WO2012155532A1 - 一种压路机的定向振动轮 - Google Patents

一种压路机的定向振动轮 Download PDF

Info

Publication number
WO2012155532A1
WO2012155532A1 PCT/CN2012/000643 CN2012000643W WO2012155532A1 WO 2012155532 A1 WO2012155532 A1 WO 2012155532A1 CN 2012000643 W CN2012000643 W CN 2012000643W WO 2012155532 A1 WO2012155532 A1 WO 2012155532A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft
eccentric
eccentric shaft
vibration
Prior art date
Application number
PCT/CN2012/000643
Other languages
English (en)
French (fr)
Inventor
陈启方
潘韶东
Original Assignee
池州腾虎机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 池州腾虎机械科技有限公司 filed Critical 池州腾虎机械科技有限公司
Publication of WO2012155532A1 publication Critical patent/WO2012155532A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/286Vibration or impact-imparting means; Arrangement, mounting or adjustment thereof; Construction or mounting of the rolling elements, transmission or drive thereto, e.g. to vibrator mounted inside the roll

Definitions

  • the invention relates to a directional vibration wheel of a road roller, belonging to the field of road construction machinery. Background technique
  • the working device is a vibrating wheel, and the centrifugal force generated by the high-speed rotation of the eccentric shaft installed at the center of the vibrating wheel drives the vibrating wheel to generate vibration, and applies periodic exciting force to the soil to achieve compaction of the soil.
  • a non-directional vibratory roller because the vibration direction of the vibrating wheel of the road roller is changed, it is called a non-directional vibratory roller.
  • This non-directional vibration has a shallow influence on the depth of soil compaction and has a throwing effect on the compacted surface.
  • the compaction of the compacted soil is difficult to increase, the quality of the compacted surface is also poor, and surface vibration waves are generated, causing environmental pollution.
  • Patent Application No. 2005100658746 (CN1673457A, page 4, line 1 - page 5, line 4, Figure 1, Figure 3, Figure 11) provides a multi-gear row synchronization of multiple eccentric shafts connected in series
  • the typical structure of the reverse drive device is applied to the embodiment of the directional vibration wheel composed of a plurality of eccentric shafts connected in series, but the large exciting force generated by the eccentric shaft during operation must pass through the vibration output bearing and then through the vibration output bearing seat (at least the installation
  • Two vibrating output bearings are transmitted to the drum housing to cause directional vibration of the vibrating wheel, because of the limitation of the bearing capacity of the existing bearing (optional as a vibration output bearing type), for heavy-duty, super-heavy (above 16 tons)
  • the directional vibration roller is often unable to select a suitable vibration output bearing.
  • the life of the vibration output bearing is also short, and the vibration noise is large, which also affects the compaction effect.
  • Patent Application No. 2005101131595 (CN1948625 A, page 6, line 5, page 7, line 3, Figure 7, Figure 11) provides a new type of directional vibratory roller vibrating wheel and its exciter transformation structure The technical effect is the same as that of the embodiment provided by (CN1673457A), and the new type of directional vibration press vibration provided by CN1948625A, page 4, last line, page 5, line 15, line 3, figure 10
  • a synchronous reverse driving device is added, which increases the length of the exciter and complicates the structure of the vibrating wheel. Summary of the invention
  • An object of the present invention is to provide a directional vibration wheel of a road roller which structurally greatly reduces the load of the vibration output bearing and reduces the number of vibration output bearings, so that the structure of the vibration wheel tends to be simple.
  • a directional vibration wheel of a road roller mainly comprises a frame, a steel wheel housing, a vibration motor, a plurality of eccentric shafts and a plurality of eccentric shafts connected in series with a double gear row synchronous reverse driving device, a vibration bearing and a vibration exciter housing
  • the vibration output bearing is characterized in that: the left eccentric shaft, the middle eccentric shaft and the vibration bearing arrangement thereof are installed in the left vibration bearing housing in the left exciter housing, and the left vibration bearing housing is fastened and mounted on the left exciter housing
  • the left exciter housing is directly assembled and fastened in the steel wheel housing, and the right eccentric shaft and its vibration bearing arrangement are installed in the right vibration bearing housing in the right exciter housing, and the right vibrating bearing housing is fastened and installed.
  • the right exciter housing becomes a rigid body, the right exciter housing is assembled in the vibration output bearing, and the vibration output bearing is mounted in the vibration output bearing housing.
  • the vibration output bearing housing and the steel wheel housing are manufactured or connected in the same.
  • the rigid body, the connecting plate is fixedly mounted on the right end of the right exciter housing, and the mounting plate and the connecting plate are fixedly connected.
  • the mounting plate and the connecting plate can also be made into the same part.
  • the connecting plate is connected to the frame through a damper, and the double gear row synchronous reverse driving device connected in series by the plurality of eccentric shafts is mainly composed of a driving gear, a bridge gear, a transmission gear, a synchronous transmission gear, a synchronous reverse gear,
  • the gear box, the first transmission shaft, the second transmission shaft, and the linkage shaft are composed.
  • the driving gear, the bridge gear, the transmission gear, the synchronous transmission gear, and the synchronous reverse gear are all assembled in the gear box, and the gear box positioning (accuracy transmission) is on the right.
  • the vibration bearing seat is mounted on the end of the right exciter housing, and the first transmission shaft is connected to the driving gear through the meshing pair, and the first transmission shaft is also meshed with the left eccentric shaft and the right eccentric shaft at the same time, more precisely:
  • the driving gear and the left eccentric shaft and the right eccentric shaft are connected by an engaging sub-connector such as a spline pair, a tooth or a tooth, and the second transmission shaft is connected by the meshing pair and the synchronous reverse gear, and the second transmission shaft is also eccentric with the center.
  • the shaft meshing connection more precisely: the spline pair, the tooth or the tooth meshing auxiliary connection is also used between the synchronous reverse gear and the corresponding intermediate eccentric shaft of the drive
  • the connector is connected, the linkage shaft connects the transmission gear and the synchronous transmission gear through the meshing pair to ensure synchronous synchronous rotation of the transmission gear and the synchronous transmission gear, and the eccentric moment vector of the left eccentric shaft is the same as the axial direction of the steel wheel housing.
  • the product of the distance of the centerline is equal to the product of the eccentric moment vector of the right eccentric axis and its distance from the axial centerline of the drum housing, and the eccentric moment vector of the intermediate eccentric shaft is collinear with the gravity vector of the vibrating wheel.
  • the directional vibration wheel of the roller is characterized in that: the sum of the modes of the eccentric moment vector of the left eccentric axis and the eccentric moment vector of the right eccentric axis is equal to the mode of the eccentric moment vector of the intermediate eccentric axis; The initial installation phase angles of the eccentric shaft, the right eccentric shaft and the intermediate eccentric shaft are equal.
  • the directional vibration wheel of the roller is characterized in that: the sum of the eccentric moment vectors of the left eccentric shaft, the right eccentric shaft and the intermediate eccentric shaft is collinear with the gravity vector of the vibration wheel.
  • the directional vibration wheel of the roller is characterized in that: the gravity vector of the vibration wheel is collinear with the axial center line of the steel wheel housing; and the eccentric moment vector of the left eccentric axis, the right eccentric axis and the intermediate eccentric axis And also collinear with the axial centerline of the drum housing.
  • a directional vibration wheel of the roller characterized in that: when the second transmission shaft and the synchronous reverse gear are manufactured in the same part, the spline pair, the tooth or the tooth is adopted between the second transmission shaft and the intermediate eccentric shaft
  • the clearance of the meshing pair connection must be increased to not less than the sum of the "state of motion" when the intermediate eccentric shaft rotates and the coaxiality error between the synchronous reverse gear and the intermediate eccentric shaft; when the second drive shaft and the intermediate eccentricity The shaft is made of the same part.
