ET AL.: "Nucleotide analogs as novel anti-hepatitis B virus agents", CURR OPIN PHARMACOL., vol. 5, no. 5, October 2005 (2005-10-01), pages 520 - 8
LYER, CURR OPINION MOL THERAP, vol. 1, 1999, pages 344 - 358
MARC C. CHAMBERLAIN: "Emerging clinical principles on the use of bevacizumab for the treatment of malignant gliomas", CANCER, vol. 116, no. 17, 1 September 2010 (2010-09-01), pages 3988 - 3999, XP055014914, ISSN: 0008-543X, DOI: 10.1002/cncr.25256 *
PEAK ET AL.: "Robe of bevacizumab therapy in the management of glioblastoma", CANCER MANAGEMENT AND RESEARCH, 2010
PEAK SCOTT J ET AL: "Role of bevacizumab therapy in the management of glioblastoma.", CANCER MANAGEMENT AND RESEARCH 2010 LNKD- PUBMED:21188100, vol. 2, 2010, pages 97 - 104, XP002666154, ISSN: 1179-1322 *
PINHAL-ENFIELD ET AL.: "An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors.", THE AMERICAN JOURNAL OF PATHOLOGY, 2003
PINHAL-ENFIELD GRACE ET AL: "An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors.", THE AMERICAN JOURNAL OF PATHOLOGY AUG 2003 LNKD- PUBMED:12875990, vol. 163, no. 2, August 2003 (2003-08-01), pages 711 - 721, XP002666156, ISSN: 0002-9440 *
RECHT ET PHUPHANICH EXPERT REV NEUROTHER, vol. 4, no. 4, July 2004 (2004-07-01), pages SI 1 - 7
RECHT; PHUPHANICH: "Treatment of neoplastic meningitis: what is the standard of care?", EXPERT REV NEUROTHER, vol. 4, no. 4, July 2004 (2004-07-01), pages SI 1 - 7
ROSALINDA SORRENTINO ET AL: "CpG-ODN increases the release of VEGF in a mouse model of lung carcinoma", INTERNATIONAL JOURNAL OF CANCER, vol. 128, no. 12, 15 June 2011 (2011-06-15), pages 2815 - 2822, XP055015292, ISSN: 0020-7136, DOI: 10.1002/ijc.25626 *
ROTHENFUSSER ET AL., HUMAN IMMUNOLOGY, vol. 63, no. 12, 2002, pages 1111 - 9
SAMANT; SHEVDE, ONCOTARGET., vol. 2, no. 3, March 2011 (2011-03-01), pages 122 - 34
SAMULOWITZ ET AL., OLIGONUCLEOTIDES, vol. 20, no. 2, April 2010 (2010-04-01), pages 93 - 101
SAMULOWITZ ET AL.: "A novel class of immune-stimulatory CpG oligodeoxynucleotides unifies high potency in type 1 interferon induction with preferred structural properties", OLIGONUCLEOTIDES, vol. 20, no. 2, April 2010 (2010-04-01), pages 93 - 101
SIEGAL J NEUROONCOL, vol. 38, no. 2-3, June 1998 (1998-06-01), pages 15 - 17
SIEGAL: "Leptomeningeal metastases: rationale for systemic chémotherapy or what is the role of intra'CSF-chemotherapy?", J NEUROONCOL, vol. 38, no. 2-3, June 1998 (1998-06-01), pages 1 - 7
SORRENTINO ET AL., INT J CANCER., vol. 128, no. 12, 15 June 2011 (2011-06-15), pages 2815 - 22
STRUTHERS ET AL., CELL IMMUNOL., 10 March 2010 (2010-03-10)
STRUTHERS ET AL.: "Synthesis and immunological activities of novel agonists of toll-like receptor 9", CELL IMMUNOL., 10 March 2010 (2010-03-10)
UHLMANN; VOLLMER, CURR. OPIN. DRUG DISCOV. DEVEL., vol. 6, 2003, pages 204 - 217
WAGNER, CURR OPIN IMMUNOL., vol. 20, no. 4, August 2008 (2008-08-01), pages 396 - 400
WAGNER.: "The sweetness of the DNA backbone drives Toll-like receptor 9", CURR OPIN IMMUNOL., vol. 20, no. 4, August 2008 (2008-08-01), pages 396 - 400, XP025771195, DOI: doi:10.1016/j.coi.2008.06.013
WEINER ET AL., PROC. NATL ACAD SCI USA, vol. 94, no. 20, 1997, pages 10833 - 7
ZHAO ET AL.: "Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity", CLINICAL CANCER RESEARCH, 15 February 2011 (2011-02-15)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095459A4 (fr) * 2014-01-15 2017-08-23 Shin Nippon Biomedical Laboratories, Ltd. Adjuvant d'acide nucléique chiral ayant un effet antitumoral et agent antitumoral
EP3095461A4 (fr) * 2014-01-15 2017-08-23 Shin Nippon Biomedical Laboratories, Ltd. Adjuvant d'acide nucléique chiral possédant une activité d'induction d'immunité, et activateur d'induction d'immunité
EP3095460A4 (fr) * 2014-01-15 2017-08-23 Shin Nippon Biomedical Laboratories, Ltd. Adjuvant d'acide nucléique chiral ayant une activité anti-allergique, et agent anti-allergique

