WO2012147852A1 - 多孔質中空糸膜の洗浄装置 - Google Patents

多孔質中空糸膜の洗浄装置 Download PDF

Info

Publication number
WO2012147852A1
WO2012147852A1 PCT/JP2012/061209 JP2012061209W WO2012147852A1 WO 2012147852 A1 WO2012147852 A1 WO 2012147852A1 JP 2012061209 W JP2012061209 W JP 2012061209W WO 2012147852 A1 WO2012147852 A1 WO 2012147852A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
cleaning
porous hollow
flow path
Prior art date
Application number
PCT/JP2012/061209
Other languages
English (en)
French (fr)
Inventor
倉科 正樹
隅 敏則
藤木 浩之
泰夫 広本
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to EP12776173.2A priority Critical patent/EP2703068B1/en
Priority to US14/113,754 priority patent/US20140041699A1/en
Priority to CN201280020402.7A priority patent/CN103492057B/zh
Priority to KR1020137025616A priority patent/KR101532859B1/ko
Priority to JP2012524804A priority patent/JP5892064B2/ja
Publication of WO2012147852A1 publication Critical patent/WO2012147852A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/025Removal of membrane elements before washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/0871Fibre guidance after spinning through the manufacturing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/44Specific cleaning apparatus

Definitions

  • the present invention relates to a cleaning device for a porous hollow fiber membrane.
  • This application claims priority based on Japanese Patent Application No. 2011-098204 filed in Japan on April 26, 2011 and Japanese Patent Application No. 2011-098205 filed in Japan on April 26, 2011. The contents are incorporated herein.
  • Concentrated and recovered useful components in the fields of food industry, medical care, electronics industry, etc., or removal of unnecessary components, or fresh water is made of cellulose acetate, polyacrylonitrile, polysulfone, fluororesin, etc.
  • porous hollow fiber membranes having a hollow porous layer produced by dry and wet spinning are frequently used for microfiltration membranes, ultrafiltration membranes, reverse osmosis filtration membranes, and the like.
  • a membrane forming stock solution in which a hydrophobic polymer and a hydrophilic polymer are dissolved in a solvent is prepared.
  • the hydrophilic polymer is added in order to adjust the viscosity of the membrane-forming stock solution to a range suitable for the formation of the porous hollow fiber membrane and stabilize the membrane-forming state. Pyrrolidone and the like are often used.
  • the solvent a solvent that can dissolve a hydrophobic polymer and a hydrophilic polymer and is soluble in water is used.
  • DMAc N, N-dimethylacetamide
  • DMF N-dimethylformamide
  • a porous hollow fiber membrane is obtained by a coagulation step in which the membrane-forming stock solution is discharged in a ring shape and coagulated in the coagulation solution.
  • the film-forming stock solution may be introduced into the coagulating liquid through an idle running portion that contacts air (dry-wet spinning method) or directly into the coagulating solution without passing through an idle running portion (wet spinning method).
  • Patent Document 1 discloses a method for cleaning a porous hollow fiber membrane that can remove the hydrophilic polymer remaining in the porous hollow fiber membrane at low cost or in a short time.
  • the vacuum cleaning unit decompresses the cleaning liquid on the outer peripheral side of the porous hollow fiber membrane, and discharges the hydrophilic polymer aqueous solution in the membrane to the outer peripheral side of the porous hollow fiber membrane, and the vacuum cleaning unit Pressurize the cleaning liquid on the outer peripheral side of the porous hollow fiber membrane in the pressure cleaning section provided at the latter stage, press the cleaning liquid from the membrane surface, and replace and dilute the hydrophilic polymer aqueous solution in the membrane while hollowing the membrane
  • the outer peripheral side of the porous hollow fiber membrane is depressurized again in the cleaning liquid supply step to be pushed into the part and the vacuum cleaning part further provided after the pressure cleaning part, and the hydrophilic polymer aqueous solution is supplied to the outer peripheral side of the porous hollow fiber membrane.
  • Patent Document 1 describes a method using a pressure-resistant cylindrical member as an example of a pressure reduction process and a cleaning liquid supply process. Specifically, at both ends of the tubular member, the inside of the tubular member can be kept in a reduced pressure state or a pressurized state from the outside while having a clearance that allows the hollow fiber membrane to travel, such as a labyrinth seal. A sealing mechanism is provided.
  • the hollow fiber membrane is continuously introduced into the cylindrical member from one end thereof, and the decompression means or the pressurization means is operated, whereby the outer peripheral side of the hollow fiber membrane is decompressed or pressurized in the cylindrical member, and the hollow fiber The hydrophilic polymer remaining in the membrane is sucked and removed to the outer peripheral side of the hollow fiber membrane.
  • the porous hollow fiber membrane cleaning device of Patent Document 1 has the following problems.
  • the porous hollow fiber membrane cleaning device of Patent Document 1 when the porous hollow fiber membrane is disposed in the cleaning device, it is necessary to insert the porous hollow fiber membrane into the cylindrical member.
  • the porous hollow fiber membrane is a soft string-like member, the workability when inserting the porous hollow fiber membrane into the cylindrical member is complicated. Therefore, there is a possibility that the working efficiency when the porous hollow fiber membrane is disposed in the cleaning device is deteriorated.
  • a portion larger than the prescribed outer diameter is formed, and when the porous hollow fiber membrane is formed, a knob or the like It may become an abnormal part.
  • the porous hollow fiber membrane having an abnormal portion travels in the cylindrical member, the abnormal portion may be caught in the cylindrical member. Thereby, clogging of the porous hollow fiber membrane occurs in the cylindrical member, and the efficiency of the cleaning process may be deteriorated.
  • an object of the present invention is to provide a highly efficient porous hollow fiber membrane cleaning device that can easily and efficiently arrange a porous hollow fiber membrane and can be easily maintained.
  • the present invention also provides a porous hollow fiber membrane cleaning device that can easily and efficiently arrange a porous hollow fiber membrane, prevent clogging of the porous hollow fiber membrane, and efficiently clean the porous hollow fiber membrane.
  • the purpose is to provide.
  • the porous hollow fiber membrane cleaning apparatus of the present invention causes the porous hollow fiber membrane to run in a cleaning tank containing a cleaning liquid, and removes the water-soluble residue in the porous hollow fiber membrane.
  • a device for cleaning a porous hollow fiber membrane to be removed, wherein the porous hollow fiber membrane can continuously run from an inlet on one end side to an outlet on the other end side in the cleaning tank.
  • a flow path structure having a travel flow path is provided, and the flow path structure includes a main body portion and an upper lid portion that is disposed above the main body portion and is detachable from the main body portion, and the porous structure
  • a cross-sectional area perpendicular to the traveling direction is formed larger than the traveling groove portion between the traveling groove portion formed on the upper surface of the main body portion along the traveling direction of the porous hollow fiber membrane and the inlet and the outlet. Expanded with a branch channel for pumping or sucking the cleaning liquid
  • the hollow fiber membrane travel channel is formed by the travel groove and the upper lid portion that is in close contact with the upper surface of the main body and covers the travel groove. It is said.
  • the hollow fiber membrane traveling channel is configured by the traveling groove formed in the main body and the upper lid that can be attached to and detached from the main body, so that the traveling groove can be removed by removing the upper lid.
  • the upper surface of the hollow fiber membrane is completely opened, and the porous hollow fiber membrane can be easily and efficiently disposed in the hollow fiber membrane running channel.
  • the upper lid portion should be removed from the main body even if the porous hollow fiber membrane is clogged in the hollow fiber membrane running channel for some reason and the washing device is stopped.
  • the inside of the hollow fiber membrane running channel can be easily confirmed and easily maintained. Therefore, the efficiency of the cleaning device can be increased.
  • the hollow fiber membrane traveling channel is formed such that a cross-sectional shape orthogonal to the traveling direction is a triangular shape or a substantially rectangular shape, and one side of two or more sides forming the triangular shape or the rectangular shape is It is desirable that the upper lid is formed.
  • the porous hollow fiber in the hollow fiber membrane traveling channel is formed.
  • the flow state of the cleaning liquid that flows around the membrane is axisymmetric with respect to the central axis of the porous hollow fiber membrane.
  • the porous hollow fiber membrane can be easily disposed in the running groove portion by detaching the upper lid portion. As described above, since the porous hollow fiber membrane can be disposed easily and efficiently in the hollow fiber membrane running channel, the efficiency of the cleaning device can be increased.
  • the flow path structure includes at least two hollow fiber membrane travel flow paths in a direction crossing the travel direction, and an enlarged space portion is formed individually between each inlet and each outlet. It is desirable that
  • each of the two or more hollow fiber membrane running channels and the inlet and outlet of each hollow fiber membrane running channel is individually formed with an enlarged space, two or more hollow fiber membrane running channels are formed.
  • the porous hollow fiber membrane can be washed well at once. Therefore, the efficiency of the cleaning device can be further increased.
  • the porous hollow fiber membrane cleaning device of the present invention is configured to run the porous hollow fiber membrane in a cleaning tank containing a cleaning liquid and to dissolve the water-soluble residue in the porous hollow fiber membrane.
  • a device for cleaning a porous hollow fiber membrane, wherein the porous hollow fiber membrane can run continuously from an inlet on one end side to an outlet on the other end side in the cleaning tank.
  • a flow path structure having a membrane running flow path is provided, and the flow path structure includes a main body portion and an upper lid portion that is disposed above the main body portion and is detachable from the main body portion.
  • a hollow groove formed on the upper surface of the main body along the traveling direction of the yarn membrane, and a branch channel that pumps or sucks the cleaning liquid to distribute the cleaning liquid, and the hollow fiber membrane traveling channel Are the running groove formed in the main body of the flow path structure, and the upper part of the main body. It is characterized by being formed with the upper cover closely to cover the running groove, by the.
  • the hollow fiber membrane travel channel is configured by a travel groove formed in the main body and an upper lid that can be attached to and detached from the main body, and the upper surface of the travel groove is removed by removing the upper lid. Since it is completely opened, the porous hollow fiber membrane can be easily and efficiently disposed in the hollow fiber membrane running channel. Therefore, the working efficiency of the cleaning device can be increased. Further, according to the present invention, the hollow fiber membrane traveling channel can be opened by removing the upper lid portion, so that, for example, when a poorly formed porous hollow fiber membrane tries to travel in the hollow fiber membrane traveling channel In addition, the upper lid part can be detached from the main body part and the porous hollow fiber membrane can be detached from the running groove part. Thereby, since the poorly formed porous hollow fiber membrane can be avoided from traveling in the hollow fiber membrane traveling channel, clogging of the porous hollow fiber membrane can be prevented.
  • the hollow hollow fiber membrane is disposed in the running groove portion in conjunction with the mounting of the upper lid portion, and the hollow hollow fiber membrane is detached from the running groove portion in conjunction with the detachment of the upper lid portion. It is desirable to have a thread membrane moving means.
  • the upper lid portion is detached from the main body portion.
  • the porous hollow fiber membrane can be detached from the running groove. Thereby, it can avoid that the poorly formed porous hollow fiber membrane travels in the hollow fiber membrane traveling flow path.
  • the upper lid portion is attached to the main body portion, and at the same time, the porous hollow fiber membrane is disposed in the traveling groove portion. Can be placed. Thereby, a porous hollow fiber membrane can be arrange
  • an outer diameter detecting means for detecting an outer diameter of the porous hollow fiber membrane before the porous hollow fiber membrane is introduced into the hollow fiber membrane running flow path, and the cleaning liquid in the flow path structure. It is desirable to include a cleaning liquid adjusting unit that controls the start or stop of pumping or suction, and an upper lid moving unit that moves the upper lid to attach and detach the upper lid with respect to the main body.
  • the poorly formed porous hollow fiber membrane can be reliably detected.
  • the upper lid moving means is provided, when the poorly formed porous hollow fiber membrane tries to travel in the hollow fiber membrane traveling flow path, the upper lid portion is removed from the main body at the same time.
  • the porous hollow fiber membrane can be detached from the running groove and the poorly formed porous hollow fiber membrane can be prevented from running in the hollow fiber membrane running channel.
  • the cleaning liquid adjusting means is provided, it is possible to prevent the pressing force or the suction force from acting on the upper cover part and the porous hollow fiber membrane by stopping the pumping or suction of the cleaning liquid when the upper cover part is detached. Thereby, an upper cover part and a porous hollow fiber membrane can be moved easily. In addition, it is possible to suppress damage of the porous hollow fiber membrane due to the pressing force or suction force acting on the porous hollow fiber membrane.
  • the abnormal portion passes through the hollow fiber membrane traveling channel.
  • the abnormal part avoidance control for avoiding traveling is performed, and the abnormal part avoidance control includes a cleaning liquid flow stop operation for stopping the pumping or suction of the cleaning liquid by the cleaning liquid adjusting means, and the upper lid after the cleaning liquid flow stop operation. It is desirable to include a detaching operation in which the upper lid part is detached from the main body part by the part moving means and the porous hollow fiber membrane is detached from the running groove part by the hollow fiber membrane moving means.
  • abnormal parts of the porous hollow fiber membrane formed in a large diameter can be avoided, so that clogging of the porous hollow fiber membrane in the hollow fiber membrane traveling channel is prevented. It can be surely prevented.
  • the detachment operation for detaching the upper lid part and the porous hollow fiber membrane is performed after the washing liquid flow stopping operation for stopping the pumping or suction of the cleaning liquid, so that the upper lid part and the porous hollow fiber membrane are pushed. It is possible to suppress the action of pressure or suction force. Thereby, an upper cover part and a porous hollow fiber membrane can be moved easily. In addition, it is possible to suppress damage of the porous hollow fiber membrane due to the pressing force or suction force acting on the porous hollow fiber membrane.
  • a porous hollow fiber membrane cleaning device for running a porous hollow fiber membrane in a cleaning tank containing a cleaning liquid and removing residues in the porous hollow fiber membrane,
  • a flow path structure having a hollow fiber membrane running flow path through which the porous hollow fiber membrane can continuously run from an inlet on one end side to an outlet on the other end side, and the flow path structure is separated
  • the flow path structure includes at least one of the at least two structures, the running groove formed in at least one of the structures, and the cleaning liquid by pumping or sucking the cleaning liquid.
  • the expanded space is formed between an inlet on one end side of the hollow fiber membrane traveling channel and an outlet on the other end side of the hollow fiber membrane traveling channel, and the branch channel is The cleaning device according to (1), wherein the cleaning device is a flow path connected to the enlarged space portion.
  • One of the at least two structures has at least one flat surface, and one surface constituting the hollow fiber membrane running channel shares the flat surface.
  • the cleaning device according to (3) wherein the hollow fiber membrane traveling channel has a triangular or rectangular cross-sectional shape orthogonal to the traveling direction, (5) The cleaning device according to any one of (1) to (4), wherein the flow path structure has at least two hollow fiber membrane travel flow paths in a direction intersecting the travel direction. (6) The travel channels are channels individually formed so as to correspond to the traveling hollow fiber membranes, and the enlarged space portions are individually provided with respect to the individually formed travel channels.
  • the cleaning apparatus according to any one of (2) to (6), wherein a height W orthogonal to the direction satisfies 1.5d ⁇ W ⁇ 30d, (8)
  • the angle formed by the bottom surface of the enlarged space portion and the side surface connecting the bottom surface of the enlarged space portion and the bottom surface of the traveling groove portion is 90 ° to 175 °, any of (2) to (7)
  • a cleaning device according to claim 1, (9)
  • the hollow fiber membrane moving means for detaching the porous hollow fiber membrane from the running groove portion in conjunction with the attachment / detachment of the at least two structures is any one of (1) to (8)
  • the cleaning device according to (10) an outer diameter detection means for detecting an outer diameter abnormality of the porous hollow fiber membrane before the porous hollow fiber membrane is introduced into the hollow fiber membrane running channel; and at least two structures
  • the porous hollow fiber membrane cleaning device according to any one of (1) to (9), further comprising: a structure moving unit that moves at least one structure to separate the at least two structures.
  • An abnormal location avoidance control device that performs abnormal location avoidance control for avoiding traveling, and the abnormal location avoidance control includes a cleaning liquid flow rate adjusting operation for reducing or stopping pumping or suction of the cleaning liquid by the cleaning liquid adjusting means, and After the cleaning flow rate adjusting operation, the at least two structures are separated by the structure moving means of at least one structure of the at least two structures, and the hollow fiber membrane moving means
  • a cleaning device according to any one of (1) to (10), and (12) the at least two structures.
  • One of the bodies is a main body, one is an upper lid, and the upper lid is a structure that is disposed above the main body and is detachable from the main body.
  • the hollow fiber membrane traveling channel is configured by the traveling groove formed in the main body and the upper lid that can be attached to and detached from the main body, so that the traveling groove can be removed by removing the upper lid.
  • the upper surface of the hollow fiber membrane is completely opened, and the porous hollow fiber membrane can be easily and efficiently disposed in the hollow fiber membrane running channel.
  • the upper lid portion should be removed from the main body even if the porous hollow fiber membrane is clogged in the hollow fiber membrane running channel for some reason and the washing device is stopped.
  • the inside of the hollow fiber membrane running channel can be easily confirmed and easily maintained. Therefore, the working efficiency of the cleaning device can be increased.
  • the hollow fiber membrane traveling channel can be opened by removing the upper lid portion, so that, for example, when a poorly formed porous hollow fiber membrane tries to travel in the hollow fiber membrane traveling channel
  • the upper lid part can be detached from the main body part and the porous hollow fiber membrane can be detached from the running groove part.
  • FIG. 3 is a cross-sectional view taken along line AA of the flow path structure in FIG.
  • FIG. 3 is a cross-sectional view taken along line BB of the flow path structure in FIG.
  • An apparatus for cleaning a porous hollow fiber membrane comprises: at least one cleaning tank containing a cleaning liquid through which the porous hollow fiber membrane sequentially passes; and a porous hollow fiber membrane immersed in the cleaning liquid
  • the outer peripheral side of the porous hollow fiber membrane is immersed in a pressurized cleaning section and / or a cleaning liquid that pressurizes the outer peripheral side cleaning liquid and passes the cleaning liquid from the inner peripheral side to the outer peripheral side of the porous hollow fiber membrane.
  • a cleaning device having a flow path structure having a hollow fiber membrane traveling channel capable of continuously traveling the porous hollow fiber membrane from an inlet toward an outlet on the other end side, The flow path structure is disposed in the cleaning liquid and filled with the cleaning liquid.
  • the flow path structure disposed in the cleaning liquid and filled with the cleaning liquid, and the pressure of the cleaning liquid in the hollow fiber membrane traveling flow path by sucking the cleaning liquid in the hollow fiber membrane traveling flow path of the flow path structure
  • the flow path structure includes at least two separable structures, and the flow path structure includes at least one of the at least two structures.
  • a branch channel that circulates the cleaning liquid by pumping or sucking the cleaning liquid, and the branch channel is a channel connected to the driving groove.
  • FIG. 1 is an explanatory diagram of the cleaning device 11 for the porous hollow fiber membrane M of the present embodiment.
  • the porous hollow fiber membrane M cleaning device 11 shown in FIG. 1 contains a cleaning liquid L through which the porous hollow fiber membrane M sequentially passes.
  • the three washing tanks 110 (the first washing tank 111, the second washing tank 112, and the third washing tank 113), and the first vacuum washing unit 120 and the pressure washing unit that wash the porous hollow fiber membrane M.
  • upstream and downstream are based on the traveling direction of the porous hollow fiber membrane M, and “upstream side” is the side where the porous hollow fiber membrane M is supplied to the cleaning device 11, The “downstream side” is a side from which the porous hollow fiber membrane M is discharged from the cleaning device 11.
  • the first vacuum cleaning unit 120, the pressure cleaning unit 130, and the second vacuum cleaning unit 140 are arranged in series, and the first vacuum cleaning unit is disposed at both ends of the array. 120 and the second vacuum cleaning unit 140 are located.
  • the first cleaning tank 111 disposed at the most upstream side stores the first reduced pressure cleaning unit 120
  • the second cleaning tank 112 downstream of the first cleaning tank 111 stores the pressure cleaning unit 130.
  • a second reduced pressure cleaning unit 140 is housed.
  • the cleaning tank 110 stores the cleaning liquid L.
  • the material of the washing tank 110 is not particularly limited.
  • a resin such as polyester, polyvinyl chloride, polyethylene, polyamide, polypropylene, or polyacetal, a metal such as iron, aluminum, copper, nickel, or titanium, or a metal such as these is mainly used. Alloys as components (for example, nickel alloy / titanium alloy, duralumin or stainless steel); or a composite material thereof.
  • the material of the first cleaning tank 11 is preferably titanium.
  • size of the 1st washing tank 111, the 2nd washing tank 112, and the 3rd washing tank 113, what can immerse the flow path structures 123, 133, and 143 mentioned later, respectively is sufficient.
  • Each of the cleaning tanks 110 is provided with overflow pipes 111a, 112a, and 113a for discharging the cleaning liquid L that has overflowed from each of the cleaning tanks 110.
  • the cleaning liquid L overflowed from the third cleaning tank 113 is supplied from the overflow pipe 113 a of the third cleaning tank 113 to the second cleaning tank 112.
  • the cleaning liquid L overflowed from the second cleaning tank 112 is supplied to the first cleaning tank 111 from the overflow pipe 112 a of the second cleaning tank 112. Further, the cleaning liquid L overflowed from the first cleaning tank 111 is discharged out of the system from the overflow pipe 111 a of the first cleaning tank 111.
  • the first vacuum cleaning unit 120 decompresses the cleaning liquid on the outer peripheral side of the porous hollow fiber membrane M immersed in the cleaning liquid L, and causes the cleaning liquid L to flow from the inner peripheral side to the outer peripheral side of the porous hollow fiber membrane M.
  • 1 includes a hollow fiber membrane running channel 125, an enlarged space portion 126, and a branch channel 122 branched from the enlarged space portion 126, and is formed in the cleaning liquid L.
  • the flow path structure 123 that is disposed and filled with the cleaning liquid L and the cleaning liquid L in the enlarged space portion 126 of the flow path structure 123 are sucked to reduce the pressure of the cleaning liquid L in the enlarged space portion 126.
  • Liquid suction means 124 Liquid suction means 124.
  • the cleaning liquid L is sucked by the liquid suction means 124 through the branch flow path 122 to reduce the pressure of the cleaning liquid L in the hollow fiber membrane traveling flow path 125 and / or the enlarged space portion 126.
  • the liquid suction means 124 is connected to an ejector 124a that sucks the cleaning liquid L, a pump 124b that pumps the cleaning liquid L to the ejector 124a as a working fluid, one end connected to the branch flow path 122 of the flow path structure 123, and the other end.
  • a first pipe 124c connected to one cleaning tank 111 and a second pipe 124d connected at one end to the first cleaning tank 111 and connected at the other end to the ejector 124a are provided.
  • FIG. 2 is a perspective view of the flow path structure 123.
  • the flow channel structure of the present invention includes at least two separable structures. One of the structures is a main body, and one is an upper lid, and the upper lid is preferably a structure that is disposed above the main body and is detachable from the main body. That is, as shown in FIG. 2, the flow path structure 123 is preferably formed of a main body portion 123a and an upper lid portion 123b.
  • the material of the main body portion 123a and the upper lid portion 123b constituting the flow path structure 123 is a material that does not corrode with the cleaning liquid L or is not attacked by the cleaning liquid L, and has sufficient strength not to be deformed or damaged by the suction of the cleaning liquid L.
  • resins such as polyester, polyvinyl chloride, polyethylene, polyamide, polypropylene, or polyacetal, metals or alloys such as iron, aluminum, copper, nickel, or titanium, or composite materials thereof Etc.
  • titanium is preferable.
  • FIG. 3 is a perspective view of the main body portion 123a when the upper lid portion 123b of the flow path structure 123 is removed.
  • 4 is a cross-sectional view taken along line AA of the flow channel structure in FIG.
  • FIG. 5 is a cross-sectional view taken along line BB of the flow path structure in FIG.
  • traveling groove portions 125 a and 125 b are formed on the upper surface of the main body portion 123 a along the traveling direction of the porous hollow fiber membrane M.
  • the bottom surface 123c of the upper lid portion 123b is in close contact with the upper surface of the main body portion 123a to cover the traveling groove portions 125a and 125b, thereby forming the hollow fiber membrane traveling channel 125 (see FIG. 1).
  • the hollow fiber membrane running channel 125 (see FIG. 2) of the present embodiment is formed in parallel in the direction orthogonal to the running direction of the porous hollow fiber membrane M on the plane, eight hollow fiber membranes are formed.
  • the number of the traveling flow paths 125 is not limited to eight.
  • the flow channel structure preferably has at least two hollow fiber membrane flow channels in a direction intersecting the travel direction on a plane.
  • the traveling groove is formed in at least one of at least two separable structures constituting the flow path structure.
  • the cross-sectional shape of the hollow fiber membrane running channel 125 orthogonal to the running direction of the porous hollow fiber membrane M may be substantially triangular or almost rectangular, and the channel can be easily formed. From this point, a rectangle is preferable, and a square is particularly preferable. Moreover, if the cross-sectional shape of the hollow fiber membrane running flow path 125 is rectangular, even if the porous hollow fiber membrane M contacts the wall surface of the flow path, the contact area is smaller than when the cross-sectional shape is circular. It is also advantageous in that it is difficult to cause damage.
  • the cross-sectional shape of the hollow fiber membrane running channel 125 is If it is rectangular and one side thereof is formed by the bottom of the upper lid portion 123b, the running groove portions 125a and 125b may be formed only on the main body portion 123a side, and the mating surface of the upper lid portion 123b can be made flat. In this way, processing when forming the hollow fiber membrane running channel 125 is easy, and precise alignment between the main body portion 123a side and the upper lid portion 123b becomes unnecessary.
  • porous hollow fiber membrane M when the porous hollow fiber membrane M is disposed in the running groove portions 125a and 125b, the porous hollow fiber membrane M is completely embedded in the flow path, so that the porous hollow fiber membrane is placed on the mating surface when the upper lid portion 123b is closed. There is no risk of M being caught.
  • the cross-sectional shape of the hollow fiber membrane running channel 125 is a triangle, the same effect as a rectangle can be obtained if one side thereof is formed by the bottom of the upper lid portion 123b.
  • the cross-sectional shape of the hollow fiber membrane running channel 125 is a triangle, an equilateral triangle is preferable.
  • the cross-sectional shape of the hollow fiber membrane running channel 125 is a regular polygon, the flow state of the cleaning liquid L that flows around the porous hollow fiber membrane M in the hollow fiber membrane running channel 125 is the same as that of the porous hollow fiber membrane M. The state becomes axisymmetric with respect to the central axis, and the traveling state of the porous hollow fiber membrane M in the hollow fiber membrane traveling channel 125 is easily stabilized.
  • the cross-sectional shape of the hollow fiber membrane running channel 125 is not limited to a rectangle or a triangle, and may be a polygon or a circle other than a triangle.
  • the hollow fiber membrane travel flow path 125 may be configured by a curved surface.
  • the minimum gap between the wall surface of the hollow fiber membrane running channel 125 and the porous hollow fiber membrane M is preferably 5% to 40% of the diameter of the porous hollow fiber membrane M, and more preferably 10% to 20%. If the minimum gap is equal to or greater than the lower limit, surface damage due to the porous hollow fiber membrane M coming into contact with the wall surface of the hollow fiber membrane running channel 125 and running resistance of the porous hollow fiber membrane M increase. Easy to suppress. Therefore, the width d1 (see FIG. 2) of the hollow fiber membrane running channel 125 is preferably 110% to 180%, more preferably 120% to 140% of the diameter of the porous hollow fiber membrane M. Further, the height d2 (see FIG. 2) of the hollow fiber membrane running channel 125 is preferably 110% to 180%, more preferably 120% to 140% of the diameter of the porous hollow fiber membrane M.