  • the gap between the second drive shaft and the synchronous reverse gear used for the engagement of the spline pairs, teeth or teeth is also increased to the above value.
  • a directional vibration wheel of the road roller characterized in that: when the first transmission shaft and the driving gear are manufactured in the same part, the spline pair and the tooth are adopted between the first transmission shaft and the left eccentric shaft and the right eccentric shaft.
  • the gap of the meshing pair connection such as the tooth must be increased to a sum of not less than the left eccentric axis, the "manipulation" amount when the right eccentric shaft rotates, and the coaxiality error between the driving gear and the left eccentric shaft and the right eccentric shaft.
  • the directional vibration wheel of the road roller is characterized in that: the linkage shaft can be made of the same part as the transmission gear or the synchronous transmission gear; as long as the synchronous rotation of the transmission gear and the synchronous transmission gear can be ensured, the transmission gear and the synchronous transmission Any connection between the gears can be selected; depending on the connection between the transmission gear and the synchronous transmission gear, the linkage shaft can sometimes be omitted; the transmission gear and the synchronous transmission gear can also be made into coaxial double gears.
  • the directional vibrating wheel of the roller is characterized in that: the middle eccentric shaft can divide the two eccentric shafts, that is, the first intermediate eccentric shaft and the second intermediate eccentric shaft, the first intermediate eccentric shaft and the second intermediate eccentric shaft.
  • the synchronous shaft is engaged with each other; the sum of the eccentric moments of the first intermediate eccentric shaft and the second intermediate eccentric shaft is equal to the eccentric moment of the intermediate eccentric shaft, and the eccentric moment vector of the first intermediate eccentric shaft is the same as the eccentric moment vector of the first intermediate eccentric shaft
  • the product of the distance of the axial centerline is equal to the product of the eccentric moment vector of the second intermediate eccentric shaft and its distance from the axial centerline of the drum housing.
  • the directional vibrating wheel of the road roller is characterized in that: the double gear row synchronous reverse driving device connected in series by the plurality of eccentric shafts can be divided into a driving gear device and a synchronous reverse gear device, and the synchronous reverse gear Positioning (accuracy transmission) to the gear box and the drive gear box are respectively installed at both ends of the right vibration bearing housing; the linkage shaft passes through the inner cavity of the right exciter housing to connect the transmission gear and the synchronous transmission gear through the meshing pair.
  • the directional vibration wheel of the road roller is characterized in that: the spur gear transmission in the synchronous reverse driving device of the double gear row connected in series with the plurality of eccentric shafts can be converted into a bevel gear transmission, which is mainly driven by a driving cone Gear, reverse bevel gear, synchronous reverse bevel gear, gear box, first transmission shaft, second transmission shaft, drive bevel gear, reverse bevel gear, synchronous reverse bevel gear are assembled in the gear box, first The drive shaft and the drive bevel gear are meshed and connected, the first transmission The shaft is also meshed with the right eccentric shaft and the left eccentric shaft at the same time.
  • the driving bevel gear is connected with the left eccentric shaft and the right eccentric shaft by a spline pair, a tooth or a tooth meshing auxiliary connector, and the driving bevel gear is driven.
  • Engaged with the variable-direction bevel gear, the reverse-direction bevel gear and the synchronous reverse bevel gear mesh, the synchronous reverse bevel gear and the second transmission shaft are meshed with each other, and the second transmission shaft is also meshed with the intermediate eccentric shaft, more precisely: synchronous anti- A meshing sub-connector such as a spline pair, a tooth or a tooth is also connected between the bevel gear and the intermediate eccentric shaft.
  • the load of the vibration output bearing is less than one quarter of the total centrifugal force generated by the three eccentric shafts, and the load subjected to the vibration output bearing is a non-directional load, which can not only conveniently select the appropriate vibration.
  • the output bearing, and the vibration output bearing has high reliability, long life, low noise of the vibration wheel, and good vibration compaction effect.
  • the structure of the invention is simple, efficient and reliable.
  • the structure provided by the invention can be applied to directional vibratory rollers of various weight classes such as light, medium, heavy and super heavy.
  • Fig. 1 is a schematic view showing a typical structure of a preferred embodiment of a directional vibration wheel of a road roller provided by the present invention.
  • Fig. 2 is a schematic diagram showing the structure of a shifting structure of a preferred embodiment of a directional vibration wheel of the roller provided by the present invention.
  • Figure 3 is a further schematic structural view of a preferred embodiment of a directional vibrating wheel of the roller provided by the present invention.
  • Fig. 4 is a schematic diagram showing the structure of a synchronous reverse driving device in which a plurality of eccentric shafts are connected in series in Fig. 3 (i.e., a double-gear row synchronous reverse driving device having a plurality of eccentric shafts connected in series).
  • the drive gear 1, the bridge gear 2, the transmission gear 3, the synchronous transmission gear 4, and the synchronous reverse gear 5 are all mounted in the gear case 6, and the first transmission shaft I is connected to the drive gear 1 through the meshing pair.
  • the second transmission shaft II is connected to the synchronous reverse gear 5 through the meshing pair, and the linkage shaft III connects the transmission gear 3 and the synchronous transmission gear 4 through the meshing pair to ensure the synchronous rotation of the transmission gear 3 and the synchronous transmission gear 4 (according to the transmission gear 3 and Different choices of the connection mode between the synchronous transmission gears 4, the linkage shaft ⁇ can sometimes be omitted), by the drive gear 1, the bridge gear 2, the transmission gear 3, the synchronous transmission gear 4, the synchronous reverse gear 5, the gear box 6, the first
  • the transmission shaft I, the second transmission shaft II, and the linkage shaft ⁇ together constitute a "double-gear row synchronous reverse drive device in which a plurality of eccentric shafts are connected in series" [see (CN1673457A), page 4, line 11, line 11 1], the gear case
  • the frame 23 is connected to ensure that the initial installation position of the gear box 6 is unchanged, and the left eccentric shaft 7 and the intermediate eccentric shaft 8 are mounted in the left vibration bearing housing 131 in the left exciter housing 14 through the vibration bearing 12, and the left vibration bearing
  • the seat 131 is fastened and mounted in the left exciter housing 14, the left exciter housing 14 is fixedly mounted in the steel wheel housing 21, and the intermediate eccentric shaft 8 is engaged by the second transmission shaft II with the meshing pair and the synchronous reverse gear. 5 connected, more precisely: the synchronous reverse gear 5 and its correspondingly driven intermediate eccentric shaft 8 are connected by a splined pair of teeth, teeth or teeth to isolate the "chapter" when the intermediate eccentric shaft 8 rotates.
  • the interference of the error on the synchronous reverse gear 5 (here, the second transmission shaft II uses the meshing mechanism to couple the synchronous reverse gear 5 and the intermediate eccentric shaft 8 in a meshing manner is the essence of the synchronous reverse gear 5 and its corresponding
  • the driving intermediate eccentric shaft 8 is connected by a spline pair of teeth, teeth or teeth, etc.; the vibration motor 11 is connected to the first transmission shaft I through the connector 10; the first transmission shaft I is simultaneously It is connected with the right eccentric shaft 9, the driving gear 1, the left eccentric shaft 7, and more precisely: the driving gear 1 and the left eccentric shaft 7 and the right eccentric shaft 9 are respectively engaged with the spline pair, the teeth or the teeth.
  • the sum of the eccentric moment vectors of the three eccentric axes that is, the left eccentric shaft 7, the right eccentric shaft 9 and the intermediate eccentric shaft 8, ME should be collinear with the gravity vector G of the vibrating wheel.
  • the gravity vector G of the vibrating wheel should be collinear with the axial center line 0-0 of the drum housing 21, and the sum of the eccentric moment vectors of the three eccentric shafts must also be 0. — 0 lines are collinear.
