WO2012146045A1 - 激光器及其制造方法和无源光网络系统 - Google Patents

激光器及其制造方法和无源光网络系统 Download PDF

Info

Publication number
WO2012146045A1
WO2012146045A1 PCT/CN2011/084833 CN2011084833W WO2012146045A1 WO 2012146045 A1 WO2012146045 A1 WO 2012146045A1 CN 2011084833 W CN2011084833 W CN 2011084833W WO 2012146045 A1 WO2012146045 A1 WO 2012146045A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum well
laser
mask pattern
region
layer
Prior art date
Application number
PCT/CN2011/084833
Other languages
English (en)
French (fr)
Inventor
周小平
颜学进
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US13/482,755 priority Critical patent/US8913897B2/en
Publication of WO2012146045A1 publication Critical patent/WO2012146045A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities

Definitions

  • the present invention relates generally to optical communication technologies, and more particularly to a laser and method of fabricating the same, and a passive optical network system using the same. Background technique
  • the WDM system mainly includes a plurality of optical line terminal (OLT) transceiver modules located in the central equipment room, and a plurality of optical network unit (ONU) transceiver modules located at the user end, wherein the OLT transceiver
  • the module and the ONU transceiver module generally use a laser (Laser Diode, LD) as a light source.
  • LD Laser Diode
  • Different ONU transceiver modules need to be different
  • the communication wavelengths ( ⁇ 1, ⁇ 2, . . . ⁇ ⁇ ) communicate with their corresponding OLT transceiver modules that require lasers of different transceiver modules to respectively emit optical signals of different wavelengths.
  • RSOA reflective semiconductor optical amplifier
  • seed light is injected into the RSOA to lock different RSOAs to different wavelengths.
  • RSOA has a significant temperature sensitivity problem. Specifically, as the temperature changes, the RSOA may experience a gain spectrum shift and a peak gain drop. For example, as the temperature increases, the gain peak of the RSOA may drift toward the long wavelength (the temperature drift coefficient is about 0.5 nm/°C), and the gain peak decreases.
  • the above gain variation will directly affect the performance of the WDM PON system, such as it may cause problems such as reduced signal extinction ratio, shortened transmission distance, and increased bit error rate of the WDM PON system. Summary of the invention
  • Embodiments of the present invention provide a laser that can solve the above temperature sensitivity problem and a method of fabricating the same. Meanwhile, an embodiment of the present invention further provides a passive optical network system using the laser.
  • a laser comprising: a semiconductor substrate; a waveguide layer disposed on the semiconductor substrate; and a light wave confinement layer disposed on a surface of the waveguide layer for confining light waves to the waveguide layer; wherein The waveguide layer includes a quantum well layer including a plurality of quantum well regions disposed along the optical wave transmission direction, the plurality of quantum well regions respectively having gain peaks of different wavelengths.
  • a laser manufacturing method comprising: providing a semiconductor substrate; growing a waveguide layer on the semiconductor substrate, the waveguide layer comprising a quantum well layer having a plurality of quantum well regions, wherein the plurality of quantum well regions The light wave transmission direction is set, and respectively has gain peaks of different wavelengths; a light wave confinement layer is formed on the surface of the quantum well layer.
  • a passive optical network system comprising an optical line terminal and a plurality of optical network units, the optical line terminals being connected to the plurality of optical network units through an optical distribution network; wherein the optical line terminals and/or light
  • the network unit includes the above laser.
  • the laser provided by the embodiment of the present invention is provided with a plurality of quantum well regions having gain peaks of different wavelengths in the inner quantum well layer, so that the light waves pass through the gain peaks having different wavelengths during transmission. Quantum well region.
  • the final gain effect of the light wave in the laser is the mutual superposition of the various gain peaks of the plurality of quantum well regions.
  • the superposition of the gain peaks can greatly increase the gain spectrum width of the laser, and therefore, even if a temperature change occurs, a certain gain peak shifts and a peak falls due to compensation of other gain peaks.
  • the laser provided by the embodiment of the invention can still ensure that the light wave has a better gain effect in a wide spectral range, thereby reducing the influence of temperature variation on the optical gain, and solving the temperature sensitivity problem of the prior art laser.
  • FIG. 1 is a schematic cross-sectional view of a laser according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a quantum well layer of the laser shown in FIG. 1.
  • FIG. 3 is a schematic diagram of a gain spectrum of a laser according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for manufacturing a laser according to an embodiment of the present invention.
  • Fig. 5 is a schematic illustration of a mask employed in the method of fabricating the laser shown in Fig. 4 for generating a quantum well layer.
  • Figure 6 is a schematic diagram showing the energy band structure of a quantum well layer formed using the mask described in Figure 5.
  • FIG. 7 is a schematic structural diagram of a WDM PON system according to an embodiment of the present invention.
  • the embodiment of the present invention first provides a semiconductor laser having a quantum well layer, wherein the quantum well layer can grow a plurality of quantum well regions by a selective growth technique, and The plurality of quantum well regions have gain peaks of different wavelengths.
  • the plurality of quantum well regions may be disposed along a transmission direction of the internal light wave of the laser such that the light wave passes through a quantum well region having gain peaks of different wavelengths during transmission.
  • the final gain effect of the light wave in the laser is the mutual superposition of the different gain peaks of the plurality of quantum well regions, and the superposition of the gain peaks can greatly improve the gain spectrum of the laser. width.
  • the laser provided by the embodiment of the present invention can ensure that the light wave has a better gain effect and thus reduces the temperature change due to the compensation of other gain peaks.
  • the effect on optical gain Solve the temperature sensitivity problem of prior art lasers.
  • the laser can be fabricated using a monolithic integration technique and is an RSOA laser or other semiconductor laser such as a DFB Distributed Feed Back, Distributed Feedback) laser or FP (Fabry Perot, Fabry-Perot) Luo) laser.
  • the laser may use an indium gallium arsenide (GnGaAsP) material as a light core layer, that is, the quantum well layer, since the InGaAsP is more mature than the indium gallium aluminum arsenide (InGaAlAs) manufacturing process, the laser may Simple and low cost implementation.
  • GnGaAsP indium gallium arsenide
  • InGaAlAs indium gallium aluminum arsenide
  • the injection current of each of the quantum well regions of the laser may be hierarchically controlled.
  • the individual quantum well regions of the laser can each be individually and electrically isolated from one another, wherein the individual electrodes are used to provide an injection current to their corresponding quantum well regions.
  • the gain values of the plurality of quantum well regions can be hierarchically controlled, thereby achieving a shift according to the gain peak.
  • the quantum well regions provide selective gain compensation, respectively, to further reduce the effect of temperature changes on the optical gain of the laser.
  • FIG. 1 is a schematic side view of a laser provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a quantum well layer of the laser.
  • the laser 200 includes a semiconductor substrate 210, a quantum well layer 220, a light wave confinement layer 230, an ohmic contact layer 240, and a first electrode layer 250 and a second electrode layer 260.
  • the first electrode layer 250 and the second electrode layer 260 may be respectively used as an anode and a cathode of the laser 200, the semiconductor substrate 210, the quantum well layer 220, the light wave limiting layer 230, and
  • the ohmic contact layer 240 may be disposed between the first electrode layer 250 and the second electrode layer 260 from bottom to top.
