WO2012140866A1 - 半導体素子基板の製造方法及び半導体素子基板並びに表示装置 - Google Patents

半導体素子基板の製造方法及び半導体素子基板並びに表示装置 Download PDF

Info

Publication number
WO2012140866A1
WO2012140866A1 PCT/JP2012/002470 JP2012002470W WO2012140866A1 WO 2012140866 A1 WO2012140866 A1 WO 2012140866A1 JP 2012002470 W JP2012002470 W JP 2012002470W WO 2012140866 A1 WO2012140866 A1 WO 2012140866A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
semiconductor film
crystalline
manufacturing
element substrate
Prior art date
Application number
PCT/JP2012/002470
Other languages
English (en)
French (fr)
Inventor
中村 好伸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012140866A1 publication Critical patent/WO2012140866A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1277Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using a crystallisation promoting species, e.g. local introduction of Ni catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield

Definitions

  • the present invention relates to a method for manufacturing a semiconductor element substrate, a semiconductor element substrate, and a display device.
  • the semiconductor element substrate includes an electric circuit having an active element utilizing the electrical characteristics of a semiconductor, and is widely applied to, for example, audio equipment, communication equipment, home appliances, and the like.
  • a semiconductor element substrate including a field effect transistor such as a thin film transistor (hereinafter referred to as “TFT”) or a MOS (Metal Oxide Semiconductor) transistor is an active matrix liquid crystal display device or an organic electroluminescence. It is used as an active matrix substrate in a thin display device such as a display device.
  • TFT thin film transistor
  • MOS Metal Oxide Semiconductor
  • amorphous semiconductor film is formed on a substrate having an insulating surface such as a glass substrate, and the amorphous semiconductor film is crystallized.
  • a technique for forming a crystalline semiconductor film has been widely studied.
  • a crystalline semiconductor film has a very high carrier mobility compared to an amorphous semiconductor film. Therefore, a TFT formed using a crystalline semiconductor film is, for example, a full monolithic liquid crystal display device in which peripheral circuits such as a drive circuit are formed on the same substrate together with a plurality of pixels constituting a display region. It is used as a TFT of each pixel, a TFT of a driving circuit, etc., and enables high definition and high speed moving image display of a display device.
  • a thermal annealing method using a furnace annealing furnace As a crystallization method for forming a crystalline semiconductor film, a thermal annealing method using a furnace annealing furnace is known. In order to crystallize an amorphous semiconductor film by a thermal annealing method using this furnace annealing furnace, it is usually necessary to perform a heat treatment at a temperature of 600 ° C. or more for 10 hours or more. Therefore, there is a problem that the substrate material applicable to crystallization is limited to expensive quartz or the like. Further, in order to increase the production efficiency of the semiconductor element substrate, it is necessary to increase the area of the substrate. In recent years, use of a substrate having a size of 1 m or more on one side has been studied. It is very difficult to process a quartz substrate.
  • a crystalline semiconductor film is formed by adding a catalytic element that promotes crystallization to an amorphous semiconductor film and then performing a heat treatment.
  • a catalytic element that promotes crystallization for example, see Patent Document 1.
  • a crystalline semiconductor film is formed by adding a trace amount of an element such as nickel, palladium, lead, or the like to the amorphous semiconductor film and then performing a heat treatment at 550 ° C. for 4 hours.
  • a laser annealing method is known as a technology for imparting high energy only to a semiconductor film by suppressing an increase in the temperature of the substrate.
  • a pulsed laser beam such as an excimer laser is used in an optical system so that a square spot of several cm square or a linear beam having a length of 100 mm or more is formed on the irradiation surface.
  • An example is a method in which annealing is performed by molding and moving the object relative to the irradiation object.
  • Such a laser annealing method makes it possible to use plastic as well as glass having a relatively low strain point as a substrate material for crystallizing an amorphous semiconductor film.
  • a method combining the above crystallization methods that is, after forming a crystalline semiconductor film by adding a catalyst element that promotes crystallization to the amorphous semiconductor film and performing a heat treatment, the crystalline semiconductor
  • a method for improving the crystallinity of a film by a laser annealing method is disclosed (for example, see Patent Document 2).
  • a method of performing laser annealing twice to improve the crystallinity of the crystalline semiconductor film see, for example, Patent Document 3. According to these methods, a crystalline semiconductor film having relatively large crystal grains can be formed as a whole, and the carrier mobility of the crystalline semiconductor film can be further improved.
  • Patent Document 4 a method of manufacturing a crystalline semiconductor film having two different average particle diameters on the same substrate is disclosed (for example, see Patent Document 4).
  • a part of an amorphous silicon film formed on an insulating substrate is crystallized to form a first silicon region.
  • the remaining amorphous silicon film is melted and solidified to form a second silicon region having an average particle size smaller than that of the first silicon region.
  • the first and second silicon regions are crystallized by melting and solidifying while maintaining a state in which the average particle size of the first silicon region is larger than the average particle size of the second silicon region.
  • thin film transistors having different electrical characteristics are formed in two silicon regions having different average particle diameters contained in the crystalline silicon film thus formed.
  • the present invention has been made in view of the above situation, has good position controllability, can be integrated, has two regions with different average particle diameters on the same substrate, has excellent mobility, and It is an object of the present invention to provide a method for manufacturing a semiconductor substrate, a semiconductor substrate, and a display device each including a crystalline semiconductor film having a light-shielding film under a crystalline semiconductor having a small crystal grain size.
  • the inventors of the present invention have studied various methods for forming two types of crystalline semiconductor films having different average grain sizes, and crystallize the semiconductor film during the process of forming the crystalline semiconductor film. Attention was focused on the process (hereinafter referred to as “crystallization process”).
  • the first crystalline semiconductor film is formed by crystallizing the amorphous semiconductor film in a region including a region where at least large crystal grains are required.
  • the second crystalline semiconductor film having an average grain size smaller than that of the first crystalline semiconductor film is formed by melting and solidifying the semiconductor film in the region having the heating promoting layer in the lower layer. It has been found that two types of crystalline semiconductor films having different average grain sizes can be formed.
  • the first crystalline semiconductor film and the second crystalline semiconductor film are maintained while maintaining the average grain size of the crystal grains of the first crystalline semiconductor film larger than the average grain size of the crystal grains of the second crystalline semiconductor film.
  • the crystallinity is improved and the carrier mobility is increased by reducing crystal defects in the first crystalline semiconductor film crystallized only by solid phase growth by melting and solidifying the material.
  • the present invention forms a second crystallized semiconductor with small crystal grains by selectively melting and solidifying only a region having a heating promoting layer in the lower layer after the first crystallization. Then, a first crystalline semiconductor film and a second crystalline semiconductor film having different average grain sizes are formed, respectively, and the first crystalline semiconductor film and the second crystalline semiconductor film are melted and solidified to be recrystallized. It is to become.
  • the “average grain size” means the average size of crystal grains contained in the crystalline semiconductor film, and is based on the back diffusion electron diffraction image method (Electron Backscatter Diffracation). It can be measured by the Patterns method (hereinafter referred to as EBSP method).
  • the method for manufacturing a semiconductor element substrate according to the present invention includes a heating acceleration layer forming step of forming a patterned heating acceleration layer on an insulating substrate, and an insulating film so as to cover the heating acceleration layer and the insulating substrate. Forming an insulating film; forming an amorphous semiconductor film on the insulating film; and crystallizing the amorphous semiconductor film to form a first crystalline semiconductor film. By melting and solidifying the first crystalline semiconductor film on the heating accelerating layer in the first crystallization step, a second crystalline semiconductor film having an average grain size smaller than that of the first crystalline semiconductor film is formed.
  • an amorphous semiconductor film is formed on a substrate in an amorphous film forming step, and an amorphous semiconductor in a region including a region requiring at least large crystal grains in the first crystallization step.
  • the film is solid-phase crystallized to form the first crystalline semiconductor film
  • the second crystallization step only the semiconductor film on the heating acceleration layer is melted and solidified to be crystallized.
  • a second crystalline semiconductor film having a small average grain size is formed.
  • a first crystalline semiconductor film and a second crystalline semiconductor film having different average grain sizes are formed.
  • the first crystal is once formed due to the presence of the heating promoting layer. Since a part of the second crystallization region that has become the crystalline semiconductor film is melted and solidified in the second crystallization step, a part of the second crystallization region that has become the first crystalline semiconductor film is Since the semiconductor film can be formed, the first crystallization region (that is, the formation region of the first crystalline semiconductor film) and the second crystallization region (that is, the formation region of the second crystalline semiconductor film) are formed. The position can be controlled with high accuracy.
  • the interval can be reduced to about 3 ⁇ m, for example. As a result, integration is possible.
  • the first crystalline semiconductor film is maintained while maintaining the average grain size of the crystal grains in the first crystalline semiconductor film larger than the average grain diameter of the crystal grains in the second crystalline semiconductor film.
  • the first crystalline semiconductor film and the second crystalline semiconductor film are recrystallized by melting and solidifying the second crystalline semiconductor film. Thereby, the crystallinity of the first crystalline semiconductor film and the second crystalline semiconductor film is improved and the carrier mobility is increased. Therefore, on the same substrate, the first crystalline semiconductor film and the second crystalline semiconductor film having different average grain sizes and having excellent carrier mobility are formed.
  • the first crystalline semiconductor film and the second crystalline semiconductor film can be used to obtain desired electrical characteristics for each semiconductor element that requires different electrical characteristics.
  • the method of manufacturing a semiconductor element substrate according to the present invention includes other steps as long as it includes the amorphous film forming step, the first crystallization step, the second crystallization step, and the recrystallization step as essential steps. Although it does not need to include the process, it is preferably configured as follows.
  • the amorphous semiconductor film is preferably an amorphous silicon film.
  • the first crystalline semiconductor film and the second crystalline semiconductor film carriers such as continuous grain boundary silicon (hereinafter referred to as “CG silicon”) and polycrystalline silicon (polysilicon) are used.
  • CG silicon continuous grain boundary silicon
  • polysilicon polycrystalline silicon
  • the catalyst element may be added only to the amorphous semiconductor film in a region where large crystal grains are required, or may be added to the entire amorphous semiconductor film. Specifically, it can be simply added by applying a solution containing the catalyst element or vacuum depositing the catalyst element.
  • a catalyst element may be added so that the concentration on the surface of the amorphous semiconductor film is 1 ⁇ 10 10 atoms / cm 2 or more and 1 ⁇ 10 12 atoms / cm 2 or less. preferable.
  • the concentration of the catalytic element on the surface of the amorphous semiconductor film can be easily measured by total reflection X-ray fluorescence analysis.
  • the concentration of the catalytic element on the surface of the amorphous semiconductor film may be a result of measuring the concentration in a region having a depth of several nm (5 to 10 nm) from the surface of the amorphous semiconductor film.
  • the catalytic element is added so that the concentration on the surface of the amorphous semiconductor film is less than 1 ⁇ 10 10 atoms / cm 2, the effect of promoting crystallization of the amorphous semiconductor film by the catalytic element is relatively small. Therefore, the time required to crystallize the amorphous semiconductor film becomes long, and the efficiency of the manufacturing process is lowered.
  • the catalytic element is added so that the concentration on the surface of the amorphous semiconductor film exceeds 1 ⁇ 10 12 atoms / cm 2 , the catalytic element in the second crystalline semiconductor film becomes high in concentration and is attributed to the catalytic element.
  • the carrier mobility of the second amorphous semiconductor film tends to be small. For this reason, when a TFT is formed using the second crystalline semiconductor film, sufficient transistor characteristics may not be obtained.
  • the catalyst element when the catalyst element is added so that the concentration on the surface of the amorphous semiconductor film is 1 ⁇ 10 10 atoms / cm 2 or more and 1 ⁇ 10 12 atoms / cm 2 or less as in the above manufacturing method, Since the crystallization of the amorphous semiconductor film is effectively promoted by the catalytic element, the manufacturing process can be performed efficiently. Furthermore, since the catalyst element in the first crystalline semiconductor film has a low concentration, the density of crystal grains formed due to the catalyst element is relatively low, and the average grain size of the crystal grains is increased. The carrier mobility of the crystalline semiconductor film can be reliably increased. Therefore, it is possible to further improve the efficiency of the manufacturing process and improve the characteristics of the first crystalline semiconductor film. In the case where a TFT is formed using the first crystalline semiconductor film, desired transistor characteristics can be obtained.
  • the catalyst element preferably contains at least one element selected from the group consisting of iron, cobalt, nickel, germanium, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper and gold.
  • the remaining amorphous semiconductor film may be solid-phase grown by heat-treating the amorphous semiconductor film.
  • this manufacturing method it is possible to easily form the second crystalline semiconductor film while at the same time improving the efficiency of the manufacturing process and improving the characteristics of the first crystalline semiconductor film.
  • the amorphous semiconductor film is preferably heat-treated at a temperature of 500 ° C. or higher and 700 ° C. or lower.
  • the solid-phase growth rate of the amorphous semiconductor film becomes relatively slow.
  • the amorphous semiconductor film is heat-treated at a temperature exceeding 700 ° C., in addition to crystal grains that are solid-phase grown due to the catalytic element, relatively small grains that are not attributable to the catalytic element, for example, 0.2 ⁇ m or less. Since crystal grains with a diameter grow, the carrier mobility of the first crystalline semiconductor film tends to be small. For this reason, when a TFT is formed using the first crystalline semiconductor film, sufficient transistor characteristics may not be obtained.
  • the amorphous semiconductor film is heat-treated at a temperature of 500 ° C. or higher and 700 ° C. or lower as in the above manufacturing method, the solid-phase growth rate of the amorphous semiconductor film is increased favorably. Furthermore, the growth of crystal grains not caused by the catalytic element is suppressed, and the carrier mobility of the second crystalline semiconductor film can be reliably increased. Therefore, it is possible to easily form the first crystalline semiconductor film while improving the efficiency of the manufacturing process and improving the characteristics of the first crystalline semiconductor film. In the case where a TFT is formed using the first crystalline semiconductor film, desired transistor characteristics can be obtained.
  • the first step is performed by reflecting or absorbing the laser beam to the region where the crystalline semiconductor film is formed before the amorphous semiconductor film forming step. It is preferable to further include a heating promotion layer forming step of forming a heating promotion layer for promoting heating of the semiconductor film.
  • the heating promoting layer is for accelerating the heating of the region of the first crystalline semiconductor film where the second crystalline semiconductor film is formed by reflecting or absorbing the laser beam.
  • the first crystalline semiconductor film is irradiated with a laser beam to melt and solidify the semiconductor film on the heating acceleration layer.
  • the first crystalline semiconductor film is heated by reflecting or absorbing the laser beam to the region where the second crystalline semiconductor film is formed before the amorphous semiconductor film forming step.
  • the heating promotion layer for promotion, when the amorphous semiconductor film is irradiated with the laser beam in the second crystallization step, the heating promotion layer reflects or absorbs the laser beam, and the heating promotion layer is formed on the heating promotion layer. And the part of the vicinity of it is heated rather than the semiconductor film away from the heating promotion layer, and temperature rises. Accordingly, it is possible to selectively melt and solidify only the portion of the semiconductor film on and near the heating promoting layer and crystallize, so that the second crystalline semiconductor film and the first crystal having different crystal grain sizes are used. It is possible to reliably form the quality semiconductor film.
  • the semiconductor film is a first crystallized silicon film partially including an amorphous silicon film.
  • the amorphous semiconductor film is irradiated with a laser beam having a wavelength of 370 nm to 650 nm. It is preferable to do.
  • the semiconductor film In the second crystallization step, it is preferable to irradiate the semiconductor film with a pulsed or continuous wave laser beam as a laser beam.
  • the laser oscillator of the laser beam since the laser oscillator of the laser beam has a simple structure, no maintenance is required for a long period of time. As a result, it is possible to extend the operation time and reduce the running cost. become.
  • YAG laser yttrium aluminum garnet laser
  • the second harmonic of the YAG laser since the second harmonic of the YAG laser has a wavelength of 532 nm, it becomes possible to selectively melt and solidify only the portion of the semiconductor film on and near the heating promoting layer for crystallization. .
  • the semiconductor film is a crystalline silicon film
  • the second harmonic of the YAG laser since the second harmonic of the YAG laser is less absorbed by crystalline silicon, the heating acceleration layer is heated, so that the silicon film on the heating acceleration layer is It is possible to selectively melt and solidify only the laser condition margin of the second crystallization step.
  • a pulsed laser beam having a linear beam shape on the surface of the first crystalline semiconductor film is applied to the first crystalline semiconductor film while performing step scanning in the width direction of the laser beam.
  • Irradiation is preferred.
  • linear means a rectangular or elliptical elongated shape.
  • the width direction of the laser beam means the short side direction of the laser beam when the laser beam is rectangular, and the short axis direction of the laser beam when the laser beam is elliptical.
  • the “step scanning” is a scanning method in which the irradiation position of the laser beam is moved with a predetermined width for each shot of the pulsed laser beam.
  • the semiconductor film is efficiently and simply crystallized because the semiconductor film is irradiated with a linear laser beam while performing step scanning in the width direction. Therefore, it is particularly effective when the semiconductor film has a large area.
  • the second crystallization step it is preferable to irradiate the first crystalline semiconductor film with a continuous oscillation laser beam while scanning the surface of the first crystalline semiconductor film at a speed of 5 cm / s or more and 3 m / s or less. .
  • the scanning speed of the laser beam is 5 cm / s or more, the semiconductor film is suppressed from being evaporated by receiving excessive energy. Since the scanning speed of the laser beam is 3 m / s or less, the scanning speed of the laser beam is not too high, and a predetermined region of the semiconductor film can be reliably melted and solidified.
  • the heating promotion layer is preferably formed so that the film thickness is 50 nm to 500 nm, and the heating promotion layer is formed so that the film thickness is 50 nm to 300 nm. Further preferred.
  • the heating promotion layer is formed so that the film thickness is smaller than 50 nm, when the semiconductor film is irradiated with the laser beam in the second crystallization process, the reflection or absorption of the laser beam in the heating promotion layer is insufficient. In some cases, it is not possible to selectively melt and solidify only the portion of the semiconductor film on and near the heating promoting layer. On the other hand, if the heating promotion layer is formed so that the film thickness is larger than 500 nm, the step between the region where the heating promotion layer is provided and the region where the heating promotion layer is not provided becomes relatively large. For this reason, the electrodes and wirings are likely to be disconnected due to the steps.
  • the heating promotion layer is formed so that the film thickness is 50 nm or more and 500 nm or less, it is possible to reliably perform selective melting and solidification only on the heating promotion layer and its vicinity in the semiconductor film.
  • the step between the region where the heating promotion layer is provided and the region where the heating promotion layer is not provided is relatively small, it is possible to suppress disconnection of electrodes, wirings, and the like due to the step.
  • the heating promotion layer is formed so that the film thickness is 300 nm or less, disconnection of electrodes, wiring, and the like due to a step between the region where the heating promotion layer is provided and the region where the heating promotion layer is not provided. It is further suppressed.
  • the heating acceleration layer is preferably formed of molybdenum or tungsten.
  • the heating promotion layer containing at least one element of molybdenum and tungsten is difficult to melt in all the steps including the second crystallization step. . Therefore, since the material of the heating acceleration layer is suppressed from diffusing into the second crystalline semiconductor film, the electrical characteristics of the second crystalline semiconductor film are suppressed from being deteriorated due to the heating acceleration layer.
  • the recrystallization step by irradiating the first crystalline semiconductor film and the second crystalline semiconductor film with a laser beam so as to partially melt the first crystalline semiconductor film and the second crystalline semiconductor film, It is preferable to partially melt and solidify the first crystalline semiconductor film and the second crystalline semiconductor film.
  • the amorphous semiconductor film is an amorphous silicon film
  • the first crystalline semiconductor film and the second crystalline semiconductor film are irradiated with a laser beam having a wavelength of 126 nm or more and less than 370 nm. Is preferred.
  • the first crystalline semiconductor film and the second crystalline semiconductor film are partially melted and solidified without melting each part of the first crystalline semiconductor film and the second crystalline semiconductor film. Therefore, it is possible to improve crystallinity without changing the average grain size and crystal orientation of the crystal grains of the first crystalline semiconductor film and the second crystalline semiconductor film.
  • the amorphous semiconductor film is an amorphous silicon film
  • the amorphous semiconductor film is irradiated with a laser beam having a wavelength of 370 nm or more and 650 nm or less to perform recrystallization.
  • the forming step it is preferable to irradiate the first crystalline semiconductor film and the second crystalline semiconductor film with a laser beam having a wavelength of 126 nm or more and less than 370 nm.
  • the first crystalline semiconductor film and the second crystalline semiconductor film are melted and solidified by irradiating the first crystalline semiconductor film and the second crystalline semiconductor film with a pulsed excimer laser beam. May be.
  • a pulsed laser beam having a linear beam shape on the surfaces of the first crystalline semiconductor film and the second crystalline semiconductor film is scanned in the width direction of the laser beam while performing step scanning. It is preferable to melt and solidify the first crystalline semiconductor film and the second crystalline semiconductor film by irradiating the first crystalline semiconductor film and the second crystalline semiconductor film.
  • the first crystalline semiconductor film and the second crystalline semiconductor are irradiated to the first crystalline semiconductor film and the second crystalline semiconductor film while performing step scanning with a linear laser beam in the width direction. It becomes possible to improve the crystallinity by efficiently melting and solidifying the film.
  • the semiconductor element substrate according to the present invention is manufactured by the method for manufacturing a semiconductor element substrate according to the present invention.
  • the first crystalline semiconductor film and the second crystalline semiconductor film formed by the method for manufacturing a semiconductor element substrate according to the present invention have different average grain sizes, and carrier movement Since the electrical characteristics such as degrees differ from each other, by forming a semiconductor element using one of the first crystalline semiconductor film and the second crystalline semiconductor film according to the required electrical characteristics, different electrical characteristics can be obtained. Desired electrical characteristics can be obtained for each semiconductor element that requires characteristics.
  • the semiconductor element substrate having the above structure includes a first thin film transistor having a semiconductor layer formed from a first crystalline semiconductor film and a second thin film transistor having a semiconductor layer formed from a second crystalline semiconductor film. May be.
  • a semiconductor element substrate according to the present invention includes a semiconductor element having a semiconductor layer formed from a first crystalline semiconductor film and an optical sensor having a semiconductor layer formed from a second crystalline semiconductor film. Also good.
  • the semiconductor element has the semiconductor layer formed from the first crystalline semiconductor film and the optical sensor has the semiconductor layer formed from the second crystalline semiconductor film, the carrier of the semiconductor element In the optical sensor, it is possible to suppress the off-leak current in the dark and increase the on / off ratio without reducing the mobility.
  • a semiconductor element having a semiconductor layer formed from a first crystalline semiconductor film and a second crystalline semiconductor film are formed. It is preferable that the heating acceleration layer has a light shielding property.
  • the optical sensor in the optical sensor, it is possible to suppress the off-leak current in the dark and increase the on / off ratio without reducing the carrier mobility of the semiconductor element. Since it functions as a light-shielding film of the optical sensor by having the light-shielding property, it is not necessary to provide the light-shielding film of the optical sensor separately from the heating acceleration layer, and the manufacturing efficiency is increased.
  • the display device according to the present invention includes the semiconductor element substrate according to the present invention.
  • the semiconductor element substrate according to the present invention is also useful in a display device.
  • the display device having the structure includes a first thin film transistor having a semiconductor layer formed from the first crystalline semiconductor film, and a second thin film transistor having a semiconductor layer formed from the crystalline semiconductor film,
  • the channel region of the semiconductor layer is preferably larger than the channel region of the semiconductor layer of the second thin film transistor.
  • the display device includes a display region including a plurality of pixels, the first thin film transistor configures a peripheral circuit provided outside the display region, and the second thin film transistor includes the plurality of pixels. It is preferable that each is provided.
  • the display device preferably includes a thin film transistor having a semiconductor layer formed from the first crystalline semiconductor film and a photosensor having a semiconductor layer formed from the second crystalline semiconductor film.
  • the thin film transistor has the semiconductor layer formed from the first crystalline semiconductor film and the optical sensor has the semiconductor layer formed from the second crystalline semiconductor film, the carrier mobility of the thin film transistor In the optical sensor, the on / off ratio can be increased by suppressing the off-leakage current in the dark without reducing the above.
  • the present invention it is possible to form the first crystalline semiconductor film and the second crystalline semiconductor film having the same average grain size and different electrical characteristics on the same substrate.
  • the first crystalline semiconductor film and the second crystalline semiconductor film can be used to obtain desired electrical characteristics for each semiconductor element that requires different electrical characteristics.
  • a TFT for a peripheral circuit is formed using a first crystalline semiconductor film
  • a TFT for each pixel is formed using a second crystalline semiconductor film.
  • the carrier mobility can be reduced and the threshold voltage variation among the TFTs of each pixel can be suppressed.
  • two TFTs having different crystal grain sizes of the semiconductor layers to be arranged are alternately arranged, the distance between them can be reduced, so that integration is possible.
