WO2012152114A1 - 一种导电型电子元器件承载带的制作工艺 - Google Patents
一种导电型电子元器件承载带的制作工艺 Download PDFInfo
- Publication number
- WO2012152114A1 WO2012152114A1 PCT/CN2012/072200 CN2012072200W WO2012152114A1 WO 2012152114 A1 WO2012152114 A1 WO 2012152114A1 CN 2012072200 W CN2012072200 W CN 2012072200W WO 2012152114 A1 WO2012152114 A1 WO 2012152114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- die
- punch
- convex
- carrier tape
- film
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/02—Combined thermoforming and manufacture of the preform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0011—Combinations of extrusion moulding with other shaping operations combined with compression moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0017—Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/08—Deep drawing or matched-mould forming, i.e. using mechanical means only
- B29C51/082—Deep drawing or matched-mould forming, i.e. using mechanical means only by shaping between complementary mould parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92704—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0003—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
- B29K2995/0005—Conductive
Definitions
- the invention relates to a manufacturing process of an electronic component carrier tape, in particular to a manufacturing process of a conductive type electronic component carrier tape.
- the electronic component packaging transport carrier tape not only provides a medium for loading and transporting semiconductor integrated circuit electronic components, but more importantly, an important material necessary for subsequent high-speed, automated surface mounting.
- the semiconductor electronic component carrier tape With the invention and development of surface mount technology, the package form of semiconductor integrated circuits has gradually changed from the traditional pin type to the surface mount type, and the semiconductor electronic component carrier tape has also emerged as the times require, and gradually become connected upstream and downstream.
- An extremely important part of the industrial chain With the continuous development of semiconductor integrated circuit manufacturing technology, semiconductor electronic components are gradually shifting to high integration and miniaturization, and surface mount technology is increasingly demanding high speed and high precision. These all put forward higher requirements for the production technology of the carrier tape.
- the production technology of electronic component packaging and transportation carrier belt is mainly based on the traditional two-stage intermittent production technology.
- the polymer material is prepared into a certain thickness, width and length of the polymer sheet as the first stage process, the polymer raw material is mainly polystyrene particles, the polymer sheet is wound into a disk shape, and the single-roll polymer sheet is conventional.
- the length is 480 meters and the current single-roll polymer sheet is up to 1000 meters long. Due to quality control, transportation, packaging and other restrictions, the supply of polymer sheets is mainly controlled by suppliers in the US, Europe and Japan.
- the second process is to unwind, heat, and blister the sheet to make the carrier bag, cool, punch, trim, wind, and package, and finally make the finished carrier.
- the existing production equipment is mostly intermittent. Plastic molding machine.
- CN201020244183.9 discloses a roller-type carrier tape forming machine with a cam structure, which utilizes the same motor to drive three unique cams to realize three different directions of motion, thereby ensuring coordinated coordination of motion
- CN200520026049 .0 discloses a loading belt forming machine, which mainly adopts an absolute value rotary encoder and a programmable controller connected by a spindle for production control
- CN02294901.1 discloses an electronic component packaging and conveying belt forming machine, The invention comprises a feeding mechanism, a forming mechanism, a trimming mechanism, a punching mechanism and a receiving mechanism
- CN200480015023.4 discloses an embossing carrier manufacturing device, which is combined with other process equipment to make other processes, such as molding, The filler, and the package carrier tape can be sequentially carried out in a comprehensive process:
- CN200410038366.4 discloses a carrier tape forming method and a device thereof, the molding die comprising a first die holder and a
- the conventional production efficiency is 250 meters per hour.
- the prior art such as CN200320128985.3, discloses a deep cavity carrier tape forming die, which comprises an upper die and a lower die; and is capable of processing a deep cavity carrier tape product having a sidewall wall thickness and a bottom thickness relatively uniform.
- CN200520113816.1 discloses a separate molding wheel mold which is greatly difficult to process and has high production flexibility and is used for a multi-carrier belt forming machine.
- the above technology is mainly for the improvement of the forming mold, and the second stage of the two-stage production process is adopted.
- the object of the processing is the partially heated sheet, which is heated by the part that needs to be formed into the carrier tape. During the molding process, the heat-softened portion is stretch-formed.
- the wall thickness of the carrier tape is much smaller than the original thickness of the sheet due to stretching, reducing the strength of the molded carrier tape.
- the reinforcement of the bottom of the carrier tape is carried out by means of injection molding. This technical process is cumbersome and the production of the injection-molded carrier tape is inefficient.
- the above-mentioned patents disclosed at home and abroad mainly relate to the improvement of the carrier tape forming apparatus and the carrying pocket forming process of the second stage of the two-stage process.
- the existing electronic component carrier tapes are manufactured by a two-stage process, and the polymer raw materials need to be prepared into sheets.
- the general molding temperature is between 110 ° C and 300 ° C; and the leather is heated by high temperature.
- the fan is heated to above 300 °C, so that the leather material is fully softened close to the flow dynamics, and then the molding process is performed. Since the hot air heating environment is open in the process, and the intermittent processing heat dissipation is fast, the skin is heated. A higher temperature is required in the material process, and the carrier tape is reheated after the electronic component carrier has been cooled and formed, and the obtained product has low quality, specifically low precision, poor shrinkage, and poor tensile strength. And the heat distortion temperature is low.
- the existing electronic component carrier tapes adopt a two-stage production process, and the carrier tape pocket molding equipment is produced corresponding to the carrier tape pocket in the second process, which are all produced by intermittent equipment, that is, to prevent The heat-softened material is cooled and hardened, and intermittent stopping is required. When a section is produced, the next section is produced. At present, there is no forming machine for integrating and continuously producing an electronic component carrying belt with a carrying pocket.
- the existing two-stage carrier tape manufacturing process has a problem of high production cost and low quality of the produced product.
- the purpose of the invention is to solve the problem that the production of the existing electronic component carrier tape adopts a two-stage process, high production cost and low product quality, and discloses an integrated, continuous production with good tensile strength and use. And a manufacturing process of a conductive electronic component carrier tape with a belt and a pocket with a high heat distortion temperature.
- the present invention adopts the following technical solutions:
- a manufacturing process of a conductive electronic component carrier tape comprises the following steps: (1) forming a polymer raw material into a film fluid, and processing the film fluid into a carrier tape intermediate product with a pocket by a convex-concave mold, the polymerization Raw material is a mixture of general-purpose polystyrene and conductive carbon black, by mass ratio, general-purpose polystyrene
- the conductive electronic component carries the finished product.