  • the semiconductor substrate 210 may be an indium phosphide (InP) substrate.
  • the quantum well layer 220 serves as a waveguide layer of the laser 200, and its material may be InGaAsP.
  • other light confinement layers such as SCH (Separate Confinement Heterostructure), may be added to the surface of the substrate 210 and the optical wave confinement layer 220, respectively, as required.
  • Limit heterojunction Limit heterojunction
  • the waveguide layer of the laser 200 may be a multilayer structure including the quantum well layer 200 and the SCH layer, or may be composed only of the quantum well layer 220.
  • the light wave confinement layer 230 may be a ⁇ -type ⁇ layer, and the light wave for the laser 200 is limited to be transmitted in the quantum well layer 220.
  • the ohmic contact layer 240 may be a germanium-type heavily indium gallium indium arsenide (InGaAs) layer for achieving ohmic contact between the light-wave limiting layer 230 and the first electrode layer 250 to reduce The impedance between the two facilitates current injection into the quantum well layer 220.
  • another semiconductor substrate 210 and the second electrode layer 260 may be disposed between An ohmic contact layer (not shown) is used to reduce the impedance between the two.
  • the quantum well layer 220 may include a plurality of quantum well regions.
  • FIG. 2 also schematically illustrates a mask pattern for forming the plurality of quantum well regions, However, it should be understood that the mask pattern shown in FIG. 2 may exist only in the manufacturing process of the laser 200, and the mask pattern may not exist in the actual product, for example, the mask pattern may be in the formation.
  • the quantum well layer 220 is then removed.
  • three quantum well regions are taken as an example.
  • the three quantum well regions are respectively named as a first quantum well region 221, a second quantum well region 222, and a third quantum well region 223, wherein
  • the thicknesses H1, H2, and H3 of the first quantum well region 221, the second quantum well region 222, and the third quantum well region 223 may be different, for example, ⁇ 1 ⁇ 2 ⁇ 3, such that the quantum well layer 220 has a stepped structure.
  • the first quantum well region 221, the second quantum well region 222, and the third quantum well region 223 may have different forbidden band (Eg) distributions, for example, Egl>Eg2>Eg3, wherein Egl, Eg2, and Eg3 represent the forbidden band widths of the first quantum well region 221, the second quantum well region 222, and the third quantum well region 223, respectively. Since the forbidden band directly corresponds to the wavelength of the gain peak, the quantum well layer 220 shown in FIG. 2 can make the first quantum well region 221, the second quantum well region 222, and the third quantum well region 223 have different wavelengths, respectively.
  • Eg forbidden band
  • the gain peak is shown in Figure 3, where QW1 ⁇ QW2 ⁇ QW3 in terms of wavelength. Therefore, the laser 200 has a multi-stage gain spectrum, and the total gain spectrum of the laser 200 covers at least the first quantum well region 221, the second quantum well region 222, and the third quantum well region 223. Superposition of multi-level gain spectra. This shows that compared to the present The laser 200 provided by the embodiment of the present invention can greatly improve the gain spectrum width of the laser, thereby achieving a better gain effect and reducing the influence of temperature changes on the optical gain of the laser 200.
  • the first electrode layer 250 may include a plurality of electrodes, such as a first anode 251, a second anode 252, and a third anode 253.
  • the positions of each of the electrodes 251, 252, 253 correspond to one of the quantum well regions 221, 222, 223 in the quantum well layer 220, respectively, for supplying the received injection current to the corresponding quantum well region 221, 222, 223.
  • the injection currents of the quantum well regions 221, 222, 223 may be different and may also be adjustable.
  • the tunable injection current is used to achieve hierarchical control of the gain spectra of the respective quantum well regions 221, 222, 223 to compensate for drifts in the gain spectra of the quantum well regions 221, 222, 223 that may vary with temperature. Thereby, the effect of temperature changes on the optical gain of the laser 200 is further reduced.
  • the gain spectrum of some or all of the quantum well regions 221, 222, and 223 of the laser 200 may appear to drift in a long wavelength direction, in order to compensate for the weakening of the gain in the short wavelength direction, Increasing a current applied to the first anode 251 in the laser 200 to increase an injection current of the first quantum well region 221, thereby increasing a gain amount of a short wavelength region, and compensating for a short wavelength region due to temperature drift The gain is reduced. Also, the current applied to the third anode 253 can be appropriately reduced to reduce the injection current of the third quantum well region 223, thereby reducing the amount of gain in the long wavelength region and reducing the long wavelength due to temperature drift. The effect of increased gain in the area.
  • the laser 200 is applied to the second anode
  • the current of 252 can also be appropriately adjusted as needed.
  • the current can also be increased at the same time, and the current increase amount can be smaller than the injection current increase amount of the first quantum well region 221.
  • the gain spectrum of some or all of the quantum well regions 221, 222, 223 of the laser 200 may appear to drift in the direction of short wavelengths, in order to compensate for the decrease in gain in the long wavelength direction.
  • the current applied to the third anode 253 in the laser 200 can be increased to increase the injection current of the third quantum well region 222, thereby increasing the amount of gain in the long wavelength region, and compensating for the long wavelength due to temperature drift.
  • the gain of the region is reduced; and, the current applied to the first anode 251 can also be appropriately reduced to reduce the injection current of the first quantum well region 221, thereby reducing the amount of gain in the short wavelength region, reducing The effect of increased gain in the short wavelength region caused by temperature drift.
  • the current applied to the second anode 252 in the laser 200 can be appropriately adjusted as needed, for example, the current can be simultaneously increased, and the current is increased.
  • a large amount may be smaller than the injection current increase amount of the third quantum well region 223.
  • the laser 200 having a multi-stage gain spectrum is realized by the selective growth technique provided by the embodiment of the present invention in detail by the manufacturing method of the laser 200.
  • FIG. 4 is a flowchart of a method for manufacturing a laser according to an embodiment of the present invention.
  • the manufacturing method can include:
  • Step S1 providing a semiconductor substrate 210, such as an InP substrate.
  • Step S2 growing a waveguide layer on the semiconductor substrate 210, the waveguide layer including a quantum well layer 220 having a plurality of quantum well regions 221, 222, 223, wherein the plurality of quantum well regions 221, 222, 223 have gain peaks of different wavelengths, respectively;
  • Step S3 forming a light wave confinement layer 230, such as a P-type intensive InPJS, on the waveguide layer to restrict light waves from being transmitted in the quantum well layer 220;
  • a light wave confinement layer 230 such as a P-type intensive InPJS
  • Step S4 forming an ohmic contact layer 240 on the light wave confinement layer 230, such as a heavily inhoc InGaAs house;
  • Step S5 forming a first electrode layer 250 over the ohmic contact layer 240 as an anode of the laser 200.
  • the first electrode layer 250 may further form a plurality of mutually electrically isolated electrodes 251, 252, 253 by etching, and the positions of the plurality of electrodes 251, 252, 253 are respectively different from the above
  • the quantum well regions 221, 222, and 223 of the gain peaks correspond.
  • a second electrode layer 260 is formed on the bottom surface of the semiconductor substrate 210 (i.e., the surface opposite to the first electrode layer 250) as a cathode of the laser 200.
  • the quantum well layer 220 may be grown by a selective growth method to obtain quantum well regions having different gain spectra, such as the first quantum well region shown in FIG. 221, a second quantum well region 222 and a third quantum well region 223.