  • the product of the eccentric moment vector m 2 e 2 of the left eccentric shaft 7 and the distance L 2 of the line m 2 e 2 to 0 ⁇ 0 should be equal to the eccentric moment of the right eccentric shaft 9.
  • the vector m iei is the product of the distance from m iei to the 0 ⁇ 0 line, ie: m ⁇ L ⁇ mz L ⁇ and the eccentric moment vector m 3 e 3 of the intermediate eccentric axis 8 is collinear with the gravity vector (G) of the vibrating wheel.
  • a typical structural schematic diagram of a preferred embodiment of a directional vibrating wheel of the roller provided by the present invention shown in Fig. 1 when the second transmission shaft II and the synchronous reverse gear 5 are manufactured in the same part (here is a structure merger) , the function is combined), the gap between the second transmission shaft II and the intermediate eccentric shaft 8 used for the engagement of the spline pair, the tooth or the tooth, etc. must be increased enough to isolate the "chapter" when the intermediate eccentric shaft 8 rotates and The interference error between the synchronous reverse gear 5 and the intermediate eccentric shaft 8 interferes with the interference of the synchronous reverse gear 5, which of course increases the relative error of the phase angles of the three eccentric shaft rotations; It can be manufactured in the same part as the intermediate eccentric shaft 8.
  • the gap between the second transmission shaft II and the synchronous reverse gear 5 used for the engagement of the spline pair, the teeth or the teeth must be increased to the above value. It is also possible to manufacture the first transmission shaft I and the drive gear 1 (or the left eccentric shaft 7 or the right eccentric shaft 9) in the same part.
  • the linkage shaft III can be synchronized with the transmission gear 3
  • the moving gear 4 is made of the same part; as long as the synchronous co-rotation of the transmission gear 3 and the synchronous transmission gear 4, any connection between the transmission gear 3 and the synchronous transmission gear 4 can be selected; according to the transmission gear 3 and the synchronous transmission Different choices of the connection between the gears 4, the linkage shaft III can sometimes be omitted; the transmission gear 3 and the synchronous transmission gear 4 can also be made as coaxial double gears.
  • the preferred embodiment of the directional vibrating wheel of the road roller provided by the present invention is that the vibration motor 11 simultaneously drives the right eccentric shaft 9, the driving gear 1 and the left eccentric shaft 7 through the coupling 10 and the first transmission shaft I.
  • the right eccentric shaft 9 and the left eccentric shaft 7 are synchronously rotated in the same direction; the driving gear 1 drives the bridge gear 2, the bridge gear 2 drives the transmission gear 3, and transmits
  • the moving gear 3 drives the synchronous transmission gear 4 through the linkage shaft, the synchronous transmission gear 4 drives the synchronous reverse gear 5, and the synchronous reverse gear 5 drives the intermediate eccentric shaft 8 through the second transmission shaft II, so that the intermediate eccentric shaft 8 and the left eccentric shaft
  • the shaft 7 is synchronously reversely rotated, and the centrifugal force generated when the left eccentric shaft 7 and the intermediate eccentric shaft 8 are rotated at a high speed is directly transmitted to the drum housing 21 through the vibration bearing 12 and the left vibration bearing housing 131 and the left vibration housing 14 , because The eccentricity of the intermediate eccentric shaft 8 is equal to the sum of the eccentric distances
  • the centrifugal force generated by the three eccentric shafts on the 21 cancels each other in the horizontal direction or the initially selected direction, and is superimposed on each other in the vertical direction of the selected direction to generate the directional exciting force, so that the steel wheel casing 21 is directional vibration.
  • the vibrating wheel structure provided in Fig. 1 has a large load of the vibrating bearing 12 of the intermediate eccentric shaft 8, and the corresponding bearing has a short service life; a double-gear row synchronous reverse driving device in which a plurality of eccentric shafts connected in series as a whole is installed between the right eccentric shaft 9 and the intermediate eccentric shaft 8, so that the eccentric distance between the right eccentric shaft 9 and the left eccentric shaft 7 is excessively large.
  • a typical configuration of a preferred embodiment of a directional vibrating wheel of the roller shown in Fig. 1 is slightly modified, and a conversion structure of a preferred embodiment of the directional vibrating wheel of the roller is shown in Fig. 2.
  • Fig. 2 a typical configuration of a preferred embodiment of a directional vibrating wheel of the roller shown in Fig. 2.
  • the first intermediate eccentric shaft 81 and the second intermediate eccentric shaft 82 are used in place of the intermediate eccentric shaft 8 in Fig. 1, and the first intermediate eccentric shaft 81 and the second intermediate eccentric shaft 82 are meshed with a synchronous shaft IV.
  • the synchronous reverse gear box 61 and the drive gear box 62 are respectively positioned and installed at both ends of the right vibration bearing housing 132; the linkage shaft III passes through the inner cavity of the right exciter housing 15 to transmit the transmission gear 3 and the synchronous transmission through the meshing pair Gear 4 Connected to ensure synchronous rotation of the transmission gear 3 and the synchronous transmission gear 4, a preferred embodiment of a preferred embodiment of the directional vibration wheel of the roller shown in FIG. 2 and a directional vibration wheel of the roller shown in FIG.
  • Other technical features of the typical structure of the example are the same as the transmission principle.
  • FIG. 3 and FIG. 3 A typical embodiment of a preferred embodiment of a directional vibration wheel of the road roller shown in FIG.
  • a dual gear row synchronous reverse drive having a plurality of eccentric shafts connected in series is slightly modified, and a further alternative configuration of a preferred embodiment of a directional vibration wheel providing a roller is shown in FIG. In FIG. 3 and FIG.
  • the spur gear transmission in the double-gear row synchronous reverse driving device in which a plurality of eccentric shafts are connected in series is converted into a bevel gear transmission, which is mainly driven by the driving bevel gear 31, the variable-direction bevel gear 32, and the synchronous anti-phase
  • the bevel gear 33, the gear box 6, the first transmission shaft I, and the second transmission shaft II, the driving bevel gear 31, the reverse bevel gear 32, and the synchronous reverse bevel gear 33 are all assembled in the gear box 6, first
  • the drive shaft I and the drive bevel gear 31 are meshed, the drive bevel gear 31 and the reverse bevel gear 32 mesh, the reverse bevel gear 32 and the synchronous reverse bevel gear 33 mesh, and the synchronous reverse bevel gear 33 and the second drive shaft II mesh. connection.
  • the vibration motor 11 simultaneously drives the right eccentric shaft 9, the driving bevel gear 31 and the left eccentric shaft 7 through the coupling 10 and the first transmission shaft I.
  • the driving bevel gear 31 drives the reversing bevel gear 32 and the reversing bevel gear 32 to directly drive the synchronous anti-phase
  • the intermediate eccentric shaft 8 is driven to the bevel gear 33 and the synchronous reverse bevel gear 33 via the second transmission shaft II. More specifically: between the driving bevel gear 31 and the left eccentric shaft 7 and the right eccentric shaft 9, the synchronous reverse bevel gear 33 And the intermediate eccentric shaft 8 is connected by an engaging sub-connector such as a spline pair, a tooth or a tooth, and another modified structure of a preferred embodiment of the directional vibrating wheel of the roller shown in FIG. 3 is shown in FIG.
  • Other technical features and transmission principles of a typical construction of a preferred embodiment of a directional vibrating wheel of a road roller are the same.
  • the main functions of the synchronous reverse driving device and the three eccentric shafts connected in series by the plurality of eccentric shafts are: first, constant speed transmission rotation; Secondly, the "chapter" of the three eccentric shafts is isolated to interfere with the driving gears and the synchronous reverse gears of the synchronous reverse driving device in which the plurality of eccentric shafts are connected in series; third, eliminating the connection of the plurality of eccentric shafts in series The influence of the coaxiality error between the drive gear and the synchronous reverse gear and the three eccentric shafts in the synchronous reverse drive device on the drive gear and the synchronous reverse gear in the synchronous reverse drive device in which the plurality of eccentric shafts are connected in series. Therefore, a plurality of eccentric shafts connected in series with

