WO2012144522A1 - 光学測定システム、光学測定装置、校正用部材および校正方法 - Google Patents

光学測定システム、光学測定装置、校正用部材および校正方法 Download PDF

Info

Publication number
WO2012144522A1
WO2012144522A1 PCT/JP2012/060467 JP2012060467W WO2012144522A1 WO 2012144522 A1 WO2012144522 A1 WO 2012144522A1 JP 2012060467 W JP2012060467 W JP 2012060467W WO 2012144522 A1 WO2012144522 A1 WO 2012144522A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
calibration
measurement
probe
phosphor
Prior art date
Application number
PCT/JP2012/060467
Other languages
English (en)
French (fr)
Inventor
健二 上村
武志 菅
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2012547408A priority Critical patent/JP5276228B2/ja
Priority to CN201280005526.8A priority patent/CN103328953B/zh
Priority to EP12773711.2A priority patent/EP2653854B1/en
Priority to US13/651,711 priority patent/US8558164B2/en
Publication of WO2012144522A1 publication Critical patent/WO2012144522A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/276Calibration, base line adjustment, drift correction with alternation of sample and standard in optical path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres

Definitions

  • the present invention relates to an optical measurement system that performs scattered light measurement using a plurality of light receiving fibers, an optical measurement device, a calibration member used for calibration processing of the optical measurement device, and a calibration method for the optical measurement device.
  • LEBS Low-Coherence Enhanced Backscattering
  • An optical measuring device using a technique has been proposed (see, for example, Patent Documents 1 to 4).
  • Such an optical measurement apparatus performs optical measurement of a measurement object such as a living tissue by being combined with an endoscope for observing an organ such as a digestive organ.
  • This optical measurement apparatus using the LEBS technology measures scattered light intensity distribution of a living tissue by acquiring scattered light of a plurality of desired angles with a plurality of light receiving fibers in a probe, and based on the measurement result Acquire characteristic values related to the properties of living tissue.
  • the optical measurement apparatus described above performs a calibration process before starting detection of a living tissue in order to guarantee detection accuracy.
  • the probe base end is attached to the main body of the optical measurement apparatus, and a white plate having stable reflection characteristics is attached to the probe tip.
  • the white plate is irradiated with light output from the optical measurement device from the tip of the probe, and the reference white balance is calibrated based on the result of measuring the reflected light from the white plate with the optical measurement device.
  • a diffused light source that is a light source different from the light source of the optical measuring device is prepared, and the light receiving state of each light receiving fiber with respect to the light emitted from this diffused light source is measured by the optical measuring device, and the distance between the light receiving fibers is determined.
  • the process of calibrating the relationship of the received light intensity is performed.
  • a diffuser plate which is a diffuse reflection target, is attached to the probe tip, and the diffuser plate is irradiated with light from an optical measurement device, and the reflected light from the diffuser plate is measured with the optical measurement device.
  • the reflected lights from the diffuser plate interfere with each other, the received light intensity in each light receiving fiber cannot be obtained accurately, and the calibration process cannot be performed accurately.
  • the present invention has been made in view of the above, and in the case of performing scattered light measurement using a plurality of light receiving fibers, an optical measurement system, an optical measurement device, and an optical measurement system capable of easily and accurately executing calibration processing, It is an object of the present invention to provide a calibration member used for calibration processing of an optical measurement device and a calibration method of the optical measurement device.
  • an optical measurement system is an optical measurement system that performs scattered light measurement using a plurality of light receiving fibers that respectively output light incident from the distal end from the proximal end.
  • a probe having the plurality of light receiving fibers, an irradiation fiber for irradiating light supplied from the proximal end from the distal end, a frame member, and a scattered light measurement wavelength band provided inside the frame member
  • a calibration member that has a phosphor that emits fluorescence by excitation light having a wavelength belonging to a wavelength band, and is used in a state where the phosphor surface and the tip of the probe face each other, and the scattered light measurement wavelength band
  • An excitation light source that supplies excitation light having a wavelength belonging to a different wavelength band to the irradiation fiber, a measurement unit that measures each output light of the plurality of light receiving fibers, and irradiation of the excitation light.
  • a calibration processing unit that calibrates the relationship of the received light intensity between the plurality of light receiving fibers based on the measurement result of the output light from the plurality of light receiving fibers with respect to the fluorescence emitted from the phosphor. It is characterized by having.
  • the optical measurement system further includes a white light source that supplies white light to the irradiation fiber, and the calibration member further includes scattering particles having a predetermined scattering characteristic inside the frame member.
  • the calibration processing unit calibrates the spectral sensitivity of the measurement unit based on the measurement result of the measurement unit with respect to the reflected light and / or scattered light from the scattering particles with respect to the white light irradiation.
  • the phosphor has a particle shape, and the scattering particles and the phosphor are dispersed in a predetermined medium provided inside the frame member.
  • the frame member engages the probe and the calibration member at a position where the tip of the probe and the surface of the medium face each other with a certain distance. It is characterized by having a joint.
  • the optical measurement system according to the present invention is characterized in that the predetermined medium is a solid, and the frame member has a cap shape covering the tip of the probe.
  • the optical measurement system according to the present invention is characterized in that the phosphor is a medium in which the scattering particles are dispersed.
  • the frame member engages the probe and the calibration member at a position where the tip of the probe and the surface of the phosphor face each other with a certain distance.
  • An engaging portion is provided.
  • the phosphor is solid, and the frame member has a cap shape covering the tip of the probe.
  • the optical measurement apparatus is an optical measurement apparatus that performs scattered light measurement using a probe having a plurality of light receiving fibers that respectively output light incident from the distal end from the proximal end.
  • a light source for excitation that emits excitation light having a wavelength belonging to a different wavelength band
  • a measurement unit that measures each output light of the plurality of light receiving fibers, and the plurality of light receptions for fluorescence from a phosphor generated by irradiation of the excitation light
  • a calibration processing unit that calibrates the relationship of the received light intensity between the plurality of light receiving fibers based on the measurement result of the output light from the fiber by the measuring unit.
  • the optical measurement apparatus further includes a white light source that supplies white light to the irradiation fiber, and the calibration processing unit reflects the scattered light having a predetermined scattering characteristic with respect to the irradiation of the white light.
  • the spectral sensitivity of the measurement unit is calibrated based on the measurement result of the measurement unit with respect to light and / or scattered light.
  • a calibration member according to the present invention is a calibration member used for calibration processing of an optical measurement device that performs scattered light measurement using a probe having a plurality of light receiving fibers.
  • the phosphor has a particle shape having a predetermined scattering characteristic, and the scattering particles and the phosphor are in a predetermined medium provided inside the frame member. It is characterized by being dispersed in
  • the frame member engages the probe and the calibration member at a position where the tip of the probe and the surface of the medium face each other with a certain distance. It is characterized by having a joint.
  • the calibration member according to the present invention is characterized in that the predetermined medium is a solid, and the frame member has a cap shape covering the tip of the probe.
  • the phosphor is a medium in which the scattering particles are dispersed.
  • the frame member engages the probe and the calibration member at a position where the tip of the probe and the surface of the phosphor face each other with a certain distance.
  • An engaging portion is provided.
  • the calibration member according to the present invention is characterized in that the phosphor is solid and the frame member has a cap shape covering the tip of the probe.
  • the calibration method according to the present invention is a calibration method for an optical measurement apparatus having a measurement unit that performs scattered light measurement using a plurality of light receiving fibers that respectively output light incident from the distal end from the proximal end.
  • a first measurement step in which the measurement unit measures each output light of the plurality of light receiving fibers with respect to fluorescence generated by irradiating the phosphor with excitation light having a wavelength belonging to a wavelength band different from the light measurement wavelength band; And a first calibration step for calibrating the relationship of the received light intensity between the plurality of light receiving fibers based on the measurement result of the first measurement step.
  • the calibration method according to the present invention includes a second measurement step in which the measurement unit measures reflected light and / or scattered light from scattered particles having predetermined scattering characteristics with respect to white light irradiation, And a second calibration step for calibrating the spectral sensitivity of the measurement unit based on the measurement result of the second measurement step.
  • excitation light is emitted to a phosphor that emits fluorescence by excitation light having a wavelength that belongs to a wavelength band different from the scattered light measurement wavelength band, and output light from a plurality of light receiving fibers for fluorescence from the phosphor is emitted.
  • the relationship of the received light intensity between the multiple receiving fibers is calibrated, so the received light intensity at each receiving fiber can be obtained easily and accurately, and the scattered light can be measured using multiple receiving fibers.