  • the selective growth method may include:
  • a mask having a specific pattern is formed on the surface of the wafer of the semiconductor substrate 210.
  • the mask may be a silicon dioxide (SiO 2 ) layer or a silicon nitride (SiN) layer.
  • SiO 2 silicon dioxide
  • SiN silicon nitride
  • a Si0 2 layer or a SiN layer may be deposited on the surface of the semiconductor substrate 210.
  • the mask is formed by etching the Si0 2 house or SiN layer.
  • the mask may include a plurality of mask pattern regions, A plurality of mask pattern regions are sequentially arranged according to the light wave transmission direction, and each mask pattern region is respectively used for correspondingly growing a quantum well region during the crystallization process.
  • the mask may be patterned as shown in FIG. 5, including a first mask pattern area 610, a second mask pattern area 620, and a third mask pattern area 630.
  • a first mask pattern area 610 corresponds to the first quantum well region 221, the second quantum well region 222, and the third quantum well region 223 to be generated, respectively.
  • Each of the mask pattern regions 610, 620, and 630 may include two mask patterns that are symmetric with each other and have the same shape.
  • the mask patterns of the first mask pattern region 610, the second mask pattern region 620, and the third mask pattern region 630 are respectively defined as a first mask pattern 611 and a second mask pattern. 621 and a third mask pattern 631.
  • each of the mask patterns 611, 621, and 631 may be rectangular, and two of the first mask pattern regions 610 and the second mask pattern regions 620
  • the second mask patterns 621 and the two third mask patterns 631 of the third mask pattern region 630 are respectively symmetric along the same axis of symmetry, wherein the extending direction of the axis of symmetry may be specifically inside the laser 200 The direction of light wave propagation.
  • the areas S1, S2, and S3 of the second mask pattern 621 and the third mask pattern 631 satisfy S1 ⁇ S2 ⁇ S3.
  • the intermediate blank areas 612, 622, and 632 covered by the pattern patterns 611, 621, and 631 have the same area.
  • the semiconductor substrate 210 is subjected to crystallization treatment using the above mask to form the quantum well layer 220.
  • the first mask pattern 611, the second mask pattern 621, and The region covered by the third mask pattern 631 is such that a new crystal layer cannot be grown, and thus the crystal layer is mainly grown in the intermediate blank regions 612, 622, and 632 not covered by the mask patterns 611, 621, and 631. ,as shown in picture 2.
  • the mask In the crystallization process, atoms of the coverage areas of the first mask pattern 611, the second mask pattern 621, and the third mask pattern 631 are concentrated in the intermediate blank regions 612, 622, and 632, the mask The larger the pattern patterns 611, 621, and 631, the more atoms entering the intermediate blank regions 612, 622, and 632, that is, the faster the crystal grows. Since the areas of the intermediate blank regions 612, 622, and 632 are the same, the larger the mask patterns 611, 621, and 631 are, the higher the thickness of the crystal is formed at the same time, and thus the thicker the quantum well region is formed.
  • the quantum well layer 220 formed by the above crystallization processing is a first quantum well region 221, a second quantum well region 222, and a third quantum well region 223 corresponding to the first mask pattern region 610, the second mask pattern region 620, and the third mask pattern region 630, respectively.
  • Full thickness The foot H1 ⁇ H2 ⁇ H3 wherein H1, H2, and H3 represent the thicknesses of the first quantum well region 221, the second quantum well region 222, and the third quantum well region 223, respectively.
  • the thicknesses of the quantum well regions 221, 222, and 223 can be patterned to have a specific mask layer as needed.
  • the mask pattern is implemented such that the quantum well layer 220 can achieve selective growth of the quantum well regions 221, 222, and 223 by a specific mask pattern.
  • the larger the thickness of the quantum well region the smaller the corresponding forbidden band width, as shown in Fig. 6, and thus the wavelength of the gain peak of the quantum well region. The longer it will be.
  • the mask patterns 611, 621 or 631 of the mask pattern regions 610, 620 and 630 corresponding to the respective quantum well regions 221, 222 and 223 can be changed. Having different shapes (having different widths as previously described) allows different quantum well regions 221, 222, and 223 to have gain peaks of different wavelengths.
  • each of the generated quantum well regions 221, 222, and 223 may have gain peaks of different wavelengths through mask patterns 611, 621, 631 having different lengths.
  • the pattern spacing Wo is such that the different mask pattern regions 610, 620, 630 have different pattern spacings, thereby obtaining quantum well regions having different gain peaks. 221, 222 and 223.
  • the mask patterns 611, 621, and 631 or the patterns of the intermediate blank regions 612, 622, and 632 may also be designed to have other shapes of different sizes, such as a trapezoid or the like, and each The two mask patterns of the mask pattern regions may also not be symmetrical to each other.
  • the above method of selectively growing quantum well regions 221, 222, 223 having different gain peaks in the same crystallization process by using a mask of a specific pattern is only to achieve multiple stages provided by the embodiments of the present invention.
  • a lower cost specific implementation of a gain spectrum laser In order to improve the gain spectrum width of the laser to solve the temperature sensitivity problem of the prior art laser, those skilled in the art can also implement the multi-stage gain spectrum by other technical means, for example, in an alternative embodiment,
  • the quantum well layer 220 can also be formed by multiple crystallizations in which the quantum well regions 221, 222, 223 having different gain peaks can be separately formed in different crystallization processes using a plurality of masks.
  • the embodiment of the present invention further provides a passive optical network system, which may be a wavelength division multiplexed passive optical network (WDM PON) system as shown in FIG. 7 .
  • the WDM PON system 800 includes an optical line terminal 810 at a central office (CO) and a plurality of optical network units 820 on the user side, wherein the optical line terminal 810 is distributed by light
  • An Optical Distribution Network (ODN) 830 is connected to the plurality of optical network units 820.
  • CO central office
  • ODN Optical Distribution Network
  • the optical distribution network 830 can include a backbone optical fiber 831, a wavelength division multiplexing/demultiplexing 832, and a plurality of branching fibers 833, wherein the backbone optical fiber 831 is coupled to the optical line termination 810 and passes the wavelength division A multiplexing/demultiplexer 832 is coupled to the plurality of branch fibers 833 that are respectively coupled to the optical network unit 820.
  • the wavelength division multiplexing/demultiplexing device 832 may be an Array Waveguide Grating (AWG) disposed at a remote node (RN), that is, a remote AWG (RN-AWG).
  • AWG Array Waveguide Grating
  • the optical line terminal 810 includes a plurality of central office transceiver modules 811, and the plurality of OLT transceiver modules 811 pass through another wavelength division multiplexing/demultiplexing device 812 located at the central office, such as a central office AWG (CO-AWG). Coupled to the backbone fiber 831.
  • Each optical network unit 820 includes a client transceiver module 821.
  • the client transceiver module 821 has a one-to-one correspondence with the central office transceiver module 811, and each pair of the office transceiver module 811 and the client transceiver module 821 respectively use different communication wavelengths (; ⁇ , ⁇ 2, .. ⁇ ) performs similar point-to-point communication.
  • the central office transceiver module 811 and the client transceiver module 812 respectively use a laser as a light source
  • the laser may be a semiconductor laser such as an RSOA laser or a DFB laser.
  • the laser may be the laser 200 provided with the multi-stage gain spectrum and the injection current grading control provided in the above embodiment.
  • the specific structure and working process please refer to the detailed description of the above embodiment, and the following is no longer Narration.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Description

