WO2012153752A1 - 捲回式二次電池 - Google Patents

捲回式二次電池 Download PDF

Info

Publication number
WO2012153752A1
WO2012153752A1 PCT/JP2012/061820 JP2012061820W WO2012153752A1 WO 2012153752 A1 WO2012153752 A1 WO 2012153752A1 JP 2012061820 W JP2012061820 W JP 2012061820W WO 2012153752 A1 WO2012153752 A1 WO 2012153752A1
Authority
WO
WIPO (PCT)
Prior art keywords
core portion
inner core
secondary battery
electrode plate
outer core
Prior art date
Application number
PCT/JP2012/061820
Other languages
English (en)
French (fr)
Inventor
伊藤 真吾
博史 春名
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2013514027A priority Critical patent/JP5962653B2/ja
Publication of WO2012153752A1 publication Critical patent/WO2012153752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/469Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a wound secondary battery such as a nonaqueous electrolyte secondary battery.
  • the shaft core is formed of resin.
  • the shaft core is formed of only a resin material, the thermal conductivity of the shaft core is lowered, and it is difficult to release the heat generated in the electrode plate group to the outside of the battery through the shaft core.
  • the shaft core is formed only of a metal material.
  • the shaft core is composed of a metal inner core portion and an outer core portion made of an insulating material provided outside the inner core portion.
  • the insulating material constituting the outer core portion is a resin such as PE or PP, the heat conductivity is low and the heat generated in the electrode plate group is metal It could not be sufficiently transmitted to the inner core part.
  • an insulating material having high thermal conductivity as the insulating material constituting the outer core portion.
  • the heat is made of a metal core. There is a possibility that the temperature inside the battery is excessively lowered by being actively transmitted to the part.
  • An object of the present invention is to provide a wound secondary battery that can sufficiently release the heat generated in the electrode plate group to the outside of the battery at a high temperature and can suppress a decrease in the temperature inside the secondary battery at a low temperature. There is to do.
  • the wound type secondary battery to be improved by the present invention has a separator interposed between an elongated core made of metal and an outer core made of an insulating material provided outside the inner core.
  • the insulating material constituting the outer core portion has a thermal conductivity of 1 to 20 W / mk.
  • the thermal conductivity of the insulating material is less than 1 W / mk, heat generated in the electrode plate group at a high temperature cannot be sufficiently released to the outside of the battery.
  • the thermal conductivity of the insulating material exceeds 20 W / mk, it is difficult to suppress a temperature drop at a low temperature.
  • the insulating material can be formed by filling an insulating resin material with an inorganic filler having a thermal conductivity of 20 W / mk or more.
  • an insulating material having a desired thermal conductivity can be easily obtained by adjusting the filling amount of the inorganic filler.
  • An epoxy resin can be used as the insulating resin material.
  • the inorganic filler metal oxide, metal nitride, metal carbide, metal hydroxide, ceramic powder or fiber, or a mixture thereof can be used.
  • an inorganic filler may be mixed in an amount of 10 to 100 parts by volume with respect to 100 parts by volume of the insulating resin material.
  • the shaft core used in the wound secondary battery of the present invention can be applied to a shaft core having an outer core portion and an inner core portion of various shapes.
  • the outer core part and the inner core part may have a cylindrical shape. If such an axial core is used, the weight of the inner core portion can be reduced, and the energy density of the battery can be increased. Moreover, since the heat radiation area of the inner core portion can be increased, the heat radiation performance can be enhanced.
  • the outer core portion may have a cylindrical shape
  • the inner core portion may have a cylindrical shape. If such an axial core is used, since the inner core portion has a cylindrical shape, the thermal conductivity of the inner core portion can be increased.
  • the outer core portion and the inner core portion have a cylindrical shape, and the outer core portion has a shape in which the cross-sectional area decreases as it goes from the center in the longitudinal direction to both end portions, and the inner core portion is elongated.
  • An axial core having a shape in which the cross-sectional area increases from the center of the direction toward both ends can be used.
  • FIG. 1 It is sectional drawing of the non-aqueous-electrolyte secondary battery of one embodiment of this invention. It is a disassembled perspective view of the electrode group used for the non-aqueous electrolyte secondary battery shown in FIG. It is a perspective view of the axial center used for the nonaqueous electrolyte secondary battery shown in FIG. It is a perspective view of the axial center used for the nonaqueous electrolyte secondary battery of other embodiment of this invention. It is a perspective view of the axial center used for the nonaqueous electrolyte secondary battery of other embodiment of this invention. It is a disassembled perspective view of the shaft core used for the non-aqueous-electrolyte secondary battery of another embodiment of this invention.
  • FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • the nonaqueous electrolyte secondary battery of the present embodiment is joined to a container 1, an electrode plate group 3 disposed in the container 1, and a shaft core 23 described later of the electrode plate group 3.
  • the positive electrode terminal 5 and the negative electrode terminal 7 are provided.
  • the container 1 has a container body 9, a positive electrode side battery cover 11, and a negative electrode side battery cover 13.
  • the container body 9 is made of stainless steel and has a cylindrical shape having openings 9a and 9b at both ends.
