WO2012141659A1 - Procédé de fabrication de produits en acier plat galvanisé à chaud avec une résistance améliorée à la corrosion - Google Patents

Procédé de fabrication de produits en acier plat galvanisé à chaud avec une résistance améliorée à la corrosion Download PDF

Info

Publication number
WO2012141659A1
WO2012141659A1 PCT/SK2011/000010 SK2011000010W WO2012141659A1 WO 2012141659 A1 WO2012141659 A1 WO 2012141659A1 SK 2011000010 W SK2011000010 W SK 2011000010W WO 2012141659 A1 WO2012141659 A1 WO 2012141659A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
magnesium
aluminum
flat steel
hot dip
Prior art date
Application number
PCT/SK2011/000010
Other languages
English (en)
Inventor
Jozef FILIPOVSKÝ
Peter ZIMOVčÁK
Juraj GRABAN
František HOLLÝ
Mária KOLLÁROVÁ
Viera KOHÚTEKOVÁ
Peter ŠIVEC
Original Assignee
U.S. STEEL KOŠICE, s.r.o.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U.S. STEEL KOŠICE, s.r.o. filed Critical U.S. STEEL KOŠICE, s.r.o.
Priority to PCT/SK2011/000010 priority Critical patent/WO2012141659A1/fr
Publication of WO2012141659A1 publication Critical patent/WO2012141659A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the invention involves the method of producing hot dip galvanized flat steel products with improved corrosion resistance by immersion in molten zinc alloy, where the flat steel product, such as sheet or strip, passes through a zinc-magnesium-aluminum bath.
  • the strip Before entering the zinc melt, the strip is cooled to temperature of about 470-490°C.
  • the temperature of the melt, into which the strip enters, is usually around 465 °C and beside the zinc it also contains a small amount of aluminum.
  • Al In the production of hot dip galvanized coatings, it is common to use Al in the zinc bath in amount of 0.15 to 0.19% Al.
  • a reduced amount of Al of 0.12 to 0.14% in the zinc melt is used in the production of Zn-Fe coatings (galvanneal).
  • the excess liquid zinc is wiped off by air knives and fed back into the melt.
  • the liquid zinc on steel strip after cooling to the zinc melting point (419°C), solidifies.
  • Al has a higher affinity to steel than Zn, and as the steel strip enters the melt, it immediately creates a stable intermetallic Al-Fe (Fe 2 Al 5 ) layer.
  • This layer also known as inhibitor layer is extremely thin and its main function is to slow the speed of diffusion between the steel strip and zinc coating and to achieve thinner and more ductile coating.
  • the presence of Al in the melt has a predominant influence on the coating's formability, it has no positive effect on the other
  • zinc-magnesium-aluminum bath contains from 0.1 to 1.00 wt% aluminum and from 0.1 to 1.00 wt% magnesium as well as one or more additional elements in the total amount of 0.2 wt% such as Sb, Ni, Cr, Mn, Ti and unavoidable impurities, the rest being zinc.
  • Annealed steel sheet or strip, before entering the zinc-magnesium-aluminum bath, is cooled to a temperature of 400°C - 520°C.
  • the temperature of zinc-magnesium-aluminum bath, with a flat steel product, such as hot dip galvanized sheet or strip, is 380 to 500°C.
  • the coating weight of thus produced zinc- magnesium-aluminum coating on flat steel product is 30 to 150 g/m per one side.
  • Required composition of the zinc melt is achieved by using pre-alloyed ingots.
  • Benefit of such technical solutions in terms of this invention lies in the substantial improvement of corrosion resistance of zinc coatings by addition of Mg and Al into the molten zinc and also in simplification of hot dip galvanizing process without necessary checking the Si content in the zinc melt, using alloying elements in the melt containing 0.1 to 1.00 wt % Al, 0.1 to 1.00 wt% Mg, total ⁇ 0.2 wt% of one or more elements such as Sb, Ni, Cr, Mn, Ti and other impurities.
  • the addition of these elements does not change substantially the properties of the melt or coating and they are used primarily for prevention against dross formation. Addition of Sb improves the wettability of steel substrate and affects the formation of zinc spangles.
  • the production of hot-dip galvanized flat steel products with improved corrosion resistance describes a method of continuous production of hot dip galvanized flat steel products with improved corrosion resistance, while the cold-rolled flat steel product is continually annealed in hot-dip galvanizing line for the purpose of structure recrystallization and achievement of the desired values of mechanical properties.
  • the flat steel product is cooled to a temperature of 400 to 520°C and consequently fed into the galvanizing pot and immersed into the zinc-magnesium-alurninum melt.
  • the final thickness of zinc coating is achieved by wiping off the excess amounts of zinc by air or nitrogen from the strip surface using pneumatic crevice nozzles above the melt surface.
  • the zinc alloy melt temperature is controlled in the range from 380 to 500°C.
  • the cold-rolled flat steel product is continuously annealed at hot-dip galvanizing line for the purpose of structure recrystallization and achievement of the desired values of mechanical properties.
  • the flat steel product is cooled to a temperature of 400 to 520°C and consequently fed into the zinc-magnesium-aluminum melt.
  • the final thickness of zinc coating is achieved by wiping off the excess amounts of zinc by air or nitrogen from the strip surface using pneumatic crevice nozzles above the zinc-magnesium- aluminum melt surface.
  • the zinc-magnesium-aluminum melt temperature is controlled in the range from 380 to 500°C.
  • the weight of zinc-magnesium- aluminum coating formed on a flat steel product is 30-150 g/m 2 per one side.
  • the corrosion resistance of produced flat steel products with improved corrosion resistance was tested by corrosion test in neutral salt spray.
  • the main criterion for the corrosion resistance of zmc-magnesium-aluminum coating is its first through-corroding into the substrate material (steel sheet). The time till first occurrence of so-called red rust on the surface is determined.
  • Traditional hot dip galvanized sheet was used as reference coating.
  • ZnMgAl zinc-magnesium-aluminum melt
  • the advantage of this method of producing hot dip galvanized flat steel products with improved corrosion resistance, as per this invention, at continuous hot dip galvanizing line, is their better corrosion resistance achieved by enrichment of zinc coating by magnesium and aluminum.
  • These zmc-magnesium-aluminum coatings achieve several times better corrosion resistance comparing to traditional zinc coatings (hot-dip galvanized).
  • Produced coatings have improved appearance and, in addition, the presence of Mg in the coating increases the resistance of coatings to scratching and abrasion.
  • Another advantage of this method of producing hot-dip galvanized flat steel products with improved corrosion resistance, as per the invention is simplification of hot dip galvanizing process without the need to control the Si content in molten zinc alloy.
  • This solution does not require significant changes in production technology, compared to production of traditional zinc coatings (hot-dip galvanized).
  • the addition of Mg into molten zinc alloy increases zinc fluidity and reduces the coating melting temperature, so the coatings are produced at a lower melt temperature, thereby allowing a reduction in energy consumption of the hot dip galvanizing process.
  • This method of producing hot dip galvanized flat steel products with improved corrosion resistance can be applied on materials for various industries, such as construction, automotive, consumer, electrical engineering, appliances and other. Utilization range of these materials is further extended by application of organic and inorganic coatings on them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