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Description

说 明 书 一种压路机的定向振动轮 技术领域
本发明涉及压路机的一种定向振动轮, 属于筑路机械领域。 背景技术
现有的振动压路机, 其工作装置是振动轮, 由安装在振动轮中心的偏心轴高速旋转而 产生的离心力带动振动轮产生振动,对土壤施加周期性的激振力,达到对土壤压实的目的, 由于这种压路机振动轮的振动方向是变化的, 所以称之为非定向振动压路机, 这种非定向 振动对土壤压实的深度影响较浅、 且对压实表面有抛甩作用, 使被压实土壤的压实度难以 提高, 压实表面质量也较差, 且产生表面振动波, 造成环境污染。
专利申请号 2005100658746 (CN1673457A、 说明书第 4页第 1行——第 5页第 4行、 附图 1、 附图 3、 附图 11 ) 提供了一种多根偏心轴串联连接的双齿轮排同步反向驱动装置 典型结构应用于多根偏心轴串联连接组成的定向振动轮的实施例, 但由于其工作时偏心轴 产生的巨大激振力必须经由振动输出轴承再经振动输出轴承座 (至少安装两只振动输出轴 承)传递给钢轮壳体, 使振动轮产生定向振动, 因为现有轴承 (可选择作为振动输出轴承 类型的轴承)承载能力的限制, 对重型、 超重型(16吨级以上)定向振动压路机往往无法 选择合适的振动输出轴承, 而对轻、 中型定向振动压路机而言, 振动输出轴承的寿命也较 短, 且振动噪音大, 也影响了压实效果。
专利申请号 2005101131595 ( CN1948625 A , 说明书第 6页第 5行——第 7页第 3行、 附图 7、 附图 11 ) 提供了一种新型定向振动压路机振动轮及其激振器的变换结构, 其技术 效果和 (CN1673457A)提供的实施例一样, 而(CN1948625A、 说明书第 4页最后 1行一 一第 5页第 15行、 附图 3、 附图 10) 提供的新型定向振动压力机振动轮的典型结构实施 例中,虽然取消了振动输出轴承,但增加了一只同步反向驱动装置,增加了激振器的长度, 使振动轮结构趋于复杂。 发明内容
本发明的目的是提供压路机的一种定向振动轮, 从结构上大幅降低振动输出轴承的负 载且减少了振动输出轴承的数量, 使振动轮的结构趋于简单。
压路机的一种定向振动轮, 主要包括机架、 钢轮壳体、 振动马达、 多根偏心轴及多根 偏心轴串联连接的双齿轮排同步反向驱动装置、 振动轴承、 激振器壳体、 振动输出轴承, 其特征是: 将左偏心轴、 中间偏心轴及其振动轴承布置安装在左激振器壳体内的左振动轴 承座内, 左振动轴承座紧固安装在左激振器壳体内, 左激振器壳体直接装配紧固在钢轮壳 体内, 将右偏心轴及其振动轴承布置安装在右激振器壳体内的右振动轴承座内, 右振动轴 承座紧固安装在右激振器壳体内成为一刚性体, 右激振器壳体装配在振动输出轴承内, 振 动输出轴承再安装在振动输出轴承座内, 振动输出轴承座和钢轮壳体制造或连接成同一刚 性体, 连接板固定安装在右激振器壳体的右端, 安装板和连接板固定连接, 当然, 安装板 和连接板也可以制成同一零件, 连接板通过减振器和机架相连接, 所述的多根偏心轴串联 连接的双齿轮排同步反向驱动装置主要由驱动齿轮、 桥齿轮、 传动齿轮、 同步传动齿轮、 同步反向齿轮、 齿轮箱、 第一传动轴、 第二传动轴、 联动轴组成, 驱动齿轮、 桥齿轮、 传 动齿轮、 同步传动齿轮、 同步反向齿轮均装配在齿轮箱内, 齿轮箱定位 (精度传递) 在右 振动轴承座上并安装在右激振器壳体的端部, 第一传动轴通过啮合副和驱动齿轮相连, 第 一传动轴还同时和左偏心轴、 右偏心轴啮合连接, 更确切的: 驱动齿轮和左偏心轴、 右偏 心轴之间均采用花键副、 牙或齿等啮合副连接器连接, 第二传动轴通过啮合副和同步反向 齿轮相连, 第二传动轴还和中间偏心轴啮合连接, 更确切的: 同步反向齿轮和其对应驱动 的中间偏心轴之间亦采用花键副、 牙或齿等啮合副连接器连接, 联动轴通过啮合副将传动 齿轮和同步传动齿轮相连以保证传动齿轮和同步传动齿轮的同步同向旋转, 所述的左偏心 轴的偏心矩矢量同其到钢轮壳体的轴向中心线的距离的乘积等于右偏心轴的偏心矩矢量 同其到钢轮壳体的轴向中心线的距离的乘积, 且中间偏心轴的偏心矩矢量与振动轮的重力 矢量共线。
所述的压路机的一种定向振动轮, 其特征是: 左偏心轴的偏心矩矢量的模和右偏心轴 的偏心矩矢量的模之和等于中间偏心轴的偏心矩矢量的模; 同时, 左偏心轴、 右偏心轴与 中间偏心轴的初始安装相位角相等。
所述的压路机的一种定向振动轮, 其特征是: 左偏心轴、 右偏心轴和中间偏心轴的偏 心矩矢量之和与振动轮的重力矢量共线。 所述的压路机的一种定向振动轮, 其特征是: 振动轮的重力矢量与钢轮壳体的轴向中 心线共线; 且左偏心轴、 右偏心轴和中间偏心轴的偏心矩矢量之和亦与钢轮壳体的轴向中 心线共线。
所述的压路机的一种定向振动轮, 其特征是: 当第二传动轴和同步反向齿轮制造成同 一零件时, 第二传动轴和中间偏心轴之间采用的花键副、 牙或齿等啮合副连接的间隙须增 大至不小于中间偏心轴旋转时的 "章动"量及同步反向齿轮和中间偏心轴之间的同轴度误 差之和; 当第二传动轴和中间偏心轴制造成同一零件, 此时, 第二传动轴和同步反向齿轮 之间采用的花键副、 牙或齿等啮合副连接的间隙亦须增大至上述数值。
所述的压路机的一种定向振动轮, 其特征是: 当第一传动轴和驱动齿轮制造成同一零 件时, 第一传动轴和左偏心轴、 右偏心轴之间采用的花键副、 牙或齿等啮合副连接的间隙 须增大至不小于左偏心轴、 右偏心轴旋转时的 "章动"量及驱动齿轮和左偏心轴、 右偏心 轴之间的同轴度误差之和。
所述的压路机的一种定向振动轮, 其特征是: 联动轴可以和传动齿轮或同步传动齿轮 制成同一零件; 只要能保证传动齿轮和同步传动齿轮的同步同向旋转、 传动齿轮和同步传 动齿轮之间的任何连接方式都可选择; 根据传动齿轮和同步传动齿轮之间的连接方式的不 同选择、 联动轴有时可以省略; 传动齿轮和同步传动齿轮还可以制成同轴双联齿轮。
所述的压路机的一种定向振动轮, 其特征是: 中间偏心轴可以分体制造成两根偏心轴 即第一中间偏心轴和第二中间偏心轴, 第一中间偏心轴和第二中间偏心轴之间用同步轴啮 合连接; 第一中间偏心轴和第二中间偏心轴的偏心矩之和等于中间偏心轴的偏心矩, 且第 一中间偏心轴的偏心矩矢量同其到钢轮壳体的轴向中心线的距离的乘积等于第二中间偏 心轴的偏心矩矢量同其到钢轮壳体的轴向中心线的距离的乘积。
所述的压路机的一种定向振动轮, 其特征是: 所述的多根偏心轴串联连接的双齿轮排 同步反向驱动装置可分体制造成驱动齿轮装置和同步反向齿轮装置, 将同步反向齿轮箱和 驱动齿轮箱分别定位 (精度传递) 安装在右振动轴承座的两端部; 联动轴穿过右激振器壳 体的内腔通过啮合副将传动齿轮和同步传动齿轮连接。