  • Each of the positive electrode side battery cover 11 and the negative electrode side battery cover 13 is made of a metal material, and has a shape close to a disk having holes 11a and 13a in the center.
  • the positive electrode side battery lid 11 has a cleavage valve 11b that is cleaved when the battery internal pressure increases.
  • the negative electrode side battery cover 13 has an electrolyte solution inlet 13b.
  • the positive electrode side battery cover 11 and the negative electrode side battery cover 13 are fitted in openings 9 a and 9 b at both ends of the container body 9, respectively.
  • the electrode plate group 3 includes a belt-like positive electrode plate 19 and a negative electrode plate 21 stacked with a belt-like first separator 15 and a second separator 17 interposed therebetween. 23 is wound around.
  • the first separator 15 and the second separator 17 are made of a porous substrate such as kraft paper and impregnated with an electrolytic solution.
  • the positive electrode plate 19 is configured by applying a positive electrode active material layer on a positive electrode current collector made of, for example, an aluminum foil.
  • Connected to the positive electrode plate 19 are a plurality of positive electrode lead pieces 27 that are formed integrally with the positive electrode current collector and project from one end side of the electrode plate group 3.
  • the negative electrode plate 21 is configured by applying a negative electrode active material layer on a negative electrode current collector made of, for example, copper foil. Connected to the negative electrode plate 21 are a plurality of negative electrode lead pieces 33 that are formed integrally with the negative electrode current collector and project from the other end side of the electrode plate group 3. As shown in FIG. 1, the positive electrode lead piece 27 is electrically connected to the flange portion 5 b of the positive electrode terminal 5 described later, and the negative electrode lead piece 33 is electrically connected to the flange portion 7 b of the negative electrode terminal 7. .
  • the shaft core 23 has an inner core portion 37 and an outer core portion 39 provided integrally with the outer side of the inner core portion 37.
  • the inner core portion 37 is made of a metal having high thermal conductivity and has an elongated cylindrical shape.
  • a single metal such as Fe, Al, Cu, Ni, or Ag, or an alloy such as a stainless steel, a chromium molybdenum steel, a manganese molybdenum steel, or a brass can be used.
  • the outer core portion 39 is insert-molded with an insulating material using the inner core portion 37 as an insert, and has an elongated cylindrical shape that covers the outer side of the inner core portion 37.
  • the insulating material forming the outer core portion 39 is configured by filling an insulating resin material with an inorganic filler having a thermal conductivity of 20 W / mk or more, and has a thermal conductivity of 1 to 20 W / mk.
  • an epoxy resin obtained by polymerizing an epoxy resin monomer represented by the following formula can be used as the insulating resin material.
  • Such an epoxy resin monomer has a biphenyl skeleton or a biphenyl derivative skeleton, and has two or more epoxy groups in one molecule.
  • a curing agent for promoting the curing of the epoxy resin monomer an amine compound or a derivative thereof, an acid anhydride, an imidazole or a derivative thereof, a phenol or a compound or a polymer thereof can be used.
  • the curing accelerator for promoting the reaction between the epoxy resin monomer and the curing agent triphenylphosphine, imidazole or its derivative, tertiary amine compound or its derivative can be used.
  • a flame retardant, a diluent, a plasticizer, a coupling agent, etc. can be added to an epoxy resin as needed.
  • the inorganic filler to be filled in the insulating resin material has a thermal conductivity of 20 W / mk or more, and is a metal oxide, metal nitride, metal carbide, metal hydroxide, ceramic powder or fiber, or these Mixtures can be used.
  • a metal oxide zinc oxide, magnesium oxide, alumina, or the like can be used.
  • metal nitride boron nitride, aluminum nitride, silicon nitride, titanium nitride, or the like can be used.
  • As the metal carbide, silicon carbide, tungsten carbide, or the like can be used.
  • the inorganic filler is preferably mixed in an amount of 10 to 100 parts by volume with respect to 100 parts by volume of the insulating resin material.
  • the inner diameter dimension of the outer core portion 39 is constant in the longitudinal direction of the shaft core 23, and the outer diameter dimension of the inner core portion 37 is constant in the longitudinal direction of the shaft core 23.
  • the thickness L1 of the outer core portion 39 is preferably 10 to 30% of the outer diameter L2 of the inner core portion 37. If it is less than 10%, it becomes difficult to prevent the release of heat at low temperatures. If it exceeds 30%, the heat generated in the electrode plate group at a high temperature cannot be sufficiently released to the outside of the battery.
  • the positive electrode terminal 5 joined to the shaft core 23 is made of aluminum, and is formed integrally with a cylindrical terminal body 5a and a central portion in the longitudinal direction of the terminal body 5a. 5b.
  • the negative electrode terminal 7 has a cylindrical terminal main body 7a and a flange portion 7b integrally formed at the center in the longitudinal direction of the terminal main body 7a.
  • the positive electrode terminal 5 is fitted in the hole 11 a of the positive electrode side battery lid 11 via an insulating member 41 made of ceramic.
  • the negative electrode terminal 7 is made of copper, and is fitted into the hole 13 a of the negative electrode side battery lid 13 via a ceramic insulating member 43.
  • a screw is formed on the outer periphery of the end portion 5c protruding from the positive electrode side battery cover 11 of the positive electrode terminal 5 to the outside of the battery.
  • a nut 47 is screwed onto the end 5c in a state where a metal washer 45 is fitted.
  • a screw is also formed on the outer periphery of the end 7c of the negative terminal 7 protruding from the negative battery cover 13.
  • a nut 51 is screwed to the end 7c in a state where a metal washer 49 is fitted.