  • FIG. 1 is a plan view schematically showing a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 is a cross-sectional view schematically showing a thin film transistor on an active matrix substrate constituting a liquid crystal display device according to a first embodiment of the present invention. It is a figure for demonstrating the manufacturing method of the active matrix substrate which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the active matrix substrate which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the active matrix substrate which concerns on the 1st Embodiment of this invention.
  • FIG. 1 is a plan view schematically showing a liquid crystal display device according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • FIG. 3 is a cross-sectional view schematically showing a thin film transistor on an active matrix substrate constituting the liquid crystal display device according to the first embodiment of the present invention.
  • the polarizing plate is not shown, and the driving circuit is not shown in FIG.
  • an active matrix substrate constituting a liquid crystal display device is exemplified as a semiconductor element substrate, and a thin film transistor is exemplified as a semiconductor element constituting the semiconductor element substrate.
  • the liquid crystal display device 1 is a full monolithic display device in which drive circuits 21 and 22 that are peripheral circuits together with a plurality of pixels constituting the display region D are formed on the same substrate.
  • an active matrix substrate 10 that is a semiconductor element substrate, a counter substrate 30 disposed to face the active matrix substrate 10, and a liquid crystal provided between the active matrix substrate 10 and the counter substrate 30.
  • the layer 31 is provided with a sealing material 32 provided in a frame shape so as to adhere the active matrix substrate 10 and the counter substrate 30 and enclose the liquid crystal layer 31.
  • the active matrix substrate 10 and the counter substrate 30 are formed in, for example, a rectangular shape, provided with alignment films 33 and 34 on the surface on the liquid crystal layer 31 side, and polarizing plates 35 and 34 on the surface opposite to the liquid crystal layer 31. 36 are provided.
  • the liquid crystal layer 31 is made of a nematic liquid crystal material having electro-optical characteristics.
  • the sealing material 32 is formed in a rectangular frame shape so as to extend along each side of the counter substrate 30.
  • a display area D for displaying an image is defined in an area where the active matrix substrate 10 and the counter substrate 30 overlap each other inside the sealing material 32.
  • the display area D is configured by arranging a plurality of pixels, which are the minimum unit of an image, in a matrix.
  • the four-side frame region F in which the sealing material 32 is disposed, and one side of the active matrix substrate 10 (that is, the lower side in FIG. 1) are the counter substrate.
  • a terminal region T exposed from 30 is defined.
  • a flexible printed circuit board (Flexible Printed Circuit, hereinafter referred to as “FPC”) 37 is connected to the terminal region T, and an image display signal or the like is input from the external circuit to the liquid crystal display device 1 through the FPC 37. It is comprised so that.
  • the active matrix substrate 10 includes a plurality of gate wirings (not shown) that extend in parallel to each other on a substrate having an insulating surface such as a glass substrate or a plastic substrate, and each gate.
  • An interlayer insulating film provided so as to cover the wiring, and a plurality of source wirings provided on the interlayer insulating film so as to extend in parallel to each other in a direction intersecting with each gate wiring.
  • the gate wiring and the source wiring are provided in a lattice shape as a whole so as to partition each pixel.
  • a plurality of pixel electrodes are provided in a matrix between the lattices of the gate wiring and the source wiring.
  • the active matrix substrate 10 includes a TFT (hereinafter referred to as “pixel TFT”) 20B that is provided for each pixel and is a first thin film transistor connected to the pixel electrode. As shown in FIG. 1, the active matrix substrate 10 is provided with a gate drive circuit 21 and a source drive circuit 22 in the frame region F as a monolithic circuit. The gate drive circuit 21 and the source drive circuit 22 are provided.
  • the pixel TFT 20B and the peripheral circuit TFT 20A are n-channel TFTs, and are formed on the substrate 11 via a base coat film 13 provided for the purpose of preventing diffusion of impurities, as shown in FIG. Further, in each pixel, the heating promotion layer 12 is provided between the substrate 11 and the base coat film 13 so as to include a region where the pixel TFT 20B is provided.
  • the peripheral circuit TFT 20A includes a first crystalline silicon layer 14A that is an island-shaped semiconductor layer having a channel region 14c, a source region 14s, and a drain region 14d provided on the base coat film 13.
  • the first crystalline silicon layer 14A functions as a semiconductor layer of the peripheral circuit TFT 20A, and includes a channel region 14c overlapping the gate electrode 16a, and a source region 14s and a drain region 14d provided on both sides of the channel region 14c. It is configured.
  • the peripheral circuit TFT 20A includes a gate electrode 16a provided on the channel region 14c via the gate insulating film 15, and an interlayer insulating film 17 provided so as to cover the gate electrode 16a.
  • the peripheral circuit TFT 20A has lead electrodes 19s and 19d drawn from the source region 14s and the drain region 14d onto the interlayer insulating film 17 through contact holes 18 formed in the gate insulating film 15 and the interlayer insulating film 17, respectively.
  • the first crystalline silicon layer 14A is made of polycrystalline silicon having a relatively large average grain size such as CG silicon, and the average grain size of the crystal grain is, for example, 3.0 ⁇ m or more.
  • An n-type impurity element such as phosphorus (P) is ion-implanted into the source region 14s and the drain region 14d.
  • An LDD (Lightly Doped Drain) region in which an impurity element is ion-implanted at a low concentration may be formed between each of the source region 14s and the drain region 14d and the channel region 14c.
  • the gate electrode 16a is connected to a gate wiring, and contact holes 18 reaching the source region 14s and the drain region 14d are formed in the gate insulating film 15 and the interlayer insulating film 17, respectively.
  • the lead electrodes 19s and 19d are connected to the source region 14s and the drain region 14d through the contact holes 18, respectively.
  • the extraction electrode 19s on the source region 14s side is connected to the source wiring, and the extraction electrode 19d on the drain region 14d side is connected to the gate wiring of the pixel TFT, for example.
  • the channel region 14c of the peripheral circuit TFT 20A is formed in a relatively large rectangular shape having a length of about 20 ⁇ m and a width of about 20 ⁇ m, for example. That is, the channel region 14c of the first crystalline silicon layer 14A is formed to be larger than the channel region 14c of the second crystalline silicon layer 14B.
  • the pixel TFT 20B is configured in the same manner as the peripheral circuit TFT 20A, and includes a second crystalline silicon layer 14B that is an island-like semiconductor layer provided on the base coat film 13 and having a channel region 14c, a source region 14s, and a drain region 14d. ing.
  • the second crystalline silicon layer 14B functions as a semiconductor layer of the pixel TFT 20B, and includes a channel region 14c overlapping the gate electrode 16a, and a source region 14s and a drain region 14d provided on both sides of the channel region 14c. Has been.
  • the pixel TFT 20B includes a gate electrode 16b provided on the second crystalline silicon layer 14B via the gate insulating film 15, an interlayer insulating film 17 provided so as to cover the gate electrode 16b, and an interlayer insulating film 17 On the top, there are provided extraction electrodes 19s and 19d respectively extracted from the source region 14s and the drain region 14d.
  • the second crystalline silicon layer 14B is made of polycrystalline silicon.
  • An n-type impurity element such as phosphorus (P) is ion-implanted into the source region 14s and the drain region 14d.
  • An LDD (Lightly Doped Drain) region in which an impurity element is ion-implanted at a low concentration may be formed between each of the source region 14s and the drain region 14d and the channel region 14c.
  • the gate electrode 16b is connected to a gate wiring, and contact holes 25 reaching the source region 27s and the drain region 27d are formed in the gate insulating film 15 and the interlayer insulating film 17, respectively.
  • the lead electrodes 26s and 26d are connected to the source region 27s and the drain region 27d through the contact holes 25, respectively.
  • the lead electrode 26s on the source region 27s side is connected to the source wiring, and the lead electrode 26d on the drain region 27d side is connected to the pixel electrode.
  • the channel region 27c of the pixel TFT 20B is formed in, for example, a relatively small rectangular shape having a length of about 4 ⁇ m and a width of about 4 ⁇ m. That is, the channel region 27c of the second crystalline silicon layer 14B is formed to be smaller than the channel region 14c of the first crystalline silicon layer 14A. And the average particle diameter of the crystal grain in the 2nd crystalline silicon layer 14B is 0.1 micrometer or more and about 1.0 micrometer or less, for example.
  • the counter substrate 30 includes a black matrix (not shown) provided in a lattice shape corresponding to a gate wiring and a source wiring on a substrate having an insulating surface such as a glass substrate or a plastic substrate, and the black matrix.
  • a black matrix (not shown) provided in a lattice shape corresponding to a gate wiring and a source wiring on a substrate having an insulating surface such as a glass substrate or a plastic substrate, and the black matrix.
  • a plurality of color filters including a red layer, a green layer, and a blue layer, and a black matrix and a common color filter that are provided so as to cover each color filter.
  • An electrode and a photo spacer provided in a columnar shape on the common electrode are provided.
  • 4 to 18 are views for explaining the method of manufacturing the active matrix substrate according to the first embodiment of the present invention.
  • the active matrix substrate 10 and the counter substrate 30 are respectively manufactured, and alignment films 33 and 34 are formed on both the substrates 10 and 30, respectively.
  • the active matrix substrate 10 and the counter substrate 30 are bonded to each other via the seal material 32, and the liquid crystal layer 31 is sealed between the active matrix substrate 10 and the counter substrate 30 by the seal material 32.
  • the FPC 37 is connected.
  • FIGS. 4 to 18 are cross-sectional views for explaining the manufacturing method of the active matrix substrate 10 according to the first embodiment of the present invention. 4 to 18 show cross sections of the portions where the peripheral circuit TFT 20A and the pixel TFT 20B are formed, as in FIG.
  • the manufacturing of the active matrix substrate 10 such as the manufacturing of the counter substrate 30, the formation of the alignment films 33 and 34, the bonding of the active matrix substrate 10 and the counter substrate 30, the bonding of the polarizing plates 35 and 36, and the connection of the FPC 37. Since other methods can be performed using a known method, the description thereof is omitted here.
  • the manufacturing method of the active matrix substrate 10 of this embodiment includes a heating acceleration layer forming step, an insulating film forming step, an amorphous film forming method, and a method for forming a crystalline semiconductor film for forming the peripheral circuit TFT 20A and the pixel TFT 20B.
  • a semiconductor film forming step, a first crystallization step, a second crystallization step, and a recrystallization step are provided.
  • a molybdenum film 23 is formed by sputtering, for example, on a substrate 11 having an insulating surface such as a glass substrate or a plastic substrate.
  • the molybdenum film 23 is patterned by photolithography to form the heating promotion layer 12 that reflects the laser beam so as to include a region for forming the pixel TFT 20B as shown in FIG.
  • the heating promotion layer 12 made of a tungsten film that absorbs a laser beam may be formed.
  • the heating promoting layer 12 is for accelerating the heating of the region of the first crystalline silicon film 24A where the second crystalline silicon film 24B is formed by reflecting or absorbing the laser beam.
  • the heating promotion layer 12 is formed so that the film thickness becomes smaller than 50 nm, the laser beam in the heating promotion layer 12 is irradiated when the silicon film is irradiated in the second crystallization step to be performed later. In some cases, the reflection is insufficient, and it is not possible to selectively melt and solidify only the heating promotion layer 12 and its vicinity in the silicon film.
  • the heating promotion layer 12 is formed so that the film thickness is larger than 500 nm, the step between the region where the heating promotion layer 12 is provided and the region where the heating promotion layer 12 is not provided becomes relatively large. Therefore, the stepped electrodes 19s and 19d to be formed later are easily cut off due to the step.
  • the heating promotion layer 12 it is preferable to form the heating promotion layer 12 with a thickness of 50 nm or more and 500 nm or less. Further, it is more preferable that the lead electrodes 19s and 19d are formed to a thickness of 300 nm or less from the viewpoint of satisfactorily suppressing the disconnection of the extraction electrodes 19s and 19d.
  • a silicon dioxide film is formed on the substrate on which the heating promotion layer 12 has been formed by using a CVD (Chemical Vapor Deposition) method using TEOS (Tetra EthOxy Silane) as a source gas.
  • a base coat film 13 that is an insulating film is formed to a thickness of, for example, about 100 nm so as to cover the surface of the patterned heating promotion layer 12 and the substrate 11.
  • a silicon nitride film, a silicon oxynitride film, or the like may be formed as the base coat film 13, or a laminate of these films may be formed.
  • an amorphous silicon film 24 as an amorphous semiconductor film is formed to about 50 nm by an LPCVD (Low Pressure CVD) method using SiH 4 as a source gas, for example.
  • LPCVD Low Pressure CVD
  • SiH 4 SiH 4
  • ⁇ First crystallization step> in the amorphous silicon film 24 formed in the amorphous semiconductor film forming process, at least a region including a part of a region where a large crystal grain is necessary is formed, for example, by resistance heating as shown in FIG. Further, nickel (Ni) 26 is added as a catalyst element for promoting crystallization of the amorphous silicon film 24 by vapor deposition.
  • the nickel 26 is shown in a film shape, but actually, the nickel 26 is scattered in a granular form on the surface of the amorphous silicon film 24. Further, it may be added to the entire surface of the amorphous silicon film 24.
  • catalyst elements include iron (Fe), cobalt (Co), germanium (Ge), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium ( Ir), platinum (Pt), copper (Cu), gold (Au), and the like.
  • a metal compound may be added.
  • the surface concentration of nickel 26 can be measured by total reflection X-ray fluorescence analysis.
  • nickel 26 is added so that the concentration on the surface of the amorphous silicon film 24 is less than 1 ⁇ 10 10 atoms / cm 2 , the crystallization of the amorphous silicon film 24 by the nickel 26 is promoted. Since the effect is relatively small, the time required to crystallize the amorphous silicon film 24 becomes long, and the efficiency of the manufacturing process decreases.
  • nickel 26 in the amorphous silicon film 24 is obtained when heat treatment described later is performed.
  • the nickel 26 is preferably added so that the concentration on the surface of the amorphous silicon film 24 is 1 ⁇ 10 10 atoms / cm 2 or more and less than 1 ⁇ 10 12 atoms / cm 2 .
  • the amorphous silicon film 24 is solid-phase grown by applying crystallization energy to the amorphous silicon film 24. More specifically, a substrate in which nickel 26 is added to the amorphous silicon film 24 is carried into an electric furnace (heat treatment furnace), and the electric furnace is used to perform the substrate (that is, amorphous) in a nitrogen atmosphere. The silicon film 24) is heat treated. By this heat treatment, nickel 26 on the surface of the amorphous silicon film 24 is diffused into the amorphous silicon film 24, and relatively large crystal grains are formed in the amorphous silicon film 24 due to the diffused nickel 26. Solid phase growth is performed.
  • the amorphous silicon film 24 is heat-treated at a temperature lower than 500 ° C.
  • the solid-phase growth rate of the amorphous silicon film 24 becomes relatively slow.
  • the amorphous silicon film 24 is heat-treated at a temperature exceeding 700 ° C., in addition to the crystal grains that are solid-phase grown due to the nickel 26, it is relatively small, for example, 0.2 ⁇ m or less that does not originate from the nickel 26. Since crystal grains having a grain size grow, when a TFT is formed using the crystalline silicon film formed thereby, there are cases where sufficient transistor characteristics cannot be obtained. Therefore, it is preferable to heat treat the amorphous silicon film 24 at a temperature of 500 ° C. or higher and 700 ° C. or lower.
  • the amorphous silicon film 24 is solid-phase grown, and as shown in FIG. 8, the first crystal that is the first crystalline semiconductor film having a large average grain size is obtained. A porous silicon film 24A is formed.
  • ⁇ Second crystallization step> For the first crystalline silicon film 24A crystallized in the first crystallization step (which may include an amorphous region in part), as shown in FIG. 9, the surface of the crystalline silicon film 24A The first crystalline silicon film 24A is irradiated by irradiating a pulsed laser beam 29 having a linear shape with a step scan in the width direction of the laser beam 29 (direction indicated by an arrow in the figure). 10 (that is, the region on the heating promoting layer 12 and the vicinity of the heating promoting layer 12 in the first crystalline silicon film 24A) is melt-solidified and crystallized. As shown in FIG. A second crystalline silicon film 24B, which is a second crystalline semiconductor film smaller than the one crystalline silicon film 24A, is formed.
  • the aspect ratio of the laser beam 29 is preferably 2 or more, and more preferably 10 or more and 10,000 or less. If the laser beam 29 is shaped in such a straight line, it is possible to ensure an energy density sufficient to anneal the amorphous silicon film 24 sufficiently. By irradiating the amorphous silicon film 24 with such a linear laser beam 29 while step-scanning in the width direction, the crystalline silicon film 24A can be efficiently and easily crystallized. is there.
  • the laser beam 29 is preferably a laser beam under a condition for crystallizing only the crystalline silicon film 24A on the heating promotion layer 12 and in the vicinity of the heating promotion layer 12, for example, a wavelength of 370 nm or more and 650 nm or less. A laser beam is preferred.
  • the amorphous semiconductor film above the region provided with the light-shielding layer that reflects or absorbs the laser beam is crystallized, and the other regions are amorphous.
  • a method has been proposed in which a semiconductor is left amorphous.
  • the absorption coefficient of the amorphous silicon film with respect to the second harmonic of the YAG laser is 9.
  • the energy of laser irradiation is a ratio of being absorbed inside the amorphous semiconductor layer, which is relatively high at about 31 ⁇ 10 4 cm ⁇ 1. Can be said to be expensive. Therefore, in order to clearly separate the crystallized region from the non-crystallized region only by the presence or absence of the light-shielding layer that reflects or absorbs the underlying laser beam, the appropriate laser irradiation conditions are very narrow and stable production is achieved. It can be difficult to do.
  • the second crystallization region is mainly not crystallized in the first crystallization step
  • the second harmonic of a YAG laser having a wavelength of 532 nm when the second harmonic of a YAG laser having a wavelength of 532 nm is used,
  • the absorption coefficients of the first crystalline silicon film 24A and the amorphous silicon film 24 with respect to the second harmonic are about 2.74 ⁇ 10 4 cm ⁇ 1 and about 9.31 ⁇ 10 4 cm ⁇ 1 , respectively. Since the first crystalline silicon film is less likely to be absorbed, the amorphous silicon film 24 can be selectively melted and solidified in the second crystallization step.
  • the second harmonic of the YAG laser is absorbed by the first crystalline silicon film 24A. Therefore, only the crystalline silicon film on the heating acceleration layer 12 can be efficiently and selectively melted and solidified.
  • the entire surface is amorphous semiconductor by performing laser irradiation with a second harmonic of a YAG laser having a large absorption coefficient difference between the crystalline semiconductor and the amorphous semiconductor, for example, 532 nm.
  • a second harmonic of a YAG laser having a large absorption coefficient difference between the crystalline semiconductor and the amorphous semiconductor, for example, 532 nm.
  • a second harmonic of a YAG laser that is a pulsed solid laser beam can be used.
  • the second harmonic of this YAG laser has a wavelength of 532 nm, it is difficult to be absorbed by the crystalline silicon film. Accordingly, when the crystalline silicon film 24A is irradiated with the YAG laser, only the crystalline silicon film 24A on the heating promotion layer 12 and in the vicinity of the heating promotion layer 12 can be crystallized more efficiently.
  • the YAG laser beam is a solid-state laser beam, and its laser oscillator has a simple structure, so no maintenance is required for a long time. As a result, the operating time is extended and the running cost is reduced. Is possible.
  • the scanning speed of the laser beam 29 is slower than 5 cm / s, the first crystalline silicon film 24A receives excessive energy and evaporates, and the first crystalline silicon film 24A cannot be crystallized well. There is.
  • the scanning speed of the laser beam 29 is faster than 3 m / s, the scanning speed of the laser beam 29 is too high, and the amorphous silicon film 24 may not be reliably melted and solidified.
  • the scanning speed of the laser beam 29 is preferably 5 cm / s or more and 3 m / s or less.
  • a pulse oscillation laser in which the beam shape on the surface of each of the crystalline silicon films 24A and 24B is linear.
  • the beam 27 is irradiated while performing step scanning in the width direction of the laser beam 27 (direction indicated by an arrow in the figure).
  • first crystalline silicon film 24A and the second crystalline silicon film 24A are maintained while maintaining the average grain size of the first crystalline silicon film 24A larger than the average grain diameter of the crystal grains in the second crystalline silicon film 24B.
  • the crystalline silicon film 24B can be melted and solidified, and the respective crystalline silicon films 24A and 24B can be recrystallized.
  • the crystalline silicon films 24A and 24B are efficiently and easily crystallized by irradiating the crystalline silicon films 24A and 24B while step-scanning the linear laser beam 27 in the width direction. It becomes possible.
  • the laser beam 27 reliably maintains the state in which the average grain size of the crystal grains in the first crystalline silicon film 24A is larger than the average grain size of the crystal grains in the second crystalline silicon film 24B. From the viewpoint that the crystalline silicon film 24A and the second crystalline silicon film 24B are recrystallized, the laser beam is under a condition for partially melting the first crystalline silicon film 24A and the second crystalline silicon film 24B. Is preferred. For example, a laser beam with a wavelength of 126 nm or more and less than 370 nm is preferable. Therefore, as the laser beam 27, for example, a XeCl excimer laser beam having a wavelength of 308 nm is used.
  • melting proceeds from the surfaces of the first crystalline silicon film 24A and the second crystalline silicon film 24B, but in a region at a distance of about several nm from the interface with the base coat film 13.
  • the first crystalline silicon film 24A and the second crystalline silicon film 24B are not melted.
  • the first crystalline silicon film 24A and the second crystalline silicon film 24B are partially melted and solidified and recrystallized, whereby crystal grains in the first crystalline silicon film 24A and the second crystalline silicon film 24B are obtained.
  • the crystallinity of each of these crystalline silicon films 24A and 24B can be improved without changing the average particle diameter of the above.
  • the first crystalline silicon film 24 ⁇ / b> A and the second crystalline silicon film 24 ⁇ / b> B can be formed on the substrate 11.
  • the first crystalline silicon film 24 ⁇ / b> A and the average crystalline grain diameter are different from each other and each has excellent carrier mobility. .
  • the first crystalline silicon film 24A and the second crystalline silicon film 24B are patterned by photolithography to form a channel region 14c, a source region 14s, and a drain region 14d, respectively, as shown in FIGS.
  • the first crystalline silicon layer 14A ′ is formed from the first crystalline silicon film 24A
  • the second crystalline silicon layer 14B ′ is formed from the second crystalline silicon film 24B so as to have regions.
  • first crystalline silicon layer 14A ′ and the second crystalline silicon layer 14B ′ have the same shape as shown in FIG. 12, and are formed so that only the size of the region to be the channel region 14c is different. To do.
  • the first crystalline silicon layer is formed on the substrate on which the first crystalline silicon layer 14A ′ and the second crystalline silicon layer 14B ′ are formed by an APCVD (Atmospheric Pressure CVD) method using TEOS as a source gas.
  • An oxide film such as a silicon dioxide film is formed so as to cover 14A ′ and the second crystalline silicon layer 14B ′, and a gate insulating film 15 is formed to have a thickness of about 100 nm, for example, as shown in FIG.
  • Examples of the gate insulating film 15 include a silicon nitride film and a silicon oxynitride film in addition to the silicon dioxide film, and a laminate of these films may be used.
  • an aluminum film 38 is formed to a thickness of, for example, about 300 nm on the substrate on which the gate insulating film 15 has been formed by sputtering. Thereafter, the aluminum film 38 is patterned by photolithography to form gate electrodes 16a and 16b as shown in FIG. At this time, a gate wiring is also formed simultaneously from the aluminum film 38.
  • the gate electrodes 16a and 16b may be formed of a refractory metal material such as tungsten, molybdenum, tantalum, and titanium, or a film of a nitride of these refractory metal materials, instead of aluminum, You may form from the laminated body in which these films
  • a refractory metal material such as tungsten, molybdenum, tantalum, and titanium
  • an n-type impurity element such as phosphorus is ion-implanted into the first crystalline silicon layer 14A ′ and the second crystalline silicon layer 14B ′ using the gate electrodes 16a and 16b as a mask.
  • activation annealing is performed in an electric furnace, whereby the source region 14s and the drain region 14d are formed in regions where the gate electrodes 16a and 16b do not overlap in the first crystalline silicon layer 14A ′ and the second crystalline silicon layer 14B ′.
  • channel regions 14c are formed in regions where the gate electrodes 16a and 16b overlap.
  • the arrow in FIG. 17 has shown the direction which inject
  • a silicon nitride film or the like is formed on the substrate on which the crystalline silicon layers 14A and 14B are formed by the APCVD method so as to cover the gate electrodes 16a and 16b, as shown in FIG.
  • the insulating film 17 is formed to a thickness of about 500 nm, for example.
  • the interlayer insulating film 17 and the gate insulating film 15 are patterned by photolithography to penetrate the interlayer insulating film 17 and the gate insulating film 15 over the source regions 14s and 27s and the drain regions 14d and 27d as shown in FIG. Contact holes 18 and 25 are formed, respectively.
  • a titanium film, an aluminum film, and a titanium film are sequentially formed by sputtering on the substrate in which the contact hole 18 is formed in the interlayer insulating film 17 and the gate insulating film 15 to form a metal laminate.
  • the electrode stacks 19s, 19d, 26s, and 26d are formed by patterning the metal laminate.
  • the peripheral circuit TFT 20A and the pixel TFT 20B shown in FIG. 3 are formed in this way to realize ohmic contact between the extraction electrodes 26s, 26d and the source region 27s and the drain region 27d through the contact hole 25. Is done.
  • the source wiring is simultaneously formed from the metal laminate.
  • the extraction electrodes 19s, 19d, 26s, and 26d may be formed of a single film such as tungsten, titanium, and aluminum instead of the titanium film, the aluminum film, and the laminate of the titanium film.
  • a metal laminate other than a laminate of an aluminum film and a titanium film may be used.
  • a transparent conductive film such as an ITO (Indium (Tin Oxide) film is formed on the substrate on which the extraction electrodes 19s, 19d, 25s, and 26d are formed by sputtering, and the transparent conductive film is formed by photolithography.
  • the pixel electrode is formed by patterning.
  • the active matrix substrate 10 can be manufactured as described above.
  • the amorphous silicon film 24 is formed on the substrate 11 in the amorphous semiconductor film formation step, and the amorphous silicon film is formed in the first crystallization step.
  • a region for forming the first crystalline silicon layer 14A in 24 is crystallized by solid phase growth to form a first crystalline silicon film 24A.
  • the first crystalline silicon film 24A is melted and solidified to form the second crystalline silicon film 24B having an average grain size smaller than that of the first crystalline silicon film 24A. It is said. Accordingly, it is possible to form the first crystalline silicon film 24A and the second crystalline silicon film 24B having different average grain sizes.
  • the first crystallization process temporarily causes the first crystallization step to occur due to the presence of the heating acceleration layer 12.
  • a part of the second crystallization region which becomes the single crystalline silicon film 24A is melted and solidified in the second crystallization step. Accordingly, a part of the second crystallized region that has become the first crystalline silicon film 24A can be used as the second crystalline silicon film 24B, and thus the first crystallized region (that is, the first crystalline silicon film 24B).
  • the formation positions of the silicon film 24A formation region) and the second crystallization region (that is, the formation region of the second crystalline silicon film 24B) can be accurately controlled. Therefore, when two TFTs (that is, the peripheral circuit TFT 20A and the pixel TFT 20B) having different crystal grain sizes of the semiconductor layers to be arranged are alternately arranged, the interval can be reduced to, for example, about 3 ⁇ m. As a result, integration is possible.
  • the first crystalline silicon film 24A is maintained in a state where the average grain size of the crystal grains is larger than the average grain size of the crystal grains in the second crystalline silicon film 24B.
  • the first crystalline silicon film 24A and the second crystalline silicon film 24B are recrystallized by melting and solidifying the silicon film 24A and the second crystalline silicon film 24B. Accordingly, the crystallinity of the first crystalline silicon film 24A and the second crystalline silicon film 24B can be improved and the carrier mobility can be increased.
  • the first crystalline silicon film 24 ⁇ / b> A and the second crystalline silicon film 24 ⁇ / b> B can be formed on the same substrate 11.