  • the porous hollow fiber membrane M is vibrated or bent by the flow of the cleaning liquid L in the hollow fiber membrane running channel 125, and the running resistance of the porous hollow fiber membrane M is reduced. Can be prevented from increasing.
  • the inner wall surface of the hollow fiber membrane running channel 125 is preferably finished smoothly by precision grinding or polishing so that the surface of the porous hollow fiber membrane M is not damaged even when the porous hollow fiber membrane M comes into contact with it. . Further, in addition to the above-mentioned finishing, it is more preferable that the inner wall surface of the hollow fiber membrane running channel 125 is provided with a fluorine-based coating or a diamond-like carbon coating that reduces the frictional resistance with the porous hollow fiber membrane M.
  • an enlarged space 126 is formed between the inlet (inlet 121 a) on one end side and the outlet (outlet 121 b) on the other end side of the hollow fiber membrane running channel 125.
  • the enlarged space portion 126 has a main body side concave portion 126b formed by denting the upper surface of the main body portion 123a, and an upper lid side formed by denting the bottom surface 123c of the upper lid portion 123b at a position corresponding to the main body side concave portion 126b.
  • a recess 126a is formed.
  • the main body side recess 126b is formed so as to communicate with all of the eight running grooves 125a and 125b arranged in parallel.
  • the width of the main body side recess 126b in the traveling direction is formed so as to gradually increase from the bottom to the top. That is, the side surface 126c that connects the bottom surface of the main body side concave portion 126b (the bottom surface of the enlarged space portion) and the bottom surfaces of the running groove portions 125a and 125b is a tapered surface having a predetermined inclination angle ⁇ .
  • the side surface 126c into a tapered surface, the porous hollow fiber membrane M is formed at the edge formed by the side surface 126c of the main body side concave portion 126b and the running groove portions 125a and 125b when the porous hollow fiber membrane M travels. Is restrained from being caught.
  • the inclination angle that is, the angles ⁇ 1 and ⁇ 2 formed by the bottom surface of the enlarged space portion and the side surface connecting the bottom surface of the enlarged space portion and the bottom surface of the running groove is preferably 90 to 175 degrees, and preferably 100 to 170 degrees. Is more preferable, and 120 to 150 degrees is even more preferable.
  • the angle formed between the bottom surfaces of the traveling groove portions 125a and 125b and the side surfaces 126c in the enlarged space portion is obtuse, so that a hollow fiber membrane is introduced into the traveling flow channel. Becomes easier.
  • the upstream inclined angle ⁇ 1 and the downstream inclined angle ⁇ 2 in the expansion space portion may be different from each other, and the porous hollow fiber membrane M in the expansion space portion is evenly pressurized. It is preferable that the inclination angle ⁇ 1 on the side and the inclination angle ⁇ 2 on the downstream side are equal.
  • the distance h1 from the outer peripheral surface of the porous hollow fiber membrane M to the bottom surface of the upper lid side recess 126a is preferably 1 to 10 times the diameter of the porous hollow fiber membrane M, and 3 to 3 times the diameter of the porous hollow fiber membrane M. 7 times is more preferable.
  • the separation distance h2 from the outer peripheral surface of the porous hollow fiber membrane M to the bottom surface of the main body side concave portion 126b is preferably 1 to 10 times the diameter of the porous hollow fiber membrane M. A diameter of 3 to 7 times is more preferable.
  • the cross-sectional area of the enlarged space portion 126 is formed larger than the cross-sectional area of the hollow fiber membrane travel channel 125.
  • the cross-sectional area of the enlarged space 126 is preferably 10 to 140 times, more preferably 30 to 70 times the cross-sectional area of the hollow fiber membrane running channel 125.
  • the outer peripheral side of all the porous hollow fiber membranes M can be decompressed substantially uniformly in the enlarged space portion 126, and the inner peripheral side of the porous hollow fiber membrane M can be reduced.
  • the cleaning liquid L can be passed from the outer periphery to the outer peripheral side.
  • the total length D (see FIG. 2) of the total travel flow path including the hollow fiber membrane travel flow path 125 and the expanded space 126 is preferably 100 to 2000 mm, and more preferably 300 to 1000 mm.
  • the length of the expanded space 126 is preferably 10 to 50% of the length D of all the travel channels, and more preferably 20 to 40% of the length D of all the travel channels. If the length D of all the travel channels is equal to or greater than the lower limit value, the suction amount of the cleaning liquid L necessary for decompression around the porous hollow fiber membrane M can be reduced. If the length D of all the travel channels is equal to or less than the upper limit value, it is easy to suppress the travel resistance of the porous hollow fiber membrane M and the cleaning device 11 from becoming excessive.
  • the expansion space 126 has a length X parallel to the traveling direction of the hollow fiber membrane satisfying 2d ⁇ X ⁇ 200d when the outer diameter of the hollow fiber membrane is d, and orthogonal to the traveling direction of the hollow fiber membrane. It is preferable that the height W to be satisfied satisfies 1.5d ⁇ W ⁇ 30d. A more preferable range of the length X is 2.5d ⁇ X ⁇ 150d, and a further preferable range is 3d ⁇ X ⁇ 100d. A more preferable range of the height W is 1.8d ⁇ W ⁇ 25d, and a further preferable range is 2d ⁇ W ⁇ 20d.
  • the length X and the height W satisfy 2.5d ⁇ X ⁇ 150d, more preferably satisfy 1.8d ⁇ W ⁇ 25d, satisfy 3d ⁇ X ⁇ 100d, and 2d ⁇ It is more preferable to satisfy W ⁇ 20d.
  • the length X is the length of the enlarged space portion in the same direction as the traveling direction of the hollow fiber membrane in the enlarged space portion. That is, the length of a straight line connecting the contact point p1 between the side surface 126c, the travel groove portion 125a located on the upstream side of the enlarged space portion, and the contact point p2 between the side surface 126c and the travel groove portion 125a located on the downstream side of the enlarged space portion. It is.
  • the height W is the height of the expansion space portion orthogonal to the traveling direction of the hollow fiber membrane in the expansion space portion, and the upper lid side concave portion in the direction orthogonal to the traveling direction of the hollow fiber membrane in the expansion space portion. This is the height from the bottom surface of 126a to the main body side recess 126b. That is, the porous hollow fiber is separated by a separation distance h1 from the outer peripheral surface of the porous hollow fiber membrane M to the bottom surface of the upper lid side concave portion 126a and a separation distance h2 from the outer peripheral surface of the porous hollow fiber membrane M to the bottom surface of the main body side concave portion 126b. This is the total distance of the outer diameters d of the thread membrane M.
  • the pressure gradient due to the pressure loss generated by the flow of the cleaning liquid in the film traveling direction can be reduced, the amount of the cleaning liquid flowing through the film can be increased, and the film in the enlarged space portion can be increased. It is easy to suppress peristalsis and bending.
  • the height W is within the above range, the pressure distribution in the circumferential direction of the hollow fiber membrane can be made uniform, and the processing cost of the flow channel structure can be suppressed.
  • the branch channel is a channel through which the cleaning liquid is circulated by pumping or sucking the cleaning liquid, and is a channel connected to the hollow fiber membrane traveling channel or the expansion space.
  • the branch flow path 122 is formed penetrating outward from the bottom surface of the main body side recess 126 b formed in the main body portion 123 a.
  • the distance from the inlet 121a to the branch flow path 122 and the distance from the outlet 121b to the branch flow path 122 are formed to be equal.
  • the flow path structure from the inlet 121 a to the branch flow path 122 and the flow path structure from the outlet 121 b to the branch flow path 122 are preferably symmetrical with respect to the branch flow path 122.
  • the force for pulling the porous hollow fiber membrane M into the hollow fiber membrane running flow path 125 is symmetric with respect to the branch flow path 122.
  • the cross-sectional shape of the branch flow path 122 is not particularly limited, and may be circular or rectangular.
  • the upper lid portion 123 b is one of at least two structures constituting the flow path structure 123.
  • the upper lid portion 123b is detachably attached to the main body portion 123a, and the upper lid portion 123b is fixed to the main body portion 123a when the cleaning apparatus 11 is in operation.
  • As means for fixing the upper lid portion 123b to the main body portion 123a fastening by bolts, a screw feed mechanism that lifts and lowers the upper lid portion 123b to be detachable from the main body portion 123a, a hydraulic cylinder, a pneumatic cylinder, or a hydraulic pressure It is preferable to use a fluid propulsion mechanism such as a cylinder.
  • the porous hollow fiber membrane M can be easily inserted into the running groove portions 125a and 125b with the upper lid portion 123b removed. It becomes. Therefore, the porous hollow fiber membrane M can be easily and efficiently disposed in the hollow fiber membrane running channel 125. Further, even when the porous hollow fiber membrane M is clogged in the hollow fiber membrane running flow path 125 for some reason and the cleaning device 1 is stopped, the hollow fiber is removed by removing the upper lid portion 123b from the main body portion 123a. Maintenance can be easily performed by simply checking the inside of the membrane running channel 125.
  • the liquid suction means 124 sucks the cleaning liquid L in the hollow fiber membrane traveling flow path 125 through the branch flow path 122, and the cleaning liquid L in the hollow fiber membrane traveling flow path 125 and the enlarged space portion 126 is removed. Reduce pressure.
  • the liquid suction means 124 of this example includes an ejector 124a that sucks the cleaning liquid L, a pump 124b that pumps the cleaning liquid L to the ejector 124a as a working fluid, a first pipe 124c, and a second pipe 124d.
  • the ejector 124a is connected to the branch flow path 122 and the first cleaning tank 111 via the first pipe 124c, and the cleaning liquid L from the enlarged space 126 through the branch flow path 122 and the first pipe 124c. Can be sucked. The sucked cleaning liquid L is returned into the first cleaning tank 111 through the first pipe 124c.
  • the cleaning apparatus 11 of the present invention is not limited to this form, and the cleaning liquid L sucked by the liquid suction means 124 may be discarded or transferred to another process.
  • the ejector 124 a uses the kinetic energy of the cleaning liquid L fed from the pump 124 b to suck the cleaning liquid L in the enlarged space 126 through the branch flow path 122. Specifically, the cleaning liquid L is pressurized from the pump 124b and discharged at high speed from a nozzle (not shown), and the cleaning liquid L is suctioned accompanying the kinetic energy of the cleaning liquid L. Normally, when sucking liquid at a high degree of vacuum, vacuum bubbles or vapor bubbles due to vacuum boiling occur in the pump flow path or impeller, causing abnormal vibration in the pump or damage to the impeller due to cavitation There is. Suction using the ejector 124a is effective as a method for preventing such a phenomenon and damage to the pump.
  • the structure of the ejector 124a is very simple, there is no rotating part like a pump, and the ejector 124a is not easily damaged even if vacuum bubbles or vapor bubbles due to reduced-pressure boiling are generated and vibrations are generated. In addition, there is little risk of damage or clogging even if foreign matter is sucked. Further, for example, when the porous hollow fiber membrane M is cut inside the first vacuum washing unit 120, when the end portion is sucked together with the washing liquid L from the branch flow path 122, the porous hollow fiber membrane M is inserted into the rotating portion of the pump. There is a risk that the ends may wrap around and the pump may lock and stop, or the pump impeller or motor may be damaged.
  • the ejector 124a there is no portion around which the end of the porous hollow fiber membrane M is wound, and it is discharged from the discharge port of the ejector 124a together with the cleaning liquid L supplied under pressure from the pump 124b to the ejector 124a. There is almost no risk of damaging the pump 124b.
  • a pump that can suck the cleaning liquid L from the first cleaning tank 111 and supply the sucked cleaning liquid L to the ejector 124a, and can reach a necessary degree of decompression is preferable.
  • a single-stage or multistage centrifugal pump, a cascade pump, a scroll pump, or a gear pump can be used.
  • the pump rotation shaft is shut off from the outside air, and the outside air leaks into the cleaning liquid L in a highly decompressed state from the seal portion. It is particularly preferable because there is no fear that the pump efficiency is lowered by expansion under reduced pressure.
  • the liquid suction means 124 can be controlled by an inverter (not shown). Further, a pressure sensor (not shown) is provided at a portion where it is desired to keep a constant pressure, and the output of the pressure sensor is fed back to the inverter so that the pump rotation speed of the pump 124b of the liquid suction means 124 can be automatically controlled. Is more preferable.
  • the pressure range when the pressure is reduced by the vacuum washing part is preferably ⁇ 0.1 MPa or more and less than 0 MPa, more preferably ⁇ 0.09 MPa or more and less than ⁇ 0.03 MPa, and further preferably ⁇ 0.08 MPa or more and less than ⁇ 0.04 MPa. .
  • (Pressure washing part) 1 pressurizes the cleaning liquid on the outer peripheral side of the porous hollow fiber membrane M immersed in the cleaning liquid L, and supplies the cleaning liquid L from the outer peripheral side to the inner peripheral side of the porous hollow fiber membrane M.
  • the pressure cleaning unit 130 press-fits the cleaning liquid L into the flow path structure 133 disposed in the cleaning liquid L and filled with the cleaning liquid L, and the hollow fiber membrane travel flow path 135 of the flow path structure 133.
  • Liquid injection means 134 for increasing the pressure of the cleaning liquid L in the hollow fiber membrane running flow path 135.
  • the liquid press-fitting means 134 includes a pump 134b that pumps the cleaning liquid L into the hollow fiber membrane travel flow path 135, one end connected to the second cleaning tank 112, and the other end connected to the branch flow path 132 of the flow path structure 133.
  • the branch flow path 132 is connected to the pump 134b of the liquid press-fitting means 134 via the first pipe 134c so that the cleaning liquid L can be pressed into the hollow fiber membrane travel flow path 135 through the branch flow path 132 by the pump 134b. It has become. Thereby, the pressure of the cleaning liquid L in the hollow fiber membrane traveling flow path 135 can be increased by the flow pressure loss of the cleaning liquid L in the hollow fiber membrane traveling flow path 135.
  • the pressure washing unit 130 continuously runs the porous hollow fiber membrane M so as to pass through the hollow fiber membrane running channel 135 filled with the cleaning liquid L and pressurized as described above. It has become.
  • the configuration of the flow channel structure 133 is the same as that of the flow channel structure 123 of the first reduced pressure cleaning unit 120. That is, like the flow channel structure 123 shown in FIGS. 2 to 5, the main body portion 123 a in which the running groove portions 125 a and 125 b, the main body side concave portion 126 b, and the branch flow channel 122 forming the hollow fiber membrane running flow channel 125 are formed. Is formed by being closed by an upper lid portion 123b in which an upper lid side concave portion 126a is formed.
  • a screw feed mechanism that can fasten the upper lid portion 123b to the main body portion 123a with a bolt or the like, and can also serve to raise and lower the upper lid portion 123b and apply the closing force
  • a hydraulic cylinder It is preferable to use a fluid propulsion mechanism such as a pneumatic cylinder or a hydraulic cylinder.
  • the cross-sectional shapes of the hollow fiber membrane traveling flow path 135, the enlarged space 136, and the branch flow path 132 are the same as the flow path structure 123 of the first reduced-pressure cleaning section 120. Furthermore, the width and height of the hollow fiber membrane traveling channel 135, the length and area of the enlarged space 136, the length of all the traveling channels D, etc. are the same.
  • the distance from the inlet 131a to the branch channel 132 and the distance from the outlet 131b to the branch channel 132 may be equal to each other, or the distance from the branch channel 132 to the outlet 131b may be You may set shorter than the distance from the branch flow path 132 to the inlet 131a. In particular, assuming that the distance from the branch flow path 132 to the outlet 131b is shorter than the distance from the branch flow path 132 to the inlet 131a, when the cleaning liquid L is press-fitted from the branch flow path 132 by the liquid press-in means 134, it is porous.
  • a force (tension in the direction of the center of the membrane) drawn from the hollow fiber membrane running channel 135 is generated across the branch channel 132, and the force becomes stronger on the outlet 131b side and becomes porous.
  • the hollow fiber membrane M can be used for thrust to move from the inlet 131a toward the outlet 131b.
  • the liquid press-fitting means 134 sucks the cleaning liquid L in the second cleaning tank 112, press-fits it through the branch flow path 132, and increases the pressure of the cleaning liquid L in the hollow fiber membrane traveling flow path 125 and / or in the expansion space 136.
  • the liquid press-fitting means 134 of this example has a pump 134b for pumping the cleaning liquid L into the hollow fiber membrane travel channel 135 and a first pipe 134c, and the pump 134b is connected via the first pipe 134c. It is connected to the branch channel 132 and the second cleaning tank 112, and the cleaning liquid L can be press-fitted into the hollow fiber membrane travel channel 135 through the first channel 134c and the branch channel 132.
  • the cleaning liquid L is press-fitted into the enlarged space portion 136 through the branch flow path 132, and has a lift and a discharge amount that can generate a predetermined pressure.
  • Any liquid coating may be used.
  • a single-stage or multistage centrifugal pump, a cascade pump, a scroll pump, or a gear pump can be used.
  • the pump rotation shaft is shut off from the outside air, and the outside air leaks into the cleaning liquid L in a highly decompressed state from the seal portion. It is particularly preferable because there is no fear that the pump efficiency is lowered by expansion under reduced pressure.
  • the liquid press-fitting means 134 can be controlled by an inverter (not shown). Further, a pressure sensor (not shown) is provided at a portion where it is desired to maintain a constant pressure, and the output of the pressure sensor is fed back to the inverter so that the pump rotation speed of the pump 134b of the liquid press-fitting means 134 can be automatically controlled. Is more preferable.
  • the pressure range when the pressure is applied by the pressure washing unit is preferably 0.01 MPa or more and less than 1 MPa, more preferably 0.05 MPa or more and less than 0.5 MPa, and further preferably 0.1 MPa or more and less than 0.3 MPa.
  • the second vacuum cleaning unit 140 decompresses the cleaning liquid on the outer peripheral side of the porous hollow fiber membrane M immersed in the cleaning liquid, and supplies the cleaning liquid L from the inner side to the outer peripheral side of the porous hollow fiber membrane M. Allow the liquid to pass.
  • the second reduced pressure cleaning unit 140 includes a hollow fiber membrane traveling channel 145, an enlarged space 146, and a branch channel 142 branched from the expanded space 146, and is disposed in the cleaning liquid L and disposed inside.
  • the liquid suction means 144 includes an ejector 144a that sucks the cleaning liquid L, a pump 144b that pumps the cleaning liquid L to the ejector 144a as a working fluid, one end connected to the branch flow path 142 of the flow path structure 143, and the other end.
  • the first pipe 144c is connected to the third cleaning tank 113
  • the second pipe 144d is connected to the third cleaning tank 113 at one end and to the ejector 144a at the other end. Since the second reduced pressure cleaning unit 140 has the same configuration as the first reduced pressure cleaning unit 120, description of each member is omitted.
  • the supply means 150 supplies a clean cleaning liquid to the cleaning tank 110 (the third cleaning tank in the present embodiment) arranged on the most downstream side.
  • the supply unit 150 includes a tank 151 that stores a clean cleaning liquid, and a supply pipe 152 that sends the clean cleaning liquid to the third cleaning tank 113.
  • the regulating means 160 regulates the travel of the porous hollow fiber membrane M. 1 is composed of guide rolls 161a to 161j. The travel of the porous hollow fiber membrane M is regulated by these guide rolls 161a to 161j. Specifically, as shown in FIG. 1, the porous hollow fiber membrane M is continuously drawn into the cleaning liquid L accommodated in the first cleaning tank 111, and flows from the inlet 121 a of the first vacuum cleaning unit 120. After being introduced into the hollow fiber membrane running channel 125 of the structure 123, passing through the cleaning liquid L in the hollow fiber membrane running channel 125 and in the enlarged space 126 and led out from the outlet 121b, the outside of the cleaning solution L It is drawn to.
  • the porous hollow fiber membrane M is drawn into the cleaning liquid L accommodated in the second cleaning tank 12 and introduced into the hollow fiber membrane travel channel 135 of the channel structure 133 from the inlet 131a of the pressure cleaning unit 130. Then, after passing through the cleaning liquid L in the hollow fiber membrane running flow path 135 and the expansion space 136 and being led out from the outlet 131b, the cleaning liquid L is drawn out. Subsequently, it is drawn into the cleaning liquid L accommodated in the third cleaning tank 13 and introduced into the hollow fiber membrane travel channel 145 of the flow channel structure 143 from the inlet 141a of the second reduced pressure cleaning unit 140, and travels through the hollow fiber membrane.
  • the cleaning liquid L After passing through the cleaning liquid L in the flow path 145 and the enlarged space 146 and being led out from the outlet 141b, the cleaning liquid L is drawn out.
  • a guide roll that is usually used for manufacturing the porous hollow fiber membrane M can be used as the guide rolls 161a to 161j in the restricting means 160.
  • An individual constant tension drive assist roll (not shown) that drives the guide roll 161j for each hollow fiber membrane travel channel may be installed on the downstream side in the travel direction of the hollow fiber membrane of the cleaning device. By installing the assist roll, it is possible to stabilize the tension of the hollow fiber membrane M in the hollow fiber membrane traveling channel 125, and to prevent clogging in the traveling channel due to bending or swinging of the hollow fiber membrane. It can be avoided.
  • packing may be installed on the surface that is in contact with the upper lid portion 123b of the main body portion 123a and that is parallel to the traveling flow path 125 and located on the outermost side of the flow path structure 123.
  • the hollow fiber membrane traveling channel 125 is configured by the traveling groove portions 125a and 125b formed in the main body portion 123a and the upper lid portion 123b that can be attached to and detached from the main body portion 123a.
  • the upper cover portion 123b By removing the upper cover portion 123b, the upper surfaces of the running groove portions 125a and 125b are completely opened, and the porous hollow fiber membrane M can be easily and efficiently disposed in the hollow fiber membrane running channel 125.
  • the porous hollow fiber membrane M is washed, even if the porous hollow fiber membrane M is clogged in the hollow fiber membrane running flow path 125 for some reason and the washing device 11 is stopped, the upper cover is removed from the main body 123a. By detaching the portion 123b, the inside of the hollow fiber membrane running channel 125 can be easily confirmed and maintenance can be easily performed. Therefore, the efficiency of the cleaning device 11 can be increased.
  • the hollow fiber membrane traveling channel 125 is formed in a triangular shape or a substantially rectangular shape by forming the cross-sectional shape of the hollow fiber membrane traveling channel 125 formed by the traveling groove portions 125a and 125b and the upper lid portion 123b.
  • the flow state of the cleaning liquid L that flows around the porous hollow fiber membrane M in the flow path 125 is axisymmetric with respect to the central axis of the porous hollow fiber membrane M.
  • At least one structure of at least two separable structures constituting the channel structure has at least one plane, and one surface constituting the hollow fiber membrane traveling channel has the plane. It is preferable to share. That is, one of two or more sides forming a triangular shape or a rectangular shape is formed by the upper lid portion 123b, whereby the upper lid portion 123b is detached and the porous hollow fiber membrane M is easily formed in the running grooves 125a and 125b. Can be disposed. As described above, since the porous hollow fiber membrane M can be disposed easily and efficiently in the hollow fiber membrane running channel 25, the efficiency of the cleaning device 11 can be increased.
  • FIG. 6 is a perspective view of the main body 123a of the flow path structure 123 according to the second embodiment.
  • FIG. 7 is a cross-sectional view orthogonal to the traveling direction of the flow path structure 123 of the second embodiment as viewed from the upstream side.
  • the main body side concave portion 126 b constituting the enlarged space portion 126 is formed so as to communicate with all of the traveling groove portions 125 a and 125 b arranged in parallel.
  • 2nd Embodiment as shown in FIG.
  • each body-side recess 126b is formed as a through hole that connects the upper surface of the body portion 123a and the connection recess 126d, and the lower part is connected to each body-side recess 126b via the connection recess 126d.
  • a branch channel 122 is formed at the bottom of the connection recess 126d, and the cleaning liquid L is sucked by the liquid suction means 124 through the branch channel 122, thereby reducing the pressure of the cleaning liquid L in the enlarged space 126. Yes.
  • the enlarged space portions 126 are individually formed between the two or more hollow fiber membrane running channels 125 and the inlet 121a and the outlet 121b of each hollow fiber membrane running channel 125. Therefore, two or more porous hollow fiber membranes M can be washed well at a time. Therefore, the efficiency of the cleaning device 11 can be further increased.
  • the porous hollow fiber membrane cleaning device according to the third embodiment which is one aspect of the present invention, is immersed in the cleaning liquid, at least one cleaning tank containing the cleaning liquid, through which the porous hollow fiber membrane sequentially passes.
  • the cleaning apparatus Pressurizing the cleaning liquid on the outer peripheral side of the porous hollow fiber membrane and passing the cleaning liquid from the inner peripheral side to the outer peripheral side of the porous hollow fiber membrane and / or the porous hollow fiber membrane immersed in the cleaning liquid
  • a vacuum cleaning section that decompresses the cleaning liquid on the outer peripheral side and allows the cleaning liquid to flow from the inner peripheral side to the outer peripheral side of the porous hollow fiber membrane
  • supply means for supplying the cleaning liquid to the cleaning tank
  • a flow path structure having a hollow fiber membrane traveling channel through which the porous hollow fiber membrane can continuously travel from an inlet on one end side toward an outlet on the other end side, and a hollow fiber membrane moving means
  • the pressure cleaning unit is disposed in the cleaning liquid and is The flow path structure that is filled with the cleaning liquid, and liquid injection means that presses the cleaning liquid into the hollow fiber membrane traveling flow path of the flow path structure to increase the pressure of the cleaning liquid in the hollow fiber membrane traveling flow path.
  • the vacuum cleaning section is disposed in the cleaning liquid and the flow path structure body is filled with the cleaning liquid, and the cleaning liquid in the hollow fiber membrane running flow path of the flow path structure is sucked into the hollow fiber Liquid suction means for reducing the pressure of the cleaning liquid in the membrane running flow path, and the flow path structure includes at least two separable structures, and the flow path structure includes the at least two structures.
  • a running groove formed in at least one structure of the body, and a branch channel that pumps or sucks the cleaning liquid to distribute the cleaning liquid, and the branch channel is connected to the running groove.
  • the hollow fiber membrane moving means In conjunction with attachment and detachment of said at least two structures, thereby detaching the porous hollow fiber membrane from the traveling groove portion.
  • FIG. 8 is an explanatory diagram of the cleaning device 21 for the porous hollow fiber membrane M of the present embodiment.
  • the third embodiment is different from the first and second embodiments in that it has a hollow fiber membrane moving means for attaching and detaching the porous hollow fiber membrane from the running groove and in that it performs the abnormal part avoidance control S10. .
  • cleaning apparatus 21 of the porous hollow fiber membrane M of 3rd Embodiment is demonstrated. The description of the same configuration as in the first or second embodiment is omitted.
  • first cleaning tank 211 and second cleaning tank 212 containing a cleaning liquid L through which the porous hollow fiber membrane M sequentially passes.
  • third cleaning tank 213 the first vacuum cleaning unit 220, the pressure cleaning unit 230, the second vacuum cleaning unit 240, and the downstream cleaning tank for cleaning the porous hollow fiber membrane M.
  • Supply means 250 and regulation means 260 for regulating the travel of the porous hollow fiber membrane M.
  • the first vacuum cleaning unit 220, the pressure cleaning unit 230, and the second vacuum cleaning unit 240 are arranged in series, and the first vacuum cleaning unit is disposed at both ends of the array. 220 and the second vacuum cleaning unit 240 are located.
  • the first cleaning tank 211 disposed on the most upstream side stores the first reduced pressure cleaning unit 220
  • the second cleaning tank 212 on the downstream side of the first cleaning tank 211 stores the pressure cleaning unit 230.
  • a second reduced pressure cleaning unit 240 is housed.
  • the cleaning tank 210 contains the cleaning liquid L.
  • the material, shape, size, and configuration of the cleaning tank 210 are the same as those of the cleaning tank of the first embodiment.
  • FIG. 9 is a side view of the flow path structure 223 of the third embodiment.
  • the first vacuum cleaning unit 220 depressurizes the cleaning liquid on the outer peripheral side of the porous hollow fiber membrane M immersed in the cleaning liquid L, and causes the cleaning liquid L to flow from the inner peripheral side to the outer peripheral side of the porous hollow fiber membrane M.