  • An end portion 5 d of the positive electrode terminal 5 protruding into the battery is fitted into one end portion of a cylindrical inner core portion 37 of the shaft core 23.
  • An end 7 d of the negative electrode terminal 7 protruding into the battery is fitted to the other end of the cylindrical inner core 37 of the shaft core 23.
  • a thin insulating paper 55 is disposed between the positive electrode terminal 5 and the shaft core 23 in order to prevent the positive electrode terminal 5 and the negative electrode terminal 7 from being short-circuited via the inner core portion 37. .
  • the heat generated in the electrode plate group 3 is referred to as the outer core portion 39 of the shaft core 23 ⁇ the inner core portion 37 of the shaft core 23 ⁇ the positive electrode terminal 5 and the negative electrode terminal 7. It is discharged to the outside of the battery through the route.
  • the insulating material constituting the outer core portion 39 has a thermal conductivity of 1 to 20 W / mk, it occurred in the electrode plate group 3 at a high temperature. Heat can be sufficiently released to the outside of the battery, and furthermore, heat dissipation from the electrode plate group 3 to the inner core portion 37 at a low temperature can be suppressed to suppress a temperature drop of the secondary battery.
  • FIG. 4 is a perspective view of a shaft used in a nonaqueous electrolyte secondary battery according to another embodiment of the present invention.
  • the shaft core 123 also has an inner core portion 137 and an outer core portion 139 provided outside the inner core portion 137.
  • the inner core portion 137 and the outer core portion 139 are made of the same material as the inner core portion 37 and the outer core portion 39 shown in FIG.
  • the outer core part 139 has the same elongated cylindrical shape as the outer core part 39 shown in FIG.
  • the inner core part 137 has a columnar shape shorter than the length of the outer core part 139 in the longitudinal direction, and is arranged at the center of the cylindrical outer core part 139 in the longitudinal direction.
  • voids 139a and 139b are formed at both ends of the outer core portion 139.
  • the positive electrode terminal (5) is disposed in one gap portion 139a, and one end portion 137a of the inner core portion 137 is in contact with the end portion of the positive electrode terminal (5).
  • a negative electrode terminal (7) is disposed in the other gap portion 139b, and the other end portion 137b of the inner core portion 137 is in contact with the end portion of the negative electrode terminal (7).
  • Such an axial core 123 has an inner core portion 137 having a cylindrical shape, so that the thermal conductivity of the inner core portion can be increased as compared with the axial core 23 shown in FIG.
  • the weight of the inner core portion increases and the energy density of the battery decreases. In addition, the cost increases.
  • FIG. 5 is a perspective view of an axial core used in a non-aqueous electrolyte secondary battery according to still another embodiment of the present invention.
  • the shaft core 223 also has an inner core portion 237 and an outer core portion 239 provided outside the inner core portion 237.
  • the inner core portion 237 and the outer core portion 239 are made of the same material as the inner core portion 37 and the outer core portion 39 shown in FIG. 3, and both have an elongated cylindrical shape having the same length in the longitudinal direction. Yes.
  • the inner core portion 237 has a shape in which the cross-sectional area gradually increases from the center in the longitudinal direction toward both ends.
  • the outer core portion 239 has a shape in which the cross-sectional area gradually decreases from the center in the longitudinal direction toward both ends.
  • Such a shaft core 223 has a large contact area between the inner core portion 237 and the outer core portion 239, so that the thermal conductivity from the inner core portion 237 to the outer core portion 239 is increased, and the heat dissipation characteristics of the battery are improved. To do.
  • FIG. 6 is an exploded perspective view of a shaft core used in a non-aqueous electrolyte secondary battery according to still another embodiment of the present invention.
  • the shaft core 323 also has an inner core portion 337 and an outer core portion 339 provided outside the inner core portion 337.
  • the outer core portion 339 has the same elongated cylindrical shape as the outer core portion 39 shown in FIG. 3 and is formed of the same material as the outer core portion 39.
  • the inner core portion 337 includes a first metal member 337c, an insulating member 337d, and a second metal member 337e.
  • the first metal member 337 c and the second metal member 337 e have a cylindrical shape shorter than the inner core portion 37 shown in FIG. 3, and are formed of the same metal material as the inner core portion 37.
  • the insulating member 337d is formed of the same insulating material as that of the outer core portion 39 shown in FIG. 3, and is disposed between the first metal member 337c and the second metal member 337e.
  • the insulating member 337d has an insulating member main body 337f and a pair of projecting portions 337g and 337h provided integrally at both ends in the longitudinal direction of the insulating member main body 337f.
  • the pair of protrusions 337g and 337h are fitted in the first metal member 337c and the second metal member 337e, respectively.
  • the insulating member 337d prevents the positive electrode terminal (5) and the negative electrode terminal (7) from being short-circuited via the inner core portion 337.
  • the outer core portion is formed by insert molding using the inner core portion as an insert.
  • the outer core portion may be formed by applying an insulating material to the inner core portion.
  • heat generated in the electrode plate group at a high temperature can be sufficiently released to the outside of the battery, and heat transfer from the electrode plate group to the metal inner core at a low temperature is suppressed, A wound secondary battery capable of suppressing a decrease in battery temperature can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

