WO2012157065A1 - 電池制御装置 - Google Patents

電池制御装置 Download PDF

Info

Publication number
WO2012157065A1
WO2012157065A1 PCT/JP2011/061190 JP2011061190W WO2012157065A1 WO 2012157065 A1 WO2012157065 A1 WO 2012157065A1 JP 2011061190 W JP2011061190 W JP 2011061190W WO 2012157065 A1 WO2012157065 A1 WO 2012157065A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
allowable
unit cell
assembled battery
closed circuit
Prior art date
Application number
PCT/JP2011/061190
Other languages
English (en)
French (fr)
Inventor
憲一朗 水流
明徳 多田
拓是 森川
大川 圭一朗
芳成 青嶋
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to PCT/JP2011/061190 priority Critical patent/WO2012157065A1/ja
Priority to JP2013514904A priority patent/JP5670556B2/ja
Priority to CN201180070882.3A priority patent/CN103534897B/zh
Priority to EP11865666.9A priority patent/EP2712046B1/en
Priority to US14/118,067 priority patent/US9680320B2/en
Publication of WO2012157065A1 publication Critical patent/WO2012157065A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an apparatus for controlling a battery.
  • a vehicle that runs on electricity is equipped with a storage battery such as a lead battery, a nickel metal hydride battery, or a lithium ion battery. Electric power required when a hybrid vehicle or an electric vehicle travels is covered by these storage batteries.
  • a storage battery such as a lead battery, a nickel metal hydride battery, or a lithium ion battery. Electric power required when a hybrid vehicle or an electric vehicle travels is covered by these storage batteries.
  • the storage battery has different allowable charge power and discharge power depending on the state of charge. If charging / discharging is performed exceeding the maximum allowable power, overcharging or overdischarging may occur.
  • SOC state of charge
  • Patent Document 1 discloses a technique for calculating the allowable charge / discharge power suitable for each single cell and optimally performing charge / discharge control even when temperature variation occurs between the single cells constituting the assembled battery. Are listed.
  • Patent Document 2 discloses a method for detecting a maximum cell voltage value and a minimum cell voltage value, determining a maximum charge power using the maximum cell voltage value, and determining a maximum discharge power using the minimum cell voltage value. Is described.
  • JP 2007-165211 A Japanese Patent Application Laid-Open No. 2004-266917
  • the allowable charge / discharge power is obtained for each of the maximum temperature Tmax and the minimum temperature Tmin of the storage battery 10, and the smaller value is used.
  • the position where the temperature sensor is arranged does not necessarily correspond to each single cell, so the temperature detected by the temperature sensor and the allowable charge / discharge power of each single cell may not necessarily correspond accurately. There is. Therefore, the voltage between terminals of each single cell may exceed the allowable range.
  • Patent Document 1 describes that charge / discharge management is performed in which the charge state of each single cell is acquired and the charge state variation of the single cell is taken into consideration.
  • the control processing for managing the state of charge for each single cell becomes complicated, which may increase the cost.
  • the technique described in Patent Document 2 also has the same problem.
  • the present invention has been made to solve the above-described problems, and is a battery control device capable of controlling the allowable power in units of assembled batteries and keeping the voltage between terminals of each unit cell within an allowable range.
  • the purpose is to provide.
  • the battery control device limits the allowable power of the assembled battery according to the degree to which the closed circuit voltage (CCV: Close Circuit Voltage) of the single cell approaches the upper limit or the lower limit of the allowable range.
  • CCV Close Circuit Voltage
  • the battery control device can protect the cell by suppressing the allowable power so that the CCV of the cell approaches the upper limit or the lower limit of the allowable range so as not to exceed the allowable range.
  • the allowable power of the assembled battery since it is the allowable power of the assembled battery that is directly controlled, it is possible to perform the control in units of assembled batteries and reduce the load related to the control processing.
  • FIG. 3 is a diagram showing how the battery control apparatus 100 according to Embodiment 1 adjusts the allowable charging power of the assembled battery 500 as a whole in order to control the inter-terminal voltage of each unit cell 510.
  • FIG. 6 is a diagram illustrating an example of minimum CCV range data 175 stored in a storage unit 170 in Embodiment 2.
  • FIG. 6 is a diagram illustrating a state in which the allowable discharge power of the assembled battery 500 as a whole is adjusted in order for the battery control device 100 according to Embodiment 2 to control the voltage between terminals of each unit cell 510.
  • the assembled battery is configured by connecting the cells in series, but the assembled battery may be configured by connecting the cells connected in parallel, or may be connected in series.
  • a battery pack may be configured by connecting single cells in parallel.
  • FIG. 1 is a diagram showing a battery control device 100 according to Embodiment 1 of the present invention and its peripheral circuit configuration.
  • the battery control device 100 is a device that monitors and controls the state of the assembled battery 500.
  • the battery control device 100 includes a single cell management unit 110, a current detection unit 120, a voltage detection unit 130, an assembled battery control unit 140, and a storage unit 170.
  • the assembled battery 500 is configured by electrically connecting a plurality of unit cells 510 capable of storing and releasing electrical energy (charging and discharging DC power) in series.
  • the unit cells 510 constituting the assembled battery 500 are grouped into a predetermined number of units when performing state management / control.
  • the grouped unit cells 510 are electrically connected in series to form unit cell groups 520a and 520b.
  • the number of unit cells 510 constituting the unit cell group 520 may be the same in all the unit cell groups 520, or the number of unit cells 510 may be different for each unit cell group 520.
  • the single cell management unit 110 monitors the state of the single cells 510 constituting the assembled battery 500.
  • the unit cell management unit 110 includes a unit cell control unit 111 provided for each unit cell group 520.
  • the cell control units 111a and 111b are provided corresponding to the cell groups 520a and 520b.
  • the unit cell control unit 111 monitors and controls the state of the unit cells 510 constituting the unit cell group 520.
  • unit cells 510 are electrically connected in series to form unit cell groups 520a and 520b, and the unit cell groups 520a and 520b are further electrically connected in series.
  • An assembled battery 500 including a total of eight unit cells 510 was connected.
  • the assembled battery control unit 140 and the single cell management unit 110 transmit and receive signals via the insulating element 160 typified by a photocoupler and the signal communication means 150.
  • a communication means between the assembled battery control unit 140 and the cell control units 111a and 111b constituting the cell management unit 110 will be described.
  • the cell control units 111a and 111b are connected in series according to the order of potential of the cell groups 520a and 520b monitored by the cell control units 111a and 111b.
  • a signal transmitted from the assembled battery control unit 140 to the unit cell management unit 110 is input to the unit cell control unit 111 a via the insulating element 160 and the signal communication unit 150.
  • the output of the unit cell control unit 111 a is input to the unit cell control unit 111 b via the signal communication unit 150, and the output of the lowest unit cell control unit 111 b is transmitted through the insulating element 160 and the signal communication unit 150.
  • the insulating cell 160 is not interposed between the single cell control unit 111a and the single cell control unit 111b, but signals can be transmitted and received through the insulating element 160.
  • the assembled battery control unit 140 includes information transmitted by the single cell management unit 110, a current value input / output to / from the assembled battery 500 transmitted by the current detection unit 120, and a total voltage value of the assembled battery 500 transmitted by the voltage detection unit 130. Based on information stored in advance in the storage unit 170, the state of the unit cell 510, the unit cell group 520, or the assembled battery 500 is detected.
  • the information output from the unit cell management unit 110 to the assembled battery control unit 140 includes measured values of the voltage and temperature of the unit cell 510, abnormality information of the unit cell 510 such as overcharge, overdischarge, and overtemperature of the unit cell 510. It is. Furthermore, the unit cell management unit 110 also sends an error signal or the like in the case of a physical failure typified by a communication error of the unit cell management unit 110 itself or the unit cell control unit 111 or a disconnection of the harness to the assembled battery control unit 140. It may be output. In this case, the assembled battery control unit 140 can perform charge / discharge control of the assembled battery 500 based on the abnormal contents of the single cell management unit 110 or the single cell control unit 111.
  • the information stored in the storage unit 170 includes the internal resistance characteristics of the assembled battery 500, the single battery 510, and the single battery group 520, the capacity at full charge, the polarization voltage, the deterioration characteristics, the individual difference information, the SOC and the open circuit voltage (OCV: This is the correspondence relationship of Open Circuit Voltage). Furthermore, characteristic information such as the single cell management unit 110, the single cell control unit 111, and the assembled battery control unit 140 can be stored in advance. The information stored in the storage unit 170 will be described again with reference to FIGS.
  • the assembled battery control unit 140 determines the SOC, deterioration state (SOH: State of Health), and input / output current of one or more unit cells 510 based on the above-described measurement values and information stored in the storage unit 170. And calculations necessary for managing power, abnormal state, SOC of the single battery 510, and the like. And based on a calculation result, information is output to the cell management part 110 and the vehicle control part 200.
  • SOH State of Health
  • the vehicle control unit 200 is a higher-level control device of the assembled battery control unit 140 and connects the battery control device 100 and the inverter 400 via the relays 300 and 310 based on information transmitted by the assembled battery control unit 140.
  • the vehicle control unit 200 can send a command to the assembled battery control unit 140 as necessary, and the assembled battery control unit 140 may start processing based on the command from the vehicle control unit 200.
  • the battery control device 100 When the vehicle system equipped with the battery control device 100 starts and runs, the battery control device 100 is connected to the inverter 400 under the management of the vehicle control unit 200 and uses the energy stored in the assembled battery 500. Then, the motor generator 410 is driven, and the battery pack 500 is charged with the electric power generated by the motor generator 410 during regeneration.
  • FIG. 2 is a diagram showing a circuit configuration of the unit cell control unit 111.
  • the cell control unit 111 includes a voltage detection circuit 112, a control circuit 113, and a signal input / output circuit 114.
  • the voltage detection circuit 112 measures the voltage between the terminals of each short battery 510.
  • the control circuit 113 receives the measurement result from the voltage detection circuit 112 and transmits it to the assembled battery control unit 140 via the signal input / output circuit 114. Further, the charging operation and discharging operation of each unit cell 510 are controlled. Since the circuit configuration related to the charging operation and the discharging operation is well known, the description is omitted.
  • FIG. 3 is a diagram illustrating an example of the SOC table 171 stored in the storage unit 170.
  • the SOC table 171 is a data table describing a correspondence relationship between the OCV of the assembled battery 500 and the SOC of the assembled battery 500.
  • the data format may be arbitrary, but here, for convenience of explanation, an example of data is shown in a graph format.
  • OCV is a voltage when the assembled battery 500 is not loaded.
  • the assembled battery control unit 140 obtains an OCV of the assembled battery 500 by accumulating the OCV of the single battery 510 detected by the single battery control unit 111, and uses the OCV of the assembled battery 500 and the SOC table 171 to The SOC can be obtained. Further, during charging / discharging of the assembled battery 500, the OCV can be obtained by removing the internal resistance component and the polarization voltage component from the CCV, and the SOC of the assembled battery 500 can be obtained in the same manner.
  • FIG. 4 is a diagram illustrating an example of the allowable charging power table 172 stored in the storage unit 170.
  • the allowable charging power table 172 is a data table describing a correspondence relationship between the SOC of the assembled battery 500 and the allowable charging power.
  • the data format may be arbitrary, but here, for convenience of explanation, an example of data is shown in a graph format.
  • the values of the allowable charging power table 172 can be calculated in advance, for example, and stored in the storage unit 170.
  • the assembled battery control unit 140 can acquire the allowable charging power of the assembled battery 500 by using the SOC of the assembled battery 500 acquired using the SOC table 171 and the allowable charging power table 172.
  • FIG. 5 is a diagram illustrating an example of the maximum CCV range data 173 stored in the storage unit 170.
  • the maximum CCV range data 173 is data describing a range in which allowable power is limited as the maximum CCV value of each unit cell 510. The same value may be used for all the unit cells 510, or different values may be used according to the characteristics of each unit cell 510.
  • a range for limiting the allowable power is set as the maximum CCV of the unit cell 510.
  • the maximum CCV range data 173 is data describing this range.
  • the configuration of the battery control device 100 has been described above. Next, the basic concept and operation procedure of the operation of the battery control apparatus 100 will be described.
  • the method for individually controlling the charging power for each single cell 510 may have problems such as complicated control processing and high cost. Therefore, in the first embodiment, the allowable charging power for the assembled battery 500 as a whole is set. By keeping the voltage sufficiently low, the voltage between the terminals of each unit cell 510 is kept within the rated voltage.
  • a range for limiting the allowable power as a voltage between the terminals of each unit cell 510 is determined in advance, and if the voltage between the terminals of the unit cell 510 is close to the lower limit value of this range, a larger charging power is allowed. If it is close to the upper limit, the charging power is kept low.
  • FIG. 6 is a diagram illustrating a state in which the battery control apparatus 100 according to the first embodiment adjusts the allowable charging power of the assembled battery 500 as a whole in order to control the voltage between the terminals of each unit cell 510.
  • the range described in the maximum CCV range data 173 is used as the range for limiting the allowable power as the voltage between the terminals of each unit cell 510.
  • 4.0 V to 4.4 V exemplified in FIG. 5 was used.
  • the above relationship is shown in the graph in FIG. That is, the upper limit value of the range in which the voltage between the terminals of the single cell 510 limits the allowable power, assuming that the voltage between the terminals of the single cell 510 matches the lower limit value (4.0 V) of the range in which the allowable power is limited.
  • the allowable charging power is reduced as the value approaches (4.4V).
  • the interval between the lower limit value (4.0V) and the upper limit value (4.4V) of the allowable range may be linearly interpolated by proportional calculation, for example, or may be included in the data such as the maximum CCV range data 173.
  • the allowable charging power of the section may be described.
  • Step 1 Obtain CCVs of the single battery 510 and the assembled battery 500
  • the assembled battery control unit 140 instructs the unit cell management unit 110 to acquire the CCV of the unit cell 510.
  • the cell control unit 111 acquires the detection result of the voltage detection circuit 112 and outputs the detection result to the assembled battery control unit 140.
  • the assembled battery control unit 140 acquires the CCV as the entire assembled battery 500 from the voltage detection unit 130.
  • Step 1 Supplement
  • the maximum one of the CCVs of the unit cells 510 may be acquired from the viewpoint of operational safety.
  • Step 2 Acquire the SOC of the battery pack 500
  • the assembled battery control unit 140 acquires the SOC of the assembled battery 500 using the OCV calculated from the CCV of the assembled battery 500 acquired in step 1 and the SOC table 171.
  • Step 3 Acquire allowable charging power of battery pack 500
  • the assembled battery control unit 140 acquires the allowable charging power of the assembled battery 500 using the SOC of the assembled battery 500 acquired in step 2 and the allowable charging power table 172.
  • Step 4 Acquire allowable power limit range by CCV of single cell 510)
  • the assembled battery control unit 140 acquires the allowable power limit range by the CCV of the single battery 510 from the maximum CCV range data 173.
  • the allowable power limit range by CCV of each unit cell 510 is not the same, the allowable power limit range by the unit cell CCV having the smallest rated voltage may be selected for safety.
  • Step 5 Find the ratio to limit the allowable charging power
  • the assembled battery control unit 140 acquires how close the CCV of the cell 510 acquired in step 1 is to the upper limit value of the allowable power limit range acquired in step 4, and based on this, the allowable charging power Find the ratio to limit.
  • the following examples can be considered as a method for obtaining the ratio for limiting the allowable charging power.
  • Step 5 Example of calculating the limit ratio: Part 1
  • the CCV of the unit cell 510 is 4.2V and the allowable power limit range by the CCV is 4.0V to 4.4V. It can be seen that when linear interpolation as illustrated in FIG. 6 is used, the allowable charging power should be reduced to 50%.
  • Step 5 Example of calculating the limit ratio: Part 2
  • the allowable power limit range by CCV is 4.0V to 4.4V.
  • the OCV of the cell 510 is less than the median (4.2V)
  • Step 5 Supplement 1
  • Step 5 Supplement 2
  • a warning may be transmitted to the control device (for example, the vehicle control unit 200).
  • Step 6 Limit allowable charging power
  • the assembled battery control unit 140 limits the allowable charging power according to the ratio obtained in step 5. If the assembled battery control unit 140 itself has a function of limiting the allowable charging power, this may be performed by itself. Or you may notify a high-order control apparatus (for example, vehicle control part 200) so that allowable charging power may be restrict
  • a high-order control apparatus for example, vehicle control part 200
  • the battery control device 100 limits the allowable charging power of the battery pack 500 depending on how close the CCV of the single cell 510 is to the upper limit value of the allowable power limit range. To do. Thereby, before the voltage between the terminals of the single battery 510 exceeds the allowable range, the single battery 510 can be protected by limiting the charging power.
  • the battery control device 100 performs the control process for suppressing the voltage between the terminals of the unit cell 510 within the allowable range in units of the assembled battery 500.
  • the control process can be simplified, which is advantageous from the viewpoint of calculation load.
  • Embodiment 2 In the first embodiment, the example in which the unit cell 510 is protected by limiting the allowable charging power has been described. However, the same technique can be used in the operation during discharging. Therefore, in Embodiment 2 of the present invention, a method for limiting the allowable discharge power will be described. Since the configuration of the battery control device 100 and peripheral circuits is substantially the same as that of the first embodiment, the following description will focus on differences.
  • FIG. 7 is a diagram illustrating an example of the allowable discharge power table 174 stored in the storage unit 170 in the second embodiment.
  • the allowable discharge power table 174 is a data table describing the correspondence between the SOC of the battery pack 500 and the allowable discharge power.
  • the data format may be arbitrary, but here, for convenience of explanation, an example of data is shown in a graph format.
  • the values of the allowable discharge power table 174 can be calculated in advance, for example, and stored in the storage unit 170.
  • the assembled battery control unit 140 can acquire the allowable discharge power of the assembled battery 500 by using the SOC of the assembled battery 500 acquired using the SOC table 171 and the allowable discharge power table 174.
  • FIG. 8 is a diagram illustrating an example of the minimum CCV range data 175 stored in the storage unit 170 in the second embodiment.
  • the minimum CCV range data 175 is data describing a range in which allowable power is limited as the minimum CCV value of each unit cell 510. The same value may be used for all the unit cells 510, or different values may be used according to the characteristics of each unit cell 510.
  • the minimum CCV range data 175 is data describing this range.
  • the configuration of the battery control device 100 has been described above. Next, the basic concept and operation procedure of the operation of the battery control apparatus 100 will be described.
  • ⁇ Embodiment 2 Concept of apparatus operation> When discharging the assembled battery 500, it is assumed that a certain amount of electric charge is charged in each unit cell 510. When the charge amount is not sufficient, a desired discharge amount cannot be obtained. Therefore, in the second embodiment, a range that can be allowed as the inter-terminal voltage of each unit cell 510 is determined in advance, and when the inter-terminal voltage of the unit cell 510 is close to the lower limit value of this range, the discharge power is kept low. When it is close to the upper limit value, a larger discharge power is allowed.
  • FIG. 9 is a diagram illustrating how the battery control apparatus 100 according to the second embodiment adjusts the allowable discharge power of the assembled battery 500 as a whole in order to control the inter-terminal voltage of each unit cell 510.
  • the range described as the minimum CCV range data 175 is used as the allowable range for the inter-terminal voltage of each unit cell 510.
  • 2.6 V to 3.0 V exemplified in FIG. 8 was used.
  • the above relationship is shown in the graph in FIG. That is, assuming that the voltage between the terminals of the single cell 510 matches the upper limit value (3.0 V) of the allowable range, the voltage between the terminals of the single cell 510 approaches the lower limit value (2.6 V) of the allowable range.
  • Reduce allowable discharge power The interval between the lower limit value (2.6V) and the upper limit value (3.0V) of the allowable range may be linearly interpolated by proportional calculation, for example, or may be included in the data such as the minimum CCV range data 175. The allowable discharge power of the section may be described.
  • Step 1 to Step 2 These steps are the same as steps 1 to 2 described in the first embodiment.
  • Step 3 Acquire allowable discharge power of battery pack 500
  • the assembled battery control unit 140 acquires the allowable discharge power of the assembled battery 500 using the SOC of the assembled battery 500 acquired in step 2 and the allowable discharge power table 174.
  • Step 4 Acquire allowable power limit range by CCV of single cell 510)
  • the assembled battery control unit 140 acquires the allowable power limit range by the CCV of the single battery 510 from the minimum CCV range data 175.
  • Step 5 Find the ratio to limit the allowable discharge power
  • the assembled battery control unit 140 acquires how close the CCV of the cell 510 acquired in step 1 is to the lower limit value of the allowable power limit range acquired in step 4, and based on this, the allowable discharge power Find the ratio to limit.
  • the method for obtaining the ratio for limiting the allowable discharge power may be the same as in the first embodiment.
  • Step 5 Supplement 1
  • Step 5 Supplement 2
  • a warning may be transmitted to the control device (for example, the vehicle control unit 200).
  • Step 6 Limit allowable discharge power
  • the assembled battery control unit 140 limits the allowable discharge power according to the ratio obtained in step 5.
  • this may be performed by itself. Or you may notify a high-order control apparatus (for example, vehicle control part 200) so that allowable charging power may be restrict
  • the battery control device 100 limits the allowable discharge power of the battery pack 500 according to how close the CCV of the single cell 510 is to the lower limit value of the allowable power limit range. To do. Thereby, before the voltage between the terminals of the cell 510 exceeds the allowable power limit range, the discharge power can be limited to obtain an appropriate discharge amount.
  • the charge control method described in the first embodiment and the discharge control method described in the second embodiment can be combined to perform optimal control both during charging and discharging.
  • the SOC of the battery pack 500 is obtained using the SOC table 171; however, this can be obtained by other methods such as using a predetermined arithmetic expression.
  • the allowable charging / discharging power is obtained using the allowable charging power table 172 and the allowable discharging power table 174, but these are obtained by other methods such as using a predetermined arithmetic expression. You can also.
  • each of the above-described configurations, functions, processing units, etc. can be realized as hardware by designing all or a part thereof, for example, with an integrated circuit, or the processor executes a program for realizing each function. By doing so, it can also be realized as software.
  • Information such as programs and tables for realizing each function can be stored in a storage device such as a memory or a hard disk, or a storage medium such as an IC card or a DVD.
  • SYMBOLS 100 Battery control apparatus, 110: Single battery management part, 111: Single battery control part, 112: Voltage detection circuit, 113: Control circuit, 114: Signal input / output circuit, 120: Current detection part, 130: Voltage detection part, 140: assembled battery control unit, 150: signal communication means, 160: insulating element, 170: storage unit, 171: SOC table, 172: allowable charge power table, 173: maximum CCV range data, 174: allowable discharge power table, 175 : Minimum CCV range data, 200: Vehicle control unit, 300 and 310: Relay, 400: Inverter, 410: Motor generator, 500: Battery pack, 510: Single battery, 520: Single battery group.