  • 8 includes a hollow fiber membrane travel channel 225 (see FIG. 9), an enlarged space 226 (see FIG. 9), and a branched channel 222 (branched from the enlarged space 226).
  • a liquid suction means 224 for reducing the pressure of the cleaning liquid L in the enlarged space portion 226.
  • the configuration of the flow channel structure 223 is the same as that of the flow channel structure 123 of the first embodiment.
  • the flow path structure 223 includes a main body 223a, an upper lid 223b, and hollow fiber membrane moving means 280 (280a, 280b) provided on the upstream side and the downstream side of the upper lid 223b. It is equipped with.
  • the material of the main body part 223a and the upper cover part 223b constituting the flow path structure 223 is the same as the material of the main body part 123a and the upper cover part 123b of the first embodiment.
  • FIG. 10 is a perspective view of the main body 223a when the upper lid 223b of the flow path structure 223 is removed.
  • FIG. 11 is a cross-sectional view perpendicular to the traveling direction of the flow path structure 223 as viewed from the upstream side.
  • traveling groove portions 225 a and 225 b are formed on the upper surface of the main body portion 223 a along the traveling direction of the porous hollow fiber membrane M.
  • the bottom surface 223c of the upper lid portion 223b is in close contact with the upper surface of the main body portion 223a to cover the traveling groove portions 225a and 225b, thereby forming the hollow fiber membrane traveling channel 225.
  • the hollow fiber membrane traveling flow path 225 of the present embodiment is formed in parallel in the direction orthogonal to the traveling direction of the porous hollow fiber membrane M on the plane, eight hollow fiber membrane traveling flow paths 225 are formed. The number is not limited to eight.
  • hollow fiber membrane travel channel 225 has the same configuration as the hollow fiber membrane travel channel 125 of the first embodiment, description of each member is omitted.
  • an enlarged space 226 is formed between the inlet 221 a and the outlet 221 b of the hollow fiber membrane travel channel 225.
  • the configuration of the expansion space portion 226 is the same as that of the expansion space portion 126 of the first embodiment.
  • the area and the length D of all the travel channels, which is the sum of the hollow fiber membrane travel channel 225 and the expanded space 226, are the same as the expanded space 126 of the first embodiment.
  • branch channel As shown in FIG. 11, the branch flow path 222 is formed so as to penetrate outward from the bottom surface of the main body side recess 226b formed in the main body portion 223a.
  • the configuration of the branch channel 222 is the same as the branch channel 122 of the first embodiment.
  • the upper lid portion 223b is one of at least two structures constituting the flow path structure 223, and the structure moving means is means for separating the at least two structures.
  • FIG. 12 is an explanatory diagram of the upper lid portion 223b and the upper lid moving means (structure moving means) 290 of the third embodiment.
  • FIG. 12 is an explanatory diagram when the flow path structure 223 and the upper lid moving means 290 are viewed from the traveling direction.
  • the upper lid portion 223b is attached to the main body portion 223a when the upper lid portion 223b moves downward by an upper lid portion moving means 290 described later, and the upper lid portion 223b moves upward from the main body portion 223a. It is formed to be detached. That is, the upper lid part 223b is formed to be detachable from the main body part 223a by an elevating operation.
  • the upper lid portion 223b is formed in a substantially rectangular shape in plan view, and guide holes 292 through which the guide rods 293 constituting the upper lid portion moving means 290 are inserted are formed at the four corners of the upper lid portion 223b.
  • the position of the upper lid portion 223b is restricted in the horizontal direction by the guide hole 292 and the guide rod 293, and can be moved up and down along the guide rod 293.
  • the upper lid 223b can be attached to and detached from the main body 223a.
  • the upper lid portion 223b can be attached to and detached from the main body portion 223a, so that the porous hollow fiber membrane M can be easily inserted into the running groove portions 225a and 225b with the upper lid portion 223b removed. It becomes. Therefore, the porous hollow fiber membrane M can be easily and efficiently disposed in the hollow fiber membrane running channel 225. Further, in the abnormal part avoidance control S10 (see FIG. 15) described later, when the abnormal outer diameter part of the porous hollow fiber membrane M is detected, the upper lid part 223b is lifted from the main body part 223a and detached from the porous hollow fiber membrane M. The hollow fiber membrane M is raised and separated from the hollow fiber membrane travel channel 225. This prevents the porous hollow fiber membrane M having the abnormal part J (see FIG. 16) from being clogged in the hollow fiber membrane traveling flow path 225.
  • the upper lid moving means 290 of the present embodiment is a pneumatic cylinder 295 arranged above the upper lid 223b.
  • the pneumatic cylinder 295 is fixed to the upper surface of the upper lid portion 223b and can be moved up and down, a cylinder tube 294 for moving the piston portion 291 up and down, and four guides erected upward from the four corners of the main body portion 223a. And a rod 293.
  • the upper lid moving means 290 moves the piston portion 291 up and down by supplying air into the cylinder tube 294 from an air source (not shown).
  • the piston portion 291 is fixed to the upper surface of the upper lid portion 223b, and the upper lid portion 223b is configured to move up and down in conjunction with the up and down movement of the piston portion 291.
  • the guide rods 293 are inserted into the respective guide holes 292 of the upper lid portion 223b, so that the upper lid portion 223b moves up and down along the guide rods 293.
  • the upper lid moving means 290 for the upper lid 223b is not limited to a pneumatic cylinder, and may be a hydraulic cylinder or a hydraulic cylinder.
  • FIG. 13 is an explanatory diagram of the hollow fiber membrane moving means 280 (280a, 280b).
  • the upstream hollow fiber membrane moving means 280a and the downstream hollow fiber membrane moving means 280b have the same configuration. Therefore, in the following description, only the upstream hollow fiber membrane moving means 280a is described, and the description of the downstream hollow fiber membrane moving means 280b is omitted.
  • the hollow fiber membrane moving means 280a is means for attaching / detaching the porous hollow fiber membrane M from the running groove portions 225a, 225b in conjunction with the attachment / detachment of at least two structures constituting the flow path structure 223. .
  • the hollow fiber membrane moving means 280a includes a pair of brackets 281a fixed in a direction intersecting the traveling direction, mainly on the upstream end face of the upper lid portion 223b, and a rotating roller rotatably supported between the pair of brackets 281a. 285a.
  • the bracket 281a is formed in a substantially L shape in a plan view using a metal such as iron or SUS, a resin, or the like.
  • One side of the bracket 281a is a pedestal portion 282a fixed to the upstream end surface of the upper lid portion 223b, and the other side is a shaft support portion 283a that supports the rotating roller 285a.
  • the bracket 281a is fixed to the upstream end surface of the upper lid portion 223b by, for example, a bolt 289, but the fixing means is not limited to the bolt 289, and may be, for example, welding.
  • the shaft support portion 283a of the bracket 281a is formed to extend downward from the bottom surfaces of the running groove portions 225a and 225b formed in the main body portion 223a.
  • the downward extension of the shaft support portion 283a is such that the outer peripheral surface of the rotating roller 285a disposed between the pair of shaft support portions 283a is porous when the upper lid portion 223b is mounted in close contact with the main body portion 223a.
  • the hollow fiber membrane M is set to be disposed below the hollow fiber membrane M.
  • the downward extension length of the shaft support portion 283a is set so that the separation distance between the rotary roller 285a and the porous hollow fiber membrane M is shorter than the upward stroke length of the upper lid moving means 290 described above.
  • the rotation roller 285a is a columnar structure formed of metal, resin, or the like, and is rotatably supported between the shaft support portions 283a of the pair of brackets 281a.
  • the movement of the rotating roller 285a in the axial direction is restricted, for example, by fastening a nut 288 to the shaft core 286 of the rotating roller 285a.
  • the sliding resistance between the shaft core 286 of the rotating roller 285a and the bracket 281a is reduced between the shaft core 286 of the rotating roller 285a and the shaft support portion 283a of the bracket 281a, and the shaft core 286 from the rotation center is reduced.
  • a bearing 284 is provided to prevent displacement.
  • a resin bearing 284 made of polyetheretherketone (hereinafter referred to as “PEEK”).
  • PEEK is a kind of polyetherketone resin and is a synthetic resin belonging to a crystalline thermoplastic resin.
  • PEEK has very high heat resistance and is excellent in fatigue resistance or wear resistance. Furthermore, it has high dimensional stability and excellent chemical resistance. Moreover, unlike a metal bearing, it is very lightweight.
  • the material of the bearing 284 is not limited to PEEK, and may be other resin materials such as phenol resin and polytetrafluoroethylene.
  • the material of the bearing 284 is not limited to a resin material, and may be a metal material such as a SUS material.
  • the liquid suction means 224 sucks the cleaning liquid L in the hollow fiber membrane travel flow path 225 through the branch flow path 222, and the cleaning liquid L in the hollow fiber membrane travel flow path 225 and the enlarged space portion 226. Reduce the pressure.
  • the configurations of the liquid suction unit 224, ejector 224a, and pump 224b of the third embodiment are the same as the configurations of the liquid suction unit 124, ejector 124a, and pump 124b of the first embodiment.
  • the liquid suction unit 224 of the third embodiment is controlled by a cleaning liquid adjustment control unit 2130 (see FIG. 14) in an abnormal point avoidance control S10 (see FIG. 15) described later.
  • a cleaning liquid adjustment control unit 2130 see FIG. 14
  • an abnormal point avoidance control S10 see FIG. 15
  • the pump 224b is stopped and the washing liquid flow stopping operation S20 is performed. Details of the cleaning liquid flow stopping operation S20 will be described later.
  • the pressure cleaning unit 230 of the third embodiment shown in FIG. 8 pressurizes the cleaning liquid on the outer peripheral side of the porous hollow fiber membrane M immersed in the cleaning liquid L, and the inner peripheral side from the outer peripheral side of the porous hollow fiber membrane M.
  • the cleaning liquid L is supplied to
  • the configurations of the pressure cleaning unit 230 and the branch channel 232 are the same as the configurations of the pressure cleaning unit 130 and the branch channel 132 of the first embodiment.
  • the structure of the flow path structure 233 is the same as that of the flow path structure 223 of the first reduced pressure cleaning unit 220. That is, as in the flow channel structure 223 shown in FIGS. 9 to 11, the main body 223a in which the running groove portions 225a and 225b, the main body-side recess 226b, and the branch flow channel 222 forming the hollow fiber membrane running flow channel 225 are formed. Is formed by being closed by an upper lid portion 223b in which an upper lid-side concave portion 226a is formed.
  • the fluid propulsion mechanism such as the hydraulic cylinder, the pneumatic cylinder, or the hydraulic cylinder described above is used to apply the closing force to the upper lid portion 223b. Accordingly, the upper lid portion 223b can be moved up and down by automatic control, a closing force can be applied to the upper lid portion 223b, and the abnormal point avoidance control can be performed also in the pressure washing unit 230.
  • the cross-sectional shapes of the hollow fiber membrane traveling flow path 235, the enlarged space portion 236, and the branch flow path 232 are the same as the flow path structure 223 of the first reduced-pressure washing unit 220. Furthermore, with respect to the width and height of the hollow fiber membrane traveling channel 235, the length and area of the enlarged space portion 236, the length of the entire traveling channel D, and the like, Are the same.
  • the configurations of the inlet 231a and the outlet 231b of the pressure cleaning unit 230 are the same as the inlet 131a and the outlet 131b of the pressure cleaning unit 130 of the first embodiment.
  • the liquid press-fitting means 234 sucks the cleaning liquid L in the second cleaning tank 212 and press-fits it through the branch flow path 232 to increase the pressure of the cleaning liquid L in the enlarged space 236.
  • the configuration of the liquid press-in means 234 in the third embodiment is the same as the liquid press-in means 134 in the first embodiment.
  • the liquid press-fitting means 234 of the third embodiment can be controlled by an inverter (not shown). Further, a pressure sensor (not shown) is provided in a portion where it is desired to maintain a constant pressure, and the output of the pressure sensor is fed back to the inverter so that the pump rotation speed of the pump 234b of the liquid press-fitting means 234 can be automatically controlled. ing. Further, the liquid press-fitting means 234 is controlled by a cleaning liquid adjustment control unit 2130 (see FIG. 14) in an abnormal point avoidance control S10 (see FIG. 15), which will be described later, and a porous hollow fiber membrane by the outer diameter detecting means 2120. When the abnormal portion is detected, the pump 234b is stopped and the washing liquid flow stopping operation S20 is performed. Details of the cleaning liquid flow stopping operation S20 will be described later.
  • the second reduced pressure cleaning unit 240 of the third embodiment decompresses the cleaning liquid on the outer peripheral side of the porous hollow fiber membrane M immersed in the cleaning liquid, and the outer periphery from the inner side of the porous hollow fiber membrane M. Let the washing liquid L flow through the side.
  • the configuration of the second vacuum cleaning unit 240 is the same as that of the vacuum cleaning unit 140 of the first embodiment.
  • the configuration of the supply unit 250 is the same as the supply unit 150 of the first embodiment.
  • the regulating means 260 regulates the travel of the porous hollow fiber membrane M.
  • the restricting means 260 of the third embodiment in FIG. 8 includes guide rolls 261a to 261j. The travel of the porous hollow fiber membrane M is restricted by these guide rolls 261a to 261j.
  • the configuration of the regulating means 260 of the third embodiment is the same as that of the regulating means 160 of the first embodiment.
  • the rotating roller 285 of the hollow fiber membrane moving unit 280 also functions as the regulating unit 260.
  • the rotating roller 285a contacts the porous hollow fiber membrane M on the upstream side and the downstream side of the flow path structures 223, 233, and 243.
  • the porous hollow fiber membrane M is moved upward to regulate the travel of the porous hollow fiber membrane M.
  • FIG. 14 is a system block diagram of the abnormal part avoidance control device 2100.
  • the abnormal part avoidance control device 2100 determines that the outer diameter of the porous hollow fiber membrane M detected by the outer diameter detecting means 2120 is an abnormal part J larger than a predetermined value, the abnormal part J is hollow.
  • Abnormal part avoidance control S10 is performed to avoid traveling through the yarn film traveling flow path 225.
  • the predetermined value of the outer diameter of the porous hollow fiber membrane M is a threshold value of the outer diameter value, and is a value determined from the width d1 of the hollow fiber membrane traveling channel and the height d2 of the hollow fiber membrane traveling channel.
  • the abnormal part avoidance control device 2100 includes an outer diameter detection unit 2120 that detects the diameter of the porous hollow fiber membrane M, and a cleaning liquid adjustment control unit 2130 that controls the start or stop of the pumping or suction of the cleaning liquid L.
  • a structure moving means that is, an upper lid moving means control unit 2140 for controlling the upper lid moving means 290, and an abnormal point is detected from the signal of the outer diameter detecting means 2120, and cleaning liquid adjustment control is performed.
  • an integrated control unit 2110 that gives a signal to the unit 2130 and the upper lid moving unit control unit 2140.
  • the outer diameter detecting means 2120 is a means for detecting an abnormal portion J of the outer diameter of the porous hollow fiber membrane M before the porous hollow fiber membrane M is introduced into the hollow fiber membrane running channel 225. As shown in FIG. 8, the outer diameter detection means 2120 is arranged on the upstream side of each cleaning tank 210 and detects the diameter (outer diameter) of the porous hollow fiber membrane M.
  • the outer diameter detection means 2120 is an image reading device such as a CCD camera, for example, and detects the diameter (outer diameter) of the porous hollow fiber membrane M based on the image.
  • the outer diameter detection means 2120 is not limited to an image reading device such as a CCD camera, and may be, for example, an optical outer diameter measuring instrument or a laser outer diameter measuring instrument.
  • the integrated control unit 2110 determines whether or not the outer diameter of the porous hollow fiber membrane M detected by the outer diameter detection means 2120 is an abnormal portion having a diameter larger than a predetermined value. Further, when it is determined that the outer diameter of the porous hollow fiber membrane M is an abnormal portion having a diameter larger than a predetermined value, the abnormal portion avoidance control S10 is provided to the cleaning liquid adjustment control unit 2130 and the upper lid moving unit control unit 2140. Start signal (hereinafter referred to as “control start signal”). Further, after the abnormal part J of the porous hollow fiber membrane M passes through the flow path structures 223, 233, 243, a stop signal (hereinafter referred to as “control start signal”) of the abnormal part avoidance control S10 is given.
  • the cleaning liquid adjustment control unit 2130 controls the pumping or suction stop or start of the cleaning liquid L based on the control start signal and the control stop signal from the integrated control unit 2110.
  • the cleaning liquid adjustment control unit 2130 is connected to the pump 224b of the first vacuum cleaning unit 220, the pump 234b of the pressure cleaning unit 230, and the pump 244b of the second vacuum cleaning unit 240, and a control start signal from the integrated control unit 2110. Based on the control stop signal, the pumps 224b, 234b, 244b are instructed to stop or drive.
  • the upper lid moving unit control unit 2140 drives the upper lid moving unit 290 to raise or lower the upper lid unit 223b.
  • the upper lid moving means controller 2140 is connected to an air pump (not shown) of the upper lid moving means 290. Based on the control start signal from the integrated control unit 2110, the air pump is driven to suck the air in the cylinder tube 294, thereby raising the piston part 291 and raising the upper lid part 223b. Further, the air pump is driven based on a control stop signal from the integrated control unit 2110 to pump air into the cylinder tube 294, thereby lowering the piston 291 and lowering the upper lid 223b.
  • FIG. 15 is a control flow of the abnormal part avoidance control S10. If the integrated control unit 2110 determines that there is an abnormal location in the traveling porous hollow fiber membrane M, the abnormal location avoidance control S10 is performed. As shown in FIG. 15, the abnormal part avoidance control S10 is performed by a cleaning liquid flow stop operation S20, a separation operation S30, a mounting operation S40, and a cleaning liquid flow start operation S50. Each operation will be described below. The abnormal part avoidance control S10 is performed in each of the cleaning units of the first vacuum cleaning unit 220, the pressure cleaning unit 230, and the second vacuum cleaning unit 240, but the control flow is the same. Therefore, hereinafter, only the abnormal point avoidance control S10 in the first reduced pressure cleaning unit 220 will be described, and the description of the abnormal point avoidance control S10 in the pressure cleaning unit 230 and the second reduced pressure cleaning unit 240 will be omitted.
  • a cleaning liquid flow stopping operation S20 In the abnormal part avoidance control S10, first, a cleaning liquid flow stopping operation S20 is performed. In the cleaning liquid flow stopping operation S20, a stop signal is given from the cleaning liquid adjustment control unit 2130 to the pump 224b. Thereby, the suction of the cleaning liquid L in the first reduced pressure cleaning unit 220 is stopped.
  • FIG. 16 is an explanatory diagram of the detachment operation S30.
  • the illustration of the upper lid moving means 290 is omitted in FIG.
  • a detachment operation S30 is performed following the cleaning liquid flow stop operation S20.
  • the separation operation S30 at least one structure of at least two structures constituting the flow path structure 223 is moved to separate the at least two structures.
  • a signal is given from the upper lid moving means controller 2140 to the upper lid moving means 290 so as to raise the piston portion 291.
  • the upper lid portion 223b is raised in conjunction with the raising of the piston portion 291, and the upper lid portion 223b is detached from the main body portion 223a as shown in FIG.
  • the rotating roller 285a of the hollow fiber membrane moving means 280 is raised in conjunction with the raising of the upper lid portion 223b.
  • the rotating roller 285a is in contact with the porous hollow fiber membrane M and moves the porous hollow fiber membrane M upward.
  • the porous hollow fiber membrane M is detached from the running groove portions 225a and 225b, and the abnormal portion J of the porous hollow fiber membrane M runs idle between the main body portion 223a and the upper lid portion 223b. Therefore, the abnormal part J passes through the hollow fiber membrane traveling channel 225 without clogging.
  • a mounting operation S40 is performed following the separation operation S30.
  • the upper lid moving unit control unit 2140 controls the upper lid moving unit 290.
  • a signal is given to lower the piston portion 291.
  • the upper lid portion 223b and the rotating roller 285a are lowered in conjunction with the lowering of the piston portion 291, and the porous hollow fiber membrane M is disposed in the hollow fiber membrane traveling channel 225 as shown in FIG.
  • the upper lid portion 223b is attached to the main body portion 223a.
  • Whether or not the abnormal part J has moved to the downstream side of the flow path structure 223 is, for example, in the time from when the abnormal part J passes through the outer diameter detection means 2120 to when a certain time has passed. This can be determined from the relationship between the traveling speed of the abnormal part J and the moving distance of the abnormal part J.
  • a cleaning liquid flow start operation S50 is performed following the mounting operation S40.
  • a driving signal is given from the cleaning liquid adjustment control unit 2130 to the pump 224b. Thereby, the suction of the cleaning liquid L in the first reduced pressure cleaning unit 220 is started again, and the cleaning of the porous hollow fiber membrane M is resumed.
  • abnormal part avoidance control S10 is complete
  • the hollow fiber membrane travel channel 225 includes travel groove portions 225a and 225b formed in the main body portion 223a and an upper lid portion 223b that can be attached to and detached from the main body portion 223a.
  • the porous hollow fiber membrane M can be easily and efficiently disposed in the hollow fiber membrane running channel 225 by removing the upper lid portion 223b. Therefore, the working efficiency of the cleaning device 21 can be increased.
  • the hollow fiber membrane traveling channel 225 can be opened by removing the upper lid portion 223b, so that, for example, the poorly formed porous hollow fiber membrane M passes through the hollow fiber membrane traveling channel 225.
  • the upper lid 223b When traveling, the upper lid 223b can be detached from the main body 223a and the porous hollow fiber membrane M can be detached from the traveling grooves 225a and 225b. Thereby, it is possible to avoid the poorly formed porous hollow fiber membrane M from traveling in the hollow fiber membrane traveling flow path 225, so that the porous hollow fiber membrane M can be prevented from being clogged.
  • the porous hollow fiber membrane M when the porous hollow fiber membrane M is poorly formed, when the porous hollow fiber membrane M is about to run in the hollow fiber membrane running channel 225, the main body portion The porous hollow fiber membrane M can be detached from the running groove portions 225a and 225b at the same time as the upper lid portion 223b is detached from the 223a. Thereby, the poorly formed porous hollow fiber membrane M can be prevented from traveling in the hollow fiber membrane traveling channel 225.
  • the traveling groove portions 225a and 225b are installed at the same time as attaching the upper lid portion 223b to the main body portion 223a.
  • a porous hollow fiber membrane M can be disposed therein. Thereby, the porous hollow fiber membrane M can be easily and efficiently disposed in the hollow fiber membrane running channel 225.
  • the poorly formed porous hollow fiber membrane M can be reliably detected. Also, since the upper lid moving means 290 is provided, when the poorly formed porous hollow fiber membrane M tries to travel in the hollow fiber membrane running flow path 25, the upper lid portion 223b is moved from the main body portion 223a. Simultaneously with the separation, the porous hollow fiber membrane M is detached from the running groove portions 225a and 225b, and the poorly formed porous hollow fiber membrane M is prevented from running in the hollow fiber membrane running channel 225. it can.
  • the cleaning liquid adjustment control unit 2130 since the cleaning liquid adjustment control unit 2130 is provided, the pressing force or suction force acts on the upper lid part 223b and the porous hollow fiber membrane M by stopping the pumping or suction of the cleaning liquid L when the upper lid part 223b is detached. Can be prevented. Thereby, the upper cover part 223b and the porous hollow fiber membrane M can be moved easily. Further, it is possible to suppress the porous hollow fiber membrane M from being damaged by the pressing force or the suction force acting on the porous hollow fiber membrane M.
  • the abnormal portion avoidance control S10 by performing the abnormal portion avoidance control S10, the abnormal portion J of the porous hollow fiber membrane M formed with a large diameter can be avoided, so that the porosity in the hollow fiber membrane traveling flow path 225 is Clogging of the hollow fiber membrane M can be reliably prevented.
  • the detachment operation S30 for detaching the upper lid part 223b and the porous hollow fiber membrane M is performed after the washing liquid flow stopping operation S20 for stopping the pumping or suction of the cleaning liquid L, so that the upper lid part 223b and It is possible to suppress the pressing force or suction force from acting on the porous hollow fiber membrane M. Thereby, the upper cover part 223b and the porous hollow fiber membrane M can be moved easily. Further, it is possible to suppress the porous hollow fiber membrane M from being damaged by the pressing force or the suction force acting on the porous hollow fiber membrane M.
  • the cleaning device 1 of the present invention is not limited to the cleaning device 11 or 21 shown in FIG. 1 or FIG.
  • the entire flow path structure 123, 133, 143, 223, 233, or 243 is immersed in the cleaning liquid L, but the hollow fiber membrane running flow path 125, 135, 145, 225 , 235, or 245, the inlet 121a, 131a, 141a, 221a, 231a, or 241a and the outlet 121b, 131b, 141b, 221b, 231b, or 241b are arranged in the cleaning liquid L, and the inside of each flow path is the cleaning liquid L.
  • the flow path structure 123, 133, 143, 223, 233, or 243 is not limited to a form that is immersed in the cleaning liquid L.
  • the hollow fiber membrane traveling flow path 135 or 235 and the enlarged space section 136 or 236 are filled with the cleaning liquid L press-fitted from the branch flow path 132 or 232 by the liquid press-fitting means 134 or 234.
  • the cleaning liquid L is discharged from the inlet 131a or 231a and the outlet 131b or 231b through the hollow fiber membrane travel channel 135 or 235.
  • liquid suction means 124, 144, 224, or 244 of the first vacuum cleaning unit 120 or 220 and the second vacuum cleaning unit 140 or 240 are limited to the suction system using the ejectors 124a, 144a, 224a, or 244a.
  • the cleaning liquid L in the hollow fiber membrane running channels 125, 145, 225, and 245 may be sucked through the branch channels 122, 142, 222, and 242 with a suction pump or the like.
  • the cleaning apparatus 11 or 21 shown in FIG. 1 or 8 includes a first cleaning unit 120 or 220, a pressure cleaning unit 130 or 230, and a second cleaning unit 140 or 240, each having a separate cleaning tank 110 (
  • the first cleaning tank 111 to the third cleaning tank 113) or 210 are housed in, for example, the first vacuum cleaning section 120 or 220 and the pressure cleaning section 130.
  • Or 230 may be stored in the same washing tank 110 or 210.
  • the number of cleaning tanks 110 or 210 is a design matter that is appropriately changed according to the application of the technology.
  • the cleaning apparatus 11 or 21 in which one pressure cleaning unit 130 or 230 is provided between the first vacuum cleaning unit 120 or 220 and the second vacuum cleaning unit 140 or 240 has been described.
  • the invention is not limited to this, and two or more pressure washing sections may be provided.
  • the downstream cleaning tank is arranged to be higher than the upstream cleaning tank, but the cleaning tanks are arranged side by side so as to have the same height. May be. Further, the cleaning tanks are not limited to a horizontal arrangement, and may be a vertical arrangement.
  • the number of cleaning tanks is three, but the number of cleaning tanks is not limited to three. However, from the viewpoint of reducing the size of the cleaning device 11 or 21, about two to three are preferable.
  • the hollow fiber membrane moving means 280 in the third embodiment is fixedly provided on the end surface of the upper lid portion 223b, and the hollow fiber membrane moving means 280 is also interlocked with the vertical movement of the upper lid portion 223b by the upper lid portion moving means 290. It was formed to move up and down.
  • the hollow fiber membrane moving means 280 may be provided independently without being fixed to the upper lid portion 223b, and the lifting / lowering means for raising and lowering the hollow fiber membrane moving means 280 may be provided independently.
  • this embodiment is advantageous in that the device configuration is simple.
  • the present embodiment is advantageous in that the cleaning apparatus can be configured at low cost without providing the outer diameter detection means 2120 on the downstream side of the flow path structure 223.
  • the mounting operation S40 is automatically performed.
  • the mounting operation S40 is not necessarily performed automatically, and may be performed manually.
  • the cleaning device of the present invention can easily and efficiently arrange the porous hollow fiber membrane in the hollow fiber membrane running channel, and can easily check the inside of the hollow fiber membrane running channel and perform maintenance easily. Therefore, since the working efficiency of the cleaning apparatus can be increased, it can be used in fields such as the food industry, the medical industry, and the electronics industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

