JP4415933B2 - 回転子用無方向性電磁鋼板の製造方法 - Google Patents

回転子用無方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
JP4415933B2
JP4415933B2 JP2005361907A JP2005361907A JP4415933B2 JP 4415933 B2 JP4415933 B2 JP 4415933B2 JP 2005361907 A JP2005361907 A JP 2005361907A JP 2005361907 A JP2005361907 A JP 2005361907A JP 4415933 B2 JP4415933 B2 JP 4415933B2
Authority
JP
Japan
Prior art keywords
less
steel
steel sheet
annealing
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005361907A
Other languages
English (en)
Other versions
JP2007162097A (ja
Inventor
一郎 田中
浩志 藤村
洋克 仁富
裕義 屋鋪
宏二 西田
広毅 高丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005361907A priority Critical patent/JP4415933B2/ja
Publication of JP2007162097A publication Critical patent/JP2007162097A/ja
Application granted granted Critical
Publication of JP4415933B2 publication Critical patent/JP4415933B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気自動車、ハイブリッド自動車の駆動モータ、ロボット、工作機械などのサーボモータといった高効率モータの回転子に用いられる無方向性電磁鋼板の製造方法に関する。特に、高速回転する永久磁石埋め込み式モータの回転子として好適な優れた機械特性と磁気特性とを兼ね備えた無方向性電磁鋼板の製造方法に関する。
近年の地球環境問題の高まりから、多くの分野において省エネルギー、環境対策技術が進展している。自動車分野も例外ではなく、排ガス低減、燃費向上技術が急速に進歩している。電気自動車およびハイブリッド自動車はこれらの技術の集大成といっても過言ではなく、自動車駆動モータ(以下、単に「駆動モータ」ともいう。)の性能が自動車性能を大きく左右する。
駆動モータの多くは永久磁石を用いており、巻き線を施した固定子(ステータ)部分と永久磁石を配置した回転子(ロータ)部分とから構成される。最近では永久磁石を回転子内部に埋め込んだ形状(永久磁石埋め込み型モータ;IPMモータ)が主流となっている。また、パワーエレクトロニクス技術の進展により回転数は任意に制御可能であり、高速化傾向にある。したがって、鉄心素材は商用周波数(50〜60Hz)以上の高周波数域で励磁される割合が高まっており、商用周波数での磁気特性のみでなく、400Hz〜数kHzでの磁気特性改善が要求されるようになってきた。また、回転子は高速回転時の遠心力のみならず回転数変動にともなう応力変動を常時うけることから、回転子の鉄心素材には機械特性も要求されている。特に、IPMモータの場合には複雑な回転子形状を有することから、回転子用の鉄心材料には応力集中を考慮して遠心力ならびに応力変動に耐えうるだけの機械特性が必要となる。また、ロボット、工作機械用のサーボモータ分野でも、駆動モータと同様に回転数の高速化が今後進行していくと予測される。
従来、駆動モータの固定子は主に打ち抜き加工した無方向性電磁鋼板の積層により製造されていたが、回転子はロストワックス鋳造法あるいは焼結法などにより製造されることもあった。これは固定子には優れた磁気特性が、回転子には堅牢な機械特性が要求されることによる。しかしながら、モータ性能は回転子−固定子間のエアギャップに大きく影響されるため、上述の回転子では精密加工の必要性が生じ鉄心製造コストが大幅に増加するという問題があった。コスト削減の観点からは、打ち抜き加工した電磁鋼板を使用すればよいが、回転子に必要な磁気特性と機械特性とを兼備した無方向性電磁鋼板は見出されていないのが現状であった。
優れた機械特性を有する電磁鋼板としては、例えば特許文献1に、3.5〜7%のSiに加えて、Ti,W,Mo,Mn,Ni,CoおよびAlのうちの1種または2種以上を20%を超えない範囲で含有する鋼板が提案されている。この方法では鋼の強化機構として固溶強化を利用している。しかしながら、固溶強化の場合には冷間圧延母材も同時に高強度化されるため冷間圧延が困難であり、またこの方法においては温間圧延という特殊工程が必須であることから、生産性向上や歩留まり向上など改善の余地がある。
また、特許文献2には、2.0〜3.5%のSi、0.1〜6.0%のMnに加えてBおよび多量のNiを含有し、結晶粒径が30μm以下である鋼板が提案されている。この方法では鋼の強化機構として固溶強化と結晶粒径微細化による強化とを利用している。しかしながら、結晶粒微細化による強化は比較的効果が小さいため、特許文献2の実施例に示されるようにSiを3.0%程度含有させた上に高価なNiを多量に含有させることが必須であり、冷間圧延時に割れが多発するという問題や、合金コスト増加という課題が残っている。
さらに、特許文献3および特許文献4には、2.0〜4.0%のSiに加えてNb,Zr,B,TiまたはVなどを含有する鋼板が提案されている。これらの方法ではSiによる固溶強化に加えてNb,Zr,TiまたはVの析出物による析出強化を利用している。しかしながら、このような析出物による強化は比較的効果が小さいため、特許文献3および特許文献4の実施例に示されるようにSiを3.0%程度含有させる必要があり、特に特許文献3の方法では高価なNiを多量に含有させることも必要となる。そのため冷間圧延時に割れが多発するという問題や、合金コスト増加という課題が残っている。
また、特許文献5および特許文献6には、SiおよびAlを0.03〜0.5%と制限した上でTi,NbおよびV、あるいはPおよびNiを含有する鋼板がそれぞれ提案されている。これらの方法では、Siによる固溶強化よりも炭化物の析出強化およびPの固溶強化を利用している。しかしながら、これらの方法では、後述する駆動モータの回転子として必要な強度レベルを確保することができないという問題や、特許文献5および特許文献6の実施例に示されているように2.0%以上のNi含有が必須であり、合金コストが高いという問題がある。
さらに、特許文献7には、Si:1.6〜2.8%であって、結晶粒径、内部酸化層厚み、および降伏点を限定した永久磁石埋め込み型モータ用無方向性電磁鋼板が提案されている。しかしながら、この方法による鋼板の降伏点では、高速回転する駆動モータの回転子としては強度不足である。
また、特許文献8には、磁気特性に優れた高強度電磁鋼板が提案されている。しかしながら、TiおよびNbの含有量を不可避的不純物レベルとする、あるいは低減することを基本としているため、高い強度を安定的に得ることはできない。
さらに、JIS C 2552に規定の無方向性電磁鋼板としては、いわゆる高グレード無方向性電磁鋼板(35A210,35A230など)が最も合金含有量が高く高強度であるが、機械特性レベルは上述の高張力電磁鋼板を下回っており高速回転する駆動モータの回転子としては強度不足である。
特開昭60-238421号公報 特開平1−162748号公報 特開平2−8346号公報 特開平6−330255号公報 特開2001−234302号公報 特開2002−146493号公報 特開2001−172752号公報 特開2005−113185号公報
上述したように、無方向性電磁鋼板の高強度化手法として従来から提案されている固溶強化および析出強化では冷間圧延の母材も強化されてしまうことから冷間圧延時に割れが多発し、結晶粒微細化による高強度化ではその強化量が不十分であるため回転子用途として実用に耐える強度を実現することができない。また、本発明者らは変態強化についても検討を行ったが、変態強化ではマルテンサイト等の変態組織が鉄損を著しく増大させることが判明し、回転子用途として実用に耐える磁気特性を実現することができない。
このような問題点に鑑み、本発明者らは特願2004−183554、特願2004−252395にて高速回転するモータの回転子として必要な優れた機械特性と磁気特性とを具備する無方向性電磁鋼板およびその製造方法を提案している。これらの無方向性電磁鋼板はNb,Zr,TiおよびVを含有するものであるため、表面性状が通常の無方向性電磁鋼板より劣る可能性があり、鉄心として使用する際には占積率の低下により有効な断面積あたりの磁束密度が低下し、モータ効率が低下する可能性がある。
ここで、占積率とは、無方向性電磁鋼板を積層して鉄心を作製した際の、鉄心厚さ全体に占める鋼板の割合である。
このため、特願2004−252395においては、これらの元素の上限を規制することにより良好な表面性状を確保している。しかしながら、表面性状をさらに向上させることができれば、鉄心として使用する際、占積率の向上によりモータ効率を一層向上させることができるので好ましい。
また、特願2004−183554明細書に記載の好適な態様および特願2004−252395明細書に記載の発明では、CおよびNの含有量を超える量のNb,Zr,TiおよびVを含有させることを必要としており、合金コストの観点からは改善の余地がある。
本発明は、上記問題点に鑑みてなされたものであり、合金コストの増加を抑制し、表面性状に優れ、かつ高速回転するモータの回転子として必要な優れた機械特性と磁気特性とを兼備する無方向性電磁鋼板の製造方法を提供することを主目的とする。
本発明者らは、回転子に適した磁気特性と機械特性とを兼ね備えた無方向性電磁鋼板の有するべき鋼組織について種々検討を行い、従来ほとんど検討されていなかった加工硬化による高強度化に着目した。そして、回復状態で残存している転位は鉄損に及ぼす影響が比較的小さいとの新知見を得て、従来の無方向性電磁鋼板の技術認識である完全な再結晶フェライト組織とは全く逆の技術思想に立脚して、鋼板の組織を多量の転位が残存した加工組織および回復状態の組織(以下、「回復組織」と称する)とすることにより、回転子に要求される磁気特性および機械特性が得られることを見出した。さらに、回復組織を得るためにはNb,Zr,TiおよびVの含有量を所定の範囲とすることが必要であることを見出し、これらの知見に基づいて、特願2004−183554、特願2004−252395にて高速回転するモータの回転子用として必要な優れた機械特性と磁気特性とを具備する無方向性電磁鋼板およびその製造方法を提案している。しかしながら、特願2004−183554明細書に記載の好適な態様および特願2004−252395明細書に記載の発明では、CおよびNの含有量を超える量のNb,Zr,TiおよびVを含有させることを必要としており、合金コストの観点からは改善の余地がある。
そこで、本発明者らは、コスト低減を念頭に安定的に回復組織を得るための手法について検討し、再結晶抑制効果の大きいNbを積極的に含有させた上で、Zr,TiおよびAlによってNを析出物として固定することにより、Nb,Zr,TiおよびVの含有量がCおよびNの含有量以下であっても、固溶Nbによって最終の冷間圧延後に施す均熱処理中の転位の消滅および再結晶の進行が抑制されることを見出した。
また、本発明者らは、Nbを積極的に含有させた無方向性電磁鋼板にて懸念されていた表面性状をさらに改善するため、熱間圧延条件の影響について鋭意研究を重ねた。その結果、粗熱間圧延での累積圧下率や、鋼塊または鋼片の等軸晶率などを制御することにより、Nbを積極的に含有させた無方向性電磁鋼板の表面性状をより安定的に改善できることが判明し、機械特性および磁気特性だけでなく表面性状も良好な無方向性電磁鋼板が得られることを見出し、本発明を完成させた。
すなわち、本発明は、質量%で、C:0.06%以下、Si:3.5%以下、Mn:0.05%以上3.0%以下、Al:2.5%以下、P:0.30%以下、S:0.04%以下、N:0.02%以下、Nb:0.02%超を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を下記式(1)を満足する範囲で含有し、かつ、Zr、TiおよびAlからなる群から選択される少なくとも1種の元素を下記式(2)を満足する範囲で含有し、残部がFeおよび不純物からなる鋼塊または鋼片を、1100℃以上1300℃以下としたのちに、累積圧下率が80%以上の粗熱間圧延を施して粗バーを得る粗熱間圧延工程と、上記粗バーに仕上熱間圧延を施す仕上熱間圧延工程とを有し、上記仕上熱間圧延工程前の粗バーの温度を950℃以上とする熱間圧延工程を備えることを特徴とする回転子用無方向性電磁鋼板の製造方法を提供する。
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)≦0 (1)
Zr/91+Ti/48+Al/27−N/14>0 (2)
(ここで、式(1)および(2)中、Nb、Zr、Ti、V、Al、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
一般に、無方向性電磁鋼板を製造する際、熱間圧延工程により得られた鋼板には冷間圧延が施され、次いで再結晶および結晶粒成長を目的として均熱処理が施される。本発明においては、再結晶抑制効果の大きいNbを積極的に含有させた上で、Zr,TiおよびAlの含有量を適正化しているため、Zr,TiおよびAlによってNは析出物として固定され、Nb,Zr,TiおよびVの含有量がCおよびNの含有量以下であっても、均熱処理中の転位の消滅および再結晶の進行が抑制される。これにより、加工組織および回復組織を主体とする鋼板を得ることが可能となり、高強度の無方向性電磁鋼板を製造することができる。このような鋼板の高強度化は、固溶強化や析出強化とは異なり、冷間圧延に供する鋼板、すなわち冷間圧延の母材の高強度化を伴うことがないので、冷間圧延時の破断を抑制することができるという利点を有する。さらに本発明によれば、所定の鋼組成を備える鋼塊または鋼片を用いることにより、機械特性だけでなく磁気特性も良好な無方向性電磁鋼板を製造することができる。
また本発明においては、熱間圧延工程を所定の条件で行うことにより、具体的には粗熱間圧延に供する際のスラブの温度、粗熱間圧延での累積圧下率、および、粗熱間圧延後で仕上熱間圧延前における粗バーの温度を所定の範囲とすることにより、鋼板がNb,Zr,TiおよびVを含有する場合であっても、良好な表面性状を安定して確保することができる。その結果、高い占積率を実現することができる。
したがって本発明によれば、従来のように高価な鋼成分を用いることも、特殊な工程を経ることもなく、例えば駆動モータの回転子として必要な磁気特性および機械特性を満足し、表面性状の良好な回転子用無方向性電磁鋼板を安定して製造することができる。
上記発明においては、上記鋼塊または鋼片の鋼組成が下記式(3)を満足することが好ましい。
Nb/93−C/12>0 (3)
(ここで、式(3)中、NbおよびCはそれぞれの元素の含有量(質量%)を示す。)
固溶Nbにより均熱処理中の転位の消滅および再結晶の進行を抑制することができ、鋼板の強度を効果的に高めることができるからである。
また本発明においては、上記鋼塊または鋼片が、上記Feの一部に代えて、Cu、Ni、Cr、Mo、CoおよびWからなる群から選択される少なくとも1種の元素を下記の質量%で含有することが好ましい。
Cu:0.01%以上8.0%以下 Ni:0.01%以上2.0%以下
Cr:0.01%以上15.0%以下 Mo:0.005%以上4.0%以下
Co:0.01%以上4.0%以下 W:0.01%以上4.0%以下
上記元素の高強度化作用により、鋼板の強度をより高めることが可能となるからである。
さらに本発明においては、上記鋼塊または鋼片が、上記Feの一部に代えて、Sn、Sb、Se、Bi、Ge、TeおよびBからなる群から選択される少なくとも1種の元素を下記の質量%で含有することが好ましい。
Sn:0.5%以下 Sb:0.5%以下 Se:0.3%以下 Bi:0.2%以下
Ge:0.5%以下 Te:0.3%以下 B:0.01%以下
上記元素の粒界偏析により、効果的に再結晶を抑制することができるからである。
またさらに本発明においては、上記鋼塊または鋼片が、上記Feの一部に代えて、Ca、MgおよびREMからなる群から選択される少なくとも1種の元素を下記の質量%で含有することが好ましい。
Ca:0.03%以下 Mg:0.02%以下 REM:0.1%以下
上記元素の硫化物形態制御作用により、磁気特性をさらに改善することができるからである。
また本発明においては、上記鋼塊または鋼片の断面組織における平均等軸晶率が25%以上であることが好ましい。これにより、表面性状を安定的に改善することができるからである。
本発明においては、表面性状が良好であり、高速回転するモータの回転子として必要な優れた機械特性と磁気特性とを兼備した無方向性電磁鋼板を、多大なコスト増加を招くことなく安定に製造することが可能である。そのため、電気自動車やハイブリッド自動車の駆動モータ分野などにおける回転数の高速化に十分対応でき、その工業的価値は極めて高い。
本発明で言及する回転子に用いる電磁鋼板として必要な特性とは、第一に機械特性であり、降伏点および引張強さである。これは高速回転時の回転子の変形抑制のみならず、応力変動に起因する疲労破壊抑制を目的としている。近年の電気自動車、ハイブリッド自動車の駆動モータでは、回転子は250MPa程度の平均応力下で150MPa程度の応力振幅を受ける。したがって、変形抑制の観点から降伏点は400MPa以上、安全率を考慮すると500MPa以上を満たす必要がある。好ましくは550MPa以上である。また、上述の応力状態での疲労破壊を抑制する観点から引張強さは550MPa以上、安全率を考慮すると600MPa以上、好ましくは700MPa以上必要である。
また、回転子に用いる電磁鋼板として必要な第二の特性は磁束密度である。IPMモータのようにリラクタンストルクを活用するモータでは回転子に用いられる材質の磁束密度もトルクに影響を及ぼし、磁束密度が低いと所望のトルクを得られない。
さらに、回転子に用いる電磁鋼板として必要な第三の特性は鉄損である。鉄損は不可逆な磁壁移動に起因するヒステリシス損失と、磁化変化に起因して発生する渦電流によるジュール熱(渦電流損失)とから構成され、電磁鋼板の鉄損はこれらの総和であるトータルの鉄損で評価される。回転子で発生する損失はモータ効率そのものを支配するものではないが、回転子の損失すなわち発熱により永久磁石が減磁するため、間接的にモータ性能を劣化させる。したがって、回転子に使用される材質の鉄損値の上限は永久磁石の耐熱温度の観点から決定され、固定子に使用される材質よりも鉄損値が高くとも許容されると想起される。
本発明者らはこれらの特性を満足する無方向性電磁鋼板について鋭意検討を行った。まず、上述の着想をもとに回転子に適した磁気特性と機械特性とを兼ね備えた無方向性電磁鋼板の有するべき鋼組織について種々検討を行った。その結果、固溶強化および析出強化では冷間圧延母材も高強度化されるため冷間圧延時の破断が避けられないこと、結晶粒微細化のみでは要求レベルの機械特性を達成できないこと、および、マルテンサイト等の変態組織では鉄損が著しく増大すること、が判明した。さらに、強化機構として加工硬化について検討した結果、回復状態で残存している転位は鉄損に及ぼす影響が比較的小さいことが判明した。これらの結果から、従来の無方向性電磁鋼板の技術認識である完全な再結晶フェライト組織とは全く逆に、多量の転位が残存した加工組織および回復組織とすることにより、回転子に要求される磁気特性と機械特性とが達成されるとの知見を得た。
加工組織および回復組織は、所定の板厚への加工時に導入された転位を均熱処理時に消滅させることなく残存させることにより得られる。そのため、固溶強化あるいは析出強化主体の従来技術とは異なり、冷間圧延母材の高強度化を伴うことなく高強度化が可能であり、冷間圧延時の破断を抑制できる。このような加工組織および回復組織を得るためには、通常冷間圧延後に行われる均熱処理での再結晶を抑制することが必要である。均熱処理での再結晶を抑制するには、特願2004−183554明細書の好適な態様および特願2004−252395明細書の発明にそれぞれ記載されているとおり、CおよびNの含有量を超える量のNb,Zr,TiおよびVを含有させることが必要であるが、合金コストが増加する。本発明者らは合金コスト低減を目的とし、Nb,Zr,TiおよびVの含有量がCおよびNの含有量以下であることを前提条件として検討を進めた。その結果、Nb,Zr,TiおよびVのうち最も再結晶抑制効果の大きいNbを積極的に含有させた上で、NをZr,TiおよびAlによって固定すれば、上記前提条件であっても最終の冷間圧延後に施す均熱処理中の転位の消滅および再結晶の進行を抑制できるとの知見を得た。さらに、Nbを積極的に含有させた無方向性電磁鋼板にて懸念されていた表面性状を改善するためには、熱間圧延条件等を適正化する必要があるとの知見を得た。
以下、本発明を得るに至った知見を述べる。
転炉で脱炭脱硫した溶鋼230tonを取鍋内に出鋼し、取鍋をRH式真空脱ガス装置に移動した。RH式真空脱ガス装置で脱炭を行い、表1に示すように下記式(1)および(2)を満足する組成を有する溶鋼を連続鋳造機にてスラブとした。なお、N含有量は浸漬管から窒素を吹き込むことにより調整した。製造したスラブの平均等軸晶率は0〜30%であった。
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)≦0 (1)
Zr/91+Ti/48+Al/27−N/14>0 (2)
(ここで、式(1)および(2)中、Nb、Zr、Ti、V、Al、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
Figure 0004415933
これらのスラブを加熱炉で1150℃まで加熱し、累積圧下率を77〜86%として粗熱間圧延し、仕上げ温度800〜850℃、巻き取り温度500℃で仕上熱間圧延して、厚さ2.0mmとした。その後750℃で10時間の熱延板焼鈍を行い、さらに0.35mmまで冷間圧延した。さらに、冷間圧延により得られた鋼板に720℃で10秒間保持する均熱処理を施し、鋼板表面に平均厚さ0.5μmの絶縁皮膜を施した。得られた鋼板からJIS C 2550に準じて試験片を採取し、占積率、磁気特性(鉄損W10/400)および機械特性(降伏点YP、引張強さTS)を調査した。結果を表2に示す。
なお、表2において、平均等軸晶率は、鋳込み方向垂直断面のマクロ組織より、スラブ幅3ヶ所(1/4、2/4、3/4)における等軸晶率を平均した値である。
また、粗熱間圧延での累積圧下率(粗圧延累積圧下率)は、粗熱間圧延機入側のスラブ厚さAと出側の鋼帯厚さBとから、次式により算出した値である。
(1−B/A)×100[%]
さらに、占積率評価は、98%以上をA、95%以上98%未満をB、95%未満をCとして、AおよびBは回転子の鉄心として使用可能レベルと判断した。
Figure 0004415933
Nbをほとんど含有しない無方向性電磁鋼板(鋼1)は熱間圧延条件によらず高い占積率を有するのに対し、Nbを所定量含有する無方向性電磁鋼板(鋼2および鋼3)は、粗熱間圧延での累積圧下率が80%以上、粗熱間圧延出側の温度が950℃以上の場合に高い占積率を有することが判明した。また、スラブの平均等軸晶率が高かった製品はさらに占積率が改善されること、および、熱間圧延条件が機械特性や磁気特性に及ぼす影響は占積率に及ぼす影響に比べて小さいことが判明した。さらに、均熱処理後の鋼組織を観察した結果、鋼1は再結晶フェライト組織であり、鋼2および鋼3は回復組織であった。
Ti,ZrおよびAlの含有量を変化させて上記と同様の検討を行い、Nbを積極的に含有させた上でZr,TiおよびAlによってNを析出物として固定した鋼では、Nb,Zr,TiおよびVの含有量がCおよびNの含有量以下であっても、均熱処理中の転位の消滅および再結晶の進行が抑制され、優れた機械特性と磁気特性を備えた無方向性電磁鋼板が得られること、および、そのような無方向性電磁鋼板の占積率を高めるには熱間圧延条件やスラブの平均等軸晶率を適切に制御することが有効であること、との知見を得たのである。その機構については明らかではないが、本発明者らは次のように推定する。
占積率の改善は、すなわち表面性状の改善によるものである。Nb,Zr,TiおよびVを含有させた鋼は、均熱処理時にて再結晶が抑制されるが、熱間圧延時にも再結晶が抑制されてしまう場合があるため、鋳造組織の巨大柱状粒に起因する表面の凹凸欠陥が冷間圧延後に発生し、この表面性状の劣化が占積率の低下につながると考えられる。これに対し本発明においては、粗熱間圧延での累積圧下率および粗熱間圧延出側の温度の双方を高めることにより、抑制されていた再結晶が促進され、鋳造組織の巨大柱状粒に起因する圧延方向の筋状のバンド組織が消失するものと考えられる。これにより冷間圧延後の表面欠陥が抑制され、占積率の改善につながったと推察される。
以下、本発明の回転子用無方向性電磁鋼板の製造方法について詳細に説明する。
本発明の回転子用無方向性電磁鋼板の製造方法は、質量%で、C:0.06%以下、Si:3.5%以下、Mn:0.05%以上3.0%以下、Al:2.5%以下、P:0.30%以下、S:0.04%以下、N:0.02%以下、Nb:0.02%超を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を下記式(1)を満足する範囲で含有し、かつ、Zr、TiおよびAlからなる群から選択される少なくとも1種の元素を下記式(2)を満足する範囲で含有し、残部がFeおよび不純物からなる鋼塊または鋼片を、1100℃以上1300℃以下としたのちに、累積圧下率が80%以上の粗熱間圧延を施して粗バーを得る粗熱間圧延工程と、上記粗バーに仕上熱間圧延を施す仕上熱間圧延工程とを有し、上記仕上熱間圧延工程前の粗バーの温度を950℃以上とする熱間圧延工程を備えることを特徴とするものである。
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)≦0 (1)
Zr/91+Ti/48+Al/27−N/14>0 (2)
(ここで、式(1)および(2)中、Nb、Zr、Ti、V、Al、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
以下、本発明の回転子用無方向性電磁鋼板の製造方法における鋼塊または鋼片、および各工程について説明する。
1.鋼塊または鋼片
本発明に用いられる鋼塊または鋼片は、質量%で、C:0.06%以下、Si:3.5%以下、Mn:0.05%以上3.0%以下、Al:2.5%以下、P:0.30%以下、S:0.04%以下、N:0.02%以下、Nb:0.02%超を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を上記式(1)を満足する範囲で含有し、かつ、Zr、TiおよびAlからなる群から選択される少なくとも1種の元素を上記式(2)を満足する範囲で含有し、残部がFeおよび不純物からなるものである。
なお、各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味するものである
以下、鋼組成について説明する。
(1)C