- the polymer raw material is formed into a film fluid by an extruder
- the convex and concave mold moves in the same direction as the film exiting direction of the extruder, and the moving speed is the same as the speed of the film exiting the extruder, and the convex and concave mold clamps the film fluid into a pocket.
- Carrying belt with intermediate goods When moving, the convex and concave molds are relatively stationary with the film fluid, ensuring the accuracy of the molded carrier pocket.
- the convex and concave molds are respectively provided with a cooling water passage and a blowing port; when the convex and concave molds sandwich the film fluid, the film fluid is sucked by the blowing port, and the film fluid sandwiched by the convex and concave mold forms a carrier tape pocket, the convex and concave mold and the film fluid thereon
- water is injected into the cooling water passage to cool down; when the convex and concave mold releases the film, the air is blown through the air blowing port, and the intermediate belt of the formed belt of the pocket is separated from the convex and concave mold.
- the convex and concave mold comprises a convex mold, a convex lateral movement mechanism, a convex longitudinal movement stage, a convex mold base, a concave mold, a concave mold lateral movement mechanism, a concave mold longitudinal movement table and a concave mold base, and a convex mold and a concave mold.
- the position of the punch and the die corresponds to the exit of the extruder;
- the longitudinal moving table of the punch is mounted on the base of the punch, and the longitudinal moving table of the punch moves up and down along the base of the punch, and the punch moves laterally through the punch
- the mechanism is mounted on the longitudinal movement table of the punch;
- the longitudinal moving table of the die is mounted on the base of the die, and the longitudinal moving table of the die moves up and down along the base of the die, and the die is mounted on the longitudinal moving platform of the die by the lateral movement mechanism of the die a gap is left between the convex die of the punch and the recess of the die, and the longitudinal moving speed of the longitudinal moving table of the punch and the longitudinal moving table of the die corresponds to the film extrusion speed of the film exit of the extruder;
- a blowing port on the punch is directed toward the protruding die of the punch, and a blowing port on the die faces the recess of the die; a size of a gap between the protru
- the positions of the punch and the die are located directly below the exit opening of the extruder, and there is a gap between the punch and the die and the exit opening of the extruder.
- the film discharge is extruded from the film exit port of the extruder, and the punch and the die are used to make a pocket fluid between the film fluid, and the film fluid, the punch and the die are simultaneously moved downward at the same speed, and the carrier tape pocket is finished.
- the punch and the die move up quickly to make a pocket of the film fluid which is originally between the film exit of the extruder and the convex and concave molds, that is, the distance between the punch and the die and the exit of the extruder is
- continuous health The production provides time, and the specific distance of the spacing can be adjusted by factors such as the length of the punch and the die, and the flow rates of the film fluid, the punch, and the die.
- male lateral movement mechanism and the female lateral movement mechanism are both cylinders.
- the male longitudinal movement table is moved up and down by a guide rail mounted on the base of the punch
- the longitudinal movement of the female mold is moved up and down by a guide rail mounted on the base of the female mold.
- the male longitudinal moving table is moved up and down by a screw mounted on the base of the punch
- the longitudinal moving table of the female mold is moved up and down by a screw mounted on the base of the female mold.
- the protruding die on the punch is a plurality of longitudinally arranged, and each of the protruding die is provided with a blowing port, and the notches on the die are a plurality of longitudinally arranged, the convex die The number of embossing dies on the top and the arrangement position correspond to the notches on the die.
- the film fluid is directly processed into a carrier tape intermediate bag by a convex and concave die, and the temperature of the film fluid during processing is 210 ° C to 230 ° C between the production, the conductive electronic component carrier can be produced with high efficiency, integration and continuity.
- the product obtained by the film fluid processing in the above temperature range has the best tensile strength performance, high heat distortion temperature and conductivity. Good performance; Compared with the temperature below 110 °C and 210 °C, the tensile strength of the product is increased by 50%, the heat distortion temperature is increased by 10%, the electrical conductivity is improved by 10%, and the temperature is below 230 °C and below 270 °C.
- the temperature produced products have a 40% increase in tensile strength, a 30% reduction in energy consumption and a better electrical conductivity.
- the manufacturing process of the conductive electronic component carrier tape has the advantages of low production energy consumption, length and thickness can be arbitrarily adjusted, and production efficiency and
- the product has high quality, good electrical conductivity, especially high tensile strength, and the use and heat distortion temperature is greatly improved.
- a manufacturing process of a conductive electronic component carrier tape comprises the following steps: (1) forming a polymer raw material into a film fluid, and processing the film fluid into a carrier tape intermediate product with a pocket by a convex-concave mold, the polymerization
- the raw material is a mixture of general-purpose polystyrene and conductive carbon black. According to the mass ratio, 70% of general-purpose polystyrene and 30% of conductive carbon black; the temperature of film-and-concave mold is controlled at about 215 °C; (2) The intermediate product of the carrier tape is punched and trimmed to obtain a finished product of the conductive electronic component carrier tape.
- the polymer raw material is formed into a film fluid by an extruder, a convex-concave mold and an extruder
- the film exiting direction moves in the same direction and the moving speed is the same as that of the extruder.
- the convex and concave molds sandwich the film fluid into a carrier tape intermediate with a pocket.
- the convex and concave molds are relatively stationary with the film fluid, ensuring the accuracy of the molded carrier pocket.
- a cooling water passage and a blowing port are respectively disposed on the convex and concave molds; when the convex and concave molds sandwich the film fluid, the film fluid is clamped on the convex and concave mold by the air blowing port, and the film fluid is formed on the convex and concave mold, and the convex and concave mold and the film fluid thereon are the same
- water is injected into the cooling water channel to cool down, and the temperature of the convex and concave mold is lowered to between 40 ° C and 120 ° C by water injection to prevent overheating of the convex and concave mold under long time work, thereby causing the adhesive material to be removed.
- the problem of unsmooth molds also speeds up the cooling and setting speed of the forming pockets and improves the production efficiency. All the forming pockets are processed at a constant temperature to ensure the quality stability of the product; The pocket-formed carrier tape intermediate is separated from the convex-concave mold by blowing through the blow port.