L'invention concerne un procédé de fabrication de produits en acier plat galvanisé à chaud avec une résistance améliorée à la corrosion sur une ligne continue par galvanisation à chaud dans un alliage zinc-magnésium-aluminium avec une teneur en aluminium dans le bain de 0,1 à 1,00 % en poids et une teneur en magnésium de 0,1 à 1,00 % en poids, avec l'addition d'un ou plusieurs éléments dans une quantité totale de 0,2 % en poids et les inévitables impuretés, le reste étant du zinc. Avant de pénétrer dans le bain de zinc-magnésium-aluminium, le produit en acier plat recuit est refroidi à 400-520 °C. La température du bain de zinc-magnésium-aluminium dans lequel le produit en acier plat est galvanisé à chaud est de 380-500 °C. Le poids du revêtement de zinc-magnésium-aluminium déposé sur les produits en acier plat est de 30 à 150 g/m2 par côté.
PCT/SK2011/000010 2011-04-13 2011-04-13 Procédé de fabrication de produits en acier plat galvanisé à chaud avec une résistance améliorée à la corrosion WO2012141659A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/SK2011/000010 WO2012141659A1 (fr) 2011-04-13 2011-04-13 Procédé de fabrication de produits en acier plat galvanisé à chaud avec une résistance améliorée à la corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SK2011/000010 WO2012141659A1 (fr) 2011-04-13 2011-04-13 Procédé de fabrication de produits en acier plat galvanisé à chaud avec une résistance améliorée à la corrosion

Publications (1)

Publication Number Publication Date
WO2012141659A1 true WO2012141659A1 (fr) 2012-10-18

Family

ID=44120862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SK2011/000010 WO2012141659A1 (fr) 2011-04-13 2011-04-13 Procédé de fabrication de produits en acier plat galvanisé à chaud avec une résistance améliorée à la corrosion

Country Status (1)

Country Link
WO (1) WO2012141659A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994927A (zh) * 2012-12-20 2013-03-27 常熟市保得利电力通讯设备有限公司 一种热镀锌的配方
JP2017115205A (ja) * 2015-12-24 2017-06-29 日新製鋼株式会社 めっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板の製造方法
WO2018031523A1 (fr) 2016-08-08 2018-02-15 John Speer Revêtements modifiés de galvanisation par immersion à chaud présentant une basse température de liquidus, procédés pour leur fabrication et leur utilisation
CN109576624A (zh) * 2018-11-16 2019-04-05 唐山钢铁集团有限责任公司 灵活控制锌铝镁硅复合镀层的晶花尺寸的连续生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594520A1 (fr) 1992-10-21 1994-04-27 Sollac Procédé de galvanisation de produits sidérurgiques et produits sidérurgiques ainsi obtenus
EP1621645A1 (fr) * 2004-07-28 2006-02-01 Corus Staal BV Feuille d'acier galvanisé à chaud recouverte de zinc allié.
EP1857566A1 (fr) * 2006-05-15 2007-11-21 ThyssenKrupp Steel AG Produit d'acier plat revêtu avec une revêtement de protection contre la corrosion et procédé de son fabrication
WO2008102009A1 (fr) * 2007-02-23 2008-08-28 Corus Staal Bv Feuillard d'acier à résistance élevée, laminé à froid et trempé en continu, et procédé de fabrication dudit feuillard

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594520A1 (fr) 1992-10-21 1994-04-27 Sollac Procédé de galvanisation de produits sidérurgiques et produits sidérurgiques ainsi obtenus
EP1621645A1 (fr) * 2004-07-28 2006-02-01 Corus Staal BV Feuille d'acier galvanisé à chaud recouverte de zinc allié.
EP1857566A1 (fr) * 2006-05-15 2007-11-21 ThyssenKrupp Steel AG Produit d'acier plat revêtu avec une revêtement de protection contre la corrosion et procédé de son fabrication
WO2008102009A1 (fr) * 2007-02-23 2008-08-28 Corus Staal Bv Feuillard d'acier à résistance élevée, laminé à froid et trempé en continu, et procédé de fabrication dudit feuillard

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994927A (zh) * 2012-12-20 2013-03-27 常熟市保得利电力通讯设备有限公司 一种热镀锌的配方
JP2017115205A (ja) * 2015-12-24 2017-06-29 日新製鋼株式会社 めっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板の製造方法
WO2018031523A1 (fr) 2016-08-08 2018-02-15 John Speer Revêtements modifiés de galvanisation par immersion à chaud présentant une basse température de liquidus, procédés pour leur fabrication et leur utilisation
JP2019531413A (ja) * 2016-08-08 2019-10-31 スピアー,ジョン 低い液相線温度を有する改変された溶融亜鉛めっき被膜、その製造方法及び使用方法
JP7257955B2 (ja) 2016-08-08 2023-04-14 コロラド・スクール・オブ・マインズ 低い液相線温度を有する改変された溶融亜鉛めっき被膜、その製造方法及び使用方法
CN109576624A (zh) * 2018-11-16 2019-04-05 唐山钢铁集团有限责任公司 灵活控制锌铝镁硅复合镀层的晶花尺寸的连续生产方法
CN109576624B (zh) * 2018-11-16 2023-04-18 唐山钢铁集团有限责任公司 灵活控制锌铝镁硅复合镀层的晶花尺寸的连续生产方法

Similar Documents

Publication Publication Date Title
TWI658149B (zh) 鍍敷鋼板
WO2013002358A1 (fr) Plaque d'acier galvanisée par immersion à chaud à haute résistance à la corrosion, ayant un aspect hautement uniforme et son procédé de fabrication
JP2019521257A (ja) 低密度溶融亜鉛めっき鋼及びその製造方法
JP4837604B2 (ja) 合金化溶融亜鉛めっき鋼板
AU2007228054A1 (en) Highly corrosion-resistant hot dip galvanized steel stock
WO2013089262A1 (fr) Matériau de tôle d'acier plaqué à base d'aluminium et procédé permettant de produire ce dernier
CN104975226A (zh) 一种抗拉强度440MPa级的汽车用合金化热镀锌钢及生产方法
WO2014091724A1 (fr) Feuille d'acier galvanisée par immersion à chaud
JP2013014794A (ja) 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板
KR20150000896A (ko) Si 함량이 낮은 강 스트립
JP5906733B2 (ja) 塗装後耐食性に優れた表面処理鋼板、その製造法
JP4555738B2 (ja) 合金化溶融亜鉛めっき鋼板
CN105063475B (zh) 一种抗拉强度390MPa级的汽车用合金化热镀锌钢及生产方法
JPS6330984B2 (fr)
JP5130486B2 (ja) 高耐食性溶融Zn系めっき鋼材
EP1980639B1 (fr) Bain chaud de placage au zinc et produit en fer plaque de zinc
KR20220142518A (ko) 핫 스탬프 성형체
WO2012141659A1 (fr) Procédé de fabrication de produits en acier plat galvanisé à chaud avec une résistance améliorée à la corrosion
AU2012263323B2 (en) Molten Zn-Al-based alloy-plated steel sheet having excellent corrosion resistance and workability, and method for producing same
WO2015055285A1 (fr) Substrat en acier à revêtement en alliage de zinc
JP7167025B2 (ja) 加工部耐食性に優れたアルミニウム系合金めっき鋼板
JP4940813B2 (ja) TS×Elの値が21000MPa・%以上である溶融亜鉛めっき鋼板の製造方法
JP5176484B2 (ja) 外観に優れた合金化溶融亜鉛めっき鋼板
KR101568548B1 (ko) 표면품질이 우수한 용융도금강판의 제조방법 및 제조장치
KR101621631B1 (ko) 도장 후 내식성이 우수한 합금화 용융 아연 도금 강판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11722631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11722631

Country of ref document: EP

Kind code of ref document: A1