  • the calibration process can be executed simply and accurately.
  • FIG. 1 is a block diagram showing a schematic configuration of an optical measurement system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of the optical measurement system shown in FIG.
  • FIG. 3 is a cross-sectional view of the calibration member shown in FIGS. 1 and 2.
  • FIG. 4 is a diagram for explaining the fluorescence characteristics of the fluorescent particles shown in FIG.
  • FIG. 5 is a flowchart showing a processing procedure of calibration processing in the optical measurement system shown in FIG. 6 is a cross-sectional view of another example of the calibration member shown in FIG.
  • FIG. 7 is a cross-sectional view of another example of the calibration member shown in FIG.
  • FIG. 1 is a block diagram showing a schematic configuration of an optical measurement system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of the optical measurement system shown in FIG.
  • FIG. 2 schematically shows the main part of the measuring apparatus constituting the optical measuring system shown in FIG.
  • an optical measurement system 1 includes a measurement device 2 that performs optical measurement on a measurement target such as a biological tissue to detect the property of the measurement target, and a probe that is inserted into the subject. 3 and a calibration member 4 attached to the tip 33 of the probe 3 during calibration processing in the measuring apparatus 2.
  • the proximal end of the probe 3 is detachable from the measuring device 2.
  • the probe 3 has an irradiation fiber and a plurality of light receiving fibers. The probe 3 emits light supplied from the proximal end to the measurement target from the distal end, and outputs scattered light and reflected light that are return light from the measurement target incident from the distal end to the measurement device 2 from the proximal end. To do.
  • the measuring apparatus 2 includes a power source 21, a light source unit 22, a connection unit 23, a measurement unit 24, an input unit 25, an output unit 26, a control unit 27, and a storage unit 28.
  • the power source 21 supplies power to each component of the measuring device 2.
  • the light source unit 22 emits light to be supplied to the probe 3.
  • the light source unit 22 includes a white light source 22a and a fluorescence excitation light source 22b.
  • the white light source 22a is realized using a low-coherent light source such as a white LED, a xenon lamp, or a halogen lamp, and one or a plurality of lenses.
  • the white light source 22a supplies low-coherent light to the probe 3 according to a predetermined timing.
  • the fluorescence excitation light source 22b emits light having a wavelength belonging to a wavelength band different from the scattered light measurement wavelength band in the measurement unit 24 and functioning as excitation light for exciting fluorescent particles of the calibration member 4 described later.
  • connection unit 23 removably connects the proximal end of the probe 3 to the measuring device 2.
  • the connection unit 23 supplies light emitted from the light source unit 22 to the probe 3 and outputs return light output from the probe 3 to the measurement unit 24.
  • the measurement unit 24 measures the light output from the probe 3 and the return light from the living tissue.
  • the measurement unit 24 is realized using a spectroscope.
  • the measurement unit 24 measures the spectral component and intensity of the return light output from the probe 3 and performs measurement for each wavelength.
  • the measurement unit 24 outputs the measurement result to the control unit 27.
  • the measurement unit 24 repeatedly performs the return light measurement process at a predetermined measurement timing corresponding to the light emission process by the light source unit 22.
  • the measurement unit 24 is provided with measurement units for a plurality of light receiving fibers 35 and 36 (see FIG. 2) of the probe 3 described later. In the example shown in FIG. 1, the first measurement unit 24a and the second measurement unit 24b Has two spectrometers.
  • the input unit 25 is realized by using a push-type switch or the like. By operating the switch or the like, the input unit 25 receives instruction information for instructing activation of the measuring apparatus 2 and other various instruction information and inputs them to the control unit 27. .
  • the output unit 26 outputs information on various processes in the optical measurement system 1.
  • the output unit 26 is realized using a display, a speaker, a motor, or the like, and outputs information related to various processes in the optical measurement system 1 by outputting image information, audio information, or vibration.
  • the control unit 27 controls the processing operation of each component of the measuring device 2.
  • the control unit 27 is realized using a semiconductor memory such as a CPU and a RAM.
  • the control unit 27 controls the operation of the measurement device 2 by transferring instruction information and data to each component of the measurement device 2.
  • the control unit 27 includes a calculation unit 27a, a calibration processing unit 27b, and an irradiation light switching control unit 27c.
  • the calculation unit 27a performs a plurality of types of calculation processing based on the measurement results obtained by the measurement unit 24, and calculates characteristic values related to the properties of the living tissue.
  • the type of the characteristic value that is the characteristic value that is calculated by the calculation unit 27a and that is to be acquired is set, for example, according to the instruction information input from the input unit 25 by an operation by the operator.
  • the calibration processing unit 27b controls the light source unit 22 and the measurement unit 24 to perform calibration processing on the measurement device 2 to ensure detection accuracy before starting detection of the measurement target. The calibration process is performed every time the probe 3 is replaced.
  • the irradiation light switching control unit 27c performs control to switch the light source that actually emits light between the white light source 22a and the fluorescence excitation light source 22b in the light source unit 22.
  • the irradiation light switching control unit 27c causes the white light source 22a to perform irradiation processing when performing scattered light measurement on a measurement target.
  • the irradiation light switching control unit 27c causes the white light source 22a or the fluorescence excitation light source 22b to perform the irradiation process in accordance with the content of the calibration process.
  • the storage unit 28 stores an optical measurement program that causes the measurement apparatus 2 to execute an optical measurement process, and stores various types of information related to the optical measurement process.
  • the storage unit 28 stores the characteristic value calculated by the calculation unit 27a.
  • the storage unit 28 stores a calibration program that causes the measurement apparatus 2 to execute a calibration process, and stores various types of information related to the calibration process.
  • the probe 3 is realized using a plurality of optical fibers.
  • the probe 3 emits light supplied from a base end portion 31 detachably connected to the connection portion 23 of the measuring device 2, a flexible portion 32 having flexibility, and a light source portion 22 and from a measurement target. And a tip 33 on which the scattered light enters.
  • a plurality of condensing fibers are provided to collect at least two scattered lights having different scattering angles.
  • the probe 3 includes an irradiation fiber 34 that irradiates the measurement target with light from the light source unit 22 supplied from the proximal end, and a measurement target incident from the distal end.
  • the optical measurement apparatus 1 is used in combination with an endoscope system for observing an organ such as a digestive organ, for example, and the probe 3 is received via a probe channel of the endoscope inserted into the subject. It is introduced inside the specimen.
  • FIG. 3 is a cross-sectional view of the calibration member 4 shown in FIGS. 1 and 2.
  • the calibration member 4 has a configuration in which a solid medium 42 is provided inside a main body frame 41 having a cap shape covering the tip 33 of the probe 3.
  • the medium 42 has scattering particles 43 and fluorescent particles 44 dispersed therein.
  • the medium 42 is a transparent solid such as silicon resin, polyethylene resin, gelatin, acrylic resin, and polyamide, and is formed of particles sufficiently larger than the scattering particles 43 and the fluorescent particles 44.
  • the scattering particles 43 are polystyrene particles or alumina fine particles.
  • the fluorescent particles 44 emit fluorescence having a wavelength longer than that of the excitation light when irradiated with excitation light belonging to a predetermined wavelength band.
  • FIG. 4 is a diagram for explaining the fluorescence characteristics of the fluorescent particles 44 shown in FIG.
  • the measurement unit 24 performs spectral processing in the scattered light measurement wavelength band W from the wavelength ⁇ a to the wavelength ⁇ b.
  • the fluorescent particles 44 are excited by light having a wavelength ⁇ c belonging to a wavelength band different from the scattered light measurement wavelength band W of the measurement unit 24, the fluorescent particles 44 are in the wavelength band indicated by the curve Lb, and the scattered light measurement of the measurement unit 24 is performed. Fluorescent light having a wavelength belonging to the wavelength band included in the wavelength band W is emitted.
  • the fluorescence excitation light source 22b irradiates excitation light in a wavelength band having a peak at the wavelength ⁇ c, for example, as shown by a curve La.
  • the relationship between the intensity of excitation light incident on the fluorescent particles 44 of the calibration member 4 and the fluorescent intensity emitted by the fluorescent particles 44 is obtained in advance.
  • the fluorescent particles 44 behave as scatterers in the same manner as the scattering particles 43 when irradiated with light other than wavelengths belonging to the excitation wavelength band.
  • the scattering particles 43 and the fluorescent particles 44 have predetermined scattering characteristics and reflection characteristics, and the wavelength distribution state of the return light that is scattered and reflected according to the incident white light is obtained in advance.
  • Materials and particle sizes of the medium 42, the scattering particles 43, and the fluorescent particles 44 are set based on the relationship between the wavelength of incident light and the wavelength of return light, and the particles.
  • the main body frame 41 of the calibration member 4 is opposed to the tip 33 of the probe 3 and the surface of the medium 42 with a certain distance D (see FIG. 2).
  • the protrusion-shaped stopper 45 which engages the surface of the covering portion 37 and the calibration member 4 at the position to be provided is provided inside.
  • the distance D is set so that the light from the irradiation fiber 34 is incident on the medium 42 in a sufficiently spread state.
  • the calibration processing unit 27b is based on the measurement results of the output light from the plurality of light receiving fibers 35 and 36 with respect to the fluorescence from the fluorescent particles 44 generated by the irradiation of the excitation light, based on the measurement results of the plurality of light receiving fibers 35 and 36. Calibrate the relationship between received light intensity. Further, the calibration processing unit 27b uses the first measurement unit 24a and the first measurement unit 24a of the measurement unit 24 based on the measurement results obtained by the measurement unit 24 with respect to the reflected light and scattered light from the scattered particles 43 and the fluorescent particles 44 in response to the white light irradiation. 2 The spectral sensitivity of the measurement unit 24b is calibrated.
  • FIG. 5 is a flowchart showing a processing procedure of calibration processing in the optical measurement system 1 shown in FIG.
  • FIG. 5 an example will be described in which calibration processing is continuously performed after the measurement result for calibration is acquired.
  • the control unit 27 determines whether or not the start of the calibration process has been instructed (step S1). For example, when the instruction information for instructing the start of the calibration process is input from the input unit 25 or when it is detected that the probe 3 has been replaced, the control unit 27 determines that the start of the calibration process has been instructed. . When it is determined that the start of the calibration process is not instructed (step S1: No), the control unit 27 returns to step S1 and repeats the determination process of step S1 until the start of the calibration process is instructed.
  • the calibration processing unit 27b performs a calibration process for calibrating the relationship of the received light intensity between the plurality of light receiving fibers 35 and 36. .
  • the irradiation light switching control unit 27c switches the light source used to the fluorescence excitation light source 22b and switches the irradiation light to excitation light (step S2).
  • the calibration processing unit 27b irradiates the fluorescence excitation light source 22b with excitation light having a peak at the wavelength ⁇ c with a predetermined intensity (step S3).
  • the excitation light irradiated from the fluorescence excitation light source 22b is irradiated into the calibration member 4 from the tip of the irradiation fiber 34 of the probe 3.
  • the fluorescent particles 44 of the calibration member 4 emit fluorescence.
  • the fluorescence from the fluorescent particles 44 does not exhibit coherence and is diffusely radiated. That is, fluorescence having a certain intensity according to the excitation light is incident on the light receiving fibers 35 and 36 without being affected by interference.
  • the measuring unit 24 measures the received light intensity of the fluorescence of each of the light receiving fibers 35 and 36 (step S4).
  • the first measurement unit 24 a measures the light reception intensity in the light receiving fiber 35
  • the second measurement unit 24 b measures the light reception intensity in the light reception fiber 36.
  • the calibration processing unit 27b calibrates the relationship of the received light intensity between the light receiving fibers 35 and 36 based on the received light intensity measurement result by the measuring unit 24 of each of the light receiving fibers 35 and 36 (step S5).
  • fluorescent light having a constant intensity is incident on the light receiving fibers 35 and 36, respectively. Therefore, the calibration processing unit 27b calibrates the ratio of the received light intensity of each of the light receiving fibers 35 and 36 measured by the measuring unit 24 in correspondence with the fluorescence intensity actually incident on each of the light receiving fibers 35 and 36. In this way, the calibration processing unit 27b calibrates the relationship between the received light intensities between the light receiving fibers 35 and 36 based on the fluorescence from the fluorescent particles 44 of the calibration member 4 with respect to the excitation light.
  • the calibration processing unit 27b performs a calibration process for calibrating the spectral sensitivities of the first measurement unit 24a and the second measurement unit 24b of the measurement unit 24.
  • the irradiation light switching control unit 27c switches the used light source to the white light source 22a and switches the irradiation light to white light (step S6).
  • the calibration processing unit 27b irradiates the white light source 22a with white light under a predetermined condition (step S7).
  • White light emitted from the white light source 22 a is emitted from the tip of the irradiation fiber 34 of the probe 3 into the calibration member 4.
  • the first measurement unit 24a and the second measurement unit 24b of the measurement unit 24 perform spectroscopic measurement on the return light of the respective light receiving fibers 35 and 36 (step S8).
  • the return light having a certain wavelength distribution is incident on the light receiving fibers 35 and 36 with respect to the white light irradiated under a certain condition.
  • the wavelength distribution of the return light is obtained in advance.
  • the calibration processing unit 27b compares the wavelength distribution of the return light obtained in advance with the spectroscopic measurement results obtained by the first measurement unit 24a and the second measurement unit 24b, and compares the first measurement unit 24a and the second measurement unit.
  • the spectral sensitivity of each measuring instrument of the unit 24b is calibrated (step S9). In this manner, the calibration processing unit 27b calibrates the spectral sensitivity of each measuring device based on the return light from the calibration member 4 for white light.
  • step S9 the control unit 27 notifies the output unit 26 that the calibration process is completed (step S10), and ends the calibration process.
  • step S10 the calibration process for the light reception intensity between the light receiving fibers 35 and 36 and the calibration process for the spectral sensitivities of the first measurement unit 24a and the second measurement unit 24b may be performed first. Therefore, step S2 to step S5 and step S6 to step S9 can be interchanged.
  • the calibration member 4 having both scattering characteristics and fluorescence characteristics is used.
  • the calibration of the relationship between the received light intensities between the light receiving fibers 35 and 36 is performed based on the fluorescence generated from the phosphor by irradiating the excitation light, and the calibration sensitivity of the measurement unit 24 with respect to the spectral sensitivity. Is based on the return light from the scatterer with respect to the white light, so that both the calibration of the light receiving fibers 35 and 36 and the calibration of the measurement unit 24 can be executed accurately.
  • the calibration and measurement unit 24 is calibrated with respect to the relationship between the received light intensities of the light receiving fibers 35 and 36 using only one calibration member 4 by providing the light source unit 22 with the fluorescence excitation light source 22 b. Both calibrations for spectral sensitivity can be performed. For this reason, in the optical measurement system 1, since it is not necessary to prepare a diffused light source separately for the calibration process, the calibration process can be executed with a simple configuration. Further, in the optical measurement system 1, since it is not necessary to replace the calibration member in accordance with the content of the calibration process, the calibration process can be easily executed without performing a complicated process.
  • the calibration member 4 in which the scattering particles 43 and the fluorescent particles 44 are dispersed in the solid medium 42 since the calibration member 4 in which the scattering particles 43 and the fluorescent particles 44 are dispersed in the solid medium 42 is used, the direction in which the tip 33 of the probe 3 and the calibration member 4 are directed. Even the calibration process can be executed correctly.
  • the case where the stopper 45 is provided inside the main body frame 41 as the calibration member has been described as an example.
  • the present invention is not limited to this.
  • the tip 33 of the probe 3 and the surface of the medium 42 Are provided at the front end of the side surface of the covering portion 37 so as to face each other with a certain distance D (see FIG. 2), and a groove through which the protrusion portion passes is provided on the inner wall of the body frame 41 of the calibration member 4. Also good.
  • the groove provided in the inner wall of the calibration member 4 main body extends downward from the upper part to a midpoint of the inner wall corresponding to the distance D.
  • the configuration in which both the scattering particles 43 and the fluorescent particles 44 are dispersed in the medium 42 as shown in FIG. 3 as the calibration member has been described.
  • the fluorescent particles 44 function as a scatterer. Therefore, a configuration in which only the fluorescent particles 44 are dispersed in the medium 42 may be employed.
  • the configuration in which the scattering particles 43 are dispersed in the medium 42 has been described as the calibration member.
  • the scattering particles 43 may be dispersed inside 142 so that the phosphor 142 may be a medium in which the scattering particles 43 are dispersed.
  • the phosphor 142 is a solid that can transmit visible light.
  • a stopper 45 is provided inside the calibration member 104 so that the tip 33 of the probe 3 and the surface of the phosphor 142 that is a solid face each other with a certain distance.
  • the configuration in which the scattering particles 43 are dispersed inside the solid medium 42 or phosphor 142 as the calibration member has been described.
  • the medium 42 or phosphor 142 is not necessarily solid. There is no need.
  • a liquid or gel-like medium 242 may be used.
  • the tip of the probe 3 and the surface of the medium 242 face each other with a certain distance D.
  • a stopper 245 is provided.
  • the configuration in which the fluorescence excitation light source 22b is provided in addition to the white light source 22a has been described as an example.
  • the present invention is not limited to this, and the calibration members 4, 104, 204 are added to the white light source 22a.
  • a movable filter that transmits only the excitation wavelength light with respect to the phosphor provided on the substrate may be provided.
  • the irradiation light switching control unit 27c only needs to position the filter on the optical path of the white light from the white light source 22a when calibrating the relationship of the received light intensity between the plurality of light receiving fibers.
  • the irradiation light switching control unit 27c sets the filter to white when calibrating the spectral sensitivities of the first measurement unit 24a and the second measurement unit 24b of the measurement unit 24 and when performing measurement processing for acquiring characteristic values. What is necessary is just to evacuate from the optical path of the white light from the light source 22a.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 本発明にかかる光学測定システムは、複数の受光ファイバと照射ファイバとを有するプローブ3と、枠部材と、枠部材の内部に設けられ、散乱光測定波長帯とは異なる波長帯に属する波長の励起光によって蛍光を発する蛍光体とを有し、蛍光体表面とプローブ3の先端33とが対向した状態で使用される校正用部材4と、励起光を照射ファイバに供給する蛍光励起用光源22bと、複数の受光ファイバの各出力光を測定する測定部24と、励起光の照射によって発生した蛍光体からの蛍光に対する複数の受光ファイバ34からの出力光の測定部24による測定結果をもとに、複数の受光ファイバ間の受光強度に対する校正を行う校正処理部27bと、を備える。