- the convex-concave mold comprises a punch, a lateral movement mechanism of the punch, a longitudinal movement table of the punch, a base of the punch, a die, a lateral movement mechanism of the die, a longitudinal movement table of the die, and a base of the die, and the shapes of the punch and the die correspond to each other,
- the position of the punch and the die corresponds to the exit of the extruder;
- the longitudinal moving table of the punch is mounted on the base of the punch, and the longitudinal moving table of the punch moves up and down along the base of the punch, and the punch is mounted by the lateral movement mechanism of the punch
- the punch is longitudinally moved on the table;
- the longitudinal moving table of the die is mounted on the die base, and the longitudinal moving table of the die moves up and down along the base of the die, and the die is mounted on the longitudinal moving table of the die by the lateral movement mechanism of the die;
- a gap is left between the convex die of the die and the recess of the die, and the wall
- the longitudinal movement speed of the longitudinal movement table of the punch and the longitudinal movement stage of the die corresponds to the film extrusion speed of the film exit of the extruder;
- the blow port on the punch faces the convex die of the punch, on the die
- the blow port faces the recess of the die.
- the positions of the punch and the die are located directly below the exit opening of the extruder, and there is a gap between the punch and the die and the exit port of the extruder.
- the film discharge is extruded from the film exit port of the extruder, and the punch and the die are used to make a pocket fluid between the film fluid, and the film fluid, the punch and the die are simultaneously moved downward at the same speed, and the carrier tape pocket is finished.
- the punch and the die move up quickly to make a pocket of the film fluid which is originally between the film exit of the extruder and the convex and concave molds, that is, the distance between the punch and the die and the exit of the extruder is Time is provided for integrated, continuous production, and the specific distance of the pitch can be adjusted by factors such as the length of the punch and the die, and the flow rates of the film fluid, the punch, and the die.
- the blowing port has two main functions. One is when the film fluid is sandwiched between the protruding die of the punch and the recess of the die, and the air is sucked through the air blowing passage to facilitate rapid forming of the carrying belt pocket; The other is that after the carrier belt is formed, the air is blown through the air blowing port, and the carrier tape can be easily and quickly divided into the punch and the die. Leaving.
- the male mold lateral movement mechanism and the female mold lateral movement mechanism are both cylinders, and the male mold longitudinal movement table is moved up and down by a guide rail mounted on the convex mold base, and the female longitudinal movement stage is moved up and down by a guide rail mounted on the concave mold base.
- the protruding die on the punch is a plurality of longitudinally arranged, and each of the protruding die is provided with a blowing port, the notch on the die is a plurality of longitudinally arranged, and the protruding die on the punch
- the number of heads and the arrangement position correspond to the notches on the die.
- the manner in which the above-mentioned punch longitudinal movement table moves on the punch base and the longitudinal movement of the die can be varied on the die base.
- the screw can be moved up and down, or by gear transmission, pneumatic or the like.
- the use process is as follows: When the film fluid passes between the punch and the die, the lateral movement mechanism of the punch and the lateral movement mechanism of the die move to control the movement of the punch and the die to realize the connection of the punch and the die, and the film fluid is clamped Between the punch and the die, which is sandwiched between the protruding die of the punch and the recess of the die; then inhales the blow port on the punch and the die, the orientation on the punch a common suction of the blow port at the embossing die of the punch and the blow port of the recess toward the recess of the die, sandwiched between the embossing die of the punch and the recess of the die.
- the film fluid at the gap forms a carrier tape pocket, and the wall thickness of the carrier tape carrier can be controlled by the size of the gap; the punch and the die are respectively controlled to move downward by the longitudinal movement of the punch and the longitudinal movement of the die, convex
- the moving speed of the die and the die is the same
- the general-purpose polystyrene may be PG-22, PG-33, PG-383, PG-383M, etc. produced by Chi Mei Company, or 666H produced by Dow Chemical, 158K, 165H produced by BASF, Ltd.; Carbon black 10% -30%, conductive carbon black can be Cabot's VXC72R, VXC72, BP2000 and other products, or Degussa's PRINTEX XE2-B, PRINTEX L6, HIBLAXK 40B2 and other products.
- the distance between the center line of each pocket and the center line of the adjacent pocket is 8mm
- the total length of the punch and the die is 200mm
- the convex and concave mold and the film exit of the extruder The spacing between the two is 2mm.
- the film fluid is a high-temperature, high-flow fluid film with a flow velocity of 15 m/min, the downward movement speed of the convex and concave mold and the film flow. The speed is the same.
- the thickness of the film fluid is controlled between 0.1 mm and 0.5 mm, and the thickness of the final product is precisely controlled by the gap between the punch and the die, and the width of the electronic component carrier tape is 8 mm.
- a manufacturing process of a conductive electronic component carrier tape the process steps are the same as those of the first embodiment, except that the general-purpose polystyrene and the conductive carbon black in the polymer raw material are used in different proportions, according to the mass ratio, the general-purpose poly 80% styrene, 20% conductive carbon black, the temperature of the film processing of the convex and concave mold is controlled at about 220 °C.
- the flow rate of the film fluid was 18 m / min, and the downward movement speed of the convex and concave mold was consistent with the film flow speed.
- a manufacturing process of a conductive electronic component carrier tape the process steps are the same as those of the first embodiment, the only difference is that the general-purpose polystyrene and the conductive carbon black in the polymer raw material are used in different proportions, according to the mass ratio, the general type Polystyrene 90%, conductive carbon black 10%, the temperature of the film processing of the convex and concave mold is controlled at about 225 °C.
- the flow rate of the film fluid was 22 m / min, and the downward movement speed of the convex and concave mold was consistent with the film flow speed.
- Example 2 Example 3 Production Efficiency Meters/Minute 8 15 18 22 Winding Length Meter/Volume 1000 1000 1000 1000 Product Thickness Millimeter Micrometer 0.250 0.220 0.220 0.220 Product Accuracy Tool Microscope +/-0.10 +/-0.05 +/-0.05 +/-0.05 tensile strength (yield tensile tester 21 38 40 39 points) MPa
- Tensile modulus of elasticity Tensile testing machine 1400 1900 2000 1900 MPa
- the above three embodiments are only preferred embodiments of the present invention, and the present invention can be integrated with the traditional two-stage process and intermittent equipment to produce electronic component carrier tapes.
