WO2012146071A1 - 一种锂二次电池组的配组方法 - Google Patents

一种锂二次电池组的配组方法 Download PDF

Info

Publication number
WO2012146071A1
WO2012146071A1 PCT/CN2012/070500 CN2012070500W WO2012146071A1 WO 2012146071 A1 WO2012146071 A1 WO 2012146071A1 CN 2012070500 W CN2012070500 W CN 2012070500W WO 2012146071 A1 WO2012146071 A1 WO 2012146071A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
capacity
discharge
voltage
qualified
Prior art date
Application number
PCT/CN2012/070500
Other languages
English (en)
French (fr)
Inventor
张常勇
曾石华
成定波
Original Assignee
广州丰江电池新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州丰江电池新技术股份有限公司 filed Critical 广州丰江电池新技术股份有限公司
Publication of WO2012146071A1 publication Critical patent/WO2012146071A1/zh
Priority to US14/065,083 priority Critical patent/US9755209B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the method for assembling a lithium secondary battery pack of the present invention belongs to the field of secondary batteries, and more particularly to a battery assembly method for a lithium ion battery pack.
  • lithium-ion batteries have begun to be widely used as power and energy storage power sources.
  • power and energy storage batteries require high energy output power and long service life. This requires multiple combinations of batteries and multiple strings.
  • the price of the battery pack is high and the value is large. Therefore, higher requirements are placed on battery reliability and consistency.
  • the failure of the functionality of any of the battery cells in the battery pack will result in failure of the functionality of the entire battery pack, and may even cause problems such as loss of control of the battery.
  • Battery consistency indicators include capacity, voltage, discharge platform, internal resistance, and self-consumption speed. Among them, the self-consumption speed of the battery is particularly important, and it is difficult to distinguish. In a system without balanced charge and discharge, the consistency of the battery changes greatly after long-term storage and use due to different self-consumption.
  • the industry standard self-consumption test method is full charge (S0C 100%). The charge retention rate is set for 1 month.
  • the battery self-consumption test method commonly used in production is to charge the battery to full power (S0C 90).
  • the battery is stored at room temperature or stored at high temperature, and the battery's self-consumption level is detected by examining the voltage drop of the battery before and after storage.
  • the defect of this method is that the voltage-capacity relationship of the lithium ion battery is not obvious in the fully charged state or the semi-electric state; for the lithium iron phosphate battery, the voltage-capacity relationship in the fully charged state or the semi-electric state is not obvious. . Therefore, the above method requires a long-term storage to have a certain effect, which is disadvantageous for mass production applications. At the same time, the higher the state of charge of the battery, the greater the safety hazard of battery storage and assembly.
  • the self-consumption battery In high-charge state, the self-consumption battery is prone to heat, and there is a risk of self-heating and self-ignition. A high temperature higher than 13CTC will cause it to be adjacent. The internal diaphragm of the battery melts, and internal short-circuit occurs one after another, and a chain reaction occurs. Many battery factories are ignited because of self-heating of the battery; when stored at 50 ⁇ 90% of charge, the battery voltage is in the stage of battery discharge voltage, the voltage is relatively stable, not easy The voltage reflects the self-consumption level of the battery, which takes a long time, and can not identify all the batteries with high self-consumption. There will be fish trapped in the net and mixed into the battery pack, which will become a hidden danger of future product function loss and explosion fire.
  • the object of the present invention is to avoid the deficiencies in the prior art, and to provide a kind of product which is advantageous for large-scale production applications, short in self-consumption electricity selection test time, quick assembly of batteries, safe battery assembly, and high reliability.
  • lithium cobalt oxide lithium ion battery lithium manganese oxide lithium ion battery, lithium nickel cobalt manganese lithium ion battery, lithium iron phosphate lithium ion battery and other lithium ion battery discharge curve, found that the initial discharge due to polarization, voltage It quickly fell, the intermediate stage was relatively stable, and the end of the discharge almost plummeted, with 0 to 10% of capacity being released at the end.
  • the characteristics of the lithium-ion battery discharge platform in the flat and back-slope straight lines we can find the proportional relationship between the slope line voltage and the remaining capacity, and then calculate the self-consumption rate based on the storage voltage change.
  • the voltage In the 0 ⁇ 10% state of charge or low state of charge, if the battery has leakage, the voltage will be easily changed within 1 ⁇ 10 days.
  • the self-consumption rate of 1 ⁇ 10 days can be calculated by voltage change.
  • the idle state of 0 ⁇ 10% of charge or low state of charge if the battery is internally short-circuited, the energy released is not enough to raise its temperature above the ignition point, nor can it heat its adjacent battery, and cannot make adjacent batteries. The internal diaphragm melts, no chain reaction occurs, and no explosion or fire accident occurs.
  • the battery pack By discharging the battery to a vacant state or a low state of charge with a small current, or supplementing a small amount of charge to a low state of charge, in a dry state or a low state of charge (S0C 0 ⁇ 10%), it is stored and selected in a short time.
  • the battery voltage eliminates the low-voltage battery that consumes large power.
  • the battery pack is assembled in the air-powered state or the low-charge state, thereby achieving the purpose of quick assembly, safe battery assembly, and high reliability of the battery pack.
  • the battery not less than the lower limit capacity is a qualified battery; the lower limit capacity is the minimum qualified capacity defined by the production process, generally the rated capacity c 5 , or slightly higher than the rated capacity to ensure that the battery delivered to the customer reaches the rated capacity C 5 or more, range 5 ⁇ 500Ah.
  • the battery charge and discharge is 0. 1 C 5 ⁇ 5 C 5 constant current charging to the charge cutoff voltage V. , Charge-cutoff voltage 4. 2V ⁇ 3. 6V, transferred to constant voltage charging 0. 01 C 5 ⁇ 0. 5 C 5 cut, 0. 2 C 5 ⁇ 10 C 5 cut-off constant current discharge to a discharge voltage V d.
  • the discharge cutoff voltage is 3V ⁇ 2V.
  • Charge cut-off voltage V According to the battery system, for example, the lithium cobaltate-graphite system is 4.2V, and the lithium iron phosphate-graphite system is 3.6V.
  • Discharge cut-off voltage V d is also determined according to the battery system, such as lithium cobalt oxide - graphite system is 3V, lithium iron phosphate - graphite system is 2V.
  • the rated capacity is the capacity of the battery or battery pack indicated by the manufacturer. It refers to the amount of electricity that should be supplied when the battery or battery pack is discharged at a 5h rate to the end voltage at an ambient temperature of 23 °C ⁇ 2 °C. For Ah (ampere hours) or mAh (mAh hours).
  • the discharge is continued at 0.01 C 5 to 0.5 C 5 until the discharge cutoff voltage V d 2.0 V to 3.0 V, so that the battery is in an empty state.
  • the purpose of small-rate current discharge is to reduce the influence of polarization, so that the battery is more uniformly discharged to the air-power state, and the battery voltage consistency is high after discharge.
  • the battery in the air-state state after the step (2) is discharged is 0.01 (: 5 to 0.5 (: 5 charged capacity (: 1; the capacity is 0.1% to 10% of the rated capacity of the battery, and the more preferable capacity is 2% to 5% of the rated capacity of the battery. Keep the battery in a low state of charge.
  • step (3) Store the battery of step (3) in the environment of 20 ⁇ 50 °C for a period of time, measure the battery voltage after storage and record it, record it as V 1; then continue to store the battery at 20 ⁇ 50 °C for t 2 time.