 本発明は洗浄液を収容した洗浄槽に多孔質中空糸膜を走行させ、前記多孔質中空糸膜中の残存物を除去する多孔質中空糸膜の洗浄装置であって、前記洗浄槽内には、一端側の入口から他端側の出口に向かって前記多孔質中空糸膜が連続的に走行可能な中空糸膜走行流路を有する流路構造体を備え、前記流路構造体は、分離可能な少なくとも二つの構造体からなり、前記流路構造体は、前記少なくとも二つの構造体のうち、少なくとも一つの構造体に形成された走行溝部と、前記洗浄液を圧送又は吸引して前記洗浄液を流通させる分岐流路と、を有し、前記分岐流路は、前記走行溝部に連結されている流路である、前記洗浄装置に関する。本発明によれば、簡単かつ効率よく多孔質中空糸膜を配設でき、容易にメンテナンスができる効率の高い多孔質中空糸膜の洗浄装置を提供できる。

Description

多孔質中空糸膜の洗浄装置
 この発明は、多孔質中空糸膜の洗浄装置に関する。
 本願は、2011年4月26日に日本に出願された特願2011-098204号、及び2011年4月26日に日本に出願された特願2011-098205号に基づき優先権を主張し、その内容をここに援用する。
 食品工業、医療、又は電子工業等の分野における有用成分の濃縮、回収、若しくは不要成分の除去、又は造水等には、セルロースアセテート、ポリアクリロニトリル、ポリスルホン、又はフッ素系樹脂等からなり、例えば湿式又は乾湿式紡糸により製造された中空状の多孔質層を有する多孔質中空糸膜が、精密濾過膜、限外濾過膜、又は逆浸透濾過膜等に多用されている。
 湿式又は乾湿式紡糸により多孔質中空糸膜を製造する場合には、まず、疎水性ポリマーと親水性ポリマーとを溶媒で溶解した製膜原液を調製する。ここで親水性ポリマーは、製膜原液の粘度を多孔質中空糸膜の形成に好適な範囲に調整し、製膜状態の安定化を図るために添加されるものであって、ポリエチレングリコールやポリビニルピロリドン等が使用されることが多い。また溶媒としては、疎水性ポリマーと親水性ポリマーを溶解可能で、水に可溶のものが用いられ、例えばN,N-ジメチルアセトアミド(DMAc)、又はN,N-ジメチルホルムアミド(DMF)などが挙げられる。
 この製膜原液を環状に吐出し、凝固液中で凝固させる凝固工程により、多孔質中空糸膜が得られる。製膜原液は空気と接触する空走部を経て、凝固液中へ導入されても(乾湿式紡糸法)、空走部を経ずに直接凝固液に導入されても(湿式紡糸法)よい。
 ところが、凝固が終わった時点の多孔質中空糸膜中には、通常、その多孔質部に溶媒や親水性ポリマーが溶液の状態で多量に残存している。このように溶媒が残存していると多孔質部が膨潤状態のため機械的強度が低く、親水性ポリマーが残存していると多孔質中空糸膜に求められる重要な性能の一つである透水性能が不十分となる。
 そのため、凝固工程の後には、このように残存している溶媒や親水性ポリマーを多孔質中空糸膜から除去する工程が必要となる。
 そこで、残存している親水性ポリマーを多孔質中空糸膜から除去する方法が提案されている(例えば、特許文献1参照)。
 特許文献1には、低コスト、又は短時間で多孔質中空糸膜中に残存する親水性ポリマーを除去することが可能な多孔質中空糸膜の洗浄方法が開示されている。具体的には、減圧洗浄部にて多孔質中空糸膜の外周側の洗浄液を減圧し、膜中の親水性ポリマー水溶液を多孔質中空糸膜の外周側へ排出する減圧工程と、減圧洗浄部の後段に設けられた加圧洗浄部にて多孔質中空糸膜の外周側の洗浄液を加圧して洗浄液を膜表面から圧入し、膜中の親水性ポリマー水溶液を置換、及び希釈しながら膜中空部に押し込む洗浄液供給工程と、加圧洗浄部の後段にさらに設けられた減圧洗浄部にて多孔質中空糸膜の外周側を再度減圧し、親水性ポリマー水溶液を多孔質中空糸膜の外周側へ排出させる減圧工程と、を有している。
 ところで、特許文献1には、減圧工程及び洗浄液供給工程の一例として、耐圧性の筒部材を用いる方法が記載されている。具体的には、筒部材の両端には、中空糸膜が走行できる程度のクリアランスを有しつつ、筒部材の内部を外部よりも減圧状態又は加圧状態に保つことのできる、例えばラビリンスシールなどからなるシール機構が設けられている。そして、中空糸膜を筒部材内にその一端から連続的に導入するとともに減圧手段又は加圧手段を作動させることにより、筒部材内において、中空糸膜の外周側が減圧又は加圧され、中空糸膜中に残存する親水性ポリマーが中空糸膜の外周側へと吸引、及び除去される。
特開2008-161755号公報
 しかしながら、特許文献1の多孔質中空糸膜の洗浄装置には、以下のような問題がある。
 特許文献1の多孔質中空糸膜の洗浄装置では,洗浄装置に多孔質中空糸膜を配設する際、筒部材内に多孔質中空糸膜を挿通させる必要がある。ここで、多孔質中空糸膜は軟質の紐状部材であるため、筒部材内に多孔質中空糸膜を挿通させる際の作業性が煩雑である。
 したがって、洗浄装置に多孔質中空糸膜を配設する際の作業効率が悪化するおそれがある。
 また、何らかの原因により多孔質中空糸膜が筒部材内で詰まる等した場合には、洗浄装置を停止させた後に筒部材を取り外す等して筒部材の内部の確認及びメンテナンスをする必要がある。しかし、筒部材の内部は視認性が悪く、メンテナンスも困難であるという問題がある。特に、筒部材が長く形成されている場合には、この傾向は顕著である。
 さらに、筒部材のメンテナンス後に再度多孔質中空糸膜を筒部材内に挿通させる必要があるため、さらに作業効率が悪化し、生産効率が低下するおそれがある。
 さらに、例えば、繊維を丸編みして多孔質中空糸膜の円筒状編紐を製造する際に、規定の外径よりも大きな部分が形成され、多孔質中空糸膜を形成したときに瘤等の異常箇所となる場合がある。異常箇所を有する多孔質中空糸膜が筒部材内を走行する際、異常箇所が筒部材内で引っ掛かるおそれがある。これにより、筒部材内で多孔質中空糸膜の詰まりが発生し、洗浄工程の効率が悪化するおそれがある。
 そこで、本発明は、簡単かつ効率よく多孔質中空糸膜を配設でき、容易にメンテナンスができる効率の高い多孔質中空糸膜の洗浄装置の提供を目的とする。
 また、本発明は、簡単かつ効率よく多孔質中空糸膜を配設でき、多孔質中空糸膜の詰まりを防止して、効率良く多孔質中空糸膜を洗浄できる多孔質中空糸膜の洗浄装置の提供を目的とする。
 上記の課題を解決するため、本発明の多孔質中空糸膜の洗浄装置は、洗浄液を収容した洗浄槽に多孔質中空糸膜を走行させ、前記多孔質中空糸膜中の水溶性残存物を除去する多孔質中空糸膜の洗浄装置であって、前記洗浄槽内には、一端側の入口から他端側の出口に向かって前記多孔質中空糸膜が連続的に走行可能な中空糸膜走行流路を有する流路構造体が設けられ、前記流路構造体は、本体部と、前記本体部の上方に配置され前記本体部に対して着脱可能な上蓋部と、からなり、前記多孔質中空糸膜の走行方向に沿って前記本体部の上面に形成された走行溝部と、前記入口と前記出口との間において、前記走行方向と直交する断面積が前記走行溝部よりも大きく形成され、前記洗浄液を圧送又は吸引するための分岐流路が形成された拡大空間部と、を有し、前記中空糸膜走行流路は、前記走行溝部と、前記本体部の前記上面に密接して前記走行溝部を覆う前記上蓋部と、により形成されていることを特徴としている。
 本発明によれば、中空糸膜走行流路は、本体部に形成された走行溝部と、本体部に対して着脱可能な上蓋部とにより構成されているので、上蓋部を外すことにより走行溝部の上面が完全に開放され、中空糸膜走行流路内に多孔質中空糸膜を簡単かつ効率よく配設できる。また、多孔質中空糸膜の洗浄時に、何らかの原因により多孔質中空糸膜が中空糸膜走行流路内で詰まって洗浄装置が停止した場合であっても、本体部から上蓋部を離脱させることで、中空糸膜走行流路内を簡単に確認して容易にメンテナンスができる。したがって、洗浄装置の効率を高めることができる。
 また、前記中空糸膜走行流路は、前記走行方向と直交する断面形状が三角形状又は略矩形状に形成され、前記三角形状又は前記矩形状を形成する二以上の辺のうちの一辺は、前記上蓋により形成されていることが望ましい。
 本発明によれば、走行溝部と上蓋部とで形成される中空糸膜走行流路の断面形状を三角形状又は略矩形状に形成することで、中空糸膜走行流路内の多孔質中空糸膜の周囲を流動する洗浄液の流動状態が、多孔質中空糸膜の中心軸に対し軸対称状態となる。これにより、多孔質中空糸膜に対する洗浄液の接触環境が多孔質中空糸膜の周方向で偏らないので、中空糸膜走行流路内の多孔質中空糸膜の走行状態を安定させることができる。さらに、三角形状又は矩形状を形成する二以上の辺のうちの1辺を上蓋部により形成することにより、上蓋部を離脱させて走行溝部に容易に多孔質中空糸膜を配設できる。このように、中空糸膜走行流路内に簡単かつ効率よく多孔質中空糸膜を配設できるので、洗浄装置の効率を高めることができる。
 また、前記流路構造体は、前記走行方向と交差する方向に少なくとも二つの前記中空糸膜走行流路を備え、前記各入口と前記各出口との間において、各々個別に拡大空間部が形成されていることが望ましい。
 本発明によれば、二以上の中空糸膜走行流路と、各々の中空糸膜走行流路の入口と出口との間に、各々個別に拡大空間部を形成しているので、二以上の多孔質中空糸膜を一度に良好に洗浄できる。したがって、洗浄装置の効率をさらに高めることができる。
 また上記の課題を解決するため、本発明の多孔質中空糸膜の洗浄装置は、洗浄液を収容した洗浄槽に多孔質中空糸膜を走行させ、前記多孔質中空糸膜中の水溶性残存物を除去する多孔質中空糸膜の洗浄装置であって、前記洗浄槽内には、一端側の入口から他端側の出口に向かって前記多孔質中空糸膜が連続的に走行可能な中空糸膜走行流路を有する流路構造体が設けられ、前記流路構造体は、本体部と、本体部の上方に配置され前記本体部と着脱可能な上蓋部と、からなり、前記多孔質中空糸膜の走行方向に沿って前記本体部の上面に形成された走行溝部と、前記洗浄液を圧送又は吸引して前記洗浄液を流通させる分岐流路と、を有し、前記中空糸膜走行流路は、前記流路構造体の本体部に形成された前記走行溝部と、前記本体部の前記上面に密接して前記走行溝部を覆う前記上蓋部と、により形成されていることを特徴としている。
 本発明によれば、中空糸膜走行流路は、本体部に形成された走行溝部と、本体部に対して着脱可能な上蓋部とにより構成され、上蓋部を外すことにより走行溝部の上面が完全に開放されるので、中空糸膜走行流路内に多孔質中空糸膜を簡単かつ効率よく配設できる。したがって、洗浄装置の作業効率を高めることができる。
 また、本発明によれば、上蓋部を外すことにより中空糸膜走行流路を開放できるので、例えば不良に形成された多孔質中空糸膜が中空糸膜走行流路内を走行しようとしたときに、本体部から上蓋部を離脱させるとともに多孔質中空糸膜を走行溝部から離脱させることができる。これにより、不良に形成された多孔質中空糸膜が中空糸膜走行流路内を走行するのを回避できるので、多孔質中空糸膜の詰まりを防止できる。
 また、前記上蓋部の装着と連動して前記走行溝部内に前記多孔質中空糸膜を配置し、前記上蓋部の離脱と連動して前記走行溝部内から前記多孔質中空糸膜を離脱させる中空糸膜移動手段を有することが望ましい。
 本発明によれば、多孔質中空糸膜の洗浄時において、不良に形成された多孔質中空糸膜が中空糸膜走行流路内を走行しようとしたときに、本体部から上蓋部を離脱させるのと同時に、走行溝部内から多孔質中空糸膜を離脱できる。これにより、不良に形成された多孔質中空糸膜が中空糸膜走行流路内を走行するのを回避できる。また、不良に形成された多孔質中空糸膜が中空糸膜走行流路内を走行するのを回避した後、本体部に上蓋部を装着させるのと同時に、走行溝部内に多孔質中空糸膜を配置できる。これにより、中空糸膜走行流路内に多孔質中空糸膜を簡単かつ効率よく配設できる。
 また、前記多孔質中空糸膜が前記中空糸膜走行流路内に導入される前に前記多孔質中空糸膜の外径を検知する外径検知手段と、前記流路構造体内における前記洗浄液の圧送又は吸引の開始又は停止を制御する洗浄液調整手段と、前記上蓋部を移動させて前記本体部に対して前記上蓋部を着脱させる上蓋部移動手段と、を備えていることが望ましい。
 本発明によれば、外径検知手段を有しているので、不良に形成された多孔質中空糸膜を確実に検知できる。また、上蓋部移動手段を有しているので、不良に形成された多孔質中空糸膜が中空糸膜走行流路内を走行しようとしたときに、本体部から上蓋部を離脱させるのと同時に、走行溝部内から多孔質中空糸膜を離脱させて、不良に形成された多孔質中空糸膜が中空糸膜走行流路内を走行するのを回避できる。また、洗浄液調整手段を有しているので、上蓋部の離脱時に洗浄液の圧送又は吸引を停止させることにより、上蓋部及び多孔質中空糸膜に押圧力又は吸引力が作用するのを防止できる。これにより、上蓋部及び多孔質中空糸膜を容易に移動させることがきる。また、多孔質中空糸膜に押圧力又は吸引力が作用して多孔質中空糸膜が損傷するのを抑制できる。
 また、前記外径検知手段により検知した前記多孔質中空糸膜の外径が、所定値よりも大径な異常箇所であると判断した場合に、前記異常箇所が前記中空糸膜走行流路を走行するのを回避する異常箇所回避制御を行い、前記異常箇所回避制御は、前記洗浄液調整手段により前記洗浄液の圧送又は吸引を停止させる洗浄液流動停止動作と、前記洗浄液流動停止動作の後、前記上蓋部移動手段により前記上蓋部を前記本体部から離脱させるとともに、前記中空糸膜移動手段により前記走行溝部内から前記多孔質中空糸膜を離脱させる離脱動作と、を備えていることが望ましい。
 本発明によれば、異常箇所回避制御を行うことにより、大径に形成された多孔質中空糸膜の異常箇所を回避できるので、中空糸膜走行流路内における多孔質中空糸膜の詰まりを確実に防止できる。
 また、異常箇所回避制御では、洗浄液の圧送又は吸引を停止させる洗浄液流動停止動作の後に、上蓋部及び多孔質中空糸膜を離脱させる離脱動作を行うので、上蓋部及び多孔質中空糸膜に押圧力又は吸引力が作用するのを抑制できる。これにより、上蓋部及び多孔質中空糸膜を容易に移動させることがきる。また、多孔質中空糸膜に押圧力又は吸引力が作用して多孔質中空糸膜が損傷するのを抑制できる。
 すなわち、本発明は以下に関する。
(1)洗浄液を収容した洗浄槽に多孔質中空糸膜を走行させ、前記多孔質中空糸膜中の残存物を除去する多孔質中空糸膜の洗浄装置であって、前記洗浄槽内には、一端側の入口から他端側の出口に向かって前記多孔質中空糸膜が連続的に走行可能な中空糸膜走行流路を有する流路構造体を備え、前記流路構造体は、分離可能な少なくとも二つの構造体からなり、前記流路構造体は、前記少なくとも二つの構造体のうち、少なくとも一つの構造体に形成された走行溝部と、前記洗浄液を圧送又は吸引して前記洗浄液を流通させる分岐流路と、を有し、前記分岐流路は、前記中空糸膜走行流路に連結されている流路である、前記洗浄装置、
(2)前記中空糸膜走行流路は、中空糸膜走行方向と直交する断面の断面積が、前記走行溝部の中空糸膜走行方向と直交する断面の断面積よりも大きく形成された拡大空間部を有し、前記拡大空間部は、前記中空糸膜走行流路の一端側の入口から前記中空糸膜走行流路の他端側の出口の間に形成されており、前記分岐流路は、前記拡大空間部に連結されている流路である、(1)に記載の洗浄装置、
(3)前記少なくとも二つの構造体のいずれか一方の構造体が少なくとも一つの平面を有し、前記中空糸膜走行流路を構成する一つの面が前記平面を共有している、(1)又は(2)に記載の洗浄装置、
(4)前記中空糸膜走行流路は、前記走行方向と直交する断面形状が三角形状又は矩形状である、(3)に記載の洗浄装置、
(5)前記流路構造体は、前記走行方向と交差する方向に少なくとも二つの前記中空糸膜走行流路を有する、(1)~(4)のいずれか一項に記載の洗浄装置、
(6)前記走行流路は、走行する中空糸膜に対応するよう各々個別に形成された流路であり、前記各々個別に形成された前記走行流路に対し、各々個別に前記拡大空間部が形成されている、(5)に記載の洗浄装置、
(7)前記拡大空間部は、中空糸膜の外径をdとしたときに、中空糸膜走行方向に平行な長さXが、2d≦X≦200dを満足し、かつ、中空糸膜走行方向に直交する高さWが、1.5d≦W≦30dを満足する、(2)~(6)のいずれか一項に記載の洗浄装置、
(8)前記拡大空間部の底面と、前記拡大空間部の底面と前記走行溝部の底面とを接続する側面とのなす角度が90度から175度である、(2)~(7)のいずれか一項に記載の洗浄装置、
(9)前記少なくとも二つの構造体の着脱と連動して、前記走行溝部内から前記多孔質中空糸膜を着脱させる中空糸膜移動手段を有する、(1)~(8)のいずれか一項に記載の洗浄装置、
(10)前記多孔質中空糸膜が前記中空糸膜走行流路内に導入される前に前記多孔質中空糸膜の外径異常を検知する外径検知手段と、前記少なくとも二つの構造体の少なくとも一つの構造体を移動させて前記少なくとも二つの構造体を分離させる構造体移動手段と、を備えた(1)~(9)のいずれか一項に記載の多孔質中空糸膜の洗浄装置、
(11)前記外径検知手段により検知した前記多孔質中空糸膜の外径が、所定値よりも大径な異常箇所であると判断した場合に、前記異常箇所が前記中空糸膜走行流路を走行するのを回避する異常箇所回避制御を行う異常箇所回避制御装置を有し、前記異常箇所回避制御は、洗浄液調整手段により前記洗浄液の圧送又は吸引を低減若しくは停止させる洗浄液流量調整動作と、前記洗浄流量調整動作の後、前記少なくとも二つの構造体の少なくとも一つの構造体の前記構造体移動手段により、前記少なくとも二つの構造体を分離させるとともに、前記中空糸膜移動手段により前記走行溝部内から前記多孔質中空糸膜を離脱させる離脱動作と、を備えた、(1)~(10)のいずれか一項に記載の洗浄装置、及び
(12)前記少なくとも二つの構造体の一つが本体部であり、一つが上蓋部であり、前記上蓋部は、前記本体部の上方に配置され前記本体部と着脱可能な構造体である、(1)~(11)のいずれか一項に記載の洗浄装置。
 本発明によれば、中空糸膜走行流路は、本体部に形成された走行溝部と、本体部に対して着脱可能な上蓋部とにより構成されているので、上蓋部を外すことにより走行溝部の上面が完全に開放され、中空糸膜走行流路内に多孔質中空糸膜を簡単かつ効率よく配設できる。また、多孔質中空糸膜の洗浄時に、何らかの原因により多孔質中空糸膜が中空糸膜走行流路内で詰まって洗浄装置が停止した場合であっても、本体部から上蓋部を離脱させることで、中空糸膜走行流路内を簡単に確認して容易にメンテナンスができる。したがって、洗浄装置の作業効率を高めることができる。
 また、本発明によれば、上蓋部を外すことにより中空糸膜走行流路を開放できるので、例えば不良に形成された多孔質中空糸膜が中空糸膜走行流路内を走行しようとしたときに、本体部から上蓋部を離脱させるとともに多孔質中空糸膜を走行溝部から離脱させることができる。これにより、不良に形成された多孔質中空糸膜が中空糸膜走行流路内を走行するのを回避できるので、多孔質中空糸膜の詰まりを防止できる。
多孔質中空糸膜の洗浄装置の説明図である。 流路構造体の斜視図である。 流路構造体の上蓋部を外したときの本体部の斜視図である。 図2における流路構造体のA-A線における断面図である。 図2における流路構造体のB-B線における断面図である。 第2実施形態の流路構造体の本体部の斜視図である。 第2実施形態の流路構造体の上流側から見た走行方向に直交する断面図である。 第3実施形態の多孔質中空糸膜の洗浄装置の説明図である。 第3実施形態の流路構造体の側面断面図である。 第3実施形態の流路構造体の上蓋部を外したときの本体部の斜視図である。 第3実施形態の上流側から見た流路構造体の走行方向に垂直な断面図である。 第3実施形態の上蓋部移動手段の説明図である。 第3実施形態の中空糸膜移動手段の説明図である。 第3実施形態の異常箇所回避制御装置のシステムブロック図である。 第3実施形態の異常箇所回避制御の制御フローである。 第3実施形態の離脱動作の説明図である。
 本発明の一つの態様である多孔質中空糸膜の洗浄装置は、前記多孔質中空糸膜が順次通過する、洗浄液を収容した少なくとも一つの洗浄槽と、洗浄液に浸漬された多孔質中空糸膜の外周側の洗浄液を加圧し、洗浄液を多孔質中空糸膜の内周側から外周側に通液させる加圧洗浄部及び/又は洗浄液に浸漬された多孔質中空糸膜の外周側の洗浄液を減圧し、洗浄液を多孔質中空糸膜の内周側から外周側へ通液させる減圧洗浄部と、前記洗浄槽に前記洗浄液を供給する供給手段と、前記洗浄槽内に備えられた一端側の入口から他端側の出口に向かって前記多孔質中空糸膜が連続的に走行可能な中空糸膜走行流路を有する流路構造体とを有する洗浄装置であって、前記加圧洗浄部は、前記洗浄液中に配置されて内部が洗浄液で満たされる前記流路構造体と、前記流路構造体の中空糸膜走行流路内に洗浄液を圧入して中空糸膜走行流路内の洗浄液の圧力を上昇させる液体圧入手段とを有し、前記減圧洗浄部は、前記洗浄液中に配置されて内部が洗浄液で満たされる前記流路構造体と、前記流路構造体の中空糸膜走行流路内の洗浄液を吸引して中空糸膜走行流路内の洗浄液の圧力を低下させる液体吸引手段とを有し、前記流路構造体は、分離可能な少なくとも二つの構造体からなり、前記流路構造体は、前記少なくとも二つの構造体のうち、少なくとも一つの構造体に形成された走行溝部と、前記洗浄液を圧送又は吸引して前記洗浄液を流通させる分岐流路と、を有し、前記分岐流路は、前記走行溝部に連結されている流路である。
(第1実施形態の多孔質中空糸膜の洗浄装置)
 以下に、第1実施形態の多孔質中空糸膜の洗浄装置について、図面を参照しながら説明する。
 図1は、本実施形態の多孔質中空糸膜Mの洗浄装置11の説明図である。
 図1に示す多孔質中空糸膜Mの洗浄装置11は、多孔質中空糸膜Mが順次通過する、洗浄液Lを収容.した3個の洗浄槽110(第1洗浄槽111、第2洗浄槽112、及び第3洗浄槽113)と、多孔質中空糸膜Mを洗浄する、第1減圧洗浄部120と加圧洗浄部130と第2減圧洗浄部140と、下流側の洗浄槽に清浄な洗浄液を供給する供給手段150と、多孔質中空糸膜Mの走行を規制する規制手段160とを備えて構成される。
 以下の説明において、「上流」及び「下流」は多孔質中空糸膜Mの走行方向を基準とし、「上流側」とは洗浄装置11に多孔質中空糸膜Mが供給される側であり、「下流側」とは洗浄装置11から多孔質中空糸膜Mが排出される側とする。