所述的压路机的一种定向振动轮, 其特征是: 所述的多根偏心轴串联连接的双齿轮排 同步反向驱动装置中的圆柱齿轮传动可以变换为锥齿轮传动, 其主要由驱动锥齿轮、 变向 锥齿轮、 同步反向锥齿轮、 齿轮箱、 第一传动轴、 第二传动轴组成, 驱动锥齿轮、 变向锥 齿轮、 同步反向锥齿轮均装配在齿轮箱内, 第一传动轴和驱动锥齿轮啮合连接, 第一传动 轴还同时和右偏心轴、 左偏心轴啮合连接, 更确切的: 驱动锥齿轮与左偏心轴和右偏心轴 之间均采用花键副、 牙或齿等啮合副连接器连接, 驱动锥齿轮和变向锥齿轮啮合, 变向锥 齿轮和同步反向锥齿轮啮合, 同步反向锥齿轮和第二传动轴啮合连接, 第二传动轴还和中 间偏心轴啮合连接,更确切的: 同步反向锥齿轮与中间偏心轴之间亦采用花键副、牙或齿等 啮合副连接器连接。
本发明提供的技术方案, 其振动输出轴承的负载小于三根偏心轴产生的总离心力的四 分之一, 并且, 振动输出轴承所承受的载荷为非定向载荷, 这不仅能方便选择到合适的振 动输出轴承, 且振动输出轴承的可靠性高, 寿命长, 振动轮的噪音小, 振动压实效果也好。 本发明的结构简单, 高效可靠。
本发明提供的结构可应用在轻型、 中型、 重型、 超重型等各重量等级的定向振动压路 机上。 附图说明
图 1是本发明提供的压路机的一种定向振动轮的优选实施例的典型结构原理图。 图 2是本发明提供的压路机的一种定向振动轮的优选实施例的变换结构原理图。 图 3是本发明提供的压路机的一种定向振动轮的优选实施例的又一变换结构原理图。 图 4是图 3中的多根偏心轴串联连接的同步反向驱动装置结构 (即: 多根偏心轴串联 连接的双齿轮排同步反向驱动装置变换结构) 原理图。
附图中: 1一驱动齿轮 2—桥齿轮 3—传动齿轮 4一同步传动齿轮 5—同步 反向齿轮 6—齿轮箱 61—同步反向齿轮箱 62—驱动齿轮箱 I一第一传动轴 II一第二传动轴 III一联动轴 IV—同步轴 7—左偏心轴 8—中间偏心轴 81— 第一中间偏心轴 82—第二中间偏心轴 9一右偏心轴 10—联接器 11一振动马达 12—振动轴承 131—左振动轴承座 132—右振动轴承座 14一左激振器壳体 15— 右激振器壳体 16—振动输出轴承 17—振动输出轴承座 18—连接板 19一安装 板 20—减振器 21—钢轮壳体 22—左行走轴承 23—机架 31—驱动锥齿轮 32—变向锥齿轮 33—同步反向锥齿轮 0— 0: 钢轮壳体轴向中心线 N— N: 钢轮 回转中心线 miei—右偏心轴 9 的偏心矩矢量 m2e2—左偏心轴 7 的偏心矩矢量 m3e3—中间偏心轴 8的偏心矩矢量(图 2中的 m31e31、 m32e32的矢量和) m31e31—第一 中间偏心轴 81的偏心矩矢量 m32e32—第二中间偏心轴 82的偏心矩矢量 G "振动 轮的重力矢量 ME— miei 、m2e2 、m3e3的矢量和 L,_miei和 O— Ό线的距离 L2 — m2e2和 O— O线的距离 L31— m31e31和 O— O线的距离 L32— -m32e32和 0~0线的 距离 具体实施方式
如图 1所示, 驱动齿轮 1, 桥齿轮 2, 传动齿轮 3, 同步传动齿轮 4, 同步反向齿轮 5 均安装在齿轮箱 6内, 第一传动轴 I通过啮合副和驱动齿轮 1相连, 第二传动轴 II通过啮 合副和同步反向齿轮 5相连, 联动轴 III通过啮合副将传动齿轮 3和同步传动齿轮 4相连以 保证传动齿轮 3和同步传动齿轮 4的同步旋转 (根据传动齿轮 3和同步传动齿轮 4之间连 接方式的不同选择、 联动轴 ΠΙ有时可以省略), 由驱动齿轮 1、 桥齿轮 2、 传动齿轮 3、 同 步传动齿轮 4、 同步反向齿轮 5、 齿轮箱 6、 第一传动轴 I、 第二传动轴 II、 联动轴 ΠΙ共同 组成 "多根偏心轴串联连接的双齿轮排同步反向驱动装置" [参见 (CN1673457A) 说明书 第 4页, 第 1一 11行、 附图 1], 齿轮箱 6定位在右振动轴承座 132上并安装在右激振器壳 体 15的端部,右偏心轴 9通过振动轴承 12安装在右振动轴承座 132内,右振动轴承座 132 紧固安装在右激振器壳体 15内使之成为一刚性体, 右激振器壳体 15安装在振动输出轴承 16的内圈, 振动输出轴承 16安装在振动输出轴承座 17内, 振动输出轴承座 17和钢轮壳 体 21是同一刚性体, 连接板 18紧固在右激振器壳体 15的右端, 安装板 19固定在连接板 18上, 安装板 19通过减振器 20与机架 23相连, 以保证齿轮箱 6的初始安装位置不变, 左偏心轴 7、中间偏心轴 8通过振动轴承 12安装在左激振器壳体 14内的左振动轴承座 131 内, 左振动轴承座 131紧固安装在左激振器壳体 14内, 左激振器壳体 14固定安装在钢轮 壳体 21 内, 中间偏心轴 8通过第二传动轴 II采用啮合副与同步反向齿轮 5相连、 更确切 的: 同步反向齿轮 5和其对应驱动的中间偏心轴 8之间采用花键副、 牙或齿等啮合副连接 器连接以隔离中间偏心轴 8旋转时的 "章动" 以及同步反向齿轮 5和中间偏心轴 8之间的 同轴度误差对同步反向齿轮 5的干涉破坏 (此处, 第二传动轴 II采用啮合副把同步反向齿 轮 5和中间偏心轴 8啮合相连的技术特征的实质就是 "同步反向齿轮 5和其对应驱动的中 间偏心轴 8之间采用花键副、 牙或齿等啮合副连接器连接"); 振动马达 11通过连接器 10 采用啮合副和第一传动轴 I连接; 第一传动轴 I同时分别和右偏心轴 9、 驱动齿轮 1、 左 偏心轴 7相连接、 更确切的: 驱动齿轮 1和左偏心轴 7、 右偏心轴 9之间均采用花键副、 牙或齿等啮合副连接器连接以隔离左偏心轴 7和右偏心轴 9旋转时的 "章动" 以及驱动齿 轮 1和左偏心轴 7、 右偏心轴 9之间的同轴度误差对驱动齿轮 1的干涉破坏, 左行走轴承 22和振动输出轴承 16共同承担支撑机架 23的作用。
在图 1所示的本实用新型提供的压路机的一种定向振动轮的优选实施例典型结构原理 图中, 为保证三根偏心轴高速旋转时产生的离心力在水平方向上抵消, 应使: 左偏心轴 7 的偏心矩矢量的模和右偏心轴 9的偏心矩矢量的模之和等于中间偏心轴 8的偏心矩矢量的 模, gPlm^l+lmzezl叫 tn3e3|; 同时, 三根偏心轴即左偏心轴 7、 右偏心轴 9与中间偏心轴 8 的初始安装相位角相等。
为保证振动轮两端振幅相等, 三根偏心轴即左偏心轴 7、 右偏心轴 9和中间偏心轴 8 的偏心矩矢量之和 ME应与振动轮的重力矢量 G共线。
为保证振动轮两端压实功相等, 振动轮的重力矢量 G应与钢轮壳体 21的轴向中心线 0—0共线、 且三根偏心轴的偏心矩矢量之和 ME亦须与 0— 0线共线。
为保证振动轮不绕 0~0线摆动,应使左偏心轴 7的偏心矩矢量 m2e2同 m2e2到 0~0 线的距离 L2的乘积等于右偏心轴 9的偏心矩矢量 miei同 miei到 0~0线的距离 的乘积, 即: m^L^mz L^ 且中间偏心轴 8的偏心矩矢量 m3e3与振动轮的重力矢量(G)共线。