激光》及其制造方法和无源光网络系统 本申请要求于 2011年 04月 29日提交中国专利局、 申请号为 201110110646.1、发明名称为" 激光器及其制造方法和无源光网络系统" 的中 国专利申请的优先权,其全部内容通过引用结合在本申请中。 技术领域
本发明主要涉及光通信技术,特别地,涉及一种激光器及其制造方法, 以及一种使用该激光器的无源光网络系统。 背景技术
随着用户对带宽需求的不断增长,传统的铜线宽带接入系统越来越面临 带宽瓶颈。 与此同时,带宽容量巨大的光纤通信技术日益成熟且应用成本逐 年下降,光纤接入网 ,比如无源光网络 (Passive Optical Network, PON) ,逐渐 成为下一代宽带接入网的有力竞争者。 目前,在众多的光纤接入网解决方案 中 ,波分复用无源光网络 0VDM PON)技术由于其具有较大的带宽容量、 类似 点对点的通信方式保证信息安全性等优点而备受关注。
通常, WDM ΡΟΝ系统主要包括位于中心机房的多个光线路终端 (Optical Line Terminal, OLT)收发模块和位于用户端的多个光网络单元(Optical Network Unit, ONU)收发模块,其中 ,所述 OLT收发模块和 ONU收发模块一般 采用激光器 (Laser Diode, LD)作为光源。由于不同 ONU收发模块需要采用不同 的通信波长 (λ 1, λ 2, . . . λ η)与其对应的 OLT收发模块进行通信,所述 WDM PON系统要求不同收发模块的激光器分别可以发射不同波长的光信号。 为实 现光源无色化 , 业界提出一种采用反射式半导体光放大器 (Reflective Semiconductor Optical Amplifier, RSOA)作为激光器,通过种子光注入到所述 RSOA以使得不同的 RSOA分别锁定到不同波长的方案。
不过,与其他半导体器件相似, RSOA存在着比较明显的温度敏感性的问 题,具体来说,随着温度的变化,所述 RSOA可能发生增益谱漂移及增益峰值 下降的现象。 比如,随着温度的增加,所述 RSOA的增益峰可能会向长波长方 向漂移 (温漂系数大约为 0.5nm/°C) ,同时增益峰值下降。 上述增益变化将直接 影响所述 WDM PON系统的性能,比如其可能导致所述 WDM PON系统的信号 消光比降低、 传输距离缩短以及误码率增加等问题。 发明内容
本发明实施例提供一种可以解决上述温度敏感问题的激光器及其制造 方法。 同时,本发明实施例还提供一种使用所述激光器的无源光网络系统。
一种激光器,其包括半导体衬底;设置在所述半导体衬底的波导层; 以及设置在所述波导层表面的光波限制层,其用于将光波限制在所述波导 层传输;其中 ,所述波导层包括量子阱层,所述量子阱层包括多个沿着所 述光波传输方向设置的量子阱区,所述多个量子阱区分别具有不同波长的 增益峰。 一种激光器制造方法, 其包括:提供半导体衬底;在所述半导体衬 底生长出波导层,所述波导层包括具有多个量子阱区的量子阱层,其中所 述多个量子阱区沿着光波传输方向设置, 且分别具有不同波长的增益峰; 在所述量子阱层表面形成光波限制层。
一种无源光网络系统,其包括光线路终端和多个光网络单元,所述光 线路终端通过光分配网络连接到所述多个光网络单元;其中 ,所述光线路 终端和 /或光网络单元包括上述激光器。
本发明实施例提供的激光器在其内部的量子阱层沿光波传输方向设 置有多个具有不同波长的增益峰的量子阱区,使得光波在传输过程中要经 过所述具有不同波长的增益峰的量子阱区。 因此,光波在所述激光器中的 最终增益效果便是所述多个量子阱区各个不同的增益峰之间的相互叠加。 与现有技术相比,所述增益峰的叠加可以极大地提高所述激光器的增益谱 宽度, 因此,即使出现温度变化而导致某个增益峰发生漂移及峰值下降, 由于其他增益峰的补偿作用 ,本发明实施例提供的激光器仍可以保证光波 在很宽的频谱范围内具有较佳的增益效果,从而降低温度变化对光增益带 来的影响 ,解决现有技术的激光器存在的温度敏感问题。 附图说明
图 1为本发明一种实施例提供的激光器的截面示意图。
图 2为图 1所示的激光器的量子阱层的结构示意图。 图 3为本发明一种实施例提供的激光器的增益谱示意图。
图 4为本发明一种实施例提供的激光器制造方法的流程图。
图 5为图 4所示的激光器制造方法在生成量子阱层时采用的掩模的图形示 意图。
图 6为采用图 5所述的掩模生成的量子阱层的能带结构示意图。
图 7为本发明实施例提供的 WDM PON系统的结构示意图。
-具体实施方式
以下结合具体实施例,对本发明实施例提供的激光器及其制造方法进行 详细描述。
为解决激光器增益谱受温度影响的问题,本发明实施例首先提供了一种 具有量子阱层的半导体激光器,所述量子阱层可以通过选择性生长技术生长 出多个量子阱区,且所述多个量子阱区具有不同波长的增益峰。 在具体实施 例中 ,所述多个量子阱区可以沿着所述激光器内部光波的传输方向设置,以 使得光波在传输过程中要经过具有不同波长的增益峰的量子阱区。 基于上述 结构,光波在所述激光器中的最终增益效果便是所述多个量子阱区各个不同 的增益峰之间的相互叠加,而所述增益峰的叠加可以极大地提高所述激光器 的增益谱宽度。 因此,即使出现温度变化而导致某个增益峰发生漂移及峰值 下降的情况, 由于其他增益峰的补偿作用 ,本发明实施例提供的激光器仍可 以保证光波具有较佳的增益效果,从而降低温度变化对光增益带来的影响, 解决现有技术的激光器存在的温度敏感问题。
在具体实施例中 ,所述激光器可以采用单片集成技术制成,且其为 RSOA 激光器或者其他半导体激光器,比如 DFB Distributed Feed Back, 分布反馈式) 激光器或者 FP(Fabry Perot, 法布里 -珀罗)激光器。 而且, 可选地,所述激光 器可以采用铟镓砷磷 GnGaAsP)材料作为光芯层 ,即所述量子阱层 , 由于 InGaAsP比铟镓铝砷 (InGaAlAs)制造工艺比较成熟,因此所述激光器可以简单 且低成本地实现。
为进一步提高所述激光器的性能,在具体实施例中 ,可选地,还可以对 所述激光器各个量子阱区的注入电流分级控制。 比如,所述激光器的各个量 子阱区可以分别配置有独立且相互间电隔离的电极,其中所述独立的电极分 别用于给其所对应的量子阱区提供注入电流。 根据温度改变引起的增益峰漂 移的具体情况,通过改变一个或多个量子阱区的注入电流,便可以对所述多 个量子阱区的增益值进行分级控制,从而实现根据增益峰漂移情况为所述量 子阱区分别提供选择性的增益补偿,以进一步降低温度变化对激光器的光增 益带来的影响。
为更好地理解本发明实施例提供的激光器,以下结合附图 ,以激光器的 量子阱层具有三个量子阱区为例,详细介绍本发明实施例提供的激光器的结 构。 应当理解,在具体实现上,所述量子阱区的数量并不限于三个,其可以 根据实际的激光器增益配置需要而定。 请一并参阅图 1和图 2,其中图 1是本发明一种实施例提供的激光器的侧面 示意图 , 图 2是所述激光器的量子阱层的结构示意图。 所述激光器 200包括半 导体衬底 210、 量子阱层 220、 光波限制层 230、 欧姆接触层 240和第一电极层 250和第二电极层 260。 其中 ,所述第一电极层 250和所述第二电极层 260可以 分别作为所述激光器 200的阳极和阴极,所述半导体衬底 210、 所述量子阱层 220、所述光波限制层 230和所述欧姆接触层 240可以自下而上设置在所述第一 电极层 250和第二电极层 260之间。
在一种实施例中 ,所述半导体衬底 210可以为磷化铟 (InP)衬底。所述量子 阱层 220作为所述激光器 200的波导层,其材料可以是 InGaAsP。 可选地,在所 述量子阱层 220的上下两面,可以根据要求,在靠近所述衬底 210和所述光波 限制层 220的表面分别增加其他光限制层,比如 SCH (Separate Confinement Heterostructure ,分别限制异质结)层。 也就是说,在具体实施例中 ,所述激光 器 200的波导层既可以是包括所述量子阱层 200和 SCH层的多层结构,也可以 仅是由所述量子阱层 220构成。