- the production of conductive electronic component carrier tapes is continuous and continuous, so the production temperature is greatly reduced compared with the existing second-stage process, and the energy consumption is reduced by more than 50%.
- the tensile strength of the product is higher than that of the conventional process.
- the product has been improved by at least 60% and is more durable.
- the table below compares the data for a small film fluid at the same processing temperature.
- the temperature of the film fluid during processing is between 215 °C and 225 °C, and the tensile strength is best obtained by processing, and the heat and deformation temperature are the highest, and the conductivity is the best.
- the temperature of the film fluid during the processing of the intermediate tape with the pocket is controlled at 1 1 (between TC and 270 ° C, and the temperature is lower than 110 ° C, the polystyrene particles of the raw material will not be fully plasticized.
- the polystyrene particles of the raw materials will not be fully plasticized, which will cause the processing equipment to be overloaded and the equipment will be stopped in a white state.
- the temperature is higher than 270 ° C, the plastic particles cannot be continuously formed into a film, and the carrier tape is easily broken, so that continuous production cannot be performed, and intermittent shutdown is required.
- the temperature of the film fluid is between 210 ° C and 230 ° C. The obtained product has the best tensile strength resistance, the highest heat dissipation temperature and the best electrical conductivity, compared with 110.
- the tensile strength properties of products produced at temperatures above 210 °C are increased by about 50%, the use and heat distortion temperature are increased by about 10%, the electrical conductivity is improved by about 10%, and the temperature is lower than 230 °C and below 270 °C.
- the tensile strength of the products produced is approximately 40% higher, the energy consumption is reduced by at least 30%, and the electrical conductivity is better.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
Description
一种导电型电子元器件承载带的制作工艺
技术领域
本发明涉及一种电子元器件承载带的制作工艺, 尤其是一种导电型电子元器 件承载带的制作工艺。
背景技术
在整个电子产品产业链中, 电子元器件包装运输承载带的生产占据非常重要一环。 电子元器件包装运输承载带不仅为半导体集成电路电子元器件提供装载和运输的媒介, 更重要的是为实现后续的高速、 自动化的表面贴装所必不可少的重要材料。 伴随着表面 贴装技术的发明和发展, 半导体集成电路的封装形式逐渐从传统的插脚式向表面贴装式 转变, 而半导体电子元器件承载带也随之应运而生, 并逐渐成为连接上下游产业链的极 其重要一环。 随着半导体集成电路制造技术的不断发展, 半导体电子元器件逐渐向高集 成度和小型化转变, 表面贴装技术亦越来越要求高速度和高精确度。 这些都对承载带的 生产技术提出了更高要求。 高效率、 一体化、 高精度逐渐成为承载带生产技术发展的趋 势。 目前, 电子元器件包装运输承载带生产技术主要为以传统的两段式间歇生产技术为 主。 将聚合物原材料制备成一定厚度、 宽度和长度的聚合物片材为第一段工艺, 聚合物 原材料主要是聚苯乙烯颗粒, 聚合物片材卷成盘状, 单卷聚合物片材的常规长度为 480 米, 目前单卷聚合物片材最长为 1000米。 由于受质量控制、 运输、 包装等限制, 聚合物 片材的供应主要由美国、 欧洲和日本的供应商控制, 由于单卷片材的长度固定, 在后续 的生产过程中, 一旦出现质量瑕疵, 整卷片材将完全报废。 第二段工艺是将片材进行解 卷、 加热、 吸塑制作载带口袋、 冷却、 冲孔、 切边、 卷绕、 包装, 最终制成承载带成品, 现有的生产设备多为间歇式的吸塑成型机。现有技术如 CN201020244183.9, 公开了一种 具有凸轮结构的滚轮式载带成型机, 利用同一电机带动三个独特的凸轮实现了三个不同 方向的动作, 保证了运动的协调一致性; CN200520026049.0公开了一种装载带成型机, 主要采用由主轴连接的设有绝对值旋转编码器和可编程控制器进行生产控制; CN02294901.1 , 公开了一种电子元件包装输送承载带成型机,包含送料机构、成型机构、 裁边机构、冲孔机构、收料机构; CN200480015023.4, 公开了一种压印承载带制造装置, 具有与其他工艺设备相结合, 使其他工艺过程, 如成型, 填料, 和封装承载带能在一个 综合的工艺过程中顺序进行的特征: CN200410038366.4, 公开了一种载带成型方法及其 装置, 成型模包括第一模座和第二模座, 具有两个成型模; 上述技术主要是针对两段式