Abstract

 組電池単位で許容電力を制御しつつ、各単電池の端子間電圧を許容範囲内に収めることができる電池制御装置を提供する。 本発明に係る電池制御装置は、単電池の閉回路電圧が、許容範囲の上限または下限に接近している程度に応じて、組電池の許容電力を制限する。

Description

電池制御装置
 本発明は、電池を制御する装置に関するものである。
 電気を動力として走行する車両には、鉛電池、ニッケル水素電池、リチウムイオン電池などの蓄電池が搭載される。ハイブリッド自動車や電気自動車が走行する際に必要となる電力は、これらの蓄電池によって賄われる。
 蓄電池は、その充電状態に応じて、許容される充電電力と放電電力がそれぞれ異なる。最大許容電力を超えて充放電を実施すると、過充電や過放電となる可能性がある。蓄電池の充電状態(SOC:State Of Charge)が高いほど最大許容充電電力は小さく、最大許容放電電力は大きい。また、蓄電池のSOCが低いほど最大許容放電電力は小さく、許容充電電力は大きい。蓄電池を安全に使用するためには、最大許容電力を超えない範囲内において充放電制御を実施する必要がある。
 下記特許文献1には、組電池を構成する単電池間に温度ばらつきが生じた場合でも、各単セルに適した許容充放電電力を算出し、充放電制御を最適に実施するための技術が記載されている。
 下記特許文献2には、最大セル電圧値と最小セル電圧値を検出し、最大セル電圧値を利用して最大充電電力を決定し、最小セル電圧値を利用して最大放電電力を決定する手法が記載されている。
特開2007-165211号公報 特開2004-266917号公報
 上記特許文献1に記載されている技術では、蓄電池10の最高温度Tmaxと最低温度Tminそれぞれにおいて許容充放電電力を求め、小さいほうの値を用いている。この手法では、温度センサを配置する位置は必ずしも個々の単セル毎に対応したものではないため、温度センサが検出する温度と各単セルの許容充放電電力が必ずしも正確に対応していない可能性がある。したがって、各単セルの端子間電圧が許容範囲を超えてしまう可能性がある。
 また、上記特許文献1には、単セル毎の充電状態を取得して単セルの充電状態ばらつきを考慮に入れた充放電管理を実施することが記載されている。しかし、単セル毎に充電状態を管理するための制御処理などが複雑になり、コスト高になる可能性がある。上記特許文献2に記載されている技術でも、同様の課題が生じる。
 本発明は、上記のような課題を解決するためになされたものであり、組電池単位で許容電力を制御しつつ、各単電池の端子間電圧を許容範囲内に収めることができる電池制御装置を提供することを目的とする。
 本発明に係る電池制御装置は、単電池の閉回路電圧(CCV:Close Circuit Voltage)が、許容範囲の上限または下限に接近している程度に応じて、組電池の許容電力を制限する。
 本発明に係る電池制御装置は、単電池のCCVが許容範囲の上限または下限に近づくと、これを超過しないように許容電力を抑えることにより、単電池を保護することができる。また、直接的に制御するのは組電池の許容電力であるため、組電池単位で制御を実施し、制御処理に係る負荷を低減することができる。
実施形態1に係る電池制御装置100とその周辺の回路構成を示す図である。 単電池制御部111の回路構成を示す図である。 記憶部170が格納しているSOCテーブル171の例を示す図である。 記憶部170が格納している許容充電電力テーブル172の例を示す図である。 記憶部170が格納している最大CCV範囲データ173の例を示す図である。 実施形態1に係る電池制御装置100が各単電池510の端子間電圧を制御するため、組電池500全体としての許容充電電力を調整する様子を示す図である。 実施形態2において記憶部170が格納している許容放電電力テーブル174の例を示す図である。 実施形態2において記憶部170が格納している最小CCV範囲データ175の例を示す図である。 実施形態2に係る電池制御装置100が各単電池510の端子間電圧を制御するため、組電池500全体としての許容放電電力を調整する様子を示す図である。
 以下に説明する実施形態では、単電池を直列に接続して組電池を構成しているが、単電池を並列接続したものを直列接続して組電池を構成してもよいし、直列接続した単電池を並列接続して組電池を構成してもよい。
<実施の形態1:装置構成>
 図1は、本発明の実施形態1に係る電池制御装置100とその周辺の回路構成を示す図である。電池制御装置100は、組電池500の状態を監視して制御する装置である。電池制御装置100は、単電池管理部110、電流検知部120、電圧検知部130、組電池制御部140、記憶部170を備える。
 組電池500は、電気エネルギーの蓄積及び放出(直流電力の充放電)が可能な複数の単電池510を電気的に直列に接続して構成している。組電池500を構成する単電池510は、状態の管理・制御を実施する上で、所定の単位数にグループ分けされている。グループ分けされた単電池510は、電気的に直列に接続され、単電池群520a、520bを構成している。単電池群520を構成する単電池510の個数は、全ての単電池群520において同数でもよいし、単電池群520毎に単電池510の個数が異なっていてもよい。
 単電池管理部110は、組電池500を構成する単電池510の状態を監視する。単電池管理部110は、単電池群520毎に設けられた単電池制御部111を備える。図1では、単電池群520aと520bに対応して、単電池制御部111aと111bが設けられている。単電池制御部111は、単電池群520を構成する単電池510の状態を監視および制御する。
 本実施形態1では、説明を簡略化するために、4個の単電池510を電気的に直列接続して単電池群520aと520bを構成し、単電池群520aと520bをさらに電気的に直列接続して合計8個の単電池510を備える組電池500とした。
 組電池制御部140と単電池管理部110は、フォトカプラに代表される絶縁素子160および信号通信手段150を介して信号を送受信する。
 組電池制御部140と、単電池管理部110を構成する単電池制御部111aおよび111bとの間の通信手段について説明する。単電池制御部111aおよび111bは、それぞれが監視する単電池群520aおよび520bの電位の高い順にしたがって直列に接続されている。組電池制御部140が単電池管理部110に送信した信号は、絶縁素子160および信号通信手段150を介して単電池制御部111aに入力される。単電池制御部111aの出力は信号通信手段150を介して単電池制御部111bに入力され、最下位の単電池制御部111bの出力は絶縁素子160および信号通信手段150を介して組電池制御部140へと伝送される。本実施形態1では、単電池制御部111aと単電池制御部111bの間は絶縁素子160を介していないが、絶縁素子160を介して信号を送受信することもできる。
 組電池制御部140は、単電池管理部110が送信する情報と、電流検知部120が送信する組電池500に出入りする電流値と、電圧検知部130が送信する組電池500の総電圧値と、記憶部170があらかじめ記憶している情報等に基づいて、単電池510、単電池群520、または組電池500の状態検知などを実施する。
 単電池管理部110が組電池制御部140に出力する情報とは、単電池510の電圧や温度の計測値、単電池510の過充電、過放電、過温度などの単電池510の異常情報等である。さらに、単電池管理部110は、単電池管理部110自身または単電池制御部111の通信エラー、ハーネスの断線などに代表される物理的に故障した場合の異常信号なども組電池制御部140に出力してもよい。この場合、組電池制御部140は単電池管理部110または単電池制御部111の異常内容も踏まえて組電池500の充放電制御を実施することができる。
 記憶部170が記憶する情報は、組電池500、単電池510、単電池群520の内部抵抗特性、満充電時の容量、分極電圧、劣化特性、個体差情報、SOCと開回路電圧(OCV:Open Circuit Voltage)の対応関係などである。さらに、単電池管理部110、単電池制御部111、組電池制御部140などの特性情報についてもあらかじめ記憶することができる。記憶部170が記憶する情報については、後述の図3~図5で改めて説明する。
 組電池制御部140は、前述した計測値や記憶部170が記憶している情報に基づいて、1つ以上の単電池510のSOC、劣化状態(SOH:State of Health)、入出力可能な電流や電力、異常状態、単電池510のSOCなどを管理するために必要な演算を実行する。そして、演算結果に基づいて、単電池管理部110や車両制御部200に情報を出力する。
 車両制御部200は、組電池制御部140の上位の制御装置であり、組電池制御部140が発信した情報に基づいて、リレー300と310を介して電池制御装置100とインバータ400を接続する。車両制御部200は、必要に応じて組電池制御部140に対して指令を発信することができ、組電池制御部140は車両制御部200からの指令に基づいて処理を開始してもよい。
 電池制御装置100を搭載した車両システムが始動して走行する場合には、車両制御部200の管理のもと、電池制御装置100はインバータ400に接続され、組電池500が蓄えているエネルギーを用いてモータジェネレータ410を駆動し、回生時はモータジェネレータ410が発電する電力により組電池500が充電される。
 図2は、単電池制御部111の回路構成を示す図である。単電池制御部111は、電圧検出回路112、制御回路113、信号入出力回路114を備える。電圧検出回路112は、各短電池510の端子間電圧を測定する。制御回路113は、電圧検出回路112から測定結果を受け取り、信号入出力回路114を介して組電池制御部140に送信する。また、各単電池510の充電動作と放電動作を制御する。充電動作と放電動作に係る回路構成は周知のものであるため、記載を省略した。
 図3は、記憶部170が格納しているSOCテーブル171の例を示す図である。SOCテーブル171は、組電池500のOCVと、組電池500のSOCとの対応関係を記述したデータテーブルである。データ形式は任意でよいが、ここでは説明の便宜上、グラフ形式でデータ例を示す。
 OCVは、組電池500の無負荷時の電圧である。リレー300と310が閉じる前、またはリレー300と310が閉じられているが組電池500の充放電が開始されていない状態、などのタイミングにおいて単電池510の端子間電圧を取得すると、OCVを取得することができる。組電池制御部140は、単電池制御部111が検出した単電池510のOCVを積算して組電池500のOCVを求め、組電池500のOCVとSOCテーブル171を用いることにより、組電池500のSOCを得ることができる。さらに組電池500の充放電中は、CCVから内部抵抗成分、分極電圧成分を除いてOCVを求め、同様に組電池500のSOCを得ることができる。
 図4は、記憶部170が格納している許容充電電力テーブル172の例を示す図である。許容充電電力テーブル172は、組電池500のSOCと許容充電電力との対応関係を記述したデータテーブルである。データ形式は任意でよいが、ここでは説明の便宜上、グラフ形式でデータ例を示す。許容充電電力テーブル172の値は、例えばあらかじめ計算によって算出し、記憶部170に格納しておくことができる。
 組電池制御部140は、SOCテーブル171を用いて取得した組電池500のSOCと、許容充電電力テーブル172とを用いることにより、組電池500の許容充電電力を取得することができる。
 図5は、記憶部170が格納している最大CCV範囲データ173の例を示す図である。最大CCV範囲データ173は、各単電池510のCCVの最大値として許容電力を制限する範囲を記述したデータである。全ての単電池510について同じ値を用いてもよいし、各単電池510の特性に応じてそれぞれ異なる値を用いてもよい。
 組電池500を充電する際には、充電電力として許容される上限が存在する。これに対応して、単電池510の最大CCVとして許容電力を制限する範囲を設定する。最大CCV範囲データ173は、この範囲を記述したデータである。
 以上、電池制御装置100の構成について説明した。次に、電池制御装置100の動作について、基本的な考え方と動作手順を説明する。
<実施の形態1:装置動作の考え方>
 組電池500が全体として定格電圧の範囲内で動作しているとしても、個々の単電池510については定格電圧を超過する可能性がある。組電池500を充電しているとき、単電池510の端子間電圧を定格電圧以内に収めるためには、各単電池510に対する充電電力を個別に制御するか、または各単電池510の端子間電圧が定格電圧以内に収まるように、組電池500全体としての許容充電電力を十分低く抑える必要がある。
 各単電池510に対する充電電力を個別に制御する手法は、制御処理が複雑になってコスト高になるなどの課題が考えられるため、本実施形態1では、組電池500全体としての許容充電電力を十分低く抑えることによって各単電池510の端子間電圧を定格電圧以内に収めることを図る。
 具体的には、各単電池510の端子間電圧として許容電力を制限する範囲をあらかじめ定めておき、単電池510の端子間電圧がこの範囲の下限値に近い場合はより大きな充電電力を許容し、上限値に近い場合は充電電力を低く抑えるようにする。
 図6は、本実施形態1に係る電池制御装置100が各単電池510の端子間電圧を制御するため、組電池500全体としての許容充電電力を調整する様子を示す図である。各単電池510の端子間電圧として許容電力を制限する範囲は、最大CCV範囲データ173に記述されている値を用いる。ここでは図5で例示した4.0V~4.4Vを用いた。
 単電池510の端子間電圧が許容電力を制限する範囲の下限値(4.0V)に近い場合は、より大きな充電電力を許容することができるため、許容充電電力を大きくする。単電池510の端子間電圧が許容範囲の下限値(4.0V)に一致する場合は、許容充電電力テーブル172から得られる許容充電電力を100%用いることとする。
 一方、単電池510の端子間電圧が許容電力を制限する範囲の上限値(4.4V)に近い場合は、大きな充電電力を許容することができないため、許容充電電力を小さくする。単電池510の端子間電圧が許容範囲の上限値(4.4V)に一致する場合は、充電電力を当該単電池510に供給することを認めないこととする。
 以上の関係をグラフに示すと、図6のようになる。すなわち、単電池510の端子間電圧が許容電力を制限する範囲の下限値(4.0V)に一致する場合を100%として、単電池510の端子間電圧が許容電力を制限する範囲の上限値(4.4V)に近づくにつれて許容充電電力を低下させる。許容範囲の下限値(4.0V)~上限値(4.4V)の間の区間については、例えば比例演算によって線形補間するなどしてもよいし、最大CCV範囲データ173などのデータ内に同区間の許容充電電力を記述しておいてもよい。
 なお、各単電池510の端子間電圧が異なる場合は、動作安全の観点から、各単電池510の端子間電圧のうち最大のものを基準として、許容充電電力を求めることが望ましいといえる。
<実施の形態1:装置の動作手順>
 以下では、電池制御装置100が組電池500を充電する際に、各単電池510の端子間電圧を、最大CCV範囲データ173が記述している範囲内に収めるための動作手順について説明する。
(ステップ1:単電池510と組電池500のCCVを取得する)
 組電池制御部140は、単電池管理部110に対し、単電池510のCCVを取得するように指示する。単電池制御部111は、電圧検出回路112の検出結果を取得し、組電池制御部140にその検出結果を出力する。組電池制御部140は、電圧検出部130から組電池500全体としてのCCVを取得する。
(ステップ1:補足)
 本ステップで単電池510のCCVを取得する際に、動作安全の観点から、各単電池510のCCVのうち最大のものを取得するようにしてもよい。
(ステップ2:組電池500のSOCを取得する)
 組電池制御部140は、ステップ1で取得した組電池500のCCVから演算したOCVとSOCテーブル171を用いて、組電池500のSOCを取得する。
(ステップ3:組電池500の許容充電電力を取得する)
 組電池制御部140は、ステップ2で取得した組電池500のSOCと許容充電電力テーブル172を用いて、組電池500の許容充電電力を取得する。
(ステップ4:単電池510のCCVによる許容電力制限範囲を取得する)
 組電池制御部140は、最大CCV範囲データ173から、単電池510のCCVによる許容電力制限範囲を取得する。各単電池510のCCVによる許容電力制限範囲が同一でない場合は、安全のため定格電圧が最も小さい単電池CCVによる許容電力制限範囲を選択するようにしてもよい。
(ステップ5:許容充電電力を制限する割合を求める)
 組電池制御部140は、ステップ1で取得した単電池510のCCVが、ステップ4で取得した許容電力制限範囲の上限値にどの程度接近しているかを取得し、これに基づいて、許容充電電力を制限する割合を求める。許容充電電力を制限する割合を求める手法として、以下のような例が考えられる。
(ステップ5:制限割合を算出する例:その1)
 単電池510のCCVが4.2Vであり、CCVによる許容電力制限範囲が4.0V~4.4Vである場合を想定する。図6に例示するような線形補間を用いる場合、許容充電電力を50%まで抑えるべきであることが分かる。
(ステップ5:制限割合を算出する例:その2)
 CCVによる許容電力制限範囲が4.0V~4.4Vである場合を想定する。単電池510のCCVが中央値(4.2V)以上である場合は許容量を少なくし(許容割合=30%)、単電池510のOCVが中央値(4.2V)未満である場合は許容量を多くする(許容割合=80%)。
(ステップ5:補足その1)
 ステップ1で取得した単電池510のCCVが、ステップ4で取得した許容電力制限範囲の下限値よりも小さい場合は、最大充電電力で充電する(許容割合=100%)ようにしてもよい。
(ステップ5:補足その2)
 ステップ1で取得した単電池510のCCVが、ステップ4で取得した許容電力制限範囲の上限値よりも大きい場合は、充電を許容しないようにしてもよいし(許容割合=0%)、上位の制御装置(例えば車両制御部200)に対して警告を発信するようにしてもよい。
(ステップ6:許容充電電力を制限する)
 組電池制御部140は、ステップ5で求めた割合にしたがって、許容充電電力を制限する。組電池制御部140自身が許容充電電力を制限する機能を備えている場合は、自らこれを実施してもよい。あるいは、上位の制御装置(例えば車両制御部200)に対して許容充電電力を制限するように通知してもよい。
<実施の形態1:まとめ>
 以上のように、本実施形態1に係る電池制御装置100は、単電池510のCCVが許容電力制限範囲の上限値にどの程度接近しているかに応じて、組電池500の許容充電電力を制限する。これにより、単電池510の端子間電圧が許容範囲を超える前に充電電力を制限して単電池510を保護することができる。
 また、本実施形態1に係る電池制御装置100は、単電池510の端子間電圧を許容範囲内に抑える制御処理は、組電池500単位で実施する。これにより、制御処理を簡易化することができるので、演算負荷などの観点から有利である。
<実施の形態2>
 実施形態1では、許容充電電力を制限することによって単電池510を保護する例を説明したが、同様の手法を放電時の動作においても用いることができる。そこで本発明の実施形態2では、許容放電電力を制限する手法を説明する。電池制御装置100および周辺回路などの構成は実施形態1と概ね同様であるため、以下では差異点を中心に説明する。
<実施の形態2:装置構成>
 図7は、本実施形態2において記憶部170が格納している許容放電電力テーブル174の例を示す図である。許容放電電力テーブル174は、組電池500のSOCと許容放電電力との対応関係を記述したデータテーブルである。データ形式は任意でよいが、ここでは説明の便宜上、グラフ形式でデータ例を示す。許容放電電力テーブル174の値は、例えばあらかじめ計算によって算出し、記憶部170に格納しておくことができる。
 組電池制御部140は、SOCテーブル171を用いて取得した組電池500のSOCと、許容放電電力テーブル174とを用いることにより、組電池500の許容放電電力を取得することができる。
 図8は、本実施形態2において記憶部170が格納している最小CCV範囲データ175の例を示す図である。最小CCV範囲データ175は、各単電池510のCCVの最小値として許容電力を制限する範囲を記述したデータである。全ての単電池510について同じ値を用いてもよいし、各単電池510の特性に応じてそれぞれ異なる値を用いてもよい。
 組電池500を放電させる際には、放電電力として許容される下限が存在する。これに対応して、単電池510の最小CCVとして許容電力を制限する範囲を設定する。最小CCV範囲データ175は、この範囲を記述したデータである。
 以上、電池制御装置100の構成について説明した。次に、電池制御装置100の動作について、基本的な考え方と動作手順を説明する。
<実施の形態2:装置動作の考え方>
 組電池500を放電させる場合、各単電池510にある程度の電荷が充電されていることが前提となる。充電量が十分でない場合には、所望の放電量を得ることができない。そこで本実施形態2では、各単電池510の端子間電圧として許容することのできる範囲をあらかじめ定めておき、単電池510の端子間電圧がこの範囲の下限値に近い場合は放電電力を低く抑え、上限値に近い場合はより大きな放電電力を許容するようにする。
 図9は、本実施形態2に係る電池制御装置100が各単電池510の端子間電圧を制御するため、組電池500全体としての許容放電電力を調整する様子を示す図である。各単電池510の端子間電圧として許容される範囲は、最小CCV範囲データ175に記述されている値を用いる。ここでは図8で例示した2.6V~3.0Vを用いた。
 単電池510の端子間電圧が許容範囲の下限値(2.6V)に近い場合は、大きな放電電力を許容することができないため、許容放電電力を小さくする。単電池510の端子間電圧が許容範囲の下限値(2.6V)以下の場合は、組電池500を放電させることを認めないこととする。
 一方、単電池510の端子間電圧が許容範囲の上限値(3.0V)に近い場合は、より大きな放電電力を許容することができるため、許容放電電力を大きくする。単電池510の端子間電圧が許容範囲の上限値(3.0V)以上の場合は、許容放電電力テーブル174から得られる許容放電電力を100%用いることとする。
 以上の関係をグラフに示すと、図9のようになる。すなわち、単電池510の端子間電圧が許容範囲の上限値(3.0V)に一致する場合を100%として、単電池510の端子間電圧が許容範囲の下限値(2.6V)に近づくにつれて許容放電電力を低下させる。許容範囲の下限値(2.6V)~上限値(3.0V)の間の区間については、例えば比例演算によって線形補間するなどしてもよいし、最小CCV範囲データ175などのデータ内に同区間の許容放電電力を記述しておいてもよい。
 なお、各単電池510の端子間電圧が異なる場合は、動作安全の観点から、各単電池510の端子間電圧のうち最小のものを基準として、許容放電電力を求めることが望ましいといえる。
<実施の形態2:装置の動作手順>
 以下では、電池制御装置100が組電池500を放電させる際に、各単電池510の端子間電圧を、最小CCV範囲データ175が記述している範囲内に収めるための動作手順について説明する。
(ステップ1~ステップ2)
 これらのステップは、実施形態1で説明したステップ1~ステップ2と同様である。
(ステップ3:組電池500の許容放電電力を取得する)
 組電池制御部140は、ステップ2で取得した組電池500のSOCと許容放電電力テーブル174を用いて、組電池500の許容放電電力を取得する。
(ステップ4:単電池510のCCVによる許容電力制限範囲を取得する)
 組電池制御部140は、最小CCV範囲データ175から、単電池510のCCVによる許容電力制限範囲を取得する。
(ステップ5:許容放電電力を制限する割合を求める)
 組電池制御部140は、ステップ1で取得した単電池510のCCVが、ステップ4で取得した許容電力制限範囲の下限値にどの程度接近しているかを取得し、これに基づいて、許容放電電力を制限する割合を求める。許容放電電力を制限する割合を求める手法は、実施形態1と同様でよい。
(ステップ5:補足その1)
 ステップ1で取得した単電池510のCCVが、ステップ4で取得した許容電力制限範囲の上限値よりも大きい場合は、最大放電電力で放電する(許容割合=100%)ようにしてもよい。
(ステップ5:補足その2)
 ステップ1で取得した単電池510のCCVが、ステップ4で取得した許容電力制限範囲の下限値よりも小さい場合は、放電を許容しないようにしてもよいし(許容割合=0%)、上位の制御装置(例えば車両制御部200)に対して警告を発信するようにしてもよい。
(ステップ6:許容放電電力を制限する)
 組電池制御部140は、ステップ5で求めた割合にしたがって、許容放電電力を制限する。組電池制御部140自身が許容放電電力を制限する機能を備えている場合は、自らこれを実施してもよい。あるいは、上位の制御装置(例えば車両制御部200)に対して許容充電電力を制限するように通知してもよい。
<実施の形態2:まとめ>
 以上のように、本実施形態2に係る電池制御装置100は、単電池510のCCVが許容電力制限範囲の下限値にどの程度接近しているかに応じて、組電池500の許容放電電力を制限する。これにより、単電池510の端子間電圧が許容電力制限範囲を超える前に放電電力を制限して適切な放電量を得ることができる。
 なお、実施形態1で説明した充電制御手法と実施形態2で説明した放電制御手法を組み合わせ、充電時と放電時ともに最適な制御を実施することができるのはいうまでもない。
<実施の形態3>
 実施形態1~2では、SOCテーブル171を用いて組電池500のSOCを求めているが、例えば所定の演算式を用いるなど、その他の手法によってこれを求めることもできる。同様に、実施形態1~2では許容充電電力テーブル172と許容放電電力テーブル174を用いて許容充放電電力を求めているが、例えば所定の演算式を用いるなど、その他の手法によってこれらを求めることもできる。
 以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 また、上記各構成、機能、処理部などは、それらの全部または一部を、例えば集積回路で設計することによりハードウェアとして実現することもできるし、プロセッサがそれぞれの機能を実現するプログラムを実行することによりソフトウェアとして実現することもできる。各機能を実現するプログラム、テーブルなどの情報は、メモリやハードディスクなどの記憶装置、ICカード、DVDなどの記憶媒体に格納することができる。
 100:電池制御装置、110:単電池管理部、111:単電池制御部、112:電圧検出回路、113:制御回路、114:信号入出力回路、120:電流検知部、130:電圧検知部、140:組電池制御部、150:信号通信手段、160:絶縁素子、170:記憶部、171:SOCテーブル、172:許容充電電力テーブル、173:最大CCV範囲データ、174:許容放電電力テーブル、175:最小CCV範囲データ、200:車両制御部、300および310:リレー、400:インバータ、410:モータジェネレータ、500:組電池、510:単電池、520:単電池群。