 高温時に極板群で発生した熱を電池外部に十分に放出することができ、しかも低温時における熱の放出を阻止できる捲回式二次電池を提供する。金属製の細長い内芯部37及び該内芯部37の外側に設けられた絶縁材料からなる外芯部39からなる軸芯23に、セパレータ15,17を間に介して積層された正極板19及び負極板21を捲回して極板群3を構成する。外芯部39を構成する絶縁材料が1~20W/mkの熱伝導率を有している。

Description

捲回式二次電池
 本発明は、非水電解液二次電池等の捲回式二次電池に関するものである。
 セパレータを間に介して積層された正極板及び負極板が軸芯に捲回されて構成された極板群を有する捲回式二次電池が知られている。このような捲回式二次電池では、軸芯を樹脂で形成している。しかしながら、軸芯を樹脂材料のみで形成すると、軸芯の熱伝導率が低くなり、極板群で発生した熱を軸芯を介して電池外部に放出し難くなる。また、軸芯を金属材料のみで形成することも考えられるが、捲回式二次電池に振動や衝撃が与えられた際に、正極板及び負極板の配置位置がずれて、両極板が軸芯を介して短絡するおそれがある。そこで、特開平10-112330号公報(特許文献1)に示すように、軸芯を金属製の内芯部及び該内芯部の外側に設けられた絶縁材料からなる外芯部から構成することが提案された。
特開平10-112330号公報
 しかしながら、特許文献1に示された捲回式二次電池では、外芯部を構成する絶縁材料がPE、PP等の樹脂であるため、熱伝導率が低く極板群で発生した熱を金属製の内芯部に十分に伝達することができなかった。また、外芯部を構成する絶縁材料として熱伝導性の高い絶縁材料を用いることも考えられるが、このような絶縁材料を用いると、外部の温度が下がった場合に、熱が金属製の内心部に積極的に伝達されて、電池内部の温度が下がり過ぎるおそれがある。
 本発明の目的は、高温時に極板群で発生した熱を電池外部に十分に放出することができ、しかも低温時における二次電池内部の温度の低下を抑制できる捲回式二次電池を提供することにある。
 本発明が改良の対象とする捲回式二次電池は、金属製の細長い内芯部及び該内芯部の外側に設けられた絶縁材料からなる外芯部からなる軸芯に、セパレータを間に介して積層された正極板及び負極板が捲回されて構成された極板群を有している。本発明では、外芯部を構成する絶縁材料が、1~20W/mkの熱伝導率を有している。外芯部を構成する絶縁材料がこのような熱伝導率を有していると、高温時に極板群で発生した熱を金属製の内芯部に十分に伝達して、良好な放熱を得ることができる。しかも低温時においては、金属よりも熱伝達率が低い絶縁材料が存在するため、極板群からの内芯部への熱伝達を抑制して、電池の内部温度の低下を抑制することができる。なお、絶縁材料の熱伝導率が1W/mkを下回ると、高温時に極板群で発生した熱を電池外部に十分に放出することができない。絶縁材料の熱伝導率が20W/mkを上回ると、低温時における温度低下を抑制し難くなる。
 絶縁材料は、絶縁樹脂材料に熱伝導率20W/mk以上の無機充填剤を充填して形成することができる。このようにして絶縁材料を形成すれば、無機充填剤の充填量を調整することにより、所望の熱伝導率の絶縁材料を容易に得ることができる。
 絶縁樹脂材料としては、エポキシ樹脂を用いることができる。この場合、無機充填剤としては、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、セラミックスの粉末あるいは繊維、またはこれらの混合物を用いることができる。
 1~20W/mkの熱伝導率を有する絶縁材料を得るには、無機充填剤を絶縁樹脂材料100体積部に対して10~100体積部混合すればよい。
 本発明の捲回式二次電池に用いる軸芯は、種々の形状の外芯部及び内芯部を備えた軸芯に適応することができる。例えば、外芯部及び内芯部が筒形状を有していてもよい。このような軸芯を用いれば、内芯部の重量を小さくでき、電池のエネルギー密度を高めることができる。また、内芯部の放熱面積を増大できるので放熱性能を高めることができる。
 また、外芯部が筒形状を有しており、内芯部が円柱形状を有していてもよい。このような軸芯を用いれば、内芯部が円柱形状を有しているため、内芯部の熱伝導性を高めることができる。
 また、外芯部及び内芯部が筒形状を有しており、外芯部が長手方向の中心から両端部に向かうに従って、断面積が小さくなる形状を有しており、内芯部が長手方向の中心から両端部に向かうに従って、断面積が大きくなる形状を有している軸芯を用いることができる。このような軸芯を用いれば、極板群の中心部の熱を積極的に外部に導出することが可能になり、電池の放熱特性を向上させることができる。
本発明の一実施の形態の非水電解液二次電池の断面図である。 図1に示す非水電解液二次電池に用いる極板群の分解斜視図である。 図1に示す非水電解液二次電池に用いる軸芯の斜視図である。 本発明の他の実施の形態の非水電解液二次電池に用いる軸芯の斜視図である。 本発明の更に他の実施の形態の非水電解液二次電池に用いる軸芯の斜視図である。 本発明の更に別の実施の形態の非水電解液二次電池に用いる軸芯の分解斜視図である。