  • peripheral circuit TFT 20A is formed using the first crystalline silicon film 24A and the pixel TFT 20B is formed using the second crystalline silicon film 24B, it is possible to suppress a decrease in carrier mobility in the peripheral circuit TFT 20A. In addition, variation in threshold voltage between the pixel TFTs 20B can be suppressed. Therefore, since the desired electrical characteristics can be given to the peripheral circuit TFT 20A and the pixel TFT 20B that require different electrical characteristics, it is possible to realize the display device 1 that can display stably with little variation in luminance and color. it can.
  • the first crystalline silicon film 24A and the second crystalline silicon film 24B are formed under the following conditions, and the peripheral circuit TFT 20A and the second crystalline material are formed using the first crystalline silicon film 24A.
  • Fifty pixel TFTs 20B were produced using the silicon film 24B.
  • the peripheral circuit TFT 20A manufactured in this example has a channel region 14c having a rectangular shape with a length of 20 ⁇ m and a width of 20 ⁇ m
  • the pixel TFT 20B has a rectangular shape with a channel region 14c of a length of 4 ⁇ m and a width of 4 ⁇ m.
  • the patterned heating promotion layer 12 was formed on the glass substrate 11 to a thickness of about 150 nm.
  • a silicon dioxide film having a thickness of 100 nm was formed as the base coat film 13 so as to cover the surfaces of the glass substrate 11 and the heating promotion layer 12.
  • an amorphous silicon film 24 was formed to a thickness of 50 nm on the base coat film 13.
  • the concentration of the region from the surface of the amorphous silicon film 24 to a depth of about several nm (5 nm to 10 nm) is about 5 ⁇ 10 10 atoms / cm 2.
  • Nickel 26 was added to the amorphous silicon film 24 as a catalyst element. Then, the substrate was heat-treated at 600 ° C. for 1 hour in an electric furnace in a nitrogen atmosphere to form a first crystalline silicon film 24A.
  • the pulsed YAG laser beam 29 was shaped so that the beam shape on the surface of the first crystalline silicon film 24A was a rectangular linear shape having a length of about 100 mm and a width of about 45 ⁇ m.
  • the first crystalline silicon film 24A was irradiated with the second harmonic of the YAG laser while performing step scanning so that the laser beam 29 was moved with a width of 2 ⁇ m for each pulse oscillation shot.
  • the energy applied to the laser oscillator that outputs the second harmonic of the pulsed YAG laser was set to 30 W.
  • the second crystalline silicon film 24B was formed by melting and solidifying the first crystalline silicon film 24A on the heating promoting layer 12 and in the region of 500 nm around the heating promoting layer 12 to be crystallized.
  • a pulsed XeCl excimer laser beam 27 is applied so that the beam shapes on the surfaces of the first crystalline silicon film 24A and the second crystalline silicon film 24B are rectangular straight lines having a length of about 125 mm and a width of about 0.4 mm. Molded. Then, the first crystalline silicon film 24A and the second crystalline silicon film 24B are irradiated while step scanning so that the laser beam 27 is moved with a width of 20 ⁇ m for each pulse oscillation shot, and the first crystalline silicon film is irradiated. The film 24A and the second crystalline silicon film 24B were recrystallized.
  • the output of the XeCl excimer laser beam 27 was set so that the energy density applied to the surfaces of the first crystalline silicon film 24A and the second crystalline silicon film 24B was 350 mJ / cm 2 .
  • the melting progressed from the surfaces of the first crystalline silicon film 24A and the second crystalline silicon film 24B, but the first crystalline silicon film 24A and the second crystalline material in the region of 5 nm from the interface with the base coat film 13 were obtained.
  • the silicon film 24B was not melted.
  • the gate insulating film 15 was formed to a thickness of 100 nm, and the gate electrodes 16a and 16b were formed from an aluminum film to a thickness of 300 nm. Further, phosphorus is ion-implanted into the first crystalline silicon layer 14A and the second crystalline silicon layer 14B, thereby forming the source region 14s and the drain region 14d. Further, the interlayer insulating film 17 was formed to a thickness of 500 nm, and the extraction electrodes 19 s and 19 d were formed from the lower layer to a titanium film of 100 nm, an aluminum film of 300 nm, and a titanium film of 100 nm.
  • the average grain size of the crystal grains was measured by the EBSP method.
  • the average grain size of the first crystalline silicon film 24A after the first crystallization step was about 4.0 ⁇ m.
  • the average grain size of the crystal grains in the second crystalline silicon film 24B is about 0.3 ⁇ m, and the average grain size of the crystal grains in the first crystalline silicon film 24A is about 4. It remained unchanged at 0 ⁇ m.
  • the average grain size of the crystal grains in the first crystalline silicon film 24A is about 4.0 ⁇ m, and the average grain size of the crystal grains in the second crystalline silicon film 24B is about 0.00 mm. It was 3 ⁇ m.
  • peripheral circuit TFT 20A and pixel TFT 20B were subjected to IV measurement using a TFT electrical property measuring instrument to measure carrier mobility and variation in threshold voltage.
  • the carrier mobility was 370 cm 2 / V ⁇ s, and the variation of the 50 threshold voltages was relatively large at 0.15 V.
  • the carrier mobility was 180 cm 2 / V ⁇ s, and the variation in the 50 threshold voltages was relatively small at 0.05V.
  • the first crystalline silicon film 24A and the second crystalline silicon film 24B having different average grain sizes from each other by the first crystallization process and the second crystallization process, and further recrystallize.
  • the first crystalline silicon film 24A maintains a state in which the average grain size of the crystal grains is larger than the average grain size of the crystal grains in the second crystalline silicon film 24B. It can be seen that the crystallinity of the 24A and the second crystalline silicon film 24B can be improved.
  • peripheral circuit TFT 20A high carrier mobility can be obtained in the peripheral circuit TFT 20A by forming the peripheral circuit TFT 20A using the first crystalline silicon film 24A and the pixel TFT 20B using the second crystalline silicon film 24B. Further, it can be seen that excellent carrier mobility can be given to both the peripheral circuit TFT 20A and the pixel TFT 20B, and in particular, variation in threshold voltage between the pixel TFTs 20B can be reduced.
  • FIG. 19 is a cross-sectional view schematically showing an optical sensor on an active matrix substrate constituting a liquid crystal display device according to a second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the configuration of the liquid crystal display device is the same as that described in the first embodiment, and a detailed description thereof is omitted here.
  • an active matrix substrate constituting a liquid crystal display device will be described as an example of the semiconductor element substrate.
  • a thin film transistor and an optical sensor will be described as examples of semiconductor elements constituting the semiconductor element substrate.
  • the active matrix substrate 10 includes, in addition to the peripheral circuit TFT 20A and the pixel TFT 20B, a photodiode 20C that is a photosensor that functions as a touch sensor for each pixel or a predetermined number of pixel groups. Is provided.
  • the remaining configuration of the active matrix substrate 10 of the present embodiment is the same as that of the first embodiment described above.
  • the photodiode 20C has a PIN structure, and is formed on the base coat film 13 so as to overlap the heating promotion layer 12 in the same manner as the pixel TFT 20B described above.
  • the heating promotion layer 12 has a light shielding property and functions as a light shielding film of the photodiode 20C. Therefore, in the manufacturing method of the active matrix substrate 10 to be described later, it is not necessary to provide the light shielding film of the photodiode 20C separately from the heating promotion layer 12, and the manufacturing efficiency is improved.
  • the photodiode 20C includes an intrinsic semiconductor region 14i, an n-type semiconductor region 14n, and a second crystalline silicon layer 14C that is an island-shaped semiconductor layer having a p-type semiconductor region 14p provided on the base coat film 13. Yes.
  • the photodiode 20C includes an insulating film 15 and an interlayer insulating film 17 provided so as to cover the second crystalline silicon layer 14C, and an n-type semiconductor region 14n and a p-type semiconductor region 14p on the interlayer insulating film 17, respectively. Extracted extraction electrodes 19n and 19p are provided.
  • the second crystalline silicon layer 14C includes an intrinsic semiconductor region 14i provided in the central portion, and an n-type semiconductor region 14n and a p-type semiconductor region 14p provided on both sides of the intrinsic semiconductor region 14i.
  • the second crystalline silicon layer 14C is made of the same polycrystalline silicon as the second crystalline silicon layer 14B of the pixel TFT 20B described above.
  • An n-type impurity element such as phosphorus is ion-implanted in the n-type semiconductor region 14n.
  • a p-type impurity element such as boron is ion-implanted into the p-type semiconductor region 14p.
  • Contact holes 28 reaching the n-type semiconductor region 14 n and the p-type semiconductor region 14 p are formed in the insulating film 15 and the interlayer insulating film 17, and the lead electrodes 19 n and 19 p are connected to n through the contact holes 28.
  • the n-type semiconductor region 14n and the p-type semiconductor region 14p are connected to each other.
  • the intrinsic semiconductor region 14i of the photodiode 20C is formed in a rectangular shape having a length of about 5 ⁇ m and a width of about 10 ⁇ m, for example.
  • the average particle diameter of the crystal grain in the 2nd crystalline silicon layer 14C is about 0.1 micrometer or more and 1.0 micrometer or less, for example.
  • FIGS. 20 to 29 are views for explaining a method of manufacturing an active matrix substrate according to the second embodiment of the present invention. Note that FIGS. 20 to 29 show cross sections of a portion where the photodiode 20C is formed, as in FIG.
  • a crystalline semiconductor film for forming the peripheral circuit TFT 20A, the pixel TFT 20B, and the photodiode 20C is formed as in the case of the above first perspective configuration.
  • the method includes a heating promotion layer forming step, an insulating film forming step, an amorphous semiconductor film forming step, a first crystallization step, a second crystallization step, and a recrystallization step.
  • the molybdenum film 23 is formed on the substrate 11 having an insulating surface such as a glass substrate or a plastic substrate by, for example, sputtering. The film is formed to a thickness of about 150 nm.
  • the molybdenum film 23 is patterned by photolithography to form the heating promotion layer 12 in a region where the photodiode 20C is to be formed, as shown in FIG.
  • the heating promotion layer 12 is also formed in the region where the pixel TFT 20B is formed.
  • the heating promotion layer 12 may be formed of a tungsten film instead of the molybdenum film 23.
  • a silicon dioxide film is formed on the substrate on which the heating acceleration layer 12 is formed by a CVD method using TEOS as a source gas, thereby patterning the heating acceleration as shown in FIGS.
  • a base coat film 13 that is an insulating film is formed to a thickness of, for example, about 100 nm so as to cover the surface of the layer 12 and the substrate 11.
  • a silicon nitride film, a silicon oxynitride film, or the like may be formed as the base coat film 13, or a laminate of these films may be formed.
  • amorphous semiconductor film formation process As in the case of the first embodiment described above, as shown in FIGS. 6 and 20, LPCVD (Low Pressure CVD) using SiH 4 as a source gas on the substrate on which the base coat film 13 is formed.
  • An amorphous silicon film 24 is formed as an amorphous semiconductor film with a thickness of, for example, about 50 nm by a method or the like.
  • a region including at least a part of a region where large crystal grains are required is formed by, for example, a resistance heating method.
  • nickel (Ni) 26 is added as a catalyst element for promoting crystallization of the amorphous silicon film 24 by vapor deposition.
  • the nickel 26 is shown in a film shape, but actually, the nickel 26 is scattered in a granular form on the surface of the amorphous silicon film 24.
  • the nickel 26 effectively promotes the crystallization of the amorphous silicon film 24 and efficiently performs the manufacturing process.
  • the concentration on the surface of the amorphous silicon film 24 is 1 ⁇ 10 6. It is preferable to add so as to be 10 atoms / cm 2 or more and less than 1 ⁇ 10 12 atoms / cm 2 .
  • the substrate in which nickel 26 is added to the amorphous silicon film 24 is heat-treated in a nitrogen atmosphere in an electric furnace, so that the nickel 26 is diffused into the amorphous silicon film 24 and the diffused nickel 26 is diffused.
  • the amorphous silicon film 24 is solid-phase grown to form the first crystalline silicon film 24A.
  • the solid-phase growth rate of the amorphous silicon film 24 is favorably increased, and the growth of crystal grains not caused by the catalytic element 26 is suppressed.
  • the heat treatment is preferably performed at a temperature of 500 ° C. or higher and 700 ° C. or lower.
  • the amorphous silicon film 24 is solid-phase grown, and as shown in FIGS. 8 and 22, the first crystalline semiconductor film having a relatively large average grain size is formed. A certain first crystalline silicon film 24A is formed.
  • ⁇ Second crystallization step> For the first crystalline silicon film 24A crystallized in the first crystallization step, as shown in FIG. 9, a continuous oscillation laser beam whose beam shape on the surface of the first crystalline silicon film 24A is linear. 29, while scanning in the width direction of the laser beam 29, a part of the first crystalline silicon film 24A (that is, the heating promoting layer 12 on the heating promoting layer 12 in the first crystalline silicon film 24A and its heating promoting layer). 12), the second crystalline semiconductor film which is a second crystalline semiconductor film having an average grain size smaller than that of the first crystalline silicon film 24A as shown in FIGS. A silicon film 24B is formed.
  • the aspect ratio of the laser beam 29 is 10 from the viewpoint of securing an energy density sufficient to sufficiently anneal the first crystalline silicon film 24A. It is preferable that it is above and below 10,000.
  • the scanning speed of the laser beam 29 is preferably 5 cm / s or more and 3 m / s or less.
  • the crystalline silicon films 24A and 24 silicon films B are formed on the first crystalline silicon film 24A and the second crystalline silicon film 24B.
  • a pulsed laser beam 27 having a linear beam shape on the surface is irradiated while performing step scanning in the width direction of the laser beam 27.
  • first crystalline silicon film 24A and the second crystalline silicon film 24A are maintained while maintaining the average grain size of the first crystalline silicon film 24A larger than the average grain diameter of the crystal grains in the second crystalline silicon film 24B.
  • the crystalline silicon film 24B can be melted and solidified, and the respective crystalline silicon films 24A and 24B can be recrystallized.
  • the laser beam 27 has a wavelength of, for example, 308 nm from the viewpoint of partially melting the first crystalline silicon film 24A and the second crystalline silicon film 24B.
  • a XeCl excimer laser beam is used.
  • melting proceeds from the surface of the first crystalline silicon film 24A and the second crystalline silicon film 24B, but the first crystal in a region of about several nm from the interface with the base coat film 13 is obtained.
  • the crystalline silicon film 24A and the second crystalline silicon film 24B are not melted.
  • the first crystalline silicon film 24A and the second crystalline silicon film 24B are partially melted and solidified and recrystallized, whereby crystal grains in the first crystalline silicon film 24A and the second crystalline silicon film 24B are obtained.
  • the crystallinity of each of these crystalline silicon films 24A and 24B can be improved without changing the average particle diameter of the above.
  • the first crystalline silicon film 24 ⁇ / b> A and the second crystalline silicon film 24 ⁇ / b> B having different average grain sizes and excellent carrier mobility can be formed on the same substrate 11. it can.
  • the second crystalline silicon film 24C is patterned by photolithography so as to have regions that become the intrinsic semiconductor region 14i, the n-type semiconductor region 14n, and the p-type semiconductor region 14p, as shown in FIGS. Then, the second crystalline silicon layer 14C ′ is formed from the second crystalline silicon film 24B.
  • a crystalline silicon layer 14B ′ is also formed simultaneously.
  • the first crystalline silicon layer 14A ′ is formed on the substrate on which the first crystalline silicon layer 14A ′ and the second crystalline silicon layers 14B ′ and 14C ′ are formed by APCVD using TEOS or the like as a source gas.
  • a silicon dioxide film or the like is formed so as to cover the second crystalline silicon layers 14B ′ and 14C ′, and as shown in FIG. 25, the gate insulating film 15 is formed to have a thickness of about 100 nm, for example.
  • the gate insulating film 15 include a silicon nitride film and a silicon oxynitride film in addition to the silicon dioxide film, and a laminate of these films may be used.
  • an aluminum film 38 is formed on the substrate on which the gate insulating film 15 is formed by sputtering, for example, to a thickness of about 300 nm. To form. Thereafter, the aluminum film 38 is patterned by photolithography to form gate electrodes 16a and 16b as shown in FIG. At this time, a gate wiring is also formed simultaneously from the aluminum film 38.
  • the gate electrodes 16a and 16b may be formed of a high melting point metal material such as tungsten, molybdenum, tantalum, or titanium, or a film of a nitride of these high melting point metal materials, for example, instead of aluminum. You may form from the laminated body on which these films
  • a resist layer 40 having an opening in a region to be the n-type semiconductor region 14n of the second crystalline silicon layer 14C ′ for forming the photodiode 20C is formed in a region other than the opening. It is formed on the gate insulating film 15 so as to cover. Thereafter, phosphorus is ion-implanted into a region to be the n-type semiconductor region 14n of the second crystalline silicon layer 14C ′ using the resist layer 40 as a mask.
  • the arrow in FIG. 26 has shown the direction which inject
  • the first crystalline silicon layer 14A ′ for forming the peripheral circuit TFT 20A and the second crystalline silicon layer 14B ′ for forming the pixel TFT 20B are also opened in the regions serving as the source region 14s and the drain region 14d.
  • the resist layer 40 By forming the resist layer 40 having a portion, phosphorus ions are ionized in each of the first crystalline silicon layer 14A ′ and the second crystalline silicon layer 14B ′ as source regions 14s and 27s and drain regions 14d and 27d. Injected. Thereafter, the resist layer 40 is removed by ashing or the like.
  • the second insulating silicon layer 14C ′ has a resist layer 41 having an opening in a region to be the p-type semiconductor region 14p, and a gate insulating film so as to cover a region other than the opening. 15 is formed. Thereafter, boron is ion-implanted into a region to be the p-type semiconductor region 14p of the second crystalline silicon layer 14C ′ using the resist layer 41 as a mask.
  • the arrow in FIG. 27 has shown the direction which implants boron. Thereafter, the resist layer 41 is removed by ashing or the like.
  • the second crystalline silicon layer 14C ′ into which phosphorus and boron are implanted, as shown in FIG. 28, the intrinsic semiconductor region 14i and the n-type semiconductor region are formed on the second crystalline silicon layer 14C. 14n and p-type semiconductor region 14p are formed.
  • the second crystalline silicon layer 14C of the photodiode 20C is thus formed.
  • activation annealing of the first crystalline silicon layer 14A ′ for forming the peripheral circuit TFT 20A and the second crystalline silicon layer 14B ′ for forming the pixel TFT 20B is also performed, and these first crystalline silicon layers 14A
  • the first crystalline silicon layer 14A of the peripheral circuit TFT 20A and the second crystalline silicon layer of the pixel TFT 20B are formed. 14B is formed.
  • a silicon nitride film or the like is formed on the substrate on which the crystalline silicon layers 14A, 14B, and 14C are formed by the APCVD method so as to cover the gate electrodes 16a and 16b.
  • the interlayer insulating film 17 is formed to a thickness of about 500 nm, for example.
  • the interlayer insulating film 17 and the gate insulating film 15 are patterned by photolithography, and the n-type semiconductor region 14n and the p-type semiconductor region are formed in the interlayer insulating film 17 and the gate insulating film 15 as shown in FIGS. A contact hole 28 penetrating on 14p is formed.
  • a metal laminate is formed. Extraction electrodes 19n and 19p are formed by patterning the metal laminate.
  • the first crystalline silicon layer 14A for forming the peripheral circuit TFT 20A and the source region 14s and the drain region 14d of the second crystalline silicon layer 14B for forming the pixel TFT 20B are connected via contact holes 18 and 25, respectively.
  • the lead electrodes 19s and 19d connected to each other the peripheral circuit TFT 20A and the pixel TFT 20B shown in FIG. 3 are formed.
  • a source wiring is also formed simultaneously from the metal laminate.
  • the lead electrodes 19n and 19p may be formed of a single film such as tungsten, titanium, and aluminum instead of the laminated body of the titanium film, the aluminum film, and the titanium film. You may form from metal laminated bodies other than the laminated body of a film
  • a transparent conductive film such as an ITO film is formed on the substrate on which the extraction electrodes 19n, 19p, 19s, and 19d are formed by sputtering, for example.
  • the transparent conductive film is patterned by photolithography to form a pixel electrode.
  • the active matrix substrate 10 in the present embodiment can be manufactured.
  • the amorphous semiconductor film forming step, the first crystallization step, and the second crystallization step are performed.
  • the first crystalline silicon film 24A and the second crystalline silicon film 24B having different average grain sizes can be formed.
  • the crystallinity of the first crystalline silicon film 24A and the second crystalline silicon film 24B can be improved, and the carrier mobility can be increased.
  • the first crystalline silicon film 24 ⁇ / b> A and the second crystalline silicon film 24 ⁇ / b> B can be formed on the same substrate 11.
  • the carrier mobility in the peripheral circuit TFT 20A formed using the first crystalline silicon film 24A can be reduced, and the second crystalline silicon film 24B is used. Variations in the threshold voltage between the formed pixel TFTs 20B can be suppressed. Accordingly, since desired electrical characteristics can be obtained for the peripheral circuit TFT 20A and the pixel TFT 20B that require different electrical characteristics, a display device capable of stable display with little variation in luminance and color can be realized. .
  • a method of forming the second crystal region has been proposed.
  • the crystal grain size of the crystalline semiconductor film on the light shielding layer is large, and the crystal grain size of the crystalline semiconductor film on the region without the light shielding layer is small.
  • the optical sensor is provided on the second crystalline semiconductor film on the light shielding film having a large crystal grain size.
  • the off-leakage current becomes relatively large, and as a result, the on / off ratio may decrease.
  • the photodiode 20C is formed using the second crystalline silicon film 24B having an average particle size smaller than that of the first crystalline silicon film 24A, the carrier mobility of the peripheral circuit TFT 20A is reduced. While suppressing, in the photodiode 20C, the off-leak current in the dark can be suppressed, and the on / off ratio can be increased.
  • the first crystalline silicon film 24A and the second crystalline silicon film 24B were formed under the following conditions, and the photodiode 20C was fabricated using the second crystalline silicon film 24B. Further, a photodiode and a peripheral circuit TFT 20A as a comparative example were manufactured using the first crystalline silicon film 24A.
  • the intrinsic semiconductor region 14i has a rectangular shape with a length of 5 ⁇ m and a width of 10 ⁇ m
  • the peripheral circuit TFT 20A has a channel region 14c with a rectangle shape with a length of 20 ⁇ m and a width of 20 ⁇ m.
  • the patterned heating promotion layer 12 was formed on the glass substrate 11 to a thickness of about 150 nm.
  • a silicon dioxide film having a thickness of 100 nm was formed as the base coat film 13 so as to cover the surfaces of the glass substrate 11 and the heating promotion layer 12.
  • an amorphous silicon film 24 was formed to a thickness of 50 nm on the base coat film 13.
  • the concentration of the region from the surface of the amorphous silicon film 24 to a depth of about several nm (5 nm to 10 nm) is about 5 ⁇ 10 10 atoms / cm 2 .
  • Nickel 26 was added to the amorphous silicon film 24 as a catalyst element. Then, the substrate was heat-treated at 600 ° C. for 1 hour in an electric furnace in a nitrogen atmosphere to form a first crystalline silicon film 24A.
  • the continuous wave YAG laser beam 29 was shaped so that the beam shape on the surface of the first crystalline silicon film 24A was a rectangular linear shape having a length of about 2 mm and a width of about 50 ⁇ m. Then, while scanning the laser beam 29 at a speed of 20 cm / s, the second crystalline silicon film 24A was irradiated with the second harmonic of the YAG laser. At this time, the energy applied to the laser oscillator that outputs the second harmonic of the continuous wave YAG laser was set to 1.2 W. Thus, the second crystalline silicon film 24B was formed by melting and solidifying the first crystalline silicon film 24A on the heating promoting layer 12 and in the region of 500 nm around the heating promoting layer 12 to be crystallized.
  • a pulsed XeCl excimer laser beam 27 is applied so that the beam shapes on the surfaces of the first crystalline silicon film 24A and the second crystalline silicon film 24B are rectangular straight lines having a length of about 215 mm and a width of about 0.4 mm. Molded. Then, the first crystalline silicon film 24A and the second crystalline silicon film 24B were irradiated while step scanning so that the laser beam 27 was moved with a width of 20 ⁇ m for each pulse oscillation shot. At this time, the output of the XeCl excimer laser beam 27 was set so that the energy density applied to the surfaces of the first crystalline silicon film 24A and the second crystalline silicon film 24B was 350 mJ / cm 2 .
  • the melting progressed from the surfaces of the first crystalline silicon film 24A and the second crystalline silicon film 24B, but the first crystalline silicon film 24A and the second crystalline material in the region of 5 nm from the interface with the base coat film 13 were obtained.
  • the silicon film 24B was not melted.
  • the gate insulating film 15 was formed to a thickness of 100 nm, and the gate electrodes 16a and 16b were formed from an aluminum film to a thickness of 300 nm. Further, the n-type semiconductor region 14n of the second crystalline silicon layer 14C was formed by ion implantation of phosphorus, and the p-type semiconductor region 14p was formed by ion implantation of boron. Further, the interlayer insulating film 17 was formed to a thickness of 500 nm, and the lead electrodes 19n and 19p were formed from the lower layer to a titanium film of 100 nm, an aluminum film of 300 nm, and a titanium film of 100 nm.
  • a photodiode having the same structure as that of the photodiode 20C except for the second crystallization process was manufactured using another substrate, and used as a comparative example. That is, a photodiode having the same structure as the photodiode 20C was manufactured using the first crystalline silicon film 24A.
  • the average grain size of the crystal grains was measured by the EBSP method.
  • the average grain size of the first crystalline silicon film 24A after the first crystallization step was about 4.0 ⁇ m.
  • the average grain size of the crystal grains in the second crystalline silicon film 24B is about 0.3 ⁇ m, and the average grain size of the crystal grains in the first crystalline silicon film 24A is about 4. It remained unchanged at 0 ⁇ m.
  • the average grain size of the crystal grains in the first crystalline silicon film 24A is about 4.0 m, and the average grain size of the crystal grains in the second crystalline silicon film 24B is about 0.00 mm. It was 3 ⁇ m.
  • the ratio (on / off ratio) between the on-current in the light and the off-current in the dark was measured and compared.
  • an ON / OFF ratio that was 5.4 times larger than that of the photodiode of the comparative example was measured.
  • the carrier mobility of the peripheral circuit TFT 20A formed from the first crystalline silicon film was measured and found to be relatively high at 350 cm 2 / V ⁇ s.
  • the first crystalline silicon film 24A and the second crystalline silicon film 24B having different average grain sizes can be formed by the first crystallization step and the second crystallization step, and the first crystal
  • the average grain size of the crystal grains in the first crystalline silicon film 24A becomes the crystal grain size in the second crystalline silicon film 24B. It can be seen that the crystallinity of the first crystalline silicon film 24A and the second crystalline silicon film 24B can be improved while maintaining a state larger than the average particle diameter.
  • the photodiode 20C can be obtained while obtaining high carrier mobility in the peripheral circuit TFT 20A. It can be seen that the ON / OFF ratio of 20C can be increased.
  • the liquid crystal display device 1 including the active matrix substrate 10 has been described as an example.
  • the present invention is not limited to this, and can be applied to other display devices such as an organic electroluminescence display device. be able to.
  • a semiconductor element substrate provided with a plurality of semiconductor elements that require different electrical characteristics on the same substrate and any device including the semiconductor element substrate can be applied.
  • the present invention is useful for a method of manufacturing a semiconductor element substrate, a semiconductor element substrate, and a display device.
  • each semiconductor element that requires different electrical characteristics on the same substrate has desired electrical characteristics. It is suitable for a semiconductor element substrate manufacturing method, a semiconductor element substrate, and a display device that are desired to be provided.
  • Liquid crystal display device 10 Active matrix substrate (semiconductor element substrate) 11 Substrate (insulating substrate) 12 Heat Acceleration Layer 13 Base Coat Layer 14A First Crystalline Silicon Layer (Semiconductor Layer) 14B Second crystalline silicon layer (semiconductor layer) 14C Second crystalline silicon layer (semiconductor layer) 15 Gate insulating film 16a Gate electrode 16b Gate electrode 17 Interlayer insulating film 18 Contact hole 19s Lead electrode 19d Lead electrode 20A Pixel TFT (first thin film transistor) 20B peripheral circuit TFT (second thin film transistor) 20C photodiode (light sensor) 24 Amorphous silicon film (amorphous semiconductor film) 24A First crystalline silicon film (first crystalline semiconductor film) 24B Second crystalline silicon film (second crystalline semiconductor film) 25 Contact hole 26 Nickel (catalytic element) 26 s Lead electrode 26 d Lead electrode 27 c Channel region 27 s Source region 27 d Drain region 28 Contact hole D Display region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 ベースコート膜(13)上に非晶質半ケイ素膜を成膜する工程と、非晶質ケイ素膜を結晶化して第1結晶質ケイ素膜(24A)を形成する工程と、加熱促進層(12)上の第1結晶質ケイ素膜(24A)を溶融固化することにより、結晶粒の平均粒径が第1結晶質ケイ素膜(24A)よりも小さい第2結晶質ケイ素膜(24B)を形成する工程と、第1結晶質ケイ素膜(24A)における結晶粒の平均粒径が第2結晶質ケイ素膜(24B)における結晶粒の平均粒径よりも大きい状態を維持しながら、第1結晶質ケイ素膜(24A)及び第2結晶質ケイ素膜(24B)を溶融固化して再結晶化する再結晶化工程とを含む。

Description

半導体素子基板の製造方法及び半導体素子基板並びに表示装置
 本発明は、半導体素子基板の製造方法及び半導体素子基板並びに表示装置に関するものである。
 半導体素子基板は、半導体の電気特性を利用した能動素子を有する電気回路を備え、例えば、オーディオ機器、通信機器、家電機器などに広く応用されている。なかでも、薄膜トランジスタ(Thin Film Transistor、以下、「TFT」と称する。)やMOS(Metal Oxide Semiconductor)トランジスタなどの電界効果トランジスタを備える半導体素子基板は、アクティブマトリクス駆動方式の液晶表示装置や有機エレクトロルミネッセンス表示装置などの薄型表示装置におけるアクティブマトリクス基板として用いられている。
 このような半導体素子基板を製造する方法として、近年、ガラス基板などの絶縁性の表面を有する基板上に非晶質半導体膜を成膜し、その非晶質半導体膜を結晶化することにより、結晶質半導体膜(結晶構造を有する半導体膜)を形成する技術が広く研究されている。結晶質半導体膜は、非晶質半導体膜と比較して非常に高いキャリア移動度を有する。このため、結晶質半導体膜を用いて形成したTFTは、例えば、表示領域を構成する複数の画素と共に駆動回路などの周辺回路が同一基板上に作り込まれたフルモノリシック型の液晶表示装置において、各画素のTFT及び駆動回路のTFTなどとして利用され、表示装置の高精細化及び高速動画表示を可能にしている。
 また、結晶質半導体膜を形成するための結晶化の方法としては、ファーネスアニール炉を用いた熱アニール法が知られている。このファーネスアニール炉を用いた熱アニール法で非晶質半導体膜を結晶化させるには、通常、600℃以上の温度で10時間以上、熱処理を行うことが必要となる。このため、結晶化に適用可能な基板材料としては、高価な石英などに限られてしまうという問題がある。また、半導体素子基板の生産効率を高めるには、基板を大面積化する必要があり、近年では、一辺が1m以上のサイズを有する基板の使用も検討されているが、特に、大面積を有する石英基板を加工するのは非常に困難である。
 そこで、結晶化温度の低温化及び処理時間の短縮化を可能にする方法として、非晶質半導体膜に結晶化を助長する触媒元素を添加した後、熱処理を行うことにより結晶質半導体膜を形成する方法が開示されている(例えば、特許文献1参照)。
 より具体的には、非晶質半導体膜に、ニッケル、パラジウム、鉛などの元素を微量に添加し、その後、550℃で4時間の熱処理を行うことにより、結晶質半導体膜を形成する。
 また、基板の温度の上昇を抑制して、半導体膜のみに高いエネルギーを付与する技術として、レーザアニール法が知られている。このレーザアニール法としては、例えば、エキシマレーザなどのパルス発振のレーザビームを、照射面において、数cm角の四角いスポットや、長さが100mm以上の直線状のビームとなるように光学系にて成形し、被照射体に対して相対的に移動させることにより、アニールを行う方法が挙げられる。
 このようなレーザアニール法により、非晶質半導体膜を結晶化する場合の基板材料として、歪点の比較的低いガラスは勿論、プラスチックなども用いることが可能になる。
 さらに、上記の結晶化の方法を組み合わせた方法、すなわち、非晶質半導体膜に結晶化を助長する触媒元素を添加して熱処理を行うことにより結晶質半導体膜を形成した後、その結晶質半導体膜の結晶性をレーザアニール法により向上させる方法が開示されている(例えば、特許文献2参照)。また、結晶質半導体膜の結晶性を向上させるためのレーザアニール法を2回行う方法も開示されている(例えば、特許文献3参照)。そして、これらの方法によれば、全体的に、比較的大きな結晶粒を有する結晶質半導体膜を形成することが可能になり、結晶質半導体膜のキャリア移動度をより向上することができる。
 しかし、特許文献2及び3で開示された方法によって結晶質半導体膜を形成し、その結晶質半導体膜を用いて、同一基板上に各画素及び周辺回路を作製する場合に、例えば、画素のTFTのようにチャネル領域が比較的小さいTFT間において、チャネル領域での結晶粒の数が大きく異なる、即ち、チャネル領域での結晶粒界の数が大きく異なるため、TFT間での閾値電圧が大きくばらつく場合がある。
 そして、このようなTFT間での閾値電圧のばらつきを抑制するためには、結晶質半導体膜の結晶粒径を小さくすることが考えられるが、結晶粒径を小さくすると、キャリア移動度が低下するため、高いキャリア移動度が要求される周辺回路のTFTについてもキャリア移動度が低下してしまう。
 また、特許文献2及び3で開示された方法によって形成した結晶質半導体膜を用いてTFTとともにフォトダイオードなどの光センサを同一基板上に作製する場合に、光センサにおいて、暗時のオフリーク電流が比較的大きくなり、オン状態及びオフ状態において流れる電流の比(以下、「オン/オフ比」と称する。)が低下する場合がある。このような光センサのオン/オフ比の低下を抑制するには、結晶質半導体膜の結晶粒径を小さくすることが考えられるが、上述したように周辺回路のTFTにおけるキャリア移動度が低下してしまう。
 そこで、同一基板上に2つの異なる平均粒径を持つ結晶性半導体膜を製造する方法が開示されている(例えば、特許文献4参照)。
 特許文献4に開示された方法では、第1結晶化工程において、絶縁基板上に成膜した非晶質シリコン膜の一部を結晶化して第1シリコン領域を形成する。次いで、第2結晶化工程において、残りの非晶質シリコン膜を溶融固化して、第1シリコン領域よりも平均粒径の小さい第2シリコン領域を形成する。そして、第3結晶化工程において、第1シリコン領域の平均粒径が第2シリコン領域の平均粒径よりも大きい状態を維持しながら溶融固化して、第1および第2シリコン領域の結晶性を向上させる。そして、このようにして形成された結晶性シリコン膜に含まれる平均粒径の異なる2つのシリコン領域に、電気的特性の異なる薄膜トランジスタをそれぞれ形成する。
特開平7-183540号公報 特開2000-216089号公報 特開2007-115786号公報 特開2009-246235号公報
 しかし、上記特許文献4に記載された結晶化方法においては、第1結晶化工程において、触媒元素を用いた固相成長を行うが、この際、触媒元素が添加領域(マスクの開口部に対応する領域)から拡散するため、触媒元素を添加した領域だけでなく、その周辺も第1結晶性半導体領域となってしまう。そして、この結晶化方法においては、第2結晶化工程において、第1結晶化工程で結晶化されていない領域の結晶質半導体膜を選択的に結晶化するため、第1結晶化工程により第2結晶化領域の一部が、一旦、第1結晶質半導体膜となった場合は、第2結晶質半導体膜にすることができない。
 即ち、第1シリコン領域における第1結晶性半導体により形成されるTFTと、その周囲の第2シリコン領域における第2結晶性半導体により形成されるTFTとを交互に並べて配置する際に、その間隔を小さくすることができず、結果として、集積化が困難な場合があるという問題があった。
 本発明は、上記現状に鑑みてなされたものであり、位置制御性がよく、集積化が可能であり、同一基板上に平均粒径の異なる2つの領域を有し、移動度に優れ、また結晶粒径が小さい結晶性半導体の下層に遮光膜がある結晶性半導体膜を備える半導体基板の製造方法、半導体基板及び表示装置を提供することを目的とするものである。
 本発明者らは、結晶粒の平均粒径が異なる2種類の結晶質半導体膜を形成する方法について種々検討したところ、結晶質半導体膜を形成する工程の中で、半導体膜の結晶化を行う工程(以下、「結晶化工程」と称する)に着目した。そして、結晶化工程の中でも、半導体膜の結晶化を複数回行う方法において、少なくとも大きい結晶粒が必要な領域を含む領域の非晶質半導体膜を結晶化することで第1結晶質半導体膜を形成した後、下層に加熱促進層がある領域の半導体膜を溶融固化させることで第1結晶質半導体膜よりも結晶粒の平均粒径が小さい第2結晶質半導体膜を形成することにより、結晶粒の平均粒径が異なる2種類の結晶質半導体膜を形成できることを見出した。
 そして、第1結晶質半導体膜の結晶粒の平均粒径が第2結晶質半導体膜の結晶粒の平均粒径よりも大きい状態を維持しながら第1結晶質半導体膜及び第2結晶質半導体膜を溶融固化して再結晶化することにより、特に、固相成長のみによって結晶化された第1結晶質半導体膜中の結晶欠陥を減少させることで結晶性を向上させてキャリア移動度を高めることが可能であることを見出し、これにより上記課題を見事に解決できることに想到し、本発明に到達したものである。
 即ち、上記の目的を達成するために、この発明は、第1結晶化後、下層に加熱促進層がある領域のみを選択的に溶融固化することで結晶粒の小さい第2結晶化半導体を形成し、結晶粒の平均粒径が互いに異なる第1結晶質半導体膜及び第2結晶質半導体膜をそれぞれ形成し、それら第1結晶質半導体膜及び第2結晶質半導体膜を溶融固化して再結晶化するものである。
 なお、本明細書において、「結晶粒の平均粒径」とは、結晶質半導体膜に含まれる結晶粒の粒径の平均の大きさのことであり、後方拡散電子回折像法(Electron Backscatter Diffracation Patterns法、以下、EBSP法と称する)などによって測定することが可能である。
 具体的に、本発明に係る半導体素子基板の製造方法は、絶縁基板上にパターニングされた加熱促進層を成膜する加熱促進層形成工程と、加熱促進層及び前記絶縁基板を覆うように絶縁膜を成膜する絶縁膜形成工程と、絶縁膜上に非晶質半導体膜を成膜する非晶質半導体膜形成工程と、非晶質半導体膜を結晶化して第1結晶質半導体膜を形成する第1結晶化工程と、加熱促進層上の第1結晶質半導体膜を溶融固化することにより、結晶粒の平均粒径が第1結晶質半導体膜よりも小さい第2結晶質半導体膜を形成する第2結晶化工程と、第1結晶質半導体膜における結晶粒の平均粒径が第2結晶質半導体膜における結晶粒の平均粒径よりも大きい状態を維持しながら、第1結晶質半導体膜及び第2結晶質半導体膜を溶融固化することにより、第1結晶質半導体膜及び第2結晶質半導体膜を再結晶化する再結晶化工程とを少なくとも含むことを特徴とする。
 この製造方法によると、非晶質膜成膜工程において基板上に非晶質半導体膜を成膜し、第1結晶化工程において、少なくとも大きい結晶粒が必要な領域を含む領域の非晶質半導体膜を固相結晶化して、第1結晶質半導体膜を形成した後、第2結晶化工程において加熱促進層上の半導体膜のみを溶融固化して結晶化することで第1結晶質半導体膜よりも結晶粒の平均粒径が小さい第2結晶質半導体膜を形成する。そのことにより、結晶粒の平均粒径が互いに異なる第1結晶質半導体膜及び第2結晶質半導体膜が形成される。
 また、この際、仮に、第1結晶化工程によって、第2結晶化領域の一部が第1結晶質半導体膜となった場合であっても、加熱促進層の存在により、一旦、第1結晶質半導体膜となった第2結晶化領域の一部が、第2結晶化工程において溶融固化するため、第1結晶質半導体膜となった第2結晶化領域の一部を、第2結晶質半導体膜にすることが可能であるため、第1結晶化領域(即ち、第1結晶質半導体膜の形成領域)と第2結晶化領域(即ち、第2結晶質半導体膜の形成領域)の形成位置を精度よく制御することが可能である。従って、構成する半導体層の結晶粒径が異なる2つのTFT(例えば、周辺回路TFT及び画素TFT)を交互に並べて配置する際に、その間隔を、例えば、3μm程度に小さくすることができ、結果として、集積化が可能となる。
 さらに、再結晶化工程において、第1結晶質半導体膜における結晶粒の平均粒径が第2結晶質半導体膜における結晶粒の平均粒径よりも大きい状態を維持しながら、第1結晶質半導体膜及び第2結晶質半導体膜を溶融固化することで、それら第1結晶質半導体膜及び第2結晶質半導体膜を再結晶化する。そのことにより、第1結晶質半導体膜及び第2結晶質半導体膜の結晶性が向上してキャリア移動度が高められる。従って、同一基板上に、結晶粒の平均粒径が互いに異なり、各々優れたキャリア移動度を有する第1結晶質半導体膜及び第2結晶質半導体膜が形成される。そして、それら第1結晶質半導体膜及び第2結晶質半導体膜を用いて異なる電気特性が要求される各半導体素子に所望の電気特性を得ることが可能になる。
 本発明に係る半導体素子基板の製造方法は、上述したように非晶質膜成膜工程、第1結晶化工程、第2結晶化工程及び再結晶化工程を必須工程として含むものである限り、その他の工程を含んでいても含んでいなくてもよいが、以下のように構成されていることが好ましい。
 前記非晶質半導体膜は、非晶質ケイ素膜であることが好ましい。
 この製造方法によると、第1結晶質半導体膜及び第2結晶質半導体膜として、連続粒界シリコン(Continuous Grain Silicon、以下、「CGシリコン」と称する)や多結晶シリコン(ポリシリコン)などのキャリア移動度の優れた結晶質ケイ素膜を形成することが可能になる。
 第1結晶化工程では、非晶質半導体膜の結晶化を助長する触媒元素を残部の非晶質半導体膜に添加した後、結晶化エネルギーの付与によって選択的に固相成長させることが好ましい。ここで、触媒元素は、大きな結晶粒が必要な領域の非晶質半導体膜のみに添加してもよいが、非晶質半導体膜全体に添加してもよい。具体的には、触媒元素を含む溶液を塗布したり、触媒元素を真空蒸着させることで簡便に添加することが可能である。
 この製造方法によると、触媒元素が添加された非晶質半導体膜の結晶化が促進され、触媒元素に起因して結晶粒径が比較的大きな結晶粒が成長するため、第1結晶質半導体膜のキャリア移動度を確実に高めることが可能になる。したがって、製造工程の効率化及び第1結晶質半導体膜の特性向上を図ることが可能になる。
 さらに、前記第1結晶化工程では、前記非晶質半導体膜の表面における濃度が1×1010atoms/cm以上1×1012atoms/cm以下となるように触媒元素を添加することが好ましい。ここで、非晶質半導体膜の表面における触媒元素の濃度は、全反射蛍光X線分析法により容易に測定することが可能である。また、非晶質半導体膜の表面における触媒元素の濃度は、非晶質半導体膜の表面から数nm(5nm~10nm)までの深さの領域の濃度を測定した結果であればよい。
 仮に、非晶質半導体膜の表面における濃度が1×1010atoms/cm未満となるように触媒元素を添加すると、触媒元素による非晶質半導体膜の結晶化を助長する効果が比較的小さいため、非晶質半導体膜を結晶化するために必要な時間が長くなり、製造工程の効率が低下する。一方、非晶質半導体膜の表面における濃度が1×1012atoms/cmを越えるように触媒元素を添加すると、第2結晶質半導体膜中の触媒元素が高濃度になり、触媒元素に起因して形成される結晶粒の密度が比較的高くなって結晶粒の平均粒径が小さくなるため、第2非晶質半導体膜のキャリア移動度が小さくなりやすい。このため、第2結晶質半導体膜を用いてTFTを形成する場合には、十分なトランジスタ特性が得られない場合がある。
 これに対して、上記の製造方法のように非晶質半導体膜の表面における濃度が1×1010atoms/cm以上1×1012atoms/cm以下となるように触媒元素を添加すると、非晶質半導体膜の結晶化が触媒元素により効果的に促進されるため、製造工程を効率的に行うことが可能となる。さらに、第1結晶質半導体膜中の触媒元素が低濃度になり、触媒元素に起因して形成される結晶粒の密度が比較的低くなって結晶粒の平均粒径が大きくなるため、第1結晶質半導体膜のキャリア移動度を確実に大きくすることが可能になる。したがって、製造工程の効率化及び第1結晶質半導体膜の特性向上をさらに図ることが可能になる。そして、第1結晶質半導体膜を用いてTFTを形成する場合には、所望のトランジスタ特性を得ることが可能になる。
 また、触媒元素は、鉄、コバルト、ニッケル、ゲルマニウム、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅及び金からなる群より選ばれた少なくとも1種の元素を含むことが好ましい。
 この製造方法によると、触媒元素が添加された残部の非晶質半導体膜の結晶化を良好に促進させることが可能である。
 また、第1結晶化工程では、前記非晶質半導体膜を熱処理することにより、残部の非晶質半導体膜を固相成長させてもよい。
 この製造方法によると、製造工程の効率化と第1結晶質半導体膜の特性向上とを両立しながら、第2結晶質半導体膜を容易に形成することが可能になる。
 そして、前記第1結晶化工程では、500℃以上700℃以下の温度で非晶質半導体膜を熱処理することが好ましい。
 仮に、500℃未満の温度で非晶質半導体膜を熱処理すると、非晶質半導体膜の固相成長の速度が比較的遅くなる。一方、700℃を越える温度で非晶質半導体膜を熱処理すると、触媒元素に起因して固相成長する結晶粒の他に、触媒元素に起因しない、例えば、0.2μm以下の比較的小さい粒径の結晶粒が成長するため、第1結晶質半導体膜のキャリア移動度が小さくなりやすい。このため、第1結晶質半導体膜を用いてTFTを形成する場合には、十分なトランジスタ特性が得られない場合がある。
 これに対して、上記の製造方法のように500℃以上700℃以下の温度で非晶質半導体膜を熱処理すると、非晶質半導体膜の固相成長の速度が良好に速くなる。さらに、触媒元素に起因しない結晶粒の成長が抑制され、第2結晶質半導体膜のキャリア移動度を確実に大きくすることが可能になる。したがって、製造工程の効率化及び第1結晶質半導体膜の特性向上を図りながらも第1結晶質半導体膜を容易に形成することが可能になる。そして、第1結晶質半導体膜を用いてTFTを形成する場合には、所望のトランジスタ特性を得ることが可能になる。
 また、本発明に係る半導体素子基板の製造方法においては、非晶質半導体膜成膜工程よりも前に、結晶質半導体膜を形成する領域に対して、レーザビームを反射又は吸収して第1半導体膜の加熱を促進させるための加熱促進層を形成する加熱促進層形成工程をさらに含むことが好ましい。なお、加熱促進層は、レーザビームを反射又は吸収することにより、第1結晶質半導体膜の、第2結晶質半導体膜を形成する領域の加熱を促進させるためのものである。そして、第2結晶化工程では、第1結晶性半導体膜にレーザビームを照射して、加熱促進層上にある半導体膜を溶融固化することが好ましい。
 この製造方法によると、非晶質半導体膜成膜工程よりも前に、第2結晶質半導体膜を形成する領域に対して、レーザビームを反射又は吸収して第1結晶性半導体膜の加熱を促進させるための加熱促進層を形成することにより、第2結晶化工程において非晶質半導体膜にレーザビームを照射したときに、加熱促進層がレーザビームを反射又は吸収して、加熱促進層上及びその近傍の部分が加熱促進層から離れた半導体膜よりも加熱されて温度が高くなる。従って、半導体膜における加熱促進層上及びその近傍の部分のみを選択的に溶融固化して結晶化することが可能になるため、結晶粒の粒径が異なる第2結晶質半導体膜と第1結晶質半導体膜とを確実に分けて形成することが可能になる。
 さらに、第2結晶化工程では、加熱促進層上及び加熱促進層の近傍における半導体膜のみが溶融固化する条件のレーザビームを半導体膜に照射することが好ましい。例えば、半導体膜は、一部に非晶質ケイ素膜を含んだ第1結晶化ケイ素膜であり、第2結晶化工程では、波長が370nm以上650nm以下のレーザビームを非晶質半導体膜に照射することが好ましい。
 この製造方法によると、半導体膜における加熱促進層上及びその近傍の第2結晶質半導体膜を形成する部分のみが選択的に溶融固化して結晶化されるため、第2結晶質半導体膜を所定の位置に形成することが可能になる。そのことにより、第2結晶質半導体膜及び第1結晶質半導体膜を所望の位置に分けて形成することが可能になる。
 また、第2結晶化工程では、レーザービームとして、パルス発振または連続発振のレーザビームを半導体膜に照射することが好ましい。
 この製造方法によると、レーザビームのレーザ発振器は簡素な構造を有しているため、長期間、メンテナンスが不要であり、その結果、稼働時間を長くして、ランニングコストを安価にすることが可能になる。
 そして、第2結晶化工程では、イットリウムアルミニウムガーネット(Yttrium Aluminium Garnet)レーザ(以下、YAGレーザと称する)の第2高調波を非晶質半導体膜に照射することが好ましい。
 この製造方法によると、YAGレーザの第2高調波は532nmの波長を有するので、半導体膜における加熱促進層上及びその近傍の部分のみを選択的に溶融固化して結晶化することが可能になる。特に、半導体膜が結晶質ケイ素膜である場合には、YAGレーザの第2高調波は結晶性ケイ素への吸収が少ないため、加熱促進層が加熱されることで、加熱促進層上のケイ素膜のみを選択的に溶融固化することが可能であり、第2結晶化工程のレーザー条件マージンを大きくすることが可能になる。
 また、第2結晶化工程では、第1結晶質半導体膜の表面でのビーム形状が直線状であるパルス発振のレーザビームを、レーザビームの幅方向にステップ走査しながら第1結晶質半導体膜に照射することが好ましい。ここで、「直線状」とは、長方形又は楕円形で細長い形状を意味する。レーザビームの幅方向とは、レーザビームが長方形である場合には、そのレーザビームの短辺方向、レーザビームが楕円形である場合には、そのレーザビームの短軸方向をそれぞれ意味する。また、「ステップ走査」とは、パルス発振のレーザビームのショット毎に、レーザビームの照射位置を所定の幅で移動させる走査方法である。
 この製造方法によると、直線状のレーザビームをその幅方向にステップ走査しながら半導体膜に照射するため、半導体膜が効率良く簡便に結晶化される。そのため、半導体膜が大面積の場合には特に有効である。
 また、第2結晶化工程では、第1結晶質半導体膜の表面を5cm/s以上3m/s以下の速度で走査しながら連続発振のレーザビームを第1結晶質半導体膜に照射することが好ましい。
 この製造方法によると、レーザビームを走査する速度が5cm/s以上であるので、半導体膜が過剰なエネルギーを受けて蒸発することが抑制される。そして、レーザビームを走査する速度が3m/s以下の速度であるので、レーザビームの走査速度が速すぎず、半導体膜の所定の領域を確実に溶融固化することが可能である。
 また、加熱促進層形成工程では、膜厚が50nm以上500nm以下となるように前記加熱促進層を形成することが好ましく、膜厚が50nm以上300nm以下となるように加熱促進層を形成することがさらに好ましい。
 仮に、膜厚が50nmよりも小さくなるように加熱促進層を形成すると、第2結晶化工程で半導体膜にレーザビームを照射したときに、加熱促進層におけるレーザビームの反射又は吸収が不十分なものとなり、半導体膜における加熱促進層上及びその近傍の部分のみを選択的に溶融固化することができない場合がある。一方、仮に、膜厚が500nmよりも大きくなるように加熱促進層を形成すると、加熱促進層が設けられた領域と加熱促進層が設けられていない領域との間での段差が比較的大きくなるため、その段差により電極や配線などが段切れしやすくなる。
 これに対して、膜厚が50nm以上500nm以下となるように加熱促進層を形成すると、半導体膜における加熱促進層上及びその近傍の部分のみの選択的な溶融固化を確実に行うことが可能になるとともに、加熱促進層が設けられた領域と加熱促進層が設けられていない領域との間の段差が比較的小さくなるため、その段差により電極や配線などが段切れすることが抑制される。さらに、膜厚が300nm以下となるように加熱促進層を形成すると、加熱促進層が設けられた領域と加熱促進層が設けられていない領域との間の段差による電極や配線などの段切れがさらに抑制される。
 また、加熱促進層は、モリブデンまたはタングステンにより形成されていることが好ましい。
 この製造方法によると、モリブデン及びタングステンは高融点材料であるため、それらモリブデン及びタングステンのうち少なくとも1種の元素を含む加熱促進層は、第2結晶化工程を含む全ての工程において溶融し難くなる。従って、加熱促進層の材料が第2結晶質半導体膜中に拡散することが抑制されるため、加熱促進層に起因して第2結晶質半導体膜の電気特性が劣化することが抑制される。
 再結晶化工程では、第1結晶質半導体膜及び第2結晶質半導体膜を部分的に溶融するように、レーザービームを第1結晶質半導体膜及び第2結晶質半導体膜に照射することにより、第1結晶質半導体膜及び第2結晶質半導体膜を部分的に溶融固化することが好ましい。例えば、非晶質半導体膜は、非晶質ケイ素膜であり、再結晶化工程では、波長が126nm以上370nm未満のレーザビームを第1結晶質半導体膜及び第2結晶質半導体膜に照射することが好ましい。
 この製造方法によると、第1結晶質半導体膜及び第2結晶質半導体膜の各一部を溶融せずに、それら第1結晶質半導体膜及び第2結晶質半導体膜を部分的に溶融固化するため、第1結晶質半導体膜及び第2結晶質半導体膜の結晶粒の平均粒径及び結晶方位を変化させることなく結晶性を向上させることが可能である。
 また、本発明の作用効果をより確実に発揮するという観点から、第2結晶化工程と再結晶化工程において、非晶質半導体膜の材料に応じて異なる波長のレーザビームを用いることが好ましい。より具体的には、非晶質半導体膜が非晶質ケイ素膜である場合には、第2結晶化工程では波長が370nm以上650nm以下のレーザビームを非晶質半導体膜に照射し、再結晶化工程では波長が126nm以上370nm未満のレーザビームを第1結晶質半導体膜及び第2結晶質半導体膜に照射することが好ましい。