CはNb,Zr,TiまたはVと結びついて析出物を形成するため、冷間圧延後の均熱処理において進行する転位の消滅および再結晶の進行を抑制する効果を有する固溶Nb,Zr,TiおよびVの含有量の減少に繋がる。したがって、C含有量は低減することが好ましい。しかしながら、過度のC含有量の低減は製鋼コストが増加する点や、後述するように、C含有量が多くても最終の冷間圧延前に所定の条件で焼鈍を施すことにより析出物を再固溶させれば冷間圧延後の均熱処理中における転位の消滅および再結晶を抑制する効果を得られる点を鑑み、C含有量の上限値は0.06%とする。好ましくは0.04%以下、さらに好ましくは0.02%以下である。C含有量が0.01%以下であれば、Nb/93−C/12>0なる条件を満たすのに必要なNb含有量が少なくてすむので製造コストの観点から望ましい。
(2)Si
Siは電気抵抗を高め、渦電流損失を低減する効果を有する元素である。しかしながら、多量のSiを含有させた場合には冷間圧延時の割れを誘発し、鋼板の歩留まり低下により製造コストが増加する。そのためSi含有量は3.5%以下とする。また、割れ抑制の観点からは3.0%以下が好ましい。さらに、Siを脱酸剤として使用する場合は0.01%以上含有させることが必要であるが、Alを脱酸剤として使用する場合もあるため、Si含有量の下限値は特に限定しない。固溶強化による鋼板の高強度化という観点からは下限値を1.0%とすることが好ましい。
(3)Mn
MnはSiと同様に電気抵抗を高め、渦電流損失を低減する効果がある。しかしながら、Mnを多量に含有させると合金コストが増加するため、Mn含有量の上限は3.0%とする。一方、Mn含有量の下限はSを固定する観点から定められるものであり、0.05%とする。
(4)Al
Alは電気抵抗を高めるためSiと同様に渦電流損失を低減する。また、Nを固定する効果も有する。しかしながら、多量にAlを含有させると合金コストが増加するとともに、飽和磁束密度低下により磁束の漏れが発生するためモータ効率が低下する。これらの観点からAl含有量の上限は2.5%とする。また、Alを脱酸剤として使用する場合は0.01%以上含有させることが必要であるが、Siを脱酸剤として使用する場合があるため、Al含有量の下限値は特に限定しない。固溶強化による鋼板の高強度化という観点からは、望ましい下限値は0.2%である。
(5)P
Pは固溶強化により鋼板の強度を高める効果があるが、多量にPを含有する場合には冷間圧延時の割れを誘発する。そのためP含有量は0.30%以下とする。
(6)S
Sは鋼中に不可避的に混入する不純物であるが、製鋼段階で低減するにはコストが増加するためS含有量としては0.04%を上限とする。
(7)N
NはNb,Zr,TiまたはVと結びついて析出物を形成するため、冷間圧延後の均熱処理において進行する転位の消滅および再結晶の進行を抑制する効果を有する固溶Nb,Zr,TiおよびVの含有量の減少に繋がる。しかしながら、N含有量が多くてもZr,TiおよびAlの含有量をそれに応じて増加させればNを析出物として固定することができ、転位の消滅および再結晶の進行を抑制する効果が非常に大きい固溶Nbの含有量が確保されることを鑑み、N含有量の上限は0.02%とする。好ましくは0.01%以下である。一方、N含有量が低いと上記式(1)の関係を満たすために必要なNb含有量が極端に減少するため、均熱処理中の転位の消滅および再結晶を抑制する効果が得られないおそれがある。そのため、N含有量は0.0015%超が好ましい。より好ましくは0.0026%超である。
(8)Nb,Zr,TiおよびV
均熱処理中の転位の消滅および再結晶を抑制し、加工組織および回復組織を得ることによって回転子に必要な機械特性と磁気特性とを得るためには、析出物を形成していない固溶した状態のNb,Zr,TiまたはVを含有させることが必要であるが、これらの元素を多量に含有させると合金コストが増加する。コスト低減のため、Nb,Zr,TiおよびVからなる群から選択される少なくとも1種の元素を、下記式(1)を満足する範囲で含有させることが必要である。
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)≦0 (1)
(ここで、式(1)中、Nb,Zr,Ti,V,CおよびNはそれぞれの元素の含有量(質量%)を示す。)
上記式(1)の左辺は、Nb,Zr,TiおよびVの含有量とCおよびNの含有量との差を表しており、この値が負であることは固溶した状態のNb,Zr,TiまたはVを含有していないことに対応すると考えられる。しかしながら、上記式(1)の左辺の値が負であっても、Nと結合し易いZr,TiおよびAlの含有量が後述するように適正量である場合には、Nはこれらの元素の窒化物等として固定され、転位の消滅および再結晶の進行を抑制する効果の大きい固溶Nbの含有量が確保される。したがって、本発明においてはNbを積極的に含有させるものとし、Nb含有量は0.02%を超えるものとする。好ましくは0.04%以上である。Nb含有量の上限は、コストの観点から定められ、上記式(1)で示される範囲とする。
また、硫化物を考慮すると固溶状態のNb,Zr,TiおよびVの含有量はS含有量にも影響される。しかしながら、上述したS含有量の範囲内では再結晶抑制効果に及ぼすSによる影響は認められなかったため、本発明においてはSの項を省略した上記式(1)を採用した。Sの影響が認められなかった理由は明確でないが、凝固末期のSが濃化した領域からMnSとなって晶出するなどしてMnによりSが固定されたためと考えられる。
コスト低減を目的として、Nb,Zr,TiおよびVからなる群から選択される少なくとも1種の元素を上記式(1)を満足させる範囲で含有させた場合、均熱処理中の転位の消滅および再結晶の進行を抑制するためには、Zr,TiおよびAlによりNを析出物として固定する必要がある。そのためには、Zr,TiおよびAlからなる群から選択される少なくとも1種の元素を下記式(2)を満足する範囲で含有させることが必要である。
Zr/91+Ti/48+Al/27−N/14>0 (2)
(ここで、式(2)中、Zr,Ti,AlおよびNはそれぞれの元素の含有量(質量%)を示す。)
上記式(2)の左辺は、Zr,TiおよびAlの含有量とN含有量との差を示しており、この値が正であることはNを析出物として固定できていることに対応する。これにより、転位の消滅および再結晶の進行を抑制する効果の大きい固溶Nbの含有量が確保されることとなる。Zr,TiおよびAlを上記式(2)の範囲とすることにより、上記式(1)の左辺の値が負であっても均熱処理での転位の消滅および再結晶を抑制する効果が得られるのは、NbよりもZr,TiおよびAlの方がNとの析出物を形成しやすいことに起因すると推察される。
なお、ZrおよびTiについては上記式(1)によってZr含有量およびTi含有量の上限値を定めており、Alについては上述したようにAl含有量の上限値を定めているため、上記式(2)においては特に上限値を定めないこととする。
さらに本発明においては、鋼組成が下記式(3)を満足することが好ましい。
Nb/93−C/12>0 (3)
(ここで、式(3)中、NbおよびCはそれぞれの元素の含有量(質量%)を示す。)
上記式(3)の左辺は、Nb含有量とC含有量との差であり、この値が正であることは上述のZr,TiおよびAlの含有量の適正化によりNを固定した場合の固溶Nb含有量に対応するものである。Nb含有量を上記式(3)の範囲とすることにより、固溶Nbにより冷間圧延後の均熱処理時の転位の消滅および再結晶の進行を効果的に抑制することができる。
本発明においてはZr,TiおよびAlの含有量の適正化によりNを固定しているため、鋼組成がNb/93−C/12≦0を満たす場合であっても、固溶Nbの含有量を確保することは可能である。Nb/93−C/12≦0の場合に十分な固溶Nbを含有させるためには、後述するように最終の冷間圧延前の焼鈍条件を適正化することが重要である。最終の冷間圧延前の焼鈍条件を適正化することにより、均熱処理時の転位の消滅および再結晶の進行を抑制することができる。
(9)Cu,Ni,Cr,Mo,CoおよびW
本発明においては、再結晶粒径の細粒化ではなく再結晶そのものを抑制することにより磁気特性と機械特性の両立を図っているため、この再結晶抑制効果を損なわない範囲でCu,Ni,Cr,Mo,CoおよびWからなる群から選択される少なくとも1種の元素を含有させることができる。これらの元素は鋼板を高強度化する作用を有するので、鋼板の強度をさらに高めるのに有効であり好ましい。
Cuは鋼板の固有抵抗を増加し、鉄損を低減する効果がある。しかしながら過度にCuを含有させると表面疵や冷間圧延時の割れの発生につながるため、Cu含有量は0.01%以上8.0%以下とすることが好ましい。表面疵の観点から、好ましくは1.0%以下である。
NiおよびMoは過度に含有させると冷間圧延時の割れの発生やコスト増加につながるため、Ni含有量は0.01%以上2.0%以下、Mo含有量は0.005%以上4.0%以下とすることが好ましい。
Crは鋼板の固有抵抗を増加し、鉄損を低減する効果がある。また耐食性を改善する効果も有する。しかしながら過度にCrを含有させるとコストが増加するため、Cr含有量は0.01%以上15.0%以下とすることが好ましい。
CoおよびWは、過度に含有させるとコストが増加するため、Co含有量は0.01%以上4.0%以下、W含有量は0.01%以上4.0%以下とすることが好ましい。
(10)Sn,Sb,Se,Bi,Ge,TeおよびB
本発明は再結晶を抑制することにより磁気特性と機械特性の両立を図っているため、粒界偏析により再結晶を抑制する効果を有するSn,Sb,Se,Bi,Ge,TeおよびBからなる群から選択される少なくとも1種の元素を含有させることが好ましい。これらの元素を含有させる場合には、熱間圧延工程での割れの発生およびコスト増加を抑制する観点から、各元素の含有量をSn:0.5%以下、Sb:0.5%以下、Se:0.3%以下、Bi:0.2%以下、Ge:0.5%以下、Te:0.3%以下、B:0.01%以下とすることが好ましい。これらの元素による再結晶抑制効果を確実に得るには、各元素の含有量をSn:0.001%以上、Sb:0.0005%以上、Se:0.0005%以上、Bi:0.0005%以上、Ge:0.001%以上、Te:0.0005%以上、B:0.0002%以上とすることが好ましい。
(11)Ca,MgおよびREM
本発明で規定するS含有量の範囲内では再結晶抑制効果に及ぼすSの影響は認められなかったため、本発明においては硫化物の形態制御による磁気特性改善を目的としてCa,MgおよびREMからなる群から選択される少なくとも1種を含有させることができる。
ここでREMとは、原子番号57〜71までの15元素、ならびにScおよびYの2元素の合計17元素をさす。
これらの元素を含有させる場合、各元素の含有量はCa:0.03%以下、Mg:0.02%以下、REM:0.1%以下が好ましい。上記効果を確実に得るためには、各元素の含有量をCa:0.0001%以上、Mg:0.0001%以上、REM:0.0001%以上とすることが好ましい。
(12)その他の成分
本発明においては、本発明の効果を損なわない範囲で上述した元素以外の元素を含有させることが可能である。本発明は、再結晶組織を前提とした従来技術とは異なり、多くの転位が残存した加工組織および回復組織とすることにより強度を高めるものであるから、再結晶組織を前提とした従来技術において制限されていた元素の含有をより高いレベルまで許容することができる。例えば、Ta,Hf,As,Au,Be,Zn,Pb,Tc,Re,Ru,Os,Rh,Ir,Pd,Pt,Ag,Cd,HgおよびPoを総和で0.1%以下含有することができる。
2.熱間圧延工程
本発明における熱間圧延工程は、上述した鋼組成を有する鋼塊または鋼片を、1100℃以上1300℃以下としたのちに、累積圧下率が80%以上の粗熱間圧延を施して粗バーを得る粗熱間圧延工程と、上記粗バーに仕上熱間圧延を施す仕上熱間圧延工程とを有し、上記仕上熱間圧延工程前の粗バーの温度を950℃以上とする工程である。以下、熱間圧延工程における各工程について説明する。
(1)粗熱間圧延工程
本発明における粗熱間圧延工程は、上述した鋼組成を有する鋼塊または鋼片を、1100℃以上1300℃以下としたのちに、累積圧下率が80%以上の粗熱間圧延を施す工程である。
本工程においては、上述した鋼組成を有する鋼を、連続鋳造法あるいは鋼塊を分塊圧延する方法など一般的な方法によりスラブとし、所定の温度としたのちに粗熱間圧延を施す。粗熱間圧延に供するスラブ温度を所定の温度とすることができるのであれば、スラブを加熱炉に装入して所定の温度まで加熱する場合のほか、連続鋳造後や分塊圧延後の高温状態にあるスラブを加熱炉に装入しないで直接粗熱間圧延を行ってもよい。
粗熱間圧延に供する際のスラブ温度は1100℃以上1300℃以下とする。スラブ温度が上記範囲未満の場合には、粗熱間圧延中の鋼板温度が低すぎて熱間圧延工程における再結晶が不十分となり、冷間圧延後の鋼板に上述した表面欠陥が生じる場合がある。また、スラブ温度が上記範囲を超えるとスラブが変形するため、熱間圧延により所定の形状へ造り込むことが困難になる場合がある。好ましいスラブ加熱温度は1100〜1250℃である。
また、粗熱間圧延に供するスラブの断面組織における平均等軸晶率は25%以上であることが好ましい。これにより、表面性状をさらに改善することができるからである。この平均等軸晶率は、連続鋳造時に電磁攪拌を施す等、一般的な方法を用いることにより制御することができる。
ここで、等軸晶率とはスラブ厚に占める等軸晶部分の厚みの割合であり、スラブ断面をエッチングして得られる凝固組織のマクロ組織より等軸晶か柱状晶かを判別し、各部分の厚みを測定して算出すればよい。平均等軸晶率としては、スラブの幅方向の1/4、2/4、3/4位置における等軸晶率を平均した値を採用すればよい。
本発明においては、冷間圧延後の表面欠陥を抑制するために、上記スラブに累積圧下率が80%以上の粗熱間圧延を施して粗バーとする。粗熱間圧延での累積圧下率が上記範囲未満であると、本発明で規定する鋼組成を有する鋼板では、スラブ鋳造組織の巨大柱状粒に起因する圧延方向の筋状のバンド組織が冷間圧延後も残留してしまい、表面欠陥が発生する場合がある。好ましい累積圧下率は83%以上である。
一方、粗熱間圧延での累積圧下率が高いほど表面欠陥が抑制されるので、累積圧下率の上限は特に限定しない。
ここで、粗熱間圧延での累積圧下率は、粗熱間圧延機入側のスラブの厚さAと出側の粗バーの厚さBを用いて、次式で表される数値である。
(1−B/A)×100[%]
なお、粗熱間圧延を施す前にスラブの幅方向に圧下もしくは圧延を施してスラブ厚さを増加させても本発明の効果は全く失われない。この場合における粗熱間圧延での累積圧下率は、スラブの幅方向への圧下もしくは圧延後のスラブの厚さを用いて算出した数値とする。
粗熱間圧延における他の条件は特に限定されるものではなく、一般的な条件に従って行えばよい。
また本発明においては、冷間圧延後の表面欠陥を抑制するために、粗熱間圧延工程後で仕上熱間圧延工程前における粗バーの温度を950℃以上とする。粗バーの温度が上記範囲未満であると、本発明で規定する鋼組成を有する鋼板では熱間圧延工程にて再結晶が促進されず、上記累積圧下率が上述した範囲未満である場合と同様に、表面欠陥が発生する場合がある。粗熱間圧延工程後で仕上熱間圧延工程前における粗バーの温度は、970℃以上であることが好ましい。
一方、粗バーの温度の上限については特に限定するものではない。
上記粗バーの温度を950℃以上とする手段としては、粗熱間圧延に供するスラブ温度を高温にすることによって粗熱間圧延出側における粗バーの温度を950℃以上にする方法のほか、粗熱間圧延により得られた粗バーを加熱することにより950℃以上とする方法も用いることができる。
(2)仕上熱間圧延工程
本発明における仕上熱間圧延工程は、上記粗バーに仕上熱間圧延を施す工程である。
仕上熱間圧延の各種条件は特に限定されるものではなく、例えば仕上げ温度が700〜950℃、巻き取り温度が750℃以下など、一般的な条件に従って行えばよい。
本発明においては、上述したように熱間圧延工程を所定の条件とすることにより冷間圧延後の表面欠陥を抑制するものであるから、その他の製造工程における各種条件は特に限定されるものではないが、以下好適な態様について例示する。
3.その他の工程
(1)冷間圧延工程
本発明においては、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程を行うことができる。
冷間圧延工程では、鋼板を所定の板厚に仕上げる。この際、一回の冷間圧延で所定の板厚まで仕上げてもよいし、中間焼鈍を含む二回以上の冷間圧延によって仕上げてもよい。
また、十分に転位が導入されれば本発明の効果を得ることができるため、冷間圧延時の鋼板温度、圧下率、圧延ロール径など、冷間圧延の各種条件は特に限定されるものではなく、被圧延材の鋼組成、目的とする鋼板の板厚などにより適宜選択するものとする。
上記熱間圧延工程により得られた熱間圧延鋼板は、通常、粗熱間圧延や仕上熱間圧延の際に鋼板表面に生成したスケールを酸洗により除去してから冷間圧延に供される。熱間圧延鋼板に後述する熱延板焼鈍を施す場合には、熱延板焼鈍前あるいは熱延板焼鈍後のいずれかにおいて酸洗すればよい。
本発明においては、最終の冷間圧延前の鋼板に850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を施すことが好ましい。特に、上記鋼塊または鋼片の鋼組成がNb/93−C/12≦0を満たす場合、最終の冷間圧延前の鋼板に上記の条件で連続焼鈍を施すことが好ましい。これにより、高い強度を安定的に得ることができるからである。
また、上記鋼塊または鋼片の鋼組成がNb/93−C/12>0を満たす場合には、最終の冷間圧延前の鋼板に上記の条件で連続焼鈍を施すことにより、強度をさらに向上させることができる。
この知見を得るに至った実験結果について説明する。
主要成分が質量%でC:0.002%、Si:2.0%、Mn:0.2%、Al:0.3%、N:0.01%、P:0.01%、S:0.002%であり、Nb含有量を0.001〜0.15%と変化させた鋼と、主要成分が質量%でC:0.02%、Si:2.0%、Mn:0.2%、Al:0.3%、N:0.01%、P:0.01%、S:0.002%であり、Nb含有量を0.001〜0.15%と変化させた鋼とに熱間圧延を施して板厚2.3mmとし、800℃で10時間保持する箱焼鈍あるいは1050℃で3分間保持する連続焼鈍の熱延板焼鈍を実施した。その後、板厚0.35mmまで冷間圧延し、700℃で0〜160秒間の種々の時間で保持する均熱処理を施した。そして、均熱処理後の鋼板の引張強さを測定した。なお、いずれの鋼も上記式(2)を満足している。
図1にC含有量が0.002%の鋼板で、熱延板焼鈍を800℃で10時間保持する箱焼鈍とした場合、図2にC含有量が0.002%の鋼板で、熱延板焼鈍を1050℃で3分間保持する連続焼鈍とした場合、図3にC含有量が0.02%の鋼板で、熱延板焼鈍を800℃で10時間保持する箱焼鈍とした場合、および、図4にC含有量が0.02%の鋼板で、熱延板焼鈍を1050℃で3分間保持する連続焼鈍とした場合についての、均熱処理の保持時間と均熱処理後の鋼板の引張強さとの関係をそれぞれ示す。