 以下、図面を参照して、リチウムイオン電池からなる非水電解液二次電池に適用した本発明の捲回式二次電池の実施の形態について説明する。図1は、本発明の一実施の形態の非水電解液二次電池の断面図である。図1に示すように、本実施の形態の非水電解液二次電池は、容器1と、容器1内に配置された極板群3と、極板群3の後述する軸芯23に接合される正極端子5と負極端子7とを有している。容器1は、容器本体9と正極側電池蓋11と負極側電池蓋13とを有している。容器本体9は、ステンレスからなり、両端に開口部9a,9bを有する円筒形を有している。正極側電池蓋11及び負極側電池蓋13は、いずれも金属材料からなり、中央に孔11a,13aをそれぞれ有する円板に近い形状を有している。本例では、正極側電池蓋11は、電池内圧の上昇により開裂する開裂弁11bを有している。負極側電池蓋13は、電解液注入口13bを有している。正極側電池蓋11及び負極側電池蓋13は、容器本体9の両端の開口部9a,9bにそれぞれ嵌合されている。
 極板群3は、図2の分解斜視図に示すように、帯状の第1のセパレータ15及び第2のセパレータ17を間に介して積層された帯状の正極板19及び負極板21が軸芯23に捲回されて構成されている。第1のセパレータ15及び第2のセパレータ17は、クラフト紙等の多孔質基材からなり、電解液が含浸されている。正極板19は、例えばアルミニウム箔からなる正極集電体上に正極活物質層が塗布されて構成されている。正極板19には、正極集電体と一体に成形されて極板群3の一方の端部側から突出する複数の正極リード片27が接続されている。負極板21は、例えば銅箔からなる負極集電体上に負極活物質層が塗布されて構成されている。負極板21には、負極集電体と一体に成形されて極板群3の他方の端部側から突出する複数の負極リード片33が接続されている。図1に示すように、正極リード片27は、後述する正極端子5の鍔部5bに電気的に接続され、負極リード片33は、負極端子7の鍔部7bに電気的に接続されている。
 図3に示すように、軸芯23は、内芯部37と内芯部37の外側に一体に設けられた外芯部39とを有している。内芯部37は、熱伝導率の高い金属により形成されており、細長い円筒形を有している。内芯部37を形成する金属としては、Fe、Al、Cu、Ni、Ag等の単体の金属、または、ステンレス綱、クロムモリブデン綱、マンガンモリブデン綱、真鍮等の合金を用いることができる。
 外芯部39は、内芯部37をインサートとして絶縁材料によりインサート成形されており、内芯部37の外側を覆う細長い円筒形を有している。外芯部39を形成する絶縁材料は、絶縁樹脂材料に熱伝導率20W/mk以上の無機充填剤が充填されて構成されており、1~20W/mkの熱伝導率を有している。絶縁樹脂材料としては、下記式に示すようなエポキシ樹脂モノマを重合したエポキシ樹脂を用いることができる。
Figure JPOXMLDOC01-appb-C000001
 このようなエポキシ樹脂モノマは、ビフェニル骨格またはビフェニル誘導体の骨格を有し、1分子中に2以上のエポキシ基を有している。エポキシ樹脂モノマの硬化を進めるための硬化剤としては、アミン化合物またはその誘導体、酸無水物、イミダゾールまたはその誘導物、フェノール類またはその化合物や重合体を用いることができる。エポキシ樹脂モノマと硬化剤との反応を促進する硬化促進剤としては、トリフェニルホスフィン、イミダゾールまたはその誘導物、三級アミン化合物またはその誘導体を用いることができる。エポキシ樹脂には、必要に応じて難燃剤、希釈剤、可塑剤、カップリング剤等を添加することができる。
 絶縁樹脂材料に充填する無機充填剤は、20W/mk以上の熱導電率を有しており、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、セラミックスの粉末あるいは繊維、またはこれらの混合物を用いることができる。金属酸化物としては、酸化亜鉛、酸化マグネシウム、アルミナ等を用いることができる。金属窒化物としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素、窒化チタン等を用いることができる。金属炭化物としては、炭化ケイ素、炭化タングステン等を用いることができる。
 無機充填剤は、絶縁樹脂材料100体積部に対して10~100体積部混合するのが好ましい。
 外芯部39の内径寸法は、軸芯23の長手方向において一定であり、内芯部37の外径寸法は、軸芯23の長手方向において一定である。外芯部39の厚み寸法L1は、内芯部37の外径寸法L2の10~30%とするのが好ましい。10%を下回ると、低温時における熱の放出を阻止し難くなる。30%を上回ると、高温時に極板群で発生した熱を電池外部に十分に放出することができない。
 図1に示すように、軸芯23に接合される正極端子5は、アルミにより形成されており、円筒形の端子本体5aと端子本体5aの長手方向の中央部に一体に成形された鍔部5bとを有している。負極端子7も正極端子5と同様に、円筒形の端子本体7aと端子本体7aの長手方向の中央部に一体に成形された鍔部7bとを有している。正極端子5は、正極側電池蓋11の孔11aにセラミックス製の絶縁部材41を介して嵌合されている。負極端子7は、銅により形成されており、負極側電池蓋13の孔13aにセラミックス製の絶縁部材43を介して嵌合されている。正極端子5の正極側電池蓋11から電池外部に突出した端部5cの外周には螺子が形成されている。この端部5cには、金属製のワッシャ45が嵌合された状態でナット47が螺合されている。負極端子7の負極側電池蓋13から突出した端部7cにも外周には螺子が形成されている。端部7cには、金属製のワッシャ49が嵌合された状態でナット51が螺合されている。正極端子5の電池内部に突出した端部5dは、軸芯23の円筒形の内芯部37の一方の端部に嵌合されている。負極端子7の電池内部に突出した端部7dは、軸芯23の円筒形の内芯部37の他方の端部に嵌合されている。また、正極端子5と軸芯23との間には、正極端子5と負極端子7とが内芯部37を介して短絡するのを防止するため、厚みの薄い絶縁紙55が配置されている。
 本実施の形態の非水電解液二次電池では、極板群3で発生した熱は、軸芯23の外芯部39→軸芯23の内芯部37→正極端子5及び負極端子7という経路で電池外部に放出される。本実施の形態の非水電解液二次電池では、外芯部39を構成する絶縁材料が、1~20W/mkの熱伝導率を有しているので、高温時に極板群3で発生した熱を電池外部に十分に放出することができ、しかも低温時における極板群3から内芯部37への放熱を抑制して二次電池の温度低下を抑制できる。
 図4は、本発明の他の実施の形態の非水電解液二次電池に用いる軸芯の斜視図である。この軸芯123も内芯部137と内芯部137の外側に設けられた外芯部139とを有している。内芯部137及び外芯部139は、図3に示す内芯部37及び外芯部39と同じ材質により形成されている。外芯部139は、図3に示す外芯部39と同じ細長い円筒形を有している。内芯部137は、外芯部139の長手方向の寸法より短い寸法の円柱形状を有しており、円筒形の外芯部139の長手方向の中央に配置されている。このため、外芯部139の両端部には、空隙部139a、139bが形成されることになる。一方の空隙部139a内には、正極端子(5)が配置され、内芯部137の一方の端部137aは正極端子(5)の端部と接触している。他方の空隙部139b内には、負極端子(7)が配置され、内芯部137の他方の端部137bは負極端子(7)の端部と接触している。
 このような軸芯123は、内芯部137が円柱形状を有しているため、図3に示す軸芯23に比べて、内芯部の熱伝導性を高めることができる。但し、内芯部の重量が大きくなり、電池のエネルギー密度が低下する。また、コストが高くなる。
 図5は、本発明の更に他の実施の形態の非水電解液二次電池に用いる軸芯の斜視図である。この軸芯223も内芯部237と内芯部237の外側に設けられた外芯部239とを有している。内芯部237及び外芯部239は、図3に示す内芯部37及び外芯部39と同じ材質により形成されており、いずれも、長手方向の長さが等しい細長い円筒形を有している。内芯部237は、長手方向の中心から両端部に向かうに従って、断面積が徐々に大きくなる形状を有している。また、外芯部239は、長手方向の中心から両端部に向かうに従って、断面積が徐々に小さくなる形状を有している。
 このような軸芯223は、内芯部237と外芯部239との接触面積が大きくなるため、内芯部237から外芯部239への熱伝導性が高くなり、電池の放熱特性が向上する。
 図6は、本発明の更に別の実施の形態の非水電解液二次電池に用いる軸芯の分解斜視図である。この軸芯323も、内芯部337と内芯部337の外側に設けられた外芯部339とを有している。外芯部339は、図3に示す外芯部39と同じ細長い円筒形を有しており、該外芯部39と同じ材質により形成されている。内芯部337は、第1の金属部材337cと絶縁部材337dと第2の金属部材337eとから構成されている。第1の金属部材337c及び第2の金属部材337eは、図3に示す内芯部37より短い円筒形を有しており、該内芯部37と同じ金属材質により形成されている。絶縁部材337dは、図3に示す外芯部39と同じ絶縁材料により形成されており、第1の金属部材337cと第2の金属部材337eとの間に配置されている。絶縁部材337dは、絶縁部材本体337fと、絶縁部材本体337fの長手方向の両端に一体に設けられた一対の突出部337g,337hとを有している。一対の突出部337g,337hは、第1の金属部材337c及び第2の金属部材337eの内部にそれぞれ嵌合されている。本例の軸芯323では、絶縁部材337dにより、正極端子(5)と負極端子(7)とが内芯部337を介して短絡するのを防止される。
 なお、上記各例では、内芯部をインサートとしてインサート成形により外芯部を形成したが、内芯部に絶縁材料を塗布することにより外芯部を形成しても構わない。
 本発明によれば、高温時に極板群で発生した熱を電池外部に十分に放出することができ、しかも低温時における極板群から金属製の内芯部への熱伝達を抑制して、電池温度の低下を抑制することができる捲回式二次電池を得ることができる。
 3 極板群
 5 正極端子
 7 負極端子
 15,17 第1及び第2のセパレータ
 19 正極板
 21 負極板
 23,137,237 軸芯
 37,137,237 内芯部
 39,139,239 外芯部

Claims (8)

  1.  金属製の細長い内芯部及び該内芯部の外側に設けられた絶縁材料からなる外芯部からなる軸芯に、セパレータを間に介して積層された正極板及び負極板が捲回されて構成された極板群を有する捲回式二次電池であって、
     前記外芯部を構成する前記絶縁材料が、1~20W/mkの熱伝導率を有しており、
     前記絶縁材料が、絶縁樹脂材料に熱伝導率20W/mk以上の無機充填剤が充填されて構成されており、
     前記絶縁樹脂材料がエポキシ樹脂からなり、
     前記無機充填剤が金属酸化物、金属窒化物、金属炭化物、金属水酸化物、セラミックスの粉末あるいは繊維、またはこれらの混合物からなり、
     前記無機充填剤が前記絶縁樹脂材料100体積部に対して10~100体積部混合されており、
     前記外芯部及び前記内芯部は、筒形状を有しており、
     前記外芯部は、長手方向の中心から両端部に向かうに従って、断面積が小さくなる形状を有しており、
     前記内芯部は、長手方向の中心から両端部に向かうに従って、断面積が大きくなる形状を有していることを特徴とする捲回式二次電池。
  2.  金属製の細長い内芯部及び該内芯部の外側に設けられた絶縁材料からなる外芯部からなる軸芯に、セパレータを間に介して積層された正極板及び負極板が捲回されて構成された極板群を有する捲回式二次電池であって、
     前記外芯部を構成する前記絶縁材料が、1~20W/mkの熱伝導率を有することを特徴とする捲回式二次電池。
  3.  前記絶縁材料が、絶縁樹脂材料に熱伝導率20W/mk以上の無機充填剤が充填されて構成されていることを特徴とする請求項2に記載の捲回式二次電池。
  4.  前記絶縁樹脂材料がエポキシ樹脂からなり、
     前記無機充填剤が金属酸化物、金属窒化物、金属炭化物、金属水酸化物、セラミックスの粉末あるいは繊維、またはこれらの混合物からなることを特徴とする請求項3に記載の捲回式二次電池。
  5.  前記無機充填剤が前記絶縁樹脂材料100体積部に対して10~100体積部混合されていることを特徴とする請求項4に記載の捲回式二次電池。
  6.  前記外芯部及び前記内芯部が筒形状を有していることを特徴とする請求項2~5のいずれか1つに記載の捲回式二次電池。
  7.  前記外芯部は、筒形状を有しており、
     前記内芯部は、円柱形状を有していることを特徴とする請求項2~5のいずれか1つに記載の捲回式二次電池。
  8.  前記外芯部及び前記内芯部は、筒形状を有しており、
     前記外芯部は、長手方向の中心から両端部に向かうに従って、断面積が小さくなる形状を有しており、
     前記内芯部は、長手方向の中心から両端部に向かうに従って、断面積が大きくなる形状を有していることを特徴とする請求項2~5のいずれか1つに記載の捲回式二次電池。
PCT/JP2012/061820 2011-05-10 2012-05-09 捲回式二次電池 WO2012153752A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013514027A JP5962653B2 (ja) 2011-05-10 2012-05-09 捲回式二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-105346 2011-05-10
JP2011105346 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012153752A1 true WO2012153752A1 (ja) 2012-11-15

Family

ID=47139229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061820 WO2012153752A1 (ja) 2011-05-10 2012-05-09 捲回式二次電池

Country Status (2)

Country Link
JP (1) JP5962653B2 (ja)
WO (1) WO2012153752A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015090913A1 (de) * 2013-12-19 2015-06-25 Robert Bosch Gmbh Wärmeleitender polymerseparator
KR20160105355A (ko) * 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
WO2016152688A1 (ja) * 2015-03-23 2016-09-29 日本碍子株式会社 放熱調整構造、バッテリーパック、及び流体流通装置
KR20180084540A (ko) * 2017-01-17 2018-07-25 주식회사 엘지화학 배터리 모듈의 제조 방법
KR20180084539A (ko) * 2017-01-17 2018-07-25 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
CN110832693A (zh) * 2017-12-01 2020-02-21 株式会社Lg化学 具有填充有导热树脂的中空部的二次电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234616A (ja) * 1992-02-20 1993-09-10 Toyota Autom Loom Works Ltd 渦巻き型電池
JPH0955213A (ja) * 1995-06-08 1997-02-25 Sony Corp 電池装置
JP2000260474A (ja) * 1999-03-05 2000-09-22 Hitachi Ltd リチウム2次電池
JP2007165115A (ja) * 2005-12-14 2007-06-28 Shin Kobe Electric Mach Co Ltd 捲回式二次電池
JP2010055887A (ja) * 2008-08-27 2010-03-11 Toyota Motor Corp 二次電池
JP2011077020A (ja) * 2009-09-30 2011-04-14 Samsung Sdi Co Ltd 二次電池及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030975A (ja) * 1998-07-16 2000-01-28 Furukawa Electric Co Ltd:The 冷却部品
JP4493684B2 (ja) * 2007-07-24 2010-06-30 株式会社ソフイア 遊技機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234616A (ja) * 1992-02-20 1993-09-10 Toyota Autom Loom Works Ltd 渦巻き型電池
JPH0955213A (ja) * 1995-06-08 1997-02-25 Sony Corp 電池装置
JP2000260474A (ja) * 1999-03-05 2000-09-22 Hitachi Ltd リチウム2次電池
JP2007165115A (ja) * 2005-12-14 2007-06-28 Shin Kobe Electric Mach Co Ltd 捲回式二次電池
JP2010055887A (ja) * 2008-08-27 2010-03-11 Toyota Motor Corp 二次電池
JP2011077020A (ja) * 2009-09-30 2011-04-14 Samsung Sdi Co Ltd 二次電池及びその製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015090913A1 (de) * 2013-12-19 2015-06-25 Robert Bosch Gmbh Wärmeleitender polymerseparator
KR101960950B1 (ko) * 2015-02-27 2019-03-22 주식회사 엘지화학 배터리 모듈
KR20160105360A (ko) * 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
KR101941115B1 (ko) * 2015-02-27 2019-01-23 주식회사 엘지화학 배터리 모듈
KR20160105354A (ko) * 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
KR20160105356A (ko) * 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
KR20160105358A (ko) * 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
KR20160105359A (ko) * 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
KR101941117B1 (ko) * 2015-02-27 2019-01-23 주식회사 엘지화학 배터리 모듈
KR101941114B1 (ko) * 2015-02-27 2019-01-23 주식회사 엘지화학 배터리 모듈
US11271264B2 (en) 2015-02-27 2022-03-08 Lg Energy Solution, Ltd. Battery module
US10615470B2 (en) 2015-02-27 2020-04-07 Lg Chem, Ltd. Battery module
KR20160105357A (ko) * 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
KR101960939B1 (ko) * 2015-02-27 2019-03-22 주식회사 엘지화학 배터리 모듈
KR101941116B1 (ko) * 2015-02-27 2019-01-23 주식회사 엘지화학 배터리 모듈
KR20160105355A (ko) * 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
WO2016152688A1 (ja) * 2015-03-23 2016-09-29 日本碍子株式会社 放熱調整構造、バッテリーパック、及び流体流通装置
KR20180084540A (ko) * 2017-01-17 2018-07-25 주식회사 엘지화학 배터리 모듈의 제조 방법
KR102201348B1 (ko) 2017-01-17 2021-01-08 주식회사 엘지화학 배터리 모듈의 제조 방법
KR102207881B1 (ko) 2017-01-17 2021-01-25 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR20180084539A (ko) * 2017-01-17 2018-07-25 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
CN110832693A (zh) * 2017-12-01 2020-02-21 株式会社Lg化学 具有填充有导热树脂的中空部的二次电池
CN110832693B (zh) * 2017-12-01 2023-04-07 株式会社Lg新能源 二次电池、二次电池组和装置

Also Published As

Publication number Publication date
JP5962653B2 (ja) 2016-08-03
JPWO2012153752A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5962653B2 (ja) 捲回式二次電池
JP7063441B2 (ja) バッテリーモジュール
WO2015019429A1 (ja) 電池モジュール
US7695857B2 (en) Electrode assembly for lithium ion secondary battery and lithium ion secondary battery using the same
KR102084659B1 (ko) 일체형 배터리 탭
CN107565187B (zh) 电池
US20160293926A1 (en) Prismatic secondary battery and assembled battery using the same
JP6311445B2 (ja) 全固体リチウムイオン二次電池
JP7513236B2 (ja) バッテリモジュール
US9337459B2 (en) Sealed secondary battery
CN209843907U (zh) 二次电池
WO2013145611A1 (ja) 蓄電デバイス及び蓄電デバイスの放熱方法
JP2008186595A (ja) 2次電池
JP2017177533A (ja) 相変化物質利用の複合材、その製造方法及びその配置方法
JP2012123983A (ja) 二次電池の膨脹抑制構造およびこれを備えた二次電池
JP2012190588A (ja) 二次電池
CN110462874B (zh) 二次电池的绝缘体和包括其的二次电池
KR102630853B1 (ko) 열전달 부재를 포함하는 파우치형 이차전지
JP2020523753A (ja) 熱伝導性樹脂で満たされた中空を有する二次電池
JP5561439B2 (ja) 電池収容構造体
US20200373802A1 (en) Stator
JP5909371B2 (ja) リチウムイオン二次電池
JP2013161630A (ja) 蓄電装置用電極槽、蓄電装置、及び車両
JP6045835B2 (ja) 電池
WO2013157445A1 (ja) 非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12781718

Country of ref document: EP

Kind code of ref document: A1