 また、再結晶化工程では、パルス発振のエキシマレーザビームを第1結晶質半導体膜及び第2結晶質半導体膜に照射することにより、第1結晶質半導体膜及び第2結晶質半導体膜を溶融固化してもよい。
 そして、再結晶化工程では、第1結晶質半導体膜及び第2結晶質半導体膜の表面でのビーム形状が直線状であるパルス発振のレーザビームを、レーザビームの幅方向にステップ走査しながら第1結晶質半導体膜及び第2結晶質半導体膜に照射することにより、第1結晶質半導体膜及び第2結晶質半導体膜を溶融固化することが好ましい。
 この製造方法によると、直線状のレーザビームをその幅方向にステップ走査しながら第1結晶質半導体膜及び第2結晶質半導体膜に照射するため、第1結晶質半導体膜及び第2結晶質半導体膜を効率良く簡便に溶融固化して結晶性を向上させることが可能になる。
 また、本発明に係る半導体素子基板は、本発明に係る半導体素子基板の製造方法によって製造されたものであることを特徴とする。
 この構成によると、本発明に係る半導体素子基板の製造方法によって形成される第1結晶質半導体膜及び第2結晶質半導体膜は、互いに異なる結晶粒の平均粒径を有しており、キャリア移動度などの電気特性が互いに異なっているので、要求される電気特性に応じてこれら第1結晶質半導体膜及び第2結晶質半導体膜のいずれかを用いて半導体素子を形成することにより、異なる電気特性が要求される各半導体素子に所望の電気特性を得ることが可能である。
 また、上記構成の半導体素子基板は、第1結晶質半導体膜から形成された半導体層を有する第1薄膜トランジスタと、第2結晶質半導体膜から形成された半導体層を有する第2薄膜トランジスタとを備えていてもよい。
 この構成によると、異なる電気特性が要求される第1薄膜トランジスタ及び第2薄膜トランジスタに所望の電気特性を得ることが可能になる。
 また、本発明に係る半導体素子基板は、第1結晶質半導体膜から形成された半導体層を有する半導体素子と、第2結晶質半導体膜から形成された半導体層を有する光センサとを備えていてもよい。
 この構成によると、半導体素子が第1結晶質半導体膜から形成された半導体層を有し、光センサが第2結晶質半導体膜から形成された半導体層を有しているため、半導体素子のキャリア移動度を低下させずに、光センサにおいて、暗時のオフリーク電流を抑制して、オン/オフ比を高めることが可能になる。
 また、加熱促進層形成工程を含む半導体素子基板の製造方法によって製造された半導体装置において、第1結晶質半導体膜から形成された半導体層を有する半導体素子と、第2結晶質半導体膜から形成された半導体層を形成する光センサとを備え、加熱促進層は、遮光性を有していることが好ましい。
 この構成によると、半導体素子のキャリア移動度を低下させずに、光センサにおいて、暗時のオフリーク電流を抑制して、オン/オフ比を高めることが可能になることに加え、加熱促進層が遮光性を有していることにより光センサの遮光膜として機能するため、加熱促進層と別個に光センサの遮光膜を設ける必要がなく、製造効率が高められる。
 また、本発明に係る表示装置は、本発明に係る半導体素子基板を備えることを特徴とする。
 また、本発明に係る半導体素子基板は、表示装置においても有用である。
 また、構成の表示装置において、第1結晶質半導体膜から形成された半導体層を有する第1薄膜トランジスタと、結晶質半導体膜から形成された半導体層を有する第2薄膜トランジスタとを備え、第1薄膜トランジスタの半導体層のチャネル領域は、第2薄膜トランジスタの半導体層のチャネル領域よりも大きいことが好ましい。
 この構成によると、相対的に大きなチャネル領域を有する第1薄膜トランジスタにおけるキャリア移動度の低下、及び相対的に小さなチャネル領域を有する第2薄膜トランジスタにおける電気特性のばらつきが抑制されるため、これら第1薄膜トランジスタ及び第2薄膜トランジスタが要求される電気特性に応じて表示装置に適用されることにより、異なる電気特性が要求される表示装置の各薄膜トランジスタに所望の電気特性を得ることが可能になる。
 また、本発明に係る表示装置においては、複数の画素によって構成された表示領域を有し、第1薄膜トランジスタは、表示領域の外側に設けられた周辺回路を構成し、第2薄膜トランジスタは複数の画素の各々に設けられていることが好ましい。
 この構成によると、周辺回路の薄膜トランジスタにおけるキャリア移動度の低下が抑制され、画素の薄膜トランジスタ間における閾値電圧のばらつきが抑制される。これにより、異なる電気特性が要求される画素の薄膜トランジスタと周辺回路の薄膜トランジスタとに所望の電気特性が得られるため、輝度や色のばらつきが少なく、安定した表示が可能な表示装置を実現することが可能になる。
 また、本発明に係る表示装置においては、第1結晶質半導体膜から形成された半導体層を有する薄膜トランジスタと、第2結晶質半導体膜から形成された半導体層を有する光センサとを備えることが好ましい。
 この構成によると、薄膜トランジスタが第1結晶質半導体膜から形成された半導体層を有し、光センサが第2結晶質半導体膜から形成された半導体層を有しているため、薄膜トランジスタのキャリア移動度を低下させずに、光センサにおいて、暗時のオフリーク電流を抑制して、オン/オフ比を高めることが可能になる。
 本発明によれば、同一基板上に、結晶粒の平均粒径が互いに異なり、各々電気特性を有する第1結晶質半導体膜及び第2結晶質半導体膜を形成できる。そして、それら第1結晶質半導体膜及び第2結晶質半導体膜を用いて異なる電気特性が要求される各半導体素子に所望の電気特性を得ることができる。例えば、フルモノリシック型の液晶表示装置において、第1結晶質半導体膜を用いて周辺回路のTFT、第2結晶質半導体膜を用いて各画素のTFTがそれぞれ形成されることによって、周辺回路のTFTにおけるキャリア移動度の低下、及び各画素のTFT間における閾値電圧のばらつきを抑制できる。また、構成する半導体層の結晶粒径が異なる2つのTFTを交互に並べて配置する際に、その間隔を小さくすることができるため、集積化が可能となる。
本発明の第1の実施形態に係る液晶表示装置を概略的に示す平面図である。 図1のA-A断面図である。 本発明の第1の実施形態に係る液晶表示装置を構成するアクティブマトリクス基板における薄膜トランジスタを概略的に示す断面図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第2の実施形態に係る液晶表示装置を構成するアクティブマトリクス基板における光センサを概略的に示す断面図である。 本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。 本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る液晶表示装置を概略的に示す平面図であり、図2は、図1のA-A断面図である。また、図3は、本発明の第1の実施形態に係る液晶表示装置を構成するアクティブマトリクス基板における薄膜トランジスタを概略的に示す断面図である。なお、図1においては、偏光板の図示を省略し、図2では駆動回路の図示を省略している。また、本実施形態においては、半導体素子基板として、液晶表示装置を構成するアクティブマトリクス基板を例に挙げるとともに、半導体素子基板を構成する半導体素子として薄膜トランジスタを例に挙げて説明する。
 <液晶表示装置>
 液晶表示装置1は、図1に示すように、表示領域Dを構成する複数の画素とともに周辺回路である駆動回路21,22が、同一基板上に形成されたフルモノリシック型の表示装置であり、図2に示すように、半導体素子基板であるアクティブマトリクス基板10と、アクティブマトリクス基板10に対向して配置された対向基板30と、アクティブマトリクス基板10及び対向基板30との間に設けられた液晶層31と、アクティブマトリクス基板10と対向基板30とを接着するとともに、液晶層31を封入するように枠状に設けられたシール材32とを備えている。
 アクティブマトリクス基板10及び対向基板30は、例えば、矩形状に形成され、液晶層31側の表面に配向膜33,34がそれぞれ設けられるとともに、液晶層31とは反対側の表面に偏光板35,36がそれぞれ設けられている。
 液晶層31は、電気光学特性を有するネマチックの液晶材料などにより構成されている。シール材32は、例えば、対向基板30の各辺に沿って延びるように矩形枠状に形成されている。
 また、液晶表示装置1には、シール材32の内側であって、アクティブマトリクス基板10と対向基板30とが重なる領域に、画像表示を行う表示領域Dが規定されている。ここで、表示領域Dは、画像の最小単位である画素がマトリクス状に複数配列されて構成されている。
 また、液晶表示装置1には、表示領域Dの周囲において、シール材32が配置される4辺の額縁領域Fと、アクティブマトリクス基板10の一辺側(即ち、図1における下側)が対向基板30から露出した端子領域Tとが規定されている。端子領域Tにはフレキシブルプリント配線基板(Flexible Printed Circuit、以下、「FPC」と称する)37が接続され、そのFPC37を介して画像表示のための信号などが外部回路から液晶表示装置1に入力されるように構成されている。
 <アクティブマトリクス基板>
 アクティブマトリクス基板10は、表示領域Dにおいて、ガラス基板やプラスチック基板などの絶縁性の表面を有する基板上に、それぞれ不図示の、互いに並行に延びるように設けられた複数のゲート配線と、各ゲート配線を覆うように設けられた層間絶縁膜と、層間絶縁膜上に各ゲート配線に交差する方向に互いに並行に延びるように設けられた複数のソース配線とを備えている。ここで、ゲート配線及びソース配線は各画素を区画するように全体として格子状に設けられている。そして、ゲート配線及びソース配線の格子間には、複数の画素電極がマトリクス状に設けられている。
 そして、アクティブマトリクス基板10は、各画素毎に設けられ、画素電極に接続された第1薄膜トランジスタであるTFT(以下、「画素TFT」と称する)20Bを備えている。また、アクティブマトリクス基板10に、図1に示すように、モノリシック回路として、額縁領域Fにゲート駆動回路21、及びソース駆動回路22が設けられており、それらゲート駆動回路21、及びソース駆動回路22を構成する第2薄膜トランジスタであるTFT(以下、「周辺回路TFT」と称する)20Aが設けられている。
 これら画素TFT20B及び周辺回路TFT20Aは、nチャネル型TFTであり、図3に示すように、不純物の拡散を防ぐ目的で設けられたベースコート膜13を介して、基板11上に形成されている。また、各画素においては、画素TFT20Bが設けられた領域を含むように、基板11とベースコート膜13との間に加熱促進層12が設けられている。
 <周辺回路TFT>
 周辺回路TFT20Aは、ベースコート膜13上に設けられたチャネル領域14c、ソース領域14s及びドレイン領域14dを有する島状の半導体層である第1結晶質ケイ素層14Aを備えている。この第1結晶質ケイ素層14Aは、周辺回路TFT20Aの半導体層として機能するものであり、ゲート電極16aに重なるチャネル領域14cと、チャネル領域14cの両側に設けられたソース領域14s及びドレイン領域14dにより構成されている。
 また、周辺回路TFT20Aは、チャネル領域14c上にゲート絶縁膜15を介して設けられたゲート電極16aと、ゲート電極16aを覆うように設けられた層間絶縁膜17とを備えている。また、周辺回路TFT20Aは、ゲート絶縁膜15及び層間絶縁膜17に形成されたコンタクトホール18を介して、ソース領域14s及びドレイン領域14dから層間絶縁膜17上にそれぞれ引き出された引き出し電極19s,19dとを備えている。 
 第1結晶質ケイ素層14Aは、CGシリコンなどの結晶粒の平均粒径が比較的大きな多結晶シリコンで構成され、その結晶粒の平均粒径が例えば3.0μm以上である。ソース領域14s及びドレイン領域14dには、リン(P)などのn型不純物元素がイオン注入されている。なお、ソース領域14s及びドレイン領域14dのそれぞれとチャネル領域14cとの間に、不純物元素が低濃度にイオン注入されたLDD(Lightly Doped Drain)領域が形成されていてもよい。
 また、ゲート電極16aはゲート配線に接続されており、ゲート絶縁膜15及び層間絶縁膜17には、ソース領域14s及びドレイン領域14dに達するコンタクトホール18がそれぞれ形成されている。そして、それら各コンタクトホール18を介して各引き出し電極19s,19dがソース領域14s及びドレイン領域14dにそれぞれ接続されている。
 また、ソース領域14s側の引き出し電極19sはソース配線に接続されており、ドレイン領域14d側の引き出し電極19dは、例えば画素TFTのゲート配線に接続されている。
 この周辺回路TFT20Aのチャネル領域14cは、例えば、縦20μm、横20μm程度の相対的に大きな矩形状に形成されている。即ち、第1結晶質ケイ素層14Aのチャネル領域14cは、第2結晶質ケイ素層14Bのチャネル領域14cに比し、大きくなるように形成されている。
 <画素TFT>
 画素TFT20Bも、周辺回路TFT20Aと同様に構成され、ベースコート膜13上に設けられてチャネル領域14c、ソース領域14s及びドレイン領域14dを有する島状の半導体層である第2結晶質ケイ素層14Bを備えている。この第2結晶質ケイ素層14Bは、画素TFT20Bの半導体層として機能するものであり、ゲート電極16aに重なるチャネル領域14cと、チャネル領域14cの両側に設けられたソース領域14s及びドレイン領域14dにより構成されている。
 また、画素TFT20Bは、第2結晶質ケイ素層14B上にゲート絶縁膜15を介して設けられたゲート電極16bと、ゲート電極16bを覆うように設けられた層間絶縁膜17と、層間絶縁膜17上にソース領域14s及びドレイン領域14dからそれぞれ引き出された引き出し電極19s,19dとを備えている。
 第2結晶質ケイ素層14Bは、多結晶シリコンで構成されている。ソース領域14s及びドレイン領域14dには、リン(P)などのn型不純物元素がイオン注入されている。なお、ソース領域14s及びドレイン領域14dのそれぞれとチャネル領域14cとの間に、不純物元素が低濃度にイオン注入されたLDD(Lightly Doped Drain)領域が形成されていてもよい。
 また、ゲート電極16bはゲート配線に接続されており、ゲート絶縁膜15及び層間絶縁膜17には、ソース領域27s及びドレイン領域27dに達するコンタクトホール25がそれぞれ形成されている。そして、それら各コンタクトホール25を介して各引き出し電極26s,26dがソース領域27s及びドレイン領域27dにそれぞれ接続されている。
 また、ソース領域27s側の引き出し電極26sはソース配線に接続されており、ドレイン領域27d側の引き出し電極26dは画素電極に接続されている。
 この画素TFT20Bのチャネル領域27cは、例えば、縦4μm、横4μm程度の相対的に小さい矩形状に形成されている。即ち、第2結晶質ケイ素層14Bのチャネル領域27cは、第1結晶質ケイ素層14Aのチャネル領域14cに比し、小さくなるように形成されている。そして、第2結晶質ケイ素層14Bにおける結晶粒の平均粒径は、例えば0.1μm以上且つ1.0μm以下程度である。
 <対向基板>
 対向基板30は、ガラス基板やプラスチック基板などの絶縁性の表面を有する基板上に、それぞれ不図示の、ゲート配線及びソース配線に対応するように格子状に設けられたブラックマトリクスと、そのブラックマトリクスの格子間に周期的に配列するようにそれぞれ設けられた、例えば、赤色層、緑色層及び青色層を含む複数色のカラーフィルタと、それらブラックマトリクス及び各カラーフィルタを覆うように設けられた共通電極と、その共通電極上に柱状に設けられたフォトスペーサとを備えている。
 <液晶表示装置の作動>
 上記構成の液晶表示装置1では、各画素において、ゲート駆動回路21からゲート信号がゲート配線を介してゲート電極16aに送られて、画素TFT20Bがオン状態になったときに、ソース駆動回路22からソース信号がソース配線を介してソース領域14s側の引き出し電極19sに送られる。そして、第2結晶質ケイ素層14B及びドレイン領域14d側の引き出し電極19dを介して、画素電極に所定の電荷が書き込まれる。この際、アクティブマトリクス基板10の各画素電極と対向基板30の共通電極の間において電位差が生じ、液晶層31に所望の電圧が印加される。そして、液晶表示装置1においては、液晶層31に印加する電圧の大きさに基づいて、液晶分子の配向状態を各画素毎に変えることにより、液晶層31の光透過率を調整して、所望の画像が表示される構成となっている。
 次に、上記アクティブマトリクス基板10及び液晶表示装置1を製造する方法について説明する。
 図4~図18は、本発明の第1の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。
 液晶表示装置1を製造するには、まず、アクティブマトリクス基板10及び対向基板30をそれぞれ製造し、これら両基板10,30に配向膜33,34をそれぞれ形成する。
 次いで、アクティブマトリクス基板10及び対向基板30をシール材32を介して互いに貼り合わせるとともに、そのシール材32により、アクティブマトリクス基板10と対向基板30との間に液晶層31を封入する。次いで、アクティブマトリクス基板10及び対向基板30に偏光板35,36をそれぞれ貼り付けた後、FPC37を接続する。
 ここで、本実施形態に係る製造方法は、特に、アクティブマトリクス基板10の製造方法に特徴があるため、以下に、図4~図18を参照しながら詳述する。図4~図18は、本発明の第1の実施形態に係るアクティブマトリクス基板10の製造方法を説明するための断面図である。なお、これらの図4~図18は、図3と同様に、周辺回路TFT20A及び画素TFT20Bが形成される箇所の断面を示している。
 また、対向基板30の製造、配向膜33,34の形成、アクティブマトリクス基板10と対向基板30との貼り合わせ、偏光板35,36の貼り付け、及びFPC37の接続などのアクティブマトリクス基板10の製造以外の方法については、公知の方法を用いて行うことができるので、ここでは、その説明は省略する。
 本実施形態のアクティブマトリクス基板10の製造方法は、周辺回路TFT20A及び画素TFT20Bを形成するための結晶質半導体膜を形成する方法として、加熱促進層形成工程と、絶縁膜形成工程と、非晶質半導体膜成膜工程と、第1結晶化工程と、第2結晶化工程と、再結晶化工程とを備える。
 <加熱促進層形成工程>
 まず、ガラス基板やプラスチック基板などの絶縁性の表面を有する基板11上に、図4に示すように、例えば、スパッタリング法によりモリブデン膜23を成膜する。次いで、このモリブデン膜23をフォトリソグラフィーによりパターニングして、図5に示すように画素TFT20Bを形成する領域を含むように、レーザビームを反射する加熱促進層12を形成する。なお、モリブデン膜23に代えて、レーザビームを吸収するタングステン膜からなる加熱促進層12を形成してもよい。
 この加熱促進層12は、レーザビームを反射又は吸収することにより、第1結晶質ケイ素膜24Aの、第2結晶質ケイ素膜24Bを形成する領域の加熱を促進させるためのものである。
 ここで、仮に、膜厚が50nmよりも小さくなるように加熱促進層12を形成すると、後に行う第2結晶化工程でケイ素膜にレーザビームを照射したときに、加熱促進層12におけるレーザビームの反射が不十分なものとなり、ケイ素膜における加熱促進層12上及びその近傍のみを選択的に溶融固化することができない場合がある。一方、仮に、膜厚が500nmよりも大きくなるように加熱促進層12を形成すると、加熱促進層12が設けられた領域と加熱促進層12が設けられていない領域との段差が比較的大きくなるため、その段差により、後に形成する引き出し電極19s,19dが段切れしやすくなる。このことから、加熱促進層12は、50nm以上500nm以下の厚さに形成することが好ましい。さらに、引き出し電極19s,19dの段切れを良好に抑制する観点から300nm以下の厚さに形成することがより好ましい。
 <絶縁膜形成工程>
 次いで、加熱促進層12が形成された基板上に、原料ガスとしてTEOS(Tetra EthOxy Silane)を用いたCVD(Chemical Vapor Deposition)法等を使用して、二酸化ケイ素膜を成膜することにより、図6に示すように、パターニングされた加熱促進層12及び基板11の表面を覆うように、絶縁膜であるベースコート膜13を、例えば、100nm程度の厚さに形成する。なお、ベースコート膜13としては、二酸化ケイ素膜の他に、窒化ケイ素膜、酸窒化ケイ素膜などを成膜してもよく、これらの膜の積層体を形成してもよい。
 <非晶質半導体膜成膜工程>
 次いで、ベースコート膜13が形成された基板上に、原料ガスとしてSiHを用いたLPCVD(Low Pressure CVD)法などにより、非晶質半導体膜として非晶質ケイ素膜24を、例えば、50nm程度の厚さで成膜する。
 <第1結晶化工程>
 次いで、非晶質半導体膜成膜工程で成膜した非晶質ケイ素膜24において、少なくとも大きな結晶粒が必要な領域の一部を含む領域に、例えば、抵抗加熱法により、図7に示すように、非晶質ケイ素膜24の結晶化を助長する触媒元素としてニッケル(Ni)26を蒸着させることにより添加する。
 図7においては、ニッケル26を膜状に示しているが、実際には、ニッケル26は非晶質ケイ素膜24の表面に粒状に散乱している。また、非晶質ケイ素膜24の表面全体に添加しても構わない。
 なお、触媒元素としては、ニッケル26の他に、鉄(Fe)、コバルト(Co)、ゲルマニウム(Ge)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、銅(Cu)及び金(Au)などが挙げられる。そして、この第1結晶化工程では、ニッケル26に代えて、これらの金属のうち少なくとも1種類の元素を非晶質ケイ素膜24に添加することが好ましく、これらの金属の化合物や、金属単体と金属化合物を添加してもよい。
 ニッケル26は、全反射蛍光X線分析法によって表面濃度を測定することが可能である。ここで、仮に、非晶質ケイ素膜24の表面における濃度が1×1010atoms/cm未満となるようにニッケル26を添加すると、ニッケル26による非晶質ケイ素膜24の結晶化を助長する効果が比較的小さいため、非晶質ケイ素膜24を結晶化するために必要な時間が長くなり、製造工程の効率が低下する。一方、非晶質ケイ素膜24の表面における濃度が1×1012atoms/cmを越えるようにニッケル26を添加すると、後述する熱処理を行ったときに、非晶質ケイ素膜24中のニッケル26が高濃度になり、ニッケル26に起因して形成される結晶粒の密度が比較的高くなって結晶粒の平均粒径が小さくなるため、形成された結晶質ケイ素膜のキャリア移動度が小さくなりやすい。そして、その結晶質ケイ素膜を用いてTFTを形成する場合には、十分なトランジスタ特性が得られない場合がある。このことから、ニッケル26は、非晶質ケイ素膜24の表面における濃度が1×1010atoms/cm以上1×1012atoms/cm未満となるように添加することが好ましい。
 次いで、非晶質ケイ素膜24に対して、結晶化エネルギーを付与することにより、非晶質ケイ素膜24を固相成長させる。より具体的には、非晶質ケイ素膜24にニッケル26が添加された基板を電気炉(熱処理炉)に搬入し、この電気炉を使用して、窒素雰囲気中において基板(即ち、非晶質ケイ素膜24)を熱処理する。この熱処理により、非晶質ケイ素膜24の表面のニッケル26を非晶質ケイ素膜24の内部へと拡散させ、拡散したニッケル26に起因して非晶質ケイ素膜24に比較的大きな結晶粒を固相成長させる。
 ここで、仮に、500℃未満の温度で非晶質ケイ素膜24を熱処理すると、非晶質ケイ素膜24の固相成長の速度が比較的遅くなる。一方、700℃を越える温度で非晶質ケイ素膜24を熱処理すると、ニッケル26に起因して固相成長する結晶粒の他に、ニッケル26に起因しない、例えば、0.2μm以下の比較的小さい粒径の結晶粒が成長するため、これにより形成された結晶質ケイ素膜を用いてTFTを形成する場合には、十分なトランジスタ特性が得られない場合がある。このことから、500℃以上700℃以下の温度で非晶質ケイ素膜24を熱処理することが好ましい。
 この第1結晶化工程を行うことにより、非晶質ケイ素膜24を固相成長させて、図8に示すように、結晶粒の平均粒径が大きい第1結晶質半導体膜である第1結晶質ケイ素膜24Aを形成する。
 <第2結晶化工程>
 第1結晶化工程で結晶化した第1結晶質ケイ素膜24A(一部に非晶質領域を含んでいる場合がある)に対し、図9に示すように、その結晶質ケイ素膜24Aの表面でのビーム形状が直線状であるパルス発振のレーザビーム29を、そのレーザビーム29の幅方向(図中に矢印で示す方向)にステップ走査しながら照射することにより、第1結晶質ケイ素膜24Aの一部(即ち、第1結晶質ケイ素膜24Aにおける加熱促進層12上及びその加熱促進層12の近傍の領域)を溶融固化して結晶化し、図10に示すように、平均粒径が第1結晶質ケイ素膜24Aよりも小さい第2結晶質半導体膜である第2結晶質ケイ素膜24Bを形成する。
 なお、レーザビーム29は、アスペクト比が2以上であることが好ましく、10以上10000以下のアスペクト比であることがさらに好ましい。このような直線状にレーザビーム29が成形されていれば、非晶質ケイ素膜24を十分にアニールできる程度のエネルギー密度を確保することが可能になる。そして、このような直線状のレーザビーム29を、その幅方向にステップ走査しながら非晶質ケイ素膜24に照射することにより、結晶質ケイ素膜24Aを効率良く簡便に結晶化することが可能である。
 また、レーザビーム29は、加熱促進層12上及びその加熱促進層12の近傍における結晶質ケイ素膜24Aのみを結晶化する条件のレーザビームであることが好ましく、例えば、波長が370nm以上650nm以下のレーザビームであることが好ましい。
 ここで、従来の結晶化方法において、第1結晶化工程においてレーザビームを反射又は吸収する遮光層が設けられた領域の上部の非晶質半導体膜を結晶化し、それ以外の領域の非晶質半導体は非晶質のまま残す方法が提案されている。しかし、例えば、非晶質ケイ素膜に、波長が532nmの汎用的なYAGレーザの第2高調波を用いた場合、非晶質ケイ素膜のYAGレーザの第2高調波に対する吸収係数が、9.31×10cm-1程度と比較的高く、YAGレーザの第2高調波は、非晶質ケイ素膜に吸収され易いため、レーザ照射のエネルギーは、非晶質半導体層内部で吸収される割合が高いと言える。従って、下層にあるレーザビームを反射又は吸収する遮光層の有無だけで結晶化する領域と全く結晶化しない領域とを明確に分けるには、適正なレーザー照射条件が非常に狭く、安定した生産を行うのが困難な場合がある。
 一方、本実施形態においては、主に、第2結晶化領域は、第1結晶化工程において結晶化されていないため、波長が532nmのYAGレーザの第2高調波を用いた場合、YAGレーザの第2高調波に対する第1結晶質ケイ素膜24A、及び非晶質ケイ素膜24の吸収係数が、それぞれ2.74×10cm-1程度、9.31×10cm-1程度であり、第1結晶質ケイ素膜の方が吸収され難いため、第2結晶化工程において、非晶質ケイ素膜24を選択的に溶融固化することが可能となる。また、第1結晶化工程によって、第2結晶化領域が第1結晶質ケイ素膜24Aとなった場合であっても、YAGレーザの第2高調波は、第1結晶質ケイ素膜24Aには吸収され難いことから、加熱促進層12上の結晶質ケイ素膜のみを効率的、かつ選択的に溶融固化することが可能である。
 即ち、第2結晶化工程において、結晶性半導体と非晶質半導体で吸収係数差が大きい波長、例えば、532nmのYAGレーザの第2高調波でレーザ照射で行うことで、全面が非晶質半導体であり、下層にあるレーザビームを反射又は吸収する遮光層の有無だけで結晶化する領域と全く結晶化しない領域を制御する従来の方法に比し、第2結晶化工程時のレーザ照射の条件範囲を大きくとることが可能である。
 このレーザビーム29としては、例えば、パルス発振の固体レーザビームであるYAGレーザの第2高調波を用いることができる。ここで、このYAGレーザの第2高調波は、波長が532nmであるため、結晶質ケイ素膜に吸収され難い。従って、YAGレーザを結晶質ケイ素膜24Aに照射すると、加熱促進層12上及びその加熱促進層12の近傍における結晶質ケイ素膜24Aのみを、より効率良く結晶化をすることが可能となる。また、YAGレーザビームは、固体レーザビームであり、そのレーザ発振器は簡素な構造を有しているため、長期間、メンテナンスが不要であり、その結果、稼働時間を長く、かつランニングコストを安価にすることが可能である。
 また、レーザビーム29を走査する速度が5cm/sよりも遅いと、第1結晶質ケイ素膜24Aが過剰なエネルギーを受けて蒸発し、その第1結晶質ケイ素膜24Aを良好に結晶化できない場合がある。一方、レーザビーム29を走査する速度が3m/sよりも速いと、レーザビーム29の走査速度が速すぎて、非晶質ケイ素膜24を確実に溶融固化できない場合がある。このことから、レーザビーム29を走査する速度は、5cm/s以上3m/s以下であることが好ましい。
 この第2結晶化工程を行うことにより、図9に示すように、加熱促進層12上及びその加熱促進層12の周囲のケイ素膜のみを溶融固化し、結晶化して、第2結晶質半導体膜である第2結晶質ケイ素膜24Bを形成する。この際、加熱促進層12上及びその加熱促進層12の周囲以外の第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径は、影響を受けず、変化しない。
 <再結晶化工程>
 第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bに対して、図11に示すように、それら各結晶質ケイ素膜24A,24Bの表面でのビーム形状が直線状であるパルス発振のレーザビーム27を、そのレーザビーム27の幅方向(図中に矢印で示す方向)にステップ走査しながら照射する。
 そうすると、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径が第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径よりも大きい状態を維持しながら、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを溶融固化して、それら各結晶質ケイ素膜24A,24Bを再結晶化することができる。
 このように直線状のレーザビーム27を、その幅方向にステップ走査しながら各結晶質ケイ素膜24A,24Bに照射することにより、各結晶質ケイ素膜24A,24Bを効率良く、簡単に結晶化することが可能となる。
 なお、レーザビーム27は、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径が第2結晶質ケイ素膜24Bおける結晶粒の平均粒径よりも大きい状態を確実に維持しながら、これら第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを再結晶化するとの観点から、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを部分的に溶融する条件のレーザビームであることが好ましい。例えば、波長が126nm以上370nm未満のレーザビームであることが好ましい。そこで、レーザビーム27としては、例えば波長が308nmのXeClエキシマレーザビームを用いる。
 この再結晶化工程を行うことにより、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの表面から溶融を進行させるが、ベースコート膜13との界面から数nm程度の距離にある領域の第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bは溶融させない。そして、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを部分的に溶融固化して再結晶化することにより、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径が変化することなく、これら各結晶質ケイ素膜24A,24Bの結晶性を向上させることができる。
 以上のようにして、基板11上に、結晶粒の平均粒径が互いに異なり、各々優れたキャリア移動度を有する第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを形成することができる。
 次に、これら第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを用いて周辺回路TFT20A及び画素TFT20Bを形成する方法について説明する。
 まず、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bをフォトリソグラフィーによりパターニングして、図12及び図13に示すように、各々、チャネル領域14c、ソース領域14s及びドレイン領域14dとなる領域を有するように、第1結晶質ケイ素膜24Aから第1結晶質ケイ素層14A’、第2結晶質ケイ素膜24Bから第2結晶質ケイ素層14B’をそれぞれ形成する。
 ここで、第1結晶質ケイ素層14A’及び第2結晶質ケイ素層14B’は、図12に示すような同一の形状を有し、チャネル領域14cとなる領域の大きさだけが異なるように形成する。
 次いで、第1結晶質ケイ素層14A’及び第2結晶質ケイ素層14B’が形成された基板上に、原料ガスとしてTEOSなどを用いたAPCVD(Atmospheric Pressure CVD)法により、第1結晶質ケイ素層14A’及び第2結晶質ケイ素層14B’を覆うように、二酸化ケイ素膜などの酸化膜を成膜して、図14に示すように、ゲート絶縁膜15を、例えば、100nm程度に形成する。なお、ゲート絶縁膜15としては、二酸化ケイ素膜の他に、窒化ケイ素膜、酸窒化ケイ素膜などが挙げられ、これらの膜の積層体としてもよい。
 次いで、図15に示すように、ゲート絶縁膜15が形成された基板上に、スパッタ法により、アルミニウム膜38を、例えば、300nm程度の厚さに形成する。その後、そのアルミニウム膜38をフォトリソグラフィー法によりパターニングすることにより、図16に示すように、ゲート電極16a,16bを形成する。この際、アルミニウム膜38からゲート配線も同時に形成する。
 なお、ゲート電極16a,16bは、アルミニウムに代えて、例えば、タングステン、モリブデン、タンタル、及びチタンなどの高融点金属材料や、これら高融点金属材料の窒化物などの膜から形成してもよく、これらの膜が積層された積層体から形成してもよい。
 さらに、第1結晶質ケイ素層14A’及び第2結晶質ケイ素層14B’に、図17に示すように、ゲート電極16a,16bをマスクとして、例えば、リンなどのn型不純物元素をイオン注入する。その後、電気炉で活性化アニールを行うことにより、第1結晶質ケイ素層14A’及び第2結晶質ケイ素層14B’において、ゲート電極16a,16bが重なっていない領域にソース領域14s及びドレイン領域14dを形成するとともに、ゲート電極16a,16bが重なる領域にチャネル領域14cをそれぞれ形成する。なお、図17中の矢印は、リンを注入する方向を示している。このようにして、第1結晶質ケイ素層14A及び第2結晶質ケイ素層14Bが形成される。
 次に、結晶質ケイ素層14A,14Bが形成された基板上に、APCVD法により、ゲート電極16a,16bを覆うように窒化ケイ素膜などを成膜することにより、図18に示すように、層間絶縁膜17を、例えば、500nm程度の厚さに形成する。そして、層間絶縁膜17及びゲート絶縁膜15をフォトリソグラフィーによりパターニングして、図18に示すように、層間絶縁膜17及びゲート絶縁膜15にソース領域14s,27s及びドレイン領域14d,27d上で貫通するコンタクトホール18,25をそれぞれ形成する。
 次に、層間絶縁膜17及びゲート絶縁膜15にコンタクトホール18が形成された基板上に、スパッタリング法により、チタン膜、アルミニウム膜及びチタン膜を順に成膜して金属積層体を形成する。その後、その金属積層体をパターニングすることにより、引き出し電極19s,19d,26s,26dを形成する。
 これにより、コンタクトホール18を介して引き出し電極19s,19dとソース領域14s及びドレイン領域14dとの間にオーミック接触を実現させる。また、同様に、コンタクトホール25を介して引き出し電極26s,26dとソース領域27s及びドレイン領域27dとの間にオーミック接触を実現させるこのようにして、図3に示す周辺回路TFT20A及び画素TFT20Bが形成される。
 この際、金属積層体からソース配線も同時に形成する。また、引き出し電極19s,19d,26s,26dは、チタン膜、アルミニウム膜及びチタン膜の積層体に代えて、例えば、タングステン、チタン及びアルミニウムなどの単体の膜から形成していてもよく、チタン膜、アルミニウム膜及びチタン膜の積層体以外の金属積層体から形成してもよい。
 そして、引き出し電極19s,19d,25s,26dが形成された基板上に、スパッタリング法により、例えば、ITO(Indium Tin Oxide)膜などの透明導電膜を成膜し、その透明導電膜をフォトリソグラフィーによりパターニングして、画素電極を形成する。
 以上のようにして、アクティブマトリクス基板10を製造することができる。
 以上に説明したように、本実施形態においては、非晶質半導体膜成膜工程において、基板11上に非晶質ケイ素膜24を成膜し、第1結晶化工程において、非晶質ケイ素膜24における第1結晶質ケイ素層14Aを形成する領域を固相成長させて結晶化することにより、第1結晶質ケイ素膜24Aを形成する。その後、第2結晶化工程において第1結晶質ケイ素膜24Aを溶融固化することにより、第1結晶質ケイ素膜24Aよりも結晶粒の平均粒径が小さい第2結晶質ケイ素膜24Bを形成する構成としている。従って、結晶粒の平均粒径が互いに異なる第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを形成することができる。
 また、この際、仮に、第1結晶化工程によって、第2結晶化領域の一部が第1結晶質ケイ素膜24Aとなった場合であっても、加熱促進層12の存在により、一旦、第1結晶質ケイ素膜24Aとなった第2結晶化領域の一部が、第2結晶化工程において溶融固化する。従って、第1結晶質ケイ素膜24Aとなった第2結晶化領域の一部を、第2結晶質ケイ素膜24Bにすることが可能であるため、第1結晶化領域(即ち、第1結晶質ケイ素膜24Aの形成領域)と第2結晶化領域(即ち、第2結晶質ケイ素膜24Bの形成領域)の形成位置を精度よく制御することが可能である。従って、構成する半導体層の結晶粒径が異なる2つのTFT(即ち、周辺回路TFT20A及び画素TFT20B)を交互に並べて配置する際に、その間隔を、例えば、3μm程度に小さくすることができ、結果として、集積化が可能となる。
 また、再結晶化工程において、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径が第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径よりも大きい状態を維持しながら、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを溶融固化することにより、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを再結晶化する構成としている。従って、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの結晶性が向上してキャリア移動度を高めることができる。その結果、同一基板11上に、結晶粒の平均粒径が互いに異なり、各々優れたキャリア移動度を有する第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを形成することができる。
 そして、第1結晶質ケイ素膜24Aを用いて周辺回路TFT20Aを形成し、第2結晶質ケイ素膜24Bを用いて画素TFT20Bを形成するため、周辺回路TFT20Aにおけるキャリア移動度の低下を抑制することができるとともに、画素TFT20B間における閾値電圧のばらつきを抑制することができる。従って、異なる電気特性が要求される周辺回路TFT20Aと画素TFT20Bに、所望の電気特性を与えることができるため、輝度や色のばらつきが少なく、安定した表示が可能な表示装置1を実現することができる。
 (実施例)
 上記本実施形態の製造方法に従って、以下の条件で第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを形成し、第1結晶質ケイ素膜24Aを用いて周辺回路TFT20A、第2結晶質ケイ素膜24Bを用いて画素TFT20Bをそれぞれ50個ずつ作製した。本実施例で作製する周辺回路TFT20Aは、チャネル領域14cが縦20μm、横20μmの矩形状であり、画素TFT20Bはチャネル領域14cが縦4μm、横4μmの矩形状である。
 <作製方法>
 まず、ガラス基板11上に、パターニングされた加熱促進層12を150nm程度の厚さに形成した。次いで、ガラス基板11及び加熱促進層12の表面を覆うように、ベースコート膜13として、二酸化ケイ素膜を100nmの厚さに成膜した。さらに、ベースコート膜13上に、非晶質ケイ素膜24を50nmの厚さで成膜した。
 次に、全反射蛍光X線分析法において、非晶質ケイ素膜24の表面から数nm(5nm~10nm)程度の深さまでの領域の濃度が5×1010atoms/cm程度となるように、触媒元素としてニッケル26を非晶質ケイ素膜24に添加した。そして、電気炉で窒素雰囲気において、基板を600℃で1時間、熱処理して、第1結晶質ケイ素膜24Aを形成した。
 次いで、第1結晶質ケイ素膜24Aの表面でのビーム形状が、長さ100mm、幅45μm程度の矩形直線状となるように、パルス発振のYAGレーザビーム29を成形した。そして、そのレーザビーム29をパルス発振のショット毎に2μmの幅で移動させるようにステップ走査しながら、第1結晶質ケイ素膜24AにYAGレーザの第2高調波を照射した。この際、パルス発振のYAGレーザの第2高調波を出力するレーザ発振器に印加するエネルギーを30Wに設定した。これにより、加熱促進層12上及びその周囲500nmの領域の第1結晶質ケイ素膜24Aが溶融固化して結晶化することにより第2結晶質ケイ素膜24Bを形成した。
 次いで、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの表面でのビーム形状が長さ125mm、幅0.4mm程度の矩形直線状となるようにパルス発振のXeClエキシマレーザビーム27を成形した。そして、そのレーザビーム27をパルス発振のショット毎に20μmの幅で移動させるようにステップ走査しながら、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bに照射し、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを再結晶化した。この際、XeClエキシマレーザビーム27の出力は、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの表面に照射するエネルギー密度が350mJ/cmとなるように設定した。これにより、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの表面から溶融が進行したが、ベースコート膜13との界面から5nmの領域の第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bは溶融しなかった。
 次いで、ゲート絶縁膜15を100nmの厚さに形成し、ゲート電極16a,16bをアルミニウム膜から300nmの厚さに形成した。また、第1結晶質ケイ素層14A及び第2結晶質ケイ素層14Bにリンをイオン注入することにより、ソース領域14s及びドレイン領域14d形成した。さらに、層間絶縁膜17を500nmの厚さに形成し、引き出し電極19s,19dを、下層からチタン膜を100nm、アルミニウム膜を300nm、及びチタン膜を100nmの厚さに形成した。
 <評価>
 上記第1結晶化工程、第2結晶化工程、及び再結晶化工程の各々の直後におけるケイ素膜について、EBSP法により結晶粒の平均粒径を測定した。その結果、第1結晶化工程後の第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径は約4.0μmであった。また、第2結晶化工程後において、第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径は約0.3μmであり、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径は約4.0μmのまま変化していなかった。また、再結晶化工程後においても、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径は約4.0μmであり、第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径は約0.3μmであった。
 また、得られた周辺回路TFT20A及び画素TFT20Bについて、TFT電気特性測定器を用いてI-V測定を行い、キャリア移動度及び閾値電圧のばらつきを測定した。その結果、周辺回路TFT20Aについては、キャリア移動度が370cm/V・sであり、50個の閾値電圧のばらつきが0.15Vと比較的大きかった。一方、画素TFT20Bについては、キャリア移動度が180cm/V・sであり、50個の閾値電圧のばらつきが0.05Vと比較的小さかった。
 以上のことから、第1結晶化工程および第2結晶化工程により、互いに結晶粒の平均粒径が異なる第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを形成でき、さらに再結晶化することにより、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径が、第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径よりも大きい状態を維持しながら、それら第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの結晶性を向上させることができることが判る。
 そして、第1結晶質ケイ素膜24Aを用いて周辺回路TFT20A、第2結晶質ケイ素膜24Bを用いて画素TFT20Bをそれぞれ形成することにより、周辺回路TFT20Aに高いキャリア移動度を得ることができることが判る。更に、周辺回路TFT20A及び画素TFT20Bの双方に優れたキャリア移動度を与えることができ、特に、画素TFT20B間の閾値電圧のばらつきを小さくできることが判る。
 (第2の実施形態)
 図19は、本発明の第2の実施形態に係る液晶表示装置を構成するアクティブマトリクス基板における光センサを概略的に示す断面図である。なお、上記第1の実施形態と同様の構成部分については同一の符号を付してその説明を省略する。また、液晶表示装置の構成については、上述の第1の実施形態において説明したものと同様であるため、ここでは詳しい説明を省略する。また、本実施形態においても、半導体素子基板として、液晶表示装置を構成するアクティブマトリクス基板を例に挙げて説明する。さらに、本実施形態においては、半導体素子基板を構成する半導体素子として薄膜トランジスタ及び光センサを例に挙げて説明する。
 本実施形態においては、アクティブマトリクス基板10には、上述の周辺回路TFT20A、及び画素TFT20B以外に、タッチセンサとして機能する光センサであるフォトダイオード20Cが、各画素若しくは所定の数の画素群毎に設けられている。なお、本実施形態のアクティブマトリクス基板10における、その他の構成については、上述の第1の実施形態と同様である。
 フォトダイオード20Cは、図19に示すように、PIN構造を有しており、上述の画素TFT20Bと同様に、加熱促進層12に重なるようにベースコート膜13上に形成されている。
 また、本実施形態においては、加熱促進層12は、遮光性を有し、フォトダイオード20Cの遮光膜として機能している。従って、後述するアクティブマトリクス基板10の製造方法において、加熱促進層12とは別個にフォトダイオード20Cの遮光膜を設ける必要がなく、製造効率が高められる。
 このフォトダイオード20Cは、ベースコート膜13上に設けられた真性半導体領域14i、n型半導体領域14n及びp型半導体領域14pを有する島状の半導体層である第2結晶質ケイ素層14Cとを備えている。また、フォトダイオード20Cは、第2結晶質ケイ素層14Cを覆うように設けられた絶縁膜15及び層間絶縁膜17と、層間絶縁膜17上にn型半導体領域14n及びp型半導体領域14pからそれぞれ引き出された引き出し電極19n,19pとを備えている。
 第2結晶質ケイ素層14Cは、中央部に設けられた真性半導体領域14iと、真性半導体領域14iの両側に設けられたn型半導体領域14n及びp型半導体領域14pにより構成されている。この第2結晶質ケイ素層14Cは、上述の画素TFT20Bの第2結晶質ケイ素層14Bと同じ多結晶シリコンで構成されている。n型半導体領域14nには、リンなどのn型不純物元素がイオン注入されている。一方、p型半導体領域14pには、ホウ素などのp型不純物元素がイオン注入されている。
 絶縁膜15及び層間絶縁膜17には、n型半導体領域14n及びp型半導体領域14pに達するコンタクトホール28がそれぞれ形成されており、それら各コンタクトホール28を介して各引き出し電極19n,19pがn型半導体領域14n及びp型半導体領域14pにそれぞれ接続されている。
 このフォトダイオード20Cの真性半導体領域14iは、例えば、縦5μm、横10μm程度の矩形状に形成されている。そして、第2結晶質ケイ素層14Cにおける結晶粒の平均粒径は、例えば0.1μm以上1.0μm以下程度である。
 次に、本実施形態におけるアクティブマトリクス基板10及び液晶表示装置1を製造する方法について説明する。
 図20~図29は、本発明の第2の実施形態に係るアクティブマトリクス基板の製造方法を説明するための図である。なお、これらの図20~図29は、図19と同様に、フォトダイオード20Cが形成される箇所の断面を示している。
 本実施形態のアクティブマトリクス基板10の製造方法は、上述の第1の嫉視形態の場合と同様に、周辺回路TFT20A、画素TFT20B、及びフォトダイオード20Cを形成するための結晶質半導体膜を形成する方法として、加熱促進層形成工程と、絶縁膜形成工程と、非晶質半導体膜成膜工程と、第1結晶化工程と、第2結晶化工程と、再結晶化工程とを備える。
 <加熱促進層形成工程>
 上述の第1の実施形態の場合と同様に、上記の図4に示すように、ガラス基板やプラスチック基板などの絶縁性の表面を有する基板11上に、例えば、スパッタリング法によりモリブデン膜23を、150nm程度の厚さに成膜する。次いで、このモリブデン膜23をフォトリソグラフィーによりパターニングして、図20に示すように、フォトダイオード20Cを形成する領域に加熱促進層12を形成する。このとき、上述の図5に示すように、画素TFT20Bを形成する領域にも加熱促進層12が形成される。なお、モリブデン膜23に代えてタングステン膜から加熱促進層12を形成してもよい。
 <絶縁膜形成工程>
 次いで、加熱促進層12が形成された基板上に、原料ガスとしてTEOSを用いたCVD法などにより二酸化ケイ素膜を成膜することにより、図6、図20に示すように、パターニングされた加熱促進層12及び基板11の表面を覆うように、絶縁膜であるベースコート膜13を、例えば、100nm程度の厚さに形成する。なお、ベースコート膜13としては、二酸化ケイ素膜の他に、窒化ケイ素膜、酸窒化ケイ素膜などを成膜してもよく、これらの膜の積層体を形成してもよい。
 <非晶質半導体膜成膜工程>
 次いで、上述の第1の実施形態の場合と同様に、図6、図20に示すように、ベースコート膜13が形成された基板上に、原料ガスとしてSiHを用いたLPCVD(Low Pressure CVD)法などにより、非晶質半導体膜として非晶質ケイ素膜24を、例えば、50nm程度の厚さで成膜する。
 <第1結晶化工程>
 次いで、上記実施形態1と同様に、非晶質半導体膜成膜工程で成膜した非晶質ケイ素膜24において、少なくとも大きな結晶粒が必要な領域の一部を含む領域に、例えば抵抗加熱法により、図7、図21に示すように、非晶質ケイ素膜24の結晶化を助長する触媒元素としてニッケル(Ni)26を蒸着させることにより添加する。
 なお、図21でもニッケル26を膜状に示しているが、実際には、ニッケル26は非晶質ケイ素膜24の表面に粒状に散乱している。
 また、この際、上述の第1の実施形態と同様に、ニッケル26は、非晶質ケイ素膜24の結晶化を効果的に促進して製造工程を効率的に行い、形成される結晶粒の密度を低くして結晶粒の平均粒径を大きくすることで第1結晶質ケイ素膜24Aのキャリア移動度を確実に大きくするとの観点から、非晶質ケイ素膜24の表面における濃度が1×1010atoms/cm以上1×1012atoms/cm未満となるように添加することが好ましい。
 次いで、非晶質ケイ素膜24にニッケル26が添加された基板を電気炉で窒素雰囲気中において熱処理することにより、非晶質ケイ素膜24の内部へとニッケル26を拡散させ、拡散したニッケル26に起因して非晶質ケイ素膜24を固相成長させて、第1結晶質ケイ素膜24Aを形成する。
 また、この際、上述の第1の実施形態の場合と同様に、非晶質ケイ素膜24の固相成長の速度を良好に速くし、触媒元素26に起因しない結晶粒の成長を抑制して第1結晶質ケイ素膜24Aのキャリア移動度を確実に大きくする観点から、熱処理は、500℃以上且つ700℃以下の温度で行うことが好ましい。
 この第1結晶化工程を行うにより、非晶質ケイ素膜24を固相成長させて、図8、図22に示すように、結晶粒の平均粒径が比較的大きい第1結晶質半導体膜である第1結晶質ケイ素膜24Aを形成する。
 <第2結晶化工程>
 第1結晶化工程で結晶化した第1結晶質ケイ素膜24Aに対し、図9に示すように、その第1結晶質ケイ素膜24Aの表面でのビーム形状が直線状である連続発振のレーザビーム29を、そのレーザビーム29の幅方向に走査しながら照射することにより、第1結晶質ケイ素膜24Aの一部(即ち、第1結晶質ケイ素膜24Aにおける加熱促進層12上及びその加熱促進層12の近傍の領域)を溶融固化して結晶化し、図10、図23に示すように、平均粒径が第1結晶質ケイ素膜24Aよりも小さい第2結晶質半導体膜である第2結晶質ケイ素膜24Bを形成する。
 また、この際、上述の第1の実施形態の場合と同様に、第1結晶質ケイ素膜24Aを十分にアニールできる程度のエネルギー密度を確保するとの観点から、レーザビーム29のアスペクト比が、10以上且つ10000以下であることが好ましい。
 また、上述の第1の実施形態の場合と同様に、レーザビーム29としては、第1結晶質ケイ素膜24Aを効率良く結晶化するとともに、レーザ発振器の稼働時間を長くし、ランニングコストを安価にする観点から、例えば、YAGレーザの第2高調波を用いる。また、レーザビーム29を走査する速度は、5cm/s以上3m/s以下であることが好ましい。
 この第2結晶化工程を行うにより、図9、図23に示すように、加熱促進層12上及びその加熱促進層の周囲の第1結晶質ケイ素膜24Aのみを溶融固化し、結晶化して、第2結晶質半導体膜である第2結晶質ケイ素膜24Bを形成する。この際、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径は、影響を受けず、変化しない。
 <再結晶化工程>
 上述の第1の実施形態の場合と同様に、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bに対し、図11に示すように、それら各結晶質ケイ素膜24A,24ケイ素膜Bの表面でのビーム形状が直線状であるパルス発振のレーザビーム27をそのレーザビーム27の幅方向にステップ走査しながら照射する。
 そうすると、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径が第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径よりも大きい状態を維持しながら、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを溶融固化して、それら各結晶質ケイ素膜24A,24Bを再結晶化することができる。
 なお、上述の第1の実施形態と同様に、レーザビーム27としては、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを部分的に溶融するとの観点から、例えば、波長が308nmのXeClエキシマレーザビームを用いる。
 この再結晶化工程を行うことにより、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの表面から溶融を進行させるが、ベースコート膜13との界面から数nm程度の領域の第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bは溶融させない。そして、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを部分的に溶融固化して再結晶化することにより、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径が変化することなく、これら各結晶質ケイ素膜24A,24Bの結晶性を向上させることができる。
 以上のようにして、同一基板11上に、結晶粒の平均粒径が互いに異なり、各々優れたキャリア移動度を有する第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを形成することができる。
 次に、これら第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを用いてフォトダイオード20C、周辺回路TFT20A及び画素TFT20Bを形成する方法について説明する。
 まず、第2結晶質ケイ素膜24Cをフォトリソグラフィーによりパターニングして、図24及び図25に示すように、真性半導体領域14i、n型半導体領域14n及びp型半導体領域14pとなる領域を有するように、第2結晶質ケイ素膜24Bから第2結晶質ケイ素層14C’を形成する。
 この際、上述の第1の実施形態の場合と同様に、第1結晶質ケイ素膜24Aから周辺回路TFT20Aの第1結晶質ケイ素層14A’、第2結晶質ケイ素膜24Bから画素TFT20Bの第2結晶質ケイ素層14B’も同時にそれぞれ形成する。
 次いで、第1結晶質ケイ素層14A’及び第2結晶質ケイ素層14B’,14C’が形成された基板上に、原料ガスとしてTEOSなどを用いたAPCVD法により、第1結晶質ケイ素層14A’及び第2結晶質ケイ素層14B’,14C’を覆うように、二酸化ケイ素膜などを成膜して、図25に示すように、ゲート絶縁膜15を、例えば、100nm程度に形成する。なお、ゲート絶縁膜15としては、二酸化ケイ素膜の他に、窒化ケイ素膜、酸窒化ケイ素膜などが挙げられ、これらの膜の積層体としてもよい。
 次いで、上述の第1の実施形態の場合と同様に、図15に示すように、ゲート絶縁膜15が形成された基板上に、スパッタ法により、アルミニウム膜38を、例えば、300nm程度の厚さに形成する。その後、そのアルミニウム膜38をフォトリソグラフィー法によりパターニングすることにより、図16に示すように、ゲート電極16a,16bを形成する。この際、アルミニウム膜38からゲート配線も同時に形成する。
 なお、ゲート電極16a,16bは、アルミニウムに代えて、例えば、タングステン、モリブデン、タンタル及びチタンなどの高融点金属材料や、これら高融点金属材料の窒化物などの膜から形成してもよく、これらの膜が積層された積層体から形成してもよい。
 次に、図26に示すように、フォトダイオード20Cを形成するための第2結晶質ケイ素層14C’のn型半導体領域14nとなる領域に開口部を有するレジスト層40を、開口部以外の領域を覆うように、ゲート絶縁膜15上に形成する。その後、レジスト層40をマスクとして、第2結晶質ケイ素層14C’のn型半導体領域14nとなる領域にリンをイオン注入する。なお、図26中の矢印は、リンを注入する方向を示している。
 この際、周辺回路TFT20Aを形成するための第1結晶質ケイ素層14A’及び画素TFT20Bを形成するための第2結晶質ケイ素層14B’のソース領域14s及びドレイン領域14dとなる各領域にも開口部を有するレジスト層40を形成することにより、第1結晶質ケイ素層14A’及び第2結晶質ケイ素層14B’のソース領域14s,27s及びドレイン領域14d,27dとなる各領域にもリンがイオン注入される。その後、レジスト層40をアッシングなどにより除去する。
 次いで、図27に示すように、第2結晶質ケイ素層14C’のp型半導体領域14pとなる領域に開口部を有するにレジスト層41を、開口部以外の領域を覆うように、ゲート絶縁膜15上に形成する。その後、そのレジスト層41をマスクとして第2結晶質ケイ素層14C’のp型半導体領域14pとなる領域にホウ素をイオン注入する。なお、図27中の矢印はホウ素を注入する方向を示している。その後、レジスト層41をアッシングなどにより除去する。
 そして、リン及びホウ素が注入された第2結晶質ケイ素層14C’に活性化アニールを行うことにより、図28に示すように、第2結晶質ケイ素層14Cに真性半導体領域14i、n型半導体領域14n及びp型半導体領域14pを形成する。本実施形態においては、このようにして、フォトダイオード20Cの第2結晶質ケイ素層14Cが形成される。
 この際、周辺回路TFT20Aを形成するための第1結晶質ケイ素層14A’及び画素TFT20Bを形成するための第2結晶質ケイ素層14B’の活性化アニールも行い、これら第1結晶質ケイ素層14A’及び第2結晶質ケイ素層14B’にソース領域14s,27s及びドレイン領域14d,27dを同時に形成することにより、周辺回路TFT20Aの第1結晶質ケイ素層14A及び画素TFT20Bの第2結晶質ケイ素層14Bが形成される。
 次に、結晶質ケイ素層14A,14B,14Cが形成された基板上に、APCVD法により、ゲート電極16a,16bを覆うように窒化ケイ素膜などを成膜することにより、図18、図29に示すように、層間絶縁膜17を、例えば、500nm程度の厚さに形成する。
 そして、層間絶縁膜17及びゲート絶縁膜15をフォトリソグラフィー法によりパターニングして、図18、図29に示すように、層間絶縁膜17及びゲート絶縁膜15にn型半導体領域14n及びp型半導体領域14p上で貫通するコンタクトホール28を形成する。
 この際、周辺回路TFT20Aを形成するための第1結晶質ケイ素層14A及び画素TFT20Bを形成するための第2結晶質ケイ素層14Bのソース領域14s及びドレイン領域14d上で貫通するコンタクトホール18,25も同時に層間絶縁膜17及びゲート絶縁膜15に形成する。
 さらに、ゲート絶縁膜15及び層間絶縁膜17にコンタクトホール28が形成された基板上に、スパッタリング法により、チタン膜、アルミニウム膜及びチタン膜を順に成膜して金属積層体を形成した後、その金属積層体をパターニングすることにより、引き出し電極19n,19pを形成する。
 これにより、コンタクトホール28を介して引き出し電極19n,19pとn型半導体領域14n及びp型半導体領域14pとの間にオーミック接触を実現させる。このようにして、図19に示すPIN構造のフォトダイオード20Cが形成される。
 この際、周辺回路TFT20Aを形成するための第1結晶質ケイ素層14A及び画素TFT20Bを形成するための第2結晶質ケイ素層14Bのソース領域14s及びドレイン領域14dに、コンタクトホール18,25を介して接続する引き出し電極19s,19dも同時に形成することにより、図3に示す周辺回路TFT20A及び画素TFT20Bが形成される。また、金属積層体からソース配線も同時に形成する。
 なお、引き出し電極19n,19pは、チタン膜、アルミニウム膜及びチタン膜の積層体に代えて、例えばタングステン、チタン及びアルミニウムなどの単体の膜から形成していてもよく、チタン膜、アルミニウム膜及びチタン膜の積層体以外の金属積層体から形成してもよい。
 そして、上述の第1の実施形態の場合と同様に、引き出し電極19n,19p,19s,19dが形成された基板上に、スパッタリング法により、例えば、ITO膜などの透明導電膜を成膜し、その透明導電膜をフォトリソグラフィーによりパターニングして、画素電極を形成する。
 以上のようにして、本実施形態におけるアクティブマトリクス基板10を製造することができる。
 以上に説明したように、本実施形態においては、上述の第1の実施形態の場合と同様に、非晶質半導体膜成膜工程、第1結晶化工程及び第2結晶化工程を行うことにより、結晶粒の平均粒径が互いに異なる第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを形成できる。
 また、再結晶化工程を行うことにより、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの結晶性が向上してキャリア移動度を高めることができる。その結果、同一基板11上に、結晶粒の平均粒径が互いに異なり、各々優れたキャリア移動度を有する第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを形成することができる。
 そして、上記実施形態1の場合と同様に、第1結晶質ケイ素膜24Aを用いて形成した周辺回路TFT20Aにおけるキャリア移動度の低下を行うことができるとともに、第2結晶質ケイ素膜24Bを用いて形成した画素TFT20B間における閾値電圧のばらつきを抑制できる。従って、異なる電気特性が要求される周辺回路TFT20Aと画素TFT20Bに、所望の電気特性を得ることができるため、輝度や色のばらつきが少なく、安定した表示が可能な表示装置を実現することができる。
 また、従来の結晶化方法において、基板上に所定のパターンの遮光層を形成した後、遮光層と重ならない第1領域と、遮光層と重なる第2領域とを有する非晶質状態の半導体膜を形成し、次いで、半導体膜に光を照射し、第1領域の半導体膜のみを選択的に結晶化することにより第1結晶領域を形成するとともに、第2領域の半導体膜を固相結晶化することによって第2結晶領域を形成する方法が提案されている。しかし、この方法では、遮光層上の結晶性半導体膜の結晶粒径が大きく、遮光層がない領域上の結晶性半導体膜の結晶粒径が小さくなる。従って、第1結晶化に用いた遮光膜を光センサの遮光膜として使用する場合、結晶粒径が大きい遮光膜上の第2結晶性半導体膜に光センサを設けることになるため、暗時のオフリーク電流が比較的大きくなり、結果として、オン/オフ比が低下する場合がある。
 一方、本実施形態においては、平均粒径が第1結晶質ケイ素膜24Aよりも小さい第2結晶質ケイ素膜24Bを用いてフォトダイオード20Cを形成するため、周辺回路TFT20Aのキャリア移動度の低下を抑制しながら、フォトダイオード20Cにおいて、暗時のオフリーク電流を抑制でき、オン/オフ比を高めることができる。
 (実施例)
 上記本実施形態の製造方法に従って、以下の条件で第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを形成し、第2結晶質ケイ素膜24Bを用いてフォトダイオード20Cを作製した。また、第1結晶質ケイ素膜24Aを用いて、比較例としてのフォトダイオードと周辺回路TFT20Aとを作製した。本実施例で作製するフォトダイオード20Cは、真性半導体領域14iが、縦5μm、横10μmの矩形状であり、周辺回路TFT20Aは、チャネル領域14cが、縦20μm、横20μmの矩形状である。
 <作製方法>
 まず、ガラス基板11上に、パターニングされた加熱促進層12を150nm程度の厚さに形成した。次いで、ガラス基板11及び加熱促進層12の表面を覆うように、ベースコート膜13として、二酸化ケイ素膜を100nmの厚さに成膜した。さらに、ベースコート膜13上に、非晶質ケイ素膜24を50nmの厚さで成膜した。
 次に、全反射蛍光X線分析において、非晶質ケイ素膜24の表面から数nm(5nm~10nm)程度の深さまでの領域の濃度が5×1010atoms/cm程度となるように、触媒元素としてニッケル26を非晶質ケイ素膜24に添加した。そして、電気炉で窒素雰囲気において、基板を600℃で1時間、熱処理して、第1結晶質ケイ素膜24Aを形成した。
 次いで、第1結晶質ケイ素膜24Aの表面でのビーム形状が、長さ2mm、幅50μm程度の矩形直線状となるように、連続発振のYAGレーザビーム29を成形した。そして、そのレーザビーム29を20cm/sの速度で走査しながら、第1結晶質ケイ素膜24AにYAGレーザの第2高調波を照射した。この際、連続発振のYAGレーザの第2高調波を出力するレーザ発振器に印加するエネルギーを1.2Wに設定した。これにより、加熱促進層12上及びその周囲500nmの領域の第1結晶質ケイ素膜24Aが溶融固化して結晶化することにより第2結晶質ケイ素膜24Bを形成した。
 次いで、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの表面でのビーム形状が長さ215mm、幅0.4mm程度の矩形直線状となるようにパルス発振のXeClエキシマレーザビーム27を成形した。そして、そのレーザビーム27をパルス発振のショット毎に20μmの幅で移動させるようにステップ走査しながら、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bに照射した。この際、XeClエキシマレーザビーム27の出力は、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの表面に照射するエネルギー密度が350mJ/cmとなるように設定した。これにより、第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの表面から溶融が進行したが、ベースコート膜13との界面から5nmの領域の第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bは溶融しなかった。
 次いで、ゲート絶縁膜15を100nmの厚さに形成し、ゲート電極16a,16bをアルミニウム膜から300nmの厚さに形成した。また、第2結晶質ケイ素層14Cのn型半導体領域14nを、リンをイオン注入することで形成し、p型半導体領域14pを、ホウ素をイオン注入することで形成した。さらに、層間絶縁膜17を500nmの厚さに形成し、引き出し電極19n,19pを、下層からチタン膜を100nm、アルミニウム膜を300nm、及びチタン膜を100nmの厚さに形成した。
 また、別の基板を用いて、第2結晶化工程を除いてフォトダイオード20Cと同じ構造のフォトダイオードを作製し、比較例とした。即ち、第1結晶質ケイ素膜24Aを用いてフォトダイオード20Cと同じ構造のフォトダイオードを作製した。
 <評価>
 上記第1結晶化工程、第2結晶化工程、及び再結晶化工程の各々の直後におけるケイ素膜について、EBSP法により結晶粒の平均粒径を測定した。その結果、第1結晶化工程後の第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径は約4.0μmであった。また、第2結晶化工程後において、第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径は約0.3μmであり、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径は約4.0μmのまま変化していなかった。また、再結晶化工程後においても、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径は約4.0mであり、第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径は約0.3μmであった。
 また、得られた実施例のフォトダイオード20C及び比較例のフォトダイオードについて、明時のオン電流と暗時のオフ電流との比(オン/オフ比)をそれぞれ測定して比較したところ、実施例のフォトダイオード20Cにおいて、比較例のフォトダイオードに比べて5.4倍の大きなオン/オフ比が測定された。また、第1結晶質ケイ素膜から形成した周辺回路TFT20Aについてキャリア移動度を測定したところ、350cm/V・sと比較的高かった。
 以上のことから、第1結晶化工程および第2結晶化工程により、互いに結晶粒の平均粒径が異なる第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを形成でき、さらに第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bを溶融固化して再結晶化することにより、第1結晶質ケイ素膜24Aにおける結晶粒の平均粒径が第2結晶質ケイ素膜24Bにおける結晶粒の平均粒径よりも大きい状態を維持しながら、それら第1結晶質ケイ素膜24A及び第2結晶質ケイ素膜24Bの結晶性を向上させることができることが分かる。
 また、第2結晶質ケイ素膜24Bを用いてフォトダイオード20C、第1結晶質ケイ素膜24Aを用いて周辺回路TFT20Aをそれぞれ形成することにより、周辺回路TFT20Aに高いキャリア移動度を得ながら、フォトダイオード20Cのオン/オフ比を高めることができることが分かる。
 なお、上記実施形態は以下のように変更しても良い。
 上記各実施形態においては、アクティブマトリクス基板10を備えた液晶表示装置1を例に挙げて説明したが、本発明はこれに限られず、有機エレクトロルミネッセンス表示装置などの他の表示装置にも適用することができる。また、表示装置以外であっても、同一基板上に異なる電気特性が要求される複数の半導体素子が設けられた半導体素子基板、及びそれを備えるものであれば適用することができる。
 以上説明したように、本発明は、半導体素子基板の製造方法、半導体素子基板及び表示装置について有用であり、特に、同一基板上で異なる電気特性が要求される各半導体素子に所望の電気特性を付与することが要望される半導体素子基板の製造方法、半導体素子基板及び表示装置に適している。
1  液晶表示装置(表示装置)
10  アクティブマトリクス基板(半導体素子基板)
11  基板(絶縁基板)
12  加熱促進層
13  ベースコート層
14A  第1結晶質ケイ素層(半導体層)
14B  第2結晶質ケイ素層(半導体層)
14C  第2結晶質ケイ素層(半導体層)
15  ゲート絶縁膜
16a  ゲート電極
16b  ゲート電極
17  層間絶縁膜
18  コンタクトホール
19s  引き出し電極
19d  引き出し電極
20A  画素TFT(第1薄膜トランジスタ)
20B  周辺回路TFT(第2薄膜トランジスタ)
20C  フォトダイオード(光センサ)
24  非晶質ケイ素膜(非晶質半導体膜)
24A  第1結晶質ケイ素膜(第1結晶質半導体膜)
24B  第2結晶質ケイ素膜(第2結晶質半導体膜) 
25  コンタクトホール
26  ニッケル(触媒元素)
26s  引き出し電極
26d  引き出し電極
27c  チャネル領域
27s  ソース領域
27d  ドレイン領域
28  コンタクトホール
D  表示領域  

Claims (29)

  1.  絶縁基板上にパターニングされた加熱促進層を成膜する加熱促進層形成工程と、
     前記加熱促進層及び前記絶縁基板を覆うように絶縁膜を成膜する絶縁膜形成工程と、
     前記絶縁膜上に非晶質半導体膜を成膜する非晶質半導体膜形成工程と、
     前記非晶質半導体膜を結晶化して第1結晶質半導体膜を形成する第1結晶化工程と、
     前記加熱促進層上の前記第1結晶質半導体膜を溶融固化することにより、結晶粒の平均粒径が前記第1結晶質半導体膜よりも小さい第2結晶質半導体膜を形成する第2結晶化工程と、
     前記第1結晶質半導体膜における結晶粒の平均粒径が前記第2結晶質半導体膜における結晶粒の平均粒径よりも大きい状態を維持しながら、前記第1結晶質半導体膜及び前記第2結晶質半導体膜を溶融固化することにより、前記第1結晶質半導体膜及び前記第2結晶質半導体膜を再結晶化する再結晶化工程と
     を少なくとも含むことを特徴とする半導体素子基板の製造方法。
  2.  請求項1に記載の半導体素子基板の製造方法において、
    前記非晶質半導体膜は、非晶質ケイ素膜であることを特徴とする半導体素子基板の製造方法。
  3.  請求項1または請求項2に記載の半導体素子基板の製造方法において、
     前記第1結晶化工程において、前記非晶質半導体膜の結晶化を助長する触媒元素を前記非晶質半導体膜の少なくとも一部に添加した後、前記非晶質半導体膜を結晶化エネルギーの付与によって固相成長させる
    ことを特徴とする半導体素子基板の製造方法。
  4.  請求項3に記載の半導体素子基板の製造方法において、
     前記第1結晶化工程において、前記非晶質半導体膜の表面における濃度が1×1010atoms/cm以上1×1012atoms/cm以下となるように前記触媒元素を添加する
    ことを特徴とする半導体素子基板の製造方法。
  5.  請求項3または請求項4に記載の半導体素子基板の製造方法において、
     前記触媒元素は、鉄、コバルト、ニッケル、ゲルマニウム、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅及び金からなる群より選ばれた少なくとも1種の元素を含む
    ことを特徴とする半導体素子基板の製造方法。
  6.  請求項1~請求項5のいずれか1項に記載の半導体素子基板の製造方法において、
     前記第1結晶化工程において、前記非晶質半導体膜を熱処理することにより、前記非晶質半導体膜を固相成長させる
    ことを特徴とする半導体素子基板の製造方法。
  7.  請求項6に記載の半導体素子基板の製造方法において、
     前記第1結晶化工程において、500℃以上700℃以下の温度で前記非晶質半導体膜を熱処理する
    ことを特徴とする半導体素子基板の製造方法。
  8.  請求項1に記載の半導体素子基板の製造方法において、
     前記加熱促進層は、レーザビームを反射又は吸収することにより、前記第1結晶質半導体膜の、前記第2結晶質半導体膜を形成する領域の加熱を促進させるためのものであり、
     前記第2結晶化工程において、前記第1結晶性半導体膜の一部を前記レーザビームの照射により溶融固化する
    ことを特徴とする半導体素子基板の製造方法。
  9.  請求項3に記載の半導体素子基板の製造方法において、
     前記第2結晶化工程において、前記加熱促進層上及び該加熱促進層の近傍における前記第1結晶性半導体膜のみが溶融固化するように、レーザビームを前記非晶質半導体膜に照射する
    ことを特徴とする半導体素子基板の製造方法。
  10.  請求項8または請求項9に記載の半導体素子基板の製造方法において、
     前記第2結晶化工程において、波長が370nm以上650nm以下の前記レーザビームを前記第1結晶質半導体膜に照射する
    ことを特徴とする半導体素子基板の製造方法。
  11.  請求項8~請求項10のいずれか1項に記載の半導体素子基板の製造方法において、
     前記第2結晶化工程において、前記レーザービームとして、パルス発振または連続発振のレーザビームを使用する
    ことを特徴とする半導体素子基板の製造方法。
  12.  請求項11に記載の半導体素子基板の製造方法において、
     前記第2結晶化工程において、前記レーザービームとして、イットリウムアルミニウムガーネットレーザの第2高調波を使用する
    ことを特徴とする半導体素子基板の製造方法。
  13.  請求項11に記載の半導体素子基板の製造方法において、
     前記第2結晶化工程において、前記第1結晶質半導体膜の表面でのビーム形状が直線状であるパルス発振の前記レーザビームを該レーザビームの幅方向にステップ走査しながら前記第1結晶質半導体膜に照射する
    ことを特徴とする半導体素子基板の製造方法。
  14.  請求項11に記載の半導体素子基板の製造方法において、
     前記第2結晶化工程において、前記第1結晶質半導体膜の表面を5cm/s以上3m/s以下の速度で走査しながら連続発振の前記レーザビームを該第1結晶性半導体膜に照射する
    ことを特徴とする半導体素子基板の製造方法。
  15.  請求項8~請求項14のいずれか1項に記載の半導体素子基板の製造方法において、
     前記加熱促進層形成工程において、膜厚が50nm以上500nm以下となるように前記加熱促進層を形成する
    ことを特徴とする半導体素子基板の製造方法。
  16.  請求項8~請求項15のいずれか1項に記載の半導体素子基板の製造方法において、
     前記加熱促進層は、モリブデンまたはタングステンにより形成されている
    ことを特徴とする半導体素子基板の製造方法。
  17.  請求項1に記載の半導体素子基板の製造方法において、
     前記再結晶化工程において、前記第1結晶質半導体膜及び前記第2結晶質半導体膜を部分的に溶融するようにレーザビームを前記第1結晶質半導体膜及び前記第2結晶質半導体膜に照射することにより、前記第1結晶質半導体膜及び前記第2結晶質半導体膜を部分的に溶融固化する
    ことを特徴とする半導体素子基板の製造方法。
  18.  請求項17に記載の半導体素子基板の製造方法において、
     前記再結晶化工程において、波長が126nm以上370nm未満の前記レーザビームを前記第1結晶質半導体膜及び前記第2結晶質半導体膜に照射する
    ことを特徴とする半導体素子基板の製造方法。
  19.  請求項1に記載の半導体素子基板の製造方法において、
     前記第2結晶化工程において、波長が370nm以上650nm以下のレーザビームを前記非晶質半導体膜に照射し、
     前記再結晶化工程において、波長が126nm以上370nm未満のレーザビームを前記第1結晶質半導体膜及び前記第2結晶質半導体膜に照射する
    ことを特徴とする半導体素子基板の製造方法。
  20.  請求項1~請求項19のいずれか1項に記載の半導体素子基板の製造方法において、
     前記再結晶化工程において、パルス発振のエキシマレーザビームを前記第1結晶質半導体膜及び前記第2結晶質半導体膜に照射することにより、前記第1結晶質半導体膜及び前記第2結晶質半導体膜を溶融固化する
    ことを特徴とする半導体素子基板の製造方法。
  21.  請求項1~請求項20のいずれか1項に記載の半導体素子基板の製造方法において、
     前記再結晶化工程では、前記第1結晶質半導体膜及び前記第2結晶質半導体膜の表面でのビーム形状が直線状であるパルス発振のレーザビームを、該レーザビームの幅方向にステップ走査しながら前記第1結晶質半導体膜及び前記第2結晶質半導体膜に照射することにより、前記第1結晶質半導体膜及び前記第2結晶質半導体膜を溶融固化する
    ことを特徴とする半導体素子基板の製造方法。
  22.  請求項1~請求項21のいずれか1項に記載の半導体素子基板の製造方法によって製造された
    ことを特徴とする半導体素子基板。
  23.  請求項22に記載の半導体素子基板において、
     前記第1結晶質半導体膜から形成された半導体層を有する第1薄膜トランジスタと、
     前記第2結晶質半導体膜から形成された半導体層を有する第2薄膜トランジスタとを備える
    ことを特徴とする半導体素子基板。
  24.  請求項22に記載の半導体素子基板において、
     前記第1結晶質半導体膜から形成された半導体層を有する半導体素子と、
     前記第2結晶質半導体膜から形成された半導体層を有する光センサとを備える
    ことを特徴とする半導体素子基板。
  25.  請求項3~請求項11のいずれか1項に記載の半導体素子基板の製造方法によって製造された半導体素子基板であって、
     前記第1結晶質半導体膜から形成された半導体層を有する半導体素子と、
     前記第2結晶質半導体膜から形成された半導体層を有する光センサとを備え、
     前記加熱促進層は、遮光性を有している
    ことを特徴とする半導体素子基板。
  26.  請求項22に記載の半導体素子基板を備える
    ことを特徴とする表示装置。
  27.  請求項26に記載の表示装置において、
     前記第1結晶質半導体膜から形成された半導体層を有する第1薄膜トランジスタと、
     前記第2結晶質半導体膜から形成された半導体層を有する第2薄膜トランジスタとを備え、
     前記第1薄膜トランジスタの半導体層のチャネル領域は、前記第2薄膜トランジスタの半導体層のチャネル領域よりも大きい
    ことを特徴とする表示装置。
  28.  請求項27に記載の表示装置において、
     複数の画素によって構成された表示領域を有し、
     前記第1薄膜トランジスタは、前記表示領域の外側に設けられた周辺回路を構成し、
     前記第2薄膜トランジスタは、前記複数の画素の各々に設けられている
    ことを特徴とする表示装置。
  29.  請求項26に記載の表示装置において、
     前記第1結晶質半導体膜から形成された半導体層を有する薄膜トランジスタと、
     前記第2結晶質半導体膜から形成された半導体層を有する光センサとを備える
    ことを特徴とする表示装置。
PCT/JP2012/002470 2011-04-14 2012-04-09 半導体素子基板の製造方法及び半導体素子基板並びに表示装置 WO2012140866A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-090232 2011-04-14
JP2011090232 2011-04-14

Publications (1)

Publication Number Publication Date
WO2012140866A1 true WO2012140866A1 (ja) 2012-10-18

Family

ID=47009058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002470 WO2012140866A1 (ja) 2011-04-14 2012-04-09 半導体素子基板の製造方法及び半導体素子基板並びに表示装置

Country Status (1)

Country Link
WO (1) WO2012140866A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297851A (ja) * 2002-01-30 2003-10-17 Sanyo Electric Co Ltd 半導体表示装置及びその製造方法
JP2008072018A (ja) * 2006-09-15 2008-03-27 Mitsubishi Electric Corp 表示装置及びその製造方法
JP2009060009A (ja) * 2007-09-03 2009-03-19 Sharp Corp 結晶質半導体膜の製造方法およびアクティブマトリクス基板の製造方法
JP2009246235A (ja) * 2008-03-31 2009-10-22 Sharp Corp 半導体基板の製造方法、半導体基板及び表示装置
JP2010278116A (ja) * 2009-05-27 2010-12-09 Sharp Corp 半導体素子基板の製造方法及び半導体素子基板並びに表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297851A (ja) * 2002-01-30 2003-10-17 Sanyo Electric Co Ltd 半導体表示装置及びその製造方法
JP2008072018A (ja) * 2006-09-15 2008-03-27 Mitsubishi Electric Corp 表示装置及びその製造方法
JP2009060009A (ja) * 2007-09-03 2009-03-19 Sharp Corp 結晶質半導体膜の製造方法およびアクティブマトリクス基板の製造方法
JP2009246235A (ja) * 2008-03-31 2009-10-22 Sharp Corp 半導体基板の製造方法、半導体基板及び表示装置
JP2010278116A (ja) * 2009-05-27 2010-12-09 Sharp Corp 半導体素子基板の製造方法及び半導体素子基板並びに表示装置

Similar Documents

Publication Publication Date Title
KR100193144B1 (ko) 반도체 장치 및 그 제조 방법
JP4115158B2 (ja) 半導体装置およびその製造方法
TWI509810B (zh) 薄膜電晶體及其製造方法與液晶顯示裝置
KR19980080057A (ko) 반도체 디바이스 제조 방법
KR20010071526A (ko) 박막 트랜지스터와 액정표시장치
US20070063199A1 (en) Semiconductor apparatus having semiconductor circuits made of semiconductor devices, and method of manufacture thereof
KR100631349B1 (ko) 반도체막과 그의 제조방법, 반도체장치 및 그의 제조방법
KR100577795B1 (ko) 다결정 실리콘막 형성방법
TWI389316B (zh) 薄膜電晶體、半導體裝置、顯示器、結晶化方法及製造薄膜電晶體方法
JP4683696B2 (ja) 半導体装置の作製方法
JP2010278116A (ja) 半導体素子基板の製造方法及び半導体素子基板並びに表示装置
WO2011155250A1 (ja) 結晶性半導体膜の製造方法、半導体装置、および表示装置
US7682950B2 (en) Method of manufacturing laterally crystallized semiconductor layer and method of manufacturing thin film transistor using the same method
WO2011078005A1 (ja) 半導体装置およびその製造方法ならびに表示装置
TW200421618A (en) Low temperature poly silicon thin film transistor and method of forming poly silicon layer of the same
JP2009302171A (ja) 半導体装置の製造方法、トランジスタの製造方法ならびに電気光学装置の製造方法
JP3927756B2 (ja) 半導体装置の製造方法
WO2012140866A1 (ja) 半導体素子基板の製造方法及び半導体素子基板並びに表示装置
JP4024341B2 (ja) 半導体装置の作製方法
JP4364481B2 (ja) 薄膜トランジスタの作製方法
JP2009246235A (ja) 半導体基板の製造方法、半導体基板及び表示装置
KR100803867B1 (ko) 비정질 실리콘층의 결정화 방법 및 이를 이용한 박막트랜지스터의 제조방법
KR100860008B1 (ko) 디렉셔널 결정화 방법을 이용한 평판 디스플레이 소자와그의 제조방법, 반도체 소자와 그의 제조방법
JP2013105754A (ja) 半導体素子基板の製造方法および半導体素子基板並びに表示装置
JP2007115786A (ja) 半導体基板の製造方法及び半導体基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12770930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP