JP4853392B2 - 回転子用無方向性電磁鋼板およびその製造方法 - Google Patents

回転子用無方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
JP4853392B2
JP4853392B2 JP2007154899A JP2007154899A JP4853392B2 JP 4853392 B2 JP4853392 B2 JP 4853392B2 JP 2007154899 A JP2007154899 A JP 2007154899A JP 2007154899 A JP2007154899 A JP 2007154899A JP 4853392 B2 JP4853392 B2 JP 4853392B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
hot
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007154899A
Other languages
English (en)
Other versions
JP2008308704A (ja
Inventor
一郎 田中
裕義 屋鋪
浩志 藤村
広毅 高丸
薫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007154899A priority Critical patent/JP4853392B2/ja
Publication of JP2008308704A publication Critical patent/JP2008308704A/ja
Application granted granted Critical
Publication of JP4853392B2 publication Critical patent/JP4853392B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電気自動車、ハイブリッド自動車の駆動モータ、ロボット、工作機械などのサーボモータといった高効率モータの回転子に用いられる無方向性電磁鋼板およびその製造方法に関する。特に、高速回転する永久磁石埋め込み式モータの回転子として好適な優れた機械特性と磁気特性を兼ね備え、回転子の軽量化にも寄与できる無方向性電磁鋼板およびその製造方法に関する。
近年の地球環境問題の高まりから、多くの分野において省エネルギー、環境対策技術が進展している。自動車分野も例外ではなく、排ガス低減、燃費向上技術が急速に進歩している。電気自動車およびハイブリッド自動車はこれらの技術の集大成といっても過言ではなく、自動車駆動モータ(以下、単に「駆動モータ」ともいう。)の性能が自動車性能を大きく左右する。
駆動モータの多くは永久磁石を用いており、巻き線を施した固定子(ステータ)部分と永久磁石を配置した回転子(ロータ)部分とから構成される。最近では永久磁石を回転子内部に埋め込んだ形状(永久磁石埋め込み型モータ;IPMモータ)が主流となっている。また、パワーエレクトロニクス技術の進展により回転数は任意に制御可能であり、高速化傾向にある。したがって、鉄心素材は商用周波数(50〜60Hz)以上の高周波数域で励磁される割合が高まっており、商用周波数での磁気特性のみでなく、400Hz〜数kHzでの磁気特性改善が要求されるようになってきた。また、回転子は高速回転時の遠心力のみならず回転数変動にともなう応力変動を常時うけることから、回転子の鉄心素材には機械特性も要求されている。特に、IPMモータの場合には複雑な回転子形状を有することから、回転子用の鉄心材料には応力集中を考慮して遠心力ならびに応力変動に耐えうるだけの機械特性が必要となる。さらに、自動車の燃費向上を目的にあらゆる部品の軽量化が進んでいるが、駆動モータの軽量化も重要な課題である。また、ロボット、工作機械用のサーボモータ分野でも、駆動モータと同様に回転数の高速化が今後進行していくと予測される。
従来、駆動モータの固定子は主に打ち抜き加工した無方向性電磁鋼板の積層により製造されていたが、回転子はロストワックス鋳造法あるいは焼結法などにより製造されることもあった。これは固定子には優れた磁気特性が、回転子には堅牢な機械特性が要求されることによる。しかしながら、モータ性能は回転子−固定子間のエアギャップに大きく影響されるため、上述の回転子では精密加工の必要性が生じ鉄心製造コストが大幅に増加するという問題があった。コスト削減の観点からは、打ち抜き加工した電磁鋼板を使用すればよいが、回転子に必要な磁気特性と機械特性を兼備し、かつ軽量化にも寄与できる無方向性電磁鋼板は見出されていないのが現状であった。
優れた機械特性を有する電磁鋼板としては、例えば特許文献1に、3.5〜7%のSiに加えて、Ti,W,Mo,Mn,Ni,CoおよびAlのうちの1種または2種以上を20%を超えない範囲で含有する鋼板が提案されている。この方法では鋼の強化機構として固溶強化を利用している。しかしながら、固溶強化の場合には冷間圧延母材も同時に高強度化されるため冷間圧延が困難であり、またこの方法においては温間圧延という特殊工程が必須であることから、生産性向上や歩留まり向上など改善の余地がある。
また、特許文献2には、2.0〜3.5%のSi、0.1〜6.0%のMnに加えてBおよび多量のNiを含有し、結晶粒径が30μm以下である鋼板が提案されている。この方法では鋼の強化機構として固溶強化と結晶粒径微細化による強化とを利用している。しかしながら、結晶粒微細化による強化は比較的効果が小さいため、特許文献2の実施例に示されるようにSiを3.0%程度含有させた上に高価なNiを多量に含有させることが必須であり、冷間圧延時に割れが多発するという問題や、合金コスト増加という課題が残っている。
さらに、特許文献3および特許文献4には、2.0〜4.0%のSiに加えてNb,Zr,B,TiまたはVなどを含有する鋼板が提案されている。これらの方法ではSiによる固溶強化に加えてNb,Zr,TiまたはVの析出物による析出強化を利用している。しかしながら、このような析出物による強化は比較的効果が小さいため、特許文献3および特許文献4の実施例に示されるようにSiを3.0%程度含有させる必要があり、特に特許文献3の方法では高価なNiを多量に含有させることも必要となる。そのため冷間圧延時に割れが多発するという問題や、合金コスト増加という課題が残っている。
また、特許文献5および特許文献6には、SiおよびAlを0.03〜0.5%と制限した上でTi,NbおよびV、あるいはPおよびNiを含有する鋼板がそれぞれ提案されている。これらの方法では、Siによる固溶強化よりも炭化物の析出強化およびPの固溶強化を利用している。しかしながら、これらの方法では、後述する駆動モータの回転子として必要な強度レベルを確保することができないという問題や、特許文献5および特許文献6の実施例に示されているように2.0%以上のNi含有が必須であり、合金コストが高いという問題がある。
さらに、特許文献7には、Si:1.6〜2.8%であって、結晶粒径、内部酸化層厚み、および降伏点を限定した永久磁石埋め込み型モータ用無方向性電磁鋼板が提案されている。しかしながら、この方法による鋼板の降伏点では、高速回転する駆動モータの回転子としては強度不足である。
また、特許文献8には、磁気特性に優れた高強度電磁鋼板が提案されている。しかしながら、TiおよびNbの含有量を不可避的不純物レベルとする、あるいは低減することを基本としているため、高い強度を安定的に得ることはできない。
また、JIS C 2552に規定の無方向性電磁鋼板としては、いわゆる高グレード無方向性電磁鋼板(35A210,35A230など)が最も合金含有量が高く高強度であるが、機械特性レベルは上述の高張力電磁鋼板を下回っており高速回転する駆動モータの回転子としては強度不足である。
特開昭60-238421号公報 特開平1−162748号公報 特開平2−8346号公報 特開平6−330255号公報 特開2001−234302号公報 特開2002−146493号公報 特開2001−172752号公報 特開2005−113185号公報
上述したように、無方向性電磁鋼板の高強度化手法として従来から提案されている固溶強化および析出強化では冷間圧延の母材も強化されてしまうことから冷間圧延時に割れが多発し、結晶粒微細化による高強度化ではその強化量が不十分であるため回転子用途として実用に耐える強度を実現することができない。また、本発明者らは変態強化についても検討を行ったが、変態強化ではマルテンサイト等の変態組織が鉄損を著しく増大させることが判明し、回転子用途として実用に耐える磁気特性を実現することができない。
本発明者らは、回転子に適した磁気特性と機械特性を兼ね備えた無方向性電磁鋼板の有するべき鋼組織について種々検討を行い、従来ほとんど検討されていなかった転位強化による高強度化に着目した。そして、回復状態で残存している転位は鉄損に及ぼす影響が比較的小さいとの新知見を得て、従来の無方向性電磁鋼板の技術認識である完全な再結晶フェライト組織とは全く逆の技術思想に立脚して、鋼板の組織を多量の転位が残存した回復状態の組織(以下、「回復組織」と称する)とすることにより、回転子に要求される磁気特性および機械特性が得られることを見出した。さらに、回復組織を得るためには固溶状態のNb,Zr,TiおよびVを含有することが重要であり、Nb,Zr,TiおよびVの含有量を所定の範囲とすることが必要であることを見出した。これらの知見に基づいて、高速回転するモータの回転子用として必要な優れた機械特性と磁気特性を具備する無方向性電磁鋼板およびその製造方法を提案した(特開2006-9048号公報、特開2006-70296号公報)。
しかしながら、特開2006-9048号公報に記載の好適な態様および特開2006-70296号公報に記載の発明では、CおよびNの含有量を超える量のNb,Zr,TiおよびVを含有させることを必要としており、合金コストの観点からは改善の余地がある。さらに、これらの技術では、部品の軽量化に寄与するという概念が欠落しており、この点からも改善が求められている。
本発明は、上記実情に鑑みてなされたものであり、合金コストの増加を抑制し、高速回転するモータの回転子として必要な優れた機械特性と磁気特性を兼備し、かつ軽量化にも寄与する無方向性電磁鋼板およびその製造方法を提供することを主目的とする。