図1および図2より、C含有量が0.002%の鋼板では、Nbを積極的に含有させることによって均熱処理後に十分な引張強さを得ることができることが判明した。また、Nb含有量が比較的多い鋼板では、1050℃で3分間保持する連続焼鈍による熱延板焼鈍を実施した場合の方が、800℃で10時間保持する箱焼鈍による熱延板焼鈍を実施した場合よりも引張強さが増加することがわかった。鋼組織を調査した結果、Nbを積極的に含有させた鋼板は、熱延板焼鈍方法によらず均熱処理時に160秒間保持しても再結晶することはなかった。
また、図3より、C含有量が0.02%の鋼板に800℃で10時間保持する箱焼鈍による熱延板焼鈍を実施した場合には、Nbを積極的に含有させても、均熱処理の保持時間の増加とともに引張強さが急激に低下することが判明した。鋼組織を調査した結果、均熱処理の保持時間が40秒の段階で全ての鋼板が全面再結晶していた。
さらに、図4より、C含有量が0.02%の鋼板に1050℃で3分間保持する連続焼鈍による熱延板焼鈍を実施した場合には、Nbを積極的に含有させることによって、均熱処理の保持時間が短い場合には十分な引張強さが得られることがわかった。鋼組織を調査した結果、Nbを積極的に含有させた鋼板は、均熱処理の保持時間が40秒までは再結晶することはなかった。
次に、NbおよびCの含有量により規定されるNb/93−C/12の値と、鋼板の引張強さとの関係について調べた。
800℃で10時間保持する箱焼鈍による熱延板焼鈍を実施した鋼板については、図1および図3から、Nb/93−C/12>0の場合にのみ十分な引張強さが得られることがわかった。鋼組織を調査した結果、Nb/93−C/12>0の場合にのみ再結晶が抑制されており、鋼組織は回復組織であった。すなわち、800℃で10時間保持する箱焼鈍による熱延板焼鈍を実施した場合には、Nb/93−C/12>0の場合にのみ、転位の消滅および再結晶が抑制され、十分な強度を確保することができる。
これに対して、1050℃で3分間保持する連続焼鈍による熱延板焼鈍を実施した場合は、図2および図4から、Nb/93−C/12<0であっても、ある程度のNbを含有し、均熱処理の保持時間が比較的短時間であれば、十分な強度を確保できることがわかった。また、Nb/93−C/12>0の場合は、さらなる高強度化が可能であることがわかった。
これらの理由については明確でないが、本発明者らは次のように推定する。
すなわち、Nb/93−C/12<0であっても十分な強度を確保できるのは、比較的高温で熱延板焼鈍を実施することによってNb系の析出物が再固溶し、実質的に固溶Nbによる転位の消滅および再結晶の抑制効果が得られたためであると推察される。また、Nb/93−C/12>0の場合にさらに強度が向上するのは、上記と同様に、比較的高温で熱延板焼鈍を実施することによってNb系の析出物が再固溶し、固溶Nbの量が増加したためであると推察される。さらに、析出物の再固溶によって生じた固溶Cおよび固溶Nbには相互作用があるとともに、転位および固溶C、ならびに、転位および固溶Nbにも相互作用があるため、熱延板焼鈍条件およびNb含有量の適正化による転位の消滅を抑制する効果が、Nb含有量のみの適正化による転位の消滅の抑制効果よりも高くなり、このことがさらなる強度上昇に寄与したものと推察される。
ここで、「最終の冷間圧延前の鋼板」とは、中間焼鈍を行わずに一回のみ冷間圧延を熱間圧延鋼板に施して製品板厚に仕上げる場合には、熱間圧延鋼板を意味し、また中間焼鈍をはさむ二回以上の冷間圧延を熱間圧延鋼板に施して製品板厚に仕上げる場合には、最終の冷間圧延前の冷間圧延鋼板を意味する。
なお、後述する均熱処理工程後に冷間加工を施すことにより製品の機械特性や板厚などを調整する場合があるが、その冷間加工は冷間圧延ではなく、上記の冷間圧延の回数には数えない。
また、「最終の冷間圧延前の鋼板に850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を施す」とは、中間焼鈍を行わずに冷間圧延を一回のみ行う場合には、熱間圧延鋼板に所定の条件で熱延板焼鈍を施すことを意味し、また中間焼鈍をはさんで二回以上の冷間圧延を行う場合には、最終の冷間圧延前の冷間圧延鋼板に所定の条件で中間焼鈍を施すことを意味する。すなわち、本発明においては、中間焼鈍を行わずに冷間圧延を一回のみ行う場合には、熱延板焼鈍条件を適正化し、また中間焼鈍をはさんで二回以上の冷間圧延を行う場合には、最終の冷間圧延前の中間焼鈍の条件を適正化することにより、均熱処理中における転位の消滅および再結晶を効果的に抑制することができる。
このように本発明においては、中間焼鈍を行わずに冷間圧延を一回のみ行う場合には熱延板焼鈍にて、あるいは、中間焼鈍をはさんで二回以上の冷間圧延を行う場合には最終の冷間圧延前の中間焼鈍にて、850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を実施することが好ましい。焼鈍温度が上記範囲未満であると、析出物を固溶させるために必要な時間が長時間化するため生産性に劣り、焼鈍温度が上記範囲を超えると、設備に過度の負荷がかかるとともに鋼板表層にスケールが形成し、酸洗不良により製品の表面性状が劣化する場合がある。また、保持時間が上記範囲未満であると析出物の固溶が不十分となるため本発明の効果が得られず、保持時間が上記範囲を超えると鋼板表層にスケールが形成し、酸洗不良により製品の表面性状が劣化する場合がある。転位の消滅および再結晶の抑制効果を向上させるには、焼鈍温度が900℃以上であり、保持時間が30秒以上であることが好ましい。より好ましい保持時間は60秒以上である。
最終の冷間圧延前に実施する焼鈍を連続焼鈍としたのは、連続焼鈍では焼鈍後の冷却速度が箱焼鈍の場合よりも大きいため、固溶した析出物が冷却中に再析出するのを抑制できるからである。無方向性電磁鋼板の熱延板焼鈍に使用する連続焼鈍ラインでの冷却速度が一般的に採用されている範囲であれば本発明の効果を得ることができる。好ましい冷却速度の下限値は、冷却中の再析出を抑制する観点と、冷却時間の長時間化を抑制する観点とから、10℃/sとする。再析出抑制の観点からは冷却速度は大きければ大きいほど好ましいため、冷却速度の上限は特に限定しないが、設備への過度の負荷を抑制する観点からは100℃/s以下が好ましい。水冷設備、ロール冷却設備など、上述の値よりも大きな冷却速度を有する設備を用いても構わない。
また、中間焼鈍を行わずに冷間圧延を一回のみ行う場合は、熱間圧延鋼板に所定の条件で熱延板焼鈍を施すことが重要であるが、中間焼鈍をはさんで二回以上の冷間圧延を行う場合は、冷間圧延前に熱延板焼鈍を行ってもよく行わなくてもよい。熱延板焼鈍を行う場合には、鋼板の延性が向上し冷間圧延での破断を抑制できるという利点を有する。
中間焼鈍をはさむ二回以上の冷間圧延を行う場合であって、冷間圧延前に熱延板焼鈍を行う場合には、最終の冷間圧延前の中間焼鈍の条件を適正化すればよいので、熱延板焼鈍時の焼鈍温度、保持時間、方法(連続焼鈍・箱焼鈍)など、熱延板焼鈍の各種条件は特に限定されるものではなく、熱間圧延鋼板の鋼組成などにより適宜選択するものとする。また、二回以上の中間焼鈍を行う場合には、上述したように最終の冷間圧延前の中間焼鈍の条件を適正化すればよいので、最終の冷間圧延前の中間焼鈍以外の中間焼鈍については、中間焼鈍時の焼鈍温度、保持時間、方法(連続焼鈍・箱焼鈍)など、中間焼鈍の各種条件は特に限定されるものではなく、被圧延材の鋼組成などにより適宜選択するものとする。
(2)均熱処理工程
本発明においては、上記冷間圧延工程により得られた冷間圧延鋼板を所定の温度で均熱する均熱処理工程を行うことができる。
本発明は、均熱処理で進行する再結晶を抑制し、転位を残存させることを骨子としている。したがって、再結晶抑制効果が小さい場合には、均熱温度を通常の無方向性電磁鋼板の均熱温度よりも著しく低温化する必要がある。通常の無方向性電磁鋼板の連続焼鈍ラインでの均熱処理を前提とすれば、炉温が下がり、かつ安定化するまでは均熱処理に供することはできない。さらに、一旦炉温を下げた後は、通常の無方向性電磁鋼板の均熱温度まで炉温が上がり、かつ安定化するまでは、通常の無方向性電磁鋼板を均熱処理に供することもできない。これらのことから、再結晶抑制効果が小さい場合には、生産性を著しく低下させることが容易に想像できる。
本発明ではNb,Zr,TiおよびVのうち、特にNbを積極的に含有させることを特徴としているため、再結晶を抑制する効果が大きい。したがって、均熱処理での均熱温度が高くとも加工組織および回復組織を得ることができ、特殊な均熱温度の機会を設ける必要がないため生産性を向上させることができる。具体的には、均熱温度が820℃以下であれば、所望の機械特性を得ることができる。機械特性の観点から好ましくは780℃以下、さらに好ましくは750℃以下である。この均熱温度は通常の無方向性電磁鋼板で実施する範囲内であり、生産性を阻害することはない。
一方、均熱温度が低ければ低いほど再結晶進行が抑制されるが、均熱温度が低すぎると鋼板の平坦が矯正されずに回転子に積層した場合の占積率が低下する場合がある。また、均熱処理を施すことにより冷間圧延のままの状態よりも鉄損を改善する効果も得られることから、均熱温度が低すぎると鉄損の増加に繋がる。さらに、均熱温度が低すぎると、上述のとおり生産性が著しく低下する。そこで、平坦矯正および鉄損改善の観点から、好ましい均熱温度の下限値を500℃とする。さらに好ましくは600℃以上である。
均熱処理は、箱焼鈍および連続焼鈍のいずれの方法で実施してもよいが、生産性の観点からは連続焼鈍ラインにて実施することが望ましい。箱焼鈍では、コイル状態で焼鈍に供されることに起因してコイルの巻きぐせ(コイルセットともいう)により鋼板の平坦度が低下したり、形状が劣化したりすることがあるため、均熱処理工程後に鋼板の平坦度や形状を矯正する矯正工程を行うことが好ましい。
なお、高温での均熱処理により再結晶が進行し、それに起因して機械特性が低下した場合には、工程増加はやむを得ないが均熱処理工程後に加工して強度を確保してもよい。
(3)熱延板焼鈍工程
本発明においては、上記熱間圧延工程により得られた熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を行ってもよい。この熱延板焼鈍工程は、熱間圧延工程と冷間圧延工程との間に行われる工程である。
熱延板焼鈍工程は必ずしも必須の工程ではないが、熱延板焼鈍工程を行うことにより、鋼板の延性が向上し冷間圧延工程での破断を抑制できる。また、上述した表面欠陥の発生を軽減する効果も有する。
熱延板焼鈍は、箱焼鈍および連続焼鈍のいずれの方法で実施してもよい。また、熱延板焼鈍の各種条件は特に限定されるものではなく、熱間圧延鋼板の鋼組成などにより適宜選択するものとする。
中でも、上述したように熱間圧延鋼板を一回の冷間圧延にて所望の板厚に仕上げる場合、均熱処理工程での転位の消滅および再結晶を抑制するためには、上述の条件で熱延板焼鈍を施すことが好ましい。特に、熱間圧延鋼板の鋼組成がNb/93−C/12≦0を満たす場合には、熱延板焼鈍条件の適正化が重要となる。
(4)その他
本発明においては、上記均熱処理工程後に、一般的な方法に従って、有機成分のみ、無機成分のみ、あるいは有機無機複合物からなる絶縁皮膜を鋼板表面に塗布するコーティング工程を行うことが好ましい。環境負荷軽減の観点から、クロムを含有しない絶縁皮膜を塗布しても構わない。また、コーティング工程は、加熱・加圧することにより接着能を発揮する絶縁コーティングを施す工程であってもよい。接着能を発揮するコーティング材料としては、アクリル樹脂、フェノール樹脂、エポキシ樹脂またはメラミン樹脂などを用いることができる。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
以下、実施例および比較例を例示して、本発明を具体的に説明する。
[実施例1]
下記の表3に示す鋼組成を有する連続鋳造スラブを、下記の表4に示す条件にて加熱して、粗熱間圧延を施し、仕上げ温度850℃、巻き取り温度550℃で仕上熱間圧延を行って、厚さが2.0mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板に対して750℃で10時間保持する箱焼鈍による熱延板焼鈍を施し、一回の冷間圧延にて板厚0.35mmまで仕上げた。その後、均熱温度700℃の連続焼鈍による均熱処理を施し、鋼板の表面に平均厚さ0.4μmの絶縁皮膜をコーティングした。
得られた鋼板について、磁気特性、機械特性、再結晶部分の面積比率および占積率を評価した。
再結晶部分の面積比率は、100倍の倍率で撮影した鋼板の縦断面の光学顕微鏡写真を用い、視野中に占める再結晶粒の割合を算出した。
機械特性は、圧延方向を長手方向としたJIS5号試験片を用いた引張試験を行い、降伏点:YP、引張強さ:TSにて評価した。
磁気特性および占積率については、JIS C 2550に準じて試験片を採取し、評価した。磁気特性としては、最大磁束密度:1.0T、励磁周波数:400Hzでの鉄損W10/400と磁化力5000A/mでの磁束密度B50とを測定した。また、占積率の評価については、98%以上をA、95%以上98%未満をB、95%未満をCとして、AおよびBは回転子の鉄心として使用可能レベルと判断した。
なお、スラブの平均等軸晶率は、上述した方法により測定した。
評価結果を表4に示す。
Figure 0004415933
Figure 0004415933
鋼Aを用いたNo.1-1,1-6,1-11,1-16の鋼板は、Nb含有量が本発明範囲外であるため、いずれの条件においても機械特性が劣っており、回転子に要求される強度を確保することはできなかった。また、鋼組成が本発明範囲である鋼B,C,DおよびEを用いたNo.1-2〜1-5,1-7〜1-10,1-12〜1-15,1-17〜1-20の鋼板は、機械特性は良好であるものの、スラブ加熱条件および粗熱間圧延条件が本発明範囲を外れる場合(No.1-7〜1-10,1-12〜1-15)には占積率が低下した。一方、鋼組成および製造条件が本発明範囲内であるNo.1-2〜1-5,1-17〜1-20の鋼板は、磁気特性、機械特性および占積率のいずれも良好であった。
[実施例2]
下記の表5に示す鋼組成を有する連続鋳造スラブを1150℃に加熱し、粗熱間圧延での累積圧下率を86%とし、粗熱間圧延出側温度が980℃となるように粗熱間圧延を施し、仕上げ温度820℃、巻き取り温度580℃で仕上熱間圧延を行って、厚さが2.0mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板に対して750℃または800℃で10時間保持する箱焼鈍、あるいは1050℃で90秒間保持する連続焼鈍による熱延板焼鈍を施し、一回の冷間圧延にて板厚0.35mmまで仕上げた。その後、下記の表6に示す種々の均熱温度で連続焼鈍による均熱処理を施し、鋼板の表面に平均厚さ0.4μmの絶縁皮膜をコーティングした。
得られた鋼板について、磁気特性、機械特性、再結晶部分の面積比率および占積率を評価した。なお、いずれの鋼板もスラブの平均等軸晶率は25〜30%の範囲であった。
再結晶部分の面積比率は、100倍の倍率で撮影した鋼板の縦断面の光学顕微鏡写真を用い、視野中に占める再結晶粒の割合を算出した。
機械特性は、圧延方向を長手方向としたJIS5号試験片を用いた引張試験を行い、降伏点:YP、引張強さ:TSにて評価した。
磁気特性および占積率については、JIS C 2550に準じて試験片を採取し、評価した。磁気特性としては、最大磁束密度:1.0T、励磁周波数:400Hzでの鉄損W10/400と磁化力5000A/mでの磁束密度B50とを測定した。占積率の評価は、98%以上をA、95%以上98%未満をB、95%未満をCとして、AおよびBは回転子の鉄心として使用可能レベルと判断した。
評価結果を表6に示す。
Figure 0004415933
Figure 0004415933
No.2-14の鋼板はSi含有量が高いために冷間圧延時に破断した。また、No.2-15の鋼板はAl含有量が高いために磁束密度が低かった。No.2-16の鋼板はP含有量が高いために冷間圧延時に破断した。さらに、No.2-17の鋼板はCおよびMnの含有量が高く、鋼組織がマルテンサイト組織であるために鉄損が著しく増大し、磁束密度も低かった。No.2-18の鋼板はZr,TiおよびAlの含有量が本発明範囲外であるためにNを固定できず、再結晶が抑制されなかったため降伏点および引張強さともに劣っていた。
これに対して本発明で規定する鋼組成を満足するNo.2-1〜2-13の鋼板では、Nb,Zr,TiおよびVの含有量がCおよびNの含有量より少なくても、磁気特性、機械特性および占積率のいずれも優れていた。
また、No.2-1に示されるように、Nb/93−C/12<0であっても、最終の冷間圧延前の鋼板に対する焼鈍(ここでは熱延板焼鈍)を連続焼鈍とすることによって均熱処理中の再結晶を抑制する効果が得られ、優れた磁気特性および機械特性が得られることがわかった。さらに、No.2-2および2-3に示されるように、最終の冷間圧延前の鋼板に対する焼鈍(ここでは熱延板焼鈍)を連続焼鈍とすることによって同一の鋼組成であっても再結晶を抑制する効果が高まり、降伏点および引張強さが向上することがわかった。
さらに、No.2-4〜2-12に示されるように、Cu,Ni,Cr,Mo,Co,W,Sn,Sb,Se,Bi,Ge,Te,B,Ca,MgおよびREMを適正量含有する場合も本発明の効果が得られることがわかった。また、No.2-13より、Ta,Hf,As,Au,Be,Zn,Pb,Tc,Re,Ru,Os,Rh,Ir,Pd,Pt,Ag,Cd,HgおよびPoの含有量が適正である場合にも本発明の効果が得られることがわかった。
これら実施例1および実施例2より、鋼組成および熱間圧延時の諸条件をともに本発明範囲とした場合にのみ、磁気特性、機械特性および占積率に優れた無方向性電磁鋼板が得られることがわかった。
C含有量が0.002%の鋼板で、熱延板焼鈍を800℃で10時間保持する箱焼鈍とした場合の、均熱処理の保持時間と均熱処理後の鋼板の引張強さとの関係を示す図である。 C含有量が0.002%の鋼板で、熱延板焼鈍を1050℃で3分保持する連続焼鈍とした場合の、均熱処理の保持時間と均熱処理後の鋼板の引張強さとの関係を示す図である。 C含有量が0.02%の鋼板で、熱延板焼鈍を800℃で10時間保持する箱焼鈍とした場合の、均熱処理の保持時間と均熱処理後の鋼板の引張強さとの関係を示す図である。 C含有量が0.02%の鋼板で、熱延板焼鈍を1050℃で3分保持する連続焼鈍とした場合の、均熱処理の保持時間と均熱処理後の鋼板の引張強さとの関係を示す図である。

