WO2012141206A1 - 高強度無方向性電磁鋼板 - Google Patents

高強度無方向性電磁鋼板 Download PDF

Info

Publication number
WO2012141206A1
WO2012141206A1 PCT/JP2012/059886 JP2012059886W WO2012141206A1 WO 2012141206 A1 WO2012141206 A1 WO 2012141206A1 JP 2012059886 W JP2012059886 W JP 2012059886W WO 2012141206 A1 WO2012141206 A1 WO 2012141206A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
steel sheet
oriented electrical
iron loss
Prior art date
Application number
PCT/JP2012/059886
Other languages
English (en)
French (fr)
Inventor
有田 吉宏
藤倉 昌浩
村上 英邦
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US14/111,245 priority Critical patent/US9362032B2/en
Priority to EP12771871.6A priority patent/EP2698441B1/en
Priority to PL12771871T priority patent/PL2698441T3/pl
Priority to KR1020137025553A priority patent/KR101570591B1/ko
Priority to JP2012544365A priority patent/JP5267747B2/ja
Priority to BR112013014058-5A priority patent/BR112013014058B1/pt
Priority to CN201280004130.1A priority patent/CN103261463B/zh
Publication of WO2012141206A1 publication Critical patent/WO2012141206A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Definitions

  • the present invention relates to a high-strength non-oriented electrical steel sheet suitable for an iron core material for electrical equipment.
  • High-speed rotary motors are also used in electrical equipment such as machine tools and vacuum cleaners.
  • the outer shape of the high-speed rotation motor for electric vehicles is larger than the outer shape of the high-speed rotation motor for electric devices.
  • a DC brushless motor is mainly used as a high-speed rotation motor for an electric vehicle.
  • a magnet is embedded in the vicinity of the outer periphery of the rotor.
  • the width of the bridge portion on the outer peripheral portion of the rotor (the width from the outermost outer periphery of the rotor to the steel plate between the magnets) is very narrow as 1 to 2 mm depending on the place.
  • high-speed rotary motors for electric vehicles are required to have higher strength steel plates than conventional non-oriented electrical steel plates. In other applications, high strength may be required for non-oriented electrical steel sheets.
  • Patent Document 1 describes a non-oriented electrical steel sheet in which Mn and Ni are added to Si to enhance solid solution.
  • Mn and Ni are added to Si to enhance solid solution.
  • the toughness tends to decrease with the addition of Mn and Ni, and sufficient productivity and yield cannot be obtained.
  • the price of the added alloy is high. In particular, in recent years, the price of Ni has risend due to the global demand balance.
  • Patent Documents 2 and 3 describe non-oriented electrical steel sheets that are strengthened by dispersing carbonitrides in steel. However, sufficient strength cannot be obtained even with these non-oriented electrical steel sheets.
  • Patent Document 4 describes a non-oriented electrical steel sheet reinforced with Cu precipitates. However, it is difficult to obtain sufficient strength. In order to obtain sufficient strength, it is necessary to perform annealing at a high temperature in order to dissolve Cu once. However, if annealing is performed at a high temperature, the crystal grains become coarse. That is, even if precipitation strengthening by Cu precipitates is obtained, the strength decreases due to the coarsening of crystal grains, and sufficient strength cannot be obtained. In addition, the elongation at break is significantly reduced by the synergistic effect of precipitation strengthening and crystal grain coarsening.
  • Patent Document 5 describes a non-oriented electrical steel sheet in which the coarsening of crystal grains in Patent Document 4 is suppressed.
  • C, Nb, Zr, Ti, V, or the like is contained.
  • carbides precipitate finely in the motor heat generation temperature range of 150 ° C. to 200 ° C., and magnetic aging tends to occur.
  • Patent Document 6 describes a non-oriented electrical steel sheet that achieves both crystal grain refinement and Cu precipitation strengthening by using Al and N precipitates. However, since a large amount of Al is added, it is difficult to sufficiently suppress the growth of crystal grains. Further, when the N content is increased, casting defects are likely to occur.
  • Patent Document 7 describes a non-oriented electrical steel sheet containing Cu. However, with this technique, long-time heat treatment or the like is performed, and it is difficult to obtain good elongation at break.
  • An object of the present invention is to provide a high-strength non-oriented electrical steel sheet capable of obtaining excellent strength and elongation at break while obtaining good magnetic properties.
  • the present invention has been made to solve the above-mentioned problems, and the gist thereof is as follows.
  • the present inventors diligently studied a technique for holding crystal grains finely even when annealing at a high temperature from a viewpoint different from Patent Documents 5 and 6. As a result, the relationship between the S content and the Mn content is made appropriate, and the amount of sulfide of a predetermined size is made appropriate, so that the crystal grains are finely retained even when annealing is performed at a high temperature. I found that I can do it. In this case, an element that causes magnetic aging is not required.
  • the number density of sulfides in the obtained non-oriented electrical steel sheet was measured.
  • the measurement target was assumed to have an equivalent circle diameter of 0.1 ⁇ m to 1.0 ⁇ m.
  • Yield stress, elongation at break and iron loss were also measured.
  • iron loss iron loss W10 / 400 was measured.
  • the iron loss W10 / 400 is an iron loss under the condition of a frequency of 400 Hz and a maximum magnetic flux density of 1.0T.
  • This concept also applies to the result when the finish annealing is performed at 1000 ° C. with the material code B. That is, in this example, since the finish annealing temperature was as high as 1000 ° C., the sulfides were coarsened, the number density of sulfides was lowered, and the growth of crystal grains was not sufficiently suppressed.
  • the iron loss was remarkably high with the material code E having a value of [Mn] / [S] of less than 10. This is probably because [Mn] / [S] is low and the number density of sulfides is high, and the growth of crystal grains is remarkably suppressed. Further, when the finish annealing temperature was 900 ° C., not only the iron loss was high, but also the elongation at break was low. This is presumably because the number density of sulfides was extremely high, and not only the growth of crystal grains but also recrystallization was inhibited.
  • the S content, [Mn] / [S], and the number density of the sulfides are kept within the predetermined ranges, so that the iron loss, strength, and ductility are all excellent and high strength non-directionality. It can be said that an electromagnetic steel sheet can be obtained.
  • Such a characteristic with an excellent balance is a characteristic that cannot be obtained with a steel sheet using a conventional carbonitride or a steel sheet simply added with Cu.
  • C is effective for refining crystal grains, but when the temperature of the non-oriented electrical steel sheet reaches about 200 ° C., it generates carbides and worsens iron loss. For example, when a non-oriented electrical steel sheet is used for a high-speed rotary motor for an electric vehicle, this temperature is easily reached. And when C content is over 0.010%, such magnetic aging becomes remarkable. Therefore, the C content is 0.010% or less, more preferably 0.005% or less.
  • Si is effective in reducing eddy current loss. Si is also effective for solid solution strengthening. However, when the Si content is less than 2.0%, these effects are insufficient. On the other hand, when the Si content is more than 4.0%, cold rolling during the production of the non-oriented electrical steel sheet tends to be difficult. Therefore, the Si content is set to 2.0% to 4.0%.
  • Mn reacts with S to produce sulfide.
  • Mn is an important element because crystal grains are controlled using sulfide.
  • the Mn content is less than 0.05%, S is not sufficiently fixed and hot embrittlement occurs.
  • the Mn content exceeds 0.50%, it becomes difficult to sufficiently suppress the growth of crystal grains. Therefore, the Mn content is 0.05% or more and 0.50% or less.
  • Al like Si, is effective in reducing eddy current loss and strengthening solid solution. Moreover, Al also exhibits the effect
  • N produces nitrides such as TiN and worsens iron loss.
  • the nitrogen content is 0.005% or less.
  • Cu improves the strength by precipitation strengthening. However, if the Cu content is less than 0.5%, almost the entire amount of Cu is dissolved and the effect of precipitation strengthening cannot be obtained. On the other hand, even if the Cu content is more than 3.0%, the effect is saturated and an effect sufficient for the content cannot be obtained. Therefore, the Cu content is 0.5% or more and 3.0% or less.
  • S reacts with Mn to produce sulfide.
  • S since crystal grains are controlled using sulfide, S is an important element. If the S content is less than 0.005%, this effect cannot be sufficiently obtained. On the other hand, even if the S content is more than 0.030%, the effect is saturated, and an effect commensurate with the content cannot be obtained. Moreover, hot embrittlement tends to occur as the S content increases. Therefore, the S content is set to 0.005% or more and 0.030% or less.
  • [Mn] / [S] is an important parameter for obtaining good yield stress, elongation at break and iron loss in the present invention.
  • [Mn] / [S] is more than 50, the effect of suppressing the growth of crystal grains becomes insufficient, and the yield stress and elongation at break decrease.
  • [Mn] / [S] is less than 10, the elongation at break is significantly reduced and the iron loss is remarkably deteriorated. Therefore, [Mn] / [S] is 10 or more and 50 or less. That is, when the Mn content is represented as [Mn] and the S content is represented as [S], the formula (1) is established. 10 ⁇ [Mn] / [S] ⁇ 50 (1)