本発明者らは、コスト低減を念頭に、軽量化に寄与するための鋼板の比重低減と、安定的に回復組織を得るための手法について検討した。その結果、比重低減と、所望の磁気特性および機械特性の確保を同時に達成するためには、Alを積極的に含有させることが極めて効果的であることを見出した。また、再結晶抑制効果の大きいNbを積極的に含有させた上で、積極的に含有させたAlによってNを析出物として固定することにより、Nb,Zr,TiおよびVの含有量がCおよびNの含有量以下であっても、最終の冷間圧延後に施す均熱処理中の転位の消滅および再結晶の進行が抑制されることを見出した。本発明はこれらの新知見に基づいて完成されたものである。
すなわち、本発明は、質量%で、C:0.06%以下、Si:3.5%以下、Mn:0.05%以上3.0%以下、Al:2.5%超6.0%以下、P:0.30%以下、S:0.04%以下、N:0.02%以下、Nb:0.02%超を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を下記式(1)を満足する範囲で含有し、残部がFeおよび不純物からなり、再結晶部分の面積比率が90%未満であることを特徴とする回転子用無方向性電磁鋼板を提供する。
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)≦0 (1)
(ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
本発明によれば、比重低減効果の大きいAlと再結晶抑制効果の大きいNbを積極的に含有させており、AlによってNは析出物として固定されるので、Nb,Zr,TiおよびVの含有量がCおよびNの含有量以下であっても、固溶Nbによって均熱処理中の転位の消滅および再結晶の進行を抑制することができる。本発明においては、このように鋼組成を適正化し、また再結晶部分の面積比率を適正に制御して、多くの転位が残存した鋼組織とすることにより強度を高めることができるので、機械特性および磁気特性が良好な回転子用無方向性電磁鋼板とすることができる。これにより、上述した回転子に要求される磁気特性および機械特性をも満足し、かつ回転子の軽量化にも寄与できるのである。
また、本発明の回転子用無方向性電磁鋼板は、上記Feの一部に代えて、Cu、Ni、Cr、Mo、CoおよびWからなる群から選択される少なくとも1種の元素を下記の質量%で含有することが好ましい。
Cu:0.01%以上8.0%以下 Ni:0.01%以上2.0%以下
Cr:0.01%以上15.0%以下 Mo:0.005%以上4.0%以下
Co:0.01%以上4.0%以下 W:0.01%以上4.0%以下
上記元素の高強度化作用により、鋼板の強度をより高めることが可能となるからである。
さらに、本発明の回転子用無方向性電磁鋼板は、上記Feの一部に代えて、Sn、Sb、Se、Bi、Ge、TeおよびBからなる群から選択される少なくとも1種の元素を下記の質量%で含有することが好ましい。
Sn:0.5%以下 Sb:0.5%以下 Se:0.3%以下 Bi:0.2%以下
Ge:0.5%以下 Te:0.3%以下 B:0.01%以下
上記元素の粒界偏析により、効果的に再結晶を抑制することができるからである。
またさらに、本発明の回転子用無方向性電磁鋼板は、上記Feの一部に代えて、Ca、MgおよびREMからなる群から選択される少なくとも1種の元素を下記の質量%で含有することが好ましい。
Ca:0.03%以下 Mg:0.02%以下 REM:0.1%以下
上記元素の硫化物形態制御作用により、磁気特性をさらに改善することができるからである。
また、本発明の回転子用無方向性電磁鋼板は、鋼組成が下記式(2)を満足することが好ましい。
Nb/93−C/12>0 (2)
(ここで、式(2)中、NbおよびCはそれぞれの元素の含有量(質量%)を示す。)
固溶Nbにより均熱処理中の転位の消滅および再結晶の進行を抑制することができ、鋼板の強度を効果的に高めることができるからである。
本発明は、また、上述の鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程と、上記冷間圧延工程により得られた冷間圧延鋼板を820℃以下で均熱する均熱処理工程とを有することを特徴とする回転子用無方向性電磁鋼板の製造方法を提供する。
本発明によれば、Nb/93−C/12>0を満足する鋼組成を有する鋼塊または鋼片を用い、均熱処理での温度を所定の範囲とすることにより、再結晶を抑制して、所定の板厚への加工の際に導入された転位を消滅させることなく残存させた回復組織を主体とすることができるので、鋼板の強度を高めることができる。また、冷間圧延に供する鋼板、すなわち冷間圧延の母材の高強度化を伴うことがないので、冷間圧延時の破断を抑制することができる。さらに、上述の鋼組成を備える鋼塊または鋼片を用いることにより、機械特性だけでなく磁気特性も良好で、かつ軽量化にも寄与できる回転子用無方向性電磁鋼板を製造することができる。
また、本発明の回転子用無方向性電磁鋼板の製造方法は、上記熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を有していてもよい。熱延板焼鈍を施すことにより、鋼板の延性が向上し冷間圧延工程での破断を抑制できるからである。また、熱延板焼鈍条件の適正化により高強度化の効果が生じる場合もあるからである。
さらに、本発明は、上述の鋼組成を備え、かつ、上記鋼組成が下記式(3)を満足する鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施し、かつ、最終の冷間圧延前の鋼板に850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を施す冷間圧延工程と、上記冷間圧延工程により得られた冷間圧延鋼板を820℃以下で均熱する均熱処理工程とを有することを特徴とする回転子用無方向性電磁鋼板の製造方法を提供する。
Nb/93−C/12≦0 (3)
(ここで、式(3)中、NbおよびCはそれぞれの元素の含有量(質量%)を示す。)
本発明によれば、Nb/93−C/12≦0であっても、最終の冷間圧延前の鋼板に対する焼鈍条件を適正化することにより、Nbを再固溶させ、均熱処理中に進行する転位の消滅および再結晶の進行を抑制することができるので、鋼板の高強度化を実現することが可能である。
また、本発明は、上述の鋼組成を備える鋼塊または鋼片を、1100℃以上1300℃以下としたのちに、累積圧下率が80%以上の粗熱間圧延を施して粗バーを得る粗熱間圧延工程と、上記粗バーに仕上熱間圧延を施す仕上熱間圧延工程とを有し、上記仕上熱間圧延工程前の粗バーの温度を950℃以上とする熱間圧延工程を備えることを特徴とする回転子用無方向性電磁鋼板の製造方法を提供する。
本発明によれば、上述したように所定の鋼組成を備える鋼塊または鋼片を用いることにより、回復組織を主体とする鋼板を得ることが可能となり、機械特性だけでなく磁気特性も良好で、かつ回転子の軽量化にも寄与し得る無方向性電磁鋼板を製造することができる。また、熱間圧延工程を所定の条件で行うことにより、良好な表面性状を安定して確保することができる。
また本発明においては、上記鋼塊または鋼片の断面組織における平均等軸晶率が25%以上であることが好ましい。これにより、表面性状を安定的に改善することができるからである。
本発明においては、高速回転するモータの回転子として必要な優れた機械特性と磁気特性を兼備し、かつ軽量化にも寄与できる無方向性電磁鋼板を、多大なコスト増加を招くことなく安定に製造することが可能である。そのため、電気自動車やハイブリッド自動車の駆動モータ分野などにおける回転数の高速化とモータの軽量化に十分対応でき、その工業的価値は極めて高い。
本発明で言及する回転子に用いる電磁鋼板として必要な特性とは、第一に機械特性であり、降伏点および引張強さである。これは高速回転時の回転子の変形抑制のみならず、応力変動に起因する疲労破壊抑制を目的としている。近年の電気自動車、ハイブリッド自動車の駆動モータでは、回転子は250MPa程度の平均応力下で150MPa程度の応力振幅を受ける。したがって、変形抑制の観点から降伏点は400MPa以上、安全率を考慮すると500MPa以上を満たす必要がある。好ましくは550MPa以上である。また、上述の応力状態での疲労破壊を抑制する観点から引張強さは550MPa以上、安全率を考慮すると600MPa以上、好ましくは700MPa以上必要である。
また、回転子に用いる電磁鋼板として必要な第二の特性は鉄損である。鉄損は不可逆な磁壁移動に起因するヒステリシス損失と、磁化変化に起因して発生する渦電流によるジュール熱(渦電流損失)とから構成され、電磁鋼板の鉄損はこれらの総和であるトータルの鉄損で評価される。回転子で発生する損失はモータ効率そのものを支配するものではないが、回転子の損失すなわち発熱により永久磁石が減磁するため、間接的にモータ性能を劣化させる。したがって、回転子に使用される材質の鉄損値の上限は永久磁石の耐熱温度の観点から決定され、固定子に使用される材質よりも鉄損値が高くとも許容されると想起される。
回転子に用いる電磁鋼板として必要な第三の特性は磁束密度である。IPMモータのようにリラクタンストルクを活用するモータでは回転子に用いられる材質の磁束密度もトルクに影響を及ぼし、磁束密度が過度に低いと所望のトルクを得られない。ただし、モータの出力をトルクではなく回転数で確保する場合にはこの限りではない。近年の駆動モータ,サーボモータは高速回転化の傾向にあるため、回転子に使用される材質の磁束密度は固定子に使用される材質よりも磁束密度が低くとも許容されると想起される。
回転子に用いられる電磁鋼板として必要な第四の特性は比重である。通常、モータの軽量化はモータの小型化により達成される。モータの小型化には固定子に使用される電磁鋼板の高磁束密度化が極めて有効であり、回転子に使用される電磁鋼板の磁束密度が小型化へ及ぼす影響は小さい。したがって、モータの軽量化を回転子として達成するには、与えられた形状の回転子を軽量化する他はなく、回転子用電磁鋼板の軽量化、すなわち回転子用電磁鋼板の比重低減が要求される。
本発明者らは、これらの特性を満足する無方向性電磁鋼板について鋭意検討を行った。まず、上述の着想をもとに回転子に適した磁気特性と機械特性を兼ね備えた無方向性電磁鋼板の有するべき鋼組織について種々検討を行った。その結果、固溶強化および析出強化では冷間圧延母材も高強度化されるため冷間圧延時の破断が避けられないこと、結晶粒微細化のみでは要求レベルの機械特性を達成できないこと、および、マルテンサイト等の変態組織では鉄損が著しく増大すること、が判明した。さらに、強化機構として転位強化について検討した結果、回復状態で残存している転位は鉄損に及ぼす影響が比較的小さいことが判明した。これらの結果から、従来の無方向性電磁鋼板の技術認識である完全な再結晶フェライト組織とは全く逆に、多量の転位が残存した回復組織とすることにより、回転子に要求される磁気特性と機械特性が達成されるとの知見を得た。
回復組織は、所定の板厚への加工時に導入された転位を適度な均熱処理にて消滅させることなく残存させることにより得られる。そのため、固溶強化あるいは析出強化主体の従来技術とは異なり、冷間圧延母材の高強度化を伴うことなく高強度化が可能であり、冷間圧延時の破断を抑制できる。このような回復組織を得るためには、通常冷間圧延後に行われる均熱処理での再結晶を抑制することが必要である。均熱処理での再結晶を抑制するには、特開2006-9048号公報や特開2006-70296号公報に記載されているとおり、CおよびNの含有量を超える量のNb,Zr,TiおよびVを含有させることが必要であるが、合金コストが増加する。また、これらの技術では、部品の軽量化に寄与するという概念が欠落しており、この点からも改善が求められている。
本発明者らは、合金コスト低減、軽量化への寄与、および磁気特性、機械特性の確保を満足させることを目的とし、Nb,Zr,TiおよびVの含有量がCおよびNの含有量以下であることを前提条件として検討を進めた。その結果、軽量化と所望の磁気特性、機械特性の確保を同時に達成するためには、Alを積極的に含有させることが極めて効果的であることを見出した。また、Nb,Zr,TiおよびVのうち最も再結晶抑制効果の大きいNbを積極的に含有させた上で、AlによってNを固定することにより、上記前提条件であっても最終の冷間圧延後に施す均熱処理中の転位の消滅および再結晶の進行を抑制できるとの知見を得た。
以下、本発明の回転子用無方向性電磁鋼板およびその製造方法について詳細に説明する。
A.回転子用無方向性電磁鋼板
本発明の回転子用無方向性電磁鋼板は、質量%で、C:0.06%以下、Si:3.5%以下、Mn:0.05%以上3.0%以下、Al:2.5%超6.0%以下、P:0.30%以下、S:0.04%以下、N:0.02%以下、Nb:0.02%超を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を下記式(1)を満足する範囲で含有し、残部がFeおよび不純物からなり、再結晶部分の面積比率が90%未満であることを特徴とするものである。
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)≦0 (1)
(ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
なお、各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味するものである。
以下、本発明の回転子用無方向性電磁鋼板における鋼組成および再結晶部分の面積比率について説明する。
1.鋼組成
(1)C
CはNb,Zr,TiまたはVと結びついて析出物を形成するため、冷間圧延後の均熱処理において進行する転位の消滅および再結晶を抑制する効果を有する固溶Nb,Zr,TiおよびVの含有量の減少に繋がる。したがって、C含有量は低減することが好ましい。しかしながら、過度のC含有量の低減は製鋼コストが増加する点や、C含有量が多くても最終の冷間圧延前に所定の条件で焼鈍を施すことにより析出物を再固溶させれば冷間圧延後の均熱処理中における転位の消滅および再結晶を抑制する効果を得られる点を鑑み、C含有量の上限値は0.06%とする。好ましくは0.04%以下、さらに好ましくは0.02%以下である。特に、C含有量が0.01%以下であれば、Nb/93−C/12>0になる条件を満たすのに必要なNb含有量が少なくてすむので製造コストの観点から望ましい。
(2)Si
Siは電気抵抗を高め、渦電流損失を低減する効果を有する元素である。しかしながら、多量のSiを含有させた場合には冷間圧延時の割れを誘発し、鋼板の歩留まり低下により製造コストが増加する。そのためSi含有量は3.5%以下とする。また、割れ抑制の観点からは3.0%以下が好ましい。さらに好ましくは2.0%未満である。Siを脱酸剤として使用する場合は0.01%以上含有させることが必要であるが、本発明では脱酸剤としての作用も有するAlを積極的に含有させるため、Si含有量の下限値は特に限定しない。固溶強化による鋼板の高強度化という観点からは、望ましくは0.2%以上、さらに望ましくは1.0%以上である。
(3)Mn
MnはSiと同様に電気抵抗を高め、渦電流損失を低減する効果がある。しかしながら、Mnを多量に含有させると合金コストが増加するため、Mn含有量の上限は3.0%とする。一方、Mn含有量の下限はSを固定する観点から定められるものであり、0.05%とする。
(4)Al
Alは電気抵抗を高めるためSiと同様に渦電流損失を低減する。さらに、比重を大幅に低減する効果を有しており、回転子の軽量化に寄与することを目的とした本発明では極めて重要な合金元素である。また、AlはNを固定する効果も有する。しかしながら、多量にAlを含有させると合金コストが増加するとともに、Siと同様に冷間圧延時の割れを誘発し、鋼板の歩留まり低下により製造コストが増加する。ただし、冷間圧延性劣化への寄与はSiよりも低いため、比較的多い量で含有させることが許容され、比重低減および渦電流損失低減の観点からAl含有量は2.5%超とする。好ましくは3.0%以上である。引張強さで800MPa以上を確保した上で、所望の電気抵抗を得て渦電流損失低減を達成するためには3.5%以上が好ましい。コスト増加と冷間圧延性劣化を抑制する観点から、Al含有量の上限値は6.0%とする。
(5)P
Pは固溶強化により鋼板の強度を高める効果があるが、多量にPを含有する場合には冷間圧延時の割れを誘発する。そのためP含有量は0.30%以下とする。強度を確保する観点からP含有量は0.01%以上、好ましくは0.02%超とするのが望ましい。
(6)S
Sは鋼中に不可避的に混入する不純物であるが、製鋼段階で低減するにはコストが増加するためS含有量としては0.04%を上限とする。
(7)N
NはNb,Zr,TiまたはVと結びついて析出物を形成するため、冷間圧延後の均熱処理において進行する転位の消滅および再結晶を抑制する効果を有する固溶Nb,Zr,TiおよびVの含有量の減少に繋がる。しかしながら、Alを多量に含有させることを基本とした本発明では、N含有量が多くてもAlによりNを析出物として固定することができ、転位の消滅および再結晶を抑制する効果が非常に大きい固溶Nbの含有量が確保されることを鑑み、N含有量の上限は0.02%とする。好ましくは0.01%以下である。一方、N含有量が低すぎると上記式(1)の関係を満たすために必要なNb含有量が極端に減少するため、均熱処理中の転位の消滅および再結晶を抑制する効果が得られないおそれがある。そのため、N含有量は0.0015%超が好ましい。より好ましくは0.0026%超である。
(8)Nb,Zr,TiおよびV
均熱処理中の転位の消滅および再結晶を抑制し、回復組織を得るためには析出物を形成していない固溶した状態のNb,Zr,TiまたはVを含有させることが必要であるが、これらの元素を多量に含有させると合金コストが増加する。コスト低減のためには、Nb,Zr,TiおよびVからなる群から選択される少なくとも1種の元素を、下記式(1)を満足する範囲で含有させることが必要である。
Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)≦0 (1)
(ここで、式(1)中、Nb,Zr,Ti,V,CおよびNはそれぞれの元素の含有量(質量%)を示す。)
上記式(1)の左辺は、Nb,Zr,TiおよびVの含有量とCおよびNの含有量との差を表しており、この値が負であることは固溶した状態のNb,Zr,TiまたはVを含有していないことに対応すると考えられる。しかしながら、上記式(1)の左辺の値が負であっても、Nと結合し易いAlを多量に含有することを基本とする本発明では、NはAlによって固定され、転位の消滅および再結晶の進行を抑制する効果の大きい固溶Nbの含有量が確保される。これはNbよりもAlの方がNとの析出物を形成しやすいことに起因すると推察される。したがって、本発明においてはNbを積極的に含有させるものとし、Nb含有量は0.02%を超えるものとする。好ましくは0.04%以上、さらに好ましくは0.05%超である。Nb含有量の上限は、コストの観点から定められ、上記式(1)で示される範囲とする。
また、硫化物を考慮すると固溶状態のNb,Zr,TiおよびVの含有量はS含有量にも影響される。しかしながら、本発明のS含有量の範囲内では再結晶抑制効果に及ぼすSによる影響は認められなかったため、本発明においてはSの項を省略した上記式(1)を採用した。Sの影響が認められなかった理由は明確でないが、凝固末期のSが濃化した領域からMnSとなって晶出するなどしてMnによりSが固定されたためと考えられる。
さらに本発明においては、鋼組成が下記式(2)を満足することが好ましい。
Nb/93−C/12>0 (2)
(ここで、式(2)中、NbおよびCはそれぞれの元素の含有量(質量%)を示す。)
上記式(2)の左辺は、Nb含有量とC含有量との差であり、この値が正であることは上述のAlの含有量の適正化によりNを固定した場合の固溶Nb含有量に対応するものである。Nb含有量を上記式(2)の範囲とすることにより、固溶Nbにより冷間圧延後の均熱処理時の転位の消滅および再結晶の進行を効果的に抑制することができる。
なお、Nb/93−C/12≦0の場合であっても、本発明においてはAlの含有量の適正化によりNを固定しているため、固溶Nbの含有量を確保することは可能である。Nb/93−C/12≦0の場合に十分な固溶Nbを含有させるためには、後述する「B.回転子用無方向性電磁鋼板の製造方法」の第2の態様に記載するように、最終の冷間圧延前の焼鈍条件を適正化することが望ましい。最終の冷間圧延前の焼鈍条件を適正化することにより、均熱処理時の転位の消滅および再結晶の進行を抑制することができる。
(9)Cu,Ni,Cr,Mo,CoおよびW
本発明においては、再結晶粒径の細粒化ではなく再結晶そのものを抑制することにより磁気特性と機械特性の両立を図っているため、この再結晶抑制効果を損なわない範囲でCu,Ni,Cr,Mo,CoおよびWからなる群から選択される少なくとも1種の元素を含有させることができる。これらの元素は鋼板を高強度化する作用を有するので、鋼板の強度をさらに高めるのに有効であり好ましい。
Cuは鋼板の固有抵抗を増加し、鉄損を低減する効果がある。しかしながら、過度にCuを含有させると表面疵や冷間圧延時の割れの発生につながるため、Cu含有量は0.01%以上8.0%以下とすることが好ましい。表面疵の観点から、好ましくは1.0%以下である。
NiおよびMoは過度に含有させると冷間圧延時の割れの発生やコスト増加につながるため、Ni含有量は0.01%以上2.0%以下、Mo含有量は0.005%以上4.0%以下とすることが好ましい。
Crは鋼板の固有抵抗を増加し、鉄損を低減する効果がある。また耐食性を改善する効果も有する。しかしながら、過度にCrを含有させるとコストが増加するため、Cr含有量は0.01%以上15.0%以下とすることが好ましい。
CoおよびWは、過度に含有させるとコストが増加するため、Co含有量は0.01%以上4.0%以下、W含有量は0.01%以上4.0%以下とすることが好ましい。
(10)Sn,Sb,Se,Bi,Ge,TeおよびB
本発明は再結晶を抑制することにより磁気特性と機械特性の両立を図っているため、粒界偏析により再結晶を抑制する効果を有するSn,Sb,Se,Bi,Ge,TeおよびBからなる群から選択される少なくとも1種の元素を含有させることが好ましい。これらの元素を含有させる場合には、熱間圧延工程での割れの発生およびコスト増加を抑制する観点から、各元素の含有量をSn:0.5%以下、Sb:0.5%以下、Se:0.3%以下、Bi:0.2%以下、Ge:0.5%以下、Te:0.3%以下、B:0.01%以下とすることが好ましい。これらの元素による再結晶抑制効果を確実に得るには、各元素の含有量をSn:0.001%以上、Sb:0.0005%以上、Se:0.0005%以上、Bi:0.0005%以上、Ge:0.001%以上、Te:0.0005%以上、B:0.0002%以上とすることが好ましい。
(11)Ca,MgおよびREM
本発明で規定するS含有量の範囲内では再結晶抑制効果に及ぼすSの影響は認められなかったため、本発明においては硫化物の形態制御による磁気特性改善を目的としてCa,MgおよびREMからなる群から選択される少なくとも1種を含有させることができる。
ここでREMとは、原子番号57〜71の15元素、ならびに、ScおよびYの2元素の合計17元素をさす。
これらの元素を含有させる場合には、各元素の含有量をCa:0.03%以下、Mg:0.02%以下、REM:0.1%以下とすることが好ましい。上記効果を確実に得るためには、各元素の含有量をCa:0.0001%以上、Mg:0.0001%以上、REM:0.0001%以上とすることが好ましい。
(12)その他の成分
本発明においては、本発明の効果を損なわない範囲で上述した元素以外の元素を含有させることが可能である。本発明は、再結晶組織を前提とした従来技術とは異なり、多くの転位が残存した回復組織とすることにより強度を高めるものであるから、再結晶組織を前提とした従来技術において制限されていた元素の含有をより高いレベルまで許容することができる。例えば、Ta,Hf,As,Au,Be,Zn,Pb,Tc,Re,Ru,Os,Rh,Ir,Pd,Pt,Ag,Cd,HgおよびPoを総和で0.1%以下含有することができる。
2.再結晶部分の面積比率
次に、本発明における再結晶部分の面積比率の限定理由について説明する。
再結晶の前段階である回復の進行とともに、再結晶部分の面積比率はゼロのまま降伏点および引張強さは低下する。再結晶開始後は、再結晶部分の面積比率の増加とともに降伏点および引張強さはさらに低下する。ここで、再結晶部分の面積比率は回転子用に必要な機械特性を確保する観点から定まるものである。安全率を考慮すれば、高速回転時の変形抑制の観点から、再結晶部分の面積比率は90%未満となる。好ましくは70%以下である。疲労破壊を抑制する観点からは40%以下が好ましく、さらに好ましくは25%未満である。機械特性の観点からは再結晶部分の面積比率は低いほど好ましく、再結晶部分の面積比率をゼロとし、完全に未再結晶状態(回復組織)とすることが好ましい。
なお、再結晶部分の面積比率とは、本発明の回転子用無方向性電磁鋼板の縦断面組織写真において視野中に占める再結晶粒の割合を示すものであり、この縦断面組織写真をもとに測定することができる。縦断面組織写真としては、光学顕微鏡写真を用いることができ、例えば100倍の倍率で撮影した写真を用いればよい。
再結晶部分の面積比率を制御するには、均熱処理時の均熱温度や均熱時間などを調整することが重要である。本発明においては、再結晶抑制効果の大きいNbを積極的に含有させることを特徴としているため、再結晶部分の面積比率制御は、特開2006-9048号公報や特開2006-70296号公報で開示した技術よりも容易であり、生産性向上にもつながる。
B.回転子用無方向性電磁鋼板の製造方法
次に、本発明の回転子用無方向性電磁鋼板の製造方法について説明する。
本発明の回転子用無方向性電磁鋼板を製造するに際して、好ましい3つの態様を挙げることができる。以下、各態様について説明する。
1.第1の態様
本態様の回転子用無方向性電磁鋼板の製造方法は、上述した鋼組成を備え、かつ、上記鋼組成が下記式(2)を満足する鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程と、上記冷間圧延工程により得られた冷間圧延鋼板を820℃以下で均熱する均熱処理工程とを有することを特徴とするものである。
Nb/93−C/12>0 (2)
(ここで、式(2)中、NbおよびCはそれぞれの元素の含有量(質量%)を示す。)
本態様によれば、Nb/93−C/12>0を満足する鋼組成を有する鋼塊または鋼片を用い、均熱処理工程での温度を所定の範囲とすることにより、再結晶を抑制して、所定の板厚への加工の際に導入された転位の消滅を抑制して多量の転位を残存させた回復組織を主体とすることができ、これにより鋼板の高強度化が可能である。また、従来の固溶強化や析出強化のように冷間圧延に供する鋼板、すなわち冷間圧延の母材の高強度化を伴うことがないので、冷間圧延時の破断を抑制することができる。さらに本態様においては、所定の鋼組成を有する鋼塊または鋼片を用い、また上述したように均熱処理工程での温度を所定の範囲とすることで高強度化を図ることから、従来のように高価な鋼成分を用いることも、特殊な工程を経ることもなく、例えば駆動モータの回転子として必要な磁気特性および機械特性を満足し、かつ軽量化にも寄与する回転子用無方向性電磁鋼板を安定して製造することができる。
以下、本態様の回転子用無方向性電磁鋼板の製造方法における各工程について説明する。
(1)熱間圧延工程
本態様における熱間圧延工程は、上述した鋼組成を備え、かつ、鋼組成が上記式(2)を満足する鋼塊または鋼片に(以下、「スラブ」ともいう。)に熱間圧延を施す工程である。
なお、鋼塊または鋼片の鋼組成については、上述した「A.回転子用無方向性電磁鋼板」の項に記載したものと同様であるので、ここでの説明は省略する。
本工程においては、上述した組成を有する鋼を、連続鋳造法あるいは鋼塊を分塊圧延する方法など一般的な方法によりスラブとし、加熱炉に装入して熱間圧延を施す。この際、スラブ温度が高い場合には加熱炉に装入しないで熱間圧延を行ってもよい。
スラブ加熱温度は特に限定されるものではないが、コストおよび熱間圧延性の観点から1000℃〜1300℃とすることが好ましい。より好ましくは1050℃〜1250℃である。
また、熱間圧延の各種条件は特に限定されるものではなく、例えば仕上げ温度が700℃〜950℃、巻き取り温度が750℃以下など、一般的な条件に従って行えばよい。
熱間圧延鋼板は、通常、熱間圧延の際に鋼板表面に生成したスケールを酸洗により除去してから冷間圧延に供される。熱間圧延鋼板に後述する熱延板焼鈍を施す場合には、熱延板焼鈍前あるいは熱延板焼鈍後のいずれかにおいて酸洗すればよい。
(2)冷間圧延工程
本態様における冷間圧延工程は、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す工程である。このような冷間圧延工程を行うことにより、鋼板を所定の板厚に仕上げる。本工程においては、一回の冷間圧延で所定の板厚まで仕上げてもよいし、中間焼鈍を含む二回以上の冷間圧延によって仕上げてもよい。
本発明は、均熱処理の前までに導入された転位が均熱処理時に消滅するのを抑制することで鋼板の高強度化を図るものである。したがって、均熱処理後に十分に転位を残留させるためには、均熱処理の前までに多量の転位を導入することが必要であり、冷間圧延時に多量の転位を導入することが重要である。
固溶Nbを含有しない鋼では、均熱処理時の転位の消滅を抑制することができないため、均熱処理の前までに多量の転位を導入する、すなわち冷間圧延のままの引張強さを大きくしても、均熱処理後に残存する転位の量が少なくなり、均熱処理後に十分な強度を確保することはできない。これに対して、固溶Nbを適正量含有する鋼では均熱処理時の転位の消滅が抑制されるため、冷間圧延のままの引張強さが所定の範囲であれば、均熱処理後に転位を十分に残存させることができ、均熱処理後に高い強度を安定して確保することができる。したがって、本態様の鋼組成を備えていれば、均熱処理後の鋼板の引張強さ、降伏点といった強度を確保するために必要な導入すべき転位の量の目安として、冷間圧延のままの引張強さを採用することができる。
冷間圧延のままの引張強さは、冷間圧延の前までに導入された転位と冷間圧延により導入された転位との合計量の指標、つまり、均熱処理の前までに導入された転位の量の指標となる。
回転子に用いるために必要な強度を確保する観点から、冷間圧延のままの引張強さは、圧延方向を長手方向とした測定値で850MPa以上とするのが好ましい。好ましくは900MPa以上である。
なお、冷間圧延のままの引張強さは、圧延方向を長手方向として採取した引張試験片にて測定することができる。
十分に転位が導入されれば本発明の効果を得ることができるため、圧延時の鋼板温度、圧下率、圧延ロール径など、冷間圧延の各種条件は特に限定されるものではなく、被圧延材の鋼組成、目的とする鋼板の板厚などにより適宜選択するものとする。均熱処理工程に供する前に鋼板の平坦度を矯正する目的で軽加工を行う場合も、軽加工後で上述の引張強さを満足していれば本発明の効果を得ることができる。
本態様においては、最終の冷間圧延前の鋼板に850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を施してもよい。これにより、鋼板の強度をさらに向上させることができるからである。
この理由は明確でないが、本発明者らは次のように推定する。すなわち、最終の冷間圧延前に実施する焼鈍を比較的高温で実施することによってNb系の析出物が再固溶し、固溶Nbの量が増加する。さらに、析出物の再固溶によって生じた固溶Cと固溶Nbには相互作用があるとともに、転位と固溶C、ならびに、転位と固溶Nbにも相互作用がある。このため、Nb/93−C/12>0の場合には、最終の冷間圧延前に実施する焼鈍条件の適正化により転位の消滅を抑制する効果が高くなり、さらなる強度上昇に寄与したものと推察される。
なお、上記連続焼鈍については、後述の第2の態様にて詳しく説明する。
(3)均熱処理工程
本態様における均熱処理工程は、上述した冷間圧延工程により得られた冷間圧延鋼板を820℃以下で均熱する工程である。
本態様は、均熱処理工程で進行する再結晶を抑制し、転位を残存させることを骨子としている。したがって、再結晶抑制効果が小さい場合には、均熱温度を通常の無方向性電磁鋼板の均熱温度よりも著しく低温化する必要がある。通常の無方向性電磁鋼板の連続焼鈍ラインでの均熱処理を前提とすれば、炉温が下がり、かつ安定化するまでは均熱処理に供することはできない。さらに、一旦炉温を下げた後は、通常の無方向性電磁鋼板の均熱温度まで炉温が上がり、かつ安定化するまでは、通常の無方向性電磁鋼板を均熱処理に供することもできない。これらのことから、再結晶抑制効果が小さい場合には、生産性を著しく低下させることが容易に想像できる。
本発明においては、Nb,Zr,TiおよびVのうち、特にNbを積極的に含有させることを特徴としているため、再結晶を抑制する効果が大きい。したがって、均熱処理工程での均熱温度が高くとも回復組織を得ることができ、特殊な均熱温度の機会を設ける必要がないため生産性を向上させることができる。
具体的には、均熱処理工程の均熱温度が820℃以下であれば、所望の機械特性を得ることができる。機械特性の観点から好ましくは780℃以下、さらに好ましくは750℃以下である。この均熱温度は通常の無方向性電磁鋼板で実施する範囲内であり、生産性を阻害することはない。均熱温度が低ければ低いほど再結晶進行が抑制されるが、均熱温度が低すぎると鋼板の平坦が矯正されずに回転子に積層した場合の占積率が低下する場合がある。また、均熱処理により冷間圧延したままの状態よりも鉄損を改善する効果もあることから、均熱温度が低すぎる場合には鉄損増加に繋がる。さらに、均熱温度が低すぎる場合には、上述のとおり生産性が著しく低下する。そこで、平坦矯正および鉄損改善の観点から、好ましい均熱温度の下限値を500℃とする。さらに好ましくは600℃以上である。
均熱処理は、箱焼鈍および連続焼鈍のいずれの方法で実施してもよいが、生産性の観点からは連続焼鈍ラインにて実施することが望ましい。箱焼鈍では、コイル状態で焼鈍に供されることに起因してコイルの巻きぐせ(コイルセットともいう)により鋼板の平坦度が低下したり、形状が劣化したりすることがあるため、均熱処理工程後に鋼板の平坦度や形状を矯正する矯正工程が必要な場合がある。
なお、高温での均熱処理工程により再結晶が進行し、それに起因して機械特性が低下した場合には、工程増加はやむを得ないが均熱処理工程後に加工して強度を確保してもよい。
(4)熱延板焼鈍工程
本態様においては、上記熱間圧延工程により得られた熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を行ってもよい。この熱延板焼鈍工程は、熱間圧延工程と冷間圧延工程との間に行われる工程である。
熱延板焼鈍工程は必ずしも必須の工程ではないが、熱延板焼鈍工程を行うことにより、鋼板の延性が向上し冷間圧延工程での破断を抑制できる。また、熱延板焼鈍条件の適正化により高強度化の効果が生じる場合もある。
本態様においては、熱延板焼鈍は、箱焼鈍および連続焼鈍のいずれの方法で実施してもよい。また、熱延板焼鈍の各種条件は特に限定されるものではなく、熱間圧延鋼板の鋼組成などにより適宜選択するものとする。
(5)その他の工程
本態様においては、上記均熱処理工程後に、一般的な方法に従って、有機成分のみ、無機成分のみ、あるいは有機無機複合物からなる絶縁皮膜を鋼板表面に塗布するコーティング工程を行うことが好ましい。環境負荷軽減の観点から、クロムを含有しない絶縁皮膜を塗布しても構わない。また、コーティング工程は、加熱・加圧することにより接着能を発揮する絶縁コーティングを施す工程であってもよい。接着能を発揮するコーティング材料としては、アクリル樹脂、フェノール樹脂、エポキシ樹脂またはメラミン樹脂などを用いることができる。
なお、本態様により製造される回転子用無方向性電磁鋼板については、上述した「A.回転子用無方向性電磁鋼板」の項に記載したものと同様であるので、ここでの説明は省略する。
2.第2の態様
次に、本発明の回転子用無方向性電磁鋼板の製造方法の第2の態様について説明する。
本態様の回転子用無方向性電磁鋼板の製造方法は、上述した鋼組成を備え、かつ、上記鋼組成が下記式(3)を満足する鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施し、かつ、最終の冷間圧延前の鋼板に850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を施す冷間圧延工程と、上記冷間圧延工程により得られた冷間圧延鋼板を820℃以下で均熱する均熱処理工程とを有することを特徴とするものである。
Nb/93−C/12≦0 (3)
(ここで、式(3)中、NbおよびCはそれぞれの元素の含有量(質量%)を示す。)
本発明では、AlによりNを固定しているため、上記式(3)は固溶Nbを含有しないことに対応するとも考えられる。しかしながら、本態様においては、Nb/93−C/12≦0であっても、最終の冷間圧延前に実施する焼鈍の条件を上述のとおり適正化することにより、最終の冷間圧延後に施す均熱処理中の転位の消滅および再結晶を抑制することができる。
この理由については明確でないが、本発明者らは次のように推定する。すなわち、最終の冷間圧延前に実施する焼鈍を比較的高温で実施することによってNb系の析出物が再固溶し、実質的に固溶Nbを含有する状態となる。このため、Nb/93−C/12≦0であっても、固溶Nbによる転位の消滅および再結晶の抑制効果が得られ、十分な強度を確保できると推察される。
以下、本態様の回転子用無方向性電磁鋼板の製造方法における熱間圧延工程および冷間圧延工程について説明する。なお、均熱処理工程、およびその他の工程については、上記第1の態様と同様であるので、ここでの説明は省略する。
(1)熱間圧延工程
本態様における熱間圧延工程は、上述した鋼組成を備え、かつ、鋼組成が上記式(3)を満足する鋼塊または鋼片に(以下、「スラブ」ともいう。)に熱間圧延を施す工程である。
なお、鋼塊または鋼片の鋼組成については、上述した「A.回転子用無方向性電磁鋼板」の項に記載したものと同様であり、熱間圧延条件等については、上記第1の態様と同様であるので、ここでの説明は省略する。
(2)冷間圧延工程
本発明における冷間圧延工程は、熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施し、かつ、最終の冷間圧延前の鋼板に850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を施す工程である。このような冷間圧延工程を行うことにより、鋼板を所定の板厚に仕上げる。本工程においては、一回の冷間圧延で所定の板厚まで仕上げてもよいし、中間焼鈍を含む二回以上の冷間圧延によって仕上げてもよい。
ここで、「最終の冷間圧延前の鋼板」とは、中間焼鈍を行わずに一回のみ冷間圧延を熱間圧延鋼板に施して製品板厚に仕上げる場合には、熱間圧延鋼板を意味し、また中間焼鈍をはさむ二回以上の冷間圧延を熱間圧延鋼板に施して製品板厚に仕上げる場合には、最終の冷間圧延前の冷間圧延鋼板を意味する。
なお、上述の均熱処理工程後に冷間加工を施すことにより製品の機械特性や板厚などを調整する場合があるが、その冷間加工は冷間圧延ではなく、上記の冷間圧延の回数には数えない。
また、「最終の冷間圧延前の鋼板に850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を施す」とは、中間焼鈍を行わずに冷間圧延を一回のみ行う場合には、熱間圧延鋼板に所定の条件で熱延板焼鈍を施すことを意味し、また中間焼鈍をはさんで二回以上の冷間圧延を行う場合には、最終の冷間圧延前の冷間圧延鋼板に所定の条件で中間焼鈍を施すことを意味する。すなわち、本態様においては、中間焼鈍を行わずに冷間圧延を一回のみ行う場合には、熱延板焼鈍条件を適正化し、また中間焼鈍をはさんで二回以上の冷間圧延を行う場合には、最終の冷間圧延前の中間焼鈍の条件を適正化することにより、均熱処理中における転位の消滅および再結晶を効果的に抑制することができる。
本態様においては、最終の冷間圧延前の鋼板に850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を施すことが重要である。すなわち、中間焼鈍を行わずに冷間圧延を一回のみ行う場合には熱延板焼鈍にて、あるいは、中間焼鈍をはさんで二回以上の冷間圧延を行う場合には最終の冷間圧延前の中間焼鈍にて、850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を実施する。この焼鈍により析出物を再固溶させ、固溶Nbにより均熱処理時の転位の消滅および再結晶を抑制する。焼鈍温度が上記範囲未満であると、析出物を固溶させるために必要な時間が長時間化するため生産性に劣り、焼鈍温度が上記範囲を超えると、設備に過度の負荷がかかるとともに鋼板表層にスケールが形成し、酸洗不良により製品の表面性状が劣化する。また、保持時間が上記範囲未満であると析出物の固溶が不十分となるため本発明の効果が得られず、保持時間が上記範囲を超えると鋼板表層にスケールが形成し、酸洗不良により製品の表面性状が劣化する。転位の消滅および再結晶の抑制効果を向上させるには、焼鈍温度が900℃以上であり、保持時間が30秒以上であることが好ましい。より好ましい保持時間は60秒以上である。
最終の冷間圧延前に実施する焼鈍を連続焼鈍としたのは、連続焼鈍では焼鈍後の冷却速度が箱焼鈍の場合よりも大きいため、固溶した析出物が冷却中に再析出するのを抑制できるからである。無方向性電磁鋼板の熱延板焼鈍に使用する連続焼鈍ラインでの冷却速度が一般的に採用されている範囲であれば本発明の効果を得ることができる。好ましい冷却速度の下限値は、冷却中の再析出を抑制する観点と、冷却時間の長時間化を抑制する観点とから、10℃/sとする。再析出抑制の観点からは冷却速度は大きければ大きいほど好ましいため、冷却速度の上限は特に限定しないが、設備への過度の負荷を抑制する観点からは100℃/s以下が好ましい。水冷設備、ロール冷却設備など、上述の値よりも大きな冷却速度を有する設備を用いても構わない。
また、中間焼鈍を行わずに冷間圧延を一回のみ行う場合は、熱間圧延鋼板に所定の条件で熱延板焼鈍を施す必要があるため熱延板焼鈍は必須の工程となるが、中間焼鈍をはさんで二回以上の冷間圧延を行う場合は、冷間圧延前に熱延板焼鈍を行ってもよく行わなくてもよい。熱延板焼鈍を行う場合には、鋼板の延性が向上し冷間圧延での破断を抑制できるという利点を有する。
中間焼鈍をはさむ二回以上の冷間圧延を行う場合であって、冷間圧延前に熱延板焼鈍を行う場合には、最終の冷間圧延前の中間焼鈍の条件を適正化すればよいので、熱延板焼鈍時の焼鈍温度、保持時間、方法(連続焼鈍・箱焼鈍)など、熱延板焼鈍の各種条件は特に限定されるものではなく、熱間圧延鋼板の鋼組成などにより適宜選択するものとする。また、二回以上の中間焼鈍を行う場合には、上述したように最終の冷間圧延前の中間焼鈍の条件を適正化すればよいので、最終の冷間圧延前の中間焼鈍以外の中間焼鈍については、中間焼鈍時の焼鈍温度、保持時間、方法(連続焼鈍・箱焼鈍)など、中間焼鈍の各種条件は特に限定されるものではなく、被圧延材の鋼組成などにより適宜選択するものとする。
なお、冷間圧延のままの引張強さ、および冷間圧延条件等については、上記第1の態様と同様であるので、ここでの説明は省略する。
3.第3の態様
次に、本発明の回転子用無方向性電磁鋼板の製造方法の第3の態様について説明する。
本態様の回転子用無方向性電磁鋼板の製造方法は、上述の鋼組成を備える鋼塊または鋼片を、1100℃以上1300℃以下としたのちに、累積圧下率が80%以上の粗熱間圧延を施して粗バーを得る粗熱間圧延工程と、上記粗バーに仕上熱間圧延を施す仕上熱間圧延工程とを有し、上記仕上熱間圧延工程前の粗バーの温度を950℃以上とする熱間圧延工程を備えることを特徴とするものである。
一般に、Nb,Zr,TiおよびVを含有し、かつ、Alを多量に含有する無方向性電磁鋼板では、高合金化にともなう再結晶温度の上昇により、表面性状の劣化が懸念される。表面性状に劣ると、鉄心として使用する際には占積率の低下により有効な断面積あたりの磁束密度が低下し、モータ効率が低下する可能性がある。ここで、占積率とは、無方向性電磁鋼板を積層して鉄心を作製した際の、鉄心厚さ全体に占める鋼板の割合である。
これに対し、本態様によれば、熱間圧延条件を適正化することにより、鋼板が多量のAlと、Nb,Zr,TiおよびVを含有する場合であっても、良好な表面性状を安定して確保することができる。その結果、高い占積率を実現することができる。
また本態様によれば、所定の鋼組成を有する鋼塊または鋼片を用いるので、機械特性だけでなく磁気特性も良好で、かつ回転子の軽量化にも寄与し得る無方向性電磁鋼板を製造することができる。
したがって本態様によれば、従来のように高価な鋼成分を用いることも、特殊な工程を経ることもなく、例えば駆動モータの回転子として必要な磁気特性および機械特性を満足し、かつ回転子の軽量化に寄与し、しかも表面性状の良好な回転子用無方向性電磁鋼板を安定して製造することができる。
以下、本態様の回転子用無方向性電磁鋼板の製造方法における各工程について説明する。
(1)熱間圧延工程
本態様における熱間圧延工程は、上述した鋼組成を有する鋼塊または鋼片を、1100℃以上1300℃以下としたのちに、累積圧下率が80%以上の粗熱間圧延を施して粗バーを得る粗熱間圧延工程と、上記粗バーに仕上熱間圧延を施す仕上熱間圧延工程とを有し、上記仕上熱間圧延工程前の粗バーの温度を950℃以上とする工程である。以下、熱間圧延工程における各工程について説明する。
(i)粗熱間圧延工程
本態様における粗熱間圧延工程は、上述した鋼組成を有する鋼塊または鋼片を、1100℃以上1300℃以下としたのちに、累積圧下率が80%以上の粗熱間圧延を施す工程である。
本工程においては、上述した鋼組成を有する鋼を、連続鋳造法あるいは鋼塊を分塊圧延する方法など一般的な方法によりスラブとし、所定の温度としたのちに粗熱間圧延を施す。粗熱間圧延に供するスラブ温度を所定の温度とすることができるのであれば、スラブを加熱炉に装入して所定の温度まで加熱する場合のほか、連続鋳造後や分塊圧延後の高温状態にあるスラブを加熱炉に装入しないで直接粗熱間圧延を行ってもよい。
粗熱間圧延に供する際のスラブ温度は1100℃以上1300℃以下とする。スラブ温度が上記範囲未満の場合には、粗熱間圧延中の鋼板温度が低すぎて熱間圧延工程における再結晶が不十分となり、冷間圧延後の鋼板に上述した表面欠陥が生じる場合がある。また、スラブ温度が上記範囲を超えるとスラブが変形するため、熱間圧延により所定の形状へ造り込むことが困難になる場合がある。好ましいスラブ加熱温度は1100℃〜1250℃である。
また、粗熱間圧延に供するスラブの断面組織における平均等軸晶率は25%以上であることが好ましい。これにより、表面性状をさらに改善することができるからである。この平均等軸晶率は、連続鋳造時に電磁攪拌を施す等、一般的な方法を用いることにより制御することができる。
ここで、等軸晶率とは、スラブ厚に占める等軸晶部分の厚みの割合であり、スラブの鋳込み方向垂直断面をエッチングして得られる凝固組織のマクロ組織より等軸晶か柱状晶かを判別し、各部分の厚みを測定して算出すればよい。平均等軸晶率としては、スラブの幅方向の1/4、2/4、3/4位置における等軸晶率を平均した値を採用すればよい。
本態様においては、冷間圧延後の表面欠陥を抑制するために、上記スラブに累積圧下率が80%以上の粗熱間圧延を施して粗バーとする。粗熱間圧延での累積圧下率が上記範囲未満であると、表面欠陥が発生する場合がある。好ましい累積圧下率は83%以上である。一方、粗熱間圧延での累積圧下率が高いほど表面欠陥が抑制されるので、累積圧下率の上限は特に限定しない。
ここで、粗熱間圧延での累積圧下率は、粗熱間圧延機入側のスラブの厚さAと出側の粗バーの厚さBを用いて、次式で表される数値である。
(1−B/A)×100[%]
なお、粗熱間圧延を施す前にスラブの幅方向に圧下もしくは圧延を施してスラブ厚さを増加させても本発明の効果は全く失われない。この場合における粗熱間圧延での累積圧下率は、スラブの幅方向への圧下もしくは圧延後のスラブの厚さを用いて算出した数値とする。
粗熱間圧延における他の条件は特に限定されるものではなく、一般的な条件に従って行えばよい。
また本態様においては、冷間圧延後の表面欠陥を抑制するために、粗熱間圧延工程後で仕上熱間圧延工程前における粗バーの温度を950℃以上とする。粗バーの温度が上記範囲未満であると、上記累積圧下率が上述した範囲未満である場合と同様に、表面欠陥が発生する場合がある。粗熱間圧延工程後で仕上熱間圧延工程前における粗バーの温度は、970℃以上であることが好ましい。一方、粗バーの温度の上限については特に限定するものではない。
上記粗バーの温度を950℃以上とする手段としては、粗熱間圧延に供するスラブ温度を高温にすることによって粗熱間圧延出側における粗バーの温度を950℃以上にする方法のほか、粗熱間圧延により得られた粗バーを加熱することにより950℃以上とする方法も用いることができる。
(ii)仕上熱間圧延工程
本態様における仕上熱間圧延工程は、上記粗バーに仕上熱間圧延を施す工程である。
仕上熱間圧延の各種条件は特に限定されるものではなく、例えば仕上げ温度が700〜950℃、巻き取り温度が750℃以下など、一般的な条件に従って行えばよい。
熱間圧延条件やスラブの平均等軸晶率を適切に制御することで表面性状が改善する機構については明らかではないが、本発明者らは次のように推定する。すなわち、多量のAlと同時にNb,Zr,TiおよびVを含有させた鋼は、均熱処理にて再結晶が抑制されるが、熱間圧延時にも再結晶が抑制されてしまう場合があるため、鋳造組織の巨大柱状粒に起因する圧延方向の筋上のバンド組織が冷間圧延後も残留してしまう。これに起因して表面の凹凸欠陥が冷間圧延後に発生し、表面性状が劣化すると考えられる。粗熱間圧延での累積圧下率および粗熱間圧延出側の温度の双方を高めることにより、抑制されていた再結晶が促進され、鋳造組織の巨大柱状粒に起因する圧延方向の筋状のバンド組織が消失するものと考えられる。また、等軸晶率の増加は上記巨大柱状粒の減少に他ならない。これらの効果により冷間圧延後の表面欠陥が抑制されると推察される。
本工程により得られた熱間圧延鋼板は、通常、熱間圧延の際に鋼板表面に生成したスケールを酸洗により除去してから冷間圧延に供される。熱間圧延鋼板に後述する熱延板焼鈍を施す場合には、熱延板焼鈍前あるいは熱延板焼鈍後のいずれかにおいて酸洗すればよい。
本態様においては、上述したように熱間圧延工程を所定の条件とすることにより冷間圧延後の表面欠陥を抑制するものであるから、その他の製造工程における各種条件は特に限定されるものではないが、以下、好適な態様について例示する。
(2)その他の工程
(i)冷間圧延工程
本発明においては、上記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程を行うことができる。このような冷間圧延工程を行うことにより、鋼板を所定の板厚に仕上げる。本工程においては、一回の冷間圧延で所定の板厚まで仕上げてもよいし、中間焼鈍を含む二回以上の冷間圧延によって仕上げてもよい。
本態様においては、最終の冷間圧延前の鋼板に850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を施すことが好ましい。特に、鋼塊または鋼片の鋼組成がNb/93−C/12≦0を満たす場合には、最終の冷間圧延前の鋼板に所定の条件で連続焼鈍を施すことが好ましい。これにより、高い強度を安定的に得ることができるからである。また、鋼塊または鋼片の鋼組成がNb/93−C/12>0を満たす場合には、最終の冷間圧延前の鋼板に所定の条件で連続焼鈍を施すことにより、強度をさらに向上させることができる。
なお、これらの理由については、上記第1の態様および第2の態様にてそれぞれ詳しく記載し、上記連続焼鈍については、上記第2の態様にて詳しく記載したので、ここでの説明は省略する。
また、冷間圧延条件等については、上記第1の態様と同様であるので、ここでの説明は省略する。
(ii)均熱処理工程
本発明においては、上記冷間圧延工程により得られた冷間圧延鋼板を所定の温度で均熱する均熱処理工程を行うことができる。
なお、均熱処理工程については、上記第1の態様と同様であるので、ここでの説明は省略する。
(iii)熱延板焼鈍工程
本発明においては、上記熱間圧延工程により得られた熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を行ってもよい。この熱延板焼鈍工程は、熱間圧延工程と冷間圧延工程との間に行われる工程である。
熱延板焼鈍工程は、上述した表面欠陥の発生を軽減する効果も有する。
なお、熱延板焼鈍工程については、上記第1の態様と同様であるので、ここでの説明は省略する。
熱間圧延鋼板の鋼組成がNb/93−C/12≦0を満たす場合には、上記第2の態様に記載したように、熱延板焼鈍条件の適正化が重要となる。
(iv)その他
本発明においては、上記均熱処理工程後に、一般的な方法に従って、有機成分のみ、無機成分のみ、あるいは有機無機複合物からなる絶縁皮膜を鋼板表面に塗布するコーティング工程を行うことが好ましい。
なお、コーティング工程については、上記第1の態様と同様であるので、ここでの説明は省略する。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
以下、実施例および比較例を例示して、本発明を具体的に説明する。
[実施例1〜26]
下記の表1に示す鋼組成を有する鋼を真空溶製し、これらの鋼を1150℃に加熱し、仕上げ温度820℃で熱間圧延を行い580℃で巻き取り、厚さが2.0mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板のうち一部を除いて水素雰囲気中にて10時間保持する箱焼鈍、あるいは種々の温度で種々の時間保持する連続焼鈍による熱延板焼鈍を施し、一回の冷間圧延にて板厚0.35mmまで仕上げた。また、一部の熱間圧延鋼板については、上記の熱延板焼鈍後、中間板厚まで冷間圧延した後、水素雰囲気中にて750℃または800℃で10時間保持する箱焼鈍、あるいは種々の温度で種々の時間保持する連続焼鈍による中間焼鈍を実施し、二回目の冷間圧延で0.35mmに仕上げた。さらに、一部の熱間圧延鋼板については熱延板焼鈍を施すことなく、一回あるいは中間焼鈍を含む二回の冷間圧延にて0.35mmに仕上げた。その後、実施例1〜9および11〜26には種々の温度で30秒間保持する連続焼鈍による均熱処理を施した。実施例10には500℃で10時間保持する箱焼鈍による均熱処理を施した。このようにして、鋼板を作製した。
Figure 0004853392
[比較例1〜8]
上記表1に示す鋼組成を有する鋼を用いて、実施例1〜26と同様にして鋼板を作製した。
[評価]
実施例1〜26および比較例1〜8の鋼板について、均熱処理の前段階における鋼板の機械特性、ならびに、均熱処理後の再結晶部分の面積比率、機械特性、磁気特性および比重を評価した。
再結晶部分の面積比率は、100倍の倍率で撮影した鋼板の縦断面の光学顕微鏡写真を用い、視野中に占める再結晶粒の割合を算出した。
機械特性は、圧延方向を長手方向としたJIS5号試験片を用いた引張試験を行い評価した。均熱処理の前段階の鋼板については引張強さ:TSにて、均熱処理後の鋼板については降伏点:YPおよび引張強さ:TSにて評価した。
磁気特性については、55mm角の単板試験片にて、最大磁束密度:1.0T、励磁周波数:400Hzでの鉄損W10/400と、磁化力5000A/mでの磁束密度B50とを測定した。測定は圧延方向と圧延直角方向について実施し、それらの平均値を採用した。
比重については、水中の重量と空気中の重量を測定し、測定温度における水の密度も考慮したアルキメデス法にて評価した。
表2に、実施例1〜26および比較例1〜8の鋼板についての熱延板焼鈍条件、冷間圧延条件、均熱処理条件および評価結果をそれぞれ示す。
Figure 0004853392
比較例1の鋼板はSi含有量が高いため、比較例2の鋼板はAl含有量が高いため、比較例3の鋼板はP含有量が高いために、それぞれ冷間圧延時に破断した。比較例4の鋼板はCおよびMnの含有量が高く、鋼組織がマルテンサイト組織であるために鉄損が著しく増大した。比較例5の鋼板はNb含有量が本発明範囲外であるために再結晶が抑制されず、再結晶部分の面積比率が高くなり、降伏点および引張強さともに劣っていた。比較例6の鋼板は冷間圧延により導入される転位の量が十分でなかったため、降伏点および引張強さともに劣っていた。比較例7の鋼板は再結晶部分の面積比率が高いために降伏点および引張強さともに劣っていた。比較例8の鋼板はAl含有量が低いために比重が高かった。
これに対して本発明で規定する要件を満足する実施例1〜26の鋼板では、Nb,Zr,TiおよびVの含有量がCおよびNの含有量より少なくても、熱延板焼鈍の方法、冷間圧延の回数にかかわらず、磁気特性および機械特性ともに優れた値を示していた。また、均熱温度が比較的高い条件であっても、再結晶抑制効果が大きいため、優れた磁気特性および機械特性を有していることがわかった。さらに,7.31〜7.35という低い比重を示していた。これらの比重レベルでは、比較例8の鋼板を使用した場合と比べて、同一形状の回転子を3〜4%軽量化させることができる。
実施例2および3を比較することにより、最終の冷間圧延前の鋼板に対する焼鈍(ここでは熱延板焼鈍)を連続焼鈍とすることによって再結晶を抑制する効果が高まり、同一の均熱温度でも降伏点および引張強さが向上することがわかった。
また、実施例4,5,6および7を比較することにより、最終の冷間圧延前の鋼板に対する焼鈍(ここでは中間焼鈍)を連続焼鈍とすることによって再結晶を抑制する効果が高まり、均熱温度を高くしても同等の降伏点および引張強さが得られることがわかった。
さらに、実施例12および26より、Nb/93−C/12<0である鋼であっても、最終の冷間圧延前の鋼板に対する焼鈍(実施例12では熱延板焼鈍、実施例26では中間焼鈍)を連続焼鈍とすることによって、優れた磁気特性および機械特性が得られることがわかった。
実施例13および14を比較することにより、S含有量が変化しても機械特性は変化しないことがわかった。
また、実施例17〜25に示されるように、Cu,Ni,Cr,Mo,Co,W,Sn,Sb,Se,Bi,Ge,Te,B,Ca,Mg,REMを適正量含有する場合も、本発明の効果が得られることがわかった。さらに、実施例26より、Ta,Hf,As,Au,Be,Zn,Pb,Tc,Re,Ru,Os,Rh,Ir,Pd,Pt,Ag,Cd,Hg,Poの含有量が適正である場合にも、本発明の効果が得られることがわかった。
[実施例27]
下記の表3に示す鋼組成を有する連続鋳造スラブを、下記の表4に示す条件にて加熱して、粗熱間圧延を施し、仕上げ温度850℃、巻き取り温度550℃で仕上熱間圧延を行って、厚さが2.0mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板に対して750℃で10時間保持する箱焼鈍による熱延板焼鈍を施し、一回の冷間圧延にて板厚0.35mmまで仕上げた。その後、均熱温度700℃の連続焼鈍による均熱処理を施し、鋼板の表面に平均厚さ0.4μmの絶縁皮膜をコーティングした。
Figure 0004853392
得られた鋼板について、磁気特性、機械特性、再結晶部分の面積比率、占積率および比重を評価した。
なお、再結晶部分の面積比率、機械特性、および比重については、実施例1〜26と同様にして測定した。
また、磁気特性および占積率については、JIS C 2550に準じて試験片を採取し、評価した。磁気特性としては、最大磁束密度:1.0T、励磁周波数:400Hzでの鉄損W10/400を測定した。また、占積率の評価については、98%以上をA、95%以上98%未満をB、95%未満をCとした。
スラブの平均等軸晶率は、上述した方法により測定した。
評価結果を表4に示す。
Figure 0004853392
鋼aを用いたNo.1-1,1-6,1-11,1-16の鋼板は、Nb含有量が本発明範囲外であるため、いずれの条件においても機械特性が劣っており、回転子に要求される強度を確保することはできなかった。
これに対して、鋼組成が本発明範囲である鋼b,c,dおよびeを用いたNo.1-2〜1-5,1-7〜1-10,1-12〜1-15,1-17〜1-20の鋼板は、機械特性が良好であった。中でも、スラブ加熱条件および粗熱間圧延条件が適正化されている場合(No.1-2〜1-5,1-17〜1-20)には、占積率も良好であった。
[実施例28]
下記の表5に示す鋼組成を有する連続鋳造スラブを1150℃に加熱し、粗熱間圧延での累積圧下率を86%とし、粗熱間圧延出側温度が980℃となるように粗熱間圧延を施し、仕上げ温度820℃、巻き取り温度580℃で仕上熱間圧延を行って、厚さが2.0mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板に対して750℃または800℃で10時間保持する箱焼鈍、あるいは1050℃で90秒間保持する連続焼鈍による熱延板焼鈍を施し、一回の冷間圧延にて板厚0.35mmまで仕上げた。その後、下記の表6に示す種々の均熱温度で連続焼鈍による均熱処理を施し、鋼板の表面に平均厚さ0.4μmの絶縁皮膜をコーティングした。
Figure 0004853392
得られた鋼板について、磁気特性、機械特性、再結晶部分の面積比率、占積率および比重を評価した。再結晶部分の面積比率、機械特性、および比重については、実施例1〜26と同様にして測定した。また、磁気特性および占積率については、実施例27と同様にして測定した。
なお、いずれの鋼板もスラブの平均等軸晶率は25%〜30%の範囲であった。
評価結果を表6に示す。
Figure 0004853392
No.2-14の鋼板はSi含有量が高いため、No.2-15の鋼板はAl含有量が高いため、No.2-16の鋼板はP含有量が高いために、それぞれ冷間圧延時に破断した。さらに、No.2-17の鋼板はCおよびMnの含有量が高く、鋼組織がマルテンサイト組織であるために鉄損が著しく増大した。No.2-18の鋼板はAl含有量が低いためにNを固定できず、再結晶が抑制されなかったため降伏点および引張強さともに劣っていた。No.2-19の鋼板はAl含有量が低いために比重が高かった。
これに対して本発明で規定する鋼組成を満足するNo.2-1〜2-13の鋼板では、Nb,Zr,TiおよびVの含有量がCおよびNの含有量より少なくても、磁気特性、機械特性および占積率のいずれも優れていた。また、得られる比重も7.31〜7.35と低かった。これらの比重レベルは、試験番号No.2-19の鋼板を使用した場合と比べて、同一形状の回転子を3〜4%軽量化させることができる。
また、No.2-1に示されるように、Nb/93−C/12<0であっても、最終の冷間圧延前の鋼板に対する焼鈍(ここでは熱延板焼鈍)を連続焼鈍とすることによって均熱処理中の再結晶を抑制する効果が得られ、優れた磁気特性および機械特性が得られることがわかった。さらに、No.2-2および2-3に示されるように、最終の冷間圧延前の鋼板に対する焼鈍(ここでは熱延板焼鈍)を連続焼鈍とすることによって同一の鋼組成であっても再結晶を抑制する効果が高まり、降伏点および引張強さが向上することがわかった。
さらに、No.2-4〜2-12に示されるように、Cu,Ni,Cr,Mo,Co,W,Sn,Sb,Se,Bi,Ge,Te,B,Ca,MgおよびREMを適正量含有する場合も本発明の効果が得られることがわかった。また、No.2-13より、Ta,Hf,As,Au,Be,Zn,Pb,Tc,Re,Ru,Os,Rh,Ir,Pd,Pt,Ag,Cd,HgおよびPoの含有量が適正である場合にも本発明の効果が得られることがわかった。

Claims (10)

  1. 質量%で、C:0.06%以下、Si:3.5%以下、Mn:0.05%以上3.0%以下、Al:2.5%超6.0%以下、P:0.30%以下、S:0.04%以下、N:0.02%以下、Nb:0.02%超を含有し、Nb、Ti、ZrおよびVからなる群から選択される少なくとも1種の元素を下記式(1)を満足する範囲で含有し、残部がFeおよび不純物からなり、再結晶部分の面積比率が90%未満であることを特徴とする回転子用無方向性電磁鋼板。
    Nb/93+Zr/91+Ti/48+V/51−(C/12+N/14)≦0 (1)
    (ここで、式(1)中、Nb、Zr、Ti、V、CおよびNはそれぞれの元素の含有量(質量%)を示す。)
  2. 前記Feの一部に代えて、Cu、Ni、Cr、Mo、CoおよびWからなる群から選択される少なくとも1種の元素を下記の質量%で含有することを特徴とする請求項1に記載の回転子用無方向性電磁鋼板。
    Cu:0.01%以上8.0%以下 Ni:0.01%以上2.0%以下
    Cr:0.01%以上15.0%以下 Mo:0.005%以上4.0%以下
    Co:0.01%以上4.0%以下 W:0.01%以上4.0%以下
  3. 前記Feの一部に代えて、Sn、Sb、Se、Bi、Ge、TeおよびBからなる群から選択される少なくとも1種の元素を下記の質量%で含有することを特徴とする請求項1または請求項2に記載の回転子用無方向性電磁鋼板。
    Sn:0.5%以下 Sb:0.5%以下 Se:0.3%以下 Bi:0.2%以下
    Ge:0.5%以下 Te:0.3%以下 B:0.01%以下
  4. 前記Feの一部に代えて、Ca、MgおよびREMからなる群から選択される少なくとも1種の元素を下記の質量%で含有することを特徴とする請求項1から請求項3までのいずれかの請求項に記載の回転子用無方向性電磁鋼板。
    Ca:0.03%以下 Mg:0.02%以下 REM:0.1%以下
  5. 鋼組成が下記式(2)を満足することを特徴とする請求項1から請求項4までのいずれかの請求項に記載の回転子用無方向性電磁鋼板。
    Nb/93−C/12>0 (2)
    (ここで、式(2)中、NbおよびCはそれぞれの元素の含有量(質量%)を示す。)
  6. 請求項5に記載の鋼組成を備える鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、前記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施す冷間圧延工程と、前記冷間圧延工程により得られた冷間圧延鋼板を820℃以下で均熱する均熱処理工程とを有することを特徴とする回転子用無方向性電磁鋼板の製造方法。
  7. 前記熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を有することを特徴とする請求項6に記載の回転子用無方向性電磁鋼板の製造方法。
  8. 請求項1から請求項4までのいずれかの請求項に記載の鋼組成を備え、かつ、前記鋼組成が下記式(3)を満足する鋼塊または鋼片に熱間圧延を施す熱間圧延工程と、前記熱間圧延工程により得られた熱間圧延鋼板に一回または中間焼鈍をはさむ二回以上の冷間圧延を施し、かつ、最終の冷間圧延前の鋼板に850℃以上1200℃以下の温度で10秒間以上5分間以下の連続焼鈍を施す冷間圧延工程と、前記冷間圧延工程により得られた冷間圧延鋼板を820℃以下で均熱する均熱処理工程とを有することを特徴とする回転子用無方向性電磁鋼板の製造方法。
    Nb/93−C/12≦0 (3)
    (ここで、式(3)中、NbおよびCはそれぞれの元素の含有量(質量%)を示す。)
  9. 請求項1から請求項5までのいずれかの請求項に記載の鋼組成を備える鋼塊または鋼片を、1100℃以上1300℃以下としたのちに、累積圧下率が80%以上の粗熱間圧延を施して粗バーを得る粗熱間圧延工程と、前記粗バーに仕上熱間圧延を施す仕上熱間圧延工程とを有し、前記仕上熱間圧延工程前の粗バーの温度を950℃以上とする熱間圧延工程を備えることを特徴とする回転子用無方向性電磁鋼板の製造方法。
  10. 前記鋼塊または鋼片の断面組織における平均等軸晶率が25%以上であることを特徴とする請求項9に記載の回転子用無方向性電磁鋼板の製造方法。
JP2007154899A 2007-06-12 2007-06-12 回転子用無方向性電磁鋼板およびその製造方法 Active JP4853392B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154899A JP4853392B2 (ja) 2007-06-12 2007-06-12 回転子用無方向性電磁鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154899A JP4853392B2 (ja) 2007-06-12 2007-06-12 回転子用無方向性電磁鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2008308704A JP2008308704A (ja) 2008-12-25
JP4853392B2 true JP4853392B2 (ja) 2012-01-11

Family

ID=40236560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154899A Active JP4853392B2 (ja) 2007-06-12 2007-06-12 回転子用無方向性電磁鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP4853392B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534376B (zh) * 2011-08-18 2016-08-17 新日铁住金株式会社 无方向性电磁钢板、其制造方法、马达铁芯用层叠体及其制造方法
KR101977507B1 (ko) * 2017-12-22 2019-05-10 주식회사 포스코 자기장 차폐용 강판 및 그 제조방법
KR102018181B1 (ko) 2017-12-26 2019-09-04 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389691B2 (ja) * 2004-06-22 2009-12-24 住友金属工業株式会社 回転子用無方向性電磁鋼板およびその製造方法
JP4779474B2 (ja) * 2005-07-07 2011-09-28 住友金属工業株式会社 回転子用無方向性電磁鋼板およびその製造方法
JP4710458B2 (ja) * 2005-07-19 2011-06-29 住友金属工業株式会社 回転子用無方向性電磁鋼板の製造方法
JP4586669B2 (ja) * 2005-08-01 2010-11-24 住友金属工業株式会社 回転子用無方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
JP2008308704A (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
KR100973627B1 (ko) 무방향성 전자 강판 및 그 제조 방법
JP4586669B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP4779474B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP5076510B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP5126788B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2011084761A (ja) 回転子用無方向性電磁鋼板およびその製造方法
US9362032B2 (en) High-strength non-oriented electrical steel sheet
JP2010121150A (ja) 回転機用無方向性電磁鋼板および回転機ならびにそれらの製造方法
JP5713100B2 (ja) 無方向性電磁鋼板、その製造方法、モータ鉄心用積層体及びその製造方法
JP6606988B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4710465B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP7172100B2 (ja) 無方向性電磁鋼板
JP4389691B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2009299102A (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP7180700B2 (ja) 無方向性電磁鋼板
JP4710458B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP4415933B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP4506664B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2009007592A (ja) 回転子用無方向性電磁鋼板の製造方法
JP4853392B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP5333415B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4415932B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP4265508B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP4930205B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2009001887A (ja) 回転子用無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350