在图 1 所示的本发明提供的压路机的一种定向振动轮的优选实施例典型结构原理图 中, 当第二传动轴 II和同步反向齿轮 5制造成同一零件时 (此处是结构合并, 功能合并), 第二传动轴 II和中间偏心轴 8之间采用的花键副、 牙或齿等啮合副连接的间隙须增大至足 以隔离中间偏心轴 8旋转时的 "章动" 以及同步反向齿轮 5和中间偏心轴 8之间的同轴度 误差对同步反向齿轮 5的干涉破坏,当然,这会加大三根偏心轴旋转中相位角的相对误差; 第二传动轴 Π也可以和中间偏心轴 8制造成同一零件, 此时, 第二传动轴 II和同步反向齿 轮 5之间采用的花键副、 牙或齿等啮合副连接的间隙亦须增大至上述数值, 同样可以将第 一传动轴 I和驱动齿轮 1 (或左偏心轴 7或右偏心轴 9) 制造成同一零件, 这种等同变换 也是可行的, 联动轴 III可以和传动齿轮 3或同步传动齿轮 4制成同一零件; 只要能保证传 动齿轮 3和同步传动齿轮 4的同步同向旋转、 传动齿轮 3和同步传动齿轮 4之间的任何连 接方式都可选择; 根据传动齿轮 3和同步传动齿轮 4之间的连接方式的不同选择、 联动轴 III有时可以省略; 传动齿轮 3和同步传动齿轮 4还可以制成同轴双联齿轮。
本发明提供的一种压路机的定向振动轮的优选实施例的工作过程是:振动马达 11通过 联接器 10和第一传动轴 I同时驱动右偏心轴 9、 驱动齿轮 1和左偏心轴 7, 使右偏心轴 9 和左偏心轴 7作同步同向旋转; 驱动齿轮 1驱动桥齿轮 2、 桥齿轮 2驱动传动齿轮 3、 传 动齿轮 3通过联动轴 ΠΙ驱动同步传动齿轮 4、 同步传动齿轮 4驱动同步反向齿轮 5、 同步 反向齿轮 5通过第二传动轴 II驱动中间偏心轴 8, 使中间偏心轴 8作和左偏心轴 7同步反 向旋转, 左偏心轴 7和中间偏心轴 8高速旋转时产生的离心力通过振动轴承 12和左振动 轴承座 131、 左激振器壳体 14直接传递给钢轮壳体 21, 由于中间偏心轴 8的偏心距等于 左偏心轴 7和右偏心轴 9的偏心距之和; 又由于右偏心轴 9和中间偏心轴 8之间安装了齿 轮箱 6, 因此能够做到使 L1大于 L2, 即 miei小于 m2e2, 所以, 三根偏心轴产生的总离心 力的四分之三部分以上经过左振动轴承座 131和左激振器壳体 14直接传递给钢轮壳体 21, 同时, 右偏心轴 9高速旋转时产生的离心力经振动轴承 12、 右振动轴承座 132、 右激振器 壳体 15、 再通过振动输出轴承 16传递给振动输出轴承座 17即钢轮壳体 21, 右偏心轴 9 高速旋转时产生的离心力小于三根偏心轴产生的总离心力的四分之一, 所以, 在总激振力 相同的情况下, 本发明实施例中的振动输出轴承 16 的负载小于 CN1673457A 中 (CN1673457A, 说明书第 4页第 1行——第 5页第 4行、 附图 1、 附图 3、 附图 11 )提供 的技术方案及 CN1948625A中(CN1948625A、说明书第 4页最后 1行——第 5页第 15行、 附图 3、 附图 10) 提供的的技术方案的二分之一, 三根偏心轴高速旋转时产生的离心力经 两条路径同步传递到钢轮壳体 21 , 在钢轮壳体 21上三根偏心轴产生的离心力在水平方向 或初始选定方向上相互抵消, 在该选定方向的垂直方向上相互叠加, 产生定向激振力, 使 钢轮壳体 21作定向振动。
由于超重型振动压路机要求的激振力较大, 在实际应用中, 图 1提供的振动轮结构, 存在中间偏心轴 8的振动轴承 12的载荷较大, 相应的轴承寿命较短的问题; 同时, 作为 整体的多根偏心轴串联连接的双齿轮排同步反向驱动装置安装在右偏心轴 9和中间偏心轴 8之间, 使得右偏心轴 9和左偏心轴 7的偏心距相差过大, 因此, 将图 1所示的压路机的 一种定向振动轮的优选实施例的典型结构稍作改变, 提供一种压路机的定向振动轮的优选 实施例的变换结构如图 2所示。 在图 2中, 用第一中间偏心轴 81和第二中间偏心轴 82代 替图 1中的中间偏心轴 8, 第一中间偏心轴 81和第二中间偏心轴 82之间用同步轴 IV啮合 连接,则 m3e3= m3le3l+ m32e32 ; 为了保证第一中间偏心轴 81和第二中间偏心轴 82的合偏 心距 m3e3与振动轮的重力矢量 G共线, 必须使: m31e31 L31= m32e32 L32 ; 同时, 还可以将 多根偏心轴串联连接的双齿轮排同步反向驱动装置分体制造成驱动齿轮装置和同步反向 齿轮装置, 将同步反向齿轮箱 61和驱动齿轮箱 62分别定位安装在右振动轴承座 132的两 端部; 联动轴 III穿过右激振器壳体 15的内腔通过啮合副将传动齿轮 3和同步传动齿轮 4 连接以保证传动齿轮 3和同步传动齿轮 4的同步旋转, 图 2所示的压路机的一种定向振动 轮的优选实施例的变换结构与图 1所示的压路机的一种定向振动轮的优选实施例的典型结 构的其他技术特征和传动原理相同。
为了减少多根偏心轴串联连接的双齿轮排同步反向驱动装置中齿轮传动的级数, 提高 传动效率, 将图 1所示的压路机的一种定向振动轮的优选实施例的典型结构中的多根偏心 轴串联连接的双齿轮排同步反向驱动装置稍作改变, 提供压路机的一种定向振动轮的优选 实施例的又一变换结构如图 3所示。在图 3和图 4 中, 多根偏心轴串联连接的双齿轮排同 步反向驱动装置中的圆柱齿轮传动变换成锥齿轮传动, 其主要由驱动锥齿轮 31、变向锥齿 轮 32、 同步反向锥齿轮 33、 齿轮箱 6、 第一传动轴 I、 第二传动轴 II组成, 驱动锥齿轮 31、 变向锥齿轮 32、 同步反向锥齿轮 33、 均装配在齿轮箱 6内, 第一传动轴 I和驱动锥 齿轮 31啮合连接, 驱动锥齿轮 31和变向锥齿轮 32啮合, 变向锥齿轮 32和同步反向锥齿 轮 33啮合, 同步反向锥齿轮 33和第二传动轴 II啮合连接。 振动马达 11通过联接器 10和 第一传动轴 I同时驱动右偏心轴 9、 驱动锥齿轮 31和左偏心轴 7, 驱动锥齿轮 31驱动变 向锥齿轮 32、 变向锥齿轮 32直接驱动同步反向锥齿轮 33、 同步反向锥齿轮 33通过第二 传动轴 II驱动中间偏心轴 8、 更确切的: 驱动锥齿轮 31与左偏心轴 7和右偏心轴 9之间、 同步反向锥齿轮 33与中间偏心轴 8之间均采用花键副、牙或齿等啮合副连接器连接, 图 3 所示的压路机的一种定向振动轮的优选实施例的又一变换结构与图 1所示的压路机的一种 定向振动轮的优选实施例的典型结构的其他技术特征和传动原理相同。
在图 1所示的一种定向振动轮的优选实施例的典型结构原理图和图 2所示的一种定向 振动轮的优选实施例的变换结构原理图以及图 3所示的压路机的一种定向振动轮的优选实 施例的又一变换结构原理图中, 多根偏心轴串联连接的同步反向驱动装置和三根偏心轴之 间的连接器的主要作用是: 第一, 恒速传递转动; 第二, 隔离三根偏心轴旋转时的 "章动" 对多根偏心轴串联连接的同步反向驱动装置中的驱动齿轮及同步反向齿轮的干涉; 第三, 消除多根偏心轴串联连接的同步反向驱动装置中的驱动齿轮及同步反向齿轮和三根偏心 轴之间的同轴度误差对多根偏心轴串联连接的同步反向驱动装置中的驱动齿轮及同步反 向齿轮的影响。 所以, 多根偏心轴串联连接的同步反向驱动装置 (驱动齿轮及同步反向齿 轮) 和三根偏心轴之间必须采用花键副、 牙或齿等啮合副 (须设置一定的啮合副间隙) 连 接器连接。
本发明的实现, 按附图提供的实施例按常规的机械制造工艺即可。