Also Published As

Publication number Publication date
FR2975600B1 (fr) 2013-07-05
EP2714078A1 (fr) 2014-04-09
FR2975600A1 (fr) 2012-11-30
US20140120088A1 (en) 2014-05-01

Similar Documents

Publication Publication Date Title
WO2012160153A1 (fr) Agents pour le traitement de tumeurs
JP2019077723A (ja) 抗CTLA−4抗体又は抗PD−1抗体との併用におけるIL−2Rβ選択的作動薬
Carpentier et al. CpG-oligonucleotides for cancer immunotherapy: review of the literature and potential applications in malignant glioma
TW202021982A (zh) T細胞受體構築體及其用途
EP1162982B1 (fr) Utilisation d'oligonucleotides stabilises pour la preparation d'un medicament a action antitumorale
JP2022501336A (ja) mRNA治療薬を使用したがんを治療するための方法及び組成物
US20120064122A1 (en) Treatment of autoimmune inflammation using mir-155
EP2173349A2 (fr) Combinaisons antitumorales contenant un agent inhibiteur de vegf et de l'irinotecan
Ursu et al. Immunotherapeutic approach with oligodeoxynucleotides containing CpG motifs (CpG-ODN) in malignant glioma
CN108883186B (zh) 序贯抗癌治疗
EP2316478B1 (fr) Vaccin thérapeutique ciblé contre la P-glycoprotéine 170 pour inhiber la resistance multidrogues dans le traitement des cancers
AU2020103404A4 (en) Medicinal composition comprising a non-coding RNA molecule and an antibody targeting a tumor antigen
CN111315396A (zh) 癌症联合疗法
EP1765361A2 (fr) Produits contenant au moins un principe actif anticancereux peu diffusible et un principe actif immunostimulant
KR101999515B1 (ko) AR 유전자 및 mTOR 유전자의 발현을 동시에 억제하는 핵산
JP7412576B2 (ja) 腎がんの相乗的治療におけるペグインターフェロンおよびプロトオンコジーン産物標的阻害剤の適用
JP7412577B2 (ja) 腫瘍の相乗的阻害におけるペグインターフェロンおよびプロトオンコジーン産物標的阻害剤の応用
WO2016071431A9 (fr) Combinaison pour traitement anticancéreux
WO2017060650A1 (fr) Composition anti-tumorale
US20210386843A1 (en) mRNA Vaccine
WO2023023662A1 (fr) Ciblage de kras oncogène avec un oligonucléotide antisens conjugué à un peigne moléculaire
KR101113390B1 (ko) PTEN 단백질 특이적인 siRNA
WO2024015634A2 (fr) Thérapies par arnm comprenant sirp-alpha
KR20150002781A (ko) 경색 치료용 의약 조성물
EP1649859A1 (fr) Produits pharmaceutiques contenant au moins un principe actif anticancereux peu diffusible et un principe actif immunostimulant sous forme d'oligodésoxynucléotide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12723201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012723201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012723201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14119657

Country of ref document: US