Description

光学測定システム、光学測定装置、校正用部材および校正方法
 本発明は、複数の受光ファイバを用いて散乱光測定を行う光学測定システム、光学測定装置、光学測定装置の校正処理に使用される校正用部材、および、光学測定装置の校正方法に関する。
 近年、空間コヒーレンス長の短い低コヒーレント光をプローブ先端から散乱体である生体組織に照射し、その散乱光の強度分布を測定することによって、生体組織の性状を検出するLEBS(Low-Coherence Enhanced Backscattering)技術を用いた光学測定装置が提案されている(たとえば、特許文献1~4参照)。このような光学測定装置は、消化器等の臓器を観察する内視鏡と組み合わせることによって生体組織等の測定対象物の光学測定を行なう。
 このLEBS技術を用いた光学測定装置は、所望の複数の角度の散乱光をプローブにおける複数の受光ファイバで取得することによって生体組織の散乱光の強度分布を測定し、この測定結果をもとに生体組織の性状に関わる特性値を取得する。
国際公開WO2007/133684号 米国特許出願公開第2008/0037024号明細書 米国特許第7652881号明細書 米国特許出願公開第2009/0003759号明細書
 上述した光学測定装置は、検出精度を保証するため、生体組織に対する検出を始める前に校正処理を行う。具体的には、光学測定装置の本体にプローブ基端を装着し、安定した反射特性を有する白色板をプローブ先端に取り付ける。続いて、この白色板に、プローブ先端から光学測定装置から出力された光を照射し、この白色板からの反射光を光学測定装置で測定した結果をもとに、基準となる白色バランスを校正する。さらに、光学測定装置の光源とは別の光源である拡散光源を用意し、この拡散光源が発した光に対する各受光ファイバの受光状態を光学測定装置で測定した結果をもとに、受光ファイバ間の受光強度の関係を校正する処理を行う。しかしながら、この方法で受光ファイバ間の受光強度の関係を校正する場合、校正処理のために、光学測定装置とは別の拡散光源を用意する必要があるため装置構成が複雑となるとともに、拡散光源を用いた測定を行わなければならないため、校正処理が煩雑なものとなっていた。
 また、白色板に代えて拡散反射用ターゲットである拡散板をプローブ先端に取り付けて、この拡散板に光学測定装置から光を照射し、この拡散板からの反射光を光学測定装置で測定した結果をもとに、受光ファイバ間の受光強度の関係を校正する方法もある。しかしながら、この方法では、拡散板からの反射光同士が干渉してしまうため、各受光ファイバにおける受光強度を正確に取得することができず、校正処理を正確に実行することができなかった。
 本発明は、上記に鑑みてなされたものであって、複数の受光ファイバを用いて散乱光測定を行う場合において、簡易かつ正確に校正処理を実行することができる光学測定システム、光学測定装置、光学測定装置の校正処理に使用される校正用部材、および、光学測定装置の校正方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる光学測定システムは、先端から入射した光を基端からそれぞれ出力する複数の受光ファイバを用いて散乱光測定を行う光学測定システムにおいて、前記複数の受光ファイバと、基端から供給された光を先端から照射する照射ファイバとを有するプローブと、枠部材と、前記枠部材の内部に設けられ、散乱光測定波長帯とは異なる波長帯に属する波長の励起光によって蛍光を発する蛍光体とを有し、前記蛍光体表面と前記プローブの先端とが対向した状態で使用される校正用部材と、前記散乱光測定波長帯とは異なる波長帯に属する波長の励起光を前記照射ファイバに供給する励起用光源と、前記複数の受光ファイバの各出力光を測定する測定部と、前記励起光の照射によって発生した前記蛍光体からの蛍光に対する前記複数の受光ファイバからの出力光の前記測定部による測定結果をもとに、前記複数の受光ファイバ間の受光強度の関係を校正する校正処理部と、を備えたことを特徴とする。
 また、本発明にかかる光学測定システムは、白色光を前記照射ファイバに供給する白色光源をさらに備え、前記校正用部材は、前記枠部材の内部に、所定の散乱特性を有する散乱粒子をさらに有し、前記校正処理部は、前記白色光の照射に対する前記散乱粒子からの反射光および/または散乱光に対する前記測定部による測定結果をもとに、前記測定部の分光感度を校正することを特徴とする。
 また、本発明にかかる光学測定システムは、前記蛍光体は、粒子形状をなし、前記散乱粒子と前記蛍光体とは、前記枠部材の内部に設けられた所定の媒体内に分散されることを特徴とする。
 また、本発明にかかる光学測定システムは、前記枠部材は、前記プローブの先端と前記媒体の表面とが一定の距離を隔てて対向する位置で前記プローブと前記校正用部材とを係合する係合部を備えたことを特徴とする。
 また、本発明にかかる光学測定システムは、前記所定の媒体は、固体であり、前記枠部材は、前記プローブの先端を被覆するキャップ形状をなすことを特徴とする。
 また、本発明にかかる光学測定システムは、前記蛍光体は、前記散乱粒子が分散される媒体であることを特徴とする。
 また、本発明にかかる光学測定システムは、前記枠部材は、前記プローブの先端と前記蛍光体の表面とが一定の距離を隔てて対向する位置で前記プローブと当該校正用部材とを係合する係合部を備えたことを特徴とする。
 また、本発明にかかる光学測定システムは、前記蛍光体は、固体であり、前記枠部材は、前記プローブの先端を被覆するキャップ形状をなすことを特徴とする。
 また、本発明にかかる光学測定装置は、先端から入射した光を基端からそれぞれ出力する複数の受光ファイバを有するプローブを用いて散乱光測定を行う光学測定装置において、散乱光測定波長帯とは異なる波長帯に属する波長の励起光を発する励起用光源と、前記複数の受光ファイバの各出力光を測定する測定部と、前記励起光の照射によって発生した蛍光体からの蛍光に対する前記複数の受光ファイバからの出力光の前記測定部による測定結果をもとに、前記複数の受光ファイバ間の受光強度の関係を校正する校正処理部と、を備えたことを特徴とする。
 また、本発明にかかる光学測定装置は、白色光を前記照射ファイバに供給する白色光源をさらに備え、前記校正処理部は、前記白色光の照射に対する、所定の散乱特性を有する散乱粒子からの反射光および/または散乱光に対する前記測定部による測定結果をもとに、前記測定部の分光感度を校正することを特徴とする。
 また、本発明にかかる校正用部材は、複数の受光ファイバを有するプローブを用いて散乱光測定を行う光学測定装置の校正処理に使用される校正用部材において、枠部材と、前記枠部材の内部に設けられ、所定の散乱特性を有する散乱粒子と、前記枠部材の内部に設けられ、散乱光測定波長帯とは異なる波長帯に属する波長の励起光によって蛍光を発する蛍光体と、を備え、前記蛍光体表面と前記プローブの先端とが対向した状態で使用されることを特徴とする。
 また、本発明にかかる校正用部材は、前記蛍光体は、所定の散乱特性を有する粒子形状をなし、前記散乱粒子と前記蛍光体とは、前記枠部材の内部に設けられた所定の媒体内に分散されることを特徴とする。
 また、本発明にかかる校正用部材は、前記枠部材は、前記プローブの先端と前記媒体の表面とが一定の距離を隔てて対向する位置で前記プローブと当該校正用部材とを係合する係合部を備えたことを特徴とする。
 また、本発明にかかる校正用部材は、前記所定の媒体は、固体であり、前記枠部材は、前記プローブの先端を被覆するキャップ形状をなすことを特徴とする。
 また、本発明にかかる校正用部材は、前記蛍光体は、前記散乱粒子が分散される媒体であることを特徴とする。
 また、本発明にかかる校正用部材は、前記枠部材は、前記プローブの先端と前記蛍光体の表面とが一定の距離を隔てて対向する位置で前記プローブと当該校正用部材とを係合する係合部を備えたことを特徴とする。
 また、本発明にかかる校正用部材は、前記蛍光体は、固体であり、前記枠部材は、前記プローブの先端を被覆するキャップ形状をなすことを特徴とする。
 また、本発明にかかる校正用方法は、先端から入射した光を基端からそれぞれ出力する複数の受光ファイバを用いて散乱光測定を行う測定部を有する光学測定装置の校正方法であって、散乱光測定波長帯とは異なる波長帯に属する波長の励起光で蛍光体を照射して発生した蛍光に対する前記複数の受光ファイバの各出力光を前記測定部が測定する第1の測定ステップと、前記第1の測定ステップの測定結果をもとに、前記複数の受光ファイバ間の受光強度の関係を校正する第1の校正ステップと、を含むことを特徴とする。
 また、本発明にかかる校正用方法は、白色光の照射に対する、所定の散乱特性を有する散乱粒子からの反射光および/または散乱光を前記測定部が測定する第2の測定ステップと、前記第2の測定ステップの測定結果をもとに、前記測定部の分光感度を校正する第2の校正ステップと、を含むことを特徴とする。
 本発明によれば、散乱光測定波長帯とは異なる波長帯に属する波長の励起光によって蛍光を発する蛍光体に励起光を照射し、蛍光体からの蛍光に対する複数の受光ファイバからの出力光の測定結果をもとに、複数の受光ファイバ間の受光強度の関係を校正するため、各受光ファイバにおける受光強度を簡易かつ正確に取得することができ、複数の受光ファイバを用いて散乱光測定を行う場合において、簡易かつ正確に校正処理を実行することができる。