Claims

权利 要求 书
1、 压路机的一种定向振动轮, 主要包括机架、 钢轮壳体、 振动马达、 多根偏心轴及 多根偏心轴串联连接的双齿轮排同步反向驱动装置、 振动轴承、 激振器壳体、 振动输出轴 承, 其特征是: 将左偏心轴 (7)、 中间偏心轴 (8) 及其振动轴承 (12) 布置安装在左激 振器壳体 (14) 内的左振动轴承座 (131 ) 内, 左振动轴承座 (131 ) 紧固安装在左激振器 壳体 (14) 内, 左激振器壳体 (14) 直接装配紧固在钢轮壳体 (21 ) 内, 将右偏心轴 (9) 及其振动轴承 (12) 布置安装在右激振器壳体 (15 ) 内的右振动轴承座 (132) 内, 右振 动轴承座 (132) 紧固安装在右激振器壳体 (15 ) 内成为一刚性体, 右激振器壳体 (15) 装配在振动输出轴承 (16) 内, 振动输出轴承 (16) 再安装在振动输出轴承座 (17) 内, 振动输出轴承座 (17) 和钢轮壳体 (21 ) 制造或连接成同一刚性体, 连接板 (18) 固定安 装在右激振器壳体 (15) 的右端, 安装板 (19) 和连接板 (18) 固定连接, 当然, 安装扳
( 19)和连接板(18)也可以制成同一零件, 连接板(19)通过减振器(20)和机架(23) 相连接, 所述的多根偏心轴串联连接的双齿轮排同步反向驱动装置主要由驱动齿轮 (1 )、 桥齿轮 (2)、 传动齿轮 (3 )、 同步传动齿轮 (4)、 同步反向齿轮 (5)、 齿轮箱 (6)、 第一 传动轴 ( I )、 第二传动轴 (11 )、 联动轴 (ΙΠ) 组成, 驱动齿轮 (1 )、 桥齿轮 (2)、 传动 齿轮 (3)、 同步传动齿轮 (4)、 同步反向齿轮 (5) 均装配在齿轮箱 (6) 内, 齿轮箱 (6) 定位在右振动轴承座 (132) 上并安装在右激振器壳体 (15) 的端部, 第一传动轴 ( I ) 通过啮合副和驱动齿轮 (1 ) 相连, 第一传动轴 ( I ) 还同时和左偏心轴 (7)、 右偏心轴
(9) 啮合连接, 更确切的: 驱动齿轮 (1 )和左偏心轴 (7)、 右偏心轴 (9) 之间均采用 花键副、 牙或齿等啮合副连接器连接, 第二传动轴 (Π ) 通过啮合副和同步反向齿轮 (5) 相连, 第二传动轴 (II ) 还和中间偏心轴 (8) 啮合连接, 更确切的: 同步反向齿轮 (5) 和其对应驱动的中间偏心轴 (8) 之间亦采用花键副、 牙或齿等啮合副连接器连接, 联动 轴 (III) 通过啮合副将传动齿轮 (3) 和同步传动齿轮 (4) 相连以保证传动齿轮 (3 ) 和 同步传动齿轮 (4) 的同步同向旋转, 所述的左偏心轴 (7) 的偏心矩矢量同其到钢轮壳体
(21 ) 的轴向中心线 (0~0) 的距离的乘积等于右偏心轴 (9) 的偏心矩矢量同其到钢轮 壳体 (21 ) 的轴向中心线 (0—0) 的距离的乘积, 即: (m2e2) (L2) = (m,ei ) (L, )、 且 中间偏心轴 (8) 的偏心矩矢量 (m3e3) 与振动轮的重力矢量 (G) 共线。
2、 如权利要求 1所述的压路机的一种定向振动轮, 其特征是: 左偏心轴 (7) 的偏心 矩矢量的模和右偏心轴 (9) 的偏心矩矢量的模之和等于中间偏心轴 (8) 的偏心矩矢量的 模, 即 (|m2e2| ) + (|m,e,|) = (|m3e3|); 同时, 左偏心轴 (7)、 右偏心轴 (9) 与中间偏心 轴 (8) 的初始安装相位角相等。
3、 如权利要求 1 所述的压路机的一种定向振动轮, 其特征是: 左偏心轴 (7)、 右偏 心轴 (9) 和中间偏心轴 (8) 的偏心矩矢量之和 (ME) 与振动轮的重力矢量 (G) 共线。
4、如权利要求 1所述的压路机的一种定向振动轮,其特征是:振动轮的重力矢量(G) 与钢轮壳体 (21 ) 的轴向中心线 (0— 0) 共线; 且左偏心轴 (7)、 右偏心轴 (9)和中间 偏心轴 (8) 的偏心矩矢量之和 (ME) 亦与钢轮壳体 (21 ) 的轴向中心线 (0— 0)共线。
5、 如权利要求 1 所述的压路机的一种定向振动轮, 其特征是: 当第二传动轴 (II ) 和同步反向齿轮 (5)制造成同一零件时, 第二传动轴 (Π ) 和中间偏心轴 (8)之间采用 的花键副、 牙或齿等啮合副连接的间隙须增大至不小于中间偏心轴 (8) 旋转时的 "章动" 量及同步反向齿轮 (5) 和中间偏心轴 (8) 之间的同轴度误差之和; 当第二传动轴 (Π ) 和中间偏心轴 (8) 制造成同一零件, 此时, 第二传动轴 (Π ) 和同步反向齿轮 (5) 之间 采用的花键副、 牙或齿等啮合副连接的间隙亦须增大至上述数值。
6、 如权利要求 1 所述的压路机的一种定向振动轮, 其特征是: 当第一传动轴 ( I ) 和驱动齿轮 (1 ) 制造成同一零件时, 第一传动轴 ( I ) 和左偏心轴 (7)、 右偏心轴 (9) 之间采用的花键副、 牙或齿等啮合副连接的间隙须增大至不小于左偏心轴 (7)、 右偏心轴 (9) 旋转时的 "章动"量及驱动齿轮 (1 ) 和左偏心轴 (7)、 右偏心轴 (9) 之间的同轴 度误差之和。
7、 如权利要求 1 所述的压路机的一种定向振动轮, 其特征是: 联动轴 (III) 可以和 传动齿轮 (3) 或同步传动齿轮 (4) 制成同一零件; 只要能保证传动齿轮 (3)和同步传 动齿轮 (4) 的同步同向旋转、 传动齿轮 (3 ) 和同步传动齿轮 (4) 之间的任何连接方式 都可选择; 根据传动齿轮 (3) 和同步传动齿轮 (4) 之间的连接方式的不同选择、 联动轴 (III) 有时可以省略; 传动齿轮 (3) 和同步传动齿轮 (4) 还可以制成同轴双联齿轮。
8、 如权利要求 1所述的压路机的一种定向振动轮, 其特征是: 中间偏心轴 (8) 可以 分体制造成两根偏心轴即第一中间偏心轴 (81)和第二中间偏心轴 (82), 第一中间偏心 轴(81)和第二中间偏心轴(82)之间用同步轴 (IV)啮合连接; 且第一中间偏心轴(81) 和第二中间偏心轴 (82) 的偏心矩之和等于中间偏心轴 (8) 的偏心矩、 第一中间偏心轴 (81)的偏心矩矢量同其到钢轮壳体(21)的轴向中心线(0~0)的距离的乘积等于第二 中间偏心轴(82)的偏心矩矢量同其到钢轮壳体(21)的轴向中心线(0~0)的距离的乘 禾只, 即: (m3e3) = (m3ie3i) + (m32e32) 禾口 (m3ie3i L3i) = (m32e32L32)。
9、 如权利要求 1 所述的压路机的一种定向振动轮, 其特征是: 所述的多根偏心轴串 联连接的双齿轮排同步反向驱动装置可分体制造成驱动齿轮装置和同步反向齿轮装置, 将 同步反向齿轮箱 (61)和驱动齿轮箱 (62)分别定位安装在右振动轴承座 (132) 的两端 部; 联动轴 (ΙΠ) 穿过右激振器壳体 (15) 的内腔通过啮合副将传动齿轮 (3)和同步传 动齿轮 (4)连接。
10、 如权利要求 1所述的压路机的一种定向振动轮, 其特征是: 所述的多根偏心轴串 联连接的双齿轮排同步反向驱动装置中的圆柱齿轮传动可以变换为锥齿轮传动, 其主要由 驱动锥齿轮 (31)、 变向锥齿轮 (32)、 同步反向锥齿轮 (33)、 齿轮箱 (6)、 第一传动轴 ( I )、 第二传动轴 (Π) 组成, 驱动锥齿轮 (31)、 变向锥齿轮 (32)、 同步反向锥齿轮 (33)均装配在齿轮箱 (6) 内, 第一传动轴 ( I ) 和驱动锥齿轮 (31)啮合连接, 第一 传动轴 ( I ) 还同时和右偏心轴 (9)、 左偏心轴 (7) 啮合连接, 更确切的: 驱动锥齿轮 (31)与左偏心轴(7)和右偏心轴(9)之间均采用花键副、 牙或齿等啮合副连接器连接, 驱动锥齿轮 (31)和变向锥齿轮 (32) 啮合, 变向锥齿轮(32)和同步反向锥齿轮 (33) 啮合, 同步反向锥齿轮 (33)和第二传动轴 (Π)啮合连接, 第二传动轴 (II)还和中间 偏心轴 (8) 啮合连接, 更确切的: 同步反向锥齿轮 (33)与中间偏心轴 (8)之间亦采用 花键副、 牙或齿等啮合副连接器连接。
PCT/CN2012/000643 2011-05-16 2012-05-14 一种压路机的定向振动轮 WO2012155532A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110124891.8 2011-05-16
CN201110124891 2011-05-16

Publications (1)

Publication Number Publication Date
WO2012155532A1 true WO2012155532A1 (zh) 2012-11-22

Family

ID=47153118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000643 WO2012155532A1 (zh) 2011-05-16 2012-05-14 一种压路机的定向振动轮

Country Status (2)

Country Link
CN (1) CN102787544B (zh)
WO (1) WO2012155532A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106245500A (zh) * 2016-09-09 2016-12-21 合肥永安绿地工程机械有限公司 一种垂直定向振动轮系统
CN111424502A (zh) * 2020-04-10 2020-07-17 长沙宁湖机械设备有限公司 一种用于压路机的可变激振滚压轮

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758013B (zh) * 2014-01-15 2015-12-16 柳工无锡路面机械有限公司 用于多功能振动轮上的激振器及其调节方法
CN103758014B (zh) * 2014-01-15 2016-02-17 柳工无锡路面机械有限公司 具有定向振动和圆周振荡的多功能振动轮及其调节方法
CN103993539B (zh) * 2014-05-26 2016-04-13 池州腾虎机械科技有限公司 压路机激振器间及其与同步同向驱动齿轮箱间的定位结构
CN103993540A (zh) * 2014-05-28 2014-08-20 池州腾虎机械科技有限公司 一种多根偏心轴与其同步驱动装置的连接结构
CN106311585B (zh) * 2015-06-26 2018-11-16 武汉金路得科技有限公司 一种3x型直线振动结构
DE102015009698B4 (de) * 2015-07-30 2017-05-04 Schenck Process Europe Gmbh Richterreger und Schwingmaschine mit Richterreger
CN110055865B (zh) * 2019-04-29 2024-02-27 洛阳优特威车业有限公司 一种压路机钢轮及压路机
CN111794053A (zh) * 2020-07-02 2020-10-20 柳工无锡路面机械有限公司 一种振动压路机的柔性激振器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4210507A1 (de) * 1991-04-03 1992-11-05 Josef Cron Vorrichtung zur einstellung von wenigstens zwei auf unwuchtwellen umlaufenden unwuchten in ihrer unwuchtlage zueinander
US5934824A (en) * 1995-08-08 1999-08-10 Wacker Werke Gmbh & Co. Kg Vibration roller with at least one roll tire and a double shaft vibration generator arranged therein
CN1948624A (zh) * 2005-10-15 2007-04-18 陈启方 一种定向振动压路机的振动轮
CN101302736A (zh) * 2008-07-07 2008-11-12 合肥永安绿地工程机械有限公司 振动压路机的振动轮
EP2147725A1 (en) * 2008-07-24 2010-01-27 Ammann Czech Republic, a.s. Compaction roller vibratory mechanism
CN102021876A (zh) * 2009-09-12 2011-04-20 合肥腾虎机械科技有限公司 一种振动压路机的定向振动轮

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE514877E5 (sv) * 1998-07-13 2011-06-14 Rune Sturesson Roterbar excenteranordning avpassad för steglös omställning av vibrationsamplituden
CZ20021680A3 (cs) * 2002-05-15 2004-01-14 Stavostroj A.S. Běhoun vibračního válce obsahující vibrační mechanismus s usměrněnou vibrací
SE526893C2 (sv) * 2004-03-19 2005-11-15 Dynapac Compaction Equip Ab Anordning för vibrering av en vältvals
CN100529477C (zh) * 2004-10-30 2009-08-19 陈启方 多根偏心轴并联安装的同步驱动机构
CN1673457B (zh) * 2005-04-22 2011-06-15 合肥腾虎机械科技有限公司 多根偏心轴串联连接的同步反向驱动装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4210507A1 (de) * 1991-04-03 1992-11-05 Josef Cron Vorrichtung zur einstellung von wenigstens zwei auf unwuchtwellen umlaufenden unwuchten in ihrer unwuchtlage zueinander
US5934824A (en) * 1995-08-08 1999-08-10 Wacker Werke Gmbh & Co. Kg Vibration roller with at least one roll tire and a double shaft vibration generator arranged therein
CN1948624A (zh) * 2005-10-15 2007-04-18 陈启方 一种定向振动压路机的振动轮
CN101302736A (zh) * 2008-07-07 2008-11-12 合肥永安绿地工程机械有限公司 振动压路机的振动轮
EP2147725A1 (en) * 2008-07-24 2010-01-27 Ammann Czech Republic, a.s. Compaction roller vibratory mechanism
CN102021876A (zh) * 2009-09-12 2011-04-20 合肥腾虎机械科技有限公司 一种振动压路机的定向振动轮

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106245500A (zh) * 2016-09-09 2016-12-21 合肥永安绿地工程机械有限公司 一种垂直定向振动轮系统
CN111424502A (zh) * 2020-04-10 2020-07-17 长沙宁湖机械设备有限公司 一种用于压路机的可变激振滚压轮
CN111424502B (zh) * 2020-04-10 2021-11-05 山东立派机械集团有限公司 一种用于压路机的可变激振滚压轮

Also Published As

Publication number Publication date
CN102787544B (zh) 2017-08-25
CN102787544A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2012155532A1 (zh) 一种压路机的定向振动轮
CN102985616B (zh) 用于压实地面的压实设备和方法
CN1948624B (zh) 一种定向振动压路机的振动轮
US20150152606A1 (en) Vibration Exciter For A Vibration Compactor And Construction Machine Having Such A Vibration Exciter
JP5380234B2 (ja) 連続調整可能な振動振幅及び/又は起振力を有する、円振動又は方向性振動を発生する装置
WO2017050102A1 (zh) 动力驱动系统及具有其的车辆
CN107916608B (zh) 垂直振动压路机的激振装置
WO2006047932A1 (fr) Mécanisme d'entraînement synchronisé pour une pluralité d'arbres excentriques installés en parallèle
WO2012068711A1 (zh) 偏心力矩无级可调振动机构
CN201003571Y (zh) 三齿轮板内啮合少齿差行星齿轮传动装置
CN103726433A (zh) 一种压路机的振荡振动轮
CN104487735B (zh) 扭矩传递装置
CN103015421B (zh) 一种液压振动锤装置的激振方法
CN101982674A (zh) 一种环式减速器
CN102080707A (zh) 两端输出减速传动装置
CN102747669B (zh) 一种可转换为垂直或振荡或复合振动的压路机振动轮
CN105508515A (zh) 同轴直联减速机
CN207747745U (zh) 一种电动车轮电机悬置的齿轮传动装置
CN202644355U (zh) 一种可转换为圆振动或振荡或复合振动的压路机振动轮
CN104790281A (zh) 一种多级振幅振荡轮及振荡压路机
CN1948625B (zh) 新型定向振动压路机的振动轮
CN100464089C (zh) 新型环板式rv传动装置
CN203960716U (zh) 一种压路机传动齿轮箱结构的定向振动轮系统
CN102747668B (zh) 一种可转换为圆振动或振荡或复合振动的压路机振动轮
CN105508516A (zh) 一种直交直联减速机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786112

Country of ref document: EP

Kind code of ref document: A1