Claims (12)

  1.  単電池が複数接続された組電池を制御する制御部と、
     前記単電池および前記組電池の端子間電圧を測定する電圧測定部と、
     前記単電池の閉回路電圧として許容電力を制限する範囲を記述した許容電力制限範囲のセル電圧データを格納する記憶部と、
     を備え、
     前記制御部は、
      前記電圧測定部が測定した前記単電池と前記組電池の閉回路電圧を取得し、
      前記組電池の閉回路電圧を用いて前記組電池の現在の許容電力を取得し、
      前記単電池の閉回路電圧が、前記許容セル電圧データが記述している前記範囲の上限値または下限値に対して接近している程度にしたがって、前記組電池の許容電力を制限すべき割合を算出し、
      その割合にしたがって前記組電池の許容電力を制限する
     ことを特徴とする電池制御装置。
  2.  前記許容セル電圧データは、
      前記組電池を充電するときにおける前記単電池の閉回路電圧として許容される範囲を記述しており、
     前記制御部は、前記組電池を充電するときは、
      前記単電池の閉回路電圧が前記範囲の上限値に等しい場合は前記組電池に対する充電を許可しないように前記割合を設定し、
      前記単電池の閉回路電圧が前記範囲の下限値に等しい場合は前記組電池に対する充電を前記組電池の許容充電電力の最高値で実施するように前記割合を設定し、
      前記単電池の閉回路電圧が前記範囲の上限値と下限値の間にある場合は、前記単電池の閉回路電圧が前記範囲の上限値に等しい場合における前記割合と、前記単電池の閉回路電圧が前記範囲の下限値に等しい場合における前記割合との間の値を、前記割合として設定する
     ことを特徴とする請求項1記載の電池制御装置。
  3.  前記制御部は、
      前記単電池の閉回路電圧が前記範囲の下限値より小さい場合は、前記組電池に対する充電を前記組電池の許容充電電力の最高値で実施するように前記割合を設定する
     ことを特徴とする請求項2記載の電池制御装置。
  4.  前記制御部は、
      前記単電池の閉回路電圧が前記範囲の上限値より大きい場合は、前記組電池に対する充電を許可しないように前記割合を設定する
     ことを特徴とする請求項2記載の電池制御装置。
  5.  前記制御部は、
      前記単電池の閉回路電圧が前記範囲の上限値より大きい場合は、警告を発する
     ことを特徴とする請求項2記載の電池制御装置。
  6.  前記許容セル電圧データは、
      前記組電池を放電させるときにおける前記単電池の閉回路電圧として許容される範囲を記述しており、
     前記制御部は、前記組電池を放電させるときは、
      前記単電池の閉回路電圧が前記範囲の上限値に等しい場合は前記組電池の放電を前記組電池の許容放電電力の最高値で実施するように前記割合を設定し、
      前記単電池の閉回路電圧が前記範囲の下限値に等しい場合は前記組電池の放電を許可しないように前記割合を設定し、
      前記単電池の閉回路電圧が前記範囲の上限値と下限値の間にある場合は、前記単電池の閉回路電圧が前記範囲の上限値に等しい場合における前記割合と、前記単電池の閉回路電圧が前記範囲の下限値に等しい場合における前記割合との間の値を、前記割合として設定する
     ことを特徴とする請求項1記載の電池制御装置。
  7.  前記制御部は、
      前記単電池の閉回路電圧が前記範囲の上限値より大きい場合は、前記組電池の放電を前記組電池の許容放電電力の最高値で実施するように前記割合を設定する
     ことを特徴とする請求項6記載の電池制御装置。
  8.  前記制御部は、
      前記単電池の閉回路電圧が前記範囲の下限値より小さい場合は、前記組電池の放電を許可しないように前記割合を設定する
     ことを特徴とする請求項6記載の電池制御装置。
  9.  前記制御部は、
      前記単電池の閉回路電圧が前記範囲の下限値より小さい場合は、警告を発する
     ことを特徴とする請求項6記載の電池制御装置。
  10.  前記制御部は、
      前記単電池の閉回路電圧が前記範囲の上限値と下限値の間にある場合は、
      前記単電池の閉回路電圧が前記範囲の上限値に等しい場合における前記割合と、前記単電池の閉回路電圧が前記範囲の下限値に等しい場合における前記割合との間の値を、比例演算によって算出し、その結果得られた値を前記割合として設定する
     ことを特徴とする請求項1記載の電池制御装置。
  11.  前記許容セル電圧データは、
      前記単電池の閉回路電圧と前記割合との対応関係を記述しており、
     前記制御部は、
      前記単電池の閉回路電圧が前記範囲の上限値と下限値の間にある場合は、
      許容セル電圧データが記述している、前記単電池の閉回路電圧と前記割合との対応関係にしたがって、前記割合を設定する
     ことを特徴とする請求項1記載の電池制御装置。
  12.  前記記憶部は、
      前記組電池の開回路電圧と充電状態の対応関係を記述したSOCテーブルと、
      前記組電池の充電状態と許容電力の対応関係を記述した許容電力テーブルと、
     を格納し、
     前記制御部は、
      前記組電池の閉回路電圧と前記SOCテーブルを用いて前記組電池の現在の充電状態を取得し、
      前記組電池の充電状態と前記許容電力テーブルを用いて前記組電池の現在の許容電力を取得する
     ことを特徴とする請求項1記載の電池制御装置。
PCT/JP2011/061190 2011-05-16 2011-05-16 電池制御装置 WO2012157065A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/061190 WO2012157065A1 (ja) 2011-05-16 2011-05-16 電池制御装置
JP2013514904A JP5670556B2 (ja) 2011-05-16 2011-05-16 電池制御装置
CN201180070882.3A CN103534897B (zh) 2011-05-16 2011-05-16 电池控制装置
EP11865666.9A EP2712046B1 (en) 2011-05-16 2011-05-16 Battery control device
US14/118,067 US9680320B2 (en) 2011-05-16 2011-05-16 Battery control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061190 WO2012157065A1 (ja) 2011-05-16 2011-05-16 電池制御装置

Publications (1)

Publication Number Publication Date
WO2012157065A1 true WO2012157065A1 (ja) 2012-11-22

Family

ID=47176434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061190 WO2012157065A1 (ja) 2011-05-16 2011-05-16 電池制御装置

Country Status (5)

Country Link
US (1) US9680320B2 (ja)
EP (1) EP2712046B1 (ja)
JP (1) JP5670556B2 (ja)
CN (1) CN103534897B (ja)
WO (1) WO2012157065A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011983A (ja) * 2013-06-28 2015-01-19 現代自動車株式会社 バッテリパワーの制限方法
WO2014160759A3 (en) * 2013-03-29 2015-04-23 Fca Us Llc Techniques for enhanced battery pack recharging
WO2015186327A1 (ja) * 2014-06-06 2015-12-10 パナソニックIpマネジメント株式会社 蓄電装置、及び電源装置
JP2020149784A (ja) * 2019-03-11 2020-09-17 株式会社豊田自動織機 電圧計測方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680320B2 (en) * 2011-05-16 2017-06-13 Hitachi Automotive Systems, Ltd. Battery control apparatus
JP2012247339A (ja) * 2011-05-30 2012-12-13 Renesas Electronics Corp 半導体集積回路およびその動作方法
CN107431367B (zh) * 2015-03-02 2020-08-11 日本汽车能源株式会社 电池控制装置和车辆系统
US10663529B1 (en) * 2015-09-25 2020-05-26 Amazon Technologies, Inc. Automatic battery charging
JP6615011B2 (ja) * 2016-03-09 2019-12-04 日立オートモティブシステムズ株式会社 電池管理システム、電池システムおよびハイブリッド車両制御システム
DE102016013702A1 (de) * 2016-11-17 2018-05-17 Man Truck & Bus Ag Traktionsenergiespeichersystem mit Betriebsgrenzenbestimmung
CA3136213A1 (en) 2019-04-05 2020-10-08 Oshkosh Corporation Battery management systems and methods
FR3098922B1 (fr) * 2019-07-18 2021-07-23 Commissariat Energie Atomique Procédé de détermination de l'état de charge des cellules d'une batterie
WO2021178881A1 (en) * 2020-03-06 2021-09-10 Oshkosh Corporation Battery monitoring system for a lift device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266917A (ja) 2003-02-28 2004-09-24 Kobe Steel Ltd ハイブリッド駆動型建設機械の電力制御装置
JP2007165211A (ja) 2005-12-16 2007-06-28 Hitachi Vehicle Energy Ltd 蓄電池管理装置
JP2008104289A (ja) * 2006-10-19 2008-05-01 Hitachi Vehicle Energy Ltd 蓄電池管理装置およびそれを備える車両制御装置
WO2008111594A1 (ja) * 2007-03-07 2008-09-18 Toyota Jidosha Kabushiki Kaisha 二次電池の制御装置および車両
WO2011027449A1 (ja) * 2009-09-03 2011-03-10 トヨタ自動車株式会社 組電池の充電状態検出装置および充電状態検出方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360613B2 (ja) * 1998-06-25 2002-12-24 トヨタ自動車株式会社 電池制御装置
US6456042B1 (en) * 2000-11-27 2002-09-24 Delphi Technologies, Inc. Method and apparatus for charging batteries at reduced overcharge levels
US6366054B1 (en) * 2001-05-02 2002-04-02 Honeywell International Inc. Method for determining state of charge of a battery by measuring its open circuit voltage
DE10321720A1 (de) * 2002-05-14 2003-12-04 Yazaki Corp Verfahren zum Abschätzen des Ladezustandes und der Leerlaufspannung einer Batterie, sowie Verfahren und Vorrichtung zum Berechnen des Degradationsgrades einer Batterie
JP4035777B2 (ja) * 2003-02-10 2008-01-23 株式会社デンソー 組電池の放電装置
US20050048335A1 (en) * 2003-08-26 2005-03-03 Fields Robert E. Apparatus and method for regulating hybrid fuel cell power system output
CN101199096B (zh) * 2005-06-14 2010-08-25 Lg化学株式会社 控制电池的充电/放电电压的装置和方法
JP4773848B2 (ja) * 2006-03-03 2011-09-14 プライムアースEvエナジー株式会社 二次電池の充放電制御システム、電池制御装置、およびプログラム
JP4560501B2 (ja) * 2006-08-11 2010-10-13 矢崎総業株式会社 充電状態調整装置
FR2907272B1 (fr) * 2006-10-13 2008-12-26 Commissariat Energie Atomique Procede de gestion de la fin de decharge d'une batterie rechargeable
JP4987581B2 (ja) * 2007-06-15 2012-07-25 日立ビークルエナジー株式会社 電池制御装置
JP4893653B2 (ja) * 2008-02-19 2012-03-07 トヨタ自動車株式会社 車両、二次電池の充電状態推定方法および車両の制御方法
JP4551942B2 (ja) * 2008-03-14 2010-09-29 本田技研工業株式会社 ハイブリッド直流電源システム、燃料電池車両及び蓄電装置の保護方法
JP5092903B2 (ja) * 2008-05-29 2012-12-05 トヨタ自動車株式会社 車両用電池の充放電制御装置
US8798832B2 (en) * 2009-03-27 2014-08-05 Hitachi, Ltd. Electric storage device
US8330420B2 (en) * 2009-04-10 2012-12-11 The Regents Of The University Of Michigan Dynamically reconfigurable framework for a large-scale battery system
US9680320B2 (en) * 2011-05-16 2017-06-13 Hitachi Automotive Systems, Ltd. Battery control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266917A (ja) 2003-02-28 2004-09-24 Kobe Steel Ltd ハイブリッド駆動型建設機械の電力制御装置
JP2007165211A (ja) 2005-12-16 2007-06-28 Hitachi Vehicle Energy Ltd 蓄電池管理装置
JP2008104289A (ja) * 2006-10-19 2008-05-01 Hitachi Vehicle Energy Ltd 蓄電池管理装置およびそれを備える車両制御装置
WO2008111594A1 (ja) * 2007-03-07 2008-09-18 Toyota Jidosha Kabushiki Kaisha 二次電池の制御装置および車両
WO2011027449A1 (ja) * 2009-09-03 2011-03-10 トヨタ自動車株式会社 組電池の充電状態検出装置および充電状態検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2712046A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014160759A3 (en) * 2013-03-29 2015-04-23 Fca Us Llc Techniques for enhanced battery pack recharging
JP2015011983A (ja) * 2013-06-28 2015-01-19 現代自動車株式会社 バッテリパワーの制限方法
WO2015186327A1 (ja) * 2014-06-06 2015-12-10 パナソニックIpマネジメント株式会社 蓄電装置、及び電源装置
JP2020149784A (ja) * 2019-03-11 2020-09-17 株式会社豊田自動織機 電圧計測方法
JP7192581B2 (ja) 2019-03-11 2022-12-20 株式会社豊田自動織機 電圧計測方法

Also Published As

Publication number Publication date
JP5670556B2 (ja) 2015-02-18
CN103534897B (zh) 2016-11-09
EP2712046B1 (en) 2019-07-17
EP2712046A1 (en) 2014-03-26
US9680320B2 (en) 2017-06-13
US20140184169A1 (en) 2014-07-03
JPWO2012157065A1 (ja) 2014-07-31
EP2712046A4 (en) 2016-05-18
CN103534897A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5670556B2 (ja) 電池制御装置
JP5687340B2 (ja) 電池制御装置、電池システム
JP5819443B2 (ja) 電池制御装置、電池システム
JP5715694B2 (ja) 電池制御装置、電池システム
US10454283B2 (en) Battery system monitoring apparatus and electric storage device including the same
US10256513B2 (en) Battery system
JP6445190B2 (ja) 電池制御装置
EP1798100B1 (en) Battery management system
US9035610B2 (en) System and method for controlling output of a battery pack
EP2717415A1 (en) Electricity storage system
JP2014520498A (ja) 二次電池、それを用いたマルチパック並列構造の情報交換のための二次電池管理システム及び方法
JP2016091613A (ja) 電池システム及び容量回復方法
US20140184236A1 (en) Battery control apparatus and battery system
JP2009286292A (ja) 車両用の電源装置
JP7338126B2 (ja) 電池管理装置および電池管理方法
JP6171128B2 (ja) 電池制御システム、車両制御システム
KR101522475B1 (ko) 배터리 충전 방법 및 장치
JP2004111132A (ja) 電源装置
Olson et al. Lithium-Ion Batteries for Electric and hybrid Electric Vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514904

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011865666

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14118067

Country of ref document: US