図1は、本発明の一実施の形態にかかる光学測定システムの概略構成を示すブロック図である。 図2は、図1に示す光学測定システムの要部の断面図である。 図3は、図1および図2に示す校正用部材の断面図である。 図4は、図3に示す蛍光粒子の蛍光特性を説明する図である。 図5は、図1に示す光学測定システムにおける校正処理の処理手順を示すフローチャートである。 図6は、図1に示す校正用部材の他の例の断面図である。 図7は、図1に示す校正用部材の他の例の断面図である。
 以下、図面を参照して、この発明にかかる光学測定システム、光学測定装置、校正用部材および校正処理の好適な実施の形態を詳細に説明する。なお、この実施の形態によってこの発明が限定されるものではない。また、図面の記載において、同一の部分には同一の符号を付している。また、図面は模式的なものであり、各部材の厚みと幅との関係、各部材の比率などは、現実と異なることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている。
(実施の形態)
 図1は、本発明の一実施の形態にかかる光学測定システムの概略構成を示すブロック図である。図2は、図1に示す光学測定システムの要部の断面図である。図2は、説明のために、図1に示す光学測定システムを構成する測定装置の要部についても模式的に示している。
 図1に示すように、実施の形態にかかる光学測定システム1は、生体組織等の測定対象に対する光学測定を行って測定対象の性状を検出する測定装置2と、被検体内に挿入されるプローブ3と、測定装置2における校正処理時にプローブ3の先端33に取り付けられる校正用部材4とを備える。プローブ3は、基端が測定装置2に脱着可能である。プローブ3は、照射ファイバおよび複数の受光ファイバを有する。プローブ3は、基端から供給された光を先端から測定対象に対して出射するとともに、先端から入射した測定対象からの戻り光である散乱光、反射光を、基端から測定装置2に出力する。
 測定装置2は、電源21、光源部22、接続部23、測定部24、入力部25、出力部26、制御部27および記憶部28を備える。
 電源21は、測定装置2の各構成要素に電力を供給する。
 光源部22は、プローブ3に供給する光を発する。光源部22は、白色光源22aと蛍光励起用光源22bとを有する。白色光源22aは、白色LED、キセノンランプまたはハロゲンランプ等の低コヒーレント光源と、一または複数のレンズとを用いて実現される。白色光源22aは、低コヒーレント光を、所定タイミングにしたがってプローブ3に供給する。蛍光励起用光源22bは、測定部24における散乱光測定波長帯とは異なる波長帯に属する波長であって、後述する校正用部材4の蛍光粒子を励起する励起光として機能する光を発する。
 接続部23は、プローブ3の基端を測定装置2に着脱自在に接続する。接続部23は、光源部22が発する光をプローブ3に供給するとともに、プローブ3から出力された戻り光を測定部24に出力する。
 測定部24は、プローブ3から出力された光であって生体組織からの戻り光を測定する。測定部24は、分光器を用いて実現される。測定部24は、プローブ3から出力された戻り光のスペクトル成分および強度等を測定して、波長ごとの測定を行なう。測定部24は、測定結果を制御部27に出力する。測定部24は、光源部22による発光処理に対応した所定の測定タイミングで戻り光の測定処理を繰り返し行う。測定部24は、後述するプローブ3の複数の受光ファイバ35,36(図2参照)に対しそれぞれ測定部が設けられ、図1に示す例では、第1測定部24aおよび第2測定部24bの2つの分光器を有する。
 入力部25は、プッシュ式のスイッチ等を用いて実現され、スイッチ等が操作されることによって、測定装置2の起動を指示する指示情報や他の各種指示情報を受け付けて制御部27に入力する。
 出力部26は、光学測定システム1における各種処理に関する情報を出力する。出力部26は、ディスプレイ、スピーカまたはモータ等を用いて実現され、画像情報、音声情報または振動を出力することによって、光学測定システム1における各種処理に関する情報を出力する。
 制御部27は、測定装置2の各構成要素の処理動作を制御する。制御部27は、CPUおよびRAM等の半導体メモリを用いて実現される。制御部27は、測定装置2の各構成要素に対する指示情報やデータの転送等を行うことによって、測定装置2の動作を制御する。制御部27は、演算部27a、校正処理部27bおよび照射光切替制御部27cを有する。
 演算部27aは、測定部24による測定結果をもとに複数種の演算処理を行い、生体組織の性状に関わる特性値を演算する。演算部27aが演算する特性値であって、取得対象とされた特性値の種別は、たとえば、操作者による操作によって入力部25から入力された指示情報にしたがって設定される。
 校正処理部27bは、光源部22および測定部24を制御して、測定対象に対する検出を始める前に、検出精度を保証するための測定装置2に対する校正処理を行う。校正処理は、プローブ3が付け替えられるたびに行われる。
 照射光切替制御部27cは、光源部22における白色光源22aおよび蛍光励起用光源22bとの間で、実際に光を発する光源を切り替える制御を行う。照射光切替制御部27cは、測定対象に対する散乱光測定を行う場合には、白色光源22aに照射処理を行わせる。照射光切替制御部27cは、校正処理を行う場合には、校正処理の内容に対応させて白色光源22aおよび蛍光励起用光源22bのいずれかに照射処理を行わせる。
 記憶部28は、測定装置2に光学測定処理を実行させる光学測定プログラムを記憶するとともに、光学測定処理に関する各種情報を記憶する。記憶部28は、演算部27aが演算した特性値を記憶する。記憶部28は、測定装置2に校正処理を実行させる校正用プログラムを記憶するとともに、校正処理に関する各種情報を記憶する。
 プローブ3は、複数の光ファイバを用いて実現される。プローブ3は、測定装置2の接続部23に着脱自在に接続される基端部31と、可撓性を有する可撓部32と、光源部22から供給された光が出射するとともに測定対象からの散乱光が入射する先端33とを有する。LEBS技術を用いる場合には、散乱角度の異なる少なくとも2つの散乱光をそれぞれ集光するため、複数の集光ファイバが設けられる。具体的には、図2に示すように、プローブ3は、基端から供給された光源部22からの光を先端から測定対象に照射する照射ファイバ34と、先端から入射した測定対象からのそれぞれ異なる散乱角度の散乱光、反射光を基端からそれぞれ出力する2本の受光ファイバ35,36とを有し、照射ファイバ34の側面と複数の受光ファイバ35,36の側面とが被覆部37によって被覆された構成を有する。光学測定装置1は、たとえば、消化器等の臓器を観察する内視鏡システムに組み合わされて使用され、プローブ3は、被検体内に挿入された内視鏡のプローブ用チャネルを経由して被検体内部に導入される。
 光学測定システム1においては、プローブ3の先端33が校正用部材4で被覆された状態で、測定開始前の校正処理が行われる。図3は、図1および図2に示す校正用部材4の断面図である。
 校正用部材4は、図2および図3に示すように、プローブ3の先端33を被覆するキャップ形状をなす本体枠41の内部に、固体である媒体42が設けられた構成を有する。媒体42は、内部に散乱粒子43と蛍光粒子44とが分散されている。媒体42は、たとえば、シリコン樹脂、ポリエチレン樹脂、ゼラチン、アクリル樹脂、ポリアミドなどの透明な固体であり、散乱粒子43および蛍光粒子44よりも十分に大きな粒子で形成される。散乱粒子43は、ポリスチレン粒子やアルミナ微粒子などである。
 蛍光粒子44は、所定波長帯に属する励起光が照射された場合、この励起光よりも長い波長の蛍光を発する。図4は、図3に示す蛍光粒子44の蛍光特性を説明する図である。測定部24は、波長λaから波長λbの散乱光測定波長帯Wで分光処理を行う。蛍光粒子44は、この測定部24の散乱光測定波長帯Wとは異なる波長帯に属する波長λcの光で励起されると、曲線Lbに示す波長帯であって、測定部24の散乱光測定波長帯Wに含まれる波長帯に属する波長の蛍光を発する。このため、蛍光励起用光源22bは、たとえば曲線Laに示すように、波長λcをピークとする波長帯の励起光を照射する。校正用部材4の蛍光粒子44に入射する励起光の強度と、蛍光粒子44が発する蛍光強度との関係は、予め求められている。
 また、蛍光粒子44は、励起波長帯に属する波長以外の光が照射された場合には、散乱粒子43と同様に散乱体として振舞う。散乱粒子43と蛍光粒子44とは、所定の散乱特性および反射特性を有し、入射した白色光に応じて散乱、反射する戻り光の波長分布状態は、予め求められている。媒体42、散乱粒子43および蛍光粒子44は、入射光の波長および戻り光の波長と、粒子との関係をもとに、材料や粒子サイズが設定される。
 一定条件下において安定して校正処理を実行するために、校正用部材4の本体枠41は、プローブ3の先端33と媒体42の表面とが一定の距離D(図2参照)を隔てて対向する位置で、被覆部37表面と校正用部材4とを係合させる突起状のストッパ45を内部に備える。距離Dは、照射ファイバ34からの光が十分に広がった状態で媒体42に入射するように設定される。
 校正処理部27bは、励起光の照射によって発生した蛍光粒子44からの蛍光に対する複数の受光ファイバ35,36からの出力光の測定部24による測定結果をもとに、複数の受光ファイバ35,36間の受光強度の関係を校正する。さらに、校正処理部27bは、白色光の照射に対する散乱粒子43および蛍光粒子44からの反射光、散乱光に対する測定部24による測定結果をもとに、測定部24の第1測定部24aおよび第2測定部24bの分光感度を校正する。