Claims (6)

  1. 質量%で、C:0.06%以下、Si:3.5%以下、Mn:0.05%以上3.0%以下、Al:2.5%以下、P:0.30%以下、S:0.04%以下、N:0.02%以下、Nb:0.02%超を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を下記式(1)を満足する範囲で含有し、かつ、Zr、TiおよびAlからなる群から選択される少なくとも1種の元素を下記式(2)を満足する範囲で含有し、残部がFeおよび不純物からなる鋼塊または鋼片を、1100℃以上1300℃以下としたのちに、累積圧下率が80%以上の粗熱間圧延を施して粗バーを得る粗熱間圧延工程と、前記粗バーに仕上熱間圧延を施す仕上熱間圧延工程とを有し、前記仕上熱間圧延工程前の粗バーの温度を950℃以上とする熱間圧延工程を備えることを特徴とする回転子用無方向性電磁鋼板の製造方法。
    Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)≦0 (1)
    Zr/91+Ti/48+Al/27−N/14>0 (2)
    (ここで、式(1)および(2)中、Nb、Zr、Ti、V、Al、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
  2. 前記鋼塊または鋼片の鋼組成が下記式(3)を満足することを特徴とする請求項1に記載の回転子用無方向性電磁鋼板の製造方法。
    Nb/93−C/12>0 (3)
    (ここで、式(3)中、NbおよびCはそれぞれの元素の含有量(質量%)を示す。)
  3. 前記鋼塊または鋼片が、前記Feの一部に代えて、Cu、Ni、Cr、Mo、CoおよびWからなる群から選択される少なくとも1種の元素を下記の質量%で含有することを特徴とする請求項1または請求項2に記載の回転子用無方向性電磁鋼板の製造方法。
    Cu:0.01%以上8.0%以下 Ni:0.01%以上2.0%以下
    Cr:0.01%以上15.0%以下 Mo:0.005%以上4.0%以下
    Co:0.01%以上4.0%以下 W:0.01%以上4.0%以下
  4. 前記鋼塊または鋼片が、前記Feの一部に代えて、Sn、Sb、Se、Bi、Ge、TeおよびBからなる群から選択される少なくとも1種の元素を下記の質量%で含有することを特徴とする請求項1から請求項3までのいずれかの請求項に記載の回転子用無方向性電磁鋼板の製造方法。
    Sn:0.5%以下 Sb:0.5%以下 Se:0.3%以下 Bi:0.2%以下
    Ge:0.5%以下 Te:0.3%以下 B:0.01%以下
  5. 前記鋼塊または鋼片が、前記Feの一部に代えて、Ca、MgおよびREMからなる群から選択される少なくとも1種の元素を下記の質量%で含有することを特徴とする請求項1から請求項4までのいずれかの請求項に記載の回転子用無方向性電磁鋼板の製造方法。
    Ca:0.03%以下 Mg:0.02%以下 REM:0.1%以下
  6. 前記鋼塊または鋼片の断面組織における平均等軸晶率が25%以上であることを特徴とする請求項1から請求項5までのいずれかの請求項に記載の回転子用無方向性電磁鋼板の製造方法。
JP2005361907A 2005-12-15 2005-12-15 回転子用無方向性電磁鋼板の製造方法 Active JP4415933B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361907A JP4415933B2 (ja) 2005-12-15 2005-12-15 回転子用無方向性電磁鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361907A JP4415933B2 (ja) 2005-12-15 2005-12-15 回転子用無方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2007162097A JP2007162097A (ja) 2007-06-28
JP4415933B2 true JP4415933B2 (ja) 2010-02-17

Family

ID=38245347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361907A Active JP4415933B2 (ja) 2005-12-15 2005-12-15 回転子用無方向性電磁鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP4415933B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278034B1 (en) * 2008-04-14 2020-02-12 Nippon Steel Corporation High-strength non-oriented electrical steel sheet and method of manufacturing the same
JP6617581B2 (ja) * 2016-01-26 2019-12-11 日本製鉄株式会社 電磁鋼板
CN107381337A (zh) * 2017-09-22 2017-11-24 张家港沙工科技服务有限公司 一种起重机用吊钩
US11732319B2 (en) 2018-12-27 2023-08-22 Jfe Steel Corporation Non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2007162097A (ja) 2007-06-28

Similar Documents

Publication Publication Date Title
JP4586669B2 (ja) 回転子用無方向性電磁鋼板の製造方法
KR100973627B1 (ko) 무방향성 전자 강판 및 그 제조 방법
JP5076510B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4779474B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP5126788B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
US9362032B2 (en) High-strength non-oriented electrical steel sheet
JP2011084761A (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP6606988B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4710465B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP4389691B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2009299102A (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4710458B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP4415933B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP4311127B2 (ja) 高張力無方向性電磁鋼板およびその製造方法
JP4506664B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2009007592A (ja) 回転子用無方向性電磁鋼板の製造方法
JP4349340B2 (ja) Cu含有無方向性電磁鋼板の製造方法
JP4853392B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4415932B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP5333415B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4265508B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4930205B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2009001887A (ja) 回転子用無方向性電磁鋼板の製造方法
JP2009001864A (ja) 回転子用無方向性電磁鋼板の製造方法
KR20230129476A (ko) 무방향성 전자 강판 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4415933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350