  • Test the battery voltage after storage, denoted as V 2 calculate the voltage difference ⁇ m, where is lh ⁇ 48h, t 2 is 24h ⁇ 240h; set ⁇ V range to -20mV ⁇ 10mV, and the range of ⁇ V qualified is more preferably _ 10mV ⁇ 5mV.
  • the step (4) sorts the qualified batteries, according to the number of series batteries required for the matching group, the batteries are grouped according to a certain capacity matching standard, and then the battery pack is welded and assembled to form a complete battery.
  • the difference in capacity of each unit battery in the battery pack is not more than 5% of its rated capacity, and preferably, the difference in capacity of each unit battery is not more than 2% of its rated capacity.
  • the battery not less than the lower limit capacity is a qualified battery; the lower limit capacity is the minimum qualified capacity defined by the production process, generally the rated capacity C 5 , or slightly higher than the rated capacity to ensure that the battery delivered to the customer reaches the rated capacity C 5 or more, range 5 ⁇ 500Ah.
  • the battery charge and discharge is 0.1 C 5 ⁇ 5 C 5 constant current charging to the charge cutoff voltage V. , Charge cut-off voltage 4.2V ⁇ 3.6V, constant voltage charging to 0.01 C 5 ⁇ 0.5C 5 cutoff, 0.2 C 5 ⁇ 10 C 5 constant current discharge to discharge cutoff voltage V d .
  • the discharge cutoff voltage is 3V ⁇ 2V.
  • the lithium cobaltate-graphite system is 4.2V
  • the lithium iron phosphate-graphite system is 3.6V
  • the discharge cut-off voltage V d is also determined according to the battery system, such as lithium cobalt oxide-graphite system It is 3V
  • the lithium iron phosphate-graphite system is 2V.
  • the rated capacity is the capacity of the battery or battery pack indicated by the manufacturer. It refers to the amount of electricity that should be supplied when the battery or battery pack is discharged at a 5h rate to the end voltage at an ambient temperature of 23 °C ⁇ 2 °C. For Ah (ampere hours) or mAh (mAh hours).
  • the discharge is continued at 0.01 C 5 to 0.5 C 5 until the discharge cutoff voltage V d 2.0 V to 3.0 V, so that the battery is in an empty state.
  • the purpose of the small-rate current discharge is to reduce the influence of the polarization, so that the battery is more uniformly discharged to the air-power state, and the battery voltage consistency after discharge is high.
  • step (3) Store the battery of step (2) in the environment of 20 ⁇ 50 °C for a period of time, measure the battery voltage after storage and record it, record it as V 1; then continue to store the battery at 20 ⁇ 50 °C for t 2 time.
  • Test the battery voltage after storage, denoted as V 2 calculate the voltage difference ⁇ m, where is lh ⁇ 48h, t 2 is 24h ⁇ 240h; set ⁇ V range to -20mV ⁇ 10mV, and the range of ⁇ V qualified is more preferably _ 10mV ⁇ 5mV.
  • the qualified batteries are sorted according to the number of series connected batteries required by the matching group, and the batteries are grouped according to a certain capacity matching standard, and then the battery pack is welded and assembled to form a complete battery.
  • the difference in capacity of each unit battery in the battery pack is not more than 5% of its rated capacity, and preferably, the difference in capacity of each unit battery is not more than 2% of its rated capacity.
  • the last discharge control release capacity is 90% C 5 ⁇ 99.9% C 5 , so that the remaining capacity of the battery is 0.1% ⁇ 10% of the rated capacity of the battery, so that the battery is under low charge. status.
  • Record the penultimate discharge capacity C. set the lower limit capacity, take C.
  • the battery not less than the lower limit capacity is a qualified battery; the lower limit capacity is the minimum qualified capacity defined by the production process, generally the rated capacity C 5 , or slightly higher than the rated capacity to ensure that the battery delivered to the customer reaches the rated capacity C 5 or more, range 5 ⁇ 500Ah.
  • the battery charge and discharge is 0.1 C 5 ⁇ 5C 5 constant current charging to the charge cutoff voltage V.
  • the charge cut-off voltage is 4.2V ⁇ 3.6V, and the constant voltage is charged to 0.01 C 5 ⁇ 0.5 C 5 cutoff, 0.2 C 5 ⁇ 10 C 5 constant current discharge to discharge cutoff voltage V d .
  • the discharge cutoff voltage is 3V ⁇ 2V.
  • Charge cut-off voltage V According to the battery system, for example, the lithium cobaltate-graphite system is 4.2V, and the lithium iron phosphate-graphite system is 3.6V. Discharge cut-off voltage V d is also determined according to the battery system, such as lithium cobalt oxide - graphite system is 3V, lithium iron phosphate - graphite system is 2V.
  • the rated capacity is the capacity of the battery or battery pack indicated by the manufacturer. It refers to the amount of electricity that should be supplied when the battery or battery pack is discharged at a 5h rate to the end voltage at an ambient temperature of 23 °C ⁇ 2 °C. For Ah (ampere hours) or mAh (mAh hours).
  • step (2) Store the battery of step (1) in the environment of 20 ⁇ 50 °C for a period of time, measure the battery voltage after storage and record it as V 1 , and then continue to store the battery at 20 ⁇ 50 °C for t 2 time.
  • Test the battery voltage after storage, denoted as V 2 calculate the voltage difference ⁇ m, where is lh ⁇ 48h, t 2 is 24h ⁇ 240h; set ⁇ V range to -20mV ⁇ 10mV, and the range of ⁇ V qualified is more preferably _ 10mV ⁇ 5mV.
  • the qualified batteries are sorted according to the number of series batteries required for the matching group, and the batteries are grouped according to a certain capacity matching standard, and then the battery pack is welded and assembled to form a complete battery.
  • the difference in capacity of each unit battery in the battery pack is not more than 5% of its rated capacity, and preferably, the difference in capacity of each unit battery is not more than 2% of its rated capacity.
  • the discharge cutoff voltage V d of the present invention is 2. 0V ⁇ 3. 0V, according to different battery systems, such as lithium iron phosphate battery discharge cutoff voltage V d is 2. 0V, lithium cobalt oxide battery discharge cutoff voltage V d is 3 . 0V.
  • the self-consumption level of each unit battery is particularly important. Therefore, how to eliminate the self-consumption battery in the battery becomes a key factor affecting the reliability of the battery pack.
  • the charge capacity of the battery is proportional to its stable open circuit voltage. In theory, as long as the accuracy of the voltage test is sufficiently high, the battery charge capacity of the corresponding state can be obtained. In the relationship between the charge capacity of the battery and the stable open circuit voltage, the relationship between the air-conditioning state or the low-charge state (S0C 0 to 10%) is most obvious. Fully-charged batteries have a high safety hazard during storage, and there is a high probability of short-circuiting during operation. At the same time, for the lithium iron phosphate battery, the relationship between the full charge state and the stable open circuit voltage is not obvious, and it is easy to misjudge in the actual operation.
  • the battery has a significant relationship between the battery charge capacity and the battery's stable open circuit voltage in the air-state or low-charge state (S0C 0 ⁇ 10%).
  • the battery's slight self-consumption phenomenon can pass.
  • the battery open circuit voltage drop is reflected, and the lower the charge of the battery, the more obvious this phenomenon. Therefore, the present invention stores the battery in a state of air power or low state of charge (S0C 0 to 10%), and by detecting a change in the open circuit voltage of the battery, the battery with a large self-consumption can be effectively eliminated, thereby ensuring the reliability of the battery pack.
  • the series battery is characterized by the same current flowing through each monomer, which means that the charge and discharge capacities of the individual cells in the series battery are the same during the charging and discharging process of the battery pack. Therefore, the starting of each single cell in the series battery pack
  • the actual charge capacity (actual capacity, not the percentage of charge) is consistent to ensure consistent battery discharge.
  • the battery is replenished into the rated capacity of the battery by 0% to 10%, which can effectively ensure the consistency of the battery discharge.
  • the battery has a charge of 0 ⁇ 10% in the air-free state or low-charge state, and the battery has good safety, which can effectively avoid the occurrence of production operation. Short-circuit fires, falls, piercings, etc. caused by safety hazards.
  • the battery is discharged according to the standard discharge system 0. 2C 5 to the standard discharge cut-off voltage V d , and the state of charge of the battery is determined to be S0C 0%; the method of the present invention is defined as 0. 01 c 5 ⁇ 0. 5 C 5 discharge to discharge cut-off voltage V d 2. 0V ⁇ 3. 0V, It is determined that the battery is in the air-free state.
  • the battery is tested for nailing, so that it is internally short-circuited, the battery releases a small amount of residual capacity, the battery temperature rises low, does not burn and does not explode, and has high safety.
  • the only residual capacity of the battery as long as there is leakage, it is easy to reflect from the voltage.
  • the battery is discharged to the standard discharge cut-off voltage according to the standard discharge system, and then charged with 0 ⁇ 10% capacity.
  • the charge state of the battery is 0 ⁇ 10%, and the charge is small.
  • the battery is tested for nailing, so that the internal short circuit is caused. The heat released is not enough to raise the temperature to the temperature at which the diaphragm melts.
  • the safety is high.
  • the battery's power is reduced, the voltage drops linearly, and the voltage is easy to escape.
  • the change reflects the self-consumption level of the battery, and it is easy to eliminate the battery with self-consumption and high reliability.
  • the battery pack matching method of the present invention has the advantages that the self-power consumption of each single battery in the battery pack is small, the battery discharge consistency is good, the battery pack is assembled safely, the battery pack has high reliability, and the practical application is fast, simple, and easy to operate. Has a good market application prospects.
  • Figure 1 is a discharge curve of a lithium iron phosphate lithium ion battery.
  • 1 is a discharge curve of a 11585135Fe type lithium iron phosphate lithium ion battery.
  • Example 1 The 11585135Fe type lithium iron phosphate lithium ion battery produced by our company has a nominal voltage of 3. 2V and a rated capacity of 10Ah. It needs to be assembled into a 1P-12S battery pack. The battery is now operated as follows in accordance with the method of the present invention.
  • the battery is 0.5 (: 5 times current charge and discharge for 2 weeks, the last discharge capacity is recorded as C., Co ⁇ lOAh is a qualified battery;
  • step (3) After the operation of step (2), the battery is stored in the room temperature environment for 24 hours, the measured battery voltage is ⁇ , and then the battery is stored at room temperature for 120 hours, and the measured battery voltage is ⁇ , and ⁇ is calculated.
  • the ⁇ V range was -5 mV to 5 mV and was judged to be a qualified battery.
  • F6 11030 qualified 2. 823 2. 822 -1 qualified
  • F8 11030 qualified 2. 836 2. 830 -6 failed
  • a total of 12 F2, F4, F5, F7, F13, F15, F17, F19, F24, F26, F27 can be used as a group of 1P-12S battery packs, F3, F6, F9, FI K F12, F14, F16, F18, A total of 12 F21, F22, F23, and F25 can be used as another set of 1P-12S battery packs.
  • step (4) After the battery assembly in step (4), the battery pack is welded and assembled, and a 12S protection board is installed to assemble a complete battery pack of 1P-12S.
  • the 12S protection board used has no equalization function, overcharge protection voltage 3. 9V/section, over-discharge protection voltage 2V/section.
  • the first group of batteries 5A constant current charging 43. 8V, turn 43. 8V constant voltage charging Cut to 500mA.
  • the cycle is still in progress, the capacity is stable, and the discharge cutoff total voltage and the average divided voltage are consistent.
  • Safety test At room temperature 28 °C, take the F28 battery that is not used for matching, press the nail into the center of the battery, short-circuit the battery, and measure the short-circuit temperature. The maximum temperature is 33 °C, and the temperature rises 5 °C. , do not burn and do not explode.
  • Example 2 The 130125155Fe type lithium iron phosphate lithium ion battery produced by the company has a nominal voltage of 3. 2V and a rated capacity of 20Ah, which needs to be assembled into a 1P-8S battery pack.
  • the battery is now operated as follows in accordance with the method of the present invention.
  • step (3) After charging step (3), store the battery at room temperature for 12h, measure the battery voltage as ⁇ , and then continue to store the battery at room temperature for 144h, measure the recorded battery voltage as ⁇ , calculate ⁇
  • the ⁇ V range was -10 mV to 0 mV and was judged to be a qualified battery.
  • J17 20650 qualified 3. 162 3. 155 -7
  • a battery with a capacity difference of less than 3% is allowed to be assigned. It can be seen from the data in the table that Jl, J4, J6, J8, J10, J12, J13, J14 have the lowest 8pcs hold voltage drop and the same self-consumption level, which can be used as a group of 1P-8S battery packs, J2, J5, J9, J1 K J15, J16, J18, J19 a total of 8pcs hold pressure drop close, self-consumption power level is equivalent, can be used as another group of 1P-8S battery.
  • step (5) After the battery is assembled in step (5), the battery pack is welded and assembled, and an 8S protection board is installed to assemble a 1P-8S complete battery pack. 8S protection board used, no equalization function, overcharge protection voltage 3. 9V/section, over-discharge protection voltage 2V/section.
  • Verification Charge the first battery pack of the above method, charge 10A constant current 29. 2V, turn 29. 2V constant voltage charge to 1000mA cutoff. 10A constant current discharge 16V, discharge capacity 20680mAh. The discharge cut-off instant voltage, high consistency, see Table 5.
  • Example 3 The 11065145Fe type lithium iron phosphate lithium ion battery produced by the company has a nominal voltage of 3. 2V and a rated capacity of 9Ah, which needs to be assembled into a 1P-8S battery pack.
  • the battery is now operated as follows in accordance with the method of the present invention.
  • Step (1) adjust the battery charge to S0C 4% and store the battery at room temperature for 12h, measure the battery voltage as ⁇ , and then continue to store the battery for 168h at room temperature.
  • the measured battery voltage is V 2 .
  • Calculate ⁇ The ⁇ V range was -10 mV to 5 mV and was judged to be a qualified battery.
  • K2 9550 qualified 3. 168 3. 162 -6 qualified K3 9510 3. 151 3. 153 2 grid K4 9630 3. 158 3. 159 1 compartment K5 9350 3. 168 3. 155 -13 Qualified K6 9530 3. 156 3. 152 -4 compartment K7 9460 3. 162 3. 163 1 grid K8 9540 3. 167 3. 162 -5 grid K9 9520 3. 157 3. 153 -4 compartment K10 9610 3. 166 3. 160 -6 compartment K11 9480 3. 153 3. 156 3 compartment K12 9390 fit Combine, combine, combine, combine and combine 3. 165 3. 159 -6 grid K13 9740 ⁇ 3. 153 3. 151 -2 ⁇ K14 9620 3. 168 3 161 -7 grid K15 9590 3. 159 3. 143 -16
  • step (3) After the battery assembly in step (3), the battery pack is welded and assembled, and an 8S protection board is installed to assemble a 1P-8S complete battery pack. 8S protection board used, no equalization function, overcharge protection voltage 3. 9V/section, over-discharge protection voltage 2V/section.
  • Verification Charge the first battery pack of the above method, 4. 5A constant current charging 29. 2V, turn 29. 2V constant voltage charging to 450mA cutoff. 4. 5A constant current discharge 16V, release capacity 9360mAh. The discharge cut-off voltage is high and the consistency is high. See Table 8.
  • the electrical cut-off average voltage is shown in Table 9.
  • the cycle is still in progress, the capacity is stable, and the discharge cutoff total voltage and the average divided voltage are consistent.
  • Safety test At room temperature 27 °C, take the K14 and K19 batteries that are not used for matching, press the nail into the center of the battery, short-circuit the battery, and measure the short-circuit temperature.
  • the maximum temperature is 40 °C and 42 respectively. °C, temperature rise 13 ⁇ 15 °C, no burning, no explosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

说 明 书
一种锂二次电池组的配组旅 技术领域
本发明一种锂二次电池组的配组方法属于二次电池领域,特别是涉及一种锂 离子电池组的电池配组方法。
背景技术
随着锂离子电池的快速发展, 锂离子电池作为动力、储能电源亦开始得到大 量应用。 与手机等小型移动用电设备相比, 动力、储能电池所需要储能电源输出 功率高, 使用寿命长, 这就要求电池进行多并、 多串的组合, 电池组的价格高, 价值大, 因此, 对电池可靠性和一致性提出了更高的要求。 电池组中任意单体电 池的功能性失效, 均会导致整个电池组的功能性失效, 甚至会引发电池的安全性 失控等问题。为保证电池组中各单体电池的一致性,需要对电池进行筛选、分组, 以确保电池组中各单体电池的一致性。 电池的一致性指标有容量、 电压、放电平 台、 内阻、 自耗电速度等。 其中, 以电池的自耗电速度尤为重要, 且难以甄别。 在没有均衡充放电的体系中, 因自耗电不同, 经过长时间的储存和使用, 电池的 一致性会发生很大的变化。目前行业标准的自耗电测试方法是充饱电(S0C 100%) 搁置 1个月测荷电保持率,生产上普遍采用的电池自耗电测试方法为将电池充至 满电状态(S0C 90〜100%)或半电状态(S0C 40〜60%), 而后对电池进行常温 储存或高温储存, 通过考察储存前后电池的电压降以检测电池的自耗电水平。此 类方法的缺陷是满电状态或半电状态下, 锂离子电池的电压 -容量关系不明显; 对于磷酸铁锂型电池而言, 满电状态或半电状态下电压-容量关系很不明显。 因 此, 采用上述方法需要通过长时间的储存方能有一定效果, 不利于大规模生产应 用。 同时, 电池的荷电状态越高, 电池储存和组装时安全隐患越大。 满电状态或 半电状态的电池, 自耗电挑选测试时间长, 一般 15〜30天, 批量生产周期长, 资金积压大, 成本高, 客户对交期不满意; 缩短挑选测试时间, 自耗电偏大的电 芯挑不出来, 产品出到客户处检验不合格, 客户抱怨。 电池组质量可靠性跟交期 成本形成矛盾。 中国专利申请 CN101764259A公布了荷电 50〜90%储存 7〜14天 的挑选自耗电的方法, 荷电较高, 挑选时间较长。 挑选电池时, 在制品在制程中 有自耗电合格的电池, 也有自耗电大的电池, 高荷电态下, 自耗电大的电池容易 发热, 存在自热自燃的风险, 产生高于 13CTC的高温, 会使其邻近的电池内部隔 膜熔化, 相继发生内部短路, 发生连锁反应; 很多电池厂起火, 皆因电池自热自 燃; 在荷电 50〜90%储存, 电池电压处于电池放电电压平台段, 电压相对平稳, 不容易通过电压反映电池的自耗电水平, 需要较长时间, 也不能全部识别出自耗 电大的电池, 会有漏网之鱼, 混入电池组中, 成为日后产品功能损失和爆炸起火 的隐患。
发明内容
本发明的目的是避免现有技术中的不足之处,而提供一种利于大规模生产应 用, 自耗电挑选测试时间短, 对电池进行快速配组, 电池组装安全, 可靠性高的 一种锂二次电池组的配组方法。
通过研究分析钴酸锂锂离子电池、锰酸锂锂离子电池、镍钴锰酸锂锂离子电 池、磷酸铁锂锂离子电池等锂离子电池的放电曲线, 发现放电初始时由于极化作 用, 电压很快掉下来, 中间阶段相对平稳, 放电末段几乎直线下降, 有 0〜10% 容量在末段放出。利用锂离子电池放电平台平、后段斜线直的特点, 我们可以找 出斜线段电压跟剩余容量的比例关系,就可以根据储存电压变化来计算自耗电率。 在荷电 0〜10%的空电状态或低荷电状态, 如果电池有漏电, 搁置 1〜10天时间 内电压很容易发生变化,通过电压变化可以计算 1〜10天的自耗电率。在荷电 0〜 10%的空电状态或低荷电状态, 如果电池发生内部短路, 其释放的能量不足以使 其自身升温到燃点以上, 也不能加热其邻近的电池, 不能使邻近的电池内部隔膜 熔化, 不会发生连锁反应, 不会发生爆炸起火事故。
通过将电池以小电流放电至空电状态或低荷电状态,或补充少量电荷至低荷 电状态, 在空电状态或低荷电状态下 (S0C 0〜10%) 经短时间储存并挑选电池 电压, 剔除自耗电大的低压的电池, 同时, 在空电状态或低荷电状态下对电池组 进行装配, 从而达到快速配组、 电池组装安全、 电池组可靠性高的目的。
本发明的目的是通过以下步骤来实现的:
( 1 )将电池充放电 1〜3个循环,记录最后一次放电容量 C。,设定下限容量, 取 c。不小于下限容量的电池为合格电池;下限容量是生产工艺定义的最低合格容 量,一般为额定容量 c5, 或者比额定容量略高以保证发给客户的电池达到额定容 量 C5以上, 范围 5〜500Ah。 电池充放电是 0. 1 C5〜5 C5恒流充电至充电截止电 压 V。, 充电截止电压 4. 2V〜3. 6V, 转恒压充电至 0. 01 C5〜0. 5 C5截止, 0. 2 C5〜 10 C5恒流放电至放电截止电压 Vd。 放电截止电压 3V〜2V。 充电截止电压 V。根据电池体系确定, 如钴酸锂 -石墨体系为 4.2V, 磷酸铁锂 -石墨体系为 3.6V。 放电截止电压 Vd也根据电池体系确定, 如钴酸锂-石墨体系 为 3V, 磷酸铁锂 -石墨体系为 2V。 额定容量是生产厂标明的电池或电池组容量, 指电池或电池组在环境温度为 23°C±2°C条件下, 以 5h率放电至终止电压时所 应提供的电量, 用 表示, 单位为 Ah (安培小时)或 mAh (毫安小时)。
(2) 在上述充放电操作中的最后一次放电基础上, 继续以 0.01 C5〜0.5 C5 放电至放电截止电压 Vd 2.0V〜3.0V, 使电池处于空电状态。 小倍率电流放电的 目的是减少极化作用的影响, 使电池更加整齐地放电到空电状态,放电后电池电 压一致性高。
(3)将步骤(2)放电后的空电状态的电池以0.01(:5〜0.5(:5充入容量(:1; 容量 为电池额定容量的 0.1%〜10%, 更优选的容量 为电池额定容量的 2%〜 5%。 使电池处于低荷电状态。
(4) 将步骤 (3) 的电池于 20〜50°C环境下储存 ^时间, 测量记录储存后 电池电压, 记为 V1; 而后继续将电池在 20〜50°C环境下储存 t2时间, 测试储存 后电池电压,记为 V2,计算电压差 Δ m 其中 为 lh〜48h, t2为 24h〜240h; 设定 Δ V范围为 -20mV〜10mV, Δ V合格的范围更优选为 _10mV〜5mV。
(5)将步骤(4)分选后合格电池, 根据配组所需要的串联电池个数, 取电 池按照一定的容量配组标准对电池进行分组, 而后, 对电池组进行焊接组装形成 完整电池组, 电池组中各单体电池容量差不大于其额定容量的 5%, 优选各单体 电池容量差不大于其额定容量的 2%。
本发明的目的是通过以下步骤来实现的:
(1)将电池充放电 1〜3个循环,记录最后一次放电容量 C。,设定下限容量, 取 C。不小于下限容量的电池为合格电池;下限容量是生产工艺定义的最低合格容 量,一般为额定容量 C5, 或者比额定容量略高以保证发给客户的电池达到额定容 量 C5以上, 范围 5〜500Ah。 电池充放电是 0.1 C5〜5 C5恒流充电至充电截止电 压 V。, 充电截止电压 4.2V〜3.6V, 转恒压充电至 0.01 C5〜0.5C5截止, 0.2 C5〜 10 C5恒流放电至放电截止电压 Vd。 放电截止电压 3V〜2V。
充电截止电压 V。根据电池体系确定, 如钴酸锂 -石墨体系为 4.2V, 磷酸铁锂 -石墨体系为 3.6V。 放电截止电压 Vd也根据电池体系确定, 如钴酸锂-石墨体系 为 3V, 磷酸铁锂 -石墨体系为 2V。 额定容量是生产厂标明的电池或电池组容量, 指电池或电池组在环境温度为 23°C±2°C条件下, 以 5h率放电至终止电压时所 应提供的电量, 用 表示, 单位为 Ah (安培小时)或 mAh (毫安小时)。
(2) 在上述充放电操作中的最后一次放电基础上, 继续以 0.01 C5〜0.5 C5 放电至放电截止电压 Vd2.0V〜3.0V, 使电池处于空电状态。小倍率电流放电的目 的是减少极化作用的影响, 使电池更加整齐地放电到空电状态, 放电后电池电压 一致性高。
(3) 将步骤 (2) 的电池于 20〜50°C环境下储存 ^时间, 测量记录储存后 电池电压, 记为 V1; 而后继续将电池在 20〜50°C环境下储存 t2时间, 测试储存 后电池电压,记为 V2,计算电压差 Δ m 其中 为 lh〜48h, t2为 24h〜240h; 设定 Δ V范围为 -20mV〜10mV, Δ V合格的范围更优选为 _10mV〜5mV。
(4)将步骤(3)分选后合格电池, 根据配组所需要的串联电池个数, 取电 池按照一定的容量配组标准对电池进行分组, 而后, 对电池组进行焊接组装形成 完整电池组, 电池组中各单体电池容量差不大于其额定容量的 5%, 优选各单体 电池容量差不大于其额定容量的 2%。
本发明的目的是通过以下步骤来实现的:
(1)将电池充放电 2〜3个循环,最后一次放电控制放出容量 90% C5〜99.9% C5, 使电池剩余容量为电池额定容量的 0.1%〜10%, 使电池处于低荷电状态。 记 录倒数第二次放电容量 C。,设定下限容量,取 C。不小于下限容量的电池为合格电 池; 下限容量是生产工艺定义的最低合格容量, 一般为额定容量 C5, 或者比额定 容量略高以保证发给客户的电池达到额定容量 C5以上, 范围 5〜500Ah。 电池充 放电是 0.1 C5〜5C5恒流充电至充电截止电压 V。, 充电截止电压 4.2V〜3.6V, 转 恒压充电至 0.01 C5〜0.5 C5截止, 0.2 C5〜10 C5恒流放电至放电截止电压 Vd。 放电截止电压 3V〜2V。
充电截止电压 V。根据电池体系确定, 如钴酸锂 -石墨体系为 4.2V, 磷酸铁锂 -石墨体系为 3.6V。 放电截止电压 Vd也根据电池体系确定, 如钴酸锂-石墨体系 为 3V, 磷酸铁锂 -石墨体系为 2V。 额定容量是生产厂标明的电池或电池组容量, 指电池或电池组在环境温度为 23°C±2°C条件下, 以 5h率放电至终止电压时所 应提供的电量, 用 表示, 单位为 Ah (安培小时)或 mAh (毫安小时)。 ( 2 ) 将步骤 (1 ) 的电池于 20〜50°C环境下储存 ^时间, 测量记录储存后 电池电压, 记为 V1 ; 而后继续将电池在 20〜50°C环境下储存 t2时间, 测试储存 后电池电压,记为 V2,计算电压差 Δ m 其中 为 lh〜48h, t2为 24h〜240h; 设定 Δ V范围为 -20mV〜10mV, Δ V合格的范围更优选为 _10mV〜5mV。
( 3 )将步骤(2 )分选后合格电池, 根据配组所需要的串联电池个数, 取电 池按照一定的容量配组标准对电池进行分组, 而后, 对电池组进行焊接组装形成 完整电池组, 电池组中各单体电池容量差不大于其额定容量的 5%, 优选各单体 电池容量差不大于其额定容量的 2%。
本发明的放电截止电压 Vd为 2. 0V〜3. 0V, 根据电池体系不同而不同, 如磷 酸铁锂电池放电截止电压 Vd为 2. 0V, 钴酸锂电池放电截止电压 Vd为 3. 0V。
在电池组的可靠性影响因素中, 各单体电池的自耗电水平尤为重要。 因此, 如何剔除电池中自耗电大的电池成为影响电池组可靠性的关键因素。
电池的荷电容量与其稳定开路电压成正比, 理论上, 只要电压测试的精度足 够高, 就可以得到其对应状态的电池荷电容量。在电池的荷电容量与稳定开路电 压的关系中, 以空电状态或低荷电状态下 (S0C 0〜10%) 关系最为明显。 满电 态电池在储存过程中安全隐患大, 操作时短路打火几率大。 同时, 对于磷酸铁锂 型电池, 其满电态荷电容量与稳定开路电压关系同样存在关系不明显的现象, 实 际操作过程中容易误判。而任何类型的锂离子电池, 电池在空电状态或低荷电状 态下 (S0C 0〜10%) 电池荷电容量与电池稳定开路电压关系表现明显, 电池轻 微的自耗电现象, 均能通过电池开路电压降反映出来, 且电池的荷电量越低, 此 种现象越明显。 因此, 本发明采用空电状态或低荷电状态下(S0C 0〜10%)储 存电池, 通过检测电池开路电压的变化, 可有效剔除自耗电大的电池, 从而保证 电池组的可靠性。
串联电池的特点是流经各单体的电流大小相同,意即电池组在充放电过程中, 串联电池中各单体电池充放电容量大小一致, 因此, 串联电池组中各单体电池起 始实际荷电容量(实际容量多少, 而非荷电百分比)一致, 可确保电池组放电的 一致性。本发明方法中在电池空电状态或低荷电状态挑选自耗电后, 对电池补充 入电池额定容量的 0%〜10%,可有效保证电池放电的一致性。同时,荷电量为 0〜 10%的空电状态或低荷电状态下电池安全性好, 可有效避免生产操作过程中出现 的短路打火、 跌落、 剌穿等导致的安全隐患。 电池按标准放电制度 0. 2C5放电到 标准放电截止电压 Vd, 认定电池荷电态为 S0C 0%; 本发明方法定义以 0. 01 c5〜 0. 5 C5放电至放电截止电压 Vd 2. 0V〜3. 0V, 认定电池为空电状态, 此时对电池 做钉剌测试, 使其内部短路, 电池释放少量的残余容量, 电池温升低, 不燃烧不 爆炸, 安全性高; 电池仅有的残余容量, 只要有漏电, 很容易从电压反映出来。 电池按标准放电制度放电到标准放电截止电压, 再充入 0〜10%的容量, 电池荷 电态为 0〜10%, 荷电量少, 此时对电池做钉剌测试, 使其内部短路, 释放的热 量不足以使温度升高到隔膜熔解的温度, 其本身不燃烧不爆炸, 也不会使其邻近 的电池发生连锁反应, 安全性高; 电池的电量减少, 电压直线下降, 容易从电压 变化体现出电池自耗电水平, 容易剔除自耗电大的电池, 配组可靠性高。
本发明的电池组配组方法优点是电池组中各单体电池自耗电隐患小,电池放 电一致性好, 电池组组装安全, 电池组可靠性高, 实际应用时快捷、 简单、 易操 作, 具有很好的市场应用前景。
附图说明
附图 1是磷酸铁锂锂离子电池的放电曲线。
具体实 式
下面结合实施例对本发明做进一步说明。
附图 1是 11585135Fe型磷酸铁锂锂离子电池的放电曲线。
实施例 1 :本公司所生产 11585135Fe型磷酸铁锂锂离子电池,标称电压 3. 2V, 额定容量 10Ah, 需要组装成 1P-12S电池组。 现根据本发明所述方法对电池进行 如下操作。
( 1 ) 将电池 0. 5(:5倍率电流充放电 2 周, 记录最后一次放电容量为 C。, Co^ lOAh为合格电池;
( 2 ) 将上述合格电池继续以 0. 2 C5 小倍率电流放电至 2. 0V; 使电池处于 空电状态。
( 3 )将步骤(2 )操作后电池室温环境下储存 24h, 测量记录电池电压为 ^, 而后继续将电池于室温环境下储存 120h,测量记录电池电压为^,计算 Δ
Figure imgf000008_0001
Δ V范围为 -5mV〜5mV判定为合格电池。
上述操作各电池具体数据如表 1所示: 表 1.
电池 Co V: v2
编号 [mAh] 判定 [V] [V] [mV] 判定
F1 10850 合格 2. 831 2. 829 -2 合格
F2 10910 合格 2. 841 2. 840 -1 合格
F3 11020 合格 2. 797 2. 799 2 合格
F4 10870 合格 2. 819 2. 821 2 合格
F5 10730 合格 2. 815 2. 816 1 合格
F6 11030 合格 2. 823 2. 822 -1 合格
F7 10660 合格 2. 816 2. 814 -2 合格
F8 11030 合格 2. 836 2. 830 -6 不合格
F9 10970 合格 2. 836 2. 836 0 合格
F10 10920 合格 2. 816 2. 843 27 不合格
F11 11080 合格 2. 815 2. 816 1 合格
F12 10990 合格 2. 822 2. 820 -2 合格
F13 10850 合格 2. 812 2. 810 -2 合格
F14 11060 合格 2. 797 2. 799 2 合格
F15 10850 合格 2. 815 2. 817 2 合格
F16 11100 合格 2. 800 2. 802 2 合格
F17 10850 合格 2. 823 2. 825 2 合格
F18 10980 合格 2. 793 2. 793 0 合格
F19 10930 合格 2. 818 2. 820 2 合格
F20 10940 合格 2. 811 2. 801 -10 不合格
F21 10980 合格 2. 811 2. 813 2 合格
F22 11040 合格 2. 807 2. 810 3 合格
F23 11010 合格 2. 807 2. 808 1 合格
F24 10950 合格 2. 802 2. 804 2 合格
F25 10990 合格 2. 797 2. 799 2 合格
F26 10720 合格 2. 812 2. 809 -3 合格
F27 10680 合格 2. 816 2. 814 -2 合格
F28 10580 合格 2. 818 2. 816 -2 合格
( 4) 设定容量差异在 3%以内的电池允许配组。 由表中数据可以看出, Fl、
F2、 F4、 F5、 F7、 F13、 F15、 F17、 F19、 F24、 F26、 F27共 12只可作为一组 1P-12S 电池组, F3、 F6、 F9、 FI K F12、 F14、 F16、 F18、 F21、 F22、 F23、 F25 共 12 只可作为另一组 1P-12S电池组。
( 5 )经过步骤(4)电池配组后,对电池组进行焊接组装,加装 12S保护板, 装配成 1P-12S完整电池组。所用 12S保护板,无均衡功能,过充保护电压 3. 9V/ 节, 过放保护电压 2V/节。
验证: 按上述方法配的第一组电池, 5A恒流充电 43. 8V, 转 43. 8V恒压充电 至 500mA截止。 5A恒流放电到 24V截止, 放出容 10672mAho 放电截止瞬间电 压, 一致性高, 见表 2。
表 2
放电截止分电压
电池编号
[V]
F1 092
F2 098
F4 056
F5 085
F7 074
F13 065
F15 058
F17 036
F19 038
F24 072
F26 009
F27 039
对第一组电池做 0. 5 C5充放循环, 记录放电容 〔和放电截止总电压, 计算放 电截止平均分电压, 见表 3。
表 3
循环次 放电容量 放电截止总电压 放电截止平均
数 [mAh] [V] [V]
1 10672 24. 72 2. 060
2 10682 24. 73 2. 061
3 10676 24. 73 2. 061
4 10675 24. 74 2. 062
5 10685 24. 76 2. 063
6 10682 24. 73 2. 061
7 10670 24. 75 2. 063
8 10668 24. 74 2. 062
9 10676 24. 73 2. 061
10 10685 24. 75 2. 063
11 10668 24. 77 2. 064
12 10665 24. 73 2. 061
13 10662 24. 75 2. 063
14 10665 24. 74 2. 062
15 10668 24. 73 2. 061
16 10660 24. 72 2. 060
17 10658 24. 76 2. 063 18 10655 24. 75 2. 063
19 10658 24. 74 2. 062
20 10662 24. 73 2. 061
循环仍在进行中, 容量发挥平稳, 放电截止总电压和平均分电压一致性高。
安全测试: 在室温 28°C, 取没有用于配组的 F28号电池, 用图钉压入电池 中心部位, 使电池内部短路, 同时测量短路点温度, 最高温度 33°C, 温升 5°C, 不燃烧不爆炸。
实施例 2:本公司所生产 130125155Fe型磷酸铁锂锂离子电池,标称电压 3. 2V, 额定容量 20Ah, 需要组装成 1P-8S 电池组。 现根据本发明所述方法对电池进行 如下操作。
(1)将电池 0. 5C5倍率电流充放电 1周,记录最后一次放电容量为 C。, C0^20Ah 为合格电池;
(2)将上述合格电池继续以 I为 0. 2 C5小倍率电流放电至 2. 0V;
(3)对电池充电, 0. 2 C5充 12min,即电池 S0C为 4%。使电池处于低荷电状态。
( 4) 将步骤 (3 ) 充电后电池室温环境下储存 12h, 测量记录电池电压为 ^, 而后继续将电池于室温环境下储存 144h,测量记录电池电压为^,计算 Δ
Figure imgf000011_0001
Δ V范围为 -10mV〜0mV判定为合格电池。
上述操作各电池具体数据如表 4所示:
表 4
电池 Co v2
编号 [mAh] 判定 [V] [V] [mV] 判定
J1 20880 合格 3. 155 3. 152 -3 合格
J2 20750 合格 3. 165 3. 161 -4 合格
J3 20520 合格 3. 158 3. 152 -6 合格
J4 20810 合格 3. 159 3. 155 -4 合格
J5 20750 合格 3. 161 3. 156 -5 合格
J6 21030 合格 3. 153 3. 149 -4 合格
J7 20960 合格 3. 152 3. 131 -21 不合格
J8 21060 合格 3. 157 3. 153 -4 合格
J9 20940 合格 3. 159 3. 154 -5 合格
J10 20910 合格 3. 164 3. 160 -4 合格
JH 21060 合格 3. 163 3. 158 -5 合格
J12 20690 合格 3. 161 3. 158 -3 合格
J13 20840 合格 3. 153 3. 149 -4 合格
J14 21010 合格 3. 155 3. 151 -4 合格 J15 20550 合格 3. 158 3. 153 -5
J16 20560 合格 3. 160 3. 155 -5
J17 20650 合格 3. 162 3. 155 -7
J18 20880 合格 3. 157 3. 151 -6
J19 20730 合格 3. 158 3. 153 -5
J20 20640 合格 3. 156 3. 142 -14 不合格
( 5 ) 设定容量差异在 3%以内的电池允许配组。 由表中数据可以看出, Jl、 J4、 J6、 J8、 J10、 J12、 J13、 J14共 8pcs搁置压降最低, 自耗电水平一致, 可 作为一组 1P-8S电池组, J2、 J5、 J9、 J1 K J15、 J16、 J18、 J19共 8pcs搁置 压降接近, 自耗电水平相当, 可作为另一组 1P-8S电池组。
( 6 )经过步骤(5 )电池配组后, 对电池组进行焊接组装, 加装 8S保护板, 装配成 1P-8S完整电池组。 所用 8S保护板, 无均衡功能, 过充保护电压 3. 9V/ 节, 过放保护电压 2V/节。
验证: 对上述方法配的第一组电池充电, 10A恒流充电 29. 2V, 转 29. 2V恒 压充电至 1000mA截止。 10A恒流放电 16V, 放出容量 20680mAh。 放电截止瞬间 电压, 一致性高, 见表 5。
表 5
放电截止分电压
电池编号
[V] 合合合合合
J1 2. 088 格格格格格 J4 2. 086
J6 2. 065
J8 2. 079
J10 2. 035
J12 2. 011
J13 2. 045
J14 2. 068
对第一组电池做 0. 5 C5充放循环 记录放电容 J 〔和放电截止总电压, 计算放 电截止平均分电压, 见表 6。
表 6
循环次 放电容量 放电截止总电压 放电截止平均分电压 数 [mAh] [V] [V]
1 20680 16. 48 2. 060
20674 16. 48 2. 060
20688 16. 49 2. 061 4 20662 16. 47 2. 059
5 20673 16. 50 2. 063
6 20656 16. 52 2. 065
7 20668 16. 48 2. 060
8 20671 16. 49 2. 061
9 20654 16. 52 2. 065
10 20648 16. 51 2. 064
11 20652 16. 53 2. 066
12 20642 16. 50 2. 063
13 20665 16. 54 2. 068
14 20638 16. 52 2. 065
15 20658 16. 53 2. 066
16 20652 16. 55 2. 069
17 20645 16. 52 2. 065
18 20633 16. 54 2. 068
19 20649 16. 56 2. 070
20 20652 16. 52 2. 065
'在进行中, 容量发挥平稳, 放电截止总电压和平均分电压一致性高。 安全测试: 在室温 28°C, 取没有用于配组的 J3和 J17号电池, 用图钉压入 电池中心部位, 使电池内部短路, 同时测量短路点温度, 最高温度分别为 43°C 和 45°C, 温升 15〜17°C, 不燃烧不爆炸。
实施例 3:本公司所生产 11065145Fe型磷酸铁锂锂离子电池,标称电压 3. 2V, 额定容量 9Ah, 需要组装成 1P-8S电池组。 现根据本发明所述方法对电池进行如 下操作。
(1)将电池 0. 5C5倍率电流充放电 2周, 记录第 1周放电容量为 C。, C0^9Ah 为合格电池; 第 2周放电时以 0. 5 C5恒流放电 115. 2 min, 放出 96%电量, 即电 池 S0C为 4%。 使电池处于低荷电状态。
(2)将步骤 (1 ) 调整荷电量为 S0C 4%后的电池室温环境下储存 12h, 测量记 录电池电压为 ^, 而后继续将电池于室温环境下储存 168h, 测量记录电池电压 为 V2, 计算 Δ
Figure imgf000013_0001
Δ V范围为 -10mV〜5mV判定为合格电池。
上述操作各电池具体数据如表 7所示:
表 7
电池 Co v2
编号 [mAh] 判定 [V] [V] [mV] 判定
K1 9360 合格 3. 157 3. 151 -6 合格
K2 9550 合格 3. 168 3. 162 -6 合格 K3 9510 3. 151 3. 153 2 格 K4 9630 3. 158 3. 159 1 格 K5 9350 3. 168 3. 155 -13 合格 K6 9530 3. 156 3. 152 -4 格 K7 9460 3. 162 3. 163 1 格 K8 9540 3. 167 3. 162 -5 格 K9 9520 3. 157 3. 153 -4 格 K10 9610 3. 166 3. 160 -6 格 K11 9480 3. 153 3. 156 3 格 K12 9390 合合合合合合合合合合合合合合合合合合 3. 165 3. 159 -6 格 K13 9740 格格格格格格格格格格格格格格格格格格 3. 153 3. 151 -2 格 K14 9620 3. 168 3. 161 -7 格 K15 9590 3. 159 3. 143 -16
Figure imgf000014_0001
K16 9470 3. 165 3. 159 -6 格 K17 9640 3. 161 3. 157 -4 格 K18 9380 3. 167 3. 162 -5 格 K19 9660 3. 168 3. 161 -7 格 K20 9540 3. 159 3. 156 -3 格
( 3 ) 设定容量差异在 4%以内的电池允许配组。 由表中数据可以看出, K3、 K4、 K7、 K9、 K1 K Κ13、 Κ17、 Κ20共 8pcs搁置压降最低, 自耗电水平一致, 可 作为一组 1P-8S电池组, Kl、 Κ2、 Κ6、 Κ8、 Κ10、 Κ12、 Κ16、 K18共 8pcs搁置压 降接近, 自耗电水平相当, 可作为另一组 1P-8S电池组。
( 4)经过步骤(3 )电池配组后, 对电池组进行焊接组装, 加装 8S保护板, 装配成 1P-8S完整电池组。 所用 8S保护板, 无均衡功能, 过充保护电压 3. 9V/ 节, 过放保护电压 2V/节。
验证: 对上述方法配的第一组电池充电, 4. 5A恒流充电 29. 2V, 转 29. 2V恒 压充电至 450mA截止。 4. 5A恒流放电 16V, 放出容量 9360mAh。 放电截止瞬间电 压, 一致性高, 见表 8。
表 8
放电截止分电压
电池编号
[V]
K3 2. 098
K4 2. 089
K7 2. 005
K9 2. 069
K11 2. 039 K13 2. 071
K17 2. 055
K20 2. 048
对第一组电池做 0. 5 C5充放循环
电截止平均分电压, 见表 9。
表 9
循环次 放电容量 放电截止总电压 放电截止平均
数 [mAh] [V] [V]
1 9360 16. 47 2. 059
2 9382 16. 56 2. 070
3 9375 16. 57 2. 071
4 9370 16. 67 2. 084
5 9368 16. 66 2. 083
6 9359 16. 68 2. 085
7 9350 16. 51 2. 064
8 9366 16. 59 2. 074
9 9352 16. 57 2. 071
10 9348 16. 59 2. 074
11 9356 16. 63 2. 079
12 9358 16. 59 2. 074
13 9344 16. 65 2. 081
14 9349 16. 64 2. 080
15 9357 16. 71 2. 089
16 9351 16. 62 2. 078
17 9346 16. 78 2. 098
18 9339 16. 81 2. 101
19 9350 16. 75 2. 094
20 9345 16. 72 2. 090
循环仍在进行中, 容量发挥平稳, 放电截止总电压和平均分电压一致性高。
安全测试: 在室温 27°C, 取没有用于配组的 K14和 K19号电池, 用图钉压 入电池中心部位,使电池内部短路, 同时测量短路点温度,最高温度分别为 40°C 和 42°C, 温升 13〜15°C, 不燃烧不爆炸。

Claims

权 利 要 求 书
1. 一种锂二次电池组的配组方法, 其特征在于包含如下步骤:
(1)将电池充放电 1〜3个循环,记录最后一次放电容量 C。,设定下限容量, 取 C。不小于下限容量的电池为合格电池; 下限容量是生产工艺定义的最低合格 容量, 为额定容量 C5或者比额定容量高;
(2) 在上述充放电操作中的最后一次放电基础上, 继续以 0.01 C5〜0.5 C5 放电至放电截止电压 Vd2.0V〜3.0V, 将电池放电至空电状态;
(3) 将步骤 (2) 放电后的空电状态的电池以 0.01 C5〜0.5 C5补充入容量 C1; 容量 为电池额定容量的 0.1%〜10%;
(4) 将步骤 (3) 的电池于 20〜50°C环境下储存 ^时间, 测量记录储存后 电池电压, 记为 V1; 而后继续将电池在 20〜50°C环境下储存 t2时间, 测试储存 后电池电压,记为 V2,计算电压差 Δ V=V2- V"其中 ^为 lh〜48h, t2为 24h〜240h; 设定 Δ V范围为 -20mV〜10mV;
(5)将步骤(4)分选后合格电池, 根据配组所需要的串联电池个数, 取电 池按照一定的容量配组标准对电池进行分组, 而后,对电池组进行焊接组装形成 完整电池组, 电池组中各单体电池容量差不大于其额定容量的 5%。
2. 根据权利要求 1所述的一种锂二次电池组的配组方法, 其特征是电池充 放电是 0.1 C5〜5 C5恒流充电至充电截止电压, 充电截止电压 4.2V〜3.6V, 转 恒压充电至 0.01 C5〜0.5 C5截止, 0.2 C5〜10 C5恒流放电至放电截止电压, 放 电截止电压 3V〜2V, 额定容量 C5, 容量 为电池额定容量的 2%〜5%, 在室温下 测量 Δν, Δ V合格的范围为 -10mV〜5mV。 电池组中各单体电池容量差不大于其 额定容量的 2%。
3. 一种锂二次电池组的配组方法, 其特征在于包含如下步骤:
(1)将电池充放电 1〜3个循环,记录最后一次放电容量 C。,设定下限容量, 取 C。不小于下限容量的电池为合格电池; 下限容量是生产工艺定义的最低合格 容量, 为额定容量 C5或者比额定容量高;
(2) 在上述充放电操作中的最后一次放电基础上, 继续以 0.01 C5〜0.5 C5 放电至放电截止电压 Vd2.0V〜3.0V, 使电池处于空电状态;
(3) 将步骤 (2) 的电池于 20〜50°C环境下储存 ^时间, 测量记录储存后 电池电压, 记为 V1 ; 而后继续将电池在 20〜50°C环境下储存 t2时间, 测试储存 后电池电压,记为 V2,计算电压差 Δ V=V2- V"其中 ^为 lh〜48h, t2为 24h〜240h; 设定 Δ V范围为 -20mV〜10mV;
( 4)将步骤(3 )分选后合格电池, 根据配组所需要的串联电池个数, 取电 池按照一定的容量配组标准对电池进行分组, 而后,对电池组进行焊接组装形成 完整电池组, 电池组中各单体电池容量差不大于其额定容量的 5%;
4、 根据权利要求 3所述的一种锂二次电池组的配组方法, 其特征是电池充 放电是 0. 1 C5〜5 C5恒流充电至充电截止电压, 充电截止电压 4. 2V〜3. 6V, 转 恒压充电至 0. 01 C5〜0. 5 C5截止, 0. 2 C5〜10 C5恒流放电至放电截止电压, 放 电截止电压 3V〜2V, 额定容量 C5, 不补充电, 在室温下测量 Δ ν, Δ ν合格的范 围为 -10mV〜5mV。 电池组中各单体电池容量差不大于其额定容量的 2%。
5、 一种锂二次电池组的配组方法, 其特征在于包含如下步骤:
( 1 )将电池充放电 2〜3个循环,最后一次放电控制放出容量 90% C5〜99. 9% C5, 使电池剩余容量为电池额定容量的 0. 1%〜10%, 使电池处于低荷电状态。 记 录倒数第二次放电容量 C。, 设定下限容量, 取 C。不小于下限容量的电池为合格 电池; 下限容量是生产工艺定义的最低合格容量, 为额定容量 C5或者比额定容 量高;
( 2 ) 将步骤 (1 ) 的电池于 20〜50°C环境下储存 ^时间, 测量记录储存后 电池电压, 记为 V1 ; 而后继续将电池在 20〜50°C环境下储存 t2时间, 测试储存 后电池电压,记为 V2,计算电压差 Δ V=V2- V"其中 ^为 lh〜48h, t2为 24h〜240h; 设定 Δ V范围为 -20mV〜10mV;
( 3 )将步骤(2 )分选后合格电池, 根据配组所需要的串联电池个数, 取电 池按照一定的容量配组标准对电池进行分组, 而后,对电池组进行焊接组装形成 完整电池组, 电池组中各单体电池容量差不大于其额定容量的 5%;
6、 根据权利要求 5所述的一种锂二次电池组的配组方法, 其特征是最后 1 次放电至放出容量 95% C5〜98% C5,剩余容量为电池额定容量的 2%〜5%, 在室温 下测量 Δ ν, Δ V合格的范围为 -10mV〜5mV。 电池组中各单体电池容量差不大于 其额定容量的 2%。
PCT/CN2012/070500 2011-04-29 2012-01-17 一种锂二次电池组的配组方法 WO2012146071A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/065,083 US9755209B2 (en) 2011-04-29 2013-10-28 Method for grouping lithium secondary battery packs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110110667.3A CN102760907B (zh) 2011-04-29 2011-04-29 一种锂二次电池组的配组方法
CN201110110667.3 2011-04-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/065,083 Continuation-In-Part US9755209B2 (en) 2011-04-29 2013-10-28 Method for grouping lithium secondary battery packs
US14/065,083 Continuation US9755209B2 (en) 2011-04-29 2013-10-28 Method for grouping lithium secondary battery packs

Publications (1)

Publication Number Publication Date
WO2012146071A1 true WO2012146071A1 (zh) 2012-11-01

Family

ID=47055283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070500 WO2012146071A1 (zh) 2011-04-29 2012-01-17 一种锂二次电池组的配组方法

Country Status (3)

Country Link
US (1) US9755209B2 (zh)
CN (1) CN102760907B (zh)
WO (1) WO2012146071A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336248A (zh) * 2013-07-25 2013-10-02 哈尔滨工业大学 基于电池退化状态模型的锂离子电池循环寿命预测方法
CN112051508A (zh) * 2020-07-28 2020-12-08 国网江西省电力有限公司电力科学研究院 一种二次利用铅酸蓄电池性能一致性评价方法
CN112103577A (zh) * 2020-09-25 2020-12-18 江苏双登富朗特新能源有限公司 一种锂离子电池成组方法
CN113075564A (zh) * 2021-03-24 2021-07-06 骆驼集团新能源电池有限公司 一种磷酸铁锂电池自放电的筛选方法
CN113281660A (zh) * 2021-05-21 2021-08-20 张家港清研检测技术有限公司 一种检测退役动力电池包中不合格电芯的方法
CN113759254A (zh) * 2021-09-27 2021-12-07 中国联合网络通信集团有限公司 电池重组方法、装置、设备及存储介质
CN113884906A (zh) * 2021-10-08 2022-01-04 浙江天能动力能源有限公司 一种基于正态分布分析的动力蓄电池配组方法
CN113985286A (zh) * 2021-10-14 2022-01-28 合肥国轩高科动力能源有限公司 一种锂离子电池不同温度下soc-ocv测试方法
CN115149127A (zh) * 2021-03-31 2022-10-04 宁德新能源科技有限公司 电池的充放电方法、电子装置以及存储介质

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427125B (zh) * 2012-05-15 2016-04-13 清华大学 硫基聚合物锂离子电池的循环方法
CN103022569A (zh) * 2012-12-28 2013-04-03 深圳邦凯新能源股份有限公司 锂电池的配组方法
CN103208655A (zh) * 2013-03-04 2013-07-17 八叶(厦门)新能源科技有限公司 一种动力锂离子电池的配组方法
CN103296325A (zh) * 2013-06-04 2013-09-11 金能(唐海)电池制造有限公司 锂离子电池的配组方法
CN104607395B (zh) * 2013-11-01 2017-03-15 北汽福田汽车股份有限公司 锂离子电池分选方法
CN103545558A (zh) * 2013-11-08 2014-01-29 四川长虹电源有限责任公司 航空用大容量动力锂离子电池的一致性控制方法
CN104091976A (zh) * 2014-07-10 2014-10-08 东莞市世能电子科技有限公司 一种锂离子电池的容量分选方法
CN104218267B (zh) * 2014-07-30 2016-06-01 浙江超威创元实业有限公司 一种锂离子电池分容配组方法
CN104259114A (zh) * 2014-09-16 2015-01-07 双登集团股份有限公司 一种自放电大锂离子电池的筛选方法
CN104681851B (zh) * 2015-02-09 2017-08-29 威睿电动汽车技术(苏州)有限公司 一种汽车用锂离子动力电池配组方法
CN104668207A (zh) * 2015-02-16 2015-06-03 深圳市沃特玛电池有限公司 一种提高筛选锂离子动力电池一致性的方法
CN104950264B (zh) * 2015-06-26 2018-10-23 桐乡市众胜能源科技有限公司 测试锂离子电池自放电的方法
CN104979597B (zh) * 2015-06-26 2019-06-21 桐乡市众胜能源科技有限公司 锂离子电池自放电的方法
CN105182244A (zh) * 2015-09-02 2015-12-23 国网上海市电力公司 一种电池测试配组筛选方法
CN105319516A (zh) * 2015-11-24 2016-02-10 苏州新中能源科技有限公司 一种电池配组筛选方法
CN107290668A (zh) * 2016-04-01 2017-10-24 中国电力科学研究院 一种电动汽车电池梯次利用的筛选配组方法
CN107457194A (zh) * 2016-06-02 2017-12-12 上海国际汽车城(集团)有限公司 一种动力电芯梯次利用筛选配组方法
CN106824831A (zh) * 2016-12-19 2017-06-13 金同林 一种提高锂离子电池一致性的动力型电池的制造方法
CN109216795A (zh) * 2017-06-29 2019-01-15 青岛恒金源电子科技有限公司 一种锂离子电池配组方法
CN107293812B (zh) * 2017-06-29 2021-02-05 青岛恒金源电子科技有限公司 一种锂离子电池的化成与配组方法
CN107377422B (zh) * 2017-07-27 2019-06-07 东莞威胜储能技术有限公司 一种单体电池的分选方法
CN107225104B (zh) * 2017-07-27 2019-09-20 东莞威胜储能技术有限公司 一种电池的分选方法
CN109444764A (zh) * 2018-03-14 2019-03-08 刘杰 一种能量互换型动力电池评估检测方法
CN108448181B (zh) * 2018-04-11 2020-04-17 广东力科新能源有限公司 一种多串并锂离子电池组动态直流阻抗配组方法及系统
CN108539299A (zh) * 2018-04-11 2018-09-14 广东力科新能源有限公司 一种多串并锂离子电池组动态低压配组方法及系统
CN108896921A (zh) * 2018-06-19 2018-11-27 合肥国轩高科动力能源有限公司 一种筛选锂离子电池一致性方法
CN108899596A (zh) * 2018-06-29 2018-11-27 广东天劲新能源科技股份有限公司 一种动力电池配组方法
CN109449508B (zh) * 2018-10-09 2021-09-07 天能电池集团(安徽)有限公司 一种蓄电池配组剩余电池回充方法
CN109622426A (zh) * 2018-12-27 2019-04-16 银隆新能源股份有限公司 一种电池一致性筛选方法以及电池一致性筛选装置
CN111451159A (zh) * 2019-01-18 2020-07-28 上海什弋维新能源科技有限公司 一种对电池模块内单体电池容量进行快速筛选的方法
CN110045290B (zh) * 2019-04-25 2021-04-06 上海空间电源研究所 一种锂离子蓄电池内短路潜在缺陷无损检测方法
CN110221227B (zh) * 2019-05-31 2022-01-14 上海动力储能电池系统工程技术有限公司 电池模组中单体电池状态一致性评测方法
CN110459825B (zh) * 2019-08-23 2020-10-27 郑州中科新兴产业技术研究院 一种高倍率软包锂电池配组方法
CN110556598A (zh) * 2019-09-09 2019-12-10 盛蕾 一种锂二次电池组队方法
CN110707387A (zh) * 2019-09-12 2020-01-17 东莞力朗电池科技有限公司 一种磷酸铁锂电芯自放电筛选方法
US11469452B2 (en) * 2019-11-12 2022-10-11 Hunt Energy Enterprises, L.L.C. Capacity regenerable excess electrolyte Zn ion battery
CN111430823B (zh) * 2020-03-31 2021-04-20 苏州精诚智造智能科技有限公司 一种电动汽车动力锂电池系统的集成方法
CN111438083A (zh) * 2020-04-03 2020-07-24 惠州亿纬锂能股份有限公司 一种锂离子电池一致性的筛选方法
CN111722128B (zh) * 2020-05-19 2023-04-04 风帆有限责任公司 一种锂电池低压配组方法
CN111987378B (zh) * 2020-08-13 2023-06-27 力神(青岛)新能源有限公司 一种提高锂离子电池ocv一致性的充放电方法
CN112366370B (zh) * 2020-09-28 2022-08-12 中天储能科技有限公司 锂离子电池配组方法
CN112379285B (zh) * 2020-10-30 2023-04-11 合肥国轩高科动力能源有限公司 一种电池包自放电筛选方法
CN113013498B (zh) * 2021-02-22 2022-03-01 天能电池集团股份有限公司 一种铅蓄电池装配质量的判定方法
CN112964996A (zh) * 2021-04-25 2021-06-15 北京骑胜科技有限公司 电池检测方法、装置、设备及存储介质
CN113533981B (zh) * 2021-07-30 2024-01-26 蜂巢能源科技有限公司 锂离子电池自放电检测方法、设备及计算机可读存储介质
CN113708444B (zh) * 2021-08-16 2024-07-12 南方电网科学研究院有限责任公司 储能电站的能量均衡控制方法及装置
CN113848489B (zh) * 2021-09-10 2024-03-19 欣旺达动力科技股份有限公司 电池的短路识别方法、装置及存储介质
CN113967609B (zh) * 2021-10-09 2023-11-17 上海空间电源研究所 一种运载火箭用高功率锂离子电池的筛选配组方法
CN114069075B (zh) * 2021-10-27 2024-04-05 风帆有限责任公司 一种锂离子电池自放电筛选方法
CN114122545B (zh) * 2021-11-05 2024-09-03 格力钛新能源股份有限公司 锂电池配组方法
CN114558800A (zh) * 2022-02-24 2022-05-31 广州菲利斯太阳能科技有限公司 一种动力电池梯次利用的筛选重组方法及系统
CN115395117B (zh) * 2022-10-31 2022-12-27 深圳国瑞协创储能技术有限公司 一种锂电池配组方法、装置和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489237A (zh) * 2002-10-11 2004-04-14 北京有色金属研究总院 一种二次电池的分选方法
CN101764259A (zh) * 2010-01-15 2010-06-30 苏州星恒电源有限公司 一种动力锂离子二次电池的配组方法
CN101924247A (zh) * 2010-07-29 2010-12-22 江苏双登集团有限公司 一种锂离子电池配组方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321783B2 (ja) * 2008-03-04 2013-10-23 株式会社東芝 非水電解質二次電池および組電池
CN101907688B (zh) * 2010-08-02 2012-08-22 天津力神电池股份有限公司 一种锂离子电池电性能一致性的检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489237A (zh) * 2002-10-11 2004-04-14 北京有色金属研究总院 一种二次电池的分选方法
CN101764259A (zh) * 2010-01-15 2010-06-30 苏州星恒电源有限公司 一种动力锂离子二次电池的配组方法
CN101924247A (zh) * 2010-07-29 2010-12-22 江苏双登集团有限公司 一种锂离子电池配组方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336248A (zh) * 2013-07-25 2013-10-02 哈尔滨工业大学 基于电池退化状态模型的锂离子电池循环寿命预测方法
CN112051508A (zh) * 2020-07-28 2020-12-08 国网江西省电力有限公司电力科学研究院 一种二次利用铅酸蓄电池性能一致性评价方法
CN112103577A (zh) * 2020-09-25 2020-12-18 江苏双登富朗特新能源有限公司 一种锂离子电池成组方法
CN113075564A (zh) * 2021-03-24 2021-07-06 骆驼集团新能源电池有限公司 一种磷酸铁锂电池自放电的筛选方法
CN113075564B (zh) * 2021-03-24 2024-02-06 骆驼集团新能源电池有限公司 一种磷酸铁锂电池自放电的筛选方法
CN115149127A (zh) * 2021-03-31 2022-10-04 宁德新能源科技有限公司 电池的充放电方法、电子装置以及存储介质
CN113281660A (zh) * 2021-05-21 2021-08-20 张家港清研检测技术有限公司 一种检测退役动力电池包中不合格电芯的方法
CN113759254B (zh) * 2021-09-27 2023-12-26 中国联合网络通信集团有限公司 电池重组方法、装置、设备及存储介质
CN113759254A (zh) * 2021-09-27 2021-12-07 中国联合网络通信集团有限公司 电池重组方法、装置、设备及存储介质
CN113884906A (zh) * 2021-10-08 2022-01-04 浙江天能动力能源有限公司 一种基于正态分布分析的动力蓄电池配组方法
CN113884906B (zh) * 2021-10-08 2024-05-03 浙江天能动力能源有限公司 一种基于正态分布分析的动力蓄电池配组方法
CN113985286A (zh) * 2021-10-14 2022-01-28 合肥国轩高科动力能源有限公司 一种锂离子电池不同温度下soc-ocv测试方法
CN113985286B (zh) * 2021-10-14 2024-03-08 合肥国轩高科动力能源有限公司 一种锂离子电池不同温度下soc-ocv测试方法

Also Published As

Publication number Publication date
US20140047707A1 (en) 2014-02-20
CN102760907B (zh) 2014-07-02
CN102760907A (zh) 2012-10-31
US9755209B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2012146071A1 (zh) 一种锂二次电池组的配组方法
Stan et al. A comparative study of lithium ion to lead acid batteries for use in UPS applications
US8581547B2 (en) Method for detecting cell state-of-charge and state-of-discharge divergence of a series string of batteries or capacitors
CN103611692B (zh) 一种磷酸铁锂动力电池一致性配组筛选方法
CN103579698B (zh) 检查二次电池的方法
Kirchev Battery management and battery diagnostics
JP6555212B2 (ja) バッテリパックの製造方法
CN103675685B (zh) 锂离子电池的测试方法及安全性的判断方法
Wang et al. Use of LiFePO4 batteries in stand-alone solar system
EP4022708A1 (en) Durability test method and system and data table generation method for battery pulsed heating
CN101398469A (zh) 评估锂二次电池的寿命和安全性的方法
CN111123120A (zh) 一种锂离子电池自放电电流的测定方法
CN112246691B (zh) 一种Li(M1-xFex)PO4/Li4Ti5O12高容量电池挑选方法
JP2019169473A (ja) バッテリパックの製造方法
CN113238158A (zh) 一种检测动力电池包中电芯一致性的方法
Tredeau et al. Evaluation of lithium iron phosphate batteries for electric vehicles application
JP3370047B2 (ja) リチウムイオン電池の容量推定方法、劣化判定方法および劣化判定装置ならびにリチウムイオン電池パック
CN112213656A (zh) 一种电池测试系统和方法
JP3470098B2 (ja) リチウムイオン電池の容量推定方法、劣化判定方法および劣化判定装置ならびに劣化判定機能を具備したリチウムイオン電池パック
CN105244535B (zh) 一种锂离子二次电池的分选方法
CN202019034U (zh) 锂离子电池管理系统
JP3547686B2 (ja) リチウムイオン電池の容量推定方法、劣化判定方法および劣化判定装置ならびにリチウムイオン電池パック
CN103457002A (zh) 一种锂离子电池储存或运输的方法
CN108550893B (zh) 用于磷酸铁锂电池的配组方法
Kaczorowska et al. Identification of Technological Limitations of a Battery Energy Storage System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777167

Country of ref document: EP

Kind code of ref document: A1