WO2020235198A1 - 水質分析システム、センサモジュール、校正用機器、及び、水質分析システムの校正方法 - Google Patents

水質分析システム、センサモジュール、校正用機器、及び、水質分析システムの校正方法 Download PDF

Info

Publication number
WO2020235198A1
WO2020235198A1 PCT/JP2020/011722 JP2020011722W WO2020235198A1 WO 2020235198 A1 WO2020235198 A1 WO 2020235198A1 JP 2020011722 W JP2020011722 W JP 2020011722W WO 2020235198 A1 WO2020235198 A1 WO 2020235198A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
light
water quality
quality analysis
analysis system
Prior art date
Application number
PCT/JP2020/011722
Other languages
English (en)
French (fr)
Inventor
紀一郎 富岡
雄大 羽島
Original Assignee
株式会社堀場アドバンスドテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場アドバンスドテクノ filed Critical 株式会社堀場アドバンスドテクノ
Priority to CN202080036609.8A priority Critical patent/CN113841043A/zh
Priority to KR1020217037045A priority patent/KR20220011626A/ko
Priority to US17/595,348 priority patent/US20220221404A1/en
Priority to EP20810657.5A priority patent/EP3961193A4/en
Priority to JP2021520072A priority patent/JP7489972B2/ja
Publication of WO2020235198A1 publication Critical patent/WO2020235198A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/276Calibration, base line adjustment, drift correction with alternation of sample and standard in optical path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6473In-line geometry
    • G01N2021/6476Front end, i.e. backscatter, geometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6497Miscellaneous applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards

Definitions

  • the present invention relates to a water quality analysis system that detects fluorescence generated from a measurement target component contained in a liquid sample and measures the concentration of the measurement target component, a sensor module used in the water quality analysis system, and a calibration method of the water quality analysis system. Is.
  • An exhaust gas cleaning system is used to remove sulfur oxides (SO X ) contained in the exhaust gas emitted from the internal combustion engine of a ship.
  • This EGCS has a SO X scrubber performing FGD, from SO X scrubber polycyclic aromatic hydrocarbons (polycyclic aromatic hydrocarbons, PAHs) are scrubber effluent containing discharged.
  • SO X scrubber performing FGD
  • PAHs polycyclic aromatic hydrocarbons
  • PAHs polycyclic aromatic hydrocarbons
  • phenanthrene is used as the monitoring standard according to the EGCS guidelines established by the International Maritime Organization (IMO).
  • a PAH meter using fluorescence spectroscopy is used as a device for measuring the concentration of phenanthrene in scrubber wastewater. Since the phenanthrene concentration obtained by this PAH meter is regarded as the phenanthrene-equivalent PAH concentration and must be equal to or less than a predetermined allowable concentration value, it is necessary to calibrate or check the sensitivity of the PAH meter at a predetermined timing.
  • a reference solution prepared by adjusting phenanthrene to a predetermined concentration is used as a calibration method or a sensitivity check method of a PAH meter using fluorescence spectroscopy.
  • phenanthrene is difficult to dissolve in a solvent (pure water for reagents), and it is difficult to prepare a reference solution with good reproducibility.
  • phenanthrene is toxic and cannot be easily used in the field.
  • phenanthrene is an organic fluorescent substance and is discolored by light, the usage time is limited and long-term continuous measurement cannot be performed. In addition, it is difficult to obtain pure water for reagents on board.
  • the present invention has been made to solve the above problems, and its main subject is to calibrate the water quality analysis system without using an organic fluorescent substance such as phenanthrene.
  • the water quality analysis system is a water quality analysis system that analyzes a measurement target component contained in a liquid sample by fluorescence spectroscopy, and emits light having an excitation wavelength of the measurement target component to the liquid sample.
  • a calculation device that calculates the concentration of the component to be measured using the light irradiation unit to be irradiated, the light detection unit that detects the fluorescence of the component to be measured emitted from the liquid sample, and the fluorescence intensity obtained by the light detection unit. It is characterized by including a solid fluorescence reference member provided in the light path between the light irradiation unit and the light detection unit at the time of calibration and emitting fluorescence by the light of the light irradiation unit.
  • a solid fluorescence reference member is provided in the light path between the light irradiation unit and the light detection unit at the time of calibration, so that the water quality analysis system can be calibrated without using a conventional reference solution. be able to. That is, various problems caused by using an organic fluorescent substance such as phenanthrene can be solved. Compared to organic fluorescent materials, the solid fluorescence reference member does not fade, is non-toxic, has high uniformity, and has high heat resistance, so that workability and convenience in calibration can be improved. .. In addition, the method of storing the fluorescence reference member becomes simple, and it is not necessary to be aware of the life of the fluorescence reference member. Further, the inspection using the fluorescence reference member can be easily and quickly performed.
  • the fluorescence reference member is not particularly limited as long as it is a solid material.
  • fluorescent glass or a ceramic phosphor formed by doping glass with rare earth ions is doped into an organic polymer material such as acrylic.
  • a fluorescent resin body or a ceramic phosphor powder coated on a glass member or an organic polymer material member can be considered. Among these, it is desirable to use fluorescent glass having high transparency and high optical homogeneity.
  • the solid fluorescence reference member may be in the form of a gel.
  • the water quality analysis system it is conceivable to further include a sensor head that accommodates the light irradiation unit and the photodetection unit and is immersed in the liquid sample.
  • a sensor head that accommodates the light irradiation unit and the photodetection unit and is immersed in the liquid sample.
  • the fluorescence reference member is detachably attached to the sensor head.
  • Examples of the liquid sample analyzed by the water quality analysis system of the present invention include scrubber wastewater discharged from a ship.
  • the light irradiation unit irradiates light having an excitation wavelength of phenanthrene contained in the scrubber drainage
  • the light detection unit detects fluorescence of the phenanthrene
  • the arithmetic unit It is desirable that the PAH concentration equivalent to phenanthrene contained in the scrubber wastewater is calculated using the fluorescence intensity obtained by the light detection unit.
  • the fluorescence reference member does not have a reference value defined from the beginning like a reference solution in which the concentration of the component to be measured is known. Therefore, it is necessary to price the fluorescence reference member using a reference solution having a known concentration of the component to be measured. Therefore, the water quality analysis system of the present invention is for calibration that shows the relationship between the fluorescence intensity obtained by using a reference solution having a known concentration of the component to be measured and the fluorescence intensity obtained by using the fluorescence reference member. It is desirable that the calculation device further includes a storage unit for storing the relational data of the above, and the arithmetic apparatus is calibrated using the fluorescence intensity of the fluorescence reference member obtained by the light detection unit at the time of calibration and the relational data.
  • ND filters having various attenuation rates are used to keep the amount of fluorescence incident on the light detection unit within a predetermined range while suppressing variations in the fluorescence amount of the fluorescence reference member. It is necessary to prepare and select and use an ND filter with an appropriate attenuation rate. However, it is necessary to select an ND filter having an appropriate attenuation factor, which complicates the work. Therefore, it is desirable to further provide an angle changing mechanism for changing the inclination angle of the fluorescence reference member with respect to the light irradiation unit and the light detection unit.
  • the angle changing mechanism changes the inclination angle of the fluorescence reference member stepwise. Further, in order to be able to freely set the inclination angle of the fluorescence reference member, it is desirable that the angle changing mechanism continuously changes the inclination angle of the fluorescence reference member.
  • the angle changing mechanism is fixed to a reference member holding body that holds the fluorescence reference member, and to the light irradiation unit and the light detection unit at the time of calibration.
  • a reference member holding body that holds the fluorescence reference member
  • the light irradiation unit and the light detection unit at the time of calibration.
  • the calibration device analyzes the component to be measured contained in the liquid sample by fluorescence spectroscopy, and irradiates the liquid sample with light having an excitation wavelength of the component to be measured.
  • a calibration device used for calibrating a water quality analysis system including a light irradiation unit and a light detection unit that detects fluorescence of the component to be measured emitted from the liquid sample, and emits fluorescence by the light of the light irradiation unit. It is characterized by including a solid fluorescence reference member and a calibration jig that holds the fluorescence reference member and provides the fluorescence reference member in a light path between the light irradiation unit and the light detection unit at the time of calibration. And.
  • the sensor module used in a water quality analysis system that analyzes a component to be measured contained in a liquid sample by fluorescence spectroscopy. That is, the sensor module according to the present invention includes a light irradiation unit that irradiates the liquid sample with light having an excitation wavelength of the measurement target component, and photodetection that detects fluorescence of the measurement target component emitted from the liquid sample.
  • a sensor head that houses the light irradiation unit and the photodetector and is immersed in the liquid sample, and a fluorescence reference member that is attached to the sensor head during calibration and emits fluorescence by the light of the light irradiation unit. It is characterized by having.
  • the calibration method of the water quality analysis system is a calibration method of the water quality analysis system that analyzes the component to be measured contained in the liquid sample by fluorescence spectroscopy, and the water quality analysis system is based on the liquid sample.
  • a light irradiation unit that irradiates light having an excitation wavelength of the measurement target component
  • a light detection unit that detects the fluorescence of the measurement target component emitted from the liquid sample
  • a fluorescence intensity obtained by the light detection unit is a fluorescence intensity obtained by the light detection unit.
  • It is equipped with a calculation device that calculates the concentration of the component to be measured, and is a fluorescence reference that emits fluorescence by the light of the light irradiation unit in the light path between the light irradiation unit and the light detection unit at the time of calibration. It is characterized in that a member is provided and calibration is performed.
  • Specific calibration methods include the fluorescence intensity of a reference solution having a known concentration of the component to be measured obtained by a reference system that serves as a reference for the water quality analysis system, and the fluorescence reference obtained by the water quality analysis system.
  • a calibration-related data generation step for generating calibration-related data indicating the relationship with the fluorescence intensity of the member is further provided, and at the time of calibration, the fluorescence reference member is placed in the light path between the light irradiation unit and the light detection unit. It is conceivable to provide and perform calibration using the fluorescence intensity obtained by the light detection unit and the calibration-related data obtained in the calibration-related data generation step.
  • first relational data showing the relationship between the fluorescence intensity of the reference liquid obtained by the reference system and the fluorescence intensity of the fluorescence reference member obtained by the reference system is generated.
  • the first relational data generation step and the second relational data which shows the relationship between the fluorescence intensity of the fluorescence reference member obtained by the reference system and the fluorescence intensity of the fluorescence reference member obtained by the water quality analysis system are generated.
  • the calibration relation is provided with a second relation data generation step, and the first relation data obtained in the first relation data generation step and the second relation data obtained in the second relation data generation step are used. It is conceivable that it will generate data.
  • the photodetector of the reference system is calibrated by an accredited calibration institution.
  • the water quality analysis system can be calibrated without using an organic fluorescent substance such as phenanthrene.
  • the water quality analysis system 100 of the present embodiment excites the measurement target component with excitation light in a system using fluorescence spectroscopy as a method for measuring the measurement target component contained in the liquid sample, and from the measurement target component by the excitation light. Fluorescence is detected and the concentration of the component to be measured is measured.
  • the liquid sample is, for example, a scrubber wastewater discharged from the SO X scrubber mounted on a ship
  • the measurement target component is a phenanthrene in scrubber effluent (phenanthrene).
  • the water quality analysis system 100 detects the fluorescence of the measurement target component emitted from the liquid sample and the light irradiation unit 2 that irradiates the liquid sample with light having the excitation wavelength of the measurement target component.
  • the light irradiation unit 2 irradiates excitation light having an excitation wavelength (254 nm) of phenanthrene, which is a component to be measured, and emits light in a wavelength range including the excitation wavelength (254 nm), an ultraviolet light source 21 and the ultraviolet light source. It has a wavelength selection filter 22 that transmits an excitation wavelength (254 nm) from the light of the above. By using this wavelength selection filter 22, it is possible to reduce the variation in the excitation wavelength and also reduce the variation in the hand width of the excitation wavelength.
  • the light detection unit 3 detects light having a fluorescence wavelength (360 nm) of phenanthrene, and transmits the light having a fluorescence wavelength (360 nm) from a photodetector 31 such as a photomultiplier tube (PMT) and light emitted from a liquid sample. It has a wavelength selection filter 32 to be used. By using this wavelength selection filter 32, it is possible to reduce the variation in the fluorescence wavelength and also reduce the variation in the bandwidth of the fluorescence wavelength.
  • the photodetector 3 of the present embodiment has a photodetector 33 for monitoring for monitoring the amount of light of the light irradiation unit 2.
  • the photodetector 33 uses, for example, a Si photodiode or a GaN ultraviolet detection element.
  • the light irradiation unit 2 and the light detection unit 3 of the present embodiment are housed in the sensor head 6.
  • a part or all of the sensor head 6 is immersed in a liquid sample, and a light irradiation unit 2 and a light detection unit 3 are housed in a tip portion thereof.
  • the light irradiation unit 2 and the light detection unit 3 are coaxial illumination using the beam splitter 10, and the tip surface of the sensor head 6 is exposed to the excitation light applied to the liquid sample and from the liquid sample.
  • An optical window 11 that transmits fluorescence is provided.
  • a signal cable 7 for transmitting the fluorescence intensity signal obtained by the photodetector 31 to the arithmetic unit 4 is connected to the base end portion.
  • the arithmetic unit 4 has a concentration calculation unit 401 that acquires a fluorescence intensity signal transmitted from the photodetector 31 and calculates the PAH concentration equivalent to phenanthrene contained in the scrubber wastewater.
  • the concentration calculation unit 401 of the arithmetic unit 4 corrects the fluorescence intensity obtained by the photodetector 31 with the ultraviolet intensity obtained by the photodetector 33, and calculates the PAH concentration equivalent to phenanthrene.
  • the fluorescence reference member 5 is a fluorescent glass formed by doping the glass with rare earth ions.
  • the fluorescent glass is, for example, a blue light emitting glass, which is a futurate-based glass containing divalent europium ion (Eu 2+ ) as a fluorescent active element (rare earth ion). This fluorescent glass is not deteriorated by storage or deteriorated by ultraviolet rays, and can be reused. Fluorescent glass also has high heat resistance, high transparency, high optical homogeneity, and no toxicity.
  • IFE effect is that the excitation light and fluorescence are absorbed by the fluorescence reference member itself.
  • the fluorescence reference member 5 is detachably attached to the sensor head 6 and is held by the adapter 8 which is a calibration jig.
  • the fluorescence reference member 5 and the adapter 8 constitute a calibration device for calibrating the water quality analysis system 100. Then, by attaching the adapter 8 to the tip of the sensor head 6, as shown in FIG. 2, the fluorescence reference member 5 held by the adapter 8 is arranged to face the optical window 11, and the light irradiation unit 2 and the light irradiation unit 2 and It will be provided in the light path between the photodetectors 3. Further, the water quality analysis system 100 is calibrated with the adapter 8 attached to the sensor head 6.
  • the adapter 8 may be provided with an ND filter 9. When the fluorescence intensity is strong, the ND filter 9 can attenuate the irradiation intensity to shorten the distance between the optical window of the sensor head 6 and the fluorescence reference member 5, and the adapter 8 can be miniaturized.
  • the arithmetic apparatus 4 is obtained by using the fluorescence intensity and the fluorescence reference member 5 obtained by using a reference solution having a known concentration of the component to be measured in order to calibrate the water quality analysis system 100 by the fluorescence reference member 5.
  • the water quality analysis system 100 uses the storage unit 402 that stores the calibration-related data showing the relationship with the fluorescence intensity, and the fluorescence intensity and the relationship data of the fluorescence reference member 5 obtained by the light detector 31 at the time of calibration. It has a calibration unit 403 for calibrating.
  • the calibration-related data shows the relationship between the fluorescence intensity of the reference solution having a known concentration of the component to be measured obtained by the reference system 200 and the fluorescence intensity of the fluorescence reference member 5 obtained by the water quality analysis system 100. is there.
  • the reference system 200 is a reference of the water quality analysis system 100 to be calibrated, and uses a photodetector (reference detector 31X) calibrated by an accredited calibration institution.
  • the optical system of the reference system 200 is the same as the optical system of the water quality analysis system 100, and the physical conditions such as the arrangement of the light source and the wavelength selection filter are the same.
  • the reference detector 31X has been verified by a calibration laboratory whose detection wavelength and detection sensitivity have been certified.
  • the certified calibration organization is, for example, a business operator certified by the National Institute of Standards and Technology (NIST), the Product Evaluation Technology Infrastructure Organization Certification System (ASNITE), or the Measurement Law Calibration Business Registration System (JCSS). ) Is a registered business operator.
  • the calibration-related data generation step has the following steps (a) and (b).
  • this coefficient K becomes the calibration-related data obtained for each fluorescence reference member 5.
  • This calibration-related data is stored in the storage unit 402 of the arithmetic unit 4, for example, before the product is shipped.
  • the water quality analysis system 100 is checked for its indicated value (PAH concentration equivalent to phenanthrene) at regular or predetermined timings, and is calibrated at regular or predetermined timings. Will be done.
  • indicated value PAH concentration equivalent to phenanthrene
  • the sensor head 6 is picked up from the pipe or storage tank through which the liquid sample flows, and the adapter 8 is attached to the tip of the sensor head 6.
  • the photodetector 31 detects the fluorescence emitted from the fluorescence reference member 5 irradiated with the excitation light from the light irradiation unit 2.
  • the calibration unit 403 of the arithmetic unit 4 calibrates the water quality analysis system 100 using the fluorescence intensity obtained by the photodetector 31 and the calibration-related data stored in the storage unit 402.
  • the solid fluorescence reference member 5 is used as a light path between the light irradiation unit 2 and the light detection unit 3.
  • calibration can be performed without using a conventional reference solution. That is, various problems caused by using an organic fluorescent substance such as phenanthrene can be solved.
  • the solid fluorescence reference member 5 does not fade, is non-toxic, has high uniformity, and has high heat resistance, so that workability and convenience in calibration can be improved. it can.
  • the storage method of the fluorescence reference member 5 is simplified, and the life of the fluorescence reference member 5 does not have to be conscious. Further, the inspection using the fluorescence reference member 5 can be easily and quickly performed.
  • the effect of improving workability and convenience in the present embodiment becomes remarkable. Further, in the water quality analysis system 100 of the present embodiment, traceability can be established, the reliability of the PAH concentration equivalent to phenanthrene is improved, and the reliability of the submitted data in port state control (PSC) is improved. Can be made to.
  • PSC port state control
  • the fluorescence reference member 5 of the above embodiment is fluorescent glass, it may be a fluorescent resin body in which a ceramic phosphor is doped in an organic polymer material such as acrylic, or a ceramic phosphor powder is used as a glass member. Or it may be applied to an organic polymer material member. Further, the fluorescence reference member 5 may be a gel-like member to which a ceramic phosphor is added.
  • optical systems of the light irradiation unit 2 and the light detection unit 3 of the above embodiment are coaxial illumination using a beam splitter, the optical axes of the light irradiation unit 2 and the optical axes of the light detection unit 3 are mutually aligned. It may be arranged so as to intersect with each other, or the light irradiation unit 2 and the light detection unit 3 may be arranged so as to face each other.
  • light having a single excitation wavelength is irradiated to detect light having a single fluorescence wavelength, but light having a single excitation wavelength is irradiated to emit light having a plurality of fluorescence wavelengths.
  • the fluorescence reference member 5 may have a fluorescence spectrum including the plurality of fluorescence wavelengths, or the water quality analysis system 100 includes a plurality of fluorescence reference members 5 corresponding to each fluorescence wavelength. There may be. Further, a mechanism capable of selecting light of each fluorescence wavelength may be provided on the photodetector 3 side.
  • the fluorescence reference member 5 is held by the adapter 8, but it may be configured so that the fluorescence reference member 5 alone can be attached to the water quality analysis system 100 without being held by the adapter 8. Good.
  • the tilt angle of the fluorescence reference member 5 with respect to the light irradiation unit 2 and the light detection unit 3 may be changed.
  • the adapter 8 which is a calibration jig includes an angle changing mechanism 12 for changing the inclination angle of the fluorescence reference member 5 with respect to the light irradiation unit 2 and the light detection unit 3.
  • the angle changing mechanism 12 is configured so that the tilt angle of the fluorescence reference member 5 can be changed stepwise or continuously.
  • the angle changing mechanism 12 is fixed to the reference member holding body 121 that holds the fluorescence reference member 5 and the light irradiation unit 2 and the light detection unit 3 at the time of calibration, and is also a reference. It includes an adapter body 122 that rotatably supports the member holding body 121.
  • the reference member holding body 121 has a cylindrical shape, and a mounting recess 121a for accommodating and mounting the fluorescence reference member 5 is formed on the side wall thereof.
  • the adapter main body 122 is formed with an accommodating hole portion 122a for rotatably accommodating the cylindrical reference member holding body 121.
  • An ND filter 9 is fixed to the adapter main body 122, and a communication portion 122b communicating with the accommodating hole portion 122a is formed in the lower portion of the ND filter 9.
  • the reference member holding body 121 can be rotated by using the rotation locking portion 121b (for example, a minus driver groove) formed on the end face of the reference member holding body 121 while being housed in the adapter main body 122, whereby light can be obtained.
  • the inclination angle of the fluorescence reference member 5 with respect to the irradiation unit 2 and the light detection unit 3 is changed.
  • the amount of fluorescence detected by the photodetector can be changed at least at two points.
  • the measurement range is small (for example, 0 to 500 ppb)
  • the tilt angle of the reference member holder 121 is increased to reduce the amount of fluorescence
  • the measurement range is large (for example, 0 to 5000 ppb)
  • the reference member is used. It is conceivable to reduce the tilt angle of the holder 121 and increase the amount of fluorescence for calibration. In this way, it is conceivable to change the tilt angle corresponding to each of the water quality analysis systems in different measurement ranges.
  • the angle changing mechanism 12 may be used to change the tilt angle of the reference member holder 121, and the measured values at that time may be observed to inspect the linearity of the measured values of the water quality analysis system 100. it can. Note that FIG. 6 shows an indicated value when the inclination angle is changed by the angle changing mechanism 12.
  • a reflector may be inserted on the lower surface of the fluorescence reference member 5 (fluorescent glass). Further, the shape (area) of the reflector to be inserted in the lower surface of the fluorescence reference member 5 (fluorescent glass) may be changed.
  • the calibration jig (adapter 8) having the above-mentioned angle changing mechanism 12 can also be used as a checker for inspecting the sensor having the light irradiation unit 2 and the light detection unit 3.
  • the angle changing mechanism 12 changes the inclination angle of the reference member holder 121, whereby the sensor can be inspected depending on whether or not the indicated value of the sensor changes correspondingly. ..
  • the PAH concentration in the scrubber wastewater is measured, but the concentration of a component to be measured such as a dissolved organic matter (DOM) contained in another liquid sample may be measured.
  • a component to be measured such as a dissolved organic matter (DOM) contained in another liquid sample
  • the water quality analysis system 100 of the above embodiment was of the immersion type, but may be, for example, a batch cell type or a flow cell type for measuring by accommodating a liquid sample in a cell.
  • the present invention can calibrate the water quality analysis system without using an organic fluorescent substance such as phenanthrene.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本発明は、フェナントレンなどの有機系蛍光物質を用いること無く水質分析システムの校正を行うものであり、液体試料に含まれる測定対象成分を蛍光分光法により分析する水質分析システム100であって、液体試料に対して測定対象成分の励起波長を有する光を照射する光照射部2と、液体試料から出る測定対象成分の蛍光を検出する光検出部3と、光検出部3により得られた蛍光強度を用いて測定対象成分の濃度を算出する演算装置4と、校正時に光照射部2及び光検出部3の間の光の経路に設けられ、光照射部2の光により蛍光を発する固体の蛍光基準部材5とを備える。

Description

水質分析システム、センサモジュール、校正用機器、及び、水質分析システムの校正方法
 本発明は、液体試料に含まれる測定対象成分から生じる蛍光を検出し、測定対象成分の濃度等を測定する水質分析システム、水質分析システムに用いるセンサモジュール、及び、水質分析システムの校正方法に関するものである。
 船舶の内燃機関から排出される排ガスに含まれる硫黄酸化物(SO)を除去するために、排気ガス浄化システム(Exhaust Gas Cleaning System、EGCS)が用いられている。このEGCSは、排ガス脱硫を行うSOスクラバを有しており、SOスクラバからは多環芳香族炭化水素(polycyclic aromatic hydrocarbons、PAHs)を含むスクラバ排水が排出される。このPAHsのうち、国際海事機関(IMO)において定められたEGCSガイドラインによってフェナントレン(phenanthrene)がモニタリングの基準とされている。
 スクラバ排水中のフェナントレンの濃度を測定する装置としては、蛍光分光法を用いたPAH計が用いられている。このPAH計により得られたフェナントレン濃度がフェナントレン相当PAH濃度とされ、所定の許容濃度値以下となるようにしなければならないことから、PAH計の校正又は感度チェックを所定のタイミングで行う必要がある。
 従来、蛍光分光法を用いたPAH計の校正方法又は感度チェック方法としては、フェナントレンを所定の濃度に調整した基準液を用いて行われている。
 しかしながら、フェナントレンは溶媒(試薬用純水)に溶けにくく、基準液を再現良く作成することが難しい。また、フェナントレンは毒性があり、容易に現場で使用することができない。さらに、フェナントレンは有機系蛍光物質であり光によって退色することから、使用時間が限られてしまい、長期の連続測定ができない。その他、試薬用純水が船上では入手が困難である。
特開2015-137983号公報
 そこで、本発明は上記の問題点を解決すべくなされたものであり、フェナントレンなどの有機系蛍光物質を用いること無く、水質分析システムの校正を行うことをその主たる課題とするものである。
 すなわち、本発明に係る水質分析システムは、液体試料に含まれる測定対象成分を蛍光分光法により分析する水質分析システムであって、前記液体試料に対して前記測定対象成分の励起波長を有する光を照射する光照射部と、前記液体試料から出る前記測定対象成分の蛍光を検出する光検出部と、前記光検出部により得られた蛍光強度を用いて前記測定対象成分の濃度を算出する演算装置と、校正時に前記光照射部及び前記光検出部の間の光の経路に設けられ、前記光照射部の光により蛍光を発する固体の蛍光基準部材とを備えることを特徴とする。
 この水質分析システムであれば、校正時に固体の蛍光基準部材を光照射部及び光検出部の間の光の経路に設けることにより、従来の基準液を用いること無く、水質分析システムの校正を行うことができる。つまり、フェナントレンなどの有機系蛍光物質を用いることにより生じる種々の問題を解決することができる。固体である蛍光基準部材は、有機系蛍光材料に比べて、退色せず、毒性が無く、均一性が高い上に、耐熱性が高いので、校正における作業性及び利便性を向上させることができる。また、蛍光基準部材の保管方法も簡単になるし、蛍光基準部材の寿命も意識しなくてもよい。さらに、蛍光基準部材を用いた点検を簡単かつ迅速に行うことができる。
 前記蛍光基準部材としては、固体のものであれば特に限定されず、例えば、ガラス中に希土類イオンをドープして構成された蛍光ガラス、セラミックス蛍光体をアクリルなどの有機高分子材料中にドープした蛍光樹脂体、又は、セラミックス蛍光体粉末をガラス部材や有機高分子材料部材に塗布したもの等が考えられる。この中でも、透明性が高く、且つ、光学的均質度が高い蛍光ガラスを用いることが望ましい。また、固体の蛍光基準部材は、ゲル状のものであっても良い。
 水質分析システムの具体的な実施の態様としては、前記光照射部及び前記光検出部を収容し、前記液体試料中に浸漬されるセンサヘッドをさらに備えることが考えられる。この構成において、蛍光基準部材を用いた校正の作業性を向上させるためには、前記蛍光基準部材は、前記センサヘッドに着脱可能に取り付けられるものであることが望ましい。
 本発明の水質分析システムにより分析される液体試料としては、船舶から排出されるスクラバ排水を挙げることができる。この場合、前記光照射部は、前記スクラバ排水に含まれるフェナントレンの励起波長を有する光を照射するものであり、前記光検出部は、前記フェナントレンの蛍光を検出するものであり、前記演算装置は、前記光検出部により得られた蛍光強度を用いて前記スクラバ排水に含まれるフェナントレン相当PAH濃度を算出するものであることが望ましい。
 蛍光基準部材は、測定対象成分の濃度が既知の基準液のように最初から規定された基準値を持っていない。そのため、蛍光基準部材に対して、測定対象成分の濃度が既知の基準液を用いて値付けする必要がある。
 このため、本発明の水質分析システムは、前記測定対象成分の濃度が既知の基準液を用いて得られた蛍光強度と前記蛍光基準部材を用いて得られた蛍光強度との関係を示す校正用の関係データを格納する格納部をさらに備え、前記演算装置は、校正時において前記光検出部により得られた前記蛍光基準部材の蛍光強度と前記関係データとを用いて校正することが望ましい。
 本発明のように蛍光基準部材を用いる場合には、蛍光基準部材の蛍光量のばらつきを抑えつつ、光検出部に入射する蛍光量を所定の範囲に入れるために、種々の減衰率のNDフィルタを用意して、適切な減衰率のNDフィルタを選択して使用する必要がある。しかしながら、適切な減衰率のNDフィルタを選択する必要があり、作業が煩雑となってしまう。このため、前記光照射部及び前記光検出部に対する前記蛍光基準部材の傾斜角度を変更する角度変更機構をさらに備えることが望ましい。これは、蛍光ガラス等の蛍光基準部材では、入射する励起光の角度が変化することで励起蛍光量が変化することを応用したものである。蛍光基準部材の傾斜角度を変更することによって、光検出部に検出される蛍光量を連続的に変化させることができる。その結果、種々の減衰率のNDフィルタを用意すること無く、角度を変更するだけで、光検出部に入射する蛍光量を所定の範囲に入れることができる。
 蛍光基準部材を所定の角度に調整しやすくするためには、前記角度変更機構は、前記蛍光基準部材の傾斜角度を段階的に変更するものであることが望ましい。また、蛍光基準部材の傾斜角度を自由に設定できるようにするためには、前記角度変更機構は、前記蛍光基準部材の傾斜角度を連続的に変更するものであることが望ましい。
 前記角度変更機構の具体的な実施の態様としては、前記角度変更機構は、前記蛍光基準部材を保持する基準部材保持体と、校正時に前記光照射部及び前記光検出部に対して固定されるとともに、前記基準部材保持体を回転可能に支持するアダプタ本体とを備えることが考えられる。
 また、本発明に係る校正用機器は、液体試料に含まれる測定対象成分を蛍光分光法により分析するものであって、前記液体試料に対して前記測定対象成分の励起波長を有する光を照射する光照射部と、前記液体試料から出る前記測定対象成分の蛍光を検出する光検出部とを備える水質分析システムの校正に用いられる校正用機器であって、前記光照射部の光により蛍光を発する固体の蛍光基準部材と、前記蛍光基準部材を保持するとともに、校正時に前記光照射部及び前記光検出部の間の光の経路に前記蛍光基準部材を設ける校正用治具とを備えることを特徴とする。
 また、液体試料に含まれる測定対象成分を蛍光分光法により分析する水質分析システムに用いられるセンサモジュールも本発明の一態様である。つまり、本発明に係るセンサモジュールは、前記液体試料に対して前記測定対象成分の励起波長を有する光を照射する光照射部と、前記液体試料から出る前記測定対象成分の蛍光を検出する光検出部と、前記光照射部及び前記光検出器を収容し、前記液体試料中に浸漬されるセンサヘッドと、校正時に前記センサヘッドに取り付けられ、前記光照射部の光により蛍光を発する蛍光基準部材とを備えることを特徴とする。
 さらに、本発明に係る水質分析システムの校正方法は、液体試料に含まれる測定対象成分を蛍光分光法により分析する水質分析システムの校正方法であって、前記水質分析システムは、前記液体試料に対して前記測定対象成分の励起波長を有する光を照射する光照射部と、前記液体試料から出る前記測定対象成分の蛍光を検出する光検出部と、前記光検出部により得られた蛍光強度を用いて前記測定対象成分の濃度を算出する演算装置とを備えており、校正時に、前記光照射部及び前記光検出部の間の光の経路に、前記光照射部の光により蛍光を発する蛍光基準部材を設けて校正を行うことを特徴とする。
 具体的な校正方法としては、前記水質分析システムの基準となる基準システムにより得られた、前記測定対象成分の濃度が既知の基準液の蛍光強度と、前記水質分析システムにより得られた前記蛍光基準部材の蛍光強度との関係を示す校正用関係データを生成する校正用関係データ生成ステップをさらに備え、校正時に、前記光照射部及び前記光検出部の間の光の経路に前記蛍光基準部材を設けて、前記光検出部により得られた蛍光強度と、前記校正用関係データ生成ステップで得られた校正用関係データとを用いて校正を行うことが考えられる。
 前記校正用関係データ生成ステップとしては、前記基準システムにより得られた前記基準液の蛍光強度と前記基準システムにより得られた前記蛍光基準部材の蛍光強度との関係を示す第1関係データを生成する第1関係データ生成ステップと、前記基準システムにより得られた前記蛍光基準部材の蛍光強度と前記水質分析システムにより得られた前記蛍光基準部材の蛍光強度との関係を示す第2関係データを生成する第2関係データ生成ステップとを備え、前記第1関係データ生成ステップで得られた第1関係データと前記第2関係データ生成ステップで得られた第2関係データとを用いて、前記校正用関係データを生成するものであることが考えられる。
 校正のトレーサビリティを確保するためには、前記基準システムの光検出部は、認定された校正機関により校正されたものであることが望ましい。
 以上に述べた本発明によれば、フェナントレンなどの有機系蛍光物質を用いること無く、水質分析システムの校正を行うことができる。
本発明の一実施形態に係る水質分析システムの全体模式図である。 同実施形態のセンサヘッドの先端部及び蛍光ガラスアダプタを示す模式図である。 校正方法の一例を示す模式図である。 校正用関係データ生成ステップを説明するための図である。 変形実施形態の角度変更機構を有するアダプタを示す断面図である。 角度変更機構により傾斜角度を変更させた場合のセンサの指示値を示すグラフである。
100・・・水質分析システム
2  ・・・光照射部
3  ・・・光検出部
4  ・・・演算装置
401・・・濃度算出部
402・・・格納部
403・・・校正部
5  ・・・蛍光ガラス(蛍光基準部材)
6  ・・・センサヘッド
7  ・・・信号ケーブル
8  ・・・アダプタ
9  ・・・NDフィルタ
10 ・・・ビームスプリッタ
11 ・・・光学窓
 以下、本発明の一実施形態に係る水質分析システムについて、図面を参照しながら説明する。
<1.装置構成>
 本実施形態の水質分析システム100は、液体試料に含まれる測定対象成分を測定する方法として蛍光分光法を用いたシステムにおいて、励起光で測定対象成分を励起し、その励起光による測定対象成分からの蛍光を検出し、測定対象成分の濃度等を測定するものである。ここでは、液体試料は、例えば船舶に搭載されたSOスクラバから排出されるスクラバ排水であり、測定対象成分は、スクラバ排水中のフェナントレン(phenanthrene)である。
 具体的に水質分析システム100は、図1に示すように、液体試料に対して測定対象成分の励起波長を有する光を照射する光照射部2と、液体試料から出る測定対象成分の蛍光を検出する光検出部3と、光検出部3により得られた蛍光強度を用いて測定対象成分の濃度を算出する演算装置4と、校正時に光照射部2及び光検出部3の間の光の経路に設けられ、光照射部2の光により蛍光を発する固体の蛍光基準部材5とを備えている。
 以下、各部について説明する。
 光照射部2は、測定対象成分であるフェナントレンの励起波長(254nm)の励起光を照射するものであり、励起波長(254nm)を含む波長域の光を射出する紫外光源21と、当該紫外光源の光から励起波長(254nm)を透過する波長選択フィルタ22とを有している。この波長選択フィルタ22を用いることにより、励起波長のばらつきを低減することができるとともに、励起波長のハンド幅のばらつきも低減することができる。
 光検出部3は、フェナントレンの蛍光波長(360nm)の光を検出するものであり、光電子増倍管(PMT)等の光検出器31と、液体試料から出る光から蛍光波長(360nm)を透過する波長選択フィルタ32とを有している。この波長選択フィルタ32を用いることにより、蛍光波長のばらつきを低減することができるとともに、蛍光波長のバンド幅のばらつきも低減することができる。
 また、本実施形態の光検出部3は、光照射部2の光量をモニタリングするためのモニタリング用の光検出器33を有する。なお、この光検出器33は、例えばSiフォトダイオード又はGaN紫外線検出素子を用いたものである。
 そして、本実施形態の光照射部2及び光検出部3は、センサヘッド6内に収容されている。このセンサヘッド6は、その一部又は全部が液体試料に浸漬されるものであり、先端部に光照射部2及び光検出部3が収容されている。センサヘッド6において光照射部2及び光検出部3は、ビームスプリッタ10を用いた同軸照明とされており、センサヘッド6の先端面には、液体試料に照射される励起光及び液体試料からの蛍光を透過する光学窓11が設けられている。また、基端部には、演算装置4に対して光検出器31により得られた蛍光強度信号を送信する信号ケーブル7が接続されている。
 演算装置4は、光検出器31から送信される蛍光強度信号を取得して、スクラバ排水に含まれるフェナントレン相当PAH濃度を算出する濃度算出部401を有している。ここで、演算装置4の濃度算出部401は、光検出器31により得られた蛍光強度を光検出器33により得られた紫外線強度により補正して、フェナントレン相当PAH濃度を算出する。
 蛍光基準部材5は、ガラス中に希土類イオンをドープして構成された蛍光ガラスである。蛍光ガラスとしては、例えば青色発光ガラスであり、蛍光活性元素(希土類イオン)として2価ユウロピウムイオン(Eu2+)を含有したフツリン酸塩系ガラスである。この蛍光ガラスは、保存による劣化や紫外線による劣化が無く、使い回しができる。また蛍光ガラスは、高い耐熱性を有し、透明性が高く、光学的均質度が高く、毒性もない。
 ここで、蛍光基準部材5は、インナーフィルタ効果(IFE効果)による蛍光強度の低下を低減するために、ブロック状のものよりも板状のものを用いることが望ましい。なお、IFE効果とは、励起光及び蛍光が蛍光基準部材自体によって吸収されることである。
 この蛍光基準部材5は、センサヘッド6に着脱可能に取り付けられるものであり、校正用治具であるアダプタ8に保持されている。蛍光基準部材5及びアダプタ8により、水質分析システム100を校正するための校正用機器が構成される。そして、このアダプタ8をセンサヘッド6の先端部に装着することによって、図2に示すように、アダプタ8に保持された蛍光基準部材5が、光学窓11に対向配置され、光照射部2及び光検出部3の間の光の経路に設けられることになる。また、アダプタ8をセンサヘッド6に装着した状態で、水質分析システム100の校正が行われる。なお、アダプタ8には、NDフィルタ9を設けても良い。NDフィルタ9は、蛍光強度が強い場合に、照射強度を減衰させて、センサヘッド6の光学窓と蛍光基準部材5との距離を短く設定でき、アダプタ8を小型化することができる。
 そして、演算装置4は、蛍光基準部材5により水質分析システム100を校正するために、測定対象成分の濃度が既知の基準液を用いて得られた蛍光強度と蛍光基準部材5を用いて得られた蛍光強度との関係を示す校正用関係データを格納する格納部402と、校正時において光検出器31により得られた蛍光基準部材5の蛍光強度と関係データとを用いて、水質分析システム100を校正する校正部403とを有している。
<2.水質分析システム100の校正方法>
 次に、本実施形態の水質分析システム100の校正方法について説明する。
 まず、水質分析システム100の校正に用いられる校正用関係データの生成(校正用関係データ生成ステップ)について説明する。
 校正用関係データは、基準システム200により得られた測定対象成分の濃度が既知の基準液の蛍光強度と、水質分析システム100により得られた蛍光基準部材5の蛍光強度との関係を示すものである。
 ここで、基準システム200とは、校正対象となる水質分析システム100の基準となるものであり、認定された校正機関により校正された光検出器(基準検出器31X)を用いたものである。基準システム200の光学系は、水質分析システム100の光学系と同じであり、光源や波長選択フィルタ等の配置といった物理的な条件は同一である。また、基準検出器31Xは、その検出波長及び検出感度が認定された校正機関によって検証されたものである。なお、認定された校正機関としては、例えば、アメリカ国立標準技術研究所(NIST)、製品評価技術基盤機構認定制度(ASNITE)により認定された事業者、又は、計量法校正事業者登録制度(JCSS)により登録された事業者等である。
 校正用関係データ生成ステップは、以下の(a)(b)のステップを有する。
(a)基準システム200により得られた基準液(例えばフェナントレンの濃度350ppb)の蛍光強度(蛍光量Sa、図3(B))と基準システム200により得られた蛍光基準部材5の蛍光強度(蛍光量G、図3(A))との関係を示す第1関係データ(α=Sa/G、図4(A))を生成する(第1関係データ生成ステップ)。
(b)基準システム200により得られた蛍光基準部材5の蛍光強度(蛍光量G、図3(A))と水質分析システム100により得られた蛍光基準部材5の蛍光強度(蛍光量Mg、図3(C))との関係を示す第2関係データ(β=Mg/G、図4(B))を生成する(第2関係データ生成ステップ)。
 そして、第1関係データ生成ステップで得られた第1関係データ(α=Sa/G)と第2関係データ生成ステップで得られた第2関係データ(β=Mg/G)とを用いて、校正用関係データを生成する。
 具体的には、校正対象となる水質分析システム100を基準システムと等価にするためには、係数Kを用いて、α=β×K=(Mg/G)×Kの関係が成り立つ。この関係から、K=Sa/Mgとなる。この係数Kを蛍光基準部材5に値付けすることにより、水質分析システム100を校正することが可能となる。つまり、この係数Kが、蛍光基準部材5毎に求められる校正用関係データとなる。この校正用関係データは、演算装置4の格納部402に例えば製品出荷前に格納される。
 上記のように求められた校正用関係データを用いて水質分析システム100は、その指示値(フェナントレン相当PAH濃度)が定期的又は所定のタイミングでチェックされるとともに、定期的又は所定のタイミングで校正される。
 具体的には、センサヘッド6を液体試料が流れる配管や貯留槽から取り上げて、センサヘッド6の先端部にアダプタ8を装着する。この状態で、光照射部2から励起光が照射された蛍光基準部材5から出る蛍光を光検出器31により検出する。演算装置4の校正部403は、光検出器31により得られた蛍光強度と、格納部402に格納された校正用関係データとを用いて水質分析システム100を校正する。
<3.本実施形態の効果>
 このように構成した本実施形態の水質分析システム100によれば、水質分析システム100を校正する際に、固体の蛍光基準部材5を光照射部2及び光検出部3の間の光の経路に設けることにより、従来の基準液を用いること無く校正を行うことができる。つまり、フェナントレンなどの有機系蛍光物質を用いることにより生じる種々の問題を解決することができる。固体である蛍光基準部材5は、有機系蛍光材料に比べて、退色せず、毒性が無く、均一性が高い上に、耐熱性が高いので、校正における作業性及び利便性を向上させることができる。また、蛍光基準部材5の保管方法も簡単になるし、蛍光基準部材5の寿命も意識しなくてもよい。さらに、蛍光基準部材5を用いた点検を簡単かつ迅速に行うことができる。
 特に水質分析システム100を用いて船上でフェナントレン相当PAH濃度を管理する場合に、本実施形態における作業性及び利便性向上の効果が顕著となる。また、本実施形態の水質分析システム100では、トレーサビリティを確立することができ、フェナントレン相当PAH濃度の信頼性が向上し、ポートステートコントロール(Port State Control、PSC)での提出データの信頼性を向上させることができる。
<4.その他の変形実施形態>
 なお、本発明は前記実施形態に限られるものではない。
 例えば、前記実施形態の蛍光基準部材5は蛍光ガラスであったが、セラミックス蛍光体をアクリルなどの有機高分子材料中にドープした蛍光樹脂体であっても良いし、セラミックス蛍光体粉末をガラス部材や有機高分子材料部材に塗布したものであっても良い。また、蛍光基準部材5は、セラミックス蛍光体が添加されたゲル状のものであっても良い。
 また、前記実施形態の光照射部2及び光検出部3の光学系は、ビームスプリッタを用いた同軸照明であったが、光照射部2の光軸と光検出部3の光軸とが互いに交わるように配置されたものであっても良いし、光照射部2及び光検出部3が互いに対向して配置されたものであっても良い。
 さらに、前記実施形態では、単一の励起波長の光を照射して単一の蛍光波長の光を検出するものであったが、単一の励起波長を照射して複数の蛍光波長の光を検出するシステムであってもよい。この場合、蛍光基準部材5は、前記複数の蛍光波長を含む蛍光スペクトルを有するものであっても良いし、水質分析システム100が、各蛍光波長に対応した複数の蛍光基準部材5を備えるものであってもよい。また、光検出部3側に、各蛍光波長の光を選択できる機構を設けても良い。
 前記実施形態では、蛍光基準部材5はアダプタ8に保持されたものであったが、アダプタ8に保持されることなく、蛍光基準部材5単体で水質分析システム100に取り付けられるように構成してもよい。
 さらに、前記実施形態の構成において、光照射部2及び光検出部3に対する蛍光基準部材5の傾斜角度を変更するように構成しても良い。具体的には、校正用治具であるアダプタ8が、光照射部2及び光検出部3に対する蛍光基準部材5の傾斜角度を変更する角度変更機構12を備えることが考えられる。この角度変更機構12は、蛍光基準部材5の傾斜角度を段階的又は連続的に変更できるように構成されている。
 具体的に角度変更機構12は、図5に示すように、蛍光基準部材5を保持する基準部材保持体121と、校正時に光照射部2及び光検出部3に対して固定されるとともに、基準部材保持体121を回転可能に支持するアダプタ本体122とを備える。基準部材保持体121は、円柱形状をなすものであり、その側壁には、蛍光基準部材5を収容して取り付けるための取り付け凹部121aが形成されている。また、アダプタ本体122には、円柱形状の基準部材保持体121を回転可能に収容する収容孔部122aが形成されている。このアダプタ本体122には、NDフィルタ9が固定されており、当該NDフィルタ9の下部には、収容孔部122aに連通する連通部122bが形成されている。なお、基準部材保持体121は、アダプタ本体122に収容された状態で、その端面に形成された回転用係止部121b(例えばマイナスドライバ溝)を用いて回転させることができ、これにより、光照射部2及び光検出部3に対する蛍光基準部材5の傾斜角度が変更される。
 上記の角度変更機構12により、光検出部により検出される蛍光量を少なくとも2点で変更することができる。例えば、測定レンジが小さい場合(例えば0~500ppb)には、基準部材保持体121の傾斜角度を大きくして蛍光量を小さくし、測定レンジが大きい場合(例えば0~5000ppb)には、基準部材保持体121の傾斜角度を小さくして蛍光量を大きくして、校正することが考えられる。このように異なる測定レンジの水質分析システムそれぞれに対応して傾斜角度を変更することが考えられる。その他、校正後において、上記の角度変更機構12により、基準部材保持体121の傾斜角度を変化させ、その際の測定値を見て、水質分析システム100の測定値の直線性を検査することもできる。なお、図6に角度変更機構12により傾斜角度を変化させた場合の指示値を示している。
 さらに、蛍光基準部材5(蛍光ガラス)の下面に反射板を入れるようにしても良い。また、蛍光基準部材5(蛍光ガラス)の下面に入れる反射板の形状(面積)を変更可能に構成しても良い。
 その上、上記の角度変更機構12を有する校正用治具(アダプタ8)は、光照射部2及び光検出部3を有するセンサを検査するチェッカーとして用いることもできる。具体的には、上記の角度変更機構12により、基準部材保持体121の傾斜角度を変化させ、これにより、センサの指示値が対応して変化するか否かにより、センサを検査することができる。
 前記実施形態では、スクラバ排水中のPAH濃度を測定するものであったが、その他の液体試料に含まれる例えば溶存有機物(DOM)等の測定対象成分の濃度を測定するものであってもよい。
 前記実施形態の水質分析システム100は浸漬型のものであったが、例えば液体試料をセルに収容して測定する例えばバッチセル型又はフローセル型のものであってもよい。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。
 本発明によれば、本発明は、フェナントレンなどの有機系蛍光物質を用いること無く水質分析システムの校正を行うことができる。

Claims (14)

  1.  液体試料に含まれる測定対象成分を蛍光分光法により分析する水質分析システムであって、
     前記液体試料に対して前記測定対象成分の励起波長を有する光を照射する光照射部と、
     前記液体試料から出る前記測定対象成分の蛍光を検出する光検出部と、
     前記光検出部により得られた蛍光強度を用いて前記測定対象成分の濃度を算出する演算装置と、
     校正時に前記光照射部及び前記光検出部の間の光の経路に設けられ、前記光照射部の光により蛍光を発する固体の蛍光基準部材とを備える、水質分析システム。
  2.  前記蛍光基準部材は、蛍光ガラスである、請求項1記載の水質分析システム。
  3.  前記光照射部及び前記光検出部を収容し、前記液体試料中に浸漬されるセンサヘッドをさらに備え、
     前記蛍光基準部材は、前記センサヘッドに着脱可能に取り付けられるものである、請求項1又は2記載の水質分析システム。
  4.  前記液体試料は、船舶から排出されるスクラバ排水であり、
     前記光照射部は、前記スクラバ排水に含まれるフェナントレンの励起波長を有する光を照射するものであり、
     前記光検出部は、前記フェナントレンの蛍光を検出するものであり、
     前記演算装置は、前記光検出部により得られた蛍光強度を用いて前記スクラバ排水に含まれるフェナントレン相当PAH濃度を算出するものである、請求項1乃至3の何れか一項に記載の水質分析システム。
  5.  前記測定対象成分の濃度が既知の基準液を用いて得られた蛍光強度と前記蛍光基準部材を用いて得られた蛍光強度との関係を示す校正用の関係データを格納する格納部をさらに備え、
     前記演算装置は、校正時において前記光検出部により得られた前記蛍光基準部材の蛍光強度と前記関係データとを用いて校正する、請求項1乃至4の何れか一項に記載の水質分析システム。
  6.  前記光照射部及び前記光検出部に対する前記蛍光基準部材の傾斜角度を変更する角度変更機構をさらに備える、請求項1乃至5の何れか一項に記載の水質分析システム。
  7.  前記角度変更機構は、前記蛍光基準部材の傾斜角度を段階的又は連続的に変更するものである、請求項6記載の水質分析システム。
  8.  前記角度変更機構は、前記蛍光基準部材を保持する基準部材保持体と、校正時に前記光照射部及び前記光検出部に対して固定されるとともに、前記基準部材保持体を回転可能に支持するアダプタ本体とを備える、請求項6又は7記載の水質分析システム。
  9.  液体試料に含まれる測定対象成分を蛍光分光法により分析する水質分析システムに用いられるセンサモジュールであって、
     前記液体試料に対して前記測定対象成分の励起波長を有する光を照射する光照射部と、
     前記液体試料から出る前記測定対象成分の蛍光を検出する光検出部と、
     前記光照射部及び前記光検出器を収容し、前記液体試料中に浸漬されるセンサヘッドと、
     校正時に前記センサヘッドに取り付けられ、前記光照射部の光により蛍光を発する蛍光基準部材とを備える、水質分析システムのセンサモジュール。
  10.  液体試料に含まれる測定対象成分を蛍光分光法により分析するものであって、前記液体試料に対して前記測定対象成分の励起波長を有する光を照射する光照射部と、前記液体試料から出る前記測定対象成分の蛍光を検出する光検出部とを備える水質分析システムの校正に用いられる校正用機器であって、
     前記光照射部の光により蛍光を発する固体の蛍光基準部材と、
     前記蛍光基準部材を保持するとともに、校正時に前記光照射部及び前記光検出部の間の光の経路に前記蛍光基準部材を設ける校正用治具とを備える校正用機器。
  11.  液体試料に含まれる測定対象成分を蛍光分光法により分析する水質分析システムの校正方法であって、
     前記水質分析システムは、前記液体試料に対して前記測定対象成分の励起波長を有する光を照射する光照射部と、前記液体試料から出る前記測定対象成分の蛍光を検出する光検出部と、前記光検出部により得られた蛍光強度を用いて前記測定対象成分の濃度を算出する演算装置とを備えており、
     校正時に、前記光照射部及び前記光検出部の間の光の経路に、前記光照射部の光により蛍光を発する蛍光基準部材を設けて校正を行う、水質分析システムの校正方法。
  12.  前記水質分析システムの基準となる基準システムにより得られた、前記測定対象成分の濃度が既知の基準液の蛍光強度と、前記水質分析システムにより得られた前記蛍光基準部材の蛍光強度との関係を示す校正用関係データを生成する校正用関係データ生成ステップをさらに備え、
     校正時に、前記光照射部及び前記光検出部の間の光の経路に前記蛍光基準部材を設けて、前記光検出部により得られた蛍光強度と、前記校正用関係データ生成ステップで得られた校正用関係データとを用いて校正を行う、請求項11記載の水質分析システムの校正方法。
  13.  前記校正用関係データ生成ステップは、
     前記基準システムにより得られた前記基準液の蛍光強度と前記基準システムにより得られた前記蛍光基準部材の蛍光強度との関係を示す第1関係データを生成する第1関係データ生成ステップと、
     前記基準システムにより得られた前記蛍光基準部材の蛍光強度と前記水質分析システムにより得られた前記蛍光基準部材の蛍光強度との関係を示す第2関係データを生成する第2関係データ生成ステップとを備え、
     前記第1関係データ生成ステップで得られた第1関係データと前記第2関係データ生成ステップで得られた第2関係データとを用いて、前記校正用関係データを生成するものである、請求項12記載の水質分析システムの校正方法。
  14.  前記基準システムの光検出部は、認定された校正機関により校正されたものである、請求項11又は12記載の水質分析システムの校正方法。
PCT/JP2020/011722 2019-05-22 2020-03-17 水質分析システム、センサモジュール、校正用機器、及び、水質分析システムの校正方法 WO2020235198A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080036609.8A CN113841043A (zh) 2019-05-22 2020-03-17 水质分析系统、传感器模块、校正用设备以及水质分析系统的校正方法
KR1020217037045A KR20220011626A (ko) 2019-05-22 2020-03-17 수질 분석 시스템, 센서 모듈, 교정용 기기 및 수질 분석 시스템의 교정 방법
US17/595,348 US20220221404A1 (en) 2019-05-22 2020-03-17 Water quality analysis system, sensor module, calibration machine, and method for calibrating water quality analysis system
EP20810657.5A EP3961193A4 (en) 2019-05-22 2020-03-17 WATER QUALITY ANALYZING SYSTEM, SENSOR MODULE, CALIBRATION MACHINE AND WATER QUALITY ANALYZING SYSTEM CALIBRATION METHOD
JP2021520072A JP7489972B2 (ja) 2019-05-22 2020-03-17 水質分析システム、センサモジュール、校正用機器、及び、水質分析システムの校正方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019095724 2019-05-22
JP2019-095724 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235198A1 true WO2020235198A1 (ja) 2020-11-26

Family

ID=73458115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011722 WO2020235198A1 (ja) 2019-05-22 2020-03-17 水質分析システム、センサモジュール、校正用機器、及び、水質分析システムの校正方法

Country Status (7)

Country Link
US (1) US20220221404A1 (ja)
EP (1) EP3961193A4 (ja)
JP (1) JP7489972B2 (ja)
KR (1) KR20220011626A (ja)
CN (1) CN113841043A (ja)
TW (1) TW202043733A (ja)
WO (1) WO2020235198A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007639A1 (ja) * 2021-07-28 2023-02-02 富士電機株式会社 水質分析装置
WO2023037528A1 (ja) * 2021-09-10 2023-03-16 富士電機株式会社 水質分析装置
WO2023110311A1 (de) * 2021-12-16 2023-06-22 Endress+Hauser Conducta Gmbh+Co. Kg Kalibrierstandard, sensoranordnung und verwendung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797837B (zh) 2021-11-17 2023-04-01 財團法人工業技術研究院 光學式水質檢測設備
CN115825364A (zh) * 2022-10-13 2023-03-21 青海九零六工程勘察设计院有限责任公司 一种饮用矿泉水的水质检测系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105288A (en) * 1977-02-24 1978-09-13 Iio Denki Kk Measuring method and apparatus for organic indicator in water
JP2004157018A (ja) * 2002-11-06 2004-06-03 Dkk Toa Corp 蛍光検出装置の感度校正方法及び蛍光検出装置
JP2009192338A (ja) * 2008-02-14 2009-08-27 National Institute Of Advanced Industrial & Technology 計測結果の信頼性証明を行なう方法及びコンピュータプログラム
JP2015137983A (ja) 2014-01-23 2015-07-30 株式会社堀場製作所 光学分析装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000250303A (ja) * 1999-03-04 2000-09-14 Fuji Xerox Co Ltd 画像形成装置の濃度検知装置
JP2008249328A (ja) * 2007-03-29 2008-10-16 Toshiba Corp 溶液中ウラン濃度分析方法および溶液中ウラン濃度分析装置
JP2010101835A (ja) * 2008-10-27 2010-05-06 Toshiba Corp 蛍光基準部材、及び蛍光基準部材を備える蛍光検知装置
CN103328953B (zh) * 2011-04-21 2015-07-01 奥林巴斯医疗株式会社 光学测量系统、光学测量装置、校正用构件以及校正方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105288A (en) * 1977-02-24 1978-09-13 Iio Denki Kk Measuring method and apparatus for organic indicator in water
JP2004157018A (ja) * 2002-11-06 2004-06-03 Dkk Toa Corp 蛍光検出装置の感度校正方法及び蛍光検出装置
JP2009192338A (ja) * 2008-02-14 2009-08-27 National Institute Of Advanced Industrial & Technology 計測結果の信頼性証明を行なう方法及びコンピュータプログラム
JP2015137983A (ja) 2014-01-23 2015-07-30 株式会社堀場製作所 光学分析装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASUDA, AKIKO: "Effect of engine operating conditions on scrubber drainage properties", RESEARCH PRESENTATION OF 2015 (15TH) JAPAN NATIONAL MARITIME RESEARCH INSTITUTE, 1 January 2015 (2015-01-01), JP, pages 4 - 7, XP009531932 *
See also references of EP3961193A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007639A1 (ja) * 2021-07-28 2023-02-02 富士電機株式会社 水質分析装置
JPWO2023007639A1 (ja) * 2021-07-28 2023-02-02
JP7448090B2 (ja) 2021-07-28 2024-03-12 富士電機株式会社 水質分析装置
WO2023037528A1 (ja) * 2021-09-10 2023-03-16 富士電機株式会社 水質分析装置
JPWO2023037528A1 (ja) * 2021-09-10 2023-03-16
JP7544265B2 (ja) 2021-09-10 2024-09-03 富士電機株式会社 水質分析装置
WO2023110311A1 (de) * 2021-12-16 2023-06-22 Endress+Hauser Conducta Gmbh+Co. Kg Kalibrierstandard, sensoranordnung und verwendung

Also Published As

Publication number Publication date
CN113841043A (zh) 2021-12-24
EP3961193A4 (en) 2022-12-28
KR20220011626A (ko) 2022-01-28
TW202043733A (zh) 2020-12-01
JPWO2020235198A1 (ja) 2020-11-26
EP3961193A1 (en) 2022-03-02
US20220221404A1 (en) 2022-07-14
JP7489972B2 (ja) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2020235198A1 (ja) 水質分析システム、センサモジュール、校正用機器、及び、水質分析システムの校正方法
KR101716902B1 (ko) 분광 측정 장치, 분광 측정 방법, 및 분광 측정 프로그램
US5125747A (en) Optical analytical instrument and method having improved calibration
JP4220374B2 (ja) マルチチャネル蛍光センサ
US20150041682A1 (en) Systems and Methods for Monitoring Phenanthrene Equivalent Concentrations
US8352207B2 (en) Methods for calibrating a fluorometer
WO2013059490A2 (en) Fiber-optic sensors for real-time monitoring
US10520435B2 (en) Optical sensor and sensing system for oxygen monitoring in fluids using molybdenum cluster phosphorescence
JP4418731B2 (ja) フォトルミネッセンス量子収率測定方法およびこれに用いる装置
CN107064119A (zh) 用于监视光学传感器的光源的器件
CN104237144A (zh) 用于调节、校准和/或检查光度传感器的功能的方法和校准插入件
JP7448090B2 (ja) 水質分析装置
JP2007155494A (ja) ツインフローセルとそれを用いる濃度測定システム
Holbrook et al. Excitation–emission matrix fluorescence spectroscopy for natural organic matter characterization: a quantitative evaluation of calibration and spectral correction procedures
JP2001033388A (ja) クロロフィルa濃度測定方法及びその装置
KR101727009B1 (ko) 흡광신호 및 형광신호를 이용한 미세입자 측정장치 및 데이터 보정방법
CN109374585B (zh) 测量荧光量子产率的方法及装置
CN207502400U (zh) 一种荧光分析装置和水质在线监测仪器
CN105738298B (zh) 一种基于色坐标值的水溶液浊度测量方法及装置
US11768160B2 (en) Multiparameter standard solution for water-quality analysis
CN107748155A (zh) 一种荧光分析装置和水质在线监测仪器
US9874520B1 (en) Epi-fluoresence confocal optical analyte sensor
CN118671049A (zh) 用拉曼光谱的硼酸溶液浓度光谱自校准测量方法及系统
Ferrero et al. pH measurements using simple fiber-optic instrumentation and luminescence detection
JP2011117748A (ja) シリカ濃度測定方法及びシリカ濃度測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020810657

Country of ref document: EP

Effective date: 20211125