  • Ni is an effective element that can increase the strength of the steel sheet without making it very brittle. However, since Ni is expensive, it is preferable to contain it as needed. In the case where Ni is contained, in order to obtain a sufficient effect, the content is preferably 0.5% or more, and is preferably 3.0% or less in consideration of cost. In addition, Ni also has an effect of suppressing whipping associated with the inclusion of Cu. In order to acquire this effect, it is preferable that Ni content is 1/2 or more of Cu content.
  • Sn has an effect of improving the texture and suppressing nitriding and oxidation during annealing.
  • the effect of compensating the magnetic flux density, which is decreased by the inclusion of Cu, by improving the texture is great.
  • Sn may be contained in a range of 0.01% to 0.10%.
  • the effects of the present invention are not impaired even if they are added for various purposes.
  • the inevitable content of these trace elements is usually about 0.005% or less for each element, but 0.01% or more can be added for various purposes.
  • one or more of Ti, Nb, V, Zr, B, Bi, Mo, W, Sn, Sb, Mg, Ca, Ce, Co, Cr, and REM are used in consideration of cost and magnetic characteristics. In a total of 0.5% or less.
  • the number density of sulfide As apparent from the above experimental results, the number density of sulfides having an equivalent circle diameter of 0.1 ⁇ m or more and 1.0 ⁇ m or less has an appropriate range from the viewpoint of elongation at break and iron loss.
  • the number density is less than 1.0 ⁇ 10 4 pieces / mm 2 , the sulfide is insufficient, and the growth of crystal grains cannot be sufficiently suppressed, and a good iron loss is obtained, but the breaking elongation is obtained. Is extremely reduced.
  • the number density is more than 1.0 ⁇ 10 6 pieces / mm 2 , the growth of crystal grains is excessively suppressed and the iron loss is extremely deteriorated.
  • the number density of sulfides having an equivalent circle diameter of 0.1 ⁇ m or more and 1.0 ⁇ m or less is 1.0 ⁇ 10 4 pieces / mm 2 or more and 1.0 ⁇ 10 6 pieces / mm 2 or less.
  • the yield stress tends to be 700 MPa or more, and the elongation at break tends to be 10% or more.
  • the elongation at break tends to be 12% or more.
  • the recrystallization area ratio is likely to be 50% or more, and the iron loss W10 / 400 is likely to be 100 ⁇ t or less if the thickness of the steel sheet is t (mm).
  • a slab having the above composition is heated at about 1150 ° C. to 1250 ° C., hot rolled to produce a hot rolled sheet, and the hot rolled sheet is wound into a coil.
  • cold rolling is performed by unwinding the hot rolled sheet to produce a cold rolled sheet, and the cold rolled sheet is wound into a coil shape.
  • finish annealing is performed.
  • an insulating film is formed in the surface of the steel plate obtained in this way. That is, the manufacturing method according to the present embodiment is generally in accordance with a known method for manufacturing a non-oriented electrical steel sheet.
  • the conditions for each treatment are not particularly limited, but there are preferable ranges as shown below.
  • the finishing temperature of hot rolling is preferably 1000 ° C. or higher, and the winding temperature is preferably 650 ° C. or lower, and any of them can be appropriately determined according to the contents of Mn, S and Cu. preferable. This is to obtain the number density of the sulfides. If the finishing temperature is too low or the coiling temperature is too high, fine MnS may be excessively precipitated. In this case, the growth of crystal grains during finish annealing is excessively suppressed, and a good iron loss may not be obtained.
  • the temperature of the finish annealing is preferably about 800 ° C. to 1100 ° C., and the time is preferably less than 600 seconds. In finish annealing, it is preferable to perform continuous annealing.
  • hot-rolled sheet annealing before cold rolling.
  • This condition is not particularly limited, but it is preferable to set it within a range of 1000 ° C. to 1100 ° C. for 30 seconds or more.
  • MnS in the hot-rolled sheet can be grown appropriately, and variation in the degree of precipitation of MnS in the longitudinal direction can be reduced.
  • a characteristic stable in the longitudinal direction can be obtained even after finish annealing.
  • the temperature of the hot-rolled sheet annealing is less than 1000 ° C. or the time is less than 30 seconds, these effects are small.
  • material codes b and c having a [Mn] / [S] value of 10 to 50 and a sulfide number density of 1.0 ⁇ 10 4 to 1.0 ⁇ 10 6 Good yield strength, breaking elongation, and iron loss were obtained at and d.
  • the material codes g, h and i with a Ni content of 1.0% are compared with the material codes b, c and d with a Ni content of 0.02% (substantially no Ni added). Equivalent elongation at break and iron loss were obtained, and a yield strength higher by about 50 MPa was obtained.
  • the material codes l, m and n with a Ni content of 2.5% are equivalent to the material codes b, c and d with a Ni content of 0.02% (substantially no Ni added). Elongation at break and iron loss were obtained, and a yield strength higher by about 100 MPa was obtained.
  • the present invention can be used, for example, in an electromagnetic steel sheet manufacturing industry and an electric steel sheet utilizing industry such as a motor.

Abstract

 質量%で、C:0.010%以下、Si:2.0%以上4.0%以下、Mn:0.05%以上0.50%以下、Al:0.2%以上3.0%以下、N:0.005%以下、S:0.005%以上0.030%以下、及びCu:0.5%以上3.0%以下、を含有し、残部がFe及び不可避的不純物からなる。Mn含有量を[Mn]、S含有量を[S]と表したときに、式(1)が成り立ち、円相当径が0.1μm以上1.0μm以下の硫化物が1mm当たり1.0×10個以上1.0×10個以下含まれている。 10≦[Mn]/[S]≦50 ・・・ (1)

Description

高強度無方向性電磁鋼板
 本発明は、電気機器の鉄心材料に好適な高強度無方向性電磁鋼板に関する。
 近年、世界的な電気機器の省エネルギ化の高まりにより、回転機の鉄心材料として用いる無方向性電磁鋼板に対して、より高性能な特性が要求されてきている。特に、最近では、電気自動車等に使用されるモータとして、小型高出力モータの需要が高い。このような電気自動車用モータでは、高速回転を可能にして高いトルクが得られるように設計されている。
 高速回転モータは、工作機械及び掃除機等の電気機器にも使用されている。但し、電気自動車用の高速回転モータの外形は、電気機器用の高速回転モータの外形よりも大きい。また、電気自動車用の高速回転モータとしては、主にDCブラシレスモータが用いられている。DCブラシレスモータでは、ロータの外周近傍に磁石が埋め込まれている。この構造では、ロータの外周部のブリッジ部の幅(ロータの最外周から磁石間の鋼板までの幅)が、場所によっては、1~2mmと非常に狭い。このため、電気自動車用の高速回転モータには、従来の無方向性電磁鋼板よりも高強度の鋼板が要求されるようになってきている。また、他の用途においても、無方向性電磁鋼板により高い強度が要求されることがある。
 特許文献1には、Siに、Mn及びNiを加えて固溶体強化を図った無方向性電磁鋼板が記載されている。しかしながら、この無方向性電磁鋼板によっても十分な強度を得ることができない。また、Mn及びNiの添加に伴って靱性が低下しやすく、十分な生産性及び歩留まりを得ることができない。また、添加される合金の価格が高い。特に、近年では、世界的な需要バランスによってNiの価格が高騰している。
 特許文献2及び3には、炭窒化物を鋼中に分散させて強化を図った無方向性電磁鋼板が記載されている。しかしながら、これらの無方向性電磁鋼板によっても十分な強度を得ることができない。
 特許文献4には、Cu析出物を用いて強化を図った無方向性電磁鋼板が記載されている。しかしながら、十分な強度を得ることは困難である。十分な強度を得るためには、Cuを一旦固溶させるために高い温度での焼鈍を行う必要がある。しかし、高温での焼鈍を行うと、結晶粒が粗大化してしまう。つまり、Cu析出物による析出強化が得られても、結晶粒の粗大化によって強度が低下してしまい、十分な強度が得られない。また、析出強化及び結晶粒の粗大化の相乗効果により破断伸びが著しく低下してしまう。
 特許文献5には、特許文献4における結晶粒の粗大化の抑制を図った無方向性電磁鋼板が記載されている。この技術では、C、Nb、Zr、Ti、V等を含有させている。しかしながら、モータの発熱温度域である150℃~200℃で炭化物が微細析出し、磁気時効が発生しやすい。
 特許文献6には、Al及びNの析出物により、結晶粒の微細化及びCuの析出強化との両立を図った無方向性電磁鋼板が記載されている。しかし、Alが多量に添加されているため、結晶粒の成長を十分に抑制することは困難である。また、N含有量を高めると、鋳造欠陥が発生しやすい。
 特許文献7には、Cuを含有させた無方向性電磁鋼板が記載されている。しかし、この技術では、長時間の熱処理等を行っており、良好な破断伸び等を得ることが困難である。
特開昭62-256917号公報 特開平06-330255号公報 特開平10-18005号公報 特開2004-84053号公報 国際公開第2009/128428号 特開2010-24509号公報 国際公開第2005/33349号
 本発明は、良好な磁気特性を得ながら、優れた強度及び破断伸びを得ることができる高強度無方向性電磁鋼板を提供することを目的とする。
 本発明は、上述の問題を解決するためになされたものであり、その要旨は、以下のとおりである。
 (1) 質量%で、
 C:0.010%以下、
 Si:2.0%以上4.0%以下、
 Mn:0.05%以上0.50%以下、
 Al:0.2%以上3.0%以下、
 N:0.005%以下、
 S:0.005%以上0.030%以下、及び
 Cu:0.5%以上3.0%以下、
 を含有し、
 残部がFe及び不可避的不純物からなり、
 Mn含有量を[Mn]、S含有量を[S]と表したときに、式(1)が成り立ち、
 円相当径が0.1μm以上1.0μm以下の硫化物が1mm当たり1.0×10個以上1.0×10個以下含まれていることを特徴とする高強度無方向性電磁鋼板。
 10≦[Mn]/[S]≦50 ・・・ (1)
 (2) 質量%で、Ni:0.5%以上3.0%以下を含有すること特徴とする(1)に記載の高強度無方向性電磁鋼板。
 (3) 質量%で、Ti、Nb、V、Zr、B、Bi、Mo、W、Sn、Sb、Mg、Ca、Ce、Co、Cr、REMの1種又は2種以上を合計で0.5%以下含有すること特徴とする(1)又は(2)に記載の高強度無方向性電磁鋼板。
 本発明によれば、Cu析出物及び硫化物の相互作用により、良好な磁気特性を得ながら、優れた強度及び破断伸びを得ることができる。
 本発明者らは、高い温度で焼鈍を行っても結晶粒を微細に保持する技術について、特許文献5及び6とは異なる観点で鋭意検討を行った。この結果、S含有量及びMn含有量の関係を適切なものとし、所定のサイズの硫化物の量を適切なものとすることにより、高い温度で焼鈍を行っても結晶粒を微細に保持することができることを見出した。この場合、磁気時効を引き起こすような元素は必要とされない。
 ここで、本発明に至った実験について説明する。以下、含有量の単位である「%」は「質量%」を意味する。
 この実験では、先ず、実験室の真空溶解炉にて、C:0.002%、Si:3.2%、Mn:0.20%、Al:0.7%、N:0.002%、及びCu:1.5%を含有し、更に、表1に示す量のSを含有し、残部がFe及び不可避的不純物からなる鋼を溶製し、この鋼から鋼片(スラブ)を作製した。表1中の[Mn]はMn含有量(0.20%)を示し、[S]はS含有量を示している。次いで、鋼片に1100℃で60分間の加熱を施し、直ちに熱間圧延を行って、厚さが2.0mmの熱延板を得た。その後、熱延板に1050℃で1分間の熱延板焼鈍を施し、酸洗を行い、一回の冷間圧延を行って、厚さが0.35mmの冷延板を得た。続いて、冷延板に800℃~1000℃で30秒間の仕上焼鈍を施した。仕上焼鈍の温度を表1に示す。
 次いで、得られた無方向性電磁鋼板中の硫化物の個数密度を測定した。このとき、測定対象は、円相当径が0.1μm以上1.0μm以下のものとした。また、降伏応力、破断伸び及び鉄損も測定した。鉄損としては、鉄損W10/400を測定した。ここで、鉄損W10/400は、周波数が400Hz、最大磁束密度が1.0Tの条件下での鉄損である。これらの結果も表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、[Mn]/[S]の値が10以上50以下の素材符号B、C及びDで良好な特性が得られた。ただし、素材符号Bでも仕上焼鈍を1000℃で行った場合には、硫化物の個数密度が低く、破断伸びが低かった。全体的に、同一素材であっても、仕上焼鈍の温度が高くなると硫化物の個数密度が低下する傾向がある。これは、仕上焼鈍中に硫化物が粗大化するためであると考えられる。そして、硫化物が粗大化すると、結晶粒の成長に対する抑止力が弱まる。この考え方は、素材符号Bで仕上焼鈍を1000℃で行った場合の結果にも当てはまる。すなわち、この例では、仕上焼鈍の温度が1000℃と高かったために、硫化物が粗大化し、硫化物の個数密度が低くなり、結晶粒の成長が十分に抑制されなかったと考えられる。
 一方、[Mn]/[S]の値が50超の素材符号Aでは、破断伸びが低く、かつ、降伏応力が低かった。これは、[Mn]/[S]が高いために、硫化物の個数密度が低く、結晶粒の成長が進んだためであると考えられる。
 また、[Mn]/[S]の値が10未満の素材符号Eでは、鉄損が著しく高かった。これは、[Mn]/[S]が低いために、硫化物の個数密度が高く、結晶粒の成長が著しく抑制されたためであると考えられる。また、仕上焼鈍の温度を900℃とした場合には、鉄損が高いだけでなく、破断伸びが低かった。これは、硫化物の個数密度が極端に高いため、結晶粒の成長だけでなく、再結晶が阻害されたためであると考えられる。
 以上の実験結果により、S含有量、[Mn]/[S]及び硫化物の個数密度を所定の範囲内に収めることにより、鉄損、強度及び延性のいずれもが優れた高強度無方向性電磁鋼板を得ることができるといえる。このようなバランスが優れた特性は、従来の炭窒化物を活用した鋼板や、単にCuのみを添加した鋼板では得られなかった特性である。
 次に、本発明における数値の限定理由について説明する。
 Cは結晶粒の微細化に有効であるものの、無方向性電磁鋼板の温度が200℃程度となると、炭化物を生成し鉄損を悪化させる。例えば、無方向性電磁鋼板が電気自動車用の高速回転モータに用いられた場合、この程度の温度に達しやすい。そして、C含有量が0.010%超であると、このような磁気時効が顕著となる。従って、C含有量は0.010%以下とし、より好ましくは0.005%以下とする。
 Siは渦電流損の低減に有効である。Siは固溶強化にも有効である。しかし、Si含有量が2.0%未満であると、これらの効果が不十分となる。その一方で、Si含有量が4.0%超であると、無方向性電磁鋼板の製造時の冷間圧延が困難になりやすい。従って、Si含有量は2.0%以上4.0%以下とする。
 MnはSと反応して硫化物を生成する。本発明では、硫化物を用いて結晶粒が制御されるため、Mnは重要な元素である。Mn含有量が0.05%未満であると、Sの固定が不十分となって熱間脆化が生じる。その一方で、Mn含有量が0.50%超であると、結晶粒の成長を十分に抑制することが困難となる。従って、Mn含有量は0.05%以上0.50%以下とする。
 Alは、Siと同様に、渦電流損の低減及び固溶強化に有効である。また、Alは、窒化物を粗大に析出させて無害化する作用も呈する。しかし、Al含有量が0.2%未満であると、これらの効果が不十分となる。その一方で、Al含有量が3.0%超であると、無方向性電磁鋼板の製造時の冷間圧延が困難になりやすい。従って、Al含有量は0.2%以上3.0%以下とする。
 NはTiN等の窒化物を生成し、鉄損を悪化させる。特に、N含有量が0.005%超の場合に鉄損の悪化が顕著である。従って、窒素含有量は0.005%以下とする。
 Cuは析出強化によって強度を向上させる。しかし、Cu含有量が0.5%未満であると、Cuのほぼ全量が固溶して析出強化の効果が得られない。その一方で、Cu含有量が3.0%超であっても、効果が飽和して、含有量に見合うほどの効果が得らえない。従って、Cu含有量は0.5%以上3.0%以下である。
 SはMnと反応して硫化物を生成する。本発明では、硫化物を用いて結晶粒が制御されるため、Sは重要な元素である。S含有量が0.005%未満であると、この効果が十分に得られない。その一方で、S含有量が0.030%超であっても、効果が飽和して、含有量に見合うほどの効果が得らえない。また、S含有量が高くなるほど、熱間脆化が生じやすい。従って、S含有量は0.005%以上0.030%以下とする。
 [Mn]/[S]は、本発明において、良好な降伏応力、破断伸び及び鉄損を得るために重要なパラメータである。[Mn]/[S]が50超であると、結晶粒の成長を抑制する効果が不十分となり、降伏応力及び破断伸びが低下する。その一方で、[Mn]/[S]が10未満であると、破断伸びが著しく低下するとともに、鉄損が著しく悪化する。従って、[Mn]/[S]は10以上50以下とする。つまり、Mn含有量を[Mn]、S含有量を[S]と表したときに、式(1)が成り立つこととする。
 10≦[Mn]/[S]≦50 ・・・ (1)
 Niは鋼板をあまり脆化させずに高強度化できる有効な元素である。ただし、Niは高価であるため、必要に応じて含有させることが好ましい。Niが含有される場合、十分な効果を得るために、その含有量は0.5%以上であることが好ましく、コストを考慮して3.0%以下であることが好ましい。また、Niには、Cuの含有に伴うヘゲ疵を抑制する効果もある。この効果を得るために、Ni含有量は、Cu含有量の1/2以上であることが好ましい。
 また、Snには集合組織の改善及び焼鈍時の窒化及び酸化を抑制する効果がある。特に、Cuの含有によって低下する磁束密度を集合組織の改善によって補償する効果が大きい。この効果を得るために、Snが0.01%以上0.10%以下の範囲で含有されていてもよい。
 また、その他の微量元素については、不可避的に含まれる程度の量に加え、様々な目的で添加しても本発明の効果は何ら損なわれるものではない。これらの微量元素についての不可避的な含有量は通常、各元素とも0.005%以下程度であるが、様々な目的で0.01%以上を添加することが可能である。この場合もコストや磁気特性との兼ね合いから、Ti、Nb、V、Zr、B、Bi、Mo、W、Sn、Sb、Mg、Ca、Ce、Co、Cr、REMの1種又は2種以上を合計で0.5%以下含有することができる。
 次に、硫化物の個数密度について説明する。上述の実験結果から明らかなように、円相当径が0.1μm以上1.0μm以下の硫化物の個数密度には、破断伸び及び鉄損の観点から適正な範囲が存在する。この個数密度が1.0×10個/mm未満であると、硫化物が不足して、結晶粒の成長を十分に抑制することができず、良好な鉄損が得られるものの破断伸びが極端に低下する。その一方で、この個数密度が1.0×10個/mm超であると、結晶粒の成長が過剰に抑制されて鉄損が極端に悪化する。更に再結晶まで抑制されることもあり、この場合には、鉄損のみならず破断伸びも悪化する。従って、円相当径が0.1μm以上1.0μm以下の硫化物の個数密度は、1.0×10個/mm以上1.0×10個/mm以下とする。
 これらの条件が満たされる場合、例えば、降伏応力は700MPa以上となりやすく、破断伸びは10%以上となりやすい。また、好ましい条件が満たされる場合、破断伸びは12%以上となりやすい。また、例えば、再結晶面積率は50%以上となりやすく、鋼板の厚さをt(mm)とすると、鉄損W10/400は100×t以下となりやすい。
 次に、本発明の実施形態に係る高強度無方向性電磁鋼板の製造方法について説明する。
 本実施形態では、先ず、上記の組成のスラブを1150℃~1250℃程度で加熱し、熱間圧延を行って熱延板を作製し、熱延板をコイル状に巻き取る。次いで、熱延板を巻き解きながら冷間圧延して冷延板を作製し、冷延板をコイル状に巻き取る。その後、仕上焼鈍を行う。そして、このようにして得られた鋼板の表面に絶縁皮膜を形成する。つまり、本実施形態に係る製造方法は、おおむね公知の無方向性電磁鋼板の製造方法に準じる。
 各処理の条件は特に限定されるものではないが、以下に示すように好ましい範囲が存在する。例えば、熱間圧延の仕上温度は1000℃以上であることが好ましく、巻取温度は650℃以下であることが好ましく、いずれも、Mn、S及びCuの含有量に応じて適宜決定することが好ましい。上記の硫化物の個数密度を得るためである。仕上温度が低すぎたり、巻取温度が高すぎたりすると、微細なMnSが過剰に析出することがある。この場合、仕上焼鈍時の結晶粒の成長が過剰に抑制されて、良好な鉄損が得られなくなることがある。
 仕上焼鈍の温度は、おおむね800℃~1100℃とすることが好ましく、時間は600秒間未満とすることが好ましい。また、仕上焼鈍では、連続焼鈍を行うことが好ましい。
 磁束密度の向上の観点から、冷間圧延の前に熱延板焼鈍を行うことが好ましい。この条件は特に限定されないが、1000℃~1100℃の範囲内で30秒間以上とすることが好ましい。この温度範囲内で熱延板焼鈍を行うことにより、熱延板中のMnSを適度に成長させ、長手方向におけるMnSの析出の程度のばらつきを小さくすることができる。この結果、仕上焼鈍後においても長手方向に安定した特性が得られる。熱延板焼鈍の温度が1000℃未満であるか、時間が30秒間未満であると、これらの効果が小さい。その一方で、熱延板焼鈍の温度が1100℃超であると、硫化物の一部が固溶し、仕上焼鈍後の結晶粒径が細かくなり過ぎて、良好な鉄損が得られなくなることがある。
 次に、本発明者らが行った実験について説明する。これらの実験における条件等は、本発明の実施可能性及び効果を確認するために採用した例であり、本発明は、これらの例に限定されるものではない。
 先ず、実験室の真空溶解炉にて、Si:3.3%、Mn:0.10%、Al:0.8%、N:0.002%、及びCu:1.2%を含有し、更に、表2に示す量のNi及びSを含有し、残部がFe及び不可避的不純物からなる鋼を溶製し、この鋼から鋼片(スラブ)を作製した。次いで、鋼片に1100℃で60分間の加熱を施し、直ちに熱間圧延を行って、厚さが2.0mmの熱延板を得た。その後、熱延板に1020℃で60秒間の熱延板焼鈍を施し、酸洗を行い、一回の冷間圧延を行って、厚さが0.30mmの冷延板を得た。続いて、冷延板に900℃で45秒間の仕上焼鈍を施した。
 次いで、得られた無方向性電磁鋼板中の硫化物の個数密度を測定した。このとき、測定対象は、円相当径が0.1μm以上1.0μm以下のものとした。また、降伏応力、破断伸び及び鉄損も測定した。鉄損としては、鉄損W10/400を測定した。これらの結果も表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、[Mn]/[S]の値が10以上50以下で硫化物の個数密度が1.0×10個以上1.0×10個以下の素材符号b、c及びdにおいて、良好な降伏強度、破断伸び及び鉄損が得られた。また、Ni含有量が1.0%の素材符号g、h及びiでは、Ni含有量が%の0.02%(実質的にNi無添加)の素材符号b、c及びdと比較して、同等の破断伸び及び鉄損が得られ、更に、約50MPa高い降伏強度が得られた。Ni含有量が2.5%の素材符号l、m及びnでは、Ni含有量が%の0.02%(実質的にNi無添加)の素材符号b、c及びdと比較して、同等の破断伸び及び鉄損が得られ、更に、約100MPa高い降伏強度が得られた。
 なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本発明は、例えば、電磁鋼板製造産業及びモータ等の電磁鋼板利用産業において利用することができる。

Claims (3)

  1.  質量%で、
     C:0.010%以下、
     Si:2.0%以上4.0%以下、
     Mn:0.05%以上0.50%以下、
     Al:0.2%以上3.0%以下、
     N:0.005%以下、
     S:0.005%以上0.030%以下、及び
     Cu:0.5%以上3.0%以下、
     を含有し、
     残部がFe及び不可避的不純物からなり、
     Mn含有量を[Mn]、S含有量を[S]と表したときに、式(1)が成り立ち、
     円相当径が0.1μm以上1.0μm以下の硫化物が1mm当たり1.0×10個以上1.0×10個以下含まれていることを特徴とする高強度無方向性電磁鋼板。
     10≦[Mn]/[S]≦50 ・・・ (1)
  2.  質量%で、Ni:0.5%以上3.0%以下を含有すること特徴とする請求項1に記載の高強度無方向性電磁鋼板。
  3.  質量%で、Ti、Nb、V、Zr、B、Bi、Mo、W、Sn、Sb、Mg、Ca、Ce、Co、Cr、REMの1種又は2種以上を合計で0.5%以下含有すること特徴とする請求項1又は2に記載の高強度無方向性電磁鋼板。
PCT/JP2012/059886 2011-04-13 2012-04-11 高強度無方向性電磁鋼板 WO2012141206A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/111,245 US9362032B2 (en) 2011-04-13 2012-04-11 High-strength non-oriented electrical steel sheet
EP12771871.6A EP2698441B1 (en) 2011-04-13 2012-04-11 High-strength non-oriented electrical steel sheet
PL12771871T PL2698441T3 (pl) 2011-04-13 2012-04-11 Blacha cienka z niezorientowanej stali elektrotechnicznej o dużej wytrzymałości
KR1020137025553A KR101570591B1 (ko) 2011-04-13 2012-04-11 고강도 무방향성 전자기 강판
JP2012544365A JP5267747B2 (ja) 2011-04-13 2012-04-11 高強度無方向性電磁鋼板
BR112013014058-5A BR112013014058B1 (pt) 2011-04-13 2012-04-11 chapa de aço elétrico não orientado de alta resistência
CN201280004130.1A CN103261463B (zh) 2011-04-13 2012-04-11 高强度无方向性电磁钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-089529 2011-04-13
JP2011089529 2011-04-13

Publications (1)

Publication Number Publication Date
WO2012141206A1 true WO2012141206A1 (ja) 2012-10-18

Family

ID=47009374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059886 WO2012141206A1 (ja) 2011-04-13 2012-04-11 高強度無方向性電磁鋼板

Country Status (9)

Country Link
US (1) US9362032B2 (ja)
EP (1) EP2698441B1 (ja)
JP (1) JP5267747B2 (ja)
KR (1) KR101570591B1 (ja)
CN (1) CN103261463B (ja)
BR (1) BR112013014058B1 (ja)
PL (1) PL2698441T3 (ja)
TW (1) TWI445828B (ja)
WO (1) WO2012141206A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194099A (ja) * 2015-03-31 2016-11-17 新日鐵住金株式会社 ロータ用無方向性電磁鋼板及びロータ用無方向性電磁鋼板の製造方法
EP2985360A4 (en) * 2013-04-09 2016-12-28 Nippon Steel & Sumitomo Metal Corp NON-ORIENTED MAGNETIC STEEL SHEET AND METHOD FOR PRODUCING THE SAME
JP2019178426A (ja) * 2015-10-14 2019-10-17 株式会社デンソー FeNi規則合金粉末およびそれを含む磁性材料
CN112126857A (zh) * 2020-09-17 2020-12-25 湖北工业大学 680MPa级高强度磁轭钢板的不平度评价方法及应用
US11111557B2 (en) 2016-12-19 2021-09-07 Posco Non-oriented electrical steel sheet and manufacturing method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152800A (zh) * 2014-08-07 2014-11-19 河北钢铁股份有限公司 低磁各向异性无取向硅钢板及其制备工艺
JP5975076B2 (ja) * 2014-08-27 2016-08-23 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
RU2625194C1 (ru) * 2016-07-11 2017-07-12 Юлия Алексеевна Щепочкина Литой высокобористый сплав
KR101901313B1 (ko) * 2016-12-19 2018-09-21 주식회사 포스코 무방향성 전기강판 및 그 제조방법
CN107587039B (zh) * 2017-08-30 2019-05-24 武汉钢铁有限公司 磁性优良的电动汽车驱动电机用无取向硅钢及生产方法
WO2020149333A1 (ja) * 2019-01-16 2020-07-23 日本製鉄株式会社 一方向性電磁鋼板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033349A1 (ja) * 2003-10-06 2005-04-14 Nippon Steel Corporation 高強度電磁鋼板およびその加工部品とそれらの製造方法
JP2005344156A (ja) * 2004-06-02 2005-12-15 Sumitomo Metal Ind Ltd 無方向性電磁鋼板および時効熱処理用無方向性電磁鋼板、ならびにそれらの製造方法
JP2006118039A (ja) * 2004-09-22 2006-05-11 Nippon Steel Corp 鉄損に優れた無方向性電磁鋼板
JP2007031754A (ja) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd 時効熱処理用無方向性電磁鋼板の製造方法
JP2008174773A (ja) * 2007-01-17 2008-07-31 Sumitomo Metal Ind Ltd 回転子用無方向性電磁鋼板およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256917A (ja) 1986-04-28 1987-11-09 Nippon Steel Corp 回転機用高抗張力無方向性電磁鋼板およびその製造方法
JP3305806B2 (ja) 1993-05-21 2002-07-24 新日本製鐵株式会社 高張力無方向性電磁鋼板の製造方法
KR100207834B1 (ko) * 1994-06-24 1999-07-15 다나카 미노루 고 자속 밀도와 저 철손을 갖는 무방향성 전기강판의 제조방법
JP3239988B2 (ja) 1996-06-28 2001-12-17 住友金属工業株式会社 磁気特性に優れた高強度無方向性電磁鋼板およびその製造方法
JP3962155B2 (ja) * 1998-04-15 2007-08-22 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP4542306B2 (ja) * 2002-04-05 2010-09-15 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP2004084053A (ja) 2002-06-26 2004-03-18 Nippon Steel Corp 磁気特性の著しく優れた電磁鋼板とその製造方法
US7922834B2 (en) * 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
WO2007063581A1 (ja) * 2005-11-30 2007-06-07 Sumitomo Metal Industries, Ltd. 無方向性電磁鋼板およびその製造方法
JP5181439B2 (ja) * 2006-07-26 2013-04-10 Jfeスチール株式会社 無方向性電磁鋼板
US20110056592A1 (en) 2008-04-14 2011-03-10 Yoshihiro Arita High-strength non-oriented electrical steel sheet and method of manufacturing the same
JP5146169B2 (ja) 2008-07-22 2013-02-20 新日鐵住金株式会社 高強度無方向性電磁鋼板およびその製造方法
JP2010121150A (ja) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd 回転機用無方向性電磁鋼板および回転機ならびにそれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033349A1 (ja) * 2003-10-06 2005-04-14 Nippon Steel Corporation 高強度電磁鋼板およびその加工部品とそれらの製造方法
JP2005344156A (ja) * 2004-06-02 2005-12-15 Sumitomo Metal Ind Ltd 無方向性電磁鋼板および時効熱処理用無方向性電磁鋼板、ならびにそれらの製造方法
JP2006118039A (ja) * 2004-09-22 2006-05-11 Nippon Steel Corp 鉄損に優れた無方向性電磁鋼板
JP2007031754A (ja) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd 時効熱処理用無方向性電磁鋼板の製造方法
JP2008174773A (ja) * 2007-01-17 2008-07-31 Sumitomo Metal Ind Ltd 回転子用無方向性電磁鋼板およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985360A4 (en) * 2013-04-09 2016-12-28 Nippon Steel & Sumitomo Metal Corp NON-ORIENTED MAGNETIC STEEL SHEET AND METHOD FOR PRODUCING THE SAME
JP2016194099A (ja) * 2015-03-31 2016-11-17 新日鐵住金株式会社 ロータ用無方向性電磁鋼板及びロータ用無方向性電磁鋼板の製造方法
JP2019178426A (ja) * 2015-10-14 2019-10-17 株式会社デンソー FeNi規則合金粉末およびそれを含む磁性材料
US11111557B2 (en) 2016-12-19 2021-09-07 Posco Non-oriented electrical steel sheet and manufacturing method therefor
CN112126857A (zh) * 2020-09-17 2020-12-25 湖北工业大学 680MPa级高强度磁轭钢板的不平度评价方法及应用

Also Published As

Publication number Publication date
JP5267747B2 (ja) 2013-08-21
KR101570591B1 (ko) 2015-11-19
EP2698441A4 (en) 2015-01-28
US9362032B2 (en) 2016-06-07
CN103261463A (zh) 2013-08-21
JPWO2012141206A1 (ja) 2014-07-28
PL2698441T3 (pl) 2021-01-25
TW201247891A (en) 2012-12-01
EP2698441B1 (en) 2020-11-04
BR112013014058B1 (pt) 2019-11-12
US20140030135A1 (en) 2014-01-30
CN103261463B (zh) 2015-11-25
EP2698441A1 (en) 2014-02-19
TWI445828B (zh) 2014-07-21
KR20130125830A (ko) 2013-11-19
BR112013014058A2 (pt) 2016-09-13

Similar Documents

Publication Publication Date Title
JP5267747B2 (ja) 高強度無方向性電磁鋼板
JP5228379B2 (ja) 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
JP4586669B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP5699601B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5146169B2 (ja) 高強度無方向性電磁鋼板およびその製造方法
JP4860783B2 (ja) 無方向性電磁鋼板
WO2013121924A1 (ja) 無方向性電磁鋼板
WO2014024222A1 (ja) 高強度電磁鋼板およびその製造方法
JP2008050685A (ja) 高強度無方向性電磁鋼板
JP4710465B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JPWO2020137500A1 (ja) 無方向性電磁鋼板
JP4710458B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP5445194B2 (ja) 高強度電磁鋼板の製造方法および加工方法
JP4415933B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP4740400B2 (ja) 無方向性電磁鋼板
WO2010084847A1 (ja) 無方向性電磁鋼板
JP5418469B2 (ja) 時効熱処理用無方向性電磁鋼板の製造方法
JP2007162062A (ja) 回転子用無方向性電磁鋼板の製造方法
JP5768327B2 (ja) 高磁場鉄損の優れた無方向性電磁鋼板の製造方法
JP2009001887A (ja) 回転子用無方向性電磁鋼板の製造方法
JP6852965B2 (ja) 電磁鋼板とその製造方法
US20230021013A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP5825479B2 (ja) 高強度無方向性電磁鋼板の製造方法
JP2005113158A (ja) 高い降伏強度を有する無方向性電磁鋼板とその製造方法
JP2008308727A (ja) 回転子用無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012544365

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771871

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012771871

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137025553

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14111245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013014058

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013014058

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130606