所述光波限制层 230可以是 Ρ型惨杂的 ΙηΡ层,其用于所述激光器 200的光 波限制在所述量子阱层 220传输。所述欧姆接触层 240可以为 Ρ型重惨杂的砷化 镓铟 (InGaAs)层,其用于实现所述光波限制层 230与所述第一电极层 250之间的 欧姆接触,以减小二者之间的阻抗,便于电流注入到所述量子阱层 220。另外, 可选地,所述半导体衬底 210和所述第二电极层 260之间也可以设置有另一个 欧姆接触层 (图未示)以减小二者之间的阻抗。
如图 2所示,所述量子阱层 220可以包括多个量子阱区,为更好理解本发 明 ,图 2还示意性地示出用于形成所述多个量子阱区的掩模图案,不过应当理 解, 图 2所示的掩模图案可能仅存在于所述激光器 200的制造过程中 ,在实际 产品中可能并不存在所述掩模图案,比如,所述掩模图案可能在形成所述量 子阱层 220之后被去除掉。
本实施例以三个量子阱区为例,为便于描述,以下分别将所述三个量子 阱区命名为第一量子阱区 221、 第二量子阱区 222和第三量子阱区 223 ,其中 , 所述第一量子阱区 221、 第二量子阱区 222和第三量子阱区 223的厚度 Hl、 H2 和 H3可以各不相同,比如, Η1<Η2<Η3 ,从而使得所述量子阱层 220具有阶梯 形的结构。 并且,通过本发明实施例提供选择性生长技术,所述第一量子阱 区 221、 第二量子阱区 222和第三量子阱区 223可以具有不同的禁带 (Eg)分布, 比如,Egl>Eg2>Eg3,其中 ,Egl、 Eg2、 Eg3分别表示所述第一量子阱区 221、 第二量子阱区 222和第三量子阱区 223的禁带宽度。 由于禁带与增益峰的波长 直接对应,图 2所示的量子阱层 220便可以使得所述第一量子阱区 221、 第二量 子阱区 222和第三量子阱区 223分别具有不同波长的增益峰,如图 3所示,其中 在波长方面, QW1<QW2<QW3。 因此,所述激光器 200便具有多级增益谱, 且所述激光器 200的总增益谱便至少覆盖所述第一量子阱区 221、 第二量子阱 区 222和第三量子阱区 223所对应的多级增益谱的叠加。 由此可见,相较于现 有技术,本发明实施例提供的激光器 200可以极大地提高激光器的增益谱宽 度,从而实现较佳的增益效果,降低温度变化对所述激光器 200的光增益带来 的影响。
另外,可选地,在一种实施例中 ,所述第一电极层 250可以包括多个电极 , 比如第一阳极 251、 第二阳极 252、 第三阳极 253。 其中 ,每个电极 251、 252、 253的位置分别与所述量子阱层 220中的一个量子阱区 221、 222、 223相对应, 其用于将接收到的注入电流提供到对应的量子阱区 221、 222、 223。 所述量子 阱区 221、 222、 223的注入电流可以是各不相同的,并且还可以是可调的。 所 述可调的注入电流用以实现对各个量子阱区 221、 222、 223的增益谱的分级控 制,以补偿所述量子阱区 221、 222、 223的增益谱可能随温度变化而产生的漂 移,从而进一步降低温度变化对所述激光器 200的光增益带来的影响。
具体地,当温度增加时,所述激光器 200的部分或全部量子阱区 221、 222、 223的增益谱可能会出现往长波长的方向漂移的情况,为了补偿在短波长方向 增益的减弱,可以提高所述激光器 200中施加至所述第一阳极 251的电流,以 提高所述第一量子阱区 221的注入电流,从而增加短波长区域的增益量,补偿 由于温度漂移导致的短波长区域的增益减小。 并且,还可以适当降低施加至 所述第三阳极 253的电流,以减小所述第三量子阱区 223的注入电流,从而降 低长波长区域的增益量,减小由于温度漂移导致的长波长区域的增益增加带 来的影响。 当然,当温度升高过大时,所述激光器 200中施加至所述第二阳极 252的电流也可以根据需要适当地进行调整,比如,所述电流也可以同时增大, 且电流增大量可小于所述第一量子阱区 221的注入电流增大量。
相类似地,当温度降低时,所述激光器 200的的部分或全部量子阱区 221、 222、 223的增益谱可能会出现往短波长的方向漂移的情况,为了补偿在长波 长方向增益的减弱,可以提高所述激光器 200中施加至所述第三阳极 253的电 流,以提高所述第三量子阱区 222的注入电流,从而增加长波长区域的增益量, 补偿由于温度漂移导致的长波长区域的增益减小;并且,还可以适当降低施 加至所述第一阳极 251的电流,以减小所述第一量子阱区 221的注入电流,从 而降低短波长区域的增益量,减小由于温度漂移导致的短波长区域的增益增 加带来的影响。 相类似地,当温度降低过大时,根据需要,所述激光器 200中 施加至所述第二阳极 252的电流也可以适当地进行调整,比如,所述电流也可 以同时增大,且电流增大量可小于所述第三量子阱区 223的注入电流增大量。
以下通过所述激光器 200的制造方法,详细介绍如何通过本发明实施例提 供的选择性生长技术实现具有多级增益谱的激光器 200。
请参阅图 4 ,其为本发明实施例提供的激光器制造方法的流程图。所述制 造方法可以包括:
步骤 S1 ,提供半导体衬底 210 ,比如 InP衬底。
步骤 S2 ,在所述半导体衬底 210生长出波导层,所述波导层包括具有多个 量子阱区 221、 222、 223的量子阱层 220 ,其中所述多个量子阱区 221、 222、 223分别具有不同波长的增益峰;
步骤 S3 ,在所述波导层之上形成光波限制层 230 ,比如 P型惨杂的 InPJS , 以将光波限制在所述量子阱层 220中传输;
步骤 S4 ,在所述光波限制层 230之上形成欧姆接触层 240 ,比如重惨杂的 InGaAs屋;
步骤 S5 ,在所述欧姆接触层 240之上形成第一电极层 250 ,作为所述激光 器 200的阳极。 可选地,所述第一电极层 250可进一步通过刻蚀形成多个相互 电隔离的电极 251、 252、 253 ,且所述多个电极 251、 252、 253的位置分别与 上述具有不同波长的增益峰的量子阱区 221、 222、 223相对应。
步骤 S6,在所述半导体衬底 210底面 (即与所述第一电极层 250相对的表面) 形成第二电极层 260 ,作为所述激光器 200的阴极。
在具体实施例中 ,所述步骤 S2中 ,所述量子阱层 220可以通过选择性生长 方法生长而成,从而得到具有不同增益谱的量子阱区,比如图 2所示的第一量 子阱区 221、 第二量子阱区 222和第三量子阱区 223。
具体地,所述选择性生长方法可以包括:
首先,在所述半导体衬底 210的晶圆表面制作一层具有特定图案的掩模。 其中 ,所述掩模可以为二氧化硅 (Si02)层或者氮化硅 (SiN)层,具体地,可以先 在所述半导体衬底 210的晶圆表面沉积一层 Si02层或者 SiN层,再通过刻蚀所 述 Si02屋或者 SiN层形成所述掩模。 所述掩模可以包括多个掩模图形区,所述 多个掩模图形区按照光波传输方向依序设置,且每个掩模图形区分别用于在 结晶过程中对应生长出一个量子阱区。
比如,在一种实施例中 ,所述掩模的图形可以如图 5所示,其包括第一掩 模图形区 610、 第二掩模图形区 620和第三掩模图形区 630 ,三者分别对应于待 生成的第一量子阱区 221、 第二量子阱区 222和第三量子阱区 223。 其中 ,每个 掩模图形区 610、 620、 630可以分别包括两个相互对称且形状相同的掩模图案。 为便于描述,以下分别将所述第一掩模图形区 610、 第二掩模图形区 620和第 三掩模图形区 630的掩模图案定义为第一掩模图案 611、第二掩模图案 621和第 三掩模图案 631。
可选地,每个掩模图案 611、 621、 631可以均为矩形,且所述第一掩模图 形区 610的两个第一掩模图案 611、所述第二掩模图形区 620的两个第二掩模图 案 621和所述第三掩模图形区 630的两个第三掩模图案 631分别沿同一对称轴 对称,其中所述对称轴的延伸方向可以具体为所述激光器 200内部的光波传播 方向。 另外,所述第一掩模图案 611、 第二掩模图案 621和第三掩模图案 631的 面积各不相同,比如,在一种具体实施例中 ,所述第一掩模图案 611、 第二掩 模图案 621和第三掩模图案 631可以具有相同的长度,即 L1=L2=L3 ,而具有不 同的宽度,如 W1<W2<W3 ,从而使得所述第一掩模图案 611、 第二掩模图案 621和第三掩模图案 631的面积 Sl、 S2和 S3满足 S1<S2<S3。 并且,所述两个第 一掩模图案 611、所述两个第二掩模图案 621和所述两个第三掩模图案 631之间 的间距 Wol、 Wo2、 Wo3相同,即 Wol=Wo2=Wo3 ,由此使得所述第一掩模图 形区 610、第二掩模图形区 620和第三掩模图形区 630中未被所述掩模图案 611、 621和 631覆盖的中间空白区域 612、 622和 632的面积相同。
其次,利用上述掩模在所述半导体衬底 210进行结晶化处理并形成所述量 子阱层 220。
在结晶过程中 ,在所述第一掩模图形区 610、 第二掩模图形区 620和第三 掩模图形区 630中 ,被所述第一掩模图案 611、 第二掩模图案 621和第三掩模图 案 631覆盖的区域,是无法成长出新的结晶层的,因此结晶层主要生长在所述 未被所述掩模图案 611、 621、 631覆盖的中间空白区域 612、 622和 632 ,如图 2 所示。 并且,在结晶过程中 ,所述第一掩模图案 611、 第二掩模图案 621和第 三掩模图案 631覆盖区域的原子会集中在所述中间空白区域 612、 622和 632 , 所述掩模图案 611、 621和 631越大,进入所述中间空白区域 612、 622和 632的 原子就越多,即结晶成长的速度就越快。 由于所述中间空白区域 612、 622和 632的面积相同, 因此所述掩模图案 611、 621和 631越大同一时间结晶的厚度 就越高, 因而形成的量子阱区就越厚。
在本实施例中 , 由于所述第一掩模图案 611、 第二掩模图案 621和第三掩 模图案 631的面积满足 S1<S2<S3,因此通过上述结晶处理形成的量子阱层 220 中 ,分别与所述第一掩模图形区 610、 第二掩模图形区 620和第三掩模图形区 630对应的第一量子阱区 221、 第二量子阱区 222和第三量子阱区 223的厚度满 足 H1<H2<H3 ,其中 Hl、 H2和 H3分别表示所述第一量子阱区 221、 第二量子 阱区 222和第三量子阱区 223的厚度。
根据前面实施例的描述可以看出 ,在本发明实施例提供的选择性生长技 术中 ,所述量子阱区 221、 222和 223的厚度可以根据需要通过图案化掩模层以 使其具有特定的掩模图案来实现,即所述量子阱层 220可以通过特定的掩模图 案实现所述量子阱区 221、 222和 223的选择性生长。 根据量子阱的特性,在固 定材料组成成分的前提下,量子阱区的厚度越大,其对应的禁带宽度便越小, 如图 6所示,因而所述量子阱区的增益峰的波长便越长。 因此,在本发明实施 例提供的方案中 ,可以通过改变各个量子阱区 221、 222和 223所对应的所述掩 模图形区 610、 620和 630的掩模图案 611、 621或 631,使得其具有不同的形状 (如 前面所述使其具有不同的宽度),便可以使得不同的量子阱区 221、 222和 223 具有不同波长的增益峰。
另外,应当理解,以上所述的方案仅是本发明实施例提供的选择性生长 技术的一种具体实施例。 实际上,掩模图案的大小 (长度或宽度)、 掩模图形区 的图案间隔以及掩模图案的形状等图案均可以进行选择性地调整,以实现具 有多级增益谱的量子阱区的选择性成长。
比如,在一种替代实施例中 ,相类似地,还可以通过具有不同长度的掩 模图案 611、 621、 631使得生成的各个量子阱区 221、 222和 223具有不同波长 的增益峰。 或者,在另一种替代实施例中 ,还可以通过更改每个掩模图形区 610、 620、 630中两个掩模图案 611、 621和 631之间的图案间隔 Wo ,使不同掩 模图形区 610、 620、 630具有不同的图案间隔,从而得到具有不同增益峰的量 子阱区 221、 222和 223。 具体地,图案间隔 Wo越小,生长出来的量子阱越厚, 其对应的禁带宽度越小, 因此量子阱区的增益峰波长也便越长。 又或者,在 其他替代实施例中,所述掩模图案 611、 621和 631或者所述中间空白区域 612、 622和 632的图案还可以设计层具有不同尺寸的其他形状,比如梯形等,另外 每个掩模图形区的两个掩模图案也可以不互相对称。
另一方面,应当理解,上述通过特定图案的掩模实现在同一次结晶过程 中选择性生长出具有不同增益峰的量子阱区 221、 222、 223的方法只是实现本 发明实施例提供具有多级增益谱的激光器的一种较低成本的具体实现方案。 为提高所述激光器的增益谱宽度以解决现有技术激光器的温度敏感问题,所 属技术领域的技术人员还可以通过其他技术手段来实现多级增益谱,比如, 在一种替代实施例中 ,所述量子阱层 220还可以通过多次结晶来形成,其中可 以利用多个掩模在不同的结晶过程分别形成所述具有不同增益峰的量子阱区 221、 222、 223。
基于上述激光器 200 ,本发明实施例还进一步提供一种无源光网络系统, 所述无源光网络系统可以是如图 7所示的波分复用无源光网络 (WDM PON)系 统。 所述 WDM PON系统 800包括位于局端 (Central Office , CO)的光线路终端 810和位于用户侧的多个光网络单元 820 ,其中所述光线路终端 810通过光分配 网络 (Optical Distribution Network, ODN)830连接到所述多个光网络单元 820。 所述光分配网络 830可以包括主干光纤 831、波分复用 /解复用器 832和多个分支 光纤 833 ,其中所述主干光纤 831连接到所述光线路终端 810 ,并通过所述波分 复用 /解复用器 832连接到所述多个分支光纤 833,所述多个分支光纤 833分别连 接到所述光网络单元 820。 其中 ,所述波分复用 /解复用器 832可以为设置在远 端节点 (Remote Node, RN)阵列波导光栅 (Array Waveguide Grating, AWG) ,即 远端 AWG (RN-AWG)o
所述光线路终端 810包括有多个局端收发模块 811 ,所述多个 OLT收发模 块 811通过位于局端的另一个波分复用 /解复用器 812 , 比如局端 AWG (CO-AWG)耦合到所述主干光纤 831。每个光网络单元 820分别包括一个用户端 收发模块 821。 所述用户端收发模块 821与所述局端收发模块 811之间一一对 应,且每一对局端收发模块 811和用户端收发模块 821分别采用不同的通信波 长 (; λΐ, λ2, ... λη)进行类似点对点的通信。
所述局端收发模块 811和所述用户端收发模块 812分别采用激光器作为光 源,所述激光器可以为半导体激光器,比如 RSOA激光器或 DFB激光器。 在具 体实施例中 ,所述激光器可以为上述实施例提供的具有多级增益谱且可实现 注入电流分级控制的激光器 200 ,其具体结构以及工作过程请参阅上述实施例 的具体描述,以下不再赘述。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并 不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围 内 ,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保护范围为准。

Claims

权利要求
1、 一种激光器,其特征在于,包括:
半导体衬底;
设置在所述半导体衬底的波导层,所述波导层包括量子阱层;以及 设置在所述波导层表面的光波限制层,其用于将光波限制在所述波导层 进行传输;
其中 ,所述量子阱层包括多个沿着所述光波传输方向设置的量子阱区, 所述多个量子阱区分别具有不同波长的增益峰。
2、 如权利要求 1所述的激光器,其特征在于,所述量子阱层具有阶梯形 结构,且其中所述多个量子阱区的厚度各不相同的。
3、 如权利要求 1所述的激光器,其特征在于,还包括:
多个电极,其分别与所述多个量子阱区对应;
所述多个电极相互之间电隔离,且分别用于将其接收到的注入电流提供 到对应的量子阱区。
4、 如权利要求 3所述的激光器,其特征在于,其中 ,所述多个量子阱区 的注入电流是可调的,且所述多个量子阱区的注入电流至少两个是不同的。
5、 如权利要求 2所述的激光器,其特征在于,所述多个量子阱区包括第 一量子阱区、 第二量子阱区和第三量子阱区,其中所述第二量子阱区的增益 峰波长大于所述第一量子阱区的增益峰波长但小于所述第三量子阱区的增益 峰波长;其中 , 当温度升高时,所述第一量子阱区的注入电流增大以补偿由 于温度升高引起的增益谱漂移; 当温度降低时,所述第三量子阱区的注入电 流增大以补偿由于温度降低引起的增益谱漂移。
6、 如权利要求 5所述的激光器,其特征在于,当温度升高时,所述第二 量子阱区的注入电流与所述第一量子阱区的注入电流同时增大,且所述第二 量子阱区的注入电流增大量小于所述第一量子阱区的注入电流增大量, 当温 度降低时,所述第二量子阱区的注入电流与所述第三量子阱区的注入电流同 时增大,且所述第二量子阱区的注入电流增大量小于所述第三量子阱区的注 入电流增大量。
7、 如权利要求 1所述的激光器,其特征在于,所述量子阱层的多个量子 阱区是利用预设图案的掩模选择性生长而成。
8、 一种激光器制造方法,其特征在于,包括:
提供半导体衬底;
在所述半导体衬底生长出波导层,所述波导层包括具有多个量子阱区的 量子阱层,其中所述多个量子阱区沿着光波传输方向设置,且分别具有不同 波长的增益峰;
在所述波导层表面形成光波限制层。
9、 如权利要求 8所述的激光器制造方法,其特征在于,所述具有多个量 子阱区的量子阱层通过选择性生长技术一次性生长而成。
10、 如权利要求 8所述的激光器制造方法,其特征在于,在所述半导体 衬底生长出波导层的步骤包括:
在所述半导体衬底表面生成具有特定图案的掩模,其中所述掩模具有多 个掩模图形区,每个掩模图形区分别包括两个掩模图案和位于所述两个掩模 图案之间的中间空白区域;
利用所述掩模在所述半导体衬底进行结晶成长并形成所述量子阱层,其 中所述多个量子阱区分别生长所述多个掩模图形区的中间空白区域。
11、 如权利要求 10所述的激光器制造方法,其特征在于,每个掩模图形 区的两个掩模图案形状相同且相互对称。
12、 如权利要求 10所述的激光器制造方法,其特征在于,所述掩模包括 第一掩模图形区、 第二掩模图形区和第三掩模图形区,其中所述第一掩模图 形区、 第二掩模图形区和第三掩模图形区的掩模图案的面积各不相同。
13、 如权利要求 12所述的激光器制造方法,其特征在于,所述第一掩模 图形区、 第二掩模图形区和第三掩模图形区的掩模图案均为矩形,且其长度 和 /或宽度不同。
14、 如权利要求 10所述的激光器制造方法,其特征在于,所述第一掩模 图形区、 第二掩模图形区和第三掩模图形区的两个掩模图案之间的图案间隔 各不相同。
15、 一种无源光网络系统,其特征在于,包括:光线路终端和多个光网 络单元,所述光线路终端通过光分配网络连接到所述多个光网络单元;其中 , 所述光线路终端和 /或光网络单元包括如权利要求 1至 7中任一项所述的激光 器。
16、 一种激光器,其特征在于,所述激光器采用如权利要求 8至 14中任 一项所述的方法制成。
PCT/CN2011/084833 2011-04-29 2011-12-28 激光器及其制造方法和无源光网络系统 WO2012146045A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/482,755 US8913897B2 (en) 2011-04-29 2012-05-29 Laser diode, method for manufacturing laser diode and passive optical network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101106461A CN102761060A (zh) 2011-04-29 2011-04-29 激光器及其制造方法和无源光网络系统
CN201110110646.1 2011-04-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/482,755 Continuation US8913897B2 (en) 2011-04-29 2012-05-29 Laser diode, method for manufacturing laser diode and passive optical network system

Publications (1)

Publication Number Publication Date
WO2012146045A1 true WO2012146045A1 (zh) 2012-11-01

Family

ID=47055420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084833 WO2012146045A1 (zh) 2011-04-29 2011-12-28 激光器及其制造方法和无源光网络系统

Country Status (2)

Country Link
CN (1) CN102761060A (zh)
WO (1) WO2012146045A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578653B (zh) * 2015-05-04 2017-04-11 中華電信股份有限公司 應用於光纖網路的光放大器
CN116107023B (zh) * 2023-04-13 2023-07-07 中国科学院长春光学精密机械与物理研究所 基于密集波导阵列的光子器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003085A1 (en) * 2001-06-26 2003-01-09 University Of Maryland, Baltimore County Low crosstalk optical gain medium and method for forming same
WO2003044576A2 (en) * 2001-11-16 2003-05-30 Fox-Tek Integrated multi-wavelength lasers, photodetectors and amplifiers
US20030151804A1 (en) * 2002-02-12 2003-08-14 Jan Lipson Extended bandwidth semiconductor optical amplifier
KR20050048111A (ko) * 2003-11-19 2005-05-24 삼성전자주식회사 넓고 균일한 이득 영역을 가지는 양자 우물 레이저 소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080307A (ja) * 2004-09-09 2006-03-23 Toshiba Corp 半導体レーザアレイ及びその製造方法、多波長半導体レーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003085A1 (en) * 2001-06-26 2003-01-09 University Of Maryland, Baltimore County Low crosstalk optical gain medium and method for forming same
WO2003044576A2 (en) * 2001-11-16 2003-05-30 Fox-Tek Integrated multi-wavelength lasers, photodetectors and amplifiers
US20030151804A1 (en) * 2002-02-12 2003-08-14 Jan Lipson Extended bandwidth semiconductor optical amplifier
KR20050048111A (ko) * 2003-11-19 2005-05-24 삼성전자주식회사 넓고 균일한 이득 영역을 가지는 양자 우물 레이저 소자

Also Published As

Publication number Publication date
CN102761060A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5059601B2 (ja) Wdm送信ネットワーク用クーラーレス集積回路および浮動波長グリッドフォトニック集積回路(pic)
US9372306B1 (en) Method of achieving acceptable performance in and fabrication of a monolithic photonic integrated circuit (PIC) with integrated arrays of laser sources and modulators employing an extended identical active layer (EIAL)
Lee et al. Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed
CN108649427B (zh) 高效激射输出dfb半导体激光器装置及光子集成发射芯片
JP2003069145A (ja) 分布帰還型半導体レーザ素子群の作製方法
CN108603980A (zh) 具有介质结构的光子集成器件
US9246622B2 (en) Semiconductor optical element, optical module and method of manufacturing semiconductor optical element
JP2006173563A (ja) 集積型半導体光源
JP2000012952A (ja) 半導体光導波路アレイの製造方法及びアレイ構造半導体光素子
WO2012146045A1 (zh) 激光器及其制造方法和无源光网络系统
Han et al. Fabrication of low-cost multiwavelength laser arrays for OLTs in WDM-PONs by combining the SAG and BIG techniques
Kudo et al. Densely arrayed eight-wavelength semiconductor lasers fabricated by microarray selective epitaxy
US9343870B2 (en) Semiconductor laser diode with integrated heating region
Fujii et al. Wide-wavelength range membrane laser array using selectively grown InGaAlAs MQWs on InP-on-insulator
US10012797B1 (en) Monolithic photonic integrated circuit (PIC) with a plurality of integrated arrays of laser sources and modulators employing an extended identical active layer (EIAL)
JP2010123643A (ja) 半導体アレイ素子、レーザモジュール、光送信モジュール、および光伝送装置
JP6452089B2 (ja) 半導体レーザ装置
US8913897B2 (en) Laser diode, method for manufacturing laser diode and passive optical network system
EP1130826B1 (en) Broad band optical amplifier using free space demultiplexing
JP2003179315A (ja) 光モジュールおよび光通信システム
Zhao et al. Experimental demonstration of monolithically integrated 16 channel DFB laser array fabricated by nanoimprint lithography with AWG multiplexer and SOA for WDM-PON application
Besancon et al. Fabry perot laser arrays covering C+ L band obtained by selective area growth on InP-SiO2/Si substrate
Ye et al. 4× 25 GHz uni-traveling carrier photodiode arrays monolithic with InP-based AWG demultiplexers using the selective area growth technique
JP3466826B2 (ja) 利得優位な偏波モードの異なる複数種の活性層を持つ半導体光デバイス
Liang et al. Fabrication of InP-based monolithically integrated laser transmitters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864365

Country of ref document: EP

Kind code of ref document: A1