工艺的第二段工艺中的设备进行改进。 常规的生产效率为每小时 250米产品。 现有技术 如 CN200320128985.3 , 公开了一种深型腔载带成型模具, 包括上模、 下模; 其能够加工 生产出侧壁壁厚和底部厚度相对均勾的深型腔载带产品。 CN200520113816.1 , 公开了一 种加工难度大为降低, 生产灵活性大, 用于一出多载带成型机上的分离式成型轮模具。 上述技术主要是针对成型模具做出了改善, 采用的也是两段式的生产工艺的第二段, 加 工的对象是局部进行加热的片材, 通过对需要成型载带口袋的局部进行加热, 产品成型 过程中, 对加热软化的局部进行拉伸成型。 载带口袋的壁厚由于经过拉伸将远远小于片 材原有的厚度, 降低了成型载带口袋的强度。现有技术如 US 7771187, US20040253333 , WO/2004/089760, US20090133367, US 20020100257, US7320772公开了改进成型设备 的一些方法。 US5800772公开了改进成型工艺。 JP06286763 , JP2001163354, JP 10272684 公开了改进成型载带口袋形状的一些方法。现有技术如 US5992639公开了针对载带口袋 强度进行改进的方法,通过注射成型的方式进行载带口袋底部的增强,该技术工艺繁琐、 注射成型载带口袋生产效率低。 上述国内外已公开的专利主要涉及对二段式工艺中第二 段的载带口袋成型设备、 载带口袋成型工艺等进行改进。
现有的电子元器件承载带的制作均采用二段式工艺, 需要将聚合物原材料制备成 片材, 一般的成型温度在 110°C〜300°C之间; 再通过高温将皮料在热风机中加热到 300°C以上, 使得皮料充分软化接近于流动态, 再进行成型加工, 由于该工艺中使用热 风加热环境为开放式, 且为间歇式加工热量耗散快, 因此在加热皮料过程中需要较高 的温度, 并且在电子元器件承载带已经冷却成型后再次加热制作载带口袋, 制得的产 品质量低, 具体是精度低, 收缩率差, 抗拉伸强度差, 使用和热变形温度低。
综上所述, 现有的电子元器件承载带均采用二段式生产工艺, 载带口袋成型设备 对应第二段工艺中的载带口袋制作, 均采用间歇式的设备生产, 即为了防止已经加热 软化的材料冷却硬化, 需要间歇式的停止, 当一段生产完了以后再生产下一段, 目前 还没有带一体化、 连续化生产带载带口袋的电子元器件承载带的成型机。 现有的二段 式承载带制造工艺存在生产成本高, 制得的产品质量低的问题。
发明内容
发明的目的是为了解决现有电子元器件承载带的制作均采用二段式工艺, 生产成 本高, 产品质量低的问题, 公开了一种一体化、 连续化生产的抗拉伸强度好, 使用和 热变形温度高的带承载带口袋的导电型电子元器件承载带的制作工艺。
为了实现上述的发明目的, 本发明采用了以下的技术方案:
一种导电型电子元器件承载带的制作工艺, 依次包括下述步骤: (1)将聚合物原材 料制成薄膜流体, 通过凸凹模具将薄膜流体加工成带口袋的承载带中间品, 所述聚合 物原材料是通用型聚苯乙烯和导电炭黑的混合物, 按质量比, 通用型聚苯乙烯
70 %-90 % , 导电炭黑 10 %-30 %; 凸凹模具对薄膜加工的温度控制在 210°C〜230°C之 间; (2)对承载带中间品进行冲孔和切边, 得到导电型电子元器件承载带成品。
作为优选, 通过挤出机将聚合物原材料制成薄膜流体, 凸凹模具与挤出机出膜方 向同向移动且移动速度与挤出机出膜速度相同, 凸凹模具夹住薄膜流体加工成带口袋 的承载带中间品。 移动时, 凸凹模具与薄膜流体相对静止, 保证成型承载带口袋的精 确性。
作为优选, 凸凹模具上分别设置冷却水通道和吹气口; 凸凹模具夹住薄膜流体时, 通过吹气口吸气, 夹在凸凹模具上的薄膜流体形成承载带口袋, 凸凹模具及其上的薄 膜流体同向同速移动时向冷却水通道注水进行降温; 凸凹模具松开薄膜时通过吹气口 吹气, 将口袋已成型好的承载带中间品与凸凹模具脱离。
进一步的, 凸凹模具包括凸模、 凸模横向移动机构、 凸模纵向移动台、 凸模底座、 凹模、 凹模横向移动机构、 凹模纵向移动台和凹模底座, 凸模和凹模的形状对应, 凸 模和凹模位置与挤出机出膜口对应; 凸模纵向移动台安装在凸模底座上, 且凸模纵向 移动台沿凸模底座上下移动, 凸模通过凸模横向移动机构安装在凸模纵向移动台上; 凹模纵向移动台安装在凹模底座上, 且凹模纵向移动台沿凹模底座上下移动, 凹模通 过凹模横向移动机构安装在凹模纵向移动台上; 凸模的凸出模头和凹模的凹口之间留 有间隙, 凸模纵向移动台和凹模纵向移动台的纵向移动速度与挤出机出膜口的薄膜挤 出速度对应; 所述凸模上的吹气口朝向凸模的凸出模头, 凹模上的吹气口朝向凹模的 凹口; 通过凸模的凸出模头和凹模的凹口之间间隙的尺寸可以控制承载带载带口袋的 壁厚。
进一步的, 凸模和凹模的位置处于挤出机出膜口的正下方, 且凸模和凹模与挤出 机出膜口之间存在间距。 挤出机出膜口挤出薄膜流体, 凸模和凹模对两者之间的薄膜 流体进行口袋制作, 同时薄膜流体、 凸模和凹模同时同速向下移动, 承载带口袋制作 完成后, 凸模和凹模快速向上移动对原本处于挤出机出膜口和凸、 凹模之间的薄膜流 体进行口袋制作, 即凸模和凹模与挤出机出膜口之间的间距是为了一体化、 连续化生
产提供了时间, 间距的具体距离可以通过凸模和凹模的长度, 以及薄膜流体、 凸模和 凹模的流速等因素的不同而调整。
进一步的, 所述凸模横向移动机构和凹模横向移动机构都是气缸。
进一步的, 所述凸模纵向移动台通过安装在凸模底座上的导轨上下移动, 凹模纵 向移动台通过安装在凹模底座上的导轨上下移动。
进一步的, 所述凸模纵向移动台通过安装在凸模底座上的螺杆上下移动, 凹模纵 向移动台通过安装在凹模底座上的螺杆上下移动。
进一步的, 所述凸模上的凸出模头是纵向排列的多个, 且每个凸出模头上均设置 吹气口, 所述凹模上的凹口是纵向排列的多个, 凸模上的凸出模头数量和排列位置与 凹模上的凹口匹配对应。
采用了上述技术方案的一种导电型电子元器件承载带的制作工艺, 通过凸凹模具 直接将薄膜流体加工成带口袋的承载带中间品, 加工时薄膜流体的温度在 210°C〜 230°C之间, 可以高效率、 一体化、 连续化的生产导电型电子元器件承载带, 对上述温 度区间的薄膜流体加工制得的产品抗拉伸强度性能最好, 使用和热变形温度高, 导电 性能佳; 相对 110°C以上 210°C以下的温度生产的产品抗拉伸强度性能提升 50 %, 使用 和热变形温度提高 10 %, 导电性能提升 10 % ; 相对 230°C以上 270°C以下的温度生产 的产品抗拉伸强度性能提升 40 %, 能耗至少降低 30 %, 导电性能更好。 与传统的二段 式工艺、 间歇式设备生产的电子元器件承载带相比, 该导电型电子元器件承载带的制 作工艺的优点是生产能耗低, 长度、 厚度可以任意调整, 生产效率和产品质量高, 导 电性能好, 尤其是抗拉伸强度高, 使用和热变形温度大大提高。
具体实施方式
下面对本发明做进一步描述。
实施例 1
一种导电型电子元器件承载带的制作工艺, 依次包括下述步骤: (1)将聚合物 原材料制成薄膜流体, 通过凸凹模具将薄膜流体加工成带口袋的承载带中间品, 所述聚合物原材料是通用型聚苯乙烯和导电炭黑的混合物, 按质量比, 通用型聚 苯乙烯 70 %, 导电炭黑 30 % ; 凸凹模具对薄膜加工的温度控制在 215 °C左右; (2) 对承载带中间品进行冲孔和切边, 得到导电型电子元器件承载带成品。
上述步骤 (1)中通过挤出机将聚合物原材料制成薄膜流体, 凸凹模具与挤出机
出膜方向同向移动且移动速度与挤出机出膜速度相同, 凸凹模具夹住薄膜流体加 工成带口袋的承载带中间品。 移动时, 凸凹模具与薄膜流体相对静止, 保证成型 承载带口袋的精确性。 凸凹模具上分别设置冷却水通道和吹气口; 凸凹模具夹住 薄膜流体时, 通过吹气口吸气, 夹在凸凹模具上的薄膜流体形成承载带口袋, 凸 凹模具及其上的薄膜流体同向同速移动时向冷却水通道注水进行降温, 通过注水 降温将凸凹模具的温度降至 40°C-120°C之间, 防止凸凹模具在长时间工作下产生 过热的现象, 进而导致粘料, 脱模不顺畅等问题, 也加快了成型口袋的冷却、 定 型速度, 提高了生产效率, 所有的成型口袋在一个恒定的温度下进行加工成型也 保证了产品的质量稳定性; 凸凹模具松开薄膜时通过吹气口吹气, 将口袋已成型 好的承载带中间品与凸凹模具脱离。
凸凹模具包括凸模、 凸模横向移动机构、 凸模纵向移动台、 凸模底座、 凹模、 凹模横向移动机构、 凹模纵向移动台和凹模底座, 凸模和凹模的形状对应, 凸模 和凹模位置与挤出机出膜口对应; 凸模纵向移动台安装在凸模底座上, 且凸模纵 向移动台沿凸模底座上下移动, 凸模通过凸模横向移动机构安装在凸模纵向移动 台上; 凹模纵向移动台安装在凹模底座上, 且凹模纵向移动台沿凹模底座上下移 动, 凹模通过凹模横向移动机构安装在凹模纵向移动台上; 凸模的凸出模头和凹 模的凹口之间留有间隙, 通过间隙的尺寸可以控制承载带载带口袋的壁厚。 凸模 纵向移动台和凹模纵向移动台的纵向移动速度与挤出机出膜口的薄膜挤出速度对 应;所述凸模上的吹气口朝向凸模的凸出模头, 凹模上的吹气口朝向凹模的凹口。
凸模和凹模的位置处于挤出机出膜口的正下方,且凸模和凹模与挤出机出膜 口之间存在间距。 挤出机出膜口挤出薄膜流体, 凸模和凹模对两者之间的薄膜流 体进行口袋制作, 同时薄膜流体、 凸模和凹模同时同速向下移动, 承载带口袋制 作完成后, 凸模和凹模快速向上移动对原本处于挤出机出膜口和凸、 凹模之间的 薄膜流体进行口袋制作,即凸模和凹模与挤出机出膜口之间的间距是为了一体化、 连续化生产提供了时间, 间距的具体距离可以通过凸模和凹模的长度, 以及薄膜 流体、 凸模和凹模的流速等因素的不同而调整。
吹气口主要有两个作用, 一个是当薄膜流体夹在凸模的凸出模头和凹模的凹 口之间的间隙处时, 通过吹气通道吸气, 便于承载带口袋快速的成型; 另一个是 承载带口袋成型后, 通过吹气口吹气, 可以方便快速的将承载带与凸模和凹模分
离。 上述凸模横向移动机构和凹模横向移动机构都是气缸, 凸模纵向移动台通过 安装在凸模底座上的导轨上下移动, 凹模纵向移动台通过安装在凹模底座上的导 轨上下移动。 凸模上的凸出模头是纵向排列的多个, 且每个凸出模头上均设置吹 气口, 所述凹模上的凹口是纵向排列的多个, 凸模上的凸出模头数量和排列位置 与凹模上的凹口匹配对应。 上述凸模纵向移动台在凸模底座上的移动方式和凹模 纵向移动台在凹模底座上的移动方式可以多样, 例如也可以通过螺杆实现上下移 动, 或者通过齿轮传动、 气动等其它方式。
使用过程如下: 薄膜流体经过凸模和凹模之间时, 凸模横向移动机构和凹模 横向移动机构动作, 分别控制凸模和凹模移动实现凸模和凹模配合连接, 薄膜流 体夹在凸模和凹模之间, 其中夹在凸模的凸出模头和凹模的凹口之间的间隙处; 然后对凸模和凹模上的吹气口吸气, 在凸模上的朝向凸模的凸出模头处的吹气口 和凹模上的朝向凹模的凹口的吹气口的共同吸气作用下, 夹在凸模的凸出模头和 凹模的凹口之间的间隙处的薄膜流体形成承载带口袋, 并且通过间隙的尺寸可以 控制承载带载带口袋的壁厚; 凸模和凹模分别通过凸模纵向移动台和凹模纵向移 动台控制向下移动, 凸模和凹模的移动速度相同, 且凸模和凹模的移动速度与挤 出机出膜速度相同, 凸模、 凹模与膜流体薄膜相对静止, 保证成型承载带口袋的 精确性; 凸模和凹模移动过程中, 通过冷却水通道注水对凸模和凹模进行降温冷 却, 使承载带快速的成型; 承载带成型后, 凸模横向移动机构和凹模横向移动机 构动作, 分别控制凸模和凹模分开, 同时对凸模和凹模上的吹气口吹气, 将已成 型好的载带口袋从凸模的凸出模头和凹模的凹口上脱出; 凸模和凹模分别通过凸 模纵向移动台和凹模纵向移动台控制快速向上移动复位, 重复上述动作。
上述通用型聚苯乙烯可以是奇美公司生产的 PG-22、PG-33、PG-383、PG-383M 等产品,或者陶氏化学生产的 666H、扬子巴斯夫公司生产的 158K、 165H等产品; 导电炭黑 10 % -30 %, 导电炭黑可以是卡博特公司生产的 VXC72R、 VXC72、 BP2000 等产品, 或者德固赛公司生产的 PRINTEX XE2-B, PRINTEX L6 , HIBLAXK 40B2等产品。 通过上述凸凹模具一次可以制作成型 25个口袋, 每个 口袋中心线与相邻口袋中心线的距离为 8mm, 凸模和凹模的总长度均为 200mm, 凸凹模具与挤出机出膜口之间的间距为 2mm。 薄膜流体是高温、 高流动性的流体 状薄膜, 薄膜流体的流动速度为 15米 /分钟, 凸凹模具向下移动速度与薄膜流动
速度一致。薄膜流体的厚度控制在 0.1mm-0.5mm之间,最终成品的厚度由凸模和 凹模之间的间隙精确控制, 电子元器件承载带的宽度是 8mm。
实施例 2
一种导电型电子元器件承载带的制作工艺, 工艺步骤与实施例 1相同完全, 不同之处在于聚合物原材料中通用型聚苯乙烯和导电炭黑使用比例不同, 按质量 比, 通用型聚苯乙烯 80 %, 导电炭黑 20 %, 凸凹模具对薄膜加工的温度控制在 220°C左右。 薄膜流体的流动速度为 18米 /分钟, 凸凹模具向下移动速度与薄膜流 动速度一致。
实施例 3
一种导电型电子元器件承载带的制作工艺, 工艺步骤与实施例 1相同完全, 唯一不同之处在于聚合物原材料中通用型聚苯乙烯和导电炭黑使用比例不同, 按 质量比, 通用型聚苯乙烯 90 %, 导电炭黑 10 %, 凸凹模具对薄膜加工的温度控制 在 225 °C左右。薄膜流体的流动速度为 22米 /分钟, 凸凹模具向下移动速度与薄膜 流动速度一致。
下述表格为传统产品与本专利的 3个实施例的数据对比。
典型性能 检测标准 传统产品 实施例 1 实施例 2 实施例 3 生产效率米 /分钟 8 15 18 22 卷绕长度米 /卷 1000 1000 1000 1000 产品厚度毫米 千分尺 0.250 0.220 0.220 0.220 产品精度 工具显微镜 +/-0.10 +/-0.05 +/-0.05 +/-0.05 拉伸强度 (屈服 拉力测试机 21 38 40 39 点) MPa
拉伸强度 (断裂点) 拉力测试机 22 38 41 39 MPa
拉伸弹性模量 拉力测试机 1400 1900 2000 1900 MPa
能耗千瓦 4 2 2 2 时 /千米
使用和热变形温 热变形温度 90 110 110 110
度。 c 测试仪
导电性能 电阻测试仪 7 5.8 5.8 5.8 上述 3个实施例仅为本发明较佳的实施方式, 本发明相对于传统的二段式工 艺、 间歇式设备生产电子元器件承载带, 本上艺可以一体化、 连续化的生产导电 型电子元器件承载带, 所以生产温度相对于现有的第二段工艺的生产温度大幅降 低, 能耗降低了 50%以上, 同时产品的拉伸强度比传统工艺生产的产品至少提高 了 60%, 更加结实耐用。
下述表格为薄膜流体小同加工温度下的数据对比。
由上表可知, 加工时薄膜流体的温度在 215 °C〜225°C之间, 加工制得的产 抗拉伸强度性能最好, 使用和热变形温度最高, 导电性能最佳。
正常情况下带口袋的承载带中间品加工时薄膜流体的温度控制在 1 1 (TC~270°C 之间均可, 温度低于 110°C , 原材料的聚苯乙烯颗粒将无法充分塑化, 并
8
替换页 (细则第 26条)
且原材料的聚苯乙烯颗粒将无法充分塑化会导致加工设备扭力过载, 设备会白动 停机。 温度高于 270°C时, 塑料颗粒无法连续成膜, 容易导致承载带断裂, 就无 法进行连续生产, 需要间歇式的停机。 对上述配方比例的原材料加工时薄膜流体 的温度在 210°C〜230°C之间, 制得的产品抗拉伸强度性能最好, 使用和热变形温 度最高, 导电性能最佳,相对于 110°C以上 210°C以下的温度生产的产品抗拉伸强 度性能大约提升 50%,使用和热变形温度提高大约 10%,导电性能提升大约 10%; 相对 230°C以上 270°C以下的温度生产的产品抗拉伸强度性能大约提升 40%, 能 耗至少降低 30%,导电性能更好。
Claims
1、一种导电型电子元器件承载带的制作工艺,其特征在于依次包括 下述歩骤:
(1)将聚合物原材料制成薄膜流体, 通过凸凹模具将薄膜流体加工 成带口袋的承载带中间品,所述聚合物原材料是通用型聚苯乙烯和导电 炭黑的混合物, 按质量比, 通用型聚苯乙烯 70 %-90 %, 导电炭黑 10 % -30 %; 凸凹模具对薄膜加工的温度控制在 210°C-230°C之间; (2)对承 载带中间品进行冲孔和切边, 得到导电型电子元器件承载带成品。
2、根据权利要求 1所述的一种导电型电子元器件承载带的制作工艺, 其特征在于通过挤出机将聚合物原材料制成薄膜流体, 凸凹模具与挤出 机出膜方向同向移动且移动速度与挤出机出膜速度相同, 凸凹模具夹住 薄膜流体加工成带口袋的承载带中间品。
3、根据权利要求 2所述的一种导电型电子元器件承载带的制作工艺, 其特征在于凸凹模具上分别设置冷却水通道和吹气口; 凸凹模具夹住薄 膜流体时, 通过吹气口吸气, 夹在凸凹模具上的薄膜流体形成承载带口 袋, 凸凹模具及其上的薄膜流体同向同速移动时向冷却水通道注水进行 降温; 凸凹模具松开薄膜时通过吹气口吹气, 将口袋已成型好的承载带 中间品与凸凹模具脱离。
4、根据权利要求 3所述的一种导电型电子元器件承载带的制作工艺, 其特征在于凸凹模具包括凸模、 凸模横向移动机构、 凸模纵向移动台、 凸模底座、 凹模、 凹模横向移动机构、 凹模纵向移动台和凹模底座, 凸 模和凹模的形状对应, 凸模和凹模位置与挤出机出膜口对应; 凸模纵向 移动台安装在凸模底座上, 且凸模纵向移动台沿凸模底座上下移动, 凸 模通过凸模横向移动机构安装在凸模纵向移动台上; 凹模纵向移动台安 装在凹模底座上, 且凹模纵向移动台沿凹模底座上下移动, 凹模通过凹 模横向移动机构安装在凹模纵向移动台上; 凸模的凸出模头和凹模的凹 口之间留有间隙, 凸模纵向移动台和凹模纵向移动台的纵向移动速度与 挤出机出膜口的薄膜挤出速度对应;所述凸模上的吹气口朝向凸模的凸 出模头, 凹模上的吹气口朝向凹模的凹口。
5、根据权利要求 4所述的一种导电型电子元器件承载带的制作工艺, 其特征在于凸模和凹模的位置处于挤出机出膜口的正下方,且凸模和凹 模与挤出机出膜口之间存在间距。
6、根据权利要求 4所述的一种导电型电子元器件承载带的制作工艺, 其特征在于所述凸模横向移动机构和凹模横向移动机构都是气缸。
7、根据权利要求 4所述的一种导电型电子元器件承载带的制作工艺, 其特征在于所述凸模纵向移动台通过安装在凸模底座上的导轨上下移 动, 凹模纵向移动台通过安装在凹模底座上的导轨上下移动。
8、根据权利要求 4所述的一种导电型电子元器件承载带的制作工艺, 其特征在于所述凸模纵向移动台通过安装在凸模底座上的螺杆上下移 动, 凹模纵向移动台通过安装在凹模底座上的螺杆上下移动。
9、根据权利要求 4所述的一种导电型电子元器件承载带的制作工艺, 其特征在于所述凸模上的凸出模头是纵向排列的多个,且每个凸出模头 上均设置吹气口, 所述凹模上的凹口是纵向排列的多个, 凸模上的凸出 模头数量和排列位置与凹模上的凹口匹配对应。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110120358.4A CN102285130B (zh) | 2011-05-10 | 2011-05-10 | 一种导电型电子元器件承载带的制作工艺 |
CN201110120358.4 | 2011-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012152114A1 true WO2012152114A1 (zh) | 2012-11-15 |
Family
ID=45331989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/072200 WO2012152114A1 (zh) | 2011-05-10 | 2012-03-12 | 一种导电型电子元器件承载带的制作工艺 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102285130B (zh) |
WO (1) | WO2012152114A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102285130B (zh) * | 2011-05-10 | 2014-05-07 | 浙江洁美电子科技股份有限公司 | 一种导电型电子元器件承载带的制作工艺 |
CN106113150A (zh) * | 2016-07-06 | 2016-11-16 | 成都格虹电子科技有限责任公司 | 一种载带成型工艺方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1317119C (zh) * | 2005-05-23 | 2007-05-23 | 陕西和平科技实业股份有限公司 | 一种制作超薄滴灌带的方法 |
CN101450518A (zh) * | 2007-12-06 | 2009-06-10 | 株式会社理光 | 载带制作装置,元件插入装置及元件供应装置 |
CN101475721A (zh) * | 2009-01-13 | 2009-07-08 | 浙江三和塑料有限公司 | 用于smt载带的防静电塑料及其制备方法和应用 |
CN102285130A (zh) * | 2011-05-10 | 2011-12-21 | 浙江洁美电子科技有限公司 | 一种导电型电子元器件承载带的制作工艺 |
-
2011
- 2011-05-10 CN CN201110120358.4A patent/CN102285130B/zh active Active
-
2012
- 2012-03-12 WO PCT/CN2012/072200 patent/WO2012152114A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1317119C (zh) * | 2005-05-23 | 2007-05-23 | 陕西和平科技实业股份有限公司 | 一种制作超薄滴灌带的方法 |
CN101450518A (zh) * | 2007-12-06 | 2009-06-10 | 株式会社理光 | 载带制作装置,元件插入装置及元件供应装置 |
CN101475721A (zh) * | 2009-01-13 | 2009-07-08 | 浙江三和塑料有限公司 | 用于smt载带的防静电塑料及其制备方法和应用 |
CN102285130A (zh) * | 2011-05-10 | 2011-12-21 | 浙江洁美电子科技有限公司 | 一种导电型电子元器件承载带的制作工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN102285130B (zh) | 2014-05-07 |
CN102285130A (zh) | 2011-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109080102B (zh) | 一种塑料编织袋的拉丝工艺 | |
US20080143024A1 (en) | Method and apparatus for producing polystyrene tubular shrink film via film blow molding | |
KR101805000B1 (ko) | 형성 방법 | |
CN100589956C (zh) | 制备树脂板的方法 | |
CN102482016B (zh) | 压纹载带及其制备方法 | |
CN106671455A (zh) | 免丝印导光板在线生产工艺与生产设备 | |
WO2012152114A1 (zh) | 一种导电型电子元器件承载带的制作工艺 | |
CN110277527B (zh) | 一种聚丙烯微孔膜及其制备方法和锂电池隔膜 | |
CN109715365B (zh) | 模具及其制造方法、以及成型体的制造方法 | |
CN102285122B (zh) | 一种电子元器件承载带成型机及其使用方法 | |
CN101148092A (zh) | 塑料吹膜生产线 | |
CN109278276B (zh) | 一种车用膜片吸塑成型系统及其使用方法 | |
US20140057077A1 (en) | Extrusion molding device, molded article, and method of producing the same | |
CN101444965A (zh) | 煤矿用井下阻燃整芯输送带的制造方法及其装置 | |
CN202097974U (zh) | 电子元器件承载带成型机 | |
CN102205659B (zh) | 一种绝缘型电子元器件承载带的制作工艺 | |
CN113370486A (zh) | 一种可降解薄膜的流延生产工艺 | |
JP2004255648A (ja) | 薄板状成形品の製造装置 | |
JPH10323909A (ja) | ハニカム・パネルの製造方法 | |
JP2010201712A (ja) | 樹脂シートの製造方法及び製造装置 | |
US11179866B2 (en) | Parison separation device, blow molding machine, and method for manufacturing blow-molded article | |
CN215704042U (zh) | 一种薄膜双向拉伸装置及薄膜双向拉伸生产系统 | |
CN215151158U (zh) | 一种片状橡胶生产的延压成型装置 | |
CN203557692U (zh) | 一种载带真空吸、高温吹成型装置 | |
CN109228386B (zh) | 一种白板连续生产工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12782227 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12782227 Country of ref document: EP Kind code of ref document: A1 |