 次に、光学測定システム1における校正処理について説明する。図5は、図1に示す光学測定システム1における校正処理の処理手順を示すフローチャートである。なお、図5においては、校正用の測定結果を取得した後に、継続して校正処理を行う場合を例に説明する。
 図5に示すように、まず、制御部27は、校正処理の開始が指示されたか否かを判断する(ステップS1)。制御部27は、たとえば、入力部25から校正処理の開始を指示する指示情報が入力された場合や、プローブ3が付け替えられたことを検出した場合に、校正処理の開始が指示されたと判断する。制御部27は、校正処理の開始が指示されていないと判断した場合(ステップS1:No)、ステップS1に戻り、校正処理の開始が指示されるまでステップS1の判断処理を繰り返す。
 制御部27が校正処理の開始が指示されたと判断した場合(ステップS1:Yes)、校正処理部27bは、複数の受光ファイバ35,36間の受光強度の関係を校正するための校正処理を行う。まず、校正処理部27bの制御のもと、照射光切替制御部27cは、使用光源を蛍光励起用光源22bに切り替え、照射光を励起光に切り替える(ステップS2)。続いて、校正処理部27bは、蛍光励起用光源22bに、波長λcをピークとする励起光を所定強度で照射させる(ステップS3)。蛍光励起用光源22bから照射された励起光は、プローブ3の照射ファイバ34の先端から、校正用部材4の内部に照射される。この結果、校正用部材4の蛍光粒子44は、蛍光を発する。この蛍光粒子44からの蛍光は、コヒーレントを示さず、かつ、拡散放射されるものである。すなわち、干渉の影響を受けずに、励起光に応じた一定の強度の蛍光が受光ファイバ35,36にそれぞれ入射する。
 測定部24は、各受光ファイバ35,36の蛍光の受光強度を測定する(ステップS4)。図2に示す例では、第1測定部24aが受光ファイバ35における受光強度を測定し、第2測定部24bが受光ファイバ36における受光強度を測定する。
 続いて、校正処理部27bは、各受光ファイバ35,36の測定部24による受光強度測定結果をもとに、受光ファイバ35,36間の受光強度の関係を校正する(ステップS5)。この場合、一定の強度の蛍光が受光ファイバ35,36にそれぞれ入射している。このため、校正処理部27bは、実際に各受光ファイバ35,36に入射する蛍光強度に対応させて、測定部24において測定される各受光ファイバ35,36の受光強度の比を校正する。このように、校正処理部27bは、励起光に対する校正用部材4の蛍光粒子44からの蛍光をもとに各受光ファイバ35,36間の受光強度の関係を校正する。
 ステップS5が終了した後、校正処理部27bは、測定部24の第1測定部24aおよび第2測定部24bの分光感度を校正するための校正処理を行う。まず、校正処理部27bの制御のもと、照射光切替制御部27cは、使用光源を白色光源22aに切り替え、照射光を白色光に切り替える(ステップS6)。続いて、校正処理部27bは、白色光源22aに、白色光を所定条件で照射させる(ステップS7)。白色光源22aから照射された白色光は、プローブ3の照射ファイバ34の先端から、校正用部材4の内部に照射される。この結果、散乱体として機能する校正用部材4の散乱粒子43および蛍光粒子44によって光が散乱および反射し、戻り光として、入射した白色光に応じた一定の散乱光、反射光が受光ファイバ35,36にそれぞれ入射する。
 測定部24の第1測定部24aおよび第2測定部24bは、各受光ファイバ35,36の戻り光に対してそれぞれ分光測定を行う(ステップS8)。この場合、一定の条件で照射された白色光に対して、一定の波長分布を有する戻り光が受光ファイバ35,36に入射する。この戻り光の波長分布は予め求められている。校正処理部27bは、この予め求められた戻り光の波長分布と、実際に第1測定部24aおよび第2測定部24bによる分光測定結果とを比較して、第1測定部24aおよび第2測定部24bの各測定器の分光感度を校正する(ステップS9)。このように、校正処理部27bは、白色光に対する校正用部材4からの戻り光をもとに各測定器の分光感度を校正する。
 ステップS9が終了した後、制御部27は、校正処理が終了した旨を出力部26に通知させて(ステップS10)、校正処理を終了する。なお、受光ファイバ35,36間の受光強度に対する校正処理、および、第1測定部24aおよび第2測定部24bの分光感度に対する校正処理は、いずれを先に行ってもよい。このため、ステップS2~ステップS5と、ステップS6~ステップS9を入れ替えることも可能である。
 このように、実施の形態にかかる光学測定システム1においては、散乱特性と蛍光特性との双方を有する校正用部材4を用いている。光学測定システム1においては、受光ファイバ35,36間の受光強度の関係に対する校正は、励起光を照射し、蛍光体から発生した蛍光をもとに行っており、測定部24の分光感度に対する校正は、白色光に対する散乱体からの戻り光をもとに行っているため、受光ファイバ35,36に対する校正および測定部24に対する校正の双方を正確に実行することができる。
 また、光学測定システム1においては、光源部22に蛍光励起用光源22bを設けるだけで、一つの校正用部材4を用いて、受光ファイバ35,36の受光強度の関係に対する校正および測定部24の分光感度に対する校正の双方を実行できる。このため、光学測定システム1においては、校正処理のために、別個に拡散光源を準備する必要もないため、簡易な構成で校正処理を実行できる。また、光学測定システム1においては、校正処理の内容に合わせて校正部材を付け替える必要もないため、煩雑な処理を行わずとも簡易に校正処理を実行することができる。
 また、光学測定システム1においては、散乱粒子43および蛍光粒子44が固体の媒体42内に分散した校正用部材4を使用するため、プローブ3の先端33および校正用部材4がどの向きを向いていても正しく校正処理を実行することができる。
 なお、実施の形態においては、校正用部材として、本体枠41内部にストッパ45を設けた場合を例に説明したが、もちろんこれに限らず、たとえば、プローブ3の先端33と媒体42の表面とが一定の距離D(図2参照)を隔てて対向するように、被覆部37の側面先端部に突起部を設け、校正用部材4の本体枠41の内壁に突起部が通る溝を設けてもよい。校正用部材4本体の内壁に設けられた溝は、上部から、距離Dに対応する内壁の途中箇所まで下方向に延伸するものである。
 また、実施の形態においては、校正用部材として図3に示すように、媒体42に散乱粒子43と蛍光粒子44との双方が分散した構成を説明したが、蛍光粒子44は散乱体として機能するため、蛍光粒子44のみを媒体42に分散させた構成としてもよい。
 また、実施の形態においては、校正用部材として、散乱粒子43を媒体42内に分散させた構成について説明したが、もちろんこれに限らず、図6の校正用部材104に示すように、蛍光体142内部に散乱粒子43を分散させて、蛍光体142を、散乱粒子43が分散される媒体としてもよい。この場合、蛍光体142は、可視光を透過可能である固体である。この場合も、校正用部材104内部には、プローブ3の先端33と、固体である蛍光体142の表面とが一定の距離を隔てて対向するように、ストッパ45が設けられる。
 また、実施の形態においては、校正用部材として、固体である媒体42あるいは蛍光体142の内部に散乱粒子43を分散させた構成について説明したが、媒体42あるいは蛍光体142は、必ずしも固体である必要はない。図7に示すように、水平面に校正用部材204を設置できる場合には、液体あるいはゲル状の媒体242を用いてもよい。この場合も、校正用部材204の本体枠内部には、校正用部材204を水平面に設置した場合にプローブ3の先端と、媒体242の表面とが一定の距離Dを隔てて対向するように、ストッパ245が設けられる。
 また、本実施の形態においては、白色光源22aに加え蛍光励起用光源22bを設けた構成を例に説明したが、もちろんこれに限らず、白色光源22aに加え、校正用部材4,104,204に設けられた蛍光体に対する励起波長光のみを透過させる可動式のフィルタを設けてもよい。この場合、照射光切替制御部27cは、複数の受光ファイバ間の受光強度の関係を校正する場合には、このフィルタを白色光源22aからの白色光の光路上に位置させればよい。また、照射光切替制御部27cは、測定部24の第1測定部24aおよび第2測定部24bの分光感度を校正する場合および特性値取得のための測定処理を行う場合には、フィルタを白色光源22aからの白色光の光路から退避させればよい。
 また、本実施の形態においては、校正用の測定結果を取得した後に、継続して校正処理を行う場合を例に説明したが、校正用の測定結果を取得してあれば、校正処理自体は、特性値取得用の測定後に行なうことも可能である。
 1 光学測定システム
 2 測定装置
 3 プローブ
 4,104,204 校正用部材
 21 電源
 22 光源部
 22a 白色光源
 22b 蛍光励起用光源
 23 接続部
 24 測定部
 25 入力部
 26 出力部
 27 制御部
 27a 演算部
 27b 校正処理部
 27c 照射光切替制御部
 28 記憶部
 31 基端部
 32 可撓部
 33 先端
 34 照射ファイバ
 35,36 受光ファイバ
 37 被覆部
 41 本体枠
 42,242 媒体
 43 散乱粒子
 44 蛍光粒子
 45 ストッパ
 142 蛍光体

Claims (19)

  1.  先端から入射した光を基端からそれぞれ出力する複数の受光ファイバを用いて散乱光測定を行う光学測定システムにおいて、
     前記複数の受光ファイバと、基端から供給された光を先端から照射する照射ファイバとを有するプローブと、
     枠部材と、前記枠部材の内部に設けられ、散乱光測定波長帯とは異なる波長帯に属する波長の励起光によって蛍光を発する蛍光体とを有し、前記蛍光体表面と前記プローブの先端とが対向した状態で使用される校正用部材と、
     前記散乱光測定波長帯とは異なる波長帯に属する波長の励起光を前記照射ファイバに供給する励起用光源と、
     前記複数の受光ファイバの各出力光を測定する測定部と、
     前記励起光の照射によって発生した前記蛍光体からの蛍光に対する前記複数の受光ファイバからの出力光の前記測定部による測定結果をもとに、前記複数の受光ファイバ間の受光強度の関係を校正する校正処理部と、
     を備えたことを特徴とする光学測定システム。
  2.  白色光を前記照射ファイバに供給する白色光源をさらに備え、
     前記校正用部材は、前記枠部材の内部に、所定の散乱特性を有する散乱粒子をさらに有し、
     前記校正処理部は、前記白色光の照射に対する前記散乱粒子からの反射光および/または散乱光に対する前記測定部による測定結果をもとに、前記測定部の分光感度を校正することを特徴とする請求項1に記載の光学測定システム。
  3.  前記蛍光体は、粒子形状をなし、
     前記散乱粒子と前記蛍光体とは、前記枠部材の内部に設けられた所定の媒体内に分散されることを特徴とする請求項2に記載の光学測定システム。
  4.  前記枠部材は、前記プローブの先端と前記媒体の表面とが一定の距離を隔てて対向する位置で前記プローブと前記校正用部材とを係合する係合部を備えたことを特徴とする請求項3に記載の光学測定システム。
  5.  前記所定の媒体は、固体であり、
     前記枠部材は、前記プローブの先端を被覆するキャップ形状をなすことを特徴とする請求項3に記載の光学測定システム。
  6.  前記蛍光体は、前記散乱粒子が分散される媒体であることを特徴とする請求項1に記載の光学測定システム。
  7.  前記枠部材は、前記プローブの先端と前記蛍光体の表面とが一定の距離を隔てて対向する位置で前記プローブと当該校正用部材とを係合する係合部を備えたことを特徴とする請求項6に記載の光学測定システム。
  8.  前記蛍光体は、固体であり、
     前記枠部材は、前記プローブの先端を被覆するキャップ形状をなすことを特徴とする請求項6に記載の光学測定システム。
  9.  先端から入射した光を基端からそれぞれ出力する複数の受光ファイバを有するプローブを用いて散乱光測定を行う光学測定装置において、
     散乱光測定波長帯とは異なる波長帯に属する波長の励起光を発する励起用光源と、
     前記複数の受光ファイバの各出力光を測定する測定部と、
     前記励起光の照射によって発生した蛍光体からの蛍光に対する前記複数の受光ファイバからの出力光の前記測定部による測定結果をもとに、前記複数の受光ファイバ間の受光強度の関係を校正する校正処理部と、
     を備えたことを特徴とする光学測定装置。
  10.  白色光を前記照射ファイバに供給する白色光源をさらに備え、
     前記校正処理部は、前記白色光の照射に対する、所定の散乱特性を有する散乱粒子からの反射光および/または散乱光に対する前記測定部による測定結果をもとに、前記測定部の分光感度を校正することを特徴とする請求項9に記載の光学測定装置。
  11.  複数の受光ファイバを有するプローブを用いて散乱光測定を行う光学測定装置の校正処理に使用される校正用部材において、
     枠部材と、
     前記枠部材の内部に設けられ、所定の散乱特性を有する散乱粒子と、
     前記枠部材の内部に設けられ、散乱光測定波長帯とは異なる波長帯に属する波長の励起光によって蛍光を発する蛍光体と、
     を備え、前記蛍光体表面と前記プローブの先端とが対向した状態で使用されることを特徴とする校正用部材。
  12.  前記蛍光体は、所定の散乱特性を有する粒子形状をなし、
     前記散乱粒子と前記蛍光体とは、前記枠部材の内部に設けられた所定の媒体内に分散されることを特徴とする請求項11に記載の校正用部材。
  13.  前記枠部材は、前記プローブの先端と前記媒体の表面とが一定の距離を隔てて対向する位置で前記プローブと当該校正用部材とを係合する係合部を備えたことを特徴とする請求項12に記載の校正用部材。
  14.  前記所定の媒体は、固体であり、
     前記枠部材は、前記プローブの先端を被覆するキャップ形状をなすことを特徴とする請求項12に記載の校正用部材。
  15.  前記蛍光体は、前記散乱粒子が分散される媒体であることを特徴とする請求項11に記載の校正用部材。
  16.  前記枠部材は、前記プローブの先端と前記蛍光体の表面とが一定の距離を隔てて対向する位置で前記プローブと当該校正用部材とを係合する係合部を備えたことを特徴とする請求項15に記載の校正用部材。
  17.  前記蛍光体は、固体であり、
     前記枠部材は、前記プローブの先端を被覆するキャップ形状をなすことを特徴とする請求項15に記載の校正用部材。
  18.  先端から入射した光を基端からそれぞれ出力する複数の受光ファイバを用いて散乱光測定を行う測定部を有する光学測定装置の校正方法であって、
     散乱光測定波長帯とは異なる波長帯に属する波長の励起光で蛍光体を照射して発生した蛍光に対する前記複数の受光ファイバの各出力光を前記測定部が測定する第1の測定ステップと、
     前記第1の測定ステップの測定結果をもとに、前記複数の受光ファイバ間の受光強度の関係を校正する第1の校正ステップと、
     を含むことを特徴とする校正方法。
  19.  白色光の照射に対する、所定の散乱特性を有する散乱粒子からの反射光および/または散乱光を前記測定部が測定する第2の測定ステップと、
     前記第2の測定ステップの測定結果をもとに、前記測定部の分光感度を校正する第2の校正ステップと、
     を含むことを特徴とする請求項18に記載の校正方法。
PCT/JP2012/060467 2011-04-21 2012-04-18 光学測定システム、光学測定装置、校正用部材および校正方法 WO2012144522A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012547408A JP5276228B2 (ja) 2011-04-21 2012-04-18 光学測定システム、光学測定装置、校正用部材および校正方法
CN201280005526.8A CN103328953B (zh) 2011-04-21 2012-04-18 光学测量系统、光学测量装置、校正用构件以及校正方法
EP12773711.2A EP2653854B1 (en) 2011-04-21 2012-04-18 Optical measuring system and calibration method
US13/651,711 US8558164B2 (en) 2011-04-21 2012-10-15 Optical measurement system, optical measurement apparatus, calibration member, and calibration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161477884P 2011-04-21 2011-04-21
US61/477,884 2011-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/651,711 Continuation US8558164B2 (en) 2011-04-21 2012-10-15 Optical measurement system, optical measurement apparatus, calibration member, and calibration method

Publications (1)

Publication Number Publication Date
WO2012144522A1 true WO2012144522A1 (ja) 2012-10-26

Family

ID=47041628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060467 WO2012144522A1 (ja) 2011-04-21 2012-04-18 光学測定システム、光学測定装置、校正用部材および校正方法

Country Status (5)

Country Link
US (1) US8558164B2 (ja)
EP (1) EP2653854B1 (ja)
JP (1) JP5276228B2 (ja)
CN (1) CN103328953B (ja)
WO (1) WO2012144522A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014170054A1 (de) * 2013-04-19 2014-10-23 Robert Bosch Gmbh Prüfvorrichtung für ein streulichtmessgerät, herstellungsverfahren für eine prüfvorrichtung für ein streulichtmessgerät und verfahren zum überprüfen eines streulichtmessgeräts
JPWO2016199243A1 (ja) * 2015-06-10 2018-04-26 オリンパス株式会社 照明装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201603385WA (en) * 2013-11-01 2016-05-30 Entegris Jetalon Solutions Inc Dissolved oxygen sensor
US10107755B2 (en) 2014-03-20 2018-10-23 Entegris, Inc. System and method for dectection and signaling of component end-of-life in a dissolved oxygen sensor
JP6348349B2 (ja) * 2014-06-20 2018-06-27 大塚電子株式会社 動的光散乱測定装置及び動的光散乱測定方法
FR3034869A1 (fr) 2015-04-09 2016-10-14 Nodea Medical Dispositif, kit et procede de calibration de fluorescence
JP6719203B2 (ja) * 2015-12-25 2020-07-08 リオン株式会社 生物粒子計数器の校正方法および生物粒子計数器の校正装置
EP3602006A1 (en) * 2017-03-27 2020-02-05 Ecolab USA, Inc. Techniques and materials for calibrating optical sensors
JP2019078715A (ja) * 2017-10-27 2019-05-23 セイコーエプソン株式会社 分光測定装置、分光測定方法
WO2020235198A1 (ja) * 2019-05-22 2020-11-26 株式会社堀場アドバンスドテクノ 水質分析システム、センサモジュール、校正用機器、及び、水質分析システムの校正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004635A (ja) * 2001-06-25 2003-01-08 Mutsuro Okino 蛍光式酸素濃度計
WO2007133684A2 (en) 2006-05-12 2007-11-22 Northwestern University Systems, methods, and apparatuses of low-coherence enhanced backscattering spectroscopy
WO2008050712A1 (fr) * 2006-10-23 2008-05-02 Olympus Corporation Endoscope spectral et son procédé d'étalonnage en longueur d'onde
US20090003759A1 (en) 2007-01-16 2009-01-01 Baker Hughes Incorporated Distributed Optical Pressure and Temperature Sensors
US7652881B1 (en) 2008-07-04 2010-01-26 Hon Hai Precision Industry Co., Ltd. Heat dissipating device and supporting element thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1229836A4 (en) * 1999-11-05 2007-05-02 Spectrx Inc MULTIMODAL OPTICAL TISSUE DIAGNOSIS SYSTEM
AU2002251877A1 (en) * 2001-02-06 2002-08-19 Argose, Inc. Layered calibration standard for tissue sampling
JP2002303547A (ja) * 2001-04-03 2002-10-18 Canon Inc 積分球、それを用いた分光測定装置および分光測定方法
JP2003004365A (ja) 2001-06-22 2003-01-08 Hitachi Ltd 冷蔵庫の液晶表示装置、冷蔵庫及び液晶表示装置の表示選択方法
JP2005147826A (ja) * 2003-11-14 2005-06-09 Hamamatsu Photonics Kk 蛍光測定装置
JP4716673B2 (ja) * 2004-05-21 2011-07-06 オリンパス株式会社 蛍光内視鏡装置
US8131348B2 (en) 2006-05-12 2012-03-06 Northshore University Healthsystem Systems, methods and apparatuses of elastic light scattering spectroscopy and low coherence enhanced backscattering spectroscopy
JP2009236709A (ja) * 2008-03-27 2009-10-15 Fujifilm Corp 表面プラズモンセンシング方法および表面プラズモンセンシング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004635A (ja) * 2001-06-25 2003-01-08 Mutsuro Okino 蛍光式酸素濃度計
WO2007133684A2 (en) 2006-05-12 2007-11-22 Northwestern University Systems, methods, and apparatuses of low-coherence enhanced backscattering spectroscopy
US20080037024A1 (en) 2006-05-12 2008-02-14 Vadim Backman Systems, methods, and apparatuses of low-coherence enhanced backscattering spectroscopy
JP2009537014A (ja) * 2006-05-12 2009-10-22 ノースウェスタン ユニバーシティ 低コヒーレンスの高められた後方散乱分光法のシステム、方法および装置
WO2008050712A1 (fr) * 2006-10-23 2008-05-02 Olympus Corporation Endoscope spectral et son procédé d'étalonnage en longueur d'onde
US20090003759A1 (en) 2007-01-16 2009-01-01 Baker Hughes Incorporated Distributed Optical Pressure and Temperature Sensors
US7652881B1 (en) 2008-07-04 2010-01-26 Hon Hai Precision Industry Co., Ltd. Heat dissipating device and supporting element thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653854A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014170054A1 (de) * 2013-04-19 2014-10-23 Robert Bosch Gmbh Prüfvorrichtung für ein streulichtmessgerät, herstellungsverfahren für eine prüfvorrichtung für ein streulichtmessgerät und verfahren zum überprüfen eines streulichtmessgeräts
JPWO2016199243A1 (ja) * 2015-06-10 2018-04-26 オリンパス株式会社 照明装置
US10527237B2 (en) 2015-06-10 2020-01-07 Olympus Corporation Illumination apparatus

Also Published As

Publication number Publication date
EP2653854A4 (en) 2013-11-13
CN103328953B (zh) 2015-07-01
JPWO2012144522A1 (ja) 2014-07-28
EP2653854B1 (en) 2014-12-31
EP2653854A1 (en) 2013-10-23
JP5276228B2 (ja) 2013-08-28
CN103328953A (zh) 2013-09-25
US8558164B2 (en) 2013-10-15
US20130206971A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5276228B2 (ja) 光学測定システム、光学測定装置、校正用部材および校正方法
US8214025B2 (en) Fluorescence endoscope system
EP2823748B1 (en) Optical measurement device and method for associating fiber bundle
JP6173325B2 (ja) 測定プローブおよび生体光学測定システム
EP2526851B1 (en) Probe and optical measurement apparatus
JP5555386B2 (ja) 光学測定装置および内視鏡システム
EP2896347B1 (en) Scattered light measurement device
WO2016063949A1 (ja) 腫瘍部位の判別方法、腫瘍部位の判別装置
WO2012057150A1 (ja) 光学測定装置およびプローブ
WO2012057152A1 (ja) 光学測定装置および光学測定システム
JP5186791B2 (ja) 孔体内検査装置
WO2014124532A1 (en) Optical standard for calibration of spectral measuring systems
KR20120049487A (ko) 구강질환 진단을 위한 광 특성 기반의 치과용 복합 진단장치
JP5204931B1 (ja) 光学測定装置
WO2013005547A1 (ja) 光学測定装置
JP5420163B2 (ja) 生体計測装置
WO2013133341A1 (ja) 光学測定装置
JP2013244313A (ja) 光測定装置
WO2020075247A1 (ja) 画像処理装置、観察システムおよび観察方法
JP5596870B2 (ja) 測定プローブ
WO2013140690A1 (ja) 測定プローブおよび生体光学測定システム
JP2013540257A (ja) 特に生体組織から得られるスペクトルを記録する測定装置
JP2014054420A (ja) キャリブレーション方法および保護部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012547408

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012773711

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE