WO2012153966A2 - 복합시트 및 이를 이용한 디스플레이 기판 - Google Patents

복합시트 및 이를 이용한 디스플레이 기판 Download PDF

Info

Publication number
WO2012153966A2
WO2012153966A2 PCT/KR2012/003575 KR2012003575W WO2012153966A2 WO 2012153966 A2 WO2012153966 A2 WO 2012153966A2 KR 2012003575 W KR2012003575 W KR 2012003575W WO 2012153966 A2 WO2012153966 A2 WO 2012153966A2
Authority
WO
WIPO (PCT)
Prior art keywords
composite sheet
glass
binder
group
oxetane
Prior art date
Application number
PCT/KR2012/003575
Other languages
English (en)
French (fr)
Other versions
WO2012153966A3 (ko
Inventor
김영권
이상걸
정은환
김성국
전현애
김윤주
탁상용
박숙연
강경남
강소영
Original Assignee
제일모직 주식회사
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사, 한국생산기술연구원 filed Critical 제일모직 주식회사
Priority to US14/116,966 priority Critical patent/US20140187111A1/en
Publication of WO2012153966A2 publication Critical patent/WO2012153966A2/ko
Publication of WO2012153966A3 publication Critical patent/WO2012153966A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/273Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2992Coated or impregnated glass fiber fabric

Definitions

  • the present invention relates to a composite sheet and a display substrate using the same. More specifically, the present invention relates to a composite sheet having excellent flexibility and excellent heat resistance, optical properties and processability by applying an oxetane- (meth) acrylic compound having a specific structure as a binder and a display substrate using the same.
  • Glass which is excellent in heat resistance and transparency and has a low coefficient of linear expansion is widely used as a liquid crystal display element, an organic EL display element substrate, a color filter substrate, a solar cell substrate, and the like.
  • plastic materials have been spotlighted as materials for replacing glass substrates.
  • plastic substrates such as polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene naphthalate (PEN), polyarylate (PAR), polycarbonate (PC), and polyimide (PI) are used as plastic substrates.
  • PET polyethylene terephthalate
  • PES polyether sulfone
  • PEN polyethylene naphthalate
  • PAR polyarylate
  • PC polycarbonate
  • PI polyimide
  • Japanese Laid-Open Patent Publication No. 2004-51960 discloses a transparent compound optical fiber made from an alicyclic epoxy resin containing an ester group, a bisphenol A type epoxy resin, an acid anhydride-based curing agent and a catalyst and a glass fiber cloth. Sheets are disclosed.
  • Japanese Laid-Open Patent Publication No. 2005-146258 discloses a transparent composite optical sheet made from an alicyclic epoxy resin containing an ester group, an epoxy resin having a dicyclopentadiene skeleton, an acid anhydride-based curing agent, and a glass fiber cloth.
  • -233851 discloses a transparent substrate made of a bisphenol A epoxy resin, a bisphenol A novolac epoxy resin, an acid anhydride curing agent and a glass fiber cloth.
  • the composite sheets disclosed in the patent have a problem in that Tg appears in a section of 145 to 160 ° C. lower than the process temperature, thereby degrading heat resistance and decreasing processability.
  • An object of the present invention is to provide a composite sheet excellent in flexibility, transparency, heat resistance, and excellent resistance to impact, tension, warpage, and the like.
  • Another object of the present invention is to provide a composite sheet having a low coefficient of thermal expansion and excellent light transmittance.
  • Still another object of the present invention is to provide a composite sheet having low viscosity and excellent processability and wetting in a glass fiber compounding process.
  • Still another object of the present invention is to provide a composite sheet having excellent heat resistance since Tg does not appear in a process temperature section.
  • Another object of the present invention is to provide a composite sheet capable of adjusting the curing rate.
  • Still another object of the present invention is to provide a display substrate that can be miniaturized, thinned, lightweight, and low cost using the composite sheet.
  • the composite sheet is characterized in that it comprises an oxetane- (meth) acrylic compound represented by the formula (1) as a binder:
  • R 1 is hydrogen, methyl group or ethyl group
  • R 2 is hydrogen or methyl group
  • the composite sheet includes a binder and a glass filler containing the oxetane- (meth) acrylic compound.
  • the composite sheet may include 100 parts by weight of the binder and about 40 to about 300 parts by weight of the glass filler. Preferably from about 60 to about 250 parts by weight.
  • the glass filler includes one or more from the group consisting of glass fibers, glass fiber cloth, glass fabric, glass nonwoven fabric, glass mesh, glass beads, glass powder and glass flakes. can do.
  • the binder may further comprise a cationically polymerizable compound.
  • the cationically polymerizable compound may include one or more from the group consisting of an epoxy group-containing compound, an oxetane group-containing compound, a vinyl ether group-containing compound, and a caprolactam group-containing compound.
  • the binder may have a refractive index difference of about 0.01 or less from the glass filler.
  • the oxetane- (meth) acrylic compound represented by Formula 1 may have a molecular weight / reactive functional equivalent of about 110 g / eq or less, preferably about 100 g / eq or less.
  • the composite sheet may further include a cationic initiator.
  • the composite sheet is The glass transition temperature may be about 150 ° C. or higher, for example, about 175 ° C. or higher, preferably about 200 ° C. or higher. In another embodiment, the composite sheet may not exhibit a glass transition point at about 250 ° C. or less (Tg-less).
  • Another aspect of the present invention relates to a display substrate including the composite sheet.
  • the thermal expansion coefficient (a1) specified as TMA at 5 ° C./min at 30 ° C. to 250 ° C. may be about 30 ppm / ° C. or less, preferably about 20 ppm / ° C. or less.
  • the present invention is excellent in flexibility, transparency, heat resistance, excellent resistance to impact, tensile, bending, etc., low coefficient of thermal expansion, excellent light transmittance, low viscosity, excellent processability in the glass fiber compounding process, curing rate control
  • This composite sheet is provided, and the composite sheet has the effect of providing a display substrate that can be miniaturized, thinned, lightweight, and at low cost.
  • Example 1 is a TMA graph of the composite sheet prepared in Example 1.
  • Example 2 is a TMA graph after the heat treatment of the composite sheet prepared in Example 1.
  • the composite sheet of the present invention includes a binder and a glass filler.
  • the binder includes an oxetane- (meth) acrylic compound represented by Formula 1 below:
  • R 1 is hydrogen, methyl group or ethyl group
  • R 2 is hydrogen or methyl group
  • the oxetane- (meth) acrylic compound of the present invention has a single oxetane group at one end and a double bond asymmetric structure at the other end. Since the oxetane- (meth) acrylic compound has a low molecular weight, the concentration of the reactive functional group in the composite sheet is increased. As a result, the crosslinking density increases during curing, thereby increasing the degree of curing, improving heat resistance, and there is no inflection point of the glass transition temperature at about 250 ° C. or less. In addition, when the oxetane- (meth) acrylic compound of the above structure is applied as a binder, the viscosity is lowered and thus has excellent processability at the time of glass fiber composite.
  • the oxetane- (meth) acrylic compound of Formula 1 may be prepared by reacting Oxetane alcohol with (meth) acryloyl chloride. At this time, the reaction temperature may be performed at about -10 to about 20 °C.
  • the oxetane- (meth) acrylic compound of Formula 1 may be used alone as a binder.
  • the oxetane- (meth) acrylic compound of Formula 1 may be mixed with another resin as a binder in order to match the refractive index with the glass fiber.
  • the binder may further include another cationically polymerizable compound together with the oxetane- (meth) acrylic compound of Formula 1 above.
  • the cationically polymerizable compound may be an epoxy group-containing compound, an oxetane group-containing compound, a vinyl ether group-containing compound, a caprolactam group-containing compound, or the like, but is not limited thereto.
  • glycidyl epoxy such as bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, epoxy) resins; 2-hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether, vinyl ether of diethylene glycol, triethylene glycol divinyl ether, cyclohexane dimethanol divinyl ether, cyclohexane dimethanol mono Vinyl ether, tricyclodecane vinyl ether, cyclohexyl vinyl ether, methoxyl ethyl vinyl ether, ethoxy ethyl vinyl ether, pentaerythritol-type tetravinyl ether, and the like.
  • the cationic polymerizable compound may be included in about 99% by weight or less, for example, about 0.01 to about 95% by weight of the total binder.
  • the cationic polymerizable compound may be included in about 1 to about 75% by weight, more preferably about 3 to about 70% by weight, most preferably about 5 to about 65% by weight of the total binder. Since the refractive index with the glass fiber can be matched in the above range, there is an advantage that a composite sheet having excellent light transmittance can be manufactured.
  • the weight ratio of the oxetane- (meth) acrylic compound of Formula 1 and the cationically polymerizable compound may be about 1: 0.05-4.
  • the binder has a refractive index difference of about 0.01 or less from the glass filler.
  • the refractive index difference between the glass fiber and the binder is about 0.01 or less.
  • the difference between the glass filler and the refractive index may be about 0.0001 to 0.007, and more preferably, the difference between the glass filler and the refractive index may be about 0.0005 to 0.005. It has excellent transparency and light transmittance in the above range.
  • the binder may have a light transmittance of about 80 to about 99%, preferably about 85 to about 95%. Excellent transparency and display quality are excellent in the said range.
  • the binder may have a coefficient of thermal expansion of about 20 ppm / ° C. or less, preferably about 0.01 to about 15 ppm / ° C. There is an advantage that it is possible to ensure the heat resistance required for the substrate in the above range.
  • the oxetane- (meth) acrylic compound of Formula 1 is a bifunctional compound, and the molecular weight / reactive functional equivalent may be about 110 g / eq or less, preferably about 100 g / eq or less. As such, since the molecular weight / reactive functional group equivalent is low, the binder including the same may have a high crosslink density.
  • Glass fillers that can be used in the present invention include glass fiber, glass fiber cloth, glass fabric, glass nonwoven fabric, glass mesh, glass beads, glass powder, glass flake, etc. It is not necessarily limited thereto. These may be applied alone or in combination of two or more kinds. What has a sheet shape, such as a double glass fiber cloth, a glass fabric, a glass nonwoven fabric, a glass mesh, etc., can be applied preferably.
  • the glass filler may include about 40 to about 300 parts by weight based on 100 parts by weight of the binder. It is advantageous in that the CTE characteristic required for the substrate can be secured in the above range. Preferably from about 60 to about 250 parts by weight of the glass filler based on 100 parts by weight of the binder.
  • the composite sheet may further include a cationic initiator.
  • a cationic initiator an onium salt type cation curing catalyst, an aluminum chelate type cation curing catalyst, etc. are mentioned.
  • aromatic sulfonium salt, aromatic iodonium salt, ammonium salt, aluminum chelate, a boron trifluoride amine complex, etc. are mentioned.
  • aromatic sulfonium salt include hexafluoroantimonate salt.
  • aluminum chelate include ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), and the like.
  • boron amine complex examples include boron trifluoride monoethyl amine complex, boron trifluoride imidazole complex, boron trifluoride piperidine complex, and the like. These can be used individually or in mixture of 2 or more types.
  • the cationic initiator may be included in about 0.01 to about 10 parts by weight, preferably about 0.05 to about 5 parts by weight, based on 100 parts by weight of the binder. There is an advantage that the curing reaction of the composite composition can proceed sufficiently in the above range.
  • the composite sheet of the present invention may further include an antioxidant, ultraviolet absorber, dye, pigment, coupling agent, other inorganic fillers, if necessary.
  • Composite sheet of the present invention can be produced in the form of a sheet (sheet) by impregnating the glass filler in the components constituting the binder and then crosslinking.
  • the thickness of the sheet may be about 50 to about 200 ⁇ m, preferably about 70 to about 150 ⁇ m.
  • the composite sheet is The glass transition temperature may be at least about 150 ° C, for example at least about 175 ° C, preferably at least about 200 ° C. In another embodiment, the composite sheet may not exhibit a glass transition point at about 250 ° C. or less (Tg-less).
  • Tg-less means that there is no inflection point in the temperature-dimension change ( ⁇ m) data measured by the TMA (Thermomechanical Analyzer). That is, in the case of the composite sheet to which the conventional binder is applied as shown in Figure 3 it can be seen that the inflection point occurs at 170 °C in the TMA data. However, in the composite sheet of the present invention, the inflection point does not occur in the same section.
  • the oxetane- (meth) acrylic compound of the present invention when applied as a binder, it is non-aromatic, has a low molecular weight, and maintains a low viscosity, thereby facilitating wetting during compounding.
  • the composite sheet of the present invention is used for a display or optical element such as a substrate for a liquid crystal display (LCD), a substrate for a color filter, an organic EL display substrate, a substrate for a solar cell, a substrate for a touch screen panel, and the like. It can be used as.
  • LCD liquid crystal display
  • organic EL display substrate a substrate for a solar cell
  • a substrate for a touch screen panel a substrate for a touch screen panel, and the like. It can be used as.
  • At least one surface may further include a hard coat layer and a gas barrier layer.
  • the method of forming the hard coat layer and the gas barrier layer can be easily carried out by those skilled in the art.
  • the substrate may have a thermal expansion coefficient (a 1 ) specified as TMA at 5 ° C./min at 30 ° C. to 250 ° C., about 30 ppm / ° C. or less, preferably about 20 ppm / ° C. or less.
  • a 1 thermal expansion coefficient
  • the coefficient of thermal expansion (a 1 ) may be about 20-25 ppm / ° C.
  • the coefficient of thermal expansion (a 1 ) may be about 10-15 ppm / ° C.
  • the coefficient of thermal expansion (a 1 ) may be less than about 10 ppm / ° C. when the binder content is less than about 30 weight percent of the total composite sheet.
  • the substrate has a light transmittance at a wavelength of about 550 nm of at least about 80%, preferably at least about 85%, more preferably at least about 86%.
  • Oxetane alcohol (1eq, 5g, 0.05mol) and 4- (dimethylamino) pyridine (1mol%, 60mg) were stirred at 100 ml of methylene chloride for 5 minutes at room temperature. After the temperature was lowered to 0 ° C., Et 3 N (2eq, 10g, 0.1mol) was added slowly, methacryloyl chloride (2eq, 10.5g, 0.1mol) was slowly dropwise stirred for 10 minutes, and then stirred at room temperature for 2 hours. After completion of the reaction, NaHCO 3 solution was added and stirred for 20 minutes and worked up with water and brine. MgSO 4 was added to the organic layer, the filter was removed, the solvent was removed using an evaporator, and purified by column to obtain oxetane-methacrylate.
  • a transparent composite sheet was manufactured in the same manner as in Example 1, except that (3-methyloxetan-3-yl) methanol, which is a monofunctional oxetane represented by Formula 2, was used instead of the oxetane-methacrylate synthesized in Preparation Example 1. Hardening degree was too low and film manufacture was difficult.
  • heptane-3-carboxylate which is a difunctional epoxy represented by the following Formula 3 Except that, a transparent composite sheet was obtained in the same manner as in Example 1.
  • the TMA graph of the prepared sheet is shown in FIG. 3, and the TMA graph is shown in FIG. 4 after the sheet is heat-treated at 180 degrees for 1 hour.
  • Light transmittance The light transmittance (%) at 550 nm was evaluated using a UV-Vis spectrometer.
  • Example 1 As shown in Table 1, in the case of Example 1 it can be seen that the glass transition temperature does not exist by maintaining the initial strength and physical properties without the glass transition even at the temperature (350 degrees or more) at which the polymer is decomposed. On the other hand, in Comparative Example 1, the degree of curing was too low to form the film itself, and in Comparative Example 2, the coefficient of thermal expansion increased after heat treatment, and showed a glass transition temperature at 170 ° C. Therefore, it can be confirmed that the composite sheet containing the oxetane- (meth) acrylic compound of the present invention as a binder has excellent heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyethers (AREA)

Abstract

본 발명의 복합시트는 화학식 1로 표시되는 옥세탄-(메타)아크릴계 화합물을 바인더로 포함하는 것을 특징으로 한다.

Description

복합시트 및 이를 이용한 디스플레이 기판
본 발명은 복합시트 및 이를 이용한 디스플레이 기판에 관한 것이다. 보다 구체적으로 본 발명은 특정 구조를 갖는 옥세탄-(메타)아크릴계 화합물을 바인더로 적용하여 우수한 유연성을 가지면서 내열특성, 광학성질 및 공정성이 우수한 복합시트 및 이를 이용한 디스플레이 기판에 관한 것이다.
액정 표시 소자나 유기 EL 표시 소자용 기판, 컬러 필터 기판, 태양 전지 기판 등으로 내열성 및 투명성이 우수하고, 선팽창 계수가 낮은 유리가 널리 이용되고 있다. 최근에는 표시 소자용 기판 소재로 소형화, 박형화, 경량화, 내충격성, 유연성이 요구되고 있어 유리기판을 대체하기 위한 소재로서 플라스틱 소재가 각광을 받고 있다.
근래에는 플라스틱 기판으로 폴리에틸렌테레프탈레이트(PET), 폴리에테르설폰(PES), 폴리에틸렌나프탈레이트(PEN), 폴리아릴레이트(PAR), 폴리카보네이트(PC), 폴리이미드(PI) 등의 소재가 사용되고 있다. 그러나, 이들 소재들은 열팽창계수가 상당히 높아 제품의 휘어짐이나 배선의 단선 등을 일으키는 문제가 있다. 폴리이미드계 수지는 비교적 낮은 열팽창계수를 갖지만, 투명성이 매우 낮고 높은 복굴절성, 흡습성 등으로 인해 기판 소재로는 적합하지 않다는 문제가 지적되고 있다.
이러한 문제를 해결하기 위해, 일본 공개공보 2004-51960호에서는 에스테르기를 포함하는 지환식 에폭시 수지, 비스페놀 A형 에폭시 수지, 산무수물계 경화제 및 촉매와 유리섬유포(glass fiber cloth)로부터 제조되는 투명 복합 광학 시트가 개시되어 있다.
일본공개공보 2005-146258호에서는 에스테르기를 포함하는 지환식 에폭시 수지와 디사이클로펜타디엔 골격을 가지는 에폭시 수지, 산무수물계 경화제와 유리섬유포로부터 제조되는 투명 복합 광학 시트가 개시되어 있으며, 일본 공개공보 2004-233851호에서는 비스페놀 A형 에폭시 수지, 비스페놀 A 노볼락(novolac)형 에폭시 수지, 산무수물계 경화제 및 유리섬유포로 제조되는 투명 기판을 개시하고 있다.
그러나, 상기 특허에 개시된 복합시트들은 공정온도 보다 낮은 145~160 ℃ 구간에서 Tg 가 나타나 내열성이 떨어지고 공정성이 저하되는 문제점이 있다.
복합시트의 Tg를 높이기 위해 바인더의 구조 중에 bulky한 방향족 구조를 도입하는 방법이 제시되고 있으나, bulky한 방향족 구조가 도입될 경우 시트의 유연성이 떨어지고 rigid 한 특성을 갖게 되어 플렉시블 기판에 적합하지 않을 뿐만 아니라, 점도가 상승하여 용해성이나 wetting 성이 떨어지고 brittle 한 성질을 갖게 되는 단점이 있다.
따라서, flexibility의 손상없이 내열특성을 향상시킬 수 있고 유리섬유에 wetting 성이 좋은 복합시트의 개발이 필요한 실정이다.
본 발명의 목적은 유연성, 투명성, 내열성이 우수하고, 충격, 인장, 휨 등에 대한 내성이 우수한 복합시트를 제공하기 위한 것이다.
본 발명의 다른 목적은 열팽창계수가 낮고, 투광성이 우수한 복합시트를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 점도가 낮아 유리섬유 복합화공정에서 공정성 및 wetting이 우수한 복합시트를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 공정온도구간에서 Tg 가 나타나지 않아 내열특성이 우수한 복합시트를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 경화속도 조절이 가능한 복합시트를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 상기 복합시트를 이용하여 소형화, 박형화, 경량화 및 저가실현이 가능한 디스플레이 기판을 제공하기 위한 것이다.
본 발명의 하나의 관점은 복합시트에 관한 것이다. 상기 복합시트는 하기 화학식 1로 표시되는 옥세탄-(메타)아크릴계 화합물을 바인더로 포함하는 것을 특징으로 한다:
[화학식 1]
Figure PCTKR2012003575-appb-I000001
(상기에서 R1 은 수소, 메틸기 또는 에틸기이고, R2 은 수소 또는 메틸기임).
상기 복합시트는 상기 옥세탄-(메타)아크릴계 화합물을 포함하는 바인더 및 유리필러를 포함한다. 구체예에서 상기 복합시트는 상기 바인더 100 중량부 및 상기 유리 필러 약 40 내지 약 300 중량부로 포함할 수 있다. 바람직하게는 약 60 내지 약 250 중량부이다.
상기 유리 필러는 유리섬유, 유리섬유포(glass fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 메쉬(mesh), 유리비드, 유리파우더 및 유리 플레이크(flake)로 이루어진 군으로부터 하나 이상을 포함할 수 있다.
구체예에서, 상기 바인더는 양이온 중합 가능한 화합물을 더 포함할 수 있다.
상기 양이온 중합 가능한 화합물은 에폭시기 함유 화합물, 옥세탄기 함유 화합물, 비닐에테르기 함유 화합물 및 카프로락탐기 함유 화합물로 이루어진 군으로부터 하나 이상을 포함할 수 있다.
상기 바인더는 유리 필러와 굴절률 차이가 약 0.01 이하일 수 있다.
상기 화학식 1로 표시되는 옥세탄-(메타)아크릴계 화합물은 분자량/반응성 작용기 당량이 약 110g/eq 이하, 바람직하게는 약 100 g/eq 이하일 수 있다.
구체예에서 상기 복합시트는 양이온 개시제를 더 포함할 수 있다.
구체예에서 상기 복합시트는 유리전이온도가 약 150℃ 이상, 예를 들면, 약 175 ℃ 이상, 바람직하게는 약 200 ℃ 이상일 수 있다. 다른 구체예에서는 상기 복합시트는 약 250℃ 이하에서 유리전이점이 나타나지 않을 수 있다(Tg-less).
본 발명의 다른 관점은 상기 복합시트를 포함하여 구성된 디스플레이 기판에 관한 것이다.
하나의 구체예에서 상기 기판은 30~250 ℃에서 5℃/min 조건으로 TMA로 특정된 열팽창계수(a1)는 약 30ppm/℃ 이하, 바람직하게는 약 20ppm/℃이하 일 수 있다.
본 발명은 유연성, 투명성, 내열성이 우수하고, 충격, 인장, 휨 등에 대한 내성이 우수하며, 열팽창계수가 낮고, 투광성이 우수하고, 점도가 낮아 유리섬유 복합화공정에서 공정성이 우수하며, 경화속도 조절이 가능한 복합시트를 제공하며, 상기 복합시트를 이용하여 소형화, 박형화, 경량화 및 저가실현이 가능한 디스플레이 기판을 제공하는 발명의 효과를 갖는다.
제1도는 실시예 1에서 제조된 복합시트의 TMA 그래프이다.
제2도는 실시예 1에서 제조된 복합시트를 열처리한 후 TMA 그래프이다.
제3도는 비교예 2에서 제조된 복합시트의 TMA 그래프이다.
제4도는 비교예 2에서 제조된 복합시트를 열처리한 후 TMA 그래프이다.
본 발명의 복합시트는 바인더 및 유리필러를 포함한다.
상기 바인더는 하기 화학식 1로 표시되는 옥세탄-(메타)아크릴계 화합물을 포함한다:
[화학식 1]
Figure PCTKR2012003575-appb-I000002
(상기에서 R1 은 수소, 메틸기 또는 에틸기이고, R2 은 수소 또는 메틸기임).
상기 화학식 1과 같이 본 발명의 옥세탄-(메타)아크릴계 화합물은 한 쪽 말단에 단일 옥세탄기와 다른 쪽 말단에 이중결합의 비대칭 구조를 갖는다. 상기 옥세탄-(메타)아크릴계 화합물은 분자량이 작으므로 복합시트 내에서 반응성 작용기의 농도가 높아지게 된다. 이로 인해 경화시 가교밀도가 높아져 경화도가 증가하게 되고, 내열특성이 향상되며 약 250 ℃ 이하에서 유리전이온도의 변곡점이 존재하지 않는다. 뿐만 아니라, 상기 구조의 옥세탄-(메타)아크릴계 화합물을 바인더로 적용할 경우, 점도가 낮아져 유리섬유 복합화시에 우수한 공정성을 갖는다.
하나의 구체예에서 상기 화학식 1의 옥세탄-(메타)아크릴계 화합물은 Oxetane alcohol과 (meth)acryloyl chloride를 반응시켜 제조될 수 있다. 이 때 반응온도는 약 -10 내지 약 20 ℃에서 수행될 수 있다.
본 발명의 하나의 구체예에서는 바인더로 상기 화학식 1의 옥세탄-(메타)아크릴계 화합물을 단독 적용할 수 있다. 다른 구체예에서는 유리섬유와 굴절률을 매칭하기 위해 바인더로 상기 화학식 1의 옥세탄-(메타)아크릴계 화합물과 다른 수지를 혼합하여 사용할 수 있다. 예를 들면 바인더로 상기 화학식 1의 옥세탄-(메타)아크릴계 화합물과 함께 다른 양이온 중합 가능한 화합물을 더 포함할 수 있다.
상기 양이온 중합 가능한 화합물은 에폭시기 함유 화합물, 옥세탄기 함유 화합물, 비닐에테르기 함유 화합물 및 카프로락탐기 함유 화합물 등이 사용될 수 있으며, 반드시 이에 제한되는 것은 아니다. 예를 들면, 비스페놀(bisphenol) A 형 에폭시(epoxy) 수지, 비스페놀(bisphenol) F 형 에폭시(epoxy) 수지, 비스페놀(bisphenol) S 형 에폭시(epoxy) 수지 등의 글리시딜(glycidyl) 형 에폭시(epoxy) 수지; 2-히드록시에틸비닐에테르, 디에틸렌글리콜모노비닐에테르, 4-하이드록시부틸비닐에테르, 디에틸렌글리콜의 비닐에테르, 트리에틸렌글리콜디비닐에테르, 사이클로헥산디메탄올디비닐에테르, 사이클로헥산디메탄올 모노비닐에테르, 트리사이클로데칸비닐에테르, 사이클로헥실 비닐에테르, 메톡실에틸 비닐에테르, 에톡시에틸비닐에테르, 펜타에리트리톨형의 테트라비닐에테르 등을 들 수 있다.
상기 양이온 중합 가능한 화합물은 전체 바인더중 약 99 중량% 이하, 예를 들면, 약 0.01 내지 약 95 중량%로 포함될 수 있다. 바람직하게는 상기 양이온 중합 가능한 화합물은 전체 바인더중 약 1 내지 약 75 중량%, 보다 바람직하게는 약 3 내지 약 70 중량%, 가장 바람직하게는 약 5 내지 약 65 중량%로 포함될 수 있다. 상기 범위에서 유리섬유와의 굴절율을 매칭시킬 수가 있어서 투광성이 우수한 복합시트를 제조할 수 있다는 장점이 있다.
구체예에서는 상기 화학식 1의 옥세탄-(메타)아크릴계 화합물과 상기 양이온 중합 가능한 화합물의 중량비는 약 1: 0.05~4 일 수 있다. 상기 범위에서 내열성이 우수할 뿐만 아니라, 유리섬유와의 굴절율 매칭을 통한 투광성 필름 제조가 가능하다는 점에서 장점이 있다. 바람직하게는 옥세탄-(메타)아크릴계 화합물: 양이온 중합 가능한 화합물 = 1: 0.1~3.5, 더욱 바람직하게는 옥세탄-(메타)아크릴계 화합물: 양이온 중합 가능한 화합물 = 1: 0.5~3 이다.
구체예에서 상기 바인더는 유리 필러와 굴절률 차이가 약 0.01 이하이다. 일반적으로 유리섬유 직경이 약 100nm 이상이면, 유리섬유계면에서의 광산란으로 인한 투광성 저하가 발생할 수 있다. 이러한 투광성 저하를 막기 위하여, 유리섬유와 바인더의 굴절율 차이가 약 0.01 이하이도록 한다. 바람직하게는 유리 필러와 굴절률 차이가 약 0.0001~0.007, 더욱 바람직하게는 유리 필러와 굴절률 차이가 약 0.0005~0.005 일 수 있다. 상기 범위에서 우수한 투명성과 투광성을 갖는다.
구체예에서 상기 바인더는 광투과율이 약 80 내지 약 99 %, 바람직하게는 약 85 내지 약 95 % 일 수 있다. 상기 범위에서 우수한 투명성 및 표시 품위가 우수하다.
또한 상기 바인더는 열팽창계수가 약 20 ppm/℃ 이하, 바람직하게는 약 0.01 내지 약 15 ppm/℃ 일 수 있다. 상기 범위에서 기판에 요구되는 내열특성을 확보할 수 있다는 장점이 있다.
상기 화학식 1의 옥세탄-(메타)아크릴계 화합물은 이관능성 화합물로써, 분자량/반응성 작용기 당량이 약 110g/eq 이하, 바람직하게는 약 100 g/eq 이하일 수 있다. 이와 같이 분자량/반응성 작용기 당량이 낮으므로, 이를 포함하는 바인더는 높은 가교밀도를 가질 수 있다.
본 발명에서 사용될 수 있는 유리필러로는 유리섬유, 유리섬유포(glass fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 메쉬(mesh), 유리비드, 유리파우더, 유리 플레이크(flake) 등이 있으며, 반드시 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 조합하여 적용될 수 있다. 이중 유리섬유포(glass fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 메쉬(mesh) 등과 같이 시트형상을 갖는 것이 바람직하게 적용될 수 있다.
상기 유리 필러는 상기 바인더 100 중량부에 대하여 약 40 내지 약 300 중량부로 포함할 수 있다. 상기 범위에서 기판에 요구되는 CTE 특성을 확보할 수 있다는 장점이 있다. 바람직하게는 바인더 100 중량부에 대하여 유리 필러 약 60 내지 약 250 중량부이다.
구체예에서 상기 복합시트는 양이온 개시제를 더 포함할 수 있다. 상기 양이온 개시제로는, 오늄염계 양이온 경화 촉매, 알루미늄 킬레이트계 양이온 경화 촉매 등을 들 수 있다. 예를 들면 방향족 설포늄 염, 방향족 요오도늄 염, 암모늄 염, 알루미늄 킬레이트, 3불화 붕소 아민 착물 등을 들 수 있다. 구체적으로는, 방향족 설포늄 염으로는 헥사플루오로안티모네이트염을 들 수 있으며, 알루미늄 킬레이트로는 에틸아세토아세테이트알루미늄디이소프로필레이트, 알루미늄 트리스(에틸아세토아세테이트) 등을 들 수 있으며, 3불화 붕소 아민 착물로는, 3불화 붕소 모노에틸 아민 착물, 3불화 붕소 이미다졸 착물, 3불화 붕소 피페리딘 착물 등을 들 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다. 상기 양이온 개시제는 상기 바인더 100 중량부에 대하여 약 0.01 내지 약 10 중량부로 포함할 수 있으며, 바람직하게는 약 0.05 내지 약 5 중량부이다. 상기 범위에서 복합체 조성물의 경화반응이 충분하게 진행될 수 있다는 장점이 있다.
본 발명의 복합시트는 필요에 따라 산화 방지제, 자외선 흡수제, 염료, 안료, 커플링제, 기타 무기필러 등을 더 포함할 수 있다.
본 발명의 복합시트는 바인더를 구성하는 성분에 유리필러를 함침한 후 가교시킴으로써 시트(sheet)형태로 제작될 수 있다. 상기 시트의 두께는 약 50 내지 약 200 ㎛, 바람직하게는 약 70 내지 약 150 ㎛일 수 있다.
구체예에서 상기 복합시트는 유리전이온도가 약 150℃ 이상, 예를 들면 약 175 ℃이상, 바람직하게는 약 200 ℃ 이상일 수 있다. 다른 구체예에서는 상기 복합시트는 약 250℃ 이하에서 유리전이점이 나타나지 않을 수 있다(Tg-less). 여기서 “유리전이점이 나타나지 않는(Tg-less)”의 의미는 TMA(Thermomechanical analyzer)로 측정된 온도-dimension change(㎛) 데이터에서 변곡점이 발생하지 않는다는 것이다. 즉, 도 3과 같이 종래의 바인더를 적용한 복합시트의 경우 TMA 데이터에서 170 ℃에서 변곡점이 발생하는 것을 알 수 있다. 그러나 본 발명의 복합시트의 경우, 동일 구간에서 변곡점이 발생하지 않는다. 이처럼 공정온도 구간에서 변곡점이 존재하지 않아(Tg-less), 유연성(flexibility)의 손상없이 우수한 내열성을 확보할 수 있는 것이다. 뿐만 아니라, 본 발명의 옥세탄-(메타)아크릴계 화합물을 바인더로 적용할 경우 비방향족이며, 분자량이 작아 낮은 점도를 유지하며, 이에 따라 복합화시 wetting 성이 용이하다.
본 발명의 복합시트는 액정 표시 소자(LCD)용 기판, 컬러 필터(color filter)용 기판, 유기 EL 디스플레이 기판, 태양 전지용 기판, 터치 스크린 패널(touch screen panel)용 기판 등의 디스플레이 또는 광소자의 용도로서 이용할 수 있다.
상기 복합시트를 디스플레이 기판에 적용할 경우, 최소한 일면에 하드코트층, 가스 배리어층을 더 포함할 수 있다. 상기 하드코트층 및 가스배리어층의 형성방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 용이하게 실시될 수 있다.
상기 기판은 30~250 ℃에서 5℃/min 조건으로 TMA로 특정된 열팽창계수 (a1)는 약 30ppm/℃ 이하, 바람직하게는 약 20ppm/℃이하 일 수 있다. 예를 들면, 바인더 함량이 전체 복합시트중 약 60 중량% 일 경우 열팽창계수 (a1)는 약 20~25 ppm/℃ 일 수 있다. 다른 구체예에서는 바인더 함량이 전체 복합시트중 약 40 중량% 일 경우 열팽창계수 (a1)는 약 10~15 ppm/℃ 일 수 있다. 또 다른 구체예에서는 바인더 함량이 전체 복합시트중 약 30 중량% 이하 일 경우 열팽창계수 (a1)는 약 10 ppm/℃ 미만 일 수 있다.
상기 기판은 약 550 nm 파장에서의 투광율이 약 80 % 이상, 바람직하게는 약 85 % 이상, 보다 바람직하게는 약 86 % 이상이다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예
제조예 1 : oxetane-methacrylate 합성
Oxetane alcohol (1eq, 5g, 0.05mol), 4-(dimethylamino)pyridine (1mol %, 60mg) 를 methylene chloride 100ml 에서 5분간 상온 교반해 주었다. 온도를 0 ℃로 낮춘 후 Et3N (2eq, 10g, 0.1mol)을 천천히 넣어준 후, methacryloyl chloride(2eq, 10.5g, 0.1mol)를 10분간 천천히 dropwise 한 후 상온에서2시간 교반하였다. 반응 종결 후, NaHCO3 solution을 넣어주고 20분간 교반 해주고 물과 소금물로 work up 해주었다. 유기층에 MgSO4를 넣어주고 filter 한 후 evaporator를 이용하여 용매를 제거한 다음, column 으로 정제하여 oxetane-methacrylate을 얻었다.
[반응식]
Figure PCTKR2012003575-appb-I000003
실시예 1: 복합시트의 제조
상기 제조예 1에서 합성된 oxetane-methacrylate 4.9g, diglycidyl ether of bisphenol A 5.1 g, Triarylsulfonium hexafluoroantimonate salts 0.2 g 을 잘 혼합하였다. 상기 혼합물에 E-glass 계 유리섬유(Nittobo 社 제조, 제품명 3313) 10 g을 함침한 후에, 이형처리가 된 유리기판 사이에 넣고, 양면에 UV를 2분간 조사한 후에 바인더 함량이 50 wt %인 투명한 복합시트 (레진함량: 50 wt%) 를 얻었다. 제조된 시트의 TMA 그래프를 도 1 에 나타내었으며, 시트를 180도에서 1시간 열처리한 후 TMA 그래프를 도 2에 나타내었다.
비교예 1
제조예 1에서 합성된 oxetane-methacrylate 대신 하기 화학식 2로 표시되는 monofunctional oxetane인 (3-methyloxetan-3-yl)methanol을 이용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 투명 복합시트를 제조하였으나, 경화도가 너무 낮아서 필름 제조가 어려웠다.
[화학식 2]
Figure PCTKR2012003575-appb-I000004
비교예 2
제조예 1에서 합성된 oxetane-methacrylate 대신 하기 화학식 3으로 표시되는 difunctional epoxy인 7-oxa-bicyclo[4.1.0]heptan-3-ylmethyl7-oxa-bicyclo [4.1.0]heptane-3-carboxylate 을 이용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 투명 복합시트를 얻었다. 제조된 시트의 TMA 그래프를 도 3에 나타내었으며, 시트를 180도에서 1시간 열처리한 후 TMA 그래프를 도 4 에 나타내었다.
[화학식 3]
Figure PCTKR2012003575-appb-I000005
실시예 1 및 비교예 1-2에서 제조된 투명복합시트에 대하여 하기의 방법으로 물성을 평가하였으며, 표 1에 나타내었다.
(1) 투광율 : UV-Vis spectrometer를 이용하여 550nm 파장에서의 투광율(%)로 평가하였다.
(2) 열팽창계수(CTE) 및 유리전이온도(Tg) : 온도에 따른 dimensional change를 Thermo-mechanical Aanlysizer(Expansion mode, Force 0.05N) 를 이용하여 측정한 후, 온도에 따른 시료길이의 변화 곡선으로부터, 시료의 CTE(ppm/℃) 및 유리전이온도(℃)를 구하였다.
표 1
투광율@ 550nm CTE (ppm/℃) @ 50~250℃ CTE (ppm/℃) @ 50~150℃열처리후 (180도, 1hr) Tg(℃) 분자량/반응성 작용기 당량(g/eq)
실시예 1 89% 13 13 Tg-less transition 92
비교예 1 복합필름 형성 불가 - - - 102
비교예 2 88% 14@ 30~150℃ 16@ 30~150℃ 170℃ 126
상기 표 1에 나타난 바와 같이, 실시예 1의 경우 고분자가 분해되는 온도(350도 이상) 에서도 유리전이되지 않고 계속 초기 강도와 물성을 유지하여 유리전이온도가 존재하지 않은 것을 알 수 있다. 반면, 비교예 1은 경화도가 너무 낮아서 필름 형성 자체가 불가능하였으며, 비교예 2의 경우 열처리 후 열팽창계수가 상승하고, 170℃에서 유리전이온도를 나타내었다. 따라서, 본 발명의 옥세탄-(메타)아크릴계 화합물을 바인더로 포함하는 복합시트는 우수한 내열특성을 갖는 것을 확인할 수 있다.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (12)

  1. 하기 화학식 1로 표시되는 옥세탄-(메타)아크릴계 화합물을 바인더로 포함하는 것을 특징으로 하는 복합시트:
    [화학식 1]
    Figure PCTKR2012003575-appb-I000006
    (상기에서 R1 은 수소, 메틸기 또는 에틸기이고, R2 은 수소 또는 메틸기임).
  2. 제1항에 있어서, 상기 복합시트는 상기 옥세탄-(메타)아크릴계 화합물을 포함하는 바인더 및 유리필러를 포함하는 것을 특징으로 하는 복합시트.
  3. 제2항에 있어서, 상기 복합시트는 상기 바인더 100 중량부 및 상기 유리 필러 약 40 내지 약 300 중량부로 포함하는 것을 특징으로 하는 복합시트.
  4. 제2항에 있어서, 상기 유리 필러는 유리섬유, 유리섬유포(glass fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 메쉬(mesh), 유리비드, 유리파우더 및 유리 플레이크(flake)로 이루어진 군으로부터 하나 이상을 포함하는 것을 특징으로 하는 복합시트.
  5. 제2항에 있어서, 상기 바인더는 양이온 중합 가능한 화합물을 더 포함하는 것을 특징으로 하는 복합시트.
  6. 제5항에 있어서, 상기 양이온 중합 가능한 화합물은 에폭시기 함유 화합물, 옥세탄기 함유 화합물, 비닐에테르기 함유 화합물 및 카프로락탐기 함유 화합물로 이루어진 군으로부터 하나 이상을 포함하는 것을 특징으로 하는 복합시트.
  7. 제2항에 있어서, 상기 바인더는 유리 필러와 굴절률 차이가 약 0.01 이하인 것을 특징으로 하는 복합시트.
  8. 제2항에 있어서, 상기 복합시트는 양이온 개시제를 더 포함하는 것을 특징으로 하는 복합시트.
  9. 제1항에 있어서, 상기 복합시트는 유리전이온도가 약 175℃ 이상인 것을 특징으로 하는 복합시트.
  10. 제1항에 있어서, 상기 복합시트는 유리전이온도가 약 250℃ 이상인 것을 특징으로 하는 복합시트.
  11. 제1항 내지 제10항중 어느 한 항의 복합시트를 포함하여 구성된 디스플레이 기판.
  12. 제10항에 있어서, 상기 기판은 30~250 ℃에서 5℃/min 조건으로 TMA로 특정된 열팽창계수가 약 30 ppm/℃ 이하인 디스플레이 기판.
PCT/KR2012/003575 2011-05-12 2012-05-08 복합시트 및 이를 이용한 디스플레이 기판 WO2012153966A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/116,966 US20140187111A1 (en) 2011-05-12 2012-05-08 Composite sheet and display substrate using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0044647 2011-05-12
KR1020110044647A KR101374373B1 (ko) 2011-05-12 2011-05-12 복합시트 및 이를 이용한 디스플레이 기판

Publications (2)

Publication Number Publication Date
WO2012153966A2 true WO2012153966A2 (ko) 2012-11-15
WO2012153966A3 WO2012153966A3 (ko) 2013-01-24

Family

ID=47139797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003575 WO2012153966A2 (ko) 2011-05-12 2012-05-08 복합시트 및 이를 이용한 디스플레이 기판

Country Status (3)

Country Link
US (1) US20140187111A1 (ko)
KR (1) KR101374373B1 (ko)
WO (1) WO2012153966A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140071163A (ko) * 2012-12-03 2014-06-11 제일모직주식회사 복합시트, 이의 제조방법 및 이를 포함하는 플렉시블 디스플레이 장치
JP2020050872A (ja) * 2018-09-21 2020-04-02 三菱ケミカル株式会社 ディスプレイ用フィルム、フォルダブルディスプレイ
CN112714931A (zh) * 2018-09-21 2021-04-27 三菱化学株式会社 折叠式显示器
JP2020056016A (ja) * 2018-09-28 2020-04-09 三菱ケミカル株式会社 ディスプレイ用フィルム、フォルダブルディスプレイ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261740B1 (en) * 1997-09-02 2001-07-17 Kodak Polychrome Graphics, Llc Processless, laser imageable lithographic printing plate
KR20060108875A (ko) * 2005-04-14 2006-10-18 주식회사 잉크테크 은 잉크 조성물
KR20060112025A (ko) * 2005-04-26 2006-10-31 주식회사 잉크테크 금속 잉크 조성물
KR20070085581A (ko) * 2004-12-24 2007-08-27 후지필름 가부시키가이샤 패턴형성재료, 및 패턴형성장치 및 패턴형성방법
US20080038648A1 (en) * 2006-08-08 2008-02-14 Xerox Corporation Photoreceptor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953121B2 (en) * 2003-05-06 2005-10-11 Johnson Crushers International Vibrating screen
JP4984508B2 (ja) * 2005-12-05 2012-07-25 Jsr株式会社 透明複合体、ガラス繊維布の表面処理方法および透明複合体の製造方法
EP2077288B1 (en) * 2006-10-11 2013-11-06 Sumitomo Bakelite Co., Ltd. Transparent composite sheet
JP5457078B2 (ja) * 2009-06-05 2014-04-02 株式会社ダイセル カチオン重合性樹脂組成物、及びその硬化物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261740B1 (en) * 1997-09-02 2001-07-17 Kodak Polychrome Graphics, Llc Processless, laser imageable lithographic printing plate
KR20070085581A (ko) * 2004-12-24 2007-08-27 후지필름 가부시키가이샤 패턴형성재료, 및 패턴형성장치 및 패턴형성방법
KR20060108875A (ko) * 2005-04-14 2006-10-18 주식회사 잉크테크 은 잉크 조성물
KR20060112025A (ko) * 2005-04-26 2006-10-31 주식회사 잉크테크 금속 잉크 조성물
US20080038648A1 (en) * 2006-08-08 2008-02-14 Xerox Corporation Photoreceptor

Also Published As

Publication number Publication date
US20140187111A1 (en) 2014-07-03
KR101374373B1 (ko) 2014-03-17
WO2012153966A3 (ko) 2013-01-24
KR20120126663A (ko) 2012-11-21

Similar Documents

Publication Publication Date Title
KR101630938B1 (ko) 편광판, 그 제조 방법 및 이를 포함하는 화상표시장치
KR101496506B1 (ko) 편광판용 접착제 및 이를 포함하는 편광판
WO2009088239A2 (ko) 광학 필름 및 이를 포함하는 정보전자 장치
EP2274394A2 (en) Pressure-sensitive adhesive compositions, polarizers and liquid crystal displays comprising the same
WO2009134098A2 (ko) 광학 필름 및 이를 포함하는 정보전자 장치
TWI436886B (zh) Transparent substrate
KR101422659B1 (ko) 신규 옥세탄계 화합물, 그 제조방법, 및 이를 포함하는 디스플레이 기판용 복합시트
WO2017116103A1 (ko) 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈
WO2015080346A1 (ko) 점착제 조성물, 이로부터 형성된 점착 필름 및 이를 포함하는 광학표시장치
WO2012153966A2 (ko) 복합시트 및 이를 이용한 디스플레이 기판
WO2018110801A1 (ko) 편광판용 접착제 조성물, 편광판 및 광학표시장치
WO2016159645A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2019059630A2 (ko) 접착제 조성물 및 이를 이용하여 형성된 접착제층을 포함하는 편광판
WO2012128595A2 (ko) 점착제 조성물
WO2019059667A2 (ko) 접착제 조성물, 이를 이용하여 형성된 접착제층을 포함하는 편광판
WO2019059666A2 (ko) 접착제 조성물, 이를 이용하여 형성된 접착제층을 포함하는 편광판
WO2020175394A1 (ja) 光学層及び該光学層を含む積層体
KR20180013440A (ko) 접착제 조성물, 이를 이용하여 형성된 접착제층을 포함하는 보호필름 및 편광판, 및 이를 포함하는 화상표시장치
WO2012153957A2 (ko) 복합시트 및 이를 이용한 디스플레이 기판
WO2018124769A1 (ko) 코팅 조성물 및 이로부터 제조되는 필름
WO2018097660A1 (ko) 경화성 조성물
KR20180013429A (ko) 접착제 조성물, 이를 이용하여 형성된 접착제층을 포함하는 보호필름 및 편광판, 및 이를 포함하는 화상표시장치
WO2016017922A1 (ko) 편광판용 접착제, 이를 포함하는 편광판 및 이를 포함하는 광학표시장치
WO2019035595A1 (ko) 잉크젯용 적외선 투과 잉크 조성물, 이를 이용한 베젤 패턴의 형성방법, 이에 따라 제조한 베젤 패턴 및 이를 포함하는 디스플레이 기판
KR101242774B1 (ko) 아민계 경화제, 경화성 수지 조성물 및 그 경화성 수지 조성물의 경화물을 포함하는 평판 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781590

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14116966

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12781590

Country of ref document: EP

Kind code of ref document: A2