 多孔質中空糸膜Mの洗浄装置11は、第1減圧洗浄部120と、加圧洗浄部130と、第2減圧洗浄部140は直列に配列され、この配列の両端には第1減圧洗浄部120と第2減圧洗浄部140とが位置している。
 また、最も上流側に配置された第1洗浄槽111には第1減圧洗浄部120が収められ、第1洗浄槽111の下流側の第2洗浄槽112には加圧洗浄部130が収められ、第2洗浄槽112の下流側の第3洗浄槽113には第2減圧洗浄部140が収められている。
(洗浄槽)
 洗浄槽110は、洗浄液Lを収容する。
 洗浄槽110の材質は特に制限されず、例えばポリエステル、ポリ塩化ビニル、ポリエチレン、ポリアミド、ポリプロピレン、若しくはポリアセタールなどの樹脂、鉄、アルミニウム、銅、ニッケル、若しくはチタンなどの金属、若しくはこれら金属を主な成分とする合金類(例えばニッケル合金・チタン合金やジュラルミン又はステンレスなど);又は、これらの複合材料などが挙げられる。特に、第1洗浄槽11の材質はチタンが好ましい。
 第1洗浄槽111、第2洗浄槽112、及び第3洗浄槽113の形状及び大きさについては、それぞれ後述する流路構造体123,133,143を浸漬できるものであればよい。
 各洗浄槽110には、各洗浄槽110からあふれた分の洗浄液Lを排出するオーバーフロー管111a,112a,113aが設けられている。具体的には、第3洗浄槽113からオーバーフローした洗浄液Lは、第3洗浄槽113のオーバーフロー管113aから第2洗浄槽112へ供給される。また、第2洗浄槽112からオーバーフローした洗浄液Lは、第2洗浄槽112のオーバーフロー管112aから第1洗浄槽111へ供給される。さらに、第1洗浄槽111からオーバーフローした洗浄液Lは、第1洗浄槽111のオーバーフロー管111aから系外へ排出される。
(第1減圧洗浄部)
 第1減圧洗浄部120は、洗浄液Lに浸漬された多孔質中空糸膜Mの外周側の洗浄液を減圧し、多孔質中空糸膜Mの内周側から外周側へ洗浄液Lを通液させる。
 図1に示す第1減圧洗浄部120は、中空糸膜走行流路125と、拡大空間部126と、前記拡大空間部126から分岐する分岐流路122とが内部に形成され、洗浄液L中に配置されて内部が洗浄液Lで満たされる流路構造体123と、前記流路構造体123の拡大空間部126内の洗浄液Lを吸引して、拡大空間部126内の洗浄液Lの圧力を低下させる液体吸引手段124とを有している。
 洗浄液Lは、分岐流路122を通じて液体吸引手段124により吸引され、中空糸膜走行流路125内及び/又は拡大空間部126内の洗浄液Lの圧力を低下させている。
 液体吸引手段124は、洗浄液Lを吸引するエゼクター124aと、洗浄液Lを作動流体としてエゼクター124aに圧送するポンプ124bと、一端が流路構造体123の分岐流路122と接続され、他端が第1洗浄槽111に接続された第一の配管124cと、一端が第1洗浄槽111に接続され、他端がエゼクター124aに接続された第二の配管124dを有している。
(流路構造体)
 図2は、流路構造体123の斜視図である。
 本発明の流路構造体は、分離可能な少なくとも二つの構造体からなる。前記構造体の一つが本体部であり、一つが上蓋部であり、前記上蓋部は、前記本体部の上方に配置され前記本体部と着脱可能な構造体であることが好ましい。すなわち、図2に示すように、流路構造体123は、本体部123aと上蓋部123bとにより形成されていることが好ましい。
 流路構造体123を構成する本体部123a及び上蓋部123bの材質としては、洗浄液Lで腐食したり、洗浄液Lに侵されたりしない素材であり、洗浄液Lの吸引で変形や破損しない十分な強度を維持できれば特に制限はなく、例えば、ポリエステル、ポリ塩化ビニル、ポリエチレン、ポリアミド、ポリプロピレン、若しくはポリアセタールなどの樹脂、鉄、アルミニウム、銅、ニッケル、若しくはチタンなどの金属若しくは合金類、又はこれらの複合材料などが挙げられる。これらの中でもチタンが好ましい。
(中空糸膜走行流路)
 図3は、流路構造体123の上蓋部123bを外したときの本体部123aの斜視図である。
 図4は、図2における流路構造体のA-A線における断面図である。
 図5は、図2における流路構造体のB-B線における断面図である。
 図3に示すように、本体部123aには、多孔質中空糸膜Mの走行方向に沿って、上面に走行溝部125a,125bが形成されている。上蓋部123bの底面123cが本体部123aの上面に密接して走行溝部125a,125bを覆うことにより、中空糸膜走行流路125(図1参照)が形成される。本実施形態の中空糸膜走行流路125(図2参照)は、多孔質中空糸膜Mの走行方向と平面上で直交する方向に、並列して8本形成されているが、中空糸膜走行流路125の本数は8本に限られることはない。
 前記流路構造体は、走行方向と平面上で交差する方向に少なくとも二つの中空糸膜走行流路を有することが好ましい。前記走行溝部は、前記流路構造体を構成する分離可能な少なくとも二つの構造体のうちの少なくとも一つに形成されている。
 図4に示すように、中空糸膜走行流路125の、多孔質中空糸膜Mの走行方向と直交する断面形状は、ほぼ三角形状又はほぼ矩形状であればよく、流路の形成が容易な点から矩形が好ましく、特に正方形が好ましい。また、中空糸膜走行流路125の断面形状が矩形であれば、断面形状が円形の場合に比べて、多孔質中空糸膜Mが流路の壁面と接触したとしてもその接触面積がより小さく、損傷が生じ難い点でも有利である。
 また、本体部123a側と上蓋部123bの合わせ面の両方に半円形の流路を形成し、閉じ合わせることで円形流路を形成した場合に比べ、中空糸膜走行流路125の断面形状を矩形とし、その一辺を上蓋部123bの底部によって形成すると、走行溝部125a,125bの形成は本体部123a側のみでよく、上蓋部123bの合わせ面をフラットにすることができる。このようにすると、中空糸膜走行流路125を形成する際の加工が容易であり、本体部123a側と上蓋部123bの精密な位置合わせは不要となる。また、走行溝部125a,125bに多孔質中空糸膜Mを配置した際、多孔質中空糸膜Mは流路に完全に埋まり込むため、上蓋部123bを閉じる際に合わせ面に多孔質中空糸膜Mを挟みこんでしまう恐れがなくなる。
 中空糸膜走行流路125の断面形状が三角形の場合も、その一辺を上蓋部123bの底部によって形成すると矩形と同じ効果が得られる。中空糸膜走行流路125の断面形状が三角形の場合、正三角形が好ましい。
 中空糸膜走行流路125の断面形状を正多角形にすると、中空糸膜走行流路125内の多孔質中空糸膜M周囲を流動する洗浄液Lの流動状態が、多孔質中空糸膜Mの中心軸に対し軸対称状態となり、中空糸膜走行流路125内の多孔質中空糸膜Mの走行状態が安定しやすくなる。
 ただし、中空糸膜走行流路125の断面形状は矩形や三角形には限定されず、三角形以外の多角形や円形などであってもよい。
 また、中空糸膜走行流路125は曲面で構成されていてもよい。
 中空糸膜走行流路125の壁面と多孔質中空糸膜Mの最小隙間は多孔質中空糸膜Mの直径の5%~40%が好ましく、10%~20%がより好ましい。
 最小隙間が前記下限値以上であれば、多孔質中空糸膜Mが中空糸膜走行流路125の壁面と接触することによる表面損傷や、多孔質中空糸膜Mの走行抵抗が増大することを抑制しやすい。
 従って、中空糸膜走行流路125の幅d1(図2参照)は多孔質中空糸膜Mの直径の110%~180%が好ましく、120%~140%がより好ましいことになる。また、中空糸膜走行流路125の高さd2(図2参照)も、多孔質中空糸膜Mの直径の110%~180%が好ましく、120%~140%がより好ましいことになる。
 一方、最小隙間が前記上限値以下であれば、多孔質中空糸膜Mが中空糸膜走行流路125内で、洗浄液Lの流動により振動や屈曲を起こし、多孔質中空糸膜Mの走行抵抗が増大することを抑制できる。加えて、多孔質中空糸膜Mが走行する中空糸膜走行流路125内の洗浄液Lの圧力を、所定の圧力に低下又は上昇させるのに必要な液体吸引手段124での洗浄液Lの吸引量も抑制できる。
 中空糸膜走行流路125の内壁面は、多孔質中空糸膜Mが接触した場合でも多孔質中空糸膜Mの表面が損傷しないように、精密研削仕上げや研磨仕上げによって滑らかに仕上げることが好ましい。また前記仕上げに加え、中空糸膜走行流路125の内壁面には、多孔質中空糸膜Mとの摩擦抵抗を低減させるフッ素系コーティングやダイヤモンドライクカーボンコーティングなどを施すのがさらに好ましい。
(拡大空間部)
 図5に示すように、中空糸膜走行流路125の一端側の入口(入口121a)と他端側の出口(出口121b)との間には、拡大空間部126が形成されている。
 拡大空間部126は、本体部123aの上面を凹ませることで形成された本体側凹部126bと、本体側凹部126bと対応した位置において上蓋部123bの底面123cを凹ませることで形成された上蓋側凹部126aとにより形成される。
 本体側凹部126bは、8本並列に配置された走行溝部125a,125bの全てと連通するように形成されている。また、走行方向における本体側凹部126bの幅は、下方から上方に向かって漸次広くなるように形成されている。すなわち、本体側凹部126bの底面(拡大空間部の底面)と走行溝部125a,125bの底面とを接続する側面126cは、所定の傾斜角度θを有するテーパ面となっている。このように、側面126cをテーパ面とすることで、多孔質中空糸膜Mの走行時に、本体側凹部126bの側面126cと走行溝部125a,125bとで形成されるエッジに多孔質中空糸膜Mが引っ掛かるのを抑制している。
 前記傾斜角度、すなわち前記拡大空間部の底面と、前記拡大空間部の底面と前記走行溝部の底面とを接続する側面とのなす角度θ1,θ2は、90~175度が好ましく、100~170度がより好ましく、120~150度がさらに好ましい。前記傾斜角度が上記範囲内であると、前記拡大空間部内の前記走行溝部125a,125bの底面と前記側面126cとのなす角度が鈍角状になるため、中空糸膜を走行流路に導入することが容易になる。
 前記拡大空間部における、上流側の前記傾斜角度θ1と下流側の前記傾斜角度θ2は異なっていてもよく、前記拡大空間部内の多孔質中空糸膜Mが均等に加圧されることから、上流側の前記傾斜角度θ1と下流側の前記傾斜角度θ2は等しい角度であることが好ましい。
 多孔質中空糸膜Mの外周面から上蓋側凹部126aの底面までの離間距離h1は、多孔質中空糸膜Mの直径の1~10倍が好ましく、多孔質中空糸膜Mの直径の3~7倍がより好ましい。また、多孔質中空糸膜Mの外周面から本体側凹部126bの底面までの離間距離h2も同様に、多孔質中空糸膜Mの直径の1~10倍が好ましく、多孔質中空糸膜Mの直径の3~7倍がより好ましい。
 このように、上蓋側凹部126a及び本体側凹部126bを形成することで、拡大空間部126の断面積は、中空糸膜走行流路125の断面積よりも大きく形成される。拡大空間部126の断面積は、中空糸膜走行流路125の断面積の10~140倍が好ましく、30~70倍がより好ましい。
 また、このように、拡大空間部126を形成することで、拡大空間部126内において全ての多孔質中空糸膜Mの外周側を略均等に減圧でき、多孔質中空糸膜Mの内周側から外周側へ洗浄液Lを通液できる。
 中空糸膜走行流路125と拡大空間部126とを合計した全走行流路の長さD(図2参照)は、100~2000mmが好ましく、300~1000mmがより好ましい。そのうち、拡大空間部126の長さは、全走行流路の長さDの10~50%が好ましく、全走行流路の長さDの20~40%がより好ましい。
 全走行流路の長さDが前記下限値以上であれば、多孔質中空糸膜M周囲の減圧に必要な洗浄液Lの吸引量が少なくてすむ。全走行流路の長さDが前記上限値以下であれば、多孔質中空糸膜Mの走行抵抗や洗浄装置11が過大になることを抑制しやすい。
 拡大空間部126は、中空糸膜の外径をdとしたときに、中空糸膜走行方向に平行な長さXが、2d≦X≦200dを満足し、かつ、中空糸膜走行方向に直交する高さWが、1.5d≦W≦30dを満足することが好ましい。長さXのより好ましい範囲は2.5d≦X≦150dであり、更に好ましい範囲は3d≦X≦100dである。高さWのより好ましい範囲は1.8d≦W≦25dであり、更に好ましい範囲は2d≦W≦20dである。
 長さX及び高さWは、2.5d≦X≦150dを満足し、かつ、1.8d≦W≦25dを満足することがより好ましく、3d≦X≦100dを満足し、かつ、2d≦W≦20dを満足することが更に好ましい。
 前記長さXは、拡大空間部における中空糸膜の走行方向と同一方向の拡大空間部の長さである。すなわち、側面126cと、拡大空間部の上流側に位置する走行溝部125aとの接点p1と側面126cと、拡大空間部の下流側に位置する走行溝部125aとの接点p2とを結ぶ直線の長さである。
 前記高さWは、拡大空間部における中空糸膜の走行方向に対して直交方向の拡大空間部の高さであり、拡大空間部における中空糸膜の走行方向に対して直交方向の上蓋側凹部126aの底面から本体側凹部126bまでの高さである。すなわち、多孔質中空糸膜Mの外周面から上蓋側凹部126aの底面までの離間距離h1と、多孔質中空糸膜Mの外周面から本体側凹部126bの底面までの離間距離h2に多孔質中空糸膜Mの外径dを合計した距離である。
 長さXが前記範囲内であると、膜走行方向の洗浄液が流動することにより発生する圧力損失による圧力勾配小さくでき、洗浄液の膜流通量を増やすことができ、かつ、拡大空間部での膜の搖動や撓みを抑制しやすい。
 高さWが前記範囲内であると、中空糸膜の周方向の圧力分布を均一化でき、かつ流路構造体の加工コストを抑制できる。
(分岐流路)
 分岐流路は、洗浄液を圧送又は吸引して洗浄液を流通させる流路であり、前記中空糸膜走行流路又は前記拡大空間部に連結されている流路である。
 図4に示すように、分岐流路122は、本体部123aに形成された本体側凹部126bの底面から外側に貫通して形成されている。
 第1減圧洗浄部120では、入口121aから分岐流路122までの距離と、出口121bから分岐流路122までの距離とは等しく形成されている。また、入口121aから分岐流路122までの流路の構造と、出口121bから分岐流路122までの流路の構造は、分岐流路122に対し対称構造であることが好ましい。
 このような構造とすると、洗浄液Lを分岐流路122から液体吸引手段124により吸引した際に、中空糸膜走行流路125内に多孔質中空糸膜Mを引き込む力(膜中心軸方向の圧縮力)が分岐流路122を挟んで対称となる。分岐流路122の断面形状は特に限定されず、円形でもよいし矩形でもよい。
(上蓋部)
 上蓋部123bは、前記流路構造体123を構成する少なくとも二つの構造体のうちの一つである。
 上蓋部123bは、本体部123aに対して着脱可能に形成されており、洗浄装置11の稼動時には、上蓋部123bが本体部123aに固定される。
 上蓋部123bの本体部123aへの固定手段としては、ボルトによる締結や、上蓋部123bを昇降させて本体部123aに対して着脱可能とするネジ送り機構、又は油圧シリンダー、空圧シリンダー、若しくは水圧シリンダーなどの流体推進機構を用いたりすることが好ましい。
 このように、上蓋部123bが本体部123aに対して着脱可能とすることにより、上蓋部123bを外した状態で走行溝部125a,125b内に容易に多孔質中空糸膜Mを挿入することが可能となる。したがって、中空糸膜走行流路125内に多孔質中空糸膜Mを簡単かつ効率よく配設することができる。また、何らかの原因により多孔質中空糸膜Mが中空糸膜走行流路125内で詰まって洗浄装置1が停止した場合であっても、本体部123aから上蓋部123bを離脱させることで、中空糸膜走行流路125内を簡単に確認して容易にメンテナンスが行える。
 図1に示すように、液体吸引手段124は、中空糸膜走行流路125内の洗浄液Lを分岐流路122を通じて吸引し、中空糸膜走行流路125及び拡大空間部126内の洗浄液Lの圧力を低下させる。
 この例の液体吸引手段124は、洗浄液Lを吸引するエゼクター124aと、洗浄液Lを作動流体としてエゼクター124aに圧送するポンプ124bと、第一の配管124cと、第二の配管124dとを有しており、エゼクター124aは第一の配管124cを介して分岐流路122及び第1洗浄槽111と接続されており、拡大空間部126内から、分岐流路122、及び第一の配管124cを通じて洗浄液Lを吸引できるようになっている。
 吸引された洗浄液Lは、第一の配管124cを通じて第1洗浄槽111内に戻されるようになっている。ただし、本発明の洗浄装置11はこの形態には限定されず、液体吸引手段124によって吸引した洗浄液Lは廃棄、又は別工程に移送される形態であってもよい。
 エゼクター124aは、ポンプ124bから圧送される洗浄液Lの運動エネルギーを利用して、拡大空間部126内の洗浄液Lを分岐流路122を通じて吸引する。具体的には、ポンプ124bより洗浄液Lを加圧しノズル(図示略)から高速吐出させ、その洗浄液Lの運動エネルギーを利用し、洗浄液Lを随伴吸引させる。
 通常、液体を高減圧度で吸引する場合、ポンプ流路内やインペラー内で真空泡や減圧沸騰による蒸気泡が発生し、ポンプに異常振動が発生したりキャビテーションによるインペラーの損傷が起こったりする場合がある。
 エゼクター124aを用いた吸引は、このような現象やポンプの損傷を防ぐ方法として有効である。
 エゼクター124aの構造は極めて単純で、ポンプのような回転部がなく、内部で真空泡や減圧沸騰による蒸気泡が発生して振動が発生しても、エゼクター124aは破損しにくい。加えて、異物を吸引しても破損したり詰まったりする恐れも少ない。
 また、例えば第1減圧洗浄部120内部で多孔質中空糸膜Mが切断された場合、その端部を分岐流路122から洗浄液Lとともに吸い込むと、ポンプの回転部分に多孔質中空糸膜Mの端部が巻き付いて、ポンプがロックして停止したり、ポンプインペラーやモーターが破損したりする恐れがある。
 これに対し、エゼクター124aの場合は、多孔質中空糸膜Mの端部が巻き付く部分がなく、ポンプ124bからエゼクター124aに加圧供給される洗浄液Lと一緒にエゼクター124aの吐出口から排出されるだけで、ポンプ124bを損傷させる恐れはほとんどない。
 ポンプ124bとしては、第1洗浄槽111から洗浄液Lを吸引し、吸引した洗浄液Lをエゼクター124aに供給でき、必要な減圧度に到達できるものが好ましい。例えば単段や多段の渦巻きポンプ、カスケードポンプ、スクロールポンプ、又はギヤポンプなどが挙げられる。またポンプの駆動軸とモーター回転軸がマグネットカップリングにより接続されたシールレスタイプのポンプは、ポンプ回転軸は外気と遮断されており、高減圧状態の洗浄液Lにシール部から外気が漏入し減圧膨張によりポンプ効率が低下する恐れがなく特に好ましい。
 液体吸引手段124は、不図示のインバータにより制御できるようになっていることが好ましい。
 また、一定の圧力に保ちたい部分に不図示の圧力センサーを設け、前記圧力センサーの出力をインバータにフィードバックして、液体吸引手段124のポンプ124bのポンプ回転速度などを自動制御できるようにすることがより好ましい。
 前記減圧洗浄部により減圧した際の圧力範囲は、-0.1MPa以上0MPa未満が好ましく、-0.09MPa以上-0.03MPa未満がより好ましく、-0.08MPa以上-0.04MPa未満が更に好ましい。
(加圧洗浄部)
 図1に示す加圧洗浄部130は、洗浄液Lに浸漬された多孔質中空糸膜Mの外周側の洗浄液を加圧し、多孔質中空糸膜Mの外周側から内周側へ洗浄液Lを供給させる。
 加圧洗浄部130は、洗浄液L中に配置されて内部が洗浄液Lで満たされる流路構造体133と、前記流路構造体133の中空糸膜走行流路135内に洗浄液Lを圧入して中空糸膜走行流路135内の洗浄液Lの圧力を上昇させる液体圧入手段134とを有している。
 液体圧入手段134は、洗浄液Lを中空糸膜走行流路135内に圧送するポンプ134bと、一端が第2洗浄槽112と接続され、他端が流路構造体133の分岐流路132に接続された第一の配管134cとを有している。
 分岐流路132は第一の配管134cを介して液体圧入手段134のポンプ134bと接続されており、ポンプ134bによって、分岐流路132を通じて中空糸膜走行流路135内に洗浄液Lを圧入できるようになっている。これにより、中空糸膜走行流路135内での洗浄液Lの流動圧力損失によって、中空糸膜走行流路135内での洗浄液Lの圧力を上昇させることができる。
 加圧洗浄部130は、このように洗浄液Lが満たされ、かつ加圧された状態の中空糸膜走行流路135内を通過するように、多孔質中空糸膜Mを連続的に走行させるようになっている。
 流路構造体133の構成は、第1減圧洗浄部120の流路構造体123と同じである。すなわち、図2から図5に示す流路構造体123のように、中空糸膜走行流路125を形成する走行溝部125a,125b、本体側凹部126b及び分岐流路122が形成された本体部123aの上部が、上蓋側凹部126aが形成された上蓋部123bによって閉じられることで形成されている。
 流路構造体133として図2に示す流路構造体123を用いた場合、本体部123aに対し上蓋部123bを密着させた状態で洗浄液Lを圧入すると、中空糸膜走行流路125の内部は加圧状態となり、上蓋部123bを押し上げる力が働いて上蓋部123bが本体部123aから持ち上がり、隙間が生じて加圧状態の洗浄液Lが漏れ、内部の洗浄液Lの圧力が低下することがある。そのため、上蓋部123bには常時、上蓋部123bを押し上げる力より大きな閉止力を与えるのが好ましい。
 上蓋部123bへの閉止力付与には、前述のとおり、上蓋部123bを本体部123aにボルトなどで締結したり、上蓋部123bの昇降と閉止力付与を兼ねることができるネジ送り機構、油圧シリンダー、空圧シリンダー、又は水圧シリンダーなどの流体推進機構を用いたりすることが好ましい。
 また、中空糸膜走行流路135、拡大空間部136及び分岐流路132の断面形状についても、第1減圧洗浄部120の流路構造体123と同一である。
 さらに、中空糸膜走行流路135の幅や高さ、拡大空間部136の長さや面積、又は全走行流路Dの長さ等についても、第1減圧洗浄部120の流路構造体123と同一である。
 加圧洗浄部130では、入口131aから分岐流路132までの距離と、出口131bから分岐流路132までの距離とはそれぞれ等しくてもよいし、分岐流路132から出口131bまでの距離を、分岐流路132から入口131aまでの距離よりも短く設定してもよい。
 特に、分岐流路132から出口131bまでの距離を、分岐流路132から入口131aまでの距離よりも短くした構造とすると、洗浄液Lを分岐流路132から液体圧入手段134により圧入した際、多孔質中空糸膜Mには中空糸膜走行流路135内から引き出される力(膜中心軸方向の張力)が分岐流路132を挟んで発生するが、その力は出口131b側が強くなり、多孔質中空糸膜Mが入口131aから出口131bに向かって移動させる推力に利用できる。
 液体圧入手段134は、第2洗浄槽112内の洗浄液Lを吸引し、分岐流路132を通じて圧入し、中空糸膜走行流路125内及び/又は拡大空間部136内の洗浄液Lの圧力を上昇させる。
 この例の液体圧入手段134は、洗浄液Lを中空糸膜走行流路135内に圧送するポンプ134bと、第一の配管134cとを有しており、ポンプ134bは第一の配管134cを介して分岐流路132及び第2洗浄槽112と接続されており、第一の配管134cを通じ分岐流路132を経て中空糸膜走行流路135内に洗浄液Lを圧入できるようになっている。
 液体圧入手段134としては、拡大空間部136内に洗浄液Lを分岐流路132を通じて圧入し、所定の圧力を発生可能な揚程、及び吐出量を持つもので、洗浄液Lで腐食しない材質、又は接液部コーティングがされているものであればよい。例えば単段や多段の渦巻きポンプ、カスケードポンプ、スクロールポンプ、又はギヤポンプなどが挙げられる。またポンプの駆動軸とモーター回転軸がマグネットカップリングにより接続されたシールレスタイプのポンプは、ポンプ回転軸は外気と遮断されており、高減圧状態の洗浄液Lにシール部から外気が漏入し減圧膨張によりポンプ効率が低下する恐れがなく特に好ましい。
 液体圧入手段134は、不図示のインバータにより制御できるようになっていることが好ましい。
 また、一定の圧力に保ちたい部分に不図示の圧力センサーを設け、前記圧力センサーの出力をインバータにフィードバックして、液体圧入手段134のポンプ134bのポンプ回転速度などを自動制御できるようにすることがより好ましい。
 前記加圧洗浄部により圧力を付与した際の圧力範囲は、0.01MPa以上1MPa未満が好ましく、0.05MPa以上0.5MPa未満がより好ましく、0.1MPa以上0.3MPa未満が更に好ましい。
(第2減圧洗浄部)
 図1に示すように、第2減圧洗浄部140は、洗浄液に浸漬された多孔質中空糸膜Mの外周側の洗浄液を減圧し、多孔質中空糸膜Mの内側から外周側へ洗浄液Lを通液させる。
 第2減圧洗浄部140は、中空糸膜走行流路145と、拡大空間部146と、前記拡大空間部146から分岐する分岐流路142とが内部に形成され、洗浄液L中に配置されて内部が洗浄液Lで満たされる流路構造体143と、前記流路構造体143の拡大空間部146内の洗浄液Lを吸引して、拡大空間部146内の洗浄液Lの圧力を低下させる液体吸引手段144とを有している。
 液体吸引手段144は、洗浄液Lを吸引するエゼクター144aと、洗浄液Lを作動流体としてエゼクター144aに圧送するポンプ144bと、一端が流路構造体143の分岐流路142と接続され、他端が第3洗浄槽113に接続された第一の配管144cと、一端が第3洗浄槽113に接続され、他端がエゼクター144aに接続された第二の配管144dを有している。
 第2減圧洗浄部140は、第1減圧洗浄部120と同じ構成であるため、各部材についての説明は省略する。
(供給手段)
 供給手段150は、最も下流側に配置された洗浄槽110(本実施形態では第3洗浄槽)に清浄な洗浄液を供給する。供給手段150は、清浄な洗浄液を収容するタンク151と、清浄な洗浄液を第3洗浄槽113に送る供給配管152とを備える。
(規制手段)
 規制手段160は、多孔質中空糸膜Mの走行を規制する。
 図1の規制手段60は、ガイドロール161a~161jから構成されている。多孔質中空糸膜Mは、これらガイドロール161a~161jによって走行を規制される。具体的には、図1に示すように、多孔質中空糸膜Mは連続的に第1洗浄槽111に収容された洗浄液L中に引き込まれ、第1減圧洗浄部120の入口121aから流路構造体123の中空糸膜走行流路125内に導入され、中空糸膜走行流路125内及び拡大空間部126内の洗浄液L中を通過して出口121bから導出された後、洗浄液Lの外部へと引き出される。ついで、多孔質中空糸膜Mは第2洗浄槽12に収容された洗浄液L中に引き込まれ、加圧洗浄部130の入口131aから流路構造体133の中空糸膜走行流路135内に導入され、中空糸膜走行流路135内及び拡大空間部136内の洗浄液L中を通過して出口131bから導出された後、洗浄液Lの外部へと引き出される。引き続き、第3洗浄槽13に収容された洗浄液L中に引き込まれ、第2減圧洗浄部140の入口141aから流路構造体143の中空糸膜走行流路145内に導入され、中空糸膜走行流路145内及び拡大空間部146内の洗浄液L中を通過して出口141bから導出された後、洗浄液Lの外部へと引き出されるようになっている。
 規制手段160におけるガイドロール161a~161jとしては、多孔質中空糸膜Mの製造に通常使用されるガイドロールが使用できる。
 本洗浄装置の中空糸膜の走行方向の下流側には、中空糸膜走行流路毎にガイドロール161jを駆動させる、個別定張力駆動アシストロール(図示略)を設置してもよい。前記アシストロールを設置することにより、中空糸膜走行流路125内での中空糸膜Mの張力を安定化することができ、中空糸膜の撓みや揺動による前記走行流路内の詰まりを回避することができる。
 本洗浄装置において、本体部123aの上蓋部123bと接する面であって、前記走行流路125と平行かつ前記流路構造体123の最も外側に位置する前記面にパッキンを設置してもよい。前記パッキンを設置することにより、加圧洗浄時に走行流路125を流れる洗浄液の、走行方向と直交する方向への漏れを防止できる。洗浄液の漏れを防止することにより、走行流路125を走行する多孔質中空糸膜Mが中空糸膜走行流路125上の洗浄液の漏れ部に洗浄液の漏れに伴い貼りついてしまい走行できない状態となり走行流路が詰まる現象を防止できる。
(第1実施形態の作用効果)
 本実施形態によれば、中空糸膜走行流路125は、本体部123aに形成された走行溝部125a,125bと、本体部123aに対して着脱可能な上蓋部123bと、により構成されているので、上蓋部123bを外すことにより、走行溝部125a,125bの上面が完全に開放され、中空糸膜走行流路125内に多孔質中空糸膜Mを簡単かつ効率よく配設できる。また、多孔質中空糸膜Mの洗浄時に、何らかの原因により多孔質中空糸膜Mが中空糸膜走行流路125内で詰まって洗浄装置11が停止した場合であっても、本体部123aから上蓋部123bを離脱させることで、中空糸膜走行流路125内を簡単に確認して容易にメンテナンスができる。したがって、洗浄装置11の効率を高めることができる。
 また、本実施形態によれば、走行溝部125a,125bと上蓋部123bとで形成される中空糸膜走行流路125の断面形状を三角形状又は略矩形状に形成することで、中空糸膜走行流路125内の多孔質中空糸膜Mの周囲を流動する洗浄液Lの流動状態が、多孔質中空糸膜Mの中心軸に対し軸対称状態となる。これにより、多孔質中空糸膜Mに対する洗浄液Lの接触環境が多孔質中空糸膜Mの周方向で偏らないので、中空糸膜走行流路125内の多孔質中空糸膜Mの走行状態を安定させることができる。さらに、流路構造体を構成する分離可能な少なくとも二つの構造体のうち少なくとも一つの構造体が少なくとも一つの平面を有し、前記中空糸膜走行流路を構成する一つの面が前記平面を共有していることが好ましい。すなわち、三角形状又は矩形状を形成する二以上の辺のうちの1辺を上蓋部123bにより形成することにより、上蓋部123bを離脱させて走行溝部125a,125bに容易に多孔質中空糸膜Mを配設できる。このように、中空糸膜走行流路25内に簡単かつ効率よく多孔質中空糸膜Mを配設できるので、洗浄装置11の効率を高めることができる。
(第2実施形態)
 図6は、第2実施形態の流路構造体123の本体部123aの斜視図である。
 図7は、上流側から見た第2実施形態の流路構造体123の走行方向に直交する断面図である。
 上述した第1実施形態では、図3に示すように、拡大空間部126を構成する本体側凹部126bが8本並列に配置された走行溝部125a,125bの全てと連通するように形成されていた。これに対して、第2実施形態では、図6に示すように、本体側凹部126bが8本並列に配置された走行溝部125a,125bに対して、それぞれ独立に8個形成されている点で、第1実施形態とは異なっている。以下に、第2実施形態の流路構造体123について説明する。第1実施形態と同様の構成については、説明を省略する。
 図7に示すように、本体側凹部126bは、8本形成された中空糸膜走行流路125の入口121aと出口121bとの間において、それぞれ独立に8個形成されている。各本体側凹部126bの下方には、各本体側凹部126bを接続する接続凹部126dが形成されている。すなわち、各本体側凹部126b本体部123aの上面と接続凹部126dとを連通する貫通孔として形成されており、下方が接続凹部126dを介して各本体側凹部126bが連通されている。接続凹部126dの底部には分岐流路122が形成されており、分岐流路122を通じて液体吸引手段124により洗浄液Lが吸引されることで、拡大空間部126内の洗浄液Lの圧力を低下させている。
(第2実施形態の作用効果)
 本実施形態によれば、二以上の中空糸膜走行流路125と、各々の中空糸膜走行流路125の入口121aと出口121bとの間に、各々個別に拡大空間部126を形成しているので、二以上の多孔質中空糸膜Mを一度に良好に洗浄できる。したがって、洗浄装置11の効率をさらに高めることができる。
(第3実施形態の多孔質中空糸膜の洗浄装置)
 本発明の一つの態様である第3実施形態の多孔質中空糸膜の洗浄装置は、前記多孔質中空糸膜が順次通過する、洗浄液を収容した少なくとも一つの洗浄槽と、洗浄液に浸漬された多孔質中空糸膜の外周側の洗浄液を加圧し、洗浄液を多孔質中空糸膜の内周側から外周側に通液させる加圧洗浄部及び/又は洗浄液に浸漬された多孔質中空糸膜の外周側の洗浄液を減圧し、洗浄液を多孔質中空糸膜の内周側から外周側へ通液させる減圧洗浄部と、前記洗浄槽に前記洗浄液を供給する供給手段と、前記洗浄槽内に備えられた一端側の入口から他端側の出口に向かって前記多孔質中空糸膜が連続的に走行可能な中空糸膜走行流路を有する流路構造体と、中空糸膜移動手段とを有する洗浄装置であって、前記加圧洗浄部は、前記洗浄液中に配置されて内部が洗浄液で満たされる前記流路構造体と、前記流路構造体の中空糸膜走行流路内に洗浄液を圧入して中空糸膜走行流路内の洗浄液の圧力を上昇させる液体圧入手段とを有し、前記減圧洗浄部は、前記洗浄液中に配置されて内部が洗浄液で満たされる前記流路構造体と、前記流路構造体の中空糸膜走行流路内の洗浄液を吸引して中空糸膜走行流路内の洗浄液の圧力を低下させる液体吸引手段とを有し、前記流路構造体は、分離可能な少なくとも二つの構造体からなり、前記流路構造体は、前記少なくとも二つの構造体のうち、少なくとも一つの構造体に形成された走行溝部と、前記洗浄液を圧送又は吸引して前記洗浄液を流通させる分岐流路と、を有し、前記分岐流路は、前記走行溝部に連結されている流路であり、前記中空糸膜移動手段は、前記少なくとも二つの構造体の着脱と連動して、前記走行溝部内から前記多孔質中空糸膜を着脱させる。
 以下に、第3実施形態の多孔質中空糸膜の洗浄装置について、図面を参照しながら説明する。
 図8は、本実施形態の多孔質中空糸膜Mの洗浄装置21の説明図である。
 第3実施形態は、走行溝部内から多孔質中空糸膜を着脱させる中空糸膜移動手段を有する点、及び異常箇所回避制御S10を行う点で、第1及び第2実施形態とは異なっている。以下に第3実施形態の多孔質中空糸膜Mの洗浄装置21について説明する。第1又は第2実施形態と同様の構成については、説明を省略する。
 図8に示す多孔質中空糸膜Mの洗浄装置21は、多孔質中空糸膜Mが順次通過する、洗浄液Lを収容した3個の洗浄槽210(第1洗浄槽211、第2洗浄槽212、及び第3洗浄槽213)と、多孔質中空糸膜Mを洗浄する、第1減圧洗浄部220と加圧洗浄部230と第2減圧洗浄部240と、下流側の洗浄槽に清浄な洗浄液を供給する供給手段250と、多孔質中空糸膜Mの走行を規制する規制手段260とを備えて構成される。
 多孔質中空糸膜Mの洗浄装置21は、第1減圧洗浄部220と、加圧洗浄部230と、第2減圧洗浄部240は直列に配列され、この配列の両端には第1減圧洗浄部220と第2減圧洗浄部240とが位置している。
 また、最も上流側に配置された第1洗浄槽211には第1減圧洗浄部220が収められ、第1洗浄槽211の下流側の第2洗浄槽212には加圧洗浄部230が収められ、第2洗浄槽212の下流側の第3洗浄槽213には第2減圧洗浄部240が収められている。
(洗浄槽)
 洗浄槽210は、洗浄液Lを収容する。
 洗浄槽210の材質、形状、大きさ、及び構成は、前記第1実施形態の洗浄槽と同じである。
(第1減圧洗浄部)
 図9は、第3実施形態の流路構造体223の側面図である。
 第1減圧洗浄部220は、洗浄液Lに浸漬された多孔質中空糸膜Mの外周側の洗浄液を減圧し、多孔質中空糸膜Mの内周側から外周側へ洗浄液Lを通液させる。
 図8に示す第1減圧洗浄部220は、中空糸膜走行流路225(図9参照)と、拡大空間部226(図9参照)と、前記拡大空間部226から分岐する分岐流路222(図9参照)とが内部に形成され、洗浄液L中に配置されて内部が洗浄液Lで満たされる流路構造体223と、前記流路構造体223の拡大空間部226内の洗浄液Lを吸引して、拡大空間部226内の洗浄液Lの圧力を低下させる液体吸引手段224とを有している。
 前記流路構造体223の構成は、第1実施形態の流路構造体123と同じである。
(流路構造体)
 図9に示すように、流路構造体223は、本体部223aと、上蓋部223bと、前記上蓋部223bの上流側及び下流側に設けられた中空糸膜移動手段280(280a,280b)と、を備えている。
 流路構造体223を構成する本体部223a及び上蓋部223bの材質は、第1実施形態の本体部123a及び上蓋部123bの材質と同じである。
(中空糸膜走行流路)
 図10は、流路構造体223の上蓋部223bを外したときの本体部223aの斜視図である。
 図11は、上流側から見た流路構造体223の走行方向に垂直な断面図である。
 図10に示すように、本体部223aには、多孔質中空糸膜Mの走行方向に沿って、上面に走行溝部225a,225bが形成されている。図11に示すように、上蓋部223bの底面223cが本体部223aの上面に密接して走行溝部225a,225bを覆うことにより、中空糸膜走行流路225が形成される。本実施形態の中空糸膜走行流路225は、多孔質中空糸膜Mの走行方向と平面上で直交する方向に、並列して8本形成されているが、中空糸膜走行流路225の本数は8本に限られることはない。
 中空糸膜走行流路225は、第1実施形態の中空糸膜走行流路125と同じ構成であるため、各部材についての説明は省略する。
(拡大空間部)
 図9に示すように、中空糸膜走行流路225の入口221aと出口221bとの間には、拡大空間部226が形成されている。前記拡大空間部226の構成は第1実施形態の拡大空間部126と同じである。
 多孔質中空糸膜Mの外周面から上蓋側凹部226aの底面までの離間距離h1、多孔質中空糸膜Mの外周面から本体側凹部226bの底面までの離間距離h2、拡大空間部226の断面積、及び中空糸膜走行流路225と拡大空間部226とを合計した全走行流路の長さDは、第1実施形態の拡大空間部126と同じである。
(分岐流路)
 図11に示すように、分岐流路222は、本体部223aに形成された本体側凹部226bの底面から外側に貫通して形成されている。前記分岐流路222の構成は、第1実施形態の分岐流路122と同じである。
(上蓋部)
 上蓋部223bは、前記流路構造体223を構成する少なくとも二つの構造体のうちの一つであり、構造体移動手段は、前記少なくとも二つの構造体を分離させる手段である。
 図12は、第3実施形態の上蓋部223b、及び上蓋部移動手段(構造体移動手段)290の説明図である。図12は、走行方向から流路構造体223及び上蓋部移動手段290を見たときの説明図となっている。
 図12に示すように、上蓋部223bは、後述する上蓋部移動手段290により、上蓋部223bが下降移動することで本体部223aに装着され、上蓋部223bが上昇移動することで本体部223aから離脱されるように形成されている。すなわち、上蓋部223bは、昇降動作によって本体部223aに対して着脱可能に形成されている。
 上蓋部223bは、平面視略矩形状に形成されており、上蓋部223bの四隅には、上蓋部移動手段290を構成するガイドロッド293が挿通されるガイド孔292が形成されている。
 上蓋部223bは、ガイド孔292とガイドロッド293により水平方向に位置規制されるとともに、ガイドロッド293に沿って昇降移動可能となっている。上蓋部移動手段290によりガイドロッド293に沿うように昇降移動されることで、上蓋部223bが本体部223aに対して着脱可能となっている。
 このように、上蓋部223bが本体部223aに対して着脱可能とすることにより、上蓋部223bを外した状態で走行溝部225a,225b内に容易に多孔質中空糸膜Mを挿入することが可能となる。したがって、中空糸膜走行流路225内に多孔質中空糸膜Mを簡単かつ効率よく配設することができる。
 さらに、後述する異常箇所回避制御S10(図15参照)では、多孔質中空糸膜Mの外径異常箇所を検知したときに、本体部223aから上蓋部223bを上昇させて離脱させるとともに、多孔質中空糸膜Mを上昇させて中空糸膜走行流路225から離脱させている。これにより、異常箇所J(図16参照)を有する多孔質中空糸膜Mが中空糸膜走行流路225内で詰まるのを防止している。
(上蓋部移動手段)
 本実施形態の上蓋部移動手段290は、上蓋部223bの上方に配置された空圧シリンダー295である。空圧シリンダー295は、上蓋部223bの上面に固定され昇降移動可能なピストン部291と、ピストン部291を昇降させるシリンダーチューブ294と、本体部223aの四隅から上方に立設された4本のガイドロッド293と、により構成されている。
 上蓋部移動手段290は、不図示のエア源により、シリンダーチューブ294内へ空気を供給することにより、ピストン部291を昇降移動させている。
 ピストン部291は、上蓋部223bの上面に固定されており、上蓋部223bは、ピストン部291の昇降移動に連動して昇降移動するように構成されている。前述のとおり、上蓋部223bの各ガイド孔292にはそれぞれガイドロッド293が挿通されているため、上蓋部223bはガイドロッド293に沿って昇降移動する。上蓋部223bの上蓋部移動手段290としては、空圧シリンダーに限られることはなく、油圧シリンダー、又は水圧シリンダーであってもよい。
(中空糸膜移動手段)
 図13は、中空糸膜移動手段280(280a,280b)の説明図である。上流側の中空糸膜移動手段280a及び下流側の中空糸膜移動手段280bは、同一の構成となっている。したがって、以下の説明では、上流側の中空糸膜移動手段280aについてのみ説明をし、下流側の中空糸膜移動手段280bの説明は省略している。
 中空糸膜移動手段280aは、前記流路構造体223を構成する少なくとも二つの構造体の着脱と連動して、前記走行溝部225a,225b内から前記多孔質中空糸膜Mを着脱させる手段である。
 中空糸膜移動手段280aは、主に上蓋部223bの上流側端面において、走行方向と交差する方向に固定される一対のブラケット281aと、一対のブラケット281a間において回転可能に軸支された回転ローラ285aと、により構成されている。
 図13に示すように、ブラケット281aは、鉄やSUS等の金属や樹脂等により平面視略L字形状に形成されている。ブラケット281aの一辺は上蓋部223bの上流側端面に固定される台座部282aとなっており、他辺は回転ローラ285aを軸支する軸支部283aとなっている。ブラケット281aは、例えばボルト289により上蓋部223bの上流側端面に固定されるが、固定手段はボルト289に限られず、例えば溶接等であってもよい。
 図9に示すように、ブラケット281aの軸支部283aは、本体部223aに形成された走行溝部225a,225bの底面よりも下方に延出されて形成されている。
 軸支部283aの下方への延出長さは、上蓋部223bが本体部223aに密着して装着されている状態において、一対の軸支部283aの間に配置された回転ローラ285aの外周面が多孔質中空糸膜Mの下方に配置されるように設定される。さらに、軸支部283aの下方への延出長さは、回転ローラ285aと多孔質中空糸膜Mとの離間距離が、前述の上蓋部移動手段290の上昇ストローク長よりも短くなるように設定される。これにより、上蓋部移動手段290が上蓋部223bを上昇させたときに、回転ローラ285aが多孔質中空糸膜Mに当接して、多孔質中空糸膜Mを上方に移動させることができる。
 図13に示すように、回転ローラ285aは、金属や樹脂等により形成された円柱状構造体であり、一対のブラケット281aの軸支部283a間に、回転可能に軸支されている。回転ローラ285aの軸方向の移動は、例えばナット288を回転ローラ285aの軸芯286に締結することで規制される。
 また、回転ローラ285aの軸芯286と、ブラケット281aの軸支部283aとの間には、回転ローラ285aの軸芯286とブラケット281aとの摺動抵抗を低減し、回転中心からの軸芯286のズレを防止するベアリング284が設けられている。
 本実施形態では、ポリエーテルエーテルケトン(以下、「PEEK」という。)からなる樹脂製のベアリング284を用いることが好ましい。PEEKは、ポリエーテルケトン樹脂の一種で、結晶性の熱可塑性樹脂に属する合成樹脂である。PEEKは、非常に高い耐熱特性を有しており、耐疲労性又は耐摩耗性に優れている。さらに、寸法安定性も高く、耐薬品性にも優れている。また、金属製のベアリングとは異なり、非常に軽量である。
 ベアリング284の材料は、PEEKに限られることは無く、例えばフェノール樹脂やポリテトラフルオロエチレン等、その他の樹脂材料であってもよい。また、ベアリング284の材料は、樹脂材料に限られることは無く、SUS材等の金属材料であってもよい。
 図8に示すように、液体吸引手段224は、中空糸膜走行流路225内の洗浄液Lを、分岐流路222を通じて吸引し、中空糸膜走行流路225及び拡大空間部226内の洗浄液Lの圧力を低下させる。
 第3実施形態の液体吸引手段224、エゼクター224a、及びポンプ224bの構成は、第1実施形態の液体吸引手段124、エゼクター124a及びポンプ124bの構成と同じである。
 第3実施形態の液体吸引手段224は、後述の異常箇所回避制御S10(図15参照)において、洗浄液調整制御部2130(図14参照)により制御されており、外径検知手段2120によって多孔質中空糸膜の異常箇所を検出した場合に、ポンプ224bを停止させて洗浄液流動停止動作S20を行っている。洗浄液流動停止動作S20の詳細については後述する。
(加圧洗浄部)
 図8に示す第3実施形態の加圧洗浄部230は、洗浄液Lに浸漬された多孔質中空糸膜Mの外周側の洗浄液を加圧し、多孔質中空糸膜Mの外周側から内周側へ洗浄液Lを供給させる。
 加圧洗浄部230、及び分岐流路232の構成は、第1実施形態の加圧洗浄部130及び分岐流路132の構成と同じである。
 流路構造体233の構成は、第1減圧洗浄部220の流路構造体223と同じである。すなわち、図9から図11に示す流路構造体223のように、中空糸膜走行流路225を形成する走行溝部225a,225b、本体側凹部226b及び分岐流路222が形成された本体部223aの上部が、上蓋側凹部226aが形成された上蓋部223bによって閉じられることで形成されている。
 流路構造体233として図9に示す流路構造体223を用いた場合、本体部223aに対し上蓋部223bを密着させた状態で洗浄液Lを圧入すると、中空糸膜走行流路225の内部は加圧状態となり、上蓋部223bを押し上げる力が働いて上蓋部223bが本体部223aから持ち上がり、隙間が生じて加圧状態の洗浄液Lが漏れ、内部の洗浄液Lの圧力が低下することがある。そのため、上蓋部223bには常時、上蓋部223bを押し上げる力より大きな閉止力を与えるのが好ましい。
 上蓋部223bへの閉止力付与には、前述の油圧シリンダー、空圧シリンダー、又は水圧シリンダーなどの流体推進機構を用いている。これにより、上蓋部223bが自動制御で昇降可能に構成されるとともに、上蓋部223bに閉止力付与が可能となり、加圧洗浄部230においても異常箇所回避制御を行うことができる。
 また、中空糸膜走行流路235、拡大空間部236及び分岐流路232の断面形状についても、第1減圧洗浄部220の流路構造体223と同一である。
 さらに、中空糸膜走行流路235の幅や高さ、拡大空間部236の長さや面積、又は全走行流路Dの長さ等についても、第1減圧洗浄部220の流路構造体223と同一である。
 加圧洗浄部230の入口231a及び出口231bの構成は、第1実施形態の加圧洗浄部130の入口131a及び出口131bと同じである。
 液体圧入手段234は、第2洗浄槽212内の洗浄液Lを吸引し、分岐流路232を通じて圧入し、拡大空間部236内の洗浄液Lの圧力を上昇させる。
 第3実施形態の液体圧入手段234の構成は、第1実施形態の液体圧入手段134と同じである。
 第3実施形態の液体圧入手段234は、不図示のインバータにより制御できるようになっている。
 また、一定の圧力に保ちたい部分に不図示の圧力センサーを設け、前記圧力センサーの出力をインバータにフィードバックして、液体圧入手段234のポンプ234bのポンプ回転速度などを自動制御できるように構成されている。
 さらに、前記液体圧入手段234は、後述の異常箇所回避制御S10(図15参照)において、洗浄液調整制御部2130(図14参照)により制御されており、外径検知手段2120により多孔質中空糸膜の異常箇所を検出した場合に、ポンプ234bを停止させて洗浄液流動停止動作S20を行っている。洗浄液流動停止動作S20の詳細については後述する。
(第2減圧洗浄部)
 図8に示すように、第3実施形態の第2減圧洗浄部240は、洗浄液に浸漬された多孔質中空糸膜Mの外周側の洗浄液を減圧し、多孔質中空糸膜Mの内側から外周側へ洗浄液Lを通液させる。前記第2減圧洗浄部240の構成は、第1実施形態の減圧洗浄部140と同じである。
(供給手段)
 供給手段250の構成は、第1実施形態の供給手段150と同じである。
(規制手段)
 規制手段260は、多孔質中空糸膜Mの走行を規制する。
 図8の第3実施形態の規制手段260は、ガイドロール261a~261jから構成されている。多孔質中空糸膜Mは、これらガイドロール261a~261jによって走行を規制される。第3実施形態の規制手段260の構成は、第1実施形態の規制手段160と同じである。
 また、後述する異常箇所回避制御S10の際には、中空糸膜移動手段280の回転ローラ285も規制手段260として機能する。具体的には、異常箇所回避制御S10により上蓋部223bが上昇したときに、流路構造体223,233,243の上流側及び下流側において、回転ローラ285aが多孔質中空糸膜Mに当接し、多孔質中空糸膜Mを上方に移動させて多孔質中空糸膜Mの走行を規制している。
(異常箇所回避制御装置)
 図14は、異常箇所回避制御装置2100のシステムブロック図である。
 異常箇所回避制御装置2100は、前記外径検知手段2120により検知した多孔質中空糸膜Mの外径が、所定値よりも大きな異常箇所Jであると判断した場合に、前記異常個所Jが中空糸膜走行流路225を走行することを回避する、異常箇所回避制御S10を行う。
 多孔質中空糸膜Mの外径の所定値とは外径値の閾値であり、中空糸膜走行流路の幅d1、中空糸膜走行流路の高さd2より定められる値である。
 異常箇所回避制御装置2100は、多孔質中空糸膜Mの直径を検知する外径検知手段2120と、洗浄液Lの圧送又は吸引の開始若しくは停止を制御する洗浄液調整制御部2130(請求項11の「洗浄液調整手段」に相当。)と、構造体移動手段、すなわち上蓋部移動手段290を制御する上蓋部移動手段制御部2140と、外径検知手段2120の信号から異常箇所を検知し、洗浄液調整制御部2130及び上蓋部移動手段制御部2140に信号を与える統合制御部2110と、により構成されている。
(外径検知手段)
 外径検知手段2120は、多孔質中空糸膜Mが中空糸膜走行流路225内に導入される前に、前記多孔質中空糸膜Mの外径の異常箇所Jを検知する手段である。
 外径検知手段2120は、図8に示すように、各洗浄槽210の上流側に配置され、多孔質中空糸膜Mの直径(外径)を検知している。
 外径検知手段2120は、例えばCCDカメラ等の画像読取装置であり、画像によって多孔質中空糸膜Mの直径(外径)を検知している。外径検知手段2120は、CCDカメラ等の画像読取装置に限られることは無く、例えば、光学式外径測定器や、レーザ式外径測定器であってもよい。
(統合制御部)
 統合制御部2110は、外径検知手段2120により検知された多孔質中空糸膜Mの外径が、所定値よりも大径な異常箇所であるか否かを判断している。また、多孔質中空糸膜Mの外径が、所定値よりも大径な異常箇所であると判断した場合には、洗浄液調整制御部2130及び上蓋部移動手段制御部2140に異常箇所回避制御S10の開始信号(以下「制御開始信号」という。)を与える。さらに、多孔質中空糸膜Mの異常箇所Jが流路構造体223,233,243を通過した後には、異常箇所回避制御S10の停止信号(以下「制御開始信号」という。)を与える。
(洗浄液調整制御部)
 洗浄液調整制御部2130は、統合制御部2110からの制御開始信号及び制御停止信号に基づき、洗浄液Lの圧送又は吸引の停止又は開始を制御している。洗浄液調整制御部2130は、第1減圧洗浄部220のポンプ224b、加圧洗浄部230のポンプ234b及び第2減圧洗浄部240のポンプ244bと接続されており、統合制御部2110からの制御開始信号及び制御停止信号に基づき、各ポンプ224b,234b,244bに対して停止又は駆動させるように指令を与えている。
(上蓋部移動手段制御部)
 上蓋部移動手段制御部2140は、統合制御部2110からの制御開始信号及び制御停止信号に基づき、上蓋部移動手段290を駆動させて上蓋部223bを上昇又は降下させている。具体的には、上蓋部移動手段制御部2140は、上蓋部移動手段290の不図示のエアポンプに接続されている。統合制御部2110からの制御開始信号に基づきエアポンプを駆動させてシリンダーチューブ294内の空気を吸引することによりピストン部291を上昇させ、上蓋部223bを上昇させている。また、統合制御部2110からの制御停止信号に基づきエアポンプを駆動させてシリンダーチューブ294内に空気を圧送することによりピストン部291を下降させ、上蓋部223bを下降させている。
(異常箇所回避制御S10)
 図15は、異常箇所回避制御S10の制御フローである。
 統合制御部2110により、走行する多孔質中空糸膜Mに異常箇所があると判定された場合には、異常箇所回避制御S10を行う。
 図15に示すように、異常箇所回避制御S10は、洗浄液流動停止動作S20と、離脱動作S30と、装着動作S40と、洗浄液流動開始動作S50と、により行われる。以下に各動作について説明する。異常箇所回避制御S10は、第1減圧洗浄部220、加圧洗浄部230及び第2減圧洗浄部240の各洗浄部で行われるが、その制御フローは同一である。したがって、以下では、第1減圧洗浄部220における異常箇所回避制御S10についてのみ説明をし、加圧洗浄部230及び第2減圧洗浄部240における異常箇所回避制御S10については説明を省略する。
(洗浄液流動停止動作S20)
 異常箇所回避制御S10では、始めに洗浄液流動停止動作S20が行われる。
 洗浄液流動停止動作S20では、洗浄液調整制御部2130からポンプ224bに対して停止信号を与えている。これにより、第1減圧洗浄部220における洗浄液Lの吸引が停止する。
(離脱動作S30)
 図16は、離脱動作S30の説明図である。図面をわかりやすくするために、図16では上蓋部移動手段290の図示を省略している。
 異常箇所回避制御S10では、洗浄液流動停止動作S20に続いて、離脱動作S30が行われる。
 離脱動作S30では、流路構造体223を構成する少なくとも二つの構造体の少なくとも一つの構造体を移動させて、前記少なくとも二つの構造体を分離させる。
 離脱動作S30では、上蓋部移動手段制御部2140から上蓋部移動手段290に対して、ピストン部291を上昇させるように信号を与える。これにより、ピストン部291の上昇に連動して上蓋部223bが上昇し、図16に示すように本体部223aから上蓋部223bが離脱する。さらに、上蓋部223bの上昇に連動して中空糸膜移動手段280の回転ローラ285aが上昇する。そして、回転ローラ285aが多孔質中空糸膜Mに当接して、多孔質中空糸膜Mを上方に移動させている。これにより、多孔質中空糸膜Mは走行溝部225a,225bから離脱し、多孔質中空糸膜Mの異常箇所Jが本体部223aと上蓋部223bとの間を空走する。したがって、異常箇所Jは、中空糸膜走行流路225内で詰まることなく通過する。
(装着動作S40)
 異常箇所回避制御S10では、離脱動作S30に続いて、装着動作S40が行われる。
 装着動作S40では、異常箇所Jが流路構造体223を通過して流路構造体223の下流側に移動したと判断したとき、上蓋部移動手段制御部2140から上蓋部移動手段290に対して、ピストン部291を下降させるように信号を与える。これにより、ピストン部291の下降に連動して上蓋部223b及び回転ローラ285aが下降し、図9に示すように、多孔質中空糸膜Mが中空糸膜走行流路225内に配置されるとともに、本体部223aに対して上蓋部223bが装着される。
 異常箇所Jが流路構造体223の下流側に移動したか否かは、例えば、外径検知手段2120を異常箇所Jが通過した時点から、任意のある時間を経過した時点までの時間における、異常箇所Jの走行速度と異常箇所Jの移動距離との関係から判断できる。
(洗浄液流動開始動作S50)
 異常箇所回避制御S10では、装着動作S40に続いて洗浄液流動開始動作S50が行われる。
 洗浄液流動開始動作S50では、洗浄液調整制御部2130からポンプ224bに対して駆動信号を与えている。これにより、第1減圧洗浄部220における洗浄液Lの吸引が再度開始され、多孔質中空糸膜Mの洗浄が再開される。
 以上で、異常箇所回避制御S10が終了する。
(作用効果)
 本実施形態によれば、中空糸膜走行流路225は、本体部223aに形成された走行溝部225a,225bと、本体部223aに対して着脱可能な上蓋部223bと、により構成されているので、上蓋部223bを外すことにより中空糸膜走行流路225内に多孔質中空糸膜Mを簡単かつ効率よく配設できる。したがって、洗浄装置21の作業効率を高めることができる。
 また、本実施形態によれば、上蓋部223bを外すことにより中空糸膜走行流路225を開放できるので、例えば不良に形成された多孔質中空糸膜Mが中空糸膜走行流路225内を走行しようとしたときに、本体部223aから上蓋部223bを離脱させるとともに多孔質中空糸膜Mを走行溝部225a,225bから離脱させることができる。これにより、不良に形成された多孔質中空糸膜Mが中空糸膜走行流路225内を走行するのを回避できるので、多孔質中空糸膜Mの詰まりを防止できる。
 また、本実施形態によれば、多孔質中空糸膜Mの洗浄時において、不良に形成された多孔質中空糸膜Mが中空糸膜走行流路225内を走行しようとしたときに、本体部223aから上蓋部223bを離脱させるのと同時に、走行溝部225a,225b内から多孔質中空糸膜Mを離脱できる。これにより、不良に形成された多孔質中空糸膜Mが中空糸膜走行流路225内を走行するのを回避できる。また、不良に形成された多孔質中空糸膜Mが中空糸膜走行流路225内を走行するのを回避した後、本体部223aに上蓋部223bを装着させるのと同時に、走行溝部225a,225b内に多孔質中空糸膜Mを配置できる。これにより、中空糸膜走行流路225内に多孔質中空糸膜Mを簡単かつ効率よく配設できる。
 また、本実施形態によれば、外径検知手段2120を有しているので、不良に形成された多孔質中空糸膜Mを確実に検知できる。また、上蓋部移動手段290を有しているので、不良に形成された多孔質中空糸膜Mが中空糸膜走行流路25内を走行しようとしたときに、本体部223aから上蓋部223bを離脱させるのと同時に、走行溝部225a,225b内から多孔質中空糸膜Mを離脱させて、不良に形成された多孔質中空糸膜Mが中空糸膜走行流路225内を走行するのを回避できる。また、洗浄液調整制御部2130を有しているので、上蓋部223bの離脱時に洗浄液Lの圧送又は吸引を停止させることにより、上蓋部223b及び多孔質中空糸膜Mに押圧力又は吸引力が作用するのを防止できる。これにより、上蓋部223b及び多孔質中空糸膜Mを容易に移動させることがきる。また、多孔質中空糸膜Mに押圧力又は吸引力が作用して多孔質中空糸膜Mが損傷するのを抑制できる。
 また、本実施形態によれば、異常箇所回避制御S10を行うことにより、大径に形成された多孔質中空糸膜Mの異常箇所Jを回避できるので、中空糸膜走行流路225内における多孔質中空糸膜Mの詰まりを確実に防止できる。
 また、異常箇所回避制御S10では、洗浄液Lの圧送又は吸引を停止させる洗浄液流動停止動作S20の後に、上蓋部223b及び多孔質中空糸膜Mを離脱させる離脱動作S30を行うので、上蓋部223b及び多孔質中空糸膜Mに押圧力又は吸引力が作用するのを抑制できる。これにより、上蓋部223b及び多孔質中空糸膜Mを容易に移動させることがきる。また、多孔質中空糸膜Mに押圧力又は吸引力が作用して多孔質中空糸膜Mが損傷するのを抑制できる。
(他の実施形態)
 この発明の技術範囲は上記実施の形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 本発明の洗浄装置1は、図1又は図8に示す洗浄装置11又は21に限定されない。例えば洗浄装置11又は21では、流路構造体123,133,143、223,233,又は243の全体が洗浄液L中に浸漬されているが、中空糸膜走行流路125,135,145、225,235,又は245の入口121a,131a,141a、221a,231a,又は241a、及び出口121b,131b,141b、221b,231b,又は241bが洗浄液L中に配置されて各流路内が洗浄液Lで満たされるものであれば、流路構造体123,133,143、223,233,又は243の全体を洗浄液L中に浸漬する形態には限定されない。
 加圧洗浄部130又は230は、液体圧入手段134又は234によって分岐流路132又は232から圧入される洗浄液Lで中空糸膜走行流路135又は235内及び拡大空間部136又は236内が満たされ、中空糸膜走行流路135又は235を経て入口131a又は231a及び出口131b又は231bから洗浄液Lが排出される。
 また、第1減圧洗浄部120又は220、及び第2減圧洗浄部140又は240の液体吸引手段124,144、224,又は244は、エゼクター124a,144a、224a,又は244aを用いた吸引システムに限定されず、例えば吸引ポンプ等で中空糸膜走行流路125,145、225,245内の洗浄液Lを、分岐流路122,142、222,242を通じて吸引してもよい。
 また、図1又は図8に示す洗浄装置11又は21は、第1減圧洗浄部120又は220、加圧洗浄部130又は230、及び第2減圧洗浄部140又は240はそれぞれ別々の洗浄槽110(第1洗浄槽111~第3洗浄槽113)又は210(第1洗浄槽211~第3洗浄槽213)に収められているが、例えば、第1減圧洗浄部120又は220と加圧洗浄部130又は230とが同じ洗浄槽110又は210に収められていてもよい。洗浄槽110又は210の数は技術の適用にあわせて適宜変更される設計事項である。
 以上の実施形態では、第1減圧洗浄部120又は220と第2減圧洗浄部140又は240の間に一つの加圧洗浄部130又は230が設けられた洗浄装置11又は21を説明したが、本発明はこれに限定されず、加圧洗浄部は二以上設けられていてもよい。
 上述した洗浄装置11又は21では、下流側の洗浄槽が上流側の洗浄槽よりも高い位置になるように配列されているが、各洗浄槽は同じ高さになるように横並びに配列されていてもよい。
 また、各洗浄槽は横並びの配列に限られず、縦並びの配列であってもよい。
 また、上述した実施形態では、洗浄槽の個数は3個であったが、洗浄槽の個数は3個に制限されない。ただし、洗浄装置11又は21の小型化の観点から、2~3個程度が好ましい。
 第3実施形態における中空糸膜移動手段280は、上蓋部223bの端面に固定されて設けられており、上蓋部移動手段290による上蓋部223bの昇降移動に連動して中空糸膜移動手段280も昇降移動するように形成されていた。しかし、例えば、中空糸膜移動手段280を上蓋部223bに固定せずに独立して設け、さらに中空糸膜移動手段280を昇降させる昇降手段を独立して設けてもよい。ただし、装置構成が簡単である点で、本実施形態に優位性がある。
 また、第3実施形態では、異常箇所回避制御S10の装着動作S40において、異常箇所Jが流路構造体223の下流側に移動したか否かは、所定時間経過したときの異常箇所Jの走行速度と移動距離との関係から判断をしていた。しかし、例えば、流路構造体223の下流側に外径検知手段2120を設け、下流側の外径検知手段2120の検知データから異常箇所Jが流路構造体223の下流側に移動したと判断してもよい。ただし、外径検知手段2120を流路構造体223の下流側に設けることなく低コストに洗浄装置を構成できる点で、本実施形態に優位性がある。
 また、第3実施形態では、異常箇所回避制御S10において、異常箇所Jが流路構造体223の下流側に移動した後、装着動作S40を自動で行っていた。しかし、装着動作S40は必ずしも自動で行われる必要はなく、手動で行ってもよい。
 本発明の洗浄装置は、中空糸膜走行流路内に多孔質中空糸膜を簡単かつ効率よく配設でき、中空糸膜走行流路内を簡単に確認して容易にメンテナンスができる。したがって、洗浄装置の作業効率を高めることができるため、食品工業、医療又は電子工業等の分野などにおいて利用可能性がある。
11,21 洗浄装置
110,210 洗浄槽
111,211 第1洗浄槽(洗浄槽)
112,212 第2洗浄槽(洗浄槽)
113,213 第3洗浄槽(洗浄槽)
121a,131a,141a,221a,231a,241a 入口
121b,131b,141b,221b,231b,241b 出口
122,132,142,222,232,242 分岐流路
123a,133a,143a,223a,233a,243a 本体部
123b,133b,143b,223b,233b,243b 上蓋部
123,133,143,223,233,243 流路構造体
125,135,145,225,235,245 中空糸膜走行流路
125a,135a,145a,225a,235a,245a 走行溝部
125b,135b,145b,225b,235b,245b 走行溝部
126,136,146 拡大空間部
290 上蓋部移動手段
2120 外径検知手段
2130 洗浄液調整制御部(洗浄液調整手段)
L 洗浄液
M 多孔質中空糸膜
J 異常箇所
S10 異常箇所回避制御
S20 洗浄液流動停止動作
S30 離脱動作

Claims (12)

  1.  洗浄液を収容した洗浄槽に多孔質中空糸膜を走行させ、前記多孔質中空糸膜中の残存物を除去する多孔質中空糸膜の洗浄装置であって、
     前記洗浄槽内には、一端側の入口から他端側の出口に向かって前記多孔質中空糸膜が連続的に走行可能な中空糸膜走行流路を有する流路構造体を備え、
     前記流路構造体は、分離可能な少なくとも二つの構造体からなり、
     前記流路構造体は、前記少なくとも二つの構造体のうち、少なくとも一つの構造体に形成された走行溝部と、前記洗浄液を圧送又は吸引して前記洗浄液を流通させる分岐流路と、を有し、
     前記分岐流路は、前記中空糸膜走行流路に連結されている流路である、前記洗浄装置。
  2.  前記中空糸膜走行流路は、中空糸膜走行方向と直交する断面の断面積が前記走行溝部の中空糸膜走行方向と直交する断面の断面積よりも大きく形成された拡大空間部を有し、
     前記拡大空間部は、前記中空糸膜走行流路の一端側の入口から前記中空糸膜走行流路の他端側の出口の間に形成されており、
     前記分岐流路は、前記拡大空間部に連結されている流路である、請求項1に記載の洗浄装置。
  3.  前記少なくとも二つの構造体のいずれか一方の構造体が少なくとも一つの平面を有し、
     前記中空糸膜走行流路を構成する一つの面が前記平面を共有している、請求項1又は2に記載の洗浄装置。
  4.  前記中空糸膜走行流路の、前記走行方向と直交する断面形状が三角形状又は矩形状である、請求項3に記載の洗浄装置。
  5.  前記流路構造体は、前記走行方向と交差する方向に少なくとも二つの前記中空糸膜走行流路を有する、請求項1~4のいずれか一項に記載の洗浄装置。
  6.  前記走行流路は、走行する中空糸膜に対応するよう各々個別に形成された流路であり、前記各々個別に形成された前記走行流路に対し、各々個別に前記拡大空間部が形成されている、請求項5に記載の洗浄装置。
  7.  前記拡大空間部は、中空糸膜の外径をdとしたときに、
    中空糸膜走行方向に平行な長さXが、2d≦X≦200dを満足し、
    かつ、中空糸膜走行方向に直交する高さWが、1.5d≦W≦30dを満足する、請求項2~6のいずれか一項に記載の洗浄装置。
  8.  前記拡大空間部の底面と、前記拡大空間部の底面と前記走行溝部の底面とを接続する側面とのなす角度が90度から175度である、請求項2~7のいずれか一項に記載の洗浄装置。
  9.  前記少なくとも二つの構造体の着脱と連動して、前記走行溝部内から前記多孔質中空糸膜を着脱させる中空糸膜移動手段を有する、請求項1~8のいずれか一項に記載の洗浄装置。
  10.  前記多孔質中空糸膜が前記中空糸膜走行流路内に導入される前に前記多孔質中空糸膜の外径の異常箇所を検知する外径検知手段と、
     前記少なくとも二つの構造体の少なくとも一つの構造体を移動させて前記少なくとも二つの構造体を分離させる構造体移動手段と、を備えた請求項1~9のいずれか一項に記載の多孔質中空糸膜の洗浄装置。
  11.  前記外径検知手段により検知した前記多孔質中空糸膜の外径が、所定値よりも大径な異常箇所であると判断した場合に、前記異常箇所が前記中空糸膜走行流路を走行するのを回避する異常箇所回避制御を行う異常箇所回避制御装置を有し、
     前記異常箇所回避制御は、
     洗浄液調整手段により前記洗浄液の圧送又は吸引を低減若しくは停止させる洗浄液流量調整動作と、
     前記洗浄流量調整動作の後、前記少なくとも二つの構造体の少なくとも一つの構造体の前記構造体移動手段により、前記少なくとも二つの構造体を分離させるとともに、前記中空糸膜移動手段により前記走行溝部内から前記多孔質中空糸膜を離脱させる離脱動作と、を備えた、請求項1~10のいずれか一項に記載の洗浄装置。
  12.  前記少なくとも二つの構造体の一つが本体部であり、一つが上蓋部であり、
    前記上蓋部は、前記本体部の上方に配置され前記本体部と着脱可能な構造体である、請求項1~11のいずれか一項に記載の洗浄装置。
PCT/JP2012/061209 2011-04-26 2012-04-26 多孔質中空糸膜の洗浄装置 WO2012147852A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12776173.2A EP2703068B1 (en) 2011-04-26 2012-04-26 Device for cleaning porous hollow fiber membrane
US14/113,754 US20140041699A1 (en) 2011-04-26 2012-04-26 Device for cleaning porous hollow fiber membrane
CN201280020402.7A CN103492057B (zh) 2011-04-26 2012-04-26 多孔质中空纤维膜的清洗装置
KR1020137025616A KR101532859B1 (ko) 2011-04-26 2012-04-26 다공질 중공사막의 세정 장치
JP2012524804A JP5892064B2 (ja) 2011-04-26 2012-04-26 多孔質中空糸膜の洗浄装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011098205 2011-04-26
JP2011-098204 2011-04-26
JP2011-098205 2011-04-26
JP2011098204 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147852A1 true WO2012147852A1 (ja) 2012-11-01

Family

ID=47072367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061209 WO2012147852A1 (ja) 2011-04-26 2012-04-26 多孔質中空糸膜の洗浄装置

Country Status (6)

Country Link
US (1) US20140041699A1 (ja)
EP (1) EP2703068B1 (ja)
JP (1) JP5892064B2 (ja)
KR (1) KR101532859B1 (ja)
CN (1) CN103492057B (ja)
WO (1) WO2012147852A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148808A (ja) * 2017-05-25 2017-08-31 三菱ケミカル株式会社 中空糸膜の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538127B1 (ko) * 2014-02-10 2015-07-22 (주)세프라텍 중공사막 제조장치의 세정조용 롤러장치
CN108486664B (zh) * 2018-04-28 2019-06-21 河南威浦仕医疗科技有限公司 胶原蛋白止血材料生产设备
CN108251900B (zh) * 2018-04-28 2019-08-13 桂林福康森医疗器械有限公司 止血材料用胶原蛋白纤维束成型设备
DE102019126317B4 (de) * 2019-09-30 2021-12-30 Qcoat Gmbh Vorrichtung zum Spülen oder Imprägnieren einer Filtermembranbahn
DE102019126315B4 (de) * 2019-09-30 2022-02-24 Qcoat Gmbh Vorrichtung zum Spülen oder Imprägnieren einer Membranfaser
CN114525593B (zh) * 2022-03-14 2023-12-12 江苏泛博车用纤维有限公司 一种黏胶纤维纺丝成型后处理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117573A (ja) * 1994-10-21 1996-05-14 Kanegafuchi Chem Ind Co Ltd 中空糸膜の処理方法
JPH0957078A (ja) * 1995-08-22 1997-03-04 Mitsubishi Rayon Co Ltd 中空糸膜の洗浄方法及び洗浄装置
JPH1176768A (ja) * 1997-09-12 1999-03-23 Asahi Chem Ind Co Ltd 中空糸状膜の洗浄方法及び洗浄装置
JP2007218859A (ja) * 2006-02-20 2007-08-30 Mitsubishi Rayon Co Ltd 多孔質中空糸膜の欠陥検査装置
JP2008161755A (ja) 2006-12-27 2008-07-17 Mitsubishi Rayon Co Ltd 中空糸膜の製造方法
JP2008207050A (ja) * 2007-02-23 2008-09-11 Toray Ind Inc 中空糸膜の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044098A (en) * 1959-06-02 1962-07-17 United States Steel Corp Apparatus for cleaning wire rod
CH612152A5 (ja) * 1976-01-26 1979-07-13 Rieter Ag Maschf
US4811748A (en) * 1986-04-04 1989-03-14 Naniwa Seitei Kabushiki Kaisha Method and apparatus for continuously applying surface treatment onto an article being fed along a pass line
DE4326435A1 (de) * 1993-08-06 1995-02-09 Rheydt Kabelwerk Ag Vorrichtung zum Entfernen von an einem langgestreckten Gut haftenden Partikeln
US5409594A (en) * 1993-11-23 1995-04-25 Dynamotive Corporation Ultrasonic agitator
US5634236A (en) * 1995-07-05 1997-06-03 Lucent Technologies Inc. Non-contact fiber cleaning and tensioning device
EP0918217B1 (en) * 1997-11-21 2010-08-18 Instrumar Limited Device and method for detecting and measuring fiber properties
US6485193B1 (en) * 1999-10-25 2002-11-26 Fitel Usa Corporation Apparatus for cleaning an optical fiber ribbon
US20020064355A1 (en) * 2000-11-29 2002-05-30 Ware Scot K. Automatic fiber preparation unit for splicing
US6676763B2 (en) * 2001-07-06 2004-01-13 Ksaira Corporation Method and apparatus for cleaning an optical fiber
CN101829505A (zh) * 2009-03-09 2010-09-15 江西金达莱环保研发中心有限公司 一种中空纤维膜的化学清洗方法及其装置
EP2674210A4 (en) * 2011-02-07 2014-08-06 Mitsubishi Rayon Co WASHER FOR POROUS HOLLOW FIBER MEMBRANES AND MANUFACTURING METHOD FOR POROUS HOLLOW FIBER MEMBRANES

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117573A (ja) * 1994-10-21 1996-05-14 Kanegafuchi Chem Ind Co Ltd 中空糸膜の処理方法
JPH0957078A (ja) * 1995-08-22 1997-03-04 Mitsubishi Rayon Co Ltd 中空糸膜の洗浄方法及び洗浄装置
JPH1176768A (ja) * 1997-09-12 1999-03-23 Asahi Chem Ind Co Ltd 中空糸状膜の洗浄方法及び洗浄装置
JP2007218859A (ja) * 2006-02-20 2007-08-30 Mitsubishi Rayon Co Ltd 多孔質中空糸膜の欠陥検査装置
JP2008161755A (ja) 2006-12-27 2008-07-17 Mitsubishi Rayon Co Ltd 中空糸膜の製造方法
JP2008207050A (ja) * 2007-02-23 2008-09-11 Toray Ind Inc 中空糸膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2703068A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148808A (ja) * 2017-05-25 2017-08-31 三菱ケミカル株式会社 中空糸膜の製造方法

Also Published As

Publication number Publication date
EP2703068A1 (en) 2014-03-05
EP2703068A4 (en) 2015-03-11
US20140041699A1 (en) 2014-02-13
JP5892064B2 (ja) 2016-03-23
KR20130137209A (ko) 2013-12-16
KR101532859B1 (ko) 2015-07-01
EP2703068B1 (en) 2017-09-13
JPWO2012147852A1 (ja) 2014-07-28
CN103492057A (zh) 2014-01-01
CN103492057B (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5892064B2 (ja) 多孔質中空糸膜の洗浄装置
JP5928330B2 (ja) 多孔質中空糸膜の洗浄装置、および多孔質中空糸膜の製造方法
JP6168056B2 (ja) 中空糸膜モジュール
US10413853B2 (en) Gas-liquid separator
US9173986B2 (en) Blood treatment unit for an extra-corporeal blood treatment apparatus
JP4092358B2 (ja) 自吸式濾過装置
US10675560B2 (en) Gas-liquid separator
JPWO2014061737A1 (ja) 散気装置、散気方法、及び水処理装置
WO1995004558A1 (fr) Procede d'elimination des bulles destine a des pompes centrifuges
WO2013022121A1 (ja) 自吸式遠心ポンプ装置
US20120192897A1 (en) Method and device for work inside pipes
JP2006247540A (ja) 中空糸膜モジュールおよびその運転方法
JP2009108697A (ja) 縦型自吸式ポンプ及び濾過装置付き縦型自吸式ポンプ
TW201805056A (zh) 外壓式過濾模組之洗淨方法以及過濾裝置
JP6124014B2 (ja) バラスト水処理装置
JP2015195833A (ja) 血液浄化装置及び血液浄化装置の抜液方法
CN208561895U (zh) 一种新型脱气膜组件
JP2009101283A (ja) 自吸式濾過装置
WO2023026815A1 (ja) 正浸透処理方法および正浸透処理装置
ITMI20111553A1 (it) Macchina per il trattamento di tessuti, reti, garze, feltri, tessuti-non-tessuti o altri materiali in pezza o foglio
JP4856158B2 (ja) スラリー濃縮装置及び濃縮方法
SE533737C2 (sv) Apparat och metod för förbättrad avvattningseffektivitet
JP3061593U (ja) ク―ラント液の清浄装置
CN217536503U (zh) 一种白水塔底部浆料回收装置
JP4619313B2 (ja) 膜ろ過装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012524804

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025616

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14113754

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012776173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012776173

Country of ref document: EP