WO2012140747A1 - 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム - Google Patents

窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム Download PDF

Info

Publication number
WO2012140747A1
WO2012140747A1 PCT/JP2011/059164 JP2011059164W WO2012140747A1 WO 2012140747 A1 WO2012140747 A1 WO 2012140747A1 JP 2011059164 W JP2011059164 W JP 2011059164W WO 2012140747 A1 WO2012140747 A1 WO 2012140747A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
gas
less
nitrogen addition
flow rate
Prior art date
Application number
PCT/JP2011/059164
Other languages
English (en)
French (fr)
Inventor
真一 西村
田畑 要一郎
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2011515616A priority Critical patent/JP5524201B2/ja
Priority to US14/110,828 priority patent/US9067789B2/en
Priority to CN201180070004.1A priority patent/CN103459308B/zh
Priority to EP11863582.0A priority patent/EP2698343A4/en
Priority to PCT/JP2011/059164 priority patent/WO2012140747A1/ja
Priority to KR1020137024284A priority patent/KR101522483B1/ko
Priority to TW100121781A priority patent/TWI449660B/zh
Publication of WO2012140747A1 publication Critical patent/WO2012140747A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/10Dischargers used for production of ozone
    • C01B2201/12Plate-type dischargers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/64Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/66Pretreatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/70Cooling of the discharger; Means for making cooling unnecessary
    • C01B2201/74Cooling of the discharger; Means for making cooling unnecessary by liquid
    • C01B2201/76Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/90Control of the process

Definitions

  • This invention is equipped with a nitrogen addition-less ozone generator using high-purity oxygen gas with a nitrogen addition amount of less than a few thousand ppm as a raw material gas, and has a function having a plurality of means for outputting ozone gas.
  • the present invention relates to an ozone gas supply system that has a nitrogen addition-less ozone generation unit and supplies stable ozone gas to a plurality of ozone treatment apparatuses.
  • a source gas in which nitrogen gas of several thousand ppm or more is added to oxygen gas is supplied to an ozone generator to generate high-concentration ozone gas.
  • ozone oxide insulating film formation and ozone It is often used in ozone treatment processes such as cleaning.
  • this semiconductor manufacturing field, etc. when supplying ozone gas to a multi-ozone processing apparatus composed of a plurality of ozone processing apparatuses, each corresponds to a plurality of ozone processing apparatuses, each of which includes an ozone generator, an ozone power source, and a flow rate.
  • ozone generation mechanisms including a controller (MFC), etc.
  • MFC controller
  • each ozone generation mechanism independently supplies ozone gas to a corresponding ozone treatment apparatus.
  • a general oxygen gas In high-purity oxygen gas containing about 50 to several thousand ppm of nitrogen gas and having a low nitrogen content (less than 50 ppm), a trace amount (500 ppm or more) is contained in the ozone generator together with the high-purity oxygen gas. ) N 2 gas is added.
  • the source oxygen gas contains 500 ppm or more of N 2 gas
  • high concentration of ozone was generated by a catalytic reaction of a small amount of NO 2 generated by the discharge reaction shown in FIG.
  • ozone is efficiently generated by a catalytic reaction of a small amount of nitrogen dioxide generated by discharge.
  • the highest concentration of ozone is generated, and it has been experimentally verified that the raw material gas having a nitrogen addition amount in the range of 500 to 20000 ppm is the optimum condition for ozone generation performance.
  • the discharge reaction shown in FIG. 27 generates high-concentration ozone by using photoelectric discharge light and a small amount of NO 2 catalyst gas as raw material oxygen O 2. Is realized.
  • NO x by -product gases such as N 2 O 5 and N 2 O and nitric acid are also generated by silent discharge in the ozone generator.
  • Specific chemical formulas for generating NO x by -product gas and nitric acid are as follows.
  • nitric acid (HNO 3 ) clusters steam are generated by the reaction between the NO x gas component and the moisture contained in the raw material gas, and a small amount of NO together with oxygen and ozone gas.
  • Ozonated gas is taken out with X gas and nitric acid clusters mixed. If this small amount of nitric acid cluster is contained in several hundred ppm or more, rust such as chromium oxide is precipitated by nitric acid on the inner surface of the stainless steel pipe that is the ozone gas outlet pipe, and metal impurities are mixed into the clean ozone gas.
  • Metal impurities as gases adversely affect semiconductor manufacturing, and the small amount of generated nitric acid clusters can adversely affect semiconductor etching equipment's “etching of silicon oxide film with ozone” and “cleaning of wafers with ozone water” as reactive poisons. There was an interim topic to bring.
  • the ozone gas supply system equipped with an ozone generator, ozone power supply, etc. is a raw material gas pipe that supplies the ozone generator via an ozone generator, ozone power supply, flow rate adjusting means such as MFC that controls the flow rate of ozone gas or raw material gas.
  • the system has a pressure adjusting means such as APC for controlling the gas atmosphere pressure in the ozone generator, and has an ozone concentration detector and an ozone flow meter for detecting the concentration with respect to the ozone gas output from the ozone generator. It is generally conceivable to provide as many output gas piping systems as the number of systems of the multi-ozone treatment apparatus.
  • Oxygen molecules which are the source gas, have a continuous light absorption spectrum (ultraviolet wavelength of 130 to 200 nm) at a wavelength of ultraviolet light of 245 nm or less, and the oxygen molecules dissociate into oxygen atoms by absorbing excimer light of ultraviolet light of 245 nm or less.
  • the generation of ozone by the three-body collision of the dissociated oxygen atoms, oxygen molecules, and third substance is known for excimer lamps that emit ultraviolet rays.
  • silent discharge such as an ozone generator in high pressure of 1 atm or higher mainly composed of oxygen gas does not emit excimer light with ultraviolet light of 245 nm or less. Therefore, the reaction constant of the reaction process of oxygen atom dissociation and ozone generation by silent discharge light is very small, and it cannot be considered as a reaction capable of generating high concentration ozone gas of several percent or more.
  • a raw material gas containing nitrogen gas of several thousand ppm or more or a raw material oxygen as disclosed in Patent Document 1 a raw material gas containing nitrogen gas of several thousand ppm or more or a raw material oxygen as disclosed in Patent Document 1
  • One set of ozone is used to supply raw material gas with nitrogen gas forcibly added to the gas to the ozone generator, generate high-concentration ozone, and supply ozone gas to multiple ozone treatment devices.
  • An ozone gas supply system is adopted that increases the capacity of the generator, separates the piping system that outputs ozone gas into multiple piping, and outputs ozone gas at a predetermined flow rate and concentration to each multi-ozone treatment device in a stepwise manner. It was coming.
  • FIG. 28 is a block diagram showing an internal configuration of a conventional ozone gas supply system 70 assumed from the contents disclosed in Patent Document 1.
  • the ozone control unit 77 includes a flow rate controller (MFC) 73a that controls the flow rate of the raw material gas obtained from the raw material gas supply port 64a, and a flow rate controller that controls the addition of the nitrogen gas flow rate obtained from the nitrogen gas supply port 64b to the predetermined flow rate raw material oxygen gas.
  • MFC flow rate controller
  • 73b which has a raw material gas piping system that supplies the ozone generator 71 via a pressure gauge 62 that monitors the pressure of the generator.
  • the ozone control unit 77 has a valve switch 61 that adjusts the opening and closing of the valve according to the fluctuation of the pressure of the ozone generator 71, and an ozone concentration meter 75.
  • the output gas piping system is separated into multiple piping.
  • the ozone gas supply system 70 is provided with individual ozone gas flow rate controllers (MFC) 68-1 to 68-n for each of the separated output gas piping systems, and a plurality of ozone gas supply systems 70 corresponding to the individual MFCs 68-1 to 68-n are provided.
  • the ozone treatment devices 12-1 to 12-n are configured to supply ozone gas independently. An amount of ozone gas exceeding the ozone gas supplied by each of the individual MFCs 68-1 to 68-n is discharged by the flow rate discharge unit 69.
  • silent discharge with oxygen gas in the ozone generator has the ability to emit (discharge) light wavelengths in the visible light region (428 nm to 620 nm visible light).
  • the source oxygen gas is dissociated by the photocatalytic effect, and the dissociated oxygen atoms and the source Ozone gas is generated by a chemical reaction of oxygen with oxygen molecules.
  • JP-T 2009-500855 (FIGS. 2, 3 and 5) JP-T-2005-080263 (FIG. 1, FIG. 3, FIG. 4, FIG. 5, Table 2- (a), (b), (c))
  • the conventional ozone gas supply system for supplying ozone to the multi-ozone treatment apparatus disclosed in Patent Document 1 is configured as described above, and supplies a raw material oxygen gas containing nitrogen and moisture to provide one ozone generator 71.
  • Ozone gas is output from the pipe, and the output piping system is distributed. Therefore, the ozone gas to be output is supplied with an active gas containing nitrogen oxidation by-products, nitric acid clusters, and OH radicals, and the output piping material, nitrogen oxidation by-products, nitric acid clusters, and OH radicals are supplied.
  • ozone gas containing a large amount of metal contamination due to abnormal heating or corrosion is supplied by chemical decomposition or oxidation reaction with a substance.
  • the ozone gas flow rate and ozone concentration must be supplied to the multi-ozone treatment apparatus (ozone treatment apparatuses 12-1 to 12-n) with a constant state.
  • the ozone supply condition to each ozone treatment apparatus is shared by only one condition, and there is a problem that it is impossible to variably control the ozone gas flow rate and concentration independently for each of the plurality of ozone treatment apparatuses. It was.
  • the ozone generator 71, the ozone power source 72, and the gas piping system are separated as shown in FIG. 28, the space occupied by the ozone generator including the ozone generator 71, the ozone power source 72, and the gas piping system. Therefore, it is extremely difficult to construct an ozone gas supply system having a plurality of ozone generation units, and there is a problem that the maintainability of the ozone generation unit is poor.
  • the present invention has been made to solve the above-described problems, and various functions related to ozone generation and the like from a raw material gas supply function such as an ozone generator, an ozone power source, and a gas piping system, and nitrogen gas are used as a raw material gas. Equipped with an ozone generator that can generate high-purity and high-concentration ozone gas using only high-purity oxygen gas that is not added, including the function of outputting ozone gas with extremely improved quality of generated ozone gas, and downsizing It is an object of the present invention to obtain a nitrogen addition-less ozone generation unit and an ozone gas supply system having a plurality of nitrogen addition-less ozone generation units.
  • a nitrogen addition-less ozone generation unit is a nitrogen addition-less ozone generation unit that supplies ozone gas set to a predetermined supply flow rate and concentration to an ozone treatment device for generating ozone on a discharge surface.
  • a nitrogen addition-less ozone generator that applies photocatalytic material and generates ozone gas, an ozone power source that controls the power supplied to the nitrogen addition-less ozone generator, and a control means related to the ozone generator
  • the control means includes a flow rate detection / flow adjustment means including a mass flow controller (MFC) for controlling the flow rate of the raw material gas input to the nitrogen addition-less ozone generator, and the ozone gas output from the nitrogen addition-less ozone generator.
  • MFC mass flow controller
  • Gas filter means for removing impurities and foreign matter against the pressure, and the pressure in the nitrogen addition-less ozone generator
  • Pressure detection / pressure adjustment means including an auto pressure controller (APC) for automatically controlling the internal pressure, and ozone concentration detection means including an ozone concentration meter for detecting the ozone concentration value of the ozone gas output from the nitrogen generator-less ozone generator
  • a source gas supply port for supplying source gas from the outside to the nitrogen addition-less ozone generator, and at least one of the control means from the nitrogen addition-less ozone generator.
  • An ozone gas output port for outputting ozone gas obtained through the section to the outside, and a cooling water inlet / outlet for supplying and discharging cooling water obtained from the outside to the nitrogen generator-less ozone generator
  • the addition-less ozone generation unit includes the nitrogen addition-less ozone generator, the ozone power source, the control means, and the raw material gas.
  • Supply port, the ozone gas output port and to aggregate the cooling water inlet and outlet are formed by integral structure.
  • the nitrogen addition-less ozone generation unit includes a nitrogen addition-less ozone generator, an ozone power source, a control means (of a flow detection / flow adjustment means, a gas filter means, a pressure detection / pressure adjustment means, and an ozone concentration detection means). At least two means), the raw material gas supply port, the ozone gas output port, and the cooling water inlet / outlet are integrated and formed into an integrated structure, so that a significant reduction in size can be achieved as compared with a conventional similar configuration.
  • FIG. 4 It is explanatory drawing which shows the internal structure of the ozone gas output flow volume management unit in the ozone gas supply system shown in FIG. 4 is an explanatory view schematically showing a display state of a main operation panel in the ozone gas supply system of Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the ozone control part in the nitrogen addition less ozone generation unit shown in FIG.
  • FIG. It is explanatory drawing which shows typically the memory content of the data memory in the nitrogen addition less ozone generation unit shown in FIG.
  • FIG. 6 is a circuit diagram showing details of an internal configuration of an ozone power supply provided in a nitrogen addition-less ozone generation unit according to Embodiment 2.
  • FIG. 6 is a perspective view schematically showing a combined structure of a nitrogen addition-less ozone generation unit according to Embodiment 2.
  • FIG. It is explanatory drawing which shows the internal structure of the ozone gas output flow volume management unit by Embodiment 3 in the ozone gas supply system shown in FIG.
  • FIG. 6 is a perspective view schematically showing a combined structure of a nitrogen addition-less ozone generation unit according to Embodiment 3.
  • FIG. It is a block diagram which shows the structure of the ozone gas supply system which is Embodiment 4 of this invention.
  • 6 is a perspective view schematically showing a combined structure of a nitrogen addition-less ozone generation unit according to Embodiment 4.
  • FIG. It is a block diagram which shows the structure of the ozone gas supply system which is Embodiment 5 of this invention.
  • FIG. 10 is a perspective view schematically showing a combined structure of a nitrogen addition-less ozone generation unit according to a fifth embodiment. It is a block diagram which shows the structure of the ozone gas supply system which is Embodiment 6 of this invention.
  • FIG. 10 is a perspective view schematically showing a combined structure of a nitrogen addition-less ozone generation unit according to a sixth embodiment. It is a block diagram which shows the structure of the ozone gas supply system which is Embodiment 7 of this invention.
  • FIG. 10 is a perspective view schematically showing a combined structure of a nitrogen addition-less ozone generation unit according to a seventh embodiment. It is explanatory drawing which shows typically the conventional structure corresponding to the ozone generation unit of Embodiment 2.
  • FIG. It is explanatory drawing which shows the relationship between the dew point of source gas, and the moisture content contained in source gas.
  • It is a block diagram of the conventional ozone generator shown as a reference example. As a reference example, it is explanatory drawing which shows typically the ozone generation content by the combination of the raw material oxygen gas which added nitrogen, and the conventional ozone generator. It is a block diagram which shows the internal structure of the conventional ozone gas supply system.
  • FIG. 1 is a block diagram showing the configuration of a gas system centered on an ozone generator that does not contain nitrogen.
  • an ozone generator using a high-purity oxygen source gas with a nitrogen addition amount of 10 ppm or more and 1000 ppm or less is called a “nitrogen addition suppression / ozone generator”, and a high-purity oxygen source gas with a nitrogen addition amount of less than 10 ppm is called The ozone generator used is called “nitrogen addition-less ozone generator”.
  • an ozone generator using a high-purity oxygen source gas of 1000 ppm or less is collectively referred to as “nitrogen addition-less ozone generator”.
  • FIG. 2 is a characteristic diagram showing the ozone concentration characteristics by the nitrogen addition-less ozone generator 1 shown in FIG.
  • FIG. 3 is a schematic diagram for explaining the dissociation mechanism of oxygen molecules into oxygen atoms by oxygen molecules and a photocatalyst.
  • FIG. 4 is a schematic diagram for explaining the generation mechanism of ozone by the triple collision of oxygen atoms and oxygen molecules generated by the nitrogen addition-less ozone generator 1.
  • symbol shows the same or an equivalent part.
  • the nitrogen addition-less ozone generator in this invention is a nitrogen-less solution that eliminates by-products such as high-concentration ozone gas of 200 g / m 3 or more, clean ozone gas such as semiconductor manufacturing equipment and cleaning equipment, and NO x and OH radical substances. It is effective where ozone gas or a device with good ozone generation efficiency is required.
  • a raw material supply system 99 for supplying oxygen (raw material gas) with a purity of 99.99% or more is composed of a high-purity oxygen cylinder 991, a pressure reducing valve 992, and an on-off valve 993, and supplies oxygen gas 994 to the outside.
  • oxygen gas 994 is supplied to the nitrogen addition-less ozone generator 1 as raw material gas 995 through MFC 3.
  • the nitrogen addition-less ozone generator 1 includes electrodes 1a and 1b, a dielectric 1c, and a photocatalyst 1d.
  • the two electrodes 1a and 1b face each other, and a dielectric 1c is provided on the surface of the electrode 1a facing the electrode 1b. And it is the structure which apply
  • a moisture removal gas filter for reducing the amount of water contained in the high-purity oxygen supplied from the cylinder to 0.1 ppm or less is provided, and nitrogen, a moisture-free raw material that suppresses the amount of moisture as much as possible.
  • An oxygen gas 994 is supplied to the nitrogen addition-less ozone generator 1 as a raw material gas 995 through a flow rate regulator (MFC) 3 that regulates the amount of gas.
  • MFC flow rate regulator
  • N 2 is contained in 151 ⁇ 10 2 ppb (ie, 15 ppm). Thus, inevitable N 2 is mixed, but in order to obtain high-purity ozone gas, it is desirable to use raw material oxygen gas with less N 2 mixing.
  • FIG. 3 schematically shows the electron coordination structure in solid and the dissociation mechanism of oxygen molecules in the solid electron theory (bandgap theory) of the photocatalyst during silent discharge.
  • bandgap theory solid electron theory
  • Holes are formed in the valence band where the electrons have moved.
  • the lifetime of the electrons that have moved to the conduction band ends depending on whether they move to the surroundings or emit electrons to the discharge region. That is, the electrons that have moved to the conduction band have a very short lifetime and several tens of psec. Since holes in the valence band continue to exist unless electrons moved to the conduction band return by recombination, the lifetime of the holes is as long as 200 to 300 nsec.
  • the light absorption wavelength is visible light having a wavelength of 428 nm to 620 nm.
  • Silent discharge is generated in this visible light regardless of whether oxygen does not contain nitrogen or oxygen and argon gas. It has the ability to emit light wavelengths in the region (discharge). Therefore, when a photocatalyst with a band gap of 2.0 eV to 2.9 eV is applied to the electrode surface (wall surface) of the ozone generator, the discharge light emitted by the silent discharge in the case of oxygen not containing nitrogen or in oxygen and argon gas.
  • the photocatalyst is absorbed to excite the photocatalyst, and oxygen can be dissociated by the adsorption dissociation action of the excited photocatalyst and oxygen gas. Further, as shown in the schematic diagram of FIG. 4, the coupling action is caused on the photocatalyst 1 d (wall M) by the three-body collision between the dissociated oxygen atom, the supplied oxygen molecule (raw material oxygen gas), and the third substance. Ozone can be generated by the promoted work.
  • silent discharge with nitrogen gas in an ozone generator has the ability to emit (discharge) light wavelengths in the ultraviolet region (ultraviolet light of 413 nm to 344 nm).
  • the photocatalyst having a band gap of 3.0 eV to 3.6 eV can be photoexcited, and the excited photocatalyst can absorb oxygen molecules. Due to the ability to dissociate, ozone gas is generated and silent discharge containing nitrogen is generated.
  • a photocatalyst with a band gap of 3.0 eV to 3.6 eV can be photoexcited
  • a photocatalyst with a bandgap of 2.0 eV to 2.9 eV can be photoexcited
  • the allowable band gap range of the photocatalyst provided on the dielectric or electrode in the discharge region can be from 2.0 eV to 3.6 eV.
  • the ozone generation reaction can be promoted by using not only oxygen but also nitrogen discharge light (ultraviolet light). That is, when N 2 gas is included, the ozone generation function by the invention effect of the present application is enhanced.
  • the photocatalytic substance applied to the discharge surface of the ozone generator is a kind of semiconductor and has a band gap peculiar to a semiconductor, and shows a value larger than the band gap of a normal semiconductor substance.
  • the photocatalytic substance is a metal oxide substance in which a metal and an oxygen atom are usually bonded, and the crystal of the metal oxide substance is not a complete bond between the metal atom and the oxygen atom, but an oxide having a crystal structure having an oxygen deficiency.
  • a metal material is said to have a semiconductor effect or a photocatalytic effect.
  • iron oxide which is a photocatalytic substance disclosed in Patent Document 2
  • Fe 2 O 3 which is a photocatalytic substance disclosed in Patent Document 2
  • iron oxide is precisely Fe 2 O X
  • the value of the number of oxygen bonds X is 3 Less than (X ⁇ 3)
  • iron oxide is a crystal structure that becomes a photocatalytic substance.
  • up to three oxygen atoms can be bonded, but in order to be a photocatalytic substance, it has a crystal structure that leaves an oxygen deficient portion in the oxygen bond. .
  • a photocatalytic substance is applied to the discharge surface, and the photocatalytic effect is increased to generate high-concentration ozone.
  • a device has been devised to greatly increase the surface area of the applied photocatalytic substance on the discharge surface.
  • the surface of the photocatalyst material with an increased surface area has moisture. Is easily adsorbed.
  • the discharge is performed while the moisture is adsorbed, the moisture is dissociated into H atoms and OH molecules, and the dissociated H atoms and OH molecules are combined with oxygen deficient portions of the photocatalytic substance.
  • the photocatalytic substance to which H atoms and OH molecules are bonded has a reduced photocatalytic effect or is lost. As a result, the ability to generate ozone is greatly lost.
  • the nitrogen addition-less ozone generator 1 used in the ozone gas supply system of the present invention, even if it is a trace amount (several ppm or less) of moisture contained in the raw material oxygen, the nitrogen addition-less ozone generator 1 As a means for removing trace amounts of moisture contained in source oxygen, a moisture removal filter that removes trace amounts of moisture from the source oxygen gas supply port and suppresses the moisture content to 300 ppb (0.3 ppm) or less is provided as a means for removing trace amounts of moisture contained in source oxygen. It is desirable.
  • FIG. 5 is a block diagram showing the configuration of the ozone gas supply system according to Embodiment 1 of the present invention.
  • FIG. 6 is an explanatory diagram showing the internal configuration of the ozone gas output flow rate management unit in the ozone gas supply system shown in FIG.
  • FIG. 7 is an explanatory view schematically showing a display state of the main operation panel in the ozone gas supply system of the first embodiment.
  • FIG. 8 is a block diagram showing a configuration of an ozone control unit in the nitrogen addition-less ozone generation unit shown in FIG. FIG.
  • FIG. 9 is an explanatory view schematically showing the storage contents of the data memory in the ozone generation unit shown in FIG. 5 (concentration of the ozone generation unit, initial conditions for controlling the flow rate, etc.).
  • FIG. 10 is a graph showing an output concentration control waveform obtained by performing output concentration control on the nitrogen addition-less / ozone generating unit 7 shown in FIG.
  • the ozone gas supply system 10 includes n ( ⁇ 2) nitrogen addition-less ozone generation units 7-1 to 7-n inside.
  • the nitrogen addition-less / ozone generation unit 7-2 among the nitrogen addition-less / ozone generation units 7-1 to 7-n will be taken up as a representative and the internal configuration thereof will be described with reference to the center of FIG.
  • the inside of the nitrogen addition-less / ozone generator 1 in the nitrogen addition-less / ozone generation unit 7-2 is filled with a gas containing oxygen gas, and is supplied from the ozone power source 2 in the nitrogen addition-less / ozone generation unit 7-2.
  • High-frequency high voltages HV and LV are applied between the electrodes in the ozone generator 1 without nitrogen addition, and a dielectric barrier discharge (silent discharge) is generated between the electrodes, so that the gas in the discharge space generates ozone gas by the discharge. is doing.
  • the ozone power source 2 includes a converter 2a, an inverter 2b, and a high voltage circuit unit 2c, which will be described in detail later.
  • a function of generating ozone uses creeping discharge or glow discharge without nitrogen addition.
  • control means having such a function is shown below.
  • the source gas supply port 14 is preferably a high-purity oxygen gas for generating ozone gas such as oxygen gas or a high-purity oxygen source gas containing a small amount of nitrogen gas of less than 10 ppm. Collectively, it is called “nitrogen addition-less oxygen source gas” in a narrow sense). These source gases contain trace amounts of impurities, impure gases, and moisture that are unnecessary for generating ozone gas. Moisture and impurities contained in the source gas are adsorbed on the discharge surface of the nitrogen addition-less / ozone generator 1 to reduce the performance of the photocatalytic substance of the nitrogen addition-less / ozone generator 1. Therefore, in order to remove trace amounts of impurities, impure gas, and moisture contained in these source gases, it is desirable to provide a gas filter, a moisture removal filter that removes moisture in the gas, and the like at the inlet of the source gas.
  • a raw material gas having a predetermined raw material gas flow rate Q obtained from the raw material gas supply port 14 of the ozone gas supply system 10 and the raw material gas supply port 14-2 of the nitrogen addition-less ozone generation unit 7-2 is a gas flow rate controller (MFC) 3
  • MFC gas flow rate controller
  • the means for detecting the gas pressure in the generator and the amount of ozone gas output to the detected generator are finely adjusted to reduce the nitrogen addition -
  • the ozone generator system has a function to keep the pressure in the ozone generator 1 constant.
  • an automatic pressure regulator (APC) 4 that automatically adjusts the generator pressure to a predetermined pressure, and this automatic pressure regulator (APC) 4 is provided in the ozone gas output piping gas line of the ozone generator. ing.
  • ozone gas output piping gas line After passing through a gas filter 51 that removes impurities and foreign matters from the ozone gas generated in the nitrogen generator-less ozone generator 1, an ozone concentration meter 5, an automatic pressure regulator An ozone (oxygenated) gas having a predetermined ozone concentration C is continuously output via the (APC) 4 from the ozone gas output port 15-2 to the outside of the nitrogen addition-less ozone generation unit 7-2.
  • the ozone gas output piping gas line may be provided with an ozone gas flow rate controller (MFC) for outputting a constant output ozone gas flow rate.
  • MFC ozone gas flow rate controller
  • This gas flow rate controller (MFC) 3 controls the raw material gas flow rate supplied to the ozone generator to a constant value.
  • the APC 4 automatically controls the gas pressure of the nitrogen addition-less / ozone generator 1 to a constant value by controlling the pressure of the ozone gas flowing in the ozone gas output piping path of the nitrogen addition-less / ozone generator 1. ing.
  • the nitrogen addition-less ozone generation unit 7-2 includes a nitrogen addition-less ozone generator 1 having means for generating ozone gas, an ozone power source 2 having means for supplying predetermined power to the ozone gas, and a raw material gas flow rate to be supplied MFC3 having means for controlling the pressure to a constant value, APC4 having means for controlling the pressure value in the nitrogen addition-less ozone generator 1 to a constant value, gas filter 51 having means for trapping the impurity gas of the output ozone gas, A plurality of functional means such as an ozone concentration meter 5 having means for detecting the ozone concentration value to be output are integrated to constitute a unit package unit.
  • the configurations of the ozone generation units 7-1 to 7-n are all the same (other than 7-2 are not shown), and the internal configuration described as a representative of the nitrogen addition-less ozone generation unit 7-2 is presented. .
  • a water leakage sensor 6 is provided on the bottom surface of each nitrogen addition-less ozone generation unit 7 (ozone generation units 7-1 to 7-n), and the presence or absence of water leakage in each ozone generation unit 7 is monitored. That is, information obtained from the water leakage sensor 6 is obtained by the EMO circuit (emergency stop circuit) 81 in the system management unit 8 and monitored under the control of the system management control unit 84.
  • the system control unit 8 provided in the ozone gas supply system 10 receives detection information from the exhaust sensor 23 and the ozone leak sensor 24 for evacuating the apparatus from the exhaust duct 11 and monitoring it in a negative pressure state. Yes.
  • the system management control unit 84 sends all nitrogen addition-less / ozone generation units 7-1 to 7-n to the system. Nitrogen addition-less / ozone generation unit control signals 86-1 to 86-n for giving an instruction to stop are given to stop the operation of nitrogen addition-less / ozone generation units 7-1 to 7-n.
  • system management control unit 84 in the system overall management unit 8 receives processing ozone gas event signals 16-1 to 16-n including the required ozone flow rate Qs12 and the required ozone concentration Cs12 from the ozone processing devices 12-1 to 12-n. Is received via the user information I / F 83.
  • the system management control unit 84 sends the nitrogen addition less / ozone generation unit control signals 86-1 to 86-n to the nitrogen addition less / ozone generation unit based on the instruction contents of the processing ozone gas event signals 16-1 to 16-n. 7-1 to 7-n and a control signal S8 is output to the ozone gas output flow rate management unit 9.
  • the flow rate and concentration of the ozone gas output from each of the nitrogen addition-less ozone generation units 7-1 to 7-n are controlled, and the opening / closing control of the ozone gas control valve 9a and the like in the ozone gas output flow rate management unit 9 is performed.
  • the ozone gas having the gas flow rate and concentration in accordance with the instruction contents of the processing ozone gas event signals 16-1 to 16-n can be supplied to the ozone processing devices 12-1 to 12-n.
  • the system supervision management unit 8 will be described in more detail.
  • the system management unit 8 includes an EMO circuit 81 that performs an emergency stop of the apparatus, a unit information I / F 82, a user information I / F 83, a system management control unit 84, and a main operation panel 85.
  • the EMO circuit 81 is a circuit that monitors a system abnormality signal obtained from the water leakage sensor 6 of each nitrogen addition-less / ozone generation unit 7. Specifically, when the EMO circuit 81 receives the detection information of the water leakage abnormality from the water leakage sensor 6, the information is transmitted to the system management control unit 84, and the water leakage sensor 6 that has detected the water leakage abnormality is transmitted from the system management control unit 84.
  • An ozone generation unit control signal 86 (any one of ozone generation unit control signals 86-1 to 86-n) is given to the corresponding nitrogen addition-less ozone generation unit 7 to stop the nitrogen addition-less ozone generation unit 7.
  • the unit information I / F 82 has a function of transmitting / receiving unit information signals 17-1 to 17-n from the nitrogen addition-less / ozone generating units 7-1 to 7-n.
  • the user information I / F 83 includes the processing ozone gas event signals 16-1 to 16-n (command ozone flow rate Qs12, request ozone concentration Cs12, command signals) from the ozone processing apparatuses 12-1 to 12-n.
  • the operation information Y, the device number, etc. are received).
  • the system management control unit 84 outputs a control signal S8 that is a command for opening and closing the ozone gas control valves (9a, 9b, 9c, 9ab, 9bc, 9ca) in the ozone gas output flow rate management unit 9, and the ozone gas output flow rate Performs overall control within the management unit 9.
  • the system management control unit 84 also has a function of exchanging information with the main operation panel 85.
  • the ozone gas supply system 10 has a cooling water inlet 13A and a cooling water outlet 13B. From the cooling water inlet 13A through the cooling water inlets 13a-1 to 13a-n, a nitrogen addition less ozone generating unit is provided. Cooling water from an external cooling device (not shown) is taken into 7-1 to 7-n, and water after cooling from the nitrogen addition-less ozone generation units 7-1 to 7-n is cooled to the cooling water outlets 13b-1 to 13b. Output from the cooling water outlet 13B to the outside via -n.
  • the amount and temperature of the cooling water from the external cooling device are controlled so as to be supplied with a constant value.
  • the ozone gas supply system 10 has a raw material gas supply port 14, and the raw material gas supply port 14 passes through the raw material gas supply ports 14-1 to 14 -n to enter the nitrogen addition-less ozone generation units 7-1 to 7 -n.
  • the raw material gas is taken in from the outside.
  • a gas filter for removing traces of impurities, impure gas and moisture in the source gas is provided at the inlet of the external source gas so as to stabilize the purity of the source gas. It is controlled.
  • the ozone gas output ports 15-1 to 15-n of the nitrogen addition-less ozone generation units 7-1 to 7-n are connected to the internal ozone gas output flow rate management unit 9, and the ozone gas output flow rate management unit 9 to the ozone gas output port 25- Ozone gas is output to the outside of the ozone gas supply system 10 via 1 to 25-n.
  • the processing ozone gas event signals 16-1 to 16-n output from the n ozone processing apparatuses 12-1 to 12-n are taken into the system management control unit 84 via the user information I / F 83.
  • the processing ozone gas event signal 16 (16-1 to 16-n) indicates the required ozone flow rate Qs12, the raw material gas set concentration Cs12, the operation information Y, and the like.
  • the system management control unit 84 controls the nitrogen addition-less / ozone generation units 7-1 to 7-n based on the processing ozone gas event signals 16-1 to 16-n, and controls the nitrogen addition-less / ozone generation unit control signals 86-1 to 86-n. It has a function of outputting 86-n.
  • Nitrogen addition-less / ozone generation units 7-1 to 7-n have operation panels 85-1 to 85-n for nitrogen addition-less / ozone generation units. Further, unit information signals 17-1 to 17-n are transmitted from the nitrogen addition-less ozone generation units 7-1 to 7-n to the system management control unit 84 via the unit information I / F 82 of the system control unit 8.
  • the unit information signal 17 (17-1 to 17-n) is an information signal for instructing the failure of the ozone generator 1 in each nitrogen addition-less ozone generation unit 7 and the operation / stop state.
  • the operation information Y included in the processing ozone gas event signal 16 corresponds to a user information signal indicating a failure or operation / stop state information signal of each ozone processing device 12 (12-1 to 12-n).
  • the information is taken into the user information I / F 83 in the system management unit 8.
  • the nitrogen addition-less ozone generation units 7-1 to 7-n each have an ozone control unit 19.
  • the ozone control unit 19 includes a set flow rate Qs of the raw material gas flow rate, a detected flow rate Q, a set pressure Ps of the generator pressure of the ozone generator 1, a detected pressure P, and each nitrogen addition-less ozone generation unit.
  • 7 is a control unit that receives the ozone concentration C output from 7 and controls the ozone power source 2 to control the ozone concentration, gas flow rate, etc. of the ozone gas generated from the nitrogen addition-less ozone generator 1.
  • the ozone control unit 19 exchanges signals with the ozone concentration meter 5, the MFC 3, the APC 4, and the ozone power source 2.
  • the ozone gas output flow rate management unit 9 has ozone gas input ports 29-1 to 29-n corresponding to the output portions of the nitrogen addition less / ozone generation units 7-1 to 7-n.
  • the ozone processing units 12-1 to 12-n have ozone gas output ports 39-1 to 39-n corresponding to the input parts.
  • the ozone gas on / off valves 22-1 to 22-n are provided between the ozone gas output ports 39-1 to 39-n (ozone gas output ports 25-1 to 25-n) and the ozone treatment devices 12-1 to 12-n. Is inserted.
  • the ozone treatment devices 12-1 to 12-n open the ozone gas on-off valves 22-1 to 22-n when supplying ozone gas.
  • This ozone gas supply system 10 is a system provided with n ozone gas output ports of ozone gas output ports 39-1 to 39-n, but the ozone gas output which is not output when the number of ozone treatment devices on the user side is less than n. This can be dealt with by using a pipe joint at the port 39 as a cap joint and plugging the output gas.
  • the ozone gas output flow rate management unit 9 has ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca inside, and the ozone gas control valves 9a, 9b, 9c are normally open (NO), the ozone gas control valves 9bc, 9ab and 9ca are normally closed (NC).
  • the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca electric valves or pneumatic valves that can be opened / closed by electricity or air pressure can be considered.
  • the ozone gas control valves 9a to 9c are inserted between the ozone gas input ports 29-1 to 29-n and the ozone gas output ports 39-1 to 39-n of the nitrogen addition-less ozone generation units 7-1 to 7-n. .
  • the ozone gas control valve 9ab is provided between the outputs of the ozone gas control valves 9a and 9b
  • the ozone gas control valve 9bc is provided between the outputs of the ozone gas control valves 9b and 9c
  • the ozone gas control valve 9ca is between the outputs of the ozone gas control valves 9c and 9a.
  • the open state and the closed state of the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca are controlled.
  • FIG. 6 only one ozone treatment device 12-2 in which the ozone gas on-off valve 22-2 is open (blacked out) is operating among the ozone treatment devices 12-1 to 12-n.
  • the ozone gas flow rate for 12-2 shows the state of the ozone gas output flow rate management unit 9 when 30 SLM (L / min) ozone gas is supplied. That is, the ozone treatment device 12-2 instructs the ozone flow rate of 30 SLM by the required ozone flow rate Qs12 in the treatment ozone gas event signal 16-2.
  • the system management control unit 84 in the system management unit 8 receives 10 SLMs from the nitrogen addition less / ozone generation units 7-1 to 7-n in response to the nitrogen addition less / ozone generation unit control signals 86-1 to 86-n. Control to supply ozone gas.
  • the system management control unit 84 controls the open / closed state of the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca in the ozone gas output flow rate management unit 9 by the control signal S8.
  • the control signal S8 for opening the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab (blacked out) and closing the ozone gas control valve 9ca (white) is output to the ozone gas output flow rate management unit 9. To do.
  • the ozone treatment apparatus 12 that is not used is described as being closed by the ozone gas on-off valves 22-1 to 22-n.
  • the ozone treatment apparatus that is not used is not supplied with ozone gas 25-1 to 25- It may be forcibly plugged by a pipe joint at the portion n.
  • the system management control unit 84 supplies ozone gas at a flow rate of 10 SLM from the nitrogen addition-less / ozone generation units 7-1 to 7-n according to the nitrogen addition-less / ozone generation unit control signals 86-1 to 86-n.
  • ozone gas with a gas flow rate of 30 SLM (10 SLM ⁇ 3) can be supplied to the ozone treatment device 12-2.
  • the display surface of the main operation panel 85 of the ozone gas supply system 10 is associated with the nitrogen addition-less ozone generation units 7-1 to 7-n and the ozone treatment apparatuses 12-1 to 12-n.
  • the open / close states of the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca are shown.
  • the required ozone flow rate Qs12 (SLM) and the required ozone concentration Cs12 (g / m 3 ) of the ozone treatment apparatuses 12-1 to 12-n are shown.
  • ozone gas control valves 9a, 9b, 9c, and 9bc are outputted by outputting ozone gas having an ozone flow rate of 10 (SLM) and an ozone concentration of 280 (g / m 3 ) from the nitrogen addition-less ozone generation units 7-1 to 7-n, respectively.
  • 9ab are opened and the ozone gas control valve 9ca is closed, so that ozone gas having an ozone flow rate of 30 (SLM) and an ozone concentration of 280 (g / m 3 ) can be supplied to the ozone treatment device 12-2. it can.
  • the ozone control unit 19 As shown in FIG. 8, the ozone control unit 19 provided in each nitrogen addition-less / ozone generation unit 7 controls the ozone power source 2 so that the ozone generation content (gas flow rate, (Ozone gas concentration) is controlled.
  • the ozone power source 2 is a converter 2a that rectifies commercial AC voltages AC1 ⁇ to AC3 ⁇ , converts the DC voltage to a high frequency optimal for the nitrogen addition-less ozone generator 1, controls the output voltage, and supplies the predetermined power with nitrogen addition-less ozone
  • An inverter 2b supplied to the generator 1 a high voltage circuit 2c for boosting the voltage output from the inverter 2b to a high voltage up to a voltage for generating a discharge for generating the nitrogen addition-less ozone generator 1, and It consists of a current sensor 2d.
  • the converter 2a, the inverter 2b, and the high voltage circuit unit 2c are connected in series, and a current sensor 2d is interposed between the converter 2a and the inverter 2b.
  • the ozone control unit 19 controls the ozone gas content (gas flow rate Q, ozone concentration C) generated by the nitrogen generator-less / ozone generator 1, and outputs the high frequency / high voltage HV, LV which are the outputs of the high voltage circuit unit 2 c.
  • a nitrogen addition-less ozone generator 1 is applied to generate ozone gas of a predetermined ozone amount from oxygen gas, which is a raw material gas, by a discharge phenomenon.
  • the ozone controller 19 inverts the source gas flow rate setting device 1S1, the selector 1S2, the ozone concentration setting device 1S3, the analog switches 1S4-A to 1S4-F that are controlled by turning on and off the respective control signals, and the respective control signals. Inverters 1S5-1 and 1S5-2 for converting signals are provided.
  • the ozone control unit 19 stores the set power Ws necessary for generating the optimum ozone amount in response to the signals of the raw material gas set flow rate Qs, the set concentration Cs, and the set pressure Ps of the nitrogen addition-less ozone generator 1.
  • the data memory 1S6 has a current signal converter 1S7 for converting the set power Ws into a current signal for injecting a current necessary for the ozone power source.
  • the ozone control unit 19 drives the inverter 2b with an initial current command, receives a source gas flow rate Q and a generated ozone concentration C that are actually flowing by the MFC 3 and the ozone concentration meter 5, and switches to PID control.
  • a PID control circuit 1S9 that performs PID control of the ozone concentration C and the gas set concentration Cs based on the comparison result is provided.
  • the ozone control unit 19 receives the ozone generation unit control signal 86 from the system management control unit 84, and based on the required ozone flow rate Qs8, the required ozone concentration Cs8, and the operation information Y8 indicated by the ozone generation unit control signal 86, An event adjuster 1S10 that adjusts the set flow rate Qs and the set ozone concentration Cs signal is provided.
  • the ozone control unit 19 includes an initial pulse width setting unit 1S12 that sets an initial pulse width for turning on the inverter 2b to control injection power based on the output current of the pressure setting unit 1S11, the current signal converter 1S7, and the ozone concentration.
  • a current converter that receives the ozone concentration C and the set ozone concentration Cs detected by the total 5 and converts them into a current signal for controlling the injection power of the inverter 2b based on the comparison result between the ozone concentration C and the raw material gas set concentration Cs. 1S13.
  • Data memory 1S6 The data memory 1S6 that stores the initial conditions for controlling the ozone concentration and the ozone flow rate of the nitrogen addition-less ozone generation unit 7, as shown in FIG. 9, sets the set pressure Ps of the nitrogen addition-less ozone generator 1 as a parameter. And a plurality of memory banks BK1 to BK4 (four cases are shown for convenience of explanation in FIG. 9), and if the set pressure Ps of the nitrogen addition-less ozone generator 1 is determined The memory bank BKx (any one of 1 to 4) corresponding to the set pressure Ps is selected.
  • the selected memory bank BK is divided into a plurality of units for each ⁇ Q, with the horizontal axis (X axis) being the set flow rate Qs of the ozone gas flow rate.
  • the vertical axis (Y axis) is the set concentration Cs of ozone concentration, and is divided into a plurality for each ⁇ C.
  • the data memory 1S6 receives signals of the set flow rate Qs and the set concentration Cs that function as addresses on the horizontal axis (X axis) and the vertical axis (Y axis), and has a predetermined memory address determined by the X axis and Y axis addresses.
  • the set power amount W (A11 to A17,..., A61 to A67) necessary for generating the ozone amount is written, and the set power amount Ws is output to the current signal converter 1S7 in the ozone amount control 19 To do.
  • the current signal is converted into a current signal by the current signal converter 1S7, and the current signal is given to the initial pulse width setting unit 1S12 via the analog switch 1S4-E, and the set power amount Ws is realized by the initial pulse width setting unit 1S12.
  • a pulse signal Tw having a predetermined frequency and a predetermined pulse width is output to the inverter 2b.
  • the output concentration control waveform in which the output concentration control of the nitrogen addition-less ozone generation unit 7 is performed is set corresponding to the operation command signal to the ozone generation unit 7 (included in the operation information Y8).
  • the injected power of the inverter 2b is set based on the set power amount Ws from the data memory 1S6.
  • the PID control by the PID control circuit 1S9 is switched by the time control by the timer 1S8.
  • the PID control circuit 1S9 determines the pulse width of the pulse signal Tw based on the current signal of the current converter 1S13 (a signal determined based on the comparison result between the ozone gas concentration C (detected from the ozone concentration meter 5) and the gas set concentration Cs).
  • ⁇ Tw PID control of the injected power of the inverter 2b is executed.
  • the ozone concentration (C) generated from the nitrogen addition-less ozone generator 1 shows the control response waveform shown in FIG.
  • the event adjuster 1S10 starts the timer 1S8 with the input of an operation command (not shown) as a trigger. At this time, the event adjuster 1S10 controls the source gas flow rate comparator 1S2 so as to select the source gas set flow rate Qs of the source gas flow rate setter 1S1, and the analog switches 1S4-A and 1S4-D are turned on. The switches 1S4-B and 1S4-C are turned off.
  • the timer 1S8 immediately after startup turns on the analog switch 1S4-E and turns off the analog switch 1S4-F.
  • the set pressure Ps is obtained from the pressure setter 1S11
  • the source gas set flow rate Qs is obtained from the source gas flow rate setter 1S1
  • the source gas set concentration Cs is obtained from the ozone concentration setter 1S3.
  • the set power amount Ws is output to the current signal converter 1S7.
  • the initial pulse width setting device 1S12 generates a pulse signal Tw having an initial pulse width.
  • On / off of the inverter 2b is controlled according to "H" and "L" of the pulse signal Tw.
  • the initial control based on the set power amount Ws of the data memory 1S6 is executed within the set time To when the timer 1S8 is in the operating state.
  • the PID control circuit 1S9 reflects the comparison result between the ozone concentration C and the gas set concentration Cs obtained from the ozone concentration meter 5 based on the current signal from the current converter 1S13, and sets the pulse width of the pulse signal Tw.
  • PID control mainly for making a minute displacement ( ⁇ Tw) is performed on the ozone power source 2.
  • the PID control circuit 1S9 varies the minute deviation ⁇ Tw also by the detection current I of the current sensor 2d.
  • the operation is switched to PID control (W).
  • the event adjuster 1S10 starts the timer 1S8 with the input of the ozone generation unit control signal 86 indicating the required ozone flow rate Qs8, the required ozone concentration Cs8 and the operation information Y8 as a trigger.
  • the analog switches 1S4-A and 1S4-D are turned off, and the analog switches 1S4-B and 1S4-C are turned on.
  • the timer 1S8 immediately after starting turns on the analog switch 1S4-E and turns off the analog switch 1S4-F.
  • the required ozone flow rate Qs8 and the required ozone concentration Cs8 are based on the required ozone flow rate Qs12 and the required ozone concentration Cs12 indicated by the processing ozone gas event signals 16-1 to 16-n from the ozone processing apparatuses 12-1 to 12-n. This is determined by the system management control unit 84.
  • the set pressure Ps, the required ozone flow rate Qs8 and the required ozone concentration Cs8 indicated by the ozone generation unit control signal 86 are obtained from the pressure setter 1S11 as the set flow rate Qs and the set concentration Cs.
  • the set power amount Ws is output to the current signal converter 1S7.
  • the initial pulse width setting device 1S12 generates a pulse signal Tw having an initial pulse width.
  • the initial control based on the set power amount Ws of the data memory 1S6 is executed within the set time To when the timer 1S8 is in the operating state.
  • the PID control circuit 1S9 performs PID control mainly on the ozone power source 2 based on the current signal from the current converter 1S13, which mainly shifts the pulse width of the pulse signal Tw ( ⁇ Tw).
  • FIG. 11 is a graph showing the received power of the 2.5 KW ozone power source 2 of one nitrogen addition-less ozone generation unit 7 and the ozone concentration characteristics generated in the nitrogen addition-less ozone generator 1.
  • the generated ozone concentration can be variably set from about 0 g / m 3 to 360 g / m 3 .
  • the ozone concentration characteristic L12 indicates the ozone concentration characteristic when the ozone gas flow rate Q is 2.5 SLM.
  • the generated ozone concentration can be variably set from about 0 g / m 3 to 360 g / m 3 .
  • the ozone concentration characteristic L13 is an ozone concentration characteristic when the ozone gas flow rate Q is 5.0 SLM
  • the ozone concentration characteristic L14 is an ozone concentration characteristic when the ozone gas flow rate Q is 7.5 SLM
  • the ozone concentration characteristic L15 is The ozone concentration characteristic when the ozone gas flow rate Q is supplied at 10 SLM
  • the ozone concentration characteristic L16 is the ozone concentration characteristic when the ozone gas flow rate Q is supplied at 20 SLM
  • the ozone concentration characteristic L17 is the case when the ozone gas flow rate Q is supplied at 30 SLM. Ozone concentration characteristics are shown.
  • the maximum ozone concentration generated at a received power of 2.5 kW is 280 g / m 3 (see ozone concentration characteristic L15), and ozone gas with an ozone gas flow rate Q of 20 SLM is supplied.
  • the maximum ozone concentration generated at a received power of 2.5 kW is 180 g / m 3 (see ozone concentration characteristic L16).
  • the maximum ozone concentration generated at a received power of 2.5 kW Is only 140 g / m 3 (see ozone concentration characteristic L17).
  • the nitrogen addition-less ozone generation unit 7 which is an ozone power source 2 with a received power of 2.5 KW
  • the maximum one nitrogen addition-less ozone generator 1 can supply
  • the flow rate is 10 SLM, that is, when the ozone concentration satisfies 280 g / m 3 from one nitrogen addition-less ozone generator 1, a gas flow rate higher than the ozone gas flow rate of 10 SLM cannot be supplied.
  • the ozone gas supply system 10 of the present embodiment is configured such that the ozone gas output flow rate management unit 9 outputs one or more of n ozone gas outputs supplied from the n nitrogen addition-less ozone generation units 77-1 to 7-n.
  • An output ozone gas output control system that can selectively output a plurality of combinations to any ozone treatment device 12 among the ozone treatment devices 12-1 to 12-n is employed.
  • the open / close control of the ozone gas control valves 9ab, 9bc, 9ca in the ozone gas output flow rate management unit 9 provided between the units provided in the ozone gas output flow rate management unit 9 is performed. 6 and 7, all the ozone gas generated from the n nitrogen addition-less ozone generation units 7-1 to 7-n can be supplied to one ozone processing apparatus 12-2. .
  • ozone gas having a gas flow rate of 10 SLM and an ozone gas concentration of 280 g / m 3 is supplied to the ozone treatment device 12-2.
  • Ozone ozone gas can be supplied, and the ozone concentration at that time can be increased to 280 g / m 3 .
  • the use of the current ozone generator has the effect of significantly improving the processing speed, performance improvement, and the like, which are the processing capabilities of the ozone processing apparatus.
  • the nitrogen addition-less ozone generation unit 7 can output only a maximum ozone concentration of 280 g / m 3 with 10 SLM source gas, but the ozone gas control valve 9ab provided between the units provided in the ozone gas output flow rate management unit 9 If the open / close control of 9bc and 9ca is used, the ozone concentration can be increased.
  • the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca are controlled to open and close, and the gas flow rates supplied from the three ozone generation units 7 to 3.3 SLM, respectively. If this is done, the output concentration is increased to the maximum value of the ozone concentration of 3.3 SLM, and as shown by the phantom point P3, ozone gas of a total of 10 SLM can be supplied at an ozone concentration of about 330 g / m 3 , and the ozone treatment device receives the ozone gas supply It has the effect of increasing the ozone treatment capacity of 12-2.
  • the ozone gas supply system 10 of the present embodiment that employs an output ozone gas output control system configured by the ozone gas output flow rate management unit 9 equipped with n nitrogen addition-less ozone generation units 7, If any of the ozone generation units 7-1 to 7-n fails, the corresponding ozone treatment device 12 can no longer be used, and the ozone gas output from the non-failed nitrogen addition-less ozone generation unit 7 can be removed.
  • the ozone gas control valves 9ab, 9bc and 9ca can be supplied by opening and closing, and an ozone gas supply system with higher ozone gas supply reliability can be obtained.
  • the ozone gas supplied from the nitrogen addition-less ozone generation unit 7-1 is supplied to the ozone gas control valve 9a, 9ab, the ozone gas on-off valve 22-2 can be opened and supplied to the ozone treatment device 12-2.
  • the operation information Y of the treatment ozone gas event signal 16 is taken in, and the ozone generation unit control signal 86 is immediately used.
  • the operation of the nitrogen addition-less ozone generation unit 7 that supplies ozone gas to the failed ozone treatment device 12 can be stopped.
  • one ozone gas supply system 10 includes a plurality of nitrogen addition-less ozone generation units 7-1 to 7-n, and each nitrogen addition-less ozone generation unit 7 is means for generating ozone gas.
  • the source gas in the nitrogen addition-less ozone generator 1 is only oxygen gas, no MFC is required to add nitrogen gas of several thousand f or more, and by-products such as NO x and OH radical substances are removed. It is possible to supply ozone gas having a higher purity and a higher concentration, which is not included, to a plurality of ozone processing apparatuses with an independent ozone gas amount and ozone concentration.
  • the ozone gas supply system 10 is provided with opening / closing valves (ozone gas control valves 9a to 9c) corresponding to the output ozone gas pipes from the nitrogen addition-less / ozone generators 1 and each of the nitrogen addition-less / ozone generators 1 described above.
  • the ozone gas output flow rate management unit 9 provided with on-off valves (9bc, 9ab, 9ca) is also provided between the output ozone gas pipes.
  • the ozone gas supply system 10 includes a nitrogen addition-less ozone generation unit 7-1 to 7 by opening / closing operations of the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca in the ozone gas output flow rate management unit 9.
  • -System control unit 8 ozone gas output flow rate capable of executing ozone gas output flow rate control for selectively outputting one or a combination of two or more ozone gases output from -n to any one of the ozone treatment devices 12-1. Management unit).
  • the ozone gas control valves 9a, 9b, and 9c are opened, the ozone gas control valves 9ab, 9bc, and 9ca are closed, and the ozone gas on / off valves 22-1 to 22-n are opened.
  • the ozone gas treatment device 12- Each of 1 to 12-n can be controlled independently.
  • ozone treatment device 12-2 by supplying a combination of two or more ozone gas outputs to one ozone treatment device (ozone treatment device 12-2), ozone gases having various gas flow rates and concentrations can be obtained. Can be supplied.
  • the remaining nitrogen addition-less ozone generation unit 7 that operates normally causes the ozone treatment devices 12-1 to 12- Since ozone gas can be supplied to any of 12-n, highly reliable ozone gas supply can be realized.
  • the ozone gas supply system 10 controls the ozone gas output flow rate management unit 9 by the control signal S8 from the system management control unit 84, and outputs it from the nitrogen addition-less ozone generation units 7-1 to 7-n. Ozone gas combination / selection processing is performed so that ozone gas having a desired gas flow rate and ozone gas concentration can be output to the ozone processing apparatus 12.
  • the ozone gas supply system 10 of Embodiment 1 includes an electric valve or an empty valve that can open and close the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca provided in the ozone gas output flow rate management unit 9 by electricity or air pressure. It is possible to centrally manage the gas flow rate and ozone gas concentration of the ozone gas output to the outside from the nitrogen addition-less / ozone generator 1 in each nitrogen addition-less / ozone generation unit 7 under the control of the control signal S8 as a pressure valve.
  • the system management unit 8 includes the water leakage sensor 6, the EMO circuit 81, the unit information I / F 82, the system management control unit 84, etc., so that any of the nitrogen addition-less / ozone generation units 7-1 to 7-n can be performed.
  • the corresponding nitrogen addition-less ozone generation unit can be stopped.
  • the nitrogen addition-less / ozone generation units 7-1 to 7-n can be stopped.
  • the ozone gas supply system 10 is provided with a safety stop function when each ozone generation unit 7 is abnormal or when the ozone gas supply system 10 as a whole is abnormal, thereby realizing a highly safe system. be able to.
  • the ozone gas supply system 10 is configured to supply a plurality of ozone treatment apparatuses with independent ozone gas amounts and ozone concentrations of higher-purity and higher-concentration ozone gas that does not contain by-products such as NO x and OH radical substances.
  • the ozone gas supply system 10 is configured to supply a plurality of ozone treatment apparatuses with independent ozone gas amounts and ozone concentrations of higher-purity and higher-concentration ozone gas that does not contain by-products such as NO x and OH radical substances.
  • FIG. 12 is a circuit diagram showing details of the internal configuration of the ozone power source 2.
  • FIG. 13 is a perspective view schematically showing a combined structure of the nitrogen addition-less ozone generation unit 7X of the first embodiment.
  • the nitrogen addition-less ozone generation unit 7X means one unit of ozone generation unit configured as each of the nitrogen addition-less / ozone generation units 7-1 to 7-n of the first embodiment.
  • the ozone power supply unit 2 and the nitrogen addition-less ozone generator 1 are each reduced in size, supplied with compacted power, and controls the amount of power.
  • the nitrogen addition-less ozone generator 1 having means for generating ozone gas
  • the MFC 3 having means for controlling the raw material gas flow rate
  • the gas filter 51 having means for removing ozone gas impurities
  • Ozone concentration meter 5 having means for detecting output ozone gas concentration
  • APC4 having means for controlling gas pressure in ozone generator to a constant value are consolidated and packaged to reduce the amount of nitrogen added by 1 unit -Realizes ozone generation unit 7X.
  • the nitrogen addition-less ozone generator 1 The ozone power supply 2 and the gas piping system are packaged to make the ozone addition unit 7X less compact.
  • the entire apparatus Even if a plurality of nitrogen addition-less ozone generation units 7X are mounted as nitrogen addition-less / ozone generation units 7-1 to 7-n, the entire apparatus The ozone gas supply system with improved function and improved reliability can be realized without increasing the size.
  • FIG. 12 shows a circuit configuration that is made compact by realizing integration of main components of the nitrogen addition-less ozone generator 1 and the ozone power supply unit 2.
  • the nitrogen addition-less ozone generator 1 requires a required area as a discharge area for generating ozone in order to obtain a required ozone generation amount. Therefore, in order to reduce the area occupied by the generator, the ozone generator 1 is configured as a multi-layered electrode cell type by forming a thin electrode cell and reducing the cross sectional area of one electrode cell, The ozone generator 1 with a small occupation area is realized.
  • the ozone power source 2 includes a converter 2a that rectifies commercial AC voltage, an inverter 2b that converts the DC voltage into a high frequency optimum for a nitrogen addition-less ozone generator, controls output voltage, and supplies predetermined power to the ozone generator, It has a high voltage circuit section 2c for boosting the voltage output from the inverter 2b to a voltage that generates a discharge for generating the nitrogen addition less ozone generator 1, and the ozone control section 19 This controls the injection power of the ozone power source.
  • the converter 2a is composed of a rectifier circuit 2a1, a capacitor bank 2a2, a smoothing reactor 2a3, a chopper circuit unit 2a4 and a chopper control circuit unit 2a5, and the inverter 2b is composed of an inverter circuit 2b1 and an inverter control circuit 2b2.
  • the parts of the converter 2a and the inverter 2b of the ozone power source 2 are classified and the parts are modularized to realize a miniaturized circuit configuration.
  • the DC / smoothing circuit unit 2ax obtained by modularizing the rectifier circuit 2a1, the capacitor bank 2a2, and the smoothing reactor 2a3 as a unit has been reduced in size, and the quality of parts has been improved.
  • the chopper circuit portion 2a4 constituting the converter 2a and the inverter circuit 2b1 constituting the inverter 2b are both composed of power semiconductors such as FET elements and IGBT elements and need to be cooled by cooling fins, the chopper circuit portion 2a4 and the inverter The power element portion 2p that is effectively reduced in size is realized by modularizing the circuit 2b1 as one semiconductor module.
  • the chopper control circuit 2a5 of the converter 2a and the inverter control circuit 2b2 of the inverter 2b realize a very miniaturized power supply control board 2q by forming a single board or an integrated IC.
  • the high voltage circuit unit 2c includes a series reactor L0 that limits the inverter output current, a high voltage transformer Tr that boosts the voltage to a high voltage, and a parallel reactor Lb for power factor improvement, and each component is a large and heavy component.
  • the series reactor L0 and the parallel reactor Lb are integrated into a high-voltage transformer Tr so as to incorporate a function into a special transformer.
  • the transformer is designed so that the series reactor L0 can be integrated with the primary leakage inductance of the high-voltage transformer.
  • the parallel reactor Lb is designed as a transformer that can increase the exciting inductance of the transformer, and the parallel reactor Lb can incorporate the function in the transformer.
  • this high-voltage transformer Tr is formed with a ferrite core that is light and has good high-frequency characteristics, and the transformer Tr has a reduced installation area and has a predetermined capacity.
  • a very small high-voltage circuit unit 2c was realized by installing a plurality of transformers (three in the figure) in a vertical shape so that a plurality of small transformers were formed in parallel connection.
  • the series reactor L0 that limits the output current of the inverter may not be integrated with the transformer but may be formed by an independent small reactor L0.
  • FIG. 13 shows a unit of nitrogen addition-less ozone generation unit 7X in which the nitrogen addition-less ozone generator 1, the ozone power source 2, the MFC 5, the gas filter 51, the ozone concentration meter 5, the APC 4, and the gas piping integrated block 30 are integrated. Is shown.
  • the ozone control unit 19 is connected by an electrical signal to the nitrogen addition-less ozone generator 1 and the ozone power source 2 (blocks BL1 and BL2), the MFC 3, the ozone concentration meter 5, and the APC 4 provided in an integrated manner. Yes.
  • the direction in which the operation panel 85-i exists will be described as the front surface of the nitrogen addition-less ozone generation unit 7X.
  • Nitrogen addition-less ozone generator 1 and ozone power supply 2 are modularized as shown in FIG. 8 to reduce the number of parts, reduce the size of each part and reduce the installation area.
  • the DC addition / smoothing circuit unit 1 ⁇ / b> Ax of the ozone power source 2, the power element unit 2 p, and the power supply control board are centered on the nitrogen addition-less ozone generator 1 in one nitrogen addition-less ozone generation unit 7 ⁇ / b> X.
  • One block BL1 is disposed on the front surface, several small transformers are stacked vertically, and the high voltage circuit portion 2c is formed as the block BL2 so as to be distributed and integrated.
  • Gas supply piping system including MFC3 that supplies raw material gas to the nitrogen addition-less ozone generator 1, gas filter 51 that outputs the generated ozone gas to the outside, ozone concentration meter 5, ozone gas output piping system via APC4
  • a cooling piping system (cooling water inlet 13A, cooling water outlet 13B) for cooling the electrode of the nitrogen addition-less ozone generator 1 is required. Since these piping systems must be arranged three-dimensionally, connecting each part with existing gas piping, cooling piping, etc. increases the number of connecting joints between the piping and the parts. A very large space is required to connect these piping systems.
  • a piping unit different from the nitrogen addition / ozone generation unit (nitrogen addition-less / ozone generator) is provided on the back surface, for example, and the generator unit and piping are connected on the back surface. Therefore, it was difficult to integrate the nitrogen addition-less ozone generation unit, the gas supply piping system, the ozone gas output piping system, and the cooling piping systems 13A and 13B together.
  • the gas pipe integrated block 30 has a three-dimensional structure, and on each surface, nitrogen addition-less ozone generator 1, MFC3, gas filter 51, ozone monitor 5, APC4 (hereinafter collectively referred to as “nitrogen addition-less ozone generation”) Are placed adjacent to each other. And, by attaching a screw or the like via an O-ring at the connecting portion between the nitrogen addition-less ozone generator 1 etc.
  • the nitrogen addition-less / ozone generator 1 and the like are closely attached to the gas piping integrated block 30.
  • the gas piping integrated block 30 has piping paths R30a to 30f inside, and a cooling water inlet 13A, a cooling water outlet 13B, a raw material gas supply port 14 and an ozone gas output port 15 are attached to the side surface, and an ozone generator
  • the structure is such that the nitrogen addition-less ozone generator 1 is attached using the mounting bolts Bt1 to Bt4.
  • the MFC 3 is sandwiched between the MFC mounting blocks 33 and 33 and attached to the gas piping integrated block 30, the APC 4 is sandwiched between the APC mounting blocks 34 and 34 and attached to the gas piping integrated block 30, and the ozone concentration meter is mounted.
  • the ozone densitometer 5 is mounted by being sandwiched between the blocks 35 and 35 for use.
  • In-block channels B3 to B5 for securing a piping path are also formed in these mounting blocks 33 to 35.
  • the gas filter 51 is mounted on the gas pipe integrated block 30 using the gas filter mounting block 31.
  • the raw material gas input piping path from the raw material gas supply port 14 to which the raw material gas Gm is supplied to the ozone generator input part ET1 of the nitrogen addition-less ozone generator 1 through the MFC 3 is the raw material gas supply port 14 and the piping route R30a.
  • In-block flow path B3, MFC3, in-block flow path B3, piping path R30b, and ozone generator input unit ET1 are configured in this order.
  • a portion provided around the ozone generator input portion ET1 of the nitrogen addition-less ozone generator 1 is attached to the gas pipe integrated block 30 by the ozone generator mounting bolt Bt1. In this way, an input piping path for the source gas Gm is formed using the gas piping integrated block 30.
  • the ozone gas output pipe that is output from the ozone gas output port 15 via the gas filter 51, the ozone concentration meter 5, and the APC 4 from the ozone generator output unit EX1 that receives the ozone gas output from the nitrogen addition-less ozone generator 1, Nitrogen addition-less ozone generator output section EX1, piping path R30c, gas filter mounting block 31, gas filter 51, gas filter mounting block 31, piping path R30d, block flow path B5, ozone concentration meter 5, It is configured by a path formed in the order of an in-block flow path B5, a piping path R30e, an in-block flow path B4, APC4, an in-block flow path B4, a piping path R30f, and an ozone gas output port 15.
  • the portion provided around the ozone generator output part EX1 of the nitrogen addition-less ozone generator 1 is attached to the gas pipe integrated block 30 by the ozone generator mounting bolt Bt2. In this way, an ozone gas output piping path is formed using the gas piping integrated block 30.
  • FIG. 24 is an explanatory diagram schematically showing a conventional configuration corresponding to the nitrogen addition-less ozone generation unit 7X.
  • the configuration corresponding to the nitrogen addition-less ozone generation unit 7X is generally separated by a gas control unit 400, an inverter control unit 500, and an ozone generation unit 600. .
  • the gas control unit 400 includes an MFC 73, an APC 74, an ozone concentration meter 75, and a gas filter 91 inside.
  • the inverter control unit 500 includes a converter 2a, an inverter 2b, an ozone control unit 79, an operation panel 85-i, a series reactor L0, and the like.
  • the ozone generation unit 600 includes an ozone generator 71, a high-pressure transformer Tr, and a parallel reactor Lb.
  • the converter 2a includes a rectifier circuit 2a1, a capacitor bank 2a2, a smoothing reactor 2a3, a chopper circuit unit 2a4, and a chopper control circuit unit 2a5, and the inverter 2b includes an inverter circuit 2b1 and an inverter control circuit 2b2. Note that description of connection relations and operation contents is omitted.
  • the gas control unit 400, the inverter control unit 500 corresponding to the ozone power source, and the ozone generation unit 600 are divided into three blocks.
  • FIG. 13 only electrical connection or gas piping connection can be used, and the structure shown in FIG. 13 cannot be realized.
  • the nitrogen addition-less ozone generation unit 7X integrates these three units (400, 500, 600), and realizes a significant reduction in size compared to the configuration shown in FIG. ing.
  • the nitrogen addition-less ozone generation unit 7X of the second embodiment includes the nitrogen addition-less ozone generator 1, the ozone power source 2, the MFC 3, the gas filter 51, the APC 4, the ozone concentration meter 5, and the raw material gas supply port 14.
  • the ozone gas output port 15, the cooling water inlet 13 ⁇ / b> A, and the cooling water outlet 13 ⁇ / b> B are integrated and formed in an integrated structure, so that a significant reduction in size can be achieved as compared with the conventional configuration.
  • the gas piping integrated block 30 in the nitrogen addition-less ozone generation unit 7X has a plurality of internal piping paths R30a to R30f, the piping paths R30a to R30f, the ozone generator 1,
  • the MFC 3, the gas filter 51, the APC 4, the ozone concentration meter 5, the raw material gas supply port 14, the ozone gas output port 15, and the cooling water inlet / outlet 13A and 13B are connected to each other, whereby the input piping path of the raw material gas Gm and the ozone gas Since the output piping path is formed, it is possible to effectively reduce the size including these piping paths.
  • the nitrogen addition-less ozone generation units 7-1 to 7-n are reduced in size as the nitrogen addition-less ozone generation unit 7X according to the first embodiment, thereby reducing the ozone gas shown in the first embodiment.
  • the supply system 10 can be realized at a practical level.
  • the ozone gas supply system according to the second embodiment can be equipped with a plurality of nitrogen addition-less ozone generation units 7X, and the nitrogen addition-less ozone generation unit 7X.
  • ozone gas is distributedly supplied to each of the ozone treatment devices 12 of the ozone treatment devices 12-1 to 12-n by connecting the output pipes of each other with the gas control valve 9.
  • a large amount of ozone gas or high-concentration ozone gas can be selectively supplied to the two ozone treatment apparatuses 12.
  • the ozone gas supply system of the second embodiment is a nitrogen addition-less ozone generation unit in which the nitrogen addition-less ozone generation system part is integrated, so that high-purity and high-concentration ozone gas having the effect of Example 2 can be obtained. It becomes possible to supply to multiple ozone treatment equipment with independent parameter amount conditions, and "Ozone gas quantity and ozone concentration in multiple ozone treatment processes in the semiconductor manufacturing field can be managed collectively with this equipment. With the effect of “saving labor”, the ozone gas supply system itself can be made compact and inexpensive.
  • FIG. 14 is an explanatory diagram showing an internal configuration of an ozone gas output flow rate management unit by the ozone gas supply system 20 of the third embodiment, corresponding to the ozone gas supply system 10 shown in FIG.
  • the ozone gas output flow rate management unit 9Y according to the second embodiment which corresponds to the ozone gas output flow rate management unit 9 according to the first embodiment, includes nitrogen addition-less ozone generation units 7-1 to 7-n. Corresponding parts are formed integrally.
  • Ozone gas control valves 9a to 9c are integrally provided corresponding to the nitrogen addition-less / ozone generation units 7-1 to 7-n, and mounting blocks 93a to 93c are provided in close contact with the ozone gas control valves 9a to 9c.
  • An ozone gas control valve 9ab, an ozone gas control valve 9bc, and an ozone gas control valve 9ca are provided on one path side (upper side in the drawing) of the mounting blocks 93a, 93b, and 93c.
  • the ozone gas control valve 9ab on the one path side of the mounting block 93a is connected to the other path (lower side in the figure) of the mounting block 93ab via the pipe joint 98u, the inter-unit ozone gas pipe 95ab, and the pipe joint 98d.
  • the ozone gas control valve 9ab on one path side of the mounting block 93ab is connected to the other path of the mounting block 93ac via the pipe joint 98u, the inter-unit ozone gas pipe 95bc, and the pipe joint 98d.
  • the ozone gas control valve 9ca is connected to the other path of the mounting block 93a through the pipe joint 98u, the inter-unit ozone gas pipe 95ca and the pipe joint 98d.
  • the ozone gas output flow rate management unit 9Y has the same ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca as the circuit configuration of the ozone gas output flow rate management unit 9.
  • the ozone gas on / off valves 22-1 to 22-n are inserted between the ozone gas output ports 25-1 to 25-n and the ozone treatment devices 12-1 to 12-n.
  • the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca constituting the ozone gas output flow rate management unit 9Y are normally open type (NO), ozone gas control valves 9bc, 9ab, 9ca. Is normally closed type (NC).
  • a control signal S8a from the system management control unit 84 of the system control unit 8 is given to the ozone gas control valve 9a and the ozone gas control valve 9ab, and a control signal S8b is given to the ozone gas control valve 9b and the ozone gas control valve 9bc.
  • the signal S8c is given to the ozone gas control valve 9c and the ozone gas control valve 9ca.
  • FIG. 14 only one of the ozone treatment apparatuses 12-1 to 12-n is operating (the ozone gas on-off valve 22-2 is open), and the ozone treatment apparatus 12-2 As the ozone gas flow rate, the state of the ozone gas output flow rate management unit 9Y when 30 SLM ozone gas is supplied is shown.
  • 10 SLM ozone gas is output from the ozone generation units 7-1 to 7-n by the ozone generation unit control signals 86-1 to 86-n from the system management control unit 84, respectively, and the ozone gas control valves 9a, 9b, 9c, 9bc and 9ab are opened (blacked out), and the ozone gas control valve 9ca is closed (outlined).
  • the output ozone gas is plugged with either 98u or 98d that is a pipe joint as a pipe cap joint. Needless to say, it shuts off.
  • the nitrogen addition / ozone generation units 7-1 to 7-n and the ozone gas output flow rate management unit 9Y are controlled so that the flow rate of 10 SLM from the nitrogen addition / ozone generation units 7-1 to 7-n is reduced.
  • the ozone gas having a gas flow rate of 30 SLM can be supplied to the ozone processing apparatus 12-2 via the ozone gas output flow rate management unit 9.
  • FIG. 15 is a perspective view schematically showing a combined structure of one unit of nitrogen addition-less ozone generation unit according to the third embodiment.
  • the nitrogen addition-less ozone generation unit 7Y according to the third embodiment includes a nitrogen addition-less ozone generator 1, an ozone power source 2, an MFC 5, a gas filter 51, an ozone concentration meter 5, an APC 4, and a gas.
  • the components of the ozone gas output flow rate management unit 9 are also integrated.
  • the block main bodies 930a and 930b (corresponding to any of the attachment blocks 93a to 93c in FIG. 10) are mainly used.
  • the ozone gas control valve storage portions 931 and 932, the ozone gas output portion 933, and the ozone gas branch portions 934 and 935 are provided.
  • the ozone gas control valve storage unit 931 stores therein an ozone gas control valve 90x (corresponding to any of the ozone gas control valves 9a to 9c), and the ozone gas control valve storage unit 932 includes an ozone gas control valve 90xy (ozone gas control valve 9ab). , 9bc and 9ca).
  • the ozone gas output unit 933 corresponds to the ozone gas output port 15 of the ozone generation unit 7X of Embodiment 1 shown in FIG. 13, and is connected to the ozone gas output port 25 of FIG.
  • the ozone gas branching portion 934 functions as a branching portion (inter-unit ozone gas pneumatic valve piping connection port) connected to the piping joint 98u shown in FIG. 10, and the ozone gas branching portion 935 is connected to the piping joint 98d shown in FIG. It functions as a branch part on the other side of the road (inter-unit ozone gas pneumatic valve pipe connection port).
  • the gas supply piping system, the ozone gas output piping system, and the cooling piping systems 13A, 13B are all integrated into one gas piping integrated block 30, and the ozone gas output flow rate management unit 9Y Combining the constituent parts, the gas piping integrated block 30 incorporates gas supply piping, ozone gas output piping, and cooling piping.
  • the raw material gas input piping from the raw material gas supply port 14 to which the raw material gas Gm is supplied to the ozone generator input part ET1 of the nitrogen addition-less ozone generator 1 via the MFC 3 is the same as the ozone generation unit 7X of the second embodiment. Almost the same, it is composed of a path formed in the order of the raw material gas supply port 14, the piping path R30a, the intra-block flow path B3, MFC3, the intra-block flow path B3, the piping path R30b, and the ozone generator input unit ET1. .
  • the ozone gas output pipe from the ozone generator output section EX1 of the nitrogen addition-less ozone generator 1 to the block main body 930b through the gas filter 51, the ozone concentration meter 5, and the APC 4 is the ozone generator output section EX1, the piping path R30c, gas filter mounting block 31, gas filter 51, gas filter mounting block 31, piping path R30d, block flow path B5, ozone concentration meter 5, block flow path B5, piping path R30e, block flow
  • the path B4, APC4, in-block flow path B4, piping path R30f, block body 930a (inner part), ozone gas control valve 90x, piping path R30g, block body 930b (outer part) are configured in this order.
  • the block main bodies 930a and 930b may be configured integrally and formed through the gas pipe integrated block 30.
  • the plurality of ozone gas control valve storage portions 931 and 932 each storing the ozone gas control valves 90x and 90xy, are respectively connected to the gas pipe integrated block 30 in the corresponding nitrogen addition-less ozone generation unit 7Y. It is attached in close contact with and is inserted on the output piping path of the ozone gas.
  • the combined structure of the ozone gas output flow rate management unit 9Y and the nitrogen addition-less / ozone generation units 7-1 to 7-n can be reduced in size.
  • the nitrogen addition-less ozone generation unit 7Y of the third embodiment includes most of the components of the ozone gas output flow rate management unit 9 and gas in addition to the characteristics of the nitrogen addition-less ozone generation unit 7X of the second embodiment.
  • further downsizing can be achieved as compared with the case where the nitrogen addition-less ozone generation unit 7X and the ozone gas output flow rate management unit 9 of the second embodiment are separately configured. Can do.
  • an ultra-high purity moisture remover which is a gas filter for trapping moisture contained in the source gas, is attached to the source gas supply unit in the configuration of the ozone gas supply system of the second embodiment and supplied into the apparatus.
  • the ultrahigh purity moisture remover that traps moisture contained in the gas is attached to the raw material gas inlet of the unit of nitrogen addition-less ozone generation unit 7 in combination.
  • the feature is that the nitrogen addition-less ozone generation unit 7 is downsized and the performance and quality of the nitrogen addition-less ozone generator itself are improved.
  • the catalytic action for generating ozone gas is photocatalytic, and a photocatalytic substance is applied to the discharge surface to generate high-purity high-concentration ozone by high-purity oxygen gas.
  • an ultra-high-purity moisture remover that removes the amount of water by a few hundred ppb or less (preferably 300 ppb or less) from a source gas containing a trace amount of moisture of 3000 ppb or more. It is that it was equipped.
  • FIG. 16 is an explanatory diagram showing an internal configuration for suppressing a small amount of moisture in the raw material gas by the ozone gas supply system 101 of the fourth embodiment, corresponding to the ozone gas supply system 10 shown in FIG.
  • FIG. 17 is a perspective view schematically showing a combined structure of one unit of nitrogen addition-less ozone generation unit according to the fourth embodiment.
  • the raw material gas inlets 14-1 to 14-n of the nitrogen addition-less / ozone generation units 7-1 to 7-n of Embodiment 1 are placed at positions where they can be easily replaced.
  • High-purity moisture removers (gas filters) 59-1 to 59-n are attached and formed integrally.
  • a gas pipe integrated block structure in which a source gas pipe (raw material gas supply port 14 + ultra-high purity moisture remover 599) and an output gas pipe system (ozone gas output port 15) are integrated with a gas pipe integrated block 30.
  • the ozone generator 1, the ozone power source 2, and the gas piping system are packaged to make the ozone generation unit 7X2 smaller.
  • the source gas supply port 14 and the ultra high purity moisture remover 59 are configured to be connected to each other.
  • the raw material gas supplied to the ozone gas supply system 10 generally uses a high-purity raw material gas of 99.99% or more.
  • a high-purity raw material gas as a gas other than the raw material gas, nitrogen-based gas, carbon
  • An impurity gas such as a system gas or a sulfide gas is contained in an amount of about 0.1 to several ppm, and the amount of water contained in the gas is also contained in an amount of 1 to several ppm.
  • impurity gases and moisture are also contained in the air, as soon as a part of the piping of the source gas piping path is opened to the atmosphere, impurity gases such as moisture and nitrogen gas are immediately formed on the piping surface. Adsorbed.
  • the source gas when the source gas is allowed to flow through the source gas pipe to which the impurity gas has been adsorbed, not only the impurity gas and moisture contained in the high-purity source gas but also the impurity gas adhering to the pipe is separated by flowing the gas. As a result, the purity of the supplied raw material gas may deteriorate.
  • the source gas contains an impurity gas such as a nitrogen-based gas, a carbon-based gas, a sulfidized gas, or a small amount of moisture
  • an impurity gas such as a nitrogen-based gas, a carbon-based gas, a sulfidized gas, or a small amount of moisture
  • the molecular gas in the form of clusters such as nitric acid or hydrogen peroxide water is also included in the ozone gas and output.
  • the cluster molecular gas of nitric acid and hydrogen peroxide water is a very active gas, the piping surface corrodes by chemically reacting with metal surfaces such as gas piping and valves that output ozone gas. As a result, corroded metal impurities (metal contamination) are generated in the output ozone gas.
  • the amount of metal impurities (metal contamination) contained in the ozone gas to be output increases, it may cause deterioration of the film forming performance of an oxide film or the like that uses the ozone gas to perform semiconductor oxide film processing.
  • an ultrahigh purity moisture remover gas filter for trapping impurity gas and removing a small amount of moisture is attached to the source gas supply section.
  • the ultrahigh purity moisture remover 59-1 is placed at the position where the replacement is easy at the raw material gas inlets 14-1 to 14-n of the nitrogen addition-less ozone generation units 7-1 to 7-n. To 59-n to remove impurity gas and a small amount of moisture.
  • the ultra-high purity moisture remover 59 when the source gas supplied from the source gas supply port 14 before passing through the ultra-high purity moisture removers 59-1 to 59-n contains moisture of 3000 ppb or more, the ultra-high purity moisture remover 59 Each of -1 to 59-n has a water removal ability to reduce the water in the source gas to 300 ppb or less.
  • the ultrahigh purity moisture removers 59-1 to 59 are connected to the raw material gas inlets 14-1 to 14-n of the ozone generation units 7-1 to 7-n, respectively.
  • the ultrahigh purity moisture removers 59-1 to 59 are connected to the raw material gas inlets 14-1 to 14-n of the ozone generation units 7-1 to 7-n, respectively.
  • one ultra high purity moisture remover 59-1 to 59-n is provided corresponding to the nitrogen addition-less ozone generation unit 7-1 to 7-n. May be provided in multiple stages, or a gas filter configuration for a trace amount of moisture trap may be used.
  • the raw material gas supply port 14 on the back of the nitrogen addition-less / ozone generation units 7-1 to 7-n is mounted with an ultra-high purity moisture remover as in the fourth embodiment,
  • the installed ultra-high-purity moisture remover can remove a small amount of moisture, greatly reducing the time to flow the purge gas before generating ozone gas. There is an effect that can.
  • the ultrahigh purity moisture removers 59-1 to 59-n are provided corresponding to the nitrogen addition-less ozone generation units 7-1 to 7-n. Constructed to add one ultra-high-purity moisture remover 59 that can trap a small amount of moisture contained in the supplied source gas and is shared between ozone addition units 7-1 to 7-n. You can also In this case, when the raw material gas supplied from the raw material gas supply port 14 before passing through one ultra-high purity moisture remover 59 contains 3000 ppb or more of moisture, the ultra-high purity moisture remover 59 uses the moisture in the raw material gas. Has the ability to remove moisture to 300 ppb or less.
  • FIG. 18 is an explanatory diagram showing an internal configuration for controlling the ozone gas flow rate by the ozone gas supply system 102 of the fifth embodiment, corresponding to the ozone gas supply system 10 shown in FIG.
  • FIG. 19 is a perspective view schematically showing a combined structure of one unit of nitrogen addition-less ozone generation unit according to the fourth embodiment.
  • the fifth embodiment is functionally provided with the MFC 3, which is a means for controlling the gas flow rate shown in the first and second embodiments, in the source gas supply section. Therefore, the operation of the apparatus is the same as in the first and second embodiments, and the description thereof is omitted.
  • the amount of ozone output by the generated ozone gas itself is controlled by the MFC 53, it is possible to control the flow rate of the ozone gas that is output accurately, and to control the amount of ozone output accurately.
  • the source gas piping system requires only piping directly without attaching peripheral components, and the gas filter 51, MFC 53, ozone concentration meter 5, and APC 4 are collectively mounted with gas piping components on the ozone gas output piping section. Therefore, since only the output gas piping system can have an integrated piping configuration of piping, the piping can be made more compact, the number of parts of the integrated integrated piping configuration can be reduced, and parts can be replaced more easily.
  • FIG. 20 is a block diagram showing a configuration of an ozone gas supply system according to Embodiment 6 of the present invention.
  • the ozone gas supply system 103 includes one ultra-high purity moisture remover 59 having a function of trapping a very small amount of moisture contained in the source gas supplied from the source gas supply port 14 with ultra-high purity. Nitrogen addition-less ozone generation units 7-1 to 7-n are added.
  • ultra high purity moisture removers 59-1 to 59-n are disposed in the vicinity of the raw material gas supply ports 14-1 to 14-n of the ozone generation units 7-1 to 7-n.
  • a configuration (not shown) provided with 59-n may be employed.
  • the raw material gas supply port 14 and the ultrahigh purity moisture remover 59 are connected in series to the ozone generator input unit ET1. Is provided. That is, as shown in FIG. 21, a gas pipe integrated block structure in which a source gas pipe (source gas supply port 14 + moisture removal filter 59) and an output gas pipe system (ozone gas output port 15) are integrated with a gas pipe integrated block 30.
  • the ozone generation unit 7X4 can be obtained.
  • FIG. 22 is a block diagram showing a configuration of an ozone gas supply system according to Embodiment 7 of the present invention.
  • Gas filters 52-1 to 52-n for trapping impurities, impurity gases or moisture contained in the source gas supplied from the source gas supply port 14 in the ozone gas supply system 104 of the seventh embodiment.
  • the gas filters 52-1 to 52-n are provided in one-to-one correspondence with the ozone generation units 7-1 to 7-n, and the respective raw material gases of the ozone generation units 7-1 to 7-n.
  • the gas filters 52-1 to 52-n increase the purity of the ozone gas generated in the ozone gas supply system 105 by increasing the purity of the raw material gas supplied into the ozone generation units 7-1 to 7-n, respectively. It is said.
  • each of the ozone generation units 7-1 to 7-n according to the seventh embodiment is similar to the second embodiment in that impurities and impurity gases contained in the gas are introduced into the raw material gas inlet of the one unit ozone generation unit 7.
  • the combined ozone generation unit 7 is miniaturized by mounting a gas filter 52 that traps moisture.
  • FIG. 23 is a perspective view schematically showing a combined structure of one unit of ozone generation unit 7X5 according to the seventh embodiment.
  • the gas filters 52 are connected to the raw material gas inlets 14-1 to 14-n of the ozone generating units 7-1 to 7-n, respectively, so that they can be easily replaced. ⁇ 52-n) are attached and formed integrally.
  • FIG. 25 is an explanatory diagram showing the relationship between the dew point of the source gas and the amount of water contained in the source gas.
  • the raw material gas supplied to the ozone gas supply system 104 generally uses a high-purity raw material gas of 99.99% or more.
  • the high-purity raw material gas includes nitrogen-based gas, carbon as a gas other than the raw material gas.
  • An impurity gas such as a system gas or a sulfide gas is contained in an amount of about 0.1 to several PPM, and the amount of water contained in the gas is also contained in an amount of 1 to several PPM (see FIG. 25).
  • the source gas contains impurity gases such as nitrogen gas, carbon gas, sulfide gas, and moisture, not only ozone gas but also N radical and OH radical gas are generated by discharge. By combining moisture, the cluster gas molecules such as nitric acid and hydrogen peroxide are also included in the ozone gas and output.
  • impurity gases such as nitrogen gas, carbon gas, sulfide gas, and moisture
  • the cluster gas molecules such as nitric acid and hydrogen peroxide are also included in the ozone gas and output.
  • the cluster molecular gas of nitric acid and hydrogen peroxide water is a very active gas
  • the piping surface corrodes by chemically reacting with metal surfaces such as gas piping and valves that output ozone gas.
  • metal impurities metal contamination
  • the amount of metal impurities (metal contamination) contained in the ozone gas to be output increases, it may cause deterioration of the film forming performance of an oxide film or the like that uses the ozone gas to perform semiconductor oxide film processing.
  • gas filters 52-1 to 52-n are provided in the source gas inlets 14-1 to 14-n of the ozone generation units 7-1 to 7-n at positions where they can be easily replaced, Gas or moisture was removed.
  • one gas filter 52-1 to 52-n is provided, but depending on the type of impurity gas, a plurality of gas filters may be provided in series, or a gas filter for impurity gas and a gas filter for moisture trap. Or a multi-stage configuration in series.
  • the source gas pipe source gas supply port 14 + gas filter 52
  • the output gas pipe system ozone gas output port 15
  • the ozone generator 1, the ozone power source 2, and the gas piping system are packaged to make the ozone generation unit 7X5 smaller.
  • the source gas supply port 14 and the gas filter 52 are connected to each other.
  • the gas filter 52 (gas filters 52-1 to 52-n) is attached to the easily replaceable portion of the raw material gas supply port 14 on the back of the ozone generation units 7-1 to 7-n.
  • the impurity gas can be removed by the attached gas filter 52, so that the time for flowing the purge gas before generating the ozone gas can be greatly shortened. There is an effect that can be done.
  • the ozone treatment apparatus mainly uses a large amount of ozone gas used in a semiconductor manufacturing apparatus that requires ozone with an ozone generation amount of about several tens of g / h to 500 g / h.
  • a system for supplying ozone gas having a predetermined ozone flow rate and ozone concentration in the processing apparatus has been described.
  • the required amount of ozone gas is a larger pulp ozone bleaching device, pool water ozone treatment device, water treatment ozone treatment device, chemical plant ozone treatment device, Also good.
  • a plurality of nitrogen addition-less ozone generation units 7-1 to 7 in the ozone gas supply system 10 (101 to 104) described above. -N is installed, and the output ozone gas is collectively supplied to one ozone treatment device between the nitrogen addition-less ozone generation units 7-1 to 7-n.
  • the application field of the ozone gas supply system which is very good is enhanced.
  • the present invention relates to an ozone gas supply system to a plurality of ozone treatment apparatuses and a nitrogen addition-less ozone generation unit to which a function having a plurality of means for supplying ozone gas is added, and ozone gas to a plurality of ozone treatment apparatuses, and to output ozone gas
  • the purpose is to obtain a nitrogen addition-less ozone generation unit that has a function of having a plurality of means and which is reduced in size, and generates a unit other than ozone gas.
  • Gas supply system with multiple gas processing units, integrated gas generator unit with a function with multiple means for outputting gas, integrated and downsized, and equipped with multiple gas generation units Obviously, it is preferable to construct a gas generation system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、高純度、高濃度のオゾンガスを出力するための複数の手段を有した機能を付加させた窒素添加レス・オゾン発生器ユニットの小型化を図った窒素添加レス・オゾン発生ユニットを得ることを目的とする。そして、本発明において、ガス配管集積ブロック(30)は複数の内部配管経路(R30a~R30f)を有し、これら複数の内部配管経路と、放電面にオゾンを生成するための光触媒物質を塗布した窒素添加レス・オゾン発生器(1)、制御手段(MFC(3)、ガスフィルター(51)及びAPC(4))、原料ガス供給口(14)、オゾンガス出力口(15)とが繋がることにより、原料ガス供給口からAPCを介して窒素添加レス・オゾンガス発生器に至る原料ガス入力配管経路、及び窒素添加レス・オゾン発生器からガスフィルター、MFCを介してオゾンガス出力口に至るオゾンガス出力配管経路が一体化したユニットに形成される。

Description

窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム
 この発明は、窒素添加量が数千ppm未満の高純度酸素ガスを原料ガスとした窒素添加レス・オゾン発生器を搭載し、オゾンガスを出力するための複数の手段を有した機能を付加させた窒素添加レス・オゾン発生ユニットを有し、安定したオゾンガスを複数のオゾン処理装置に供給するオゾンガス供給システムに関する。
 従来技術においては、次のように各種技術が展開されている。酸素ガスに数千ppm以上の窒素ガスを添加した原料ガスをオゾン発生器に供給し、高濃度オゾンガスを生成し、この高濃度オゾンガスを用いて、半導体製造分野で、オゾン酸化絶縁膜形成やオゾン洗浄等のオゾン処理工程に多く用いられている。この半導体製造分野等においては、複数のオゾン処理装置より構成される多オゾン処理装置に対してオゾンガスを供給する場合、複数のオゾン処理装置に対応して、各々がオゾン発生器、オゾン電源、流量コントローラ(MFC)等を含む複数のオゾン発生機構(手段)を設け、各オゾン発生機構が独立して対応するオゾン処理装置に対してオゾンガス供給するオゾンガス供給システムを構築することが一般的に考えられる。
 図26に示すように、従来、オゾン電源72から電源供給を受け、電極71a,71b、誘電体71c等により構成されるオゾン発生器71によるオゾンガスの生成効率をアップさせるために、一般の酸素ガスにおいては、約50~数千ppmの窒素ガスが含まれており、また、窒素含有率が少ない(50ppm未満)の高純度酸素ガスでは、オゾン発生器中に高純度酸素ガスと共に微量(500ppm以上)のN2ガスを添加している。
 そのため、原料酸素ガスに500ppm以上のN2ガスが含まれると、図27に示す放電反応によって生成される微量のNO2の触媒反応で、高濃度のオゾンが生成されていた。特に、窒素ガスを500~20000ppm添加すれば、放電によって生成される微量の二酸化窒素量の触媒反応で効率良くオゾンが生成される。結果として最も高濃度のオゾンが生成され、窒素添加量500~20000ppm範囲の原料ガスがオゾン発生性能において最適条件であることが実験で検証されている。
 以下、図27で示す放電反応は以下の(1)~(3)に示すように、原料酸素O2に、光電気放電光と微量のNO2の触媒ガスを利用して、高濃度オゾン発生を実現している。
 (1) 放電による微量のNO2ガス生成反応
 ・窒素分子のイオン化反応
 N2+e⇒2N+
 ・NO2の生成反応
 2N++O2+M⇒NO2
 (数ppm~数十ppmのNO2ガス生成)
 (2) NO2の放電光による触媒効果での酸素原子Oの生成
 ・NO2の光解離反応
 NO2+hν⇒NO+O
 ・NOの酸化反応
 NO+O2(原料酸素)⇒NO2+O
 *上記2つの反応でNO2が触媒になって酸素原子が生成
 (2)の反応で生成した多量の酸素原子Oと酸素ガス分子O2との反応でオゾンO3が生成される。
 (3) オゾンO3の生成(三体衝突)
 R2;O+O2+M→O3+M
 上記(1)~(3)によって、高濃度なオゾンを発生させている。
 しかし、原料の酸素ガスにN2ガスが多く含むことにより、オゾン発生器内で無声放電によってオゾンガス以外にN25,N2O等のNOX副生ガスや硝酸も生成される。具体的なNOX副生ガスや硝酸も生成の化学式は以下の通りである。
 N2+e⇒N2*+e⇒N2+hν(310,316,337,358nm)
 N2*;窒素の励起
 窒素ガスによる紫外光
 H2O+e⇒H+OH+e (水蒸気の電離)
 N2+e⇒2N-+e (窒素分子の電離)
 NO2+hν(295~400nm)⇒NO+O(3P)
 H+O2+M⇒HO2+M
 HO2+NO⇒OH+NO2
 N25+H2O⇒2HNO3
 OH+NO2+M⇒HNO3+M
 このように、オゾンガス以外にNOX副生ガスや硝酸も生成される。
 また、多量のNOX副生物が生成されると、NOXガス成分と原料ガス中に含まれる水分との反応により硝酸(HNO3)クラスタ(蒸気)が生成され、酸素、オゾンガスとともに微量のNOXガス,硝酸クラスタが混合した状態でオゾン化ガスが取り出される。この微量の硝酸クラスタ量が数百ppm以上含まれると、オゾンガス出口配管であるステンレス配管の内面に硝酸によって酸化クロム等の錆が析出され、クリーンオゾンガスに金属不純物が混入し、半導体製造装置用反応ガスとして金属不純物が半導体の製造に悪影響を及ぼすとともに、生成した微量の硝酸クラスタが半導体製造装置の「オゾンによるシリコン酸化膜のエッチング処理」や「ウェハ等のオゾン水洗浄」に反応毒として悪影響をもたらす間題点があった。
 また、オゾン発生器、オゾン電源等を搭載したオゾンガス供給システムは、オゾン発生器、オゾン電源、オゾンガスもしくは原料ガス流量をコントロールするMFC等の流量調整手段を介してオゾン発生器に供給する原料ガス配管系統、オゾン発生器内のガス雰囲気圧力をコントロールするAPC等の圧力調整する手段を有して、オゾン発生器から出力されるオゾンガスに対し濃度を検知するオゾン濃度検知器、オゾン流量計を有した出力ガス配管系統等を、多オゾン処理装置の系統数分、設けることが一般的に考えられる。
 しかしながら、多量のNOX副生物が非常に少ない高濃度のオゾン化酸素を供給できなく、その上、このような多オゾン処理装置に対応するオゾン発生システムを構築するのに非常に大きなスペースを要し、さらに、多オゾン処理装置に対し統合的な制御を行って、オゾンガスを供給するシステムを構築する場合、さらに大きなシステム構成となり、コスト面や配置スペース等の問題点があり実用上不利な点が多々あった。
 そこで、従来のオゾン発生器中に窒素ガスを含めないで、高純度酸素ガスのみでオゾン発生を試みたが、発生したオゾンは極わずかしか得られなかった。これは次のように考えられる。原料ガスである酸素分子は、紫外光245nm以下の波長で連続スペクトルの光吸収スペクトル(紫外線波長130~200nm)をもっており、酸素分子が紫外光245nm以下のエキシマ光を吸収することで酸素原子に解離し、この解離した酸素原子と酸素分子と第三物質との三体衝突でオゾンが生成されることは、紫外線を出すエキシマランプ等で知られている。しかし、オゾン発生器のような、酸素ガスを主体にした1気圧以上の高気圧中の無声放電では紫外光245nm以下のエキシマ光の発光は全くない。そのため、無声放電光による酸素原子の解離およびオゾン生成の反応過程の反応定数は非常に小さく、数%以上の高濃度オゾンガス生成できる反応とは考えられない。
 そのため、従来は、多オゾン処理装置へのオゾン供給方式としては、例えば、特許文献1に開示されているように、原料酸素ガスに数千ppm以上の窒素ガスを含んだ原料ガスもしくは、原料酸素ガスに強制的に窒素ガスを数千ppm以上添加した原料ガスをオゾン発生器に供給し、高濃度オゾンを発生させ、しかも、複数のオゾン処理装置にオゾンガスを供給するために、1式のオゾン発生器の容量を大きくして、オゾンガスを出力する配管系統を複数配管に分離させ、多オゾン処理装置へそれぞれへの所定流量、濃度のオゾンガスをステップ的に出力させる方式のオゾンガス供給システムが採用されて来ていた。
 図28は特許文献1で開示された内容から想定される従来のオゾンガス供給システム70の内部構成を示すブロック図である。
 図28において、1つのオゾン発生器71、オゾン電源72、オゾン制御ユニット77及びシステム統括管理ユニット80より構成される。オゾン制御ユニット77は、原料ガス供給口64aより得られる原料ガス流量をコントロールする流量コントローラ(MFC)73a、窒素ガス供給口64bより得られる窒素ガス流量を所定流量原料酸素ガスに添加制御する流量コントローラ(MFC)73b、発生器の圧力を監視する圧力計62を介してオゾン発生器71に供給する原料ガス配管系統を有している。さらに、オゾン制御ユニット77は、オゾン発生器71の圧力の変動によってバルブの開閉調整をするバルブ開閉器61、オゾン濃度計75を有しており、オゾン流量計67を介した出力配管の後の出力ガス配管系統を複数配管に分離している。さらに、オゾンガス供給システム70は、分離した出力ガス配管系統それぞれに個別オゾンガス流量コントローラ(MFC)68-1~68-nを設け、個別MFC68-1~68-nに対応して設けられた複数のオゾン処理装置12-1~12-nにオゾンガスを独立に供給するように構成している。各個別MFC68-1~68-nで供給するオゾンガスを超える量のオゾンガスは、流量排出ユニット69で排出する構成になっている。
 また、特許文献2に開示されたオゾン発生器によれば、オゾン発生器中の酸素ガスによる無声放電では、可視光領域(428nm~620nmの可視光)の光波長を発光(放電)する能力を有しており、その放電で発光する可視光領域の光波長を吸収する光触媒物質を発生器の放電面に塗布することで、光触媒効果で、原料酸素ガスが解離し、解離した酸素原子と原料酸素の酸素分子との化学反応でオゾンガスが生成されている。
特表2009-500855号公報(図2,図3,図5) 特表2005-080263号公報(図1,図3,図4,図5,表2-(a),(b),(c))
 特許文献1に開示された従来の多オゾン処理装置へのオゾン供給するオゾンガス供給システムは以上のように構成されており、窒素や水分を含んだ原料酸素ガスを供給し、1つのオゾン発生器71からオゾンガスを出力し、出力する配管系統を分配配管させる構成にしている。このため、出力するオゾンガスには、窒素酸化副生物質や硝酸クラスタやOHラジカル物質が含まれた活性ガスを供給されることになり、出力配管材質と窒素酸化副生物質や硝酸クラスタやOHラジカル物質との化学分解や酸化反応で、異常加熱や腐食に伴う金属コンタミネーションが多く含まれるオゾンガスを供給することになるという問題点があった。さらに、特許文献1で開示されたオゾン発生器を搭載したオゾン装置では、オゾンガス流量やオゾン濃度は一定の状態で多オゾン処理装置(オゾン処理装置12-1~12-n)へ供給しなければならず、各オゾン処理装置へのオゾン供給条件は1条件のみで共通化され、オゾンガス流量や濃度を複数のオゾン処理装置それぞれを独立して可変制御することが不可能であるという問題点があった。
 また、1つのオゾン発生器から多オゾン処理装置へオゾンガスを供給しているため、オゾン発生器が故障すると、供給対象の全てのオゾン処理装置へのオゾンガスが停止してしまう等、オゾンガス供給に関する信頼性が低いという問題点があった。
 加えて、図28に示したように、オゾン発生器71、オゾン電源72、ガス配管系が分離しているため、オゾン発生器71、オゾン電源72及びガス配管系を含むオゾン発生部の占めるスペースが大きくなり、このようなオゾン発生部を複数台有するオゾンガス供給システムを構築することは実用上極めて困難であり、また、オゾン発生部のメンテナンス性が悪いという問題点があった。
 この発明は上記のような課題を解決するためになされたものであり、オゾン発生器、オゾン電源、ガス配管系等の原料ガス供給機能からオゾン発生等に関する種々の機能および原料ガスに窒素ガスを添加させない高純度酸素ガスのみで、高純度で、かつ高濃度のオゾンガスを生成できるオゾン発生器を搭載し、発生したオゾンガスの品質を非常に高めたオゾンガスを出力させる機能を含み、かつ小型化を図った窒素添加レス・オゾン発生ユニット及び上記窒素添加レス・オゾン発生ユニットを複数台有するオゾンガス供給システムを得ることを目的とする。
 この発明に係る窒素添加レス・オゾン発生ユニットは、所定の供給流量、濃度に設定したオゾンガスをオゾン処理装置に供給する窒素添加レス・オゾン発生ユニットであって、放電面にオゾンを生成するための光触媒物質を塗布し、オゾンガスを発生する窒素添加レス・オゾン発生器と、前記窒素添加レス・オゾン発生器に供給する電力を制御するオゾン電源と、前記オゾン発生器に関連した制御手段とを備え、前記制御手段は、前記窒素添加レス・オゾン発生器に入力される原料ガス流量を制御するマスフローコントローラ(MFC)を含む流量検出・流量調整手段、前記窒素添加レス・オゾン発生器が出力するオゾンガスに対して不純物や異物を除去する処理を行うガスフィルター手段、前記窒素添加レス・オゾン発生器内の圧力である内部圧力を自動制御するオートプレッシャコントローラ(APC)を含む圧力検出・圧力調整手段、及び前記窒素添加レス・オゾン発生器が出力するオゾンガスのオゾン濃度値を検出するオゾン濃度計を含むオゾン濃度検知手段のうち、少なくとも2つの手段を有し、前記窒素添加レス・オゾン発生器に外部から原料ガスを供給するための原料ガス供給口と、前記窒素添加レス・オゾン発生器から前記制御手段の少なくとも一部を介して得られるオゾンガスを外部に出力するオゾンガス出力口と、外部から得られる冷却水を前記窒素添加レス・オゾン発生器に供給及び排出するための冷却水入出口とをさらに備え、前記窒素添加レス・オゾン発生ユニットは、前記窒素添加レス・オゾン発生器、前記オゾン電源、前記制御手段、前記原料ガス供給口、前記オゾンガス出力口及び前記冷却水入出口を集約して一体化構造で形成している。
 この発明における窒素添加レス・オゾン発生ユニットは、窒素添加レス・オゾン発生器、オゾン電源、制御手段(流量検出・流量調整手段、ガスフィルター手段、圧力検出・圧力調整手段及びオゾン濃度検知手段のうち少なくとも2つの手段)、原料ガス供給口、オゾンガス出力口及び冷却水入出口を集約して一体化構造で形成することにより、従来の同様な構成に比べ、大幅な小型化を図ることができる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態で用いる窒素添加レス・オゾン発生器の構成を示すブロック図である。 図1で示した窒素添加レス・オゾン発生器による出力オゾン濃度特性を示すグラフである。 オゾン発生時における酸素分子と光触媒とによる酸素分子の酸素原子への解離メカニズムを示す模式図である。 酸素原子と酸素分子との三体衝突によるオゾンの生成メカニズムを示す模式図である。 本発明の実施の形態1である窒素添加レス・オゾン発生器を搭載したオゾンガス供給システムの構成を示すブロック図である。 図5で示したオゾンガス供給システムにおけるオゾンガス出力流量管理ユニットの内部構成を示す説明図である。 実施の形態1のオゾンガス供給システムにおけるメイン操作パネルの表示状態を模式的に示す説明図である。 図5で示した窒素添加レス・オゾン発生ユニット内のオゾン制御部の構成を示すブロック図である。 図5で示した窒素添加レス・オゾン発生ユニット内のデータメモリの記憶内容を模式的に示す説明図である。 図5で示した窒素添加レス・オゾン発生ユニットに対し出力濃度制御を行った出力濃度制御波形を示すグラフである。 1台の窒素添加レス・オゾン発生ユニットにおけるオゾン電源の受電電力とオゾン発生器で発生するオゾン濃度特性を示すグラフである。 実施の形態2の窒素添加レス・オゾン発生ユニット内に設けられるオゾン電源の内部構成の詳細を示す回路図である。 実施の形態2の窒素添加レス・オゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 図5で示したオゾンガス供給システムにおける、実施の形態3によるオゾンガス出力流量管理ユニットの内部構成を示す説明図である。 実施の形態3の窒素添加レス・オゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 本発明の実施の形態4であるオゾンガス供給システムの構成を示すブロック図である。 実施の形態4の窒素添加レス・オゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 本発明の実施の形態5であるオゾンガス供給システムの構成を示すブロック図である。 実施の形態5の窒素添加レス・オゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 本発明の実施の形態6であるオゾンガス供給システムの構成を示すブロック図である。 実施の形態6の窒素添加レス・オゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 本発明の実施の形態7であるオゾンガス供給システムの構成を示すブロック図である。 実施の形態7の窒素添加レス・オゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 実施の形態2のオゾン発生ユニットに対応する従来の構成を模試的に示す説明図である。 原料ガスの露点と原料ガスに含まれる水分量との関係を示す説明図である。 参考例として示す従来のオゾン発生器の構成図である。 参考例として、窒素を添加した原料酸素ガスと従来のオゾン発生器との組合せで、オゾン発生内容を模式的に示す説明図である。 従来のオゾンガス供給システムの内部構成を示すブロック図である。
 <窒素添加レス・オゾン発生器>
 この発明の実施の形態で述べるオゾンガス供給システムで用いる窒素添加レス・オゾン発生器を図1ないし図4について説明する。図1は窒素添加レス・オゾン発生器を中心としたガス系統の構成を示すブロック図である。
 なお、狭義では窒素添加量が10ppm以上1000ppm以下の高純度酸素原料ガスを用いたオゾン発生器を「窒素添加抑制・オゾン発生器」と呼び、窒素添加量が10ppm未満の高純度酸素原料ガスを用いたオゾン発生器を「窒素添加レス・オゾン発生器」と呼ぶ。本明細書では広義の意味として、上述した「窒素添加抑制・オゾン発生器」を含めて、1000ppm以下の高純度酸素原料ガスを用いたオゾン発生器を総称して「窒素添加レス・オゾン発生器」と呼ぶ。
 図2は図1で示した窒素添加レス・オゾン発生器1によるオゾン濃度特性を示す特性図である。図3は酸素分子と光触媒とによる酸素分子の酸素原子への解離メカニズムを説明する模式図である。
 図4は窒素添加レス・オゾン発生器1によって生じる酸素原子と酸素分子との三体衝突によるオゾンの生成メカニズムを説明する模式図である。なお、明細書中で各図中、同一符号は同一又は相当部分を示す。
 この発明での窒素添加レス・オゾン発生器は、200g/m3以上の高濃度オゾンガス、半導体製造装置や洗浄装置等のクリーンなオゾンガス、NOXやOHラジカル物質等の副生物を無くした窒素レスオゾンガス,又はオゾン生成効率のよい装置を必要とするところに有効である。
 図1において、純度99.99%以上の酸素(原料ガス)を供給する原料供給系99は、高純度酸素ボンベ991,減圧弁992,及び開閉弁993で構成され、酸素ガス994を外部に供給する。そして、酸素ガス994がMFC3を介して原料ガス995として窒素添加レス・オゾン発生器1に供給される。窒素添加レス・オゾン発生器1は内部に電極1a,1b、誘電体1c及び光触媒1dを有している。2枚の電極1a、1bは互いに対向し、電極1aの電極1bとの対向面上に誘電体1cが設けられる。そして、誘電体1c及び電極1b間の対向面にそれぞれ光触媒1dを塗布した構成になっている。
 図1では、付記されていないが、ボンベから供給される高純度酸素に含まれる水分量を0.1ppm以下まで下げる水分除去ガスフィルターを設け、窒素、水分量を極力抑えた窒素、水分レス原料ガスのガス量を調整する流量調整器(MFC)3を介して、酸素ガス994が原料ガス995として窒素添加レス・オゾン発生器1に供給される。
 なお、酸素ガスとして、純度99.99%以上の酸素を用いても、具体的には、99.995%高純度酸素を用いても、N2が151×102ppb(即ち15ppm)含まれるように、避けられないN2が混入するが、高純度のオゾンガスを得るためには、N2の混入がより少ない原料酸素ガスを使用することが望まれる。
 図3は、無声放電中での光触媒の固体電子論(バンドギャップ理論)の固体中の電子配位構造と酸素分子の解離メカニズムを模式的に示したものである。光触媒物質と放電光による光触媒反応機能の動作と作用について説明する。無声放電空間中の電極等の壁面に光触媒を塗布すると、光触媒のバンドギャップの電子配位構造は図3に示すように、バンドギャップ以上のエネルギーを有する無声放電光を光吸収する。そうすると、光触媒は価電子帯から電子が飛び出し伝導帯へ移動(ポンピング)する。
 電子が移動した価電子帯では正孔(ホール)が形成される。伝導帯に移動した電子は周囲に移動するか、放電領域に電子放出をするかで寿命が終る。つまり、伝導帯に移動した電子は非常に寿命が短く数十psecである。価電子帯の正孔は伝導帯に移動した電子が再結合で戻ってこない限り、存在し続けるため、正孔の寿命は200~300nsecと長い。この正孔が存在する励起状態の光触媒と酸素分子が量子的に接触すると、酸素分子の共有電子を奪いとり、酸素分子を物理的に解離する(光触媒による酸素の吸着解離現象[酸化反応])。
 一方、バンドギャップ2.0eV~2.9eVの光触媒では光吸収波長は428nm~620nmの可視光であり、窒素を含まない酸素の場合でも又は酸素とアルゴンガスの場合でも、無声放電はこの可視光領域の光波長を発光する能力(放電)を有している。そのため、オゾン発生器の電極面(壁面)にバンドギャップ2.0eV~2.9eVの光触媒を塗布すると、窒素を含まない酸素の場合でも又は酸素とアルゴンガスでも、その無声放電で発光した放電光を、前記光触媒が吸収して、光触媒が励起され、励起された光触媒と酸素ガスの吸着解離作用で酸素が解離できることが判明した。さらに、図4の模式図で示したように、解離した酸素原子と供給される酸素分子(原料酸素ガス)と第三物質との三体衝突で結合作用が、光触媒1d(壁M)上で促進される働きでオゾンが生成できる。
 他方、オゾン発生器中の窒素ガスによる無声放電では、紫外領域(413nm~344nmの紫外光)の光波長を発光(放電)する能力を有する。
 そのため、本願の光触媒物質を放電面に塗布した窒素添加レス・オゾン発生器1では、においては、バンドギャップ3.0eV~3.6eVの光触媒は、光励起でき、励起したこの光触媒は、酸素分子を解離する能力によってオゾンガスが生成で窒素を含んだ無声放電きる。
 さらに、窒素を含んだ無声放電においては、バンドギャップ3.0eV~3.6eVの光触媒は、光励起でき、酸素による無声放電においては、バンドギャップ2.0eV~2.9eVの光触媒は、光励起でき、結果として、酸素に微量の窒素(抑制した窒素量)を添加することで、放電領域の誘電体又は電極に設けられた光触媒の許容バンドギャップ範囲は、2.0eV~3.6eVまで可能になり、酸素のみならず窒素の放電光(紫外光)を利用してオゾン生成反応を促進させることができる。つまり、N2ガスが含まれると、本願の発明効果によるオゾン発生機能が高められる。
 オゾン発生器の放電面に塗布する光触媒物質は、半導体の一種に位置付けられ、半導体特有のバンドギャップを有した物質であり、通常の半導体物質のバンドギャップよりも大きい値を示している。また、光触媒物質は、通常金属と酸素原子が結合した酸化金属物質であって、その酸化金属物質の結晶において金属原子と酸素原子との完全結合ではなく、酸素欠損を有した結晶構造を有する酸化金属物質が半導体効果や光触媒効果を有する物質と言われている。
 例えば、特許文献2に開示された光触媒物質である酸化鉄(Fe23)は、正確には、光触媒物質である酸化鉄はFe2Xであり、酸素の結合数Xの値が3未満(X<3)の酸化鉄が光触媒物質となる結晶構造である。つまり2個の鉄原子と酸素原子との結合では、3個の酸素原子までは、結合できるが、光触媒物質であるためには、酸素結合において酸素欠損した部分を残した結晶構造になっている。
 本発明のオゾンガス供給システムで用いる窒素添加レス・オゾン発生器では、放電面に光触媒物質を塗布し、光触媒効果を能力アップして高濃度オゾンを生成させるため、放電している酸素ガスの通過する放電面に、塗布した光触媒物質の表面積を大幅に増やす工夫がされている。
 そのため、窒素添加レス・オゾン発生器1においては、放電面に塗布した光触媒物質面は、原料ガスに含まれる微量(数ppm以下)の水分であっても、表面積を増やした光触媒物質面に水分が吸着されやすい。その水分吸着された状態で放電させると、水分がH原子やOH分子に解離され、その解離されたH原子やOH分子が光触媒物質の酸素欠損部分と結合する。H原子やOH分子が結合した光触媒物質は、光触媒効果が低下したり、失われてしまったりするため、結果としてオゾン生成能力が大幅に失われる結果となる。
 上記のように、本発明のオゾンガス供給システムで用いる窒素添加レス・オゾン発生器1では、原料酸素に含まれる微量(数ppm以下)の水分であっても、窒素添加レス・オゾン発生器1の性能劣化の原因になるため、原料酸素に含まれる微量の水分を取り除く手段として、原料酸素ガス供給口に微量の水分を取り除き、水分量300ppb(0.3ppm)以下に抑制する水分除去フィルターを設けることが望ましい。
 <実施の形態1>
 以下、この発明の実施の形態1を図5から図10に基づいて説明する。以下、図5~図10の概要は以下の通りである。図5は本発明の実施の形態1であるオゾンガス供給システムの構成を示すブロック図である。図6は図5で示したオゾンガス供給システムにおけるオゾンガス出力流量管理ユニットの内部構成を示す説明図である。図7は実施の形態1のオゾンガス供給システムにおけるメイン操作パネルの表示状態を模式的に示す説明図である。図8は図5で示した窒素添加レス・オゾン発生ユニット内のオゾン制御部の構成を示すブロック図である。図9は図5で示したオゾン発生ユニット内のデータメモリの記憶内容(オゾン発生ユニットの濃度、流量制御を行うための初期条件等)を模式的に示す説明図である。図10は図5で示した窒素添加レス・オゾン発生ユニット7に対し出力濃度制御を行った出力濃度制御波形を示すグラフである。
 (全体構成)
 図5に示すように、オゾンガス供給システム10は内部にn(≧2)個の窒素添加レス・オゾン発生ユニット7-1~7-nを有している。以下、窒素添加レス・オゾン発生ユニット7-1~7-nのうち窒素添加レス・オゾン発生ユニット7-2を代表して取り上げその内部構成を図5中心に参照して説明する。
 窒素添加レス・オゾン発生ユニット7-2における窒素添加レス・オゾン発生器1の内部は酸素ガスを含んだガスが充満されており、窒素添加レス・オゾン発生ユニット7-2内のオゾン電源2から高周波高電圧HV,LVが窒素添加レス・オゾン発生器1内の電極間に印加され、この電極間で誘電体バリア放電(無声放電)をすることにより、放電空間のガスが放電によってオゾンガスを生成している。なお、オゾン電源2は後に詳述するがコンバータ2a、インバータ2b及び高電圧回路部2cにより構成される。
 本実施の形態は窒素添加レス・オゾン発生器1として無声放電方式によるオゾン発生器構造のものを代表して説明したが、オゾン発生させる機能としては、窒素添加レスの沿面放電やグロー放電を利用したオゾン発生器構造や超高周波やマイクロ波放電を利用したオゾン発生器構造もあり、これらのオゾン発生器であっても良い。
 オゾンを安定出力するには、オゾン発生器に供給する原料ガスのガス種の限定、流量値やオゾン発生器内のガス圧力や電極を冷却する水温、水量等の環境条件を一定に調整する機能が重要である。このような機能を有する制御手段を下記に示す。
 原料ガス供給口14には、酸素ガス等のオゾンガスを生成するための高純度酸素ガスもしくは10ppm未満の微量の窒素ガスを含んだ高純度酸素原料ガスが望まれる(これらの高純度酸素原料ガスを総称して狭義の意味で「窒素添加レス・酸素原料ガス」と呼ぶ)。これらの原料ガスには、オゾンガスを生成するのに不要な不純物や不純ガスや水分が微量に含まれる。原料ガスに含まれる水分や不純物が窒素添加レス・オゾン発生器1の放電面に吸着し、窒素添加レス・オゾン発生器1の光触媒物質の性能を低下させる。そのため、これらの原料ガスに含まれる微量の不純物や不純ガスや水分を取り除くため、原料ガスの入り口部にガスフィルターやガス中の水分を除去する水分除去フィルター等を設けることが望ましい。
 オゾンガス供給システム10の原料ガス供給口14、窒素添加レス・オゾン発生ユニット7-2の原料ガス供給口14-2から得られる所定の原料ガス流量Qの原料ガスが、ガス流量コントローラ(MFC)3を介して窒素添加レス・オゾン発生器1に、一定流量で原料ガスが供給される。
 窒素添加レス・オゾン発生器1内の圧力を一定にする手段として、発生器内のガス圧力を検出する手段と、この検出した発生器に出力するオゾンガス量を微調整することで、窒素添加レス・オゾン発生器1内の圧力を一定にする機能をオゾン発生器システムには保有している。この1つの方法として、発生器圧力を自動で所定圧力に調整する自動圧力調整器(APC)4があり、この自動圧力調整器(APC)4がオゾン発生器のオゾンガス出力配管ガスラインに設けられている。
 オゾンガス出力配管ガスラインの具体的な構成としては、窒素添加レス・オゾン発生器1内で生成したオゾンガスから不純物や異物を除去するガスフィルター51に通した後、オゾン濃度計5、自動圧力調整器(APC)4を介して連続的に所定のオゾン濃度Cを有するオゾン(化酸素)ガスをオゾンガス出力口15-2から窒素添加レス・オゾン発生ユニット7-2の外部に出力している。
 オゾンガス出力配管ガスラインには、出力オゾンガス流量を一定出力するためのオゾンガス流量コントローラ(MFC)を設ける場合もある。この実施例では、このオゾンガス流量コントローラ(MFC)は設けていない。
 したがって、出力したオゾンガスの流量Qxは、原料ガス流量Qからオゾンに変換したオゾン流量Qcと変換されなかった原料酸素流量Qnの和となる。つまり、オゾン(化酸素)ガスの流量Qxは、原料(酸素)ガス流量Q、オゾン濃度Cに基づく式(1){Qx=F(Q,C)・・・(1)}により決定する。このガス流量コントローラ(MFC)3で、オゾン発生器に供給する原料ガス流量を一定値に制御している。
 なお、APC4は、窒素添加レス・オゾン発生器1のオゾンガスの出力配管経路内を流れるオゾンガスの圧力を制御することにより窒素添加レス・オゾン発生器1のガス圧力を自動的に一定値に制御している。
 窒素添加レス・オゾン発生ユニット7-2は、オゾンガスを発生する手段を有した窒素添加レス・オゾン発生器1、オゾンガスに所定の電力を供給する手段を有したオゾン電源2、供給する原料ガス流量を一定値に制御する手段を有するMFC3、窒素添加レス・オゾン発生器1内の圧力値を一定値に制御する手段を有するAPC4、出力するオゾンガスの不純物ガスをトラップする手段を有するガスフィルター51、出力するオゾン濃度値を検出する手段を有するオゾン濃度計5等の複数個の機能手段を集約し1単位のパッケージユニットとして構成されている。オゾン発生ユニット7-1~7-nそれぞれの構成は全て同じであり(7-2以外は図示省略)、窒素添加レス・オゾン発生ユニット7-2を代表して説明した内部構成を呈している。
 各窒素添加レス・オゾン発生ユニット7(オゾン発生ユニット7-1~7-n)の底面に漏水センサ6を設け、各オゾン発生ユニット7の漏水の有無を監視している。すなわち、漏水センサ6から得られる情報がシステム統括管理ユニット8内のEMO回路(非常停止回路)81により得られ、システム管理制御部84の制御下で監視される。
 また、オゾンガス供給システム10内に設けられるシステム統括管理ユニット8は、装置内を排気ダクト11から真空引きし負圧状態に監視するための排気センサ23、オゾン漏洩センサ24それぞれの検出情報を受けている。そして、システム統括管理ユニット8は、排気センサ23による排気異常、オゾン漏洩センサ24による漏洩異常を受けると、システム管理制御部84より全ての窒素添加レス・オゾン発生ユニット7-1~7-nに停止を指示する窒素添加レス・オゾン発生ユニット制御信号86-1~86-nを与え、窒素添加レス・オゾン発生ユニット7-1~7-nの運転を停止させる。
 また、システム統括管理ユニット8内のシステム管理制御部84は、オゾン処理装置12-1~12-nから、要求オゾン流量Qs12及び要求オゾン濃度Cs12を含む処理オゾンガスイベント信号16-1~16-nをユーザ情報I/F83を介して受ける。
 そして、システム管理制御部84は、処理オゾンガスイベント信号16-1~16-nの指示内容に基づき、窒素添加レス・オゾン発生ユニット制御信号86-1~86-nを窒素添加レス・オゾン発生ユニット7-1~7-nに出力するとともに、制御信号S8をオゾンガス出力流量管理ユニット9に出力する。
 その結果、窒素添加レス・オゾン発生ユニット7-1~7-nそれぞれから出力するオゾンガスの流量、濃度が制御されるともに、オゾンガス出力流量管理ユニット9におけるオゾンガス制御弁9a等の開閉制御が行われ、処理オゾンガスイベント信号16-1~16-nの指示内容に沿ったガス流量、濃度のオゾンガスをオゾン処理装置12-1~12-nに供給することができる。以下、システム統括管理ユニット8についてさらに詳述する。
 システム統括管理ユニット8は、装置の非常停止を行うEMO回路81、ユニット情報I/F82、ユーザ情報I/F83、システム管理制御部84及びメイン操作パネル85を有している。
 EMO回路81は、前述したように、各窒素添加レス・オゾン発生ユニット7の漏水センサ6から得られるシステムの異常信号を監視する回路である。具体的には、EMO回路81が漏水センサ6より漏水異常の検出情報を受けると、当該情報をシステム管理制御部84に伝達し、システム管理制御部84より、漏水異常を検出した漏水センサ6に対応する窒素添加レス・オゾン発生ユニット7にオゾン発生ユニット制御信号86(オゾン発生ユニット制御信号86-1~86-nのいずれか)を与え、当該窒素添加レス・オゾン発生ユニット7を停止させる。
 ユニット情報I/F82は、窒素添加レス・オゾン発生ユニット7-1~7-nからユニット情報信号17-1~17-nの授受を行う機能を有している。
 ユーザ情報I/F83は、前述したように、オゾン処理装置12-1~12-nからの指令信号である処理オゾンガスイベント信号16-1~16-n(要求オゾン流量Qs12、要求オゾン濃度Cs12、運転情報Y、装置No.等を指示)を受信する機能を有している。
 システム管理制御部84は、オゾンガス出力流量管理ユニット9内のオゾンガス制御弁(9a、9b、9c、9ab、9bc、9ca)を開閉制御するための指令である制御信号S8を出力し、オゾンガス出力流量管理ユニット9内の統括制御を行う。システム管理制御部84はメイン操作パネル85との情報の授受も行う機能も有している。
 図5に示すように、オゾンガス供給システム10は冷却水入口13A及び冷却水出口13Bを有し、冷却水入口13Aから冷却水入口13a-1~13a-nを介して窒素添加レス・オゾン発生ユニット7-1~7-n内に図示しない外部の冷却装置からの冷却水を取り込み、窒素添加レス・オゾン発生ユニット7-1~7-nから冷却後の水を冷却水出口13b-1~13b-nを介して冷却水出口13Bから外部に出力している。
 ここでは、記載されていないが、外部の冷却装置からの冷却水の水量および水温は、一定値のものを供給されるように制御されている。
 オゾンガス供給システム10は原料ガス供給口14を有し、原料ガス供給口14から原料ガス供給口14-1~14-nを介して窒素添加レス・オゾン発生ユニット7-1~7-n内に外部から原料ガスを取り込んでいる。ここでは、記載されていないが、外部の原料ガスの入口には、原料ガス中の微量の不純物や不純ガスおよび水分を除去するためのガスフィルターが設けられ、原料ガスの純度を安定するように制御されている。
 窒素添加レス・オゾン発生ユニット7-1~7-nのオゾンガス出力口15-1~15-nは内部のオゾンガス出力流量管理ユニット9に接続され、オゾンガス出力流量管理ユニット9からオゾンガス出力口25-1~25-nを介してオゾンガス供給システム10の外部にオゾンガスが出力される。
 n台のオゾン処理装置12-1~12-nから出力される処理オゾンガスイベント信号16-1~16-nはユーザ情報I/F83を介してシステム管理制御部84に取り込まれる。処理オゾンガスイベント信号16(16-1~16-n)は要求オゾン流量Qs12、原料ガス設定濃度Cs12及び運転情報Y等を指示している。システム管理制御部84は処理オゾンガスイベント信号16-1~16-nに基づき、窒素添加レス・オゾン発生ユニット7-1~7-nを制御する窒素添加レス・オゾン発生ユニット制御信号86-1~86-nを出力する機能を有している。
 窒素添加レス・オゾン発生ユニット7-1~7-nは窒素添加レス・オゾン発生ユニット用操作パネル85-1~85-nを有している。また、窒素添加レス・オゾン発生ユニット7-1~7-nからユニット情報信号17-1~17-nがシステム統括管理ユニット8のユニット情報I/F82を介してシステム管理制御部84に伝達される。ユニット情報信号17(17-1~17-n)は、各窒素添加レス・オゾン発生ユニット7におけるオゾン発生器1の故障や運転/停止状態を指示する情報信号である。
 処理オゾンガスイベント信号16に含まれる運転情報Yは、各オゾン処理装置12(12-1~12-n)の故障や運転/停止状態情報信号を示すユーザ情報信号に相当し、前述したように、システム統括管理ユニット8内のユーザ情報I/F83に取り込まれる。
 また、窒素添加レス・オゾン発生ユニット7-1~7-nはそれぞれオゾン制御部19を有している。オゾン制御部19は、後に詳述するように、原料ガス流量の設定流量Qs、検出流量Q,オゾン発生器1の発生器圧力の設定圧力Ps、検出圧力P及び各窒素添加レス・オゾン発生ユニット7から出力するオゾン濃度Cを受信し、オゾン電源2を制御して窒素添加レス・オゾン発生器1から発生するオゾンガスのオゾン濃度、ガス流量等を制御する制御部である。また、オゾン制御部19は、オゾン濃度計5、MFC3、APC4及びオゾン電源2との間で信号授受を行っている。
 (オゾンガス出力流量管理ユニットの制御)
 図6に示すように、オゾンガス出力流量管理ユニット9は窒素添加レス・オゾン発生ユニット7-1~7-nの出力部に対応してオゾンガス入力口29-1~29-nを有しており、オゾン処理装置12-1~12-nの入力部に対応してオゾンガス出力口39-1~39-nを有している。そして、オゾンガス出力口39-1~39-n(オゾンガス出力口25-1~25-n)とオゾン処理装置12-1~12-nとの間にオゾンガス開閉弁22-1~22-nが介挿される。オゾン処理装置12-1~12-nはオゾンガス供給時にオゾンガス開閉弁22-1~22-nを開状態にする。本オゾンガス供給システム10はオゾンガス出力口39-1~39-nのn個のオゾンガス出力口を設けたシステムにしているが、ユーザ側のオゾン処理装置数がn個より少ない場合は出力しないオゾンガス出力口39部分の配管継手をキャップ継手にし、出力ガスを栓することで対応することもできる。
 オゾンガス出力流量管理ユニット9は内部にオゾンガス制御弁9a,9b,9c,9bc,9ab,9caを有しており、オゾンガス制御弁9a,9b,9cはノーマリオープン(NO),オゾンガス制御弁9bc,9ab,9caはノーマリクローズ(NC)である。なお、説明の都合上、図2ではn=3の場合で具体化して示している。なお、オゾンガス制御弁9a,9b,9c,9bc,9ab,9caとして、電気もしくはエアー圧力によって開閉できる電動バルブもしくは空圧弁が考えられる。
 オゾンガス制御弁9a~9cは窒素添加レス・オゾン発生ユニット7-1~7-nのオゾンガス入力口29-1~29-nとオゾンガス出力口39-1~39-nとの間に介挿される。オゾンガス制御弁9abはオゾンガス制御弁9a,9bの出力間に設けられ、オゾンガス制御弁9bcはオゾンガス制御弁9b,9cの出力間に設けられ、オゾンガス制御弁9caはオゾンガス制御弁9c,9aの出力間に設けられる。
 そして、システム統括管理ユニット8のシステム管理制御部84からの制御信号S8に基づき、オゾンガス制御弁9a,9b,9c,9bc,9ab,9caそれぞれの開状態、閉状態が制御される。
 図6では、オゾン処理装置12-1~12-nのうち、オゾンガス開閉弁22-2を開状態(黒塗り潰し)としたオゾン処理装置12-2の1台のみ運転しており、オゾン処理装置12-2に対するオゾンガス流量としては、30SLM(L/min)のオゾンガスを供給した場合のオゾンガス出力流量管理ユニット9の状態を示している。すなわち、オゾン処理装置12-2は処理オゾンガスイベント信号16-2内の要求オゾン流量Qs12により30SLMのオゾン流量を指示している。
 システム統括管理ユニット8内のシステム管理制御部84は、窒素添加レス・オゾン発生ユニット制御信号86-1~86-nにより、窒素添加レス・オゾン発生ユニット7-1~7-nよりそれぞれ10SLMのオゾンガスを供給するように制御する。
 さらに、システム管理制御部84は制御信号S8により、オゾンガス出力流量管理ユニット9内のオゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開閉状態を制御する。具体的には、オゾンガス制御弁9a,9b,9c,9bc,9abを開状態(黒塗り潰し)、オゾンガス制御弁9caを閉状態(白抜き)にする制御信号S8をオゾンガス出力流量管理ユニット9に出力する。
 一方、前述したように、オゾンガス開閉弁22-1~22-nのうち、オゾンガス開閉弁22-2のみが開状態であり、オゾンガス開閉弁22-1及び22-nが閉状態である。ここでは、使用しないオゾン処理装置12をオゾンガス開閉弁22-1~22-nで閉状態にする方式で説明したが、使用しないオゾン処理装置にはオゾンガスが供給されないように25-1~25-nの部分で、配管継手により、強制的に栓させてもよい。
 このように、システム管理制御部84は窒素添加レス・オゾン発生ユニット制御信号86-1~86-nにより窒素添加レス・オゾン発生ユニット7-1~7-nからそれぞれ10SLMの流量のオゾンガスを供給させ、かつ制御信号S8によりオゾンガス出力流量管理ユニット9を制御することにより、オゾン処理装置12-2に対してガス流量30SLM(10SLM×3)のオゾンガスを供給することができる。
 (メイン操作パネル)
 図7に示すように、オゾンガス供給システム10のメイン操作パネル85の表示面において、窒素添加レス・オゾン発生ユニット7-1~7-n及びオゾン処理装置12-1~12-nに対応づけて、オゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開閉状態を示している。さらに、オゾン処理装置12-1~12-nの要求オゾン流量Qs12(SLM)、要求オゾン濃度Cs12(g/m3)が示されている。
 図7に示す例では、オゾン処理装置12-2のみ要求オゾン流量Qs12=30SLM、要求オゾン濃度Cs12=280(g/m3)を要求している。
 したがって、窒素添加レス・オゾン発生ユニット7-1~7-nからそれぞれオゾン流量10(SLM)、オゾン濃度280(g/m3)のオゾンガスを出力させ、オゾンガス制御弁9a,9b,9c,9bc,9abを開状態、オゾンガス制御弁9caを閉状態にすることにより、オゾン処理装置12-2に対し、オゾン流量30(SLM)、オゾン濃度280(g/m3)のオゾンガスを供給することができる。
 (オゾン制御部)
 図8に示すように、各窒素添加レス・オゾン発生ユニット7内に設けられるオゾン制御部19は、オゾン電源2を制御することにより窒素添加レス・オゾン発生器1のオゾン発生内容(ガス流量、オゾンガス濃度)を制御する。
 オゾン電源2は、商用交流電圧AC1φ~AC3φを整流するコンバータ2a、直流電圧を窒素添加レス・オゾン発生器1に最適な高周波に変換し、出力電圧を制御して所定電力を窒素添加レス・オゾン発生器1に供給するインバータ2b、インバータ2bから出力された電圧を、窒素添加レス・オゾン発生器1を生成するための放電を発生させる電圧まで高電圧に昇圧させるための高電圧回路部2c及び電流センサ2dから構成されている。コンバータ2a、インバータ2b及び高電圧回路部2cの順で直列に接続され、コンバータ2a,インバータ2b間に電流センサ2dが介挿される。
 オゾン制御部19は、窒素添加レス・オゾン発生器1で発生するオゾンガス内容(ガス流量Q、オゾン濃度C)を制御するため、高電圧回路部2cの出力である高周波・高電圧HV,LVを窒素添加レス・オゾン発生器1に印加させ、原料ガスである酸素ガスから放電現象によって所定のオゾン量のオゾンガスを生成させている。
 オゾン制御部19は原料ガス流量設定器1S1、セレクタ1S2、オゾン濃度設定器1S3、それぞれの制御信号をON-OFFして制御するアナログスイッチ1S4-A~1S4-F、及びそれぞれの制御信号を反転信号にする反転器1S5-1,1S5-2を有している。
 さらに、オゾン制御部19は、原料ガス設定流量Qs,設定濃度Csおよび窒素添加レス・オゾン発生器1の設定圧力Psの信号を受けて最適なオゾン量を生成に必要な設定電力Wsを記憶させたデータメモリ1S6、設定電力Wsからオゾン電源に必要な電流を注入するための電流信号に変換する電流信号変換器1S7を有している。
 加えて、オゾン制御部19は、初期電流指令でインバータ2bを駆動させ、MFC3及びオゾン濃度計5によって実際に流れている原料ガス流量Q及び生成オゾン濃度Cを受けてPID制御に切り替えるタイマ1S8、オゾン濃度Cとガス設定濃度Csとを比較結果に基づいてPID制御するPID制御回路1S9を有している。
 さらに、オゾン制御部19は、システム管理制御部84よりオゾン発生ユニット制御信号86を受けて、オゾン発生ユニット制御信号86が指示する要求オゾン流量Qs8、要求オゾン濃度Cs8、及び運転情報Y8に基づき、設定流量Qs,設定オゾン濃度Cs信号を調整するイベント調整器1S10を有している。
 また、オゾン制御部19は、圧力設定器1S11、電流信号変換器1S7の出力電流に基づき注入電力を制御するためインバータ2bのONする初期パルス幅を設定する初期パルス幅設定器1S12、及びオゾン濃度計5に検出されたオゾン濃度C及び設定オゾン濃度Cs受け、オゾン濃度Cと原料ガス設定濃度Csとの比較結果に基づき、インバータ2bの注入電力を制御するための電流信号に変換させる電流変換器1S13を有している。
 (データメモリ1S6)
 窒素添加レス・オゾン発生ユニット7のオゾン濃度、オゾン流量制御を行うための初期条件を記憶したデータメモリ1S6は、図9に示すように、窒素添加レス・オゾン発生器1の設定圧力Psをパラメータとして、複数個のメモリバンクBK1~BK4を有しており(図9では説明の都合上、4個の場合を示している)、窒素添加レス・オゾン発生器1の設定圧力Psが決れば、設定圧力Psに対応するメモリバンクBKx(1~4のいずれか)が選び出される。
 選択された1つのメモリバンクBKには、図9で示すように、横軸(X軸)をオゾンガス流量の設定流量Qsを番地とし、ΔQ毎に複数分割されている。縦軸(Y軸)をオゾン濃度の設定濃度Csを番地とし、ΔC毎に複数分割されている。
 データメモリ1S6は、この横軸(X軸)、縦軸(Y軸)の番地として機能する設定流量Qs,設定濃度Csの信号を受け、X軸とY軸の番地で決るメモリ番地に所定のオゾン量を発生させるに必要な設定電力量W(A11~A17,・・・,A61~A67)が書き込まれており、その設定電力量Wsをオゾン量制御19内の電流信号変換器1S7に出力する。その結果、電流信号変換器1S7で電流信号に変換されて、アナログスイッチ1S4-Eを介して初期パルス幅設定器1S12に電流信号が付与され、初期パルス幅設定器1S12により設定電力量Wsを実現するための所定周波数、所定パルス幅のパルス信号Twがインバータ2bに出力される。
 図10に示すように、窒素添加レス・オゾン発生ユニット7の出力濃度制御を行った出力濃度制御波形はオゾン発生ユニット7への運転指令信号(運転情報Y8に含まれる)に対応して、設定時間Toで規定される初期状態時は、データメモリ1S6からの設定電力量Wsに基づく、インバータ2bの注入電力を設定する。
 そして、設定時間To経過後にタイマ1S8による時間制御によってPID制御回路1S9によるPID制御に切り替わる。PID制御回路1S9は、電流変換器1S13の電流信号(オゾンガス濃度C(オゾン濃度計5より検出)とガス設定濃度Csとの比較結果に基づき決定される信号)に基づき、パルス信号Twのパルス幅ΔTwを微小変化させることにより、インバータ2bの注入電力のPID制御が実行される。その結果、窒素添加レス・オゾン発生器1から発生するオゾン濃度(C)は、同図(a)で示す制御応答性波形を示す。
 以下、図10で示す濃度制御について詳述する。まず、オゾン発生ユニット制御信号86に基づかない窒素添加レス・オゾン発生ユニット7単体の動作について説明する。
 イベント調整器1S10は図示しなし運転指令の入力をトリガとしてタイマ1S8を起動する。このとき、イベント調整器1S10は、原料ガス流量設定器1S1の原料ガス設定流量Qsを選択するように原料ガス流量比較器1S2を制御し、アナログスイッチ1S4-A,1S4-Dをオン状態,アナログスイッチ1S4-B,1S4-Cをオフ状態にする。一方、起動直後のタイマ1S8はアナログスイッチ1S4-Eをオン、アナログスイッチ1S4-Fをオフ状態にする。
 すると、データメモリ1S6には、圧力設定器1S11より設定圧力Ps、原料ガス流量設定器1S1より原料ガス設定流量Qs、オゾン濃度設定器1S3より原料ガス設定濃度Csが得られる結果、前述したように設定電力量Wsを電流信号変換器1S7に出力する。その結果、初期パルス幅設定器1S12により初期パルス幅のパルス信号Twが発生される。このパルス信号Twの“H”,“L”に応じてインバータ2bのオン,オフが制御される。
 このように、タイマ1S8が動作状態となる設定時間To内において、データメモリ1S6の設定電力量Wsに基づく初期制御が実行される。
 そして、タイマ1S8が起動後、設定時間To経過すると初期状態を終え、アナログスイッチ1S4-Eをオフ状態、アナログスイッチ1S4-Fをオン状態に切り換える。
 すると、PID制御回路1S9は、電流変換器1S13からの電流信号に基づき、オゾン濃度計5より得られるオゾン濃度Cとガス設定濃度Csとの比較結果を反映して、パルス信号Twのパルス幅を微小偏位(ΔTw)させることを主としたPID制御をオゾン電源2に対して行う。なお、PID制御回路1S9は電流センサ2dの検出電流Iによっても微小偏位ΔTwを変動させる。このように、運転指令から設定時間To経過後はPID制御(W)に切り替わる。
 次に、オゾン発生ユニット制御信号86に基づく窒素添加レス・オゾン発生ユニット7単体の動作について説明する。
 イベント調整器1S10は要求オゾン流量Qs8、要求オゾン濃度Cs8及び運転情報Y8を指示するオゾン発生ユニット制御信号86の入力をトリガとしてタイマ1S8を起動する。このとき、アナログスイッチ1S4-A,1S4-Dをオフ,アナログスイッチ1S4-B,1S4-Cをオン状態にする。さらに、起動直後のタイマ1S8はアナログスイッチ1S4-Eをオン、アナログスイッチ1S4-Fをオフ状態にする。
 なお、要求オゾン流量Qs8及び要求オゾン濃度Cs8は、オゾン処理装置12-1~12-nからの処理オゾンガスイベント信号16-1~16-nが指示する要求オゾン流量Qs12及び要求オゾン濃度Cs12に基づき、システム管理制御部84により決定される。
 すると、データメモリ1S6には、圧力設定器1S11より設定圧力Ps、オゾン発生ユニット制御信号86が指示する要求オゾン流量Qs8及び要求オゾン濃度Cs8が設定流量Qs及び設定濃度Csとして得られる結果、前述したように設定電力量Wsを電流信号変換器1S7に出力する。その結果、初期パルス幅設定器1S12により初期パルス幅のパルス信号Twが発生する。
 このように、オゾン発生ユニット制御信号86の入力によっても、タイマ1S8が動作状態となる設定時間To内において、データメモリ1S6の設定電力量Wsに基づく初期制御が実行される。
 そして、タイマ1S8が起動後、設定時間To経過すると初期状態を終え、アナログスイッチ1S4-Eをオフ状態、アナログスイッチ1S4-Fをオン状態に切り換える。
 すると、PID制御回路1S9は、電流変換器1S13からの電流信号に基づき、パルス信号Twのパルス幅を微小偏位(ΔTw)させることを主としたPID制御をオゾン電源2に対して行う。
 このように、オゾン制御部19はオゾン電源2に対する初期制御、PID制御を行う。図11は、1台の窒素添加レス・オゾン発生ユニット7の2.5KWのオゾン電源2の受電電力と窒素添加レス・オゾン発生器1で発生するオゾン濃度特性を示すグラフである。
 図11において、オゾン濃度特性L11は、オゾンガス流量Qが1.25L/min(=1.25SLM)を供給した場合の発生するオゾン濃度特性を示す。この場合は受電電力を100W~1.0kWで可変にすれば、発生するオゾン濃度は約0g/m3~360g/m3まで可変設定できる。
 同様に、オゾン濃度特性L12は、オゾンガス流量Qが2.5SLMを供給した場合のオゾン濃度特性を示す。この場合は受電電力を100W~2.0kWで可変にすれば、発生するオゾン濃度は約0g/m3~360g/m3まで可変設定できる。
 オゾン濃度特性L13は、オゾンガス流量Qが5.0SLMを供給した場合のオゾン濃度特性、オゾン濃度特性L14は、オゾンガス流量Qが7.5SLMを供給した場合のオゾン濃度特性、オゾン濃度特性L15は、オゾンガス流量Qが10SLMを供給した場合のオゾン濃度特性、オゾン濃度特性L16は、オゾンガス流量Qが20SLMを供給した場合のオゾン濃度特性、オゾン濃度特性L17は、オゾンガス流量Qが30SLMを供給した場合のオゾン濃度特性を示す。
 オゾンガス流量Qが5SLMのオゾンガスを1台のオゾン発生ユニット7から供給した場合は、受電電力2.5kWで最大発生するオゾン濃度は350g/m3(オゾン濃度特性L13参照)、オゾンガス流量Qが7.5SLMのオゾンガスを供給した場合は、受電電力2.5kWで最大発生するオゾン濃度は300g/m3(オゾン濃度特性L14参照)となる。
 また、オゾンガス流量Qが10SLMのオゾンガスを供給した場合は、受電電力2.5kWで最大発生するオゾン濃度は280g/m3(オゾン濃度特性L15参照)、オゾンガス流量Qが20SLMのオゾンガスを供給した場合は、受電電力2.5kWで最大発生するオゾン濃度は180g/m3(オゾン濃度特性L16参照)、オゾンガス流量Qが30SLMのオゾンガスを供給した場合は、受電電力2.5kWで最大発生するオゾン濃度は140g/m3(オゾン濃度特性L17参照)しか得られない。
 受電電力が2.5KWのオゾン電源2である窒素添加レス・オゾン発生ユニット7において、280g/m3のオゾン濃度を維持する場合、1台の窒素添加レス・オゾン発生器1が供給可能な最大流量は10SLMであり、すなわち、1台の窒素添加レス・オゾン発生器1からオゾン濃度を280g/m3を満足させる場合、オゾンガス流量10SLM以上のガス流量を供給することはできない。
 一方、本実施の形態のオゾンガス供給システム10は、オゾンガス出力流量管理ユニット9により、n台の窒素添加レス・オゾン発生ユニット77-1~7-nから供給されるn個のオゾンガス出力の1または複数の組合せを、オゾン処理装置12-1~12-nのうち任意のオゾン処理装置12に選択的に出力することができる、出力オゾンガス出力制御方式を採用している。
 このため、実施の形態1のオゾンガス供給システム10では、オゾンガス出力流量管理ユニット9に設けた各ユニット間に設けたオゾンガス出力流量管理ユニット9内のオゾンガス制御弁9ab、9bc、9caの開閉制御を、図6及び図7に示すように行えば、n台の窒素添加レス・オゾン発生ユニット7-1~7-nから発生するオゾンガス全てを1台のオゾン処理装置12-2に供給することができる。したがって、窒素添加レス・オゾン発生ユニット7-1~7-nからそれぞれガス流量:10SLM、オゾンガス濃度280g/m3のオゾンガスを出力させることにより、オゾン処理装置12-2に対し、ガス流量:30SLMのオゾンAガスを供給でき、その際のオゾン濃度は280g/m3まで高くすることができる。結果として、現状オゾン発生器の利用でオゾン処理装置の処理能力である処理速度、性能向上等を大幅に向上できる効果がある。
 また、窒素添加レス・オゾン発生ユニット7で10SLMの原料ガスでは、最大280g/m3のオゾン濃度しか出力できないが、オゾンガス出力流量管理ユニット9に設けた各ユニット間に設けたオゾンガス制御弁9ab、9bc、9caの開閉制御を利用すれば、オゾン濃度を高めることもできる。
 例えば、図6及び図7に示すようにオゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開閉制御を行って、3台のオゾン発生ユニット7からそれぞれ供給するガス流量を3.3SLMにすれば、3.3SLMのオゾン濃度の最大値まで出力濃度が高められ、仮想点P3に示すように約330g/m3のオゾン濃度で総計10SLMのオゾンガスが供給でき、オゾンガス供給を受けるオゾン処理装置12-2のオゾン処理能力を高められる効果がある。
 また、n台の窒素添加レス・オゾン発生ユニット7を搭載して、オゾンガス出力流量管理ユニット9で構成した出力オゾンガス出力制御方式を採用した本実施の形態のオゾンガス供給システム10では、窒素添加レス・オゾン発生ユニット7-1~7-nのいずれかが故障して、それに対応するオゾン処理装置12が使えなくなることはなくなり、故障していない窒素添加レス・オゾン発生ユニット7から出力されるオゾンガスをオゾンガス制御弁9ab、9bc、9caを開閉して供給することができ、よりオゾンガス供給の信頼性が高いオゾンガス供給システムを得ることができる。
 例えば、オゾン処理装置12-2に対応する窒素添加レス・オゾン発生ユニット7-2が故障している場合、窒素添加レス・オゾン発生ユニット7-1より供給されるオゾンガスを、オゾンガス制御弁9a,9ab、オゾンガス開閉弁22-2を開状態にしてオゾン処理装置12-2に供給することができる。
 さらに、n台のオゾン処理装置12-1~12-nのいずれかが故障や運転停止しても、処理オゾンガスイベント信号16の運転情報Yを取り込むことで、即座にオゾン発生ユニット制御信号86により、故障したオゾン処理装置12にオゾンガスを供給している窒素添加レス・オゾン発生ユニット7の動作を停止させることができる。
 (効果等)
 上述した実施の形態1では、1つのオゾンガス供給システム10に複数の窒素添加レス・オゾン発生ユニット7-1~7-nを備え、各窒素添加レス・オゾン発生ユニット7は、オゾンガスを発生させる手段を有する窒素添加レス・オゾン発生器1、オゾン発生に供給する電力を供給と制御する手段を有するオゾン電源2、原料ガスもしくはオゾンガス流量Qを一定値に制御する手段を有するMFC3、窒素添加レス・オゾン発生器1内の圧力Pを一定に制御する手段を有する自動制御するAPC4、及び出力するオゾンガスの濃度値Cを検出する手段を有するオゾン濃度計5を搭載している。
 また、窒素添加レス・オゾン発生器1での原料ガスは、酸素ガスのみであり、数千f以上の窒素ガスを添加するためのMFCが不要で、NOXやOHラジカル物質等の副生物を含まないより高純度で高濃度のオゾンガスを独立したオゾンガス量、オゾン濃度で、複数のオゾン処理装置へ供給することが可能である。
 そして、オゾンガス供給システム10は、各窒素添加レス・オゾン発生器1から出力オゾンガス配管に対応して開閉弁(オゾンガス制御弁9a~9c)を設け、かつ、上記各窒素添加レス・オゾン発生器1の出力オゾンガス配管間にも開閉弁(9bc,9ab,9ca)を設けたオゾンガス出力流量管理ユニット9を設けている。
 実施の形態1のオゾンガス供給システム10は、オゾンガス出力流量管理ユニット9内のオゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開閉動作によって、窒素添加レス・オゾン発生ユニット7-1~7-nから出力される複数のオゾンガスの1または2以上の組合せを、オゾン処理装置12-1のいずれかに選択的に出力するオゾンガス出力流量制御が実行可能なシステム統括管理ユニット8(オゾンガス出力流量管理ユニット)を有している。
 したがって、オゾンガス制御弁9a,9b,9cを開状態、オゾンガス制御弁9ab,9bc、9caを閉状態にし、オゾンガス開閉弁22-1~22-nを開状態にすることにより、1対1に対応する窒素添加レス・オゾン発生ユニット7-1~7-nからオゾン処理装置12-1~12-nにオゾンガスを供給することにより、供給されるオゾンのガス流量・オゾンガス濃度をオゾン処理装置12-1~12-nそれぞれ独立に制御することができる。
 加えて、図6及び図7で示したように、2以上のオゾンガス出力の組合せをひとつのオゾン処理装置(オゾン処理装置12-2)に供給することにより、多様なガス流量及び濃度のオゾンガスを供給することができる。
 さらに、窒素添加レス・オゾン発生ユニット7-1~7-nのうち一部に異常が発生しても、正常動作する残りの窒素添加レス・オゾン発生ユニット7によって、オゾン処理装置12-1~12-nのいずれにもオゾンガスを供給することができるため、信頼性が高いオゾンガス供給が実現できる。
 このように、オゾンガス供給システム10は、システム管理制御部84からの制御信号S8によりオゾンガス出力流量管理ユニット9を制御して、窒素添加レス・オゾン発生ユニット7-1~7-nから出力されるオゾンガスの組合せ・選択処理を行い、所望のガス流量、オゾンガス濃度のオゾンガスをオゾン処理装置12に出力できるようにしている。
 また、実施の形態1のオゾンガス供給システム10は、オゾンガス出力流量管理ユニット9内に設けられたオゾンガス制御弁9a,9b,9c,9bc,9ab,9caを電気もしくはエアー圧力によって開閉できる電動バルブもしくは空圧弁にして、制御信号S8の制御下で各窒素添加レス・オゾン発生ユニット7内の窒素添加レス・オゾン発生器1から外部に出力するオゾンガスのガス流量、オゾンガス濃度を集中管理することができる。
 また、システム統括管理ユニット8は、漏水センサ6、EMO回路81、ユニット情報I/F82、システム管理制御部84等を備えることにより、窒素添加レス・オゾン発生ユニット7-1~7-nのいずれかに非常停止、漏水が検知された場合、対応する前記窒素添加レス・オゾン発生ユニットを停止させることができる。
 さらに、排気センサ23、オゾン漏洩センサ24、システム管理制御部84等を備えることにより、システム全体として排気異常、オゾン漏洩異常を検出したとき、窒素添加レス・オゾン発生ユニット7-1~7-nを全て停止させることができる。
 このように、実施の形態1のオゾンガス供給システム10は、各オゾン発生ユニット7の異常時、オゾンガス供給システム10全体の異常時等における安全停止機能を備えることにより、安全性の高いシステムを実現することができる。
 さらに、実施の形態1のオゾンガス供給システム10は、NOXやOHラジカル物質等の副生物を含まないより高純度で高濃度のオゾンガスを独立したオゾンガス量、オゾン濃度で、複数のオゾン処理装置へ供給することが可能になり、半導体製造分野における複数のオゾン処理工程のオゾンガス量、オゾン濃度の管理をこの装置で一括管理でき、オゾン処理工場の省力化に効果がある。
 <実施の形態2>
 実施の形態2ではオゾンガス供給システム10内における窒素添加レス・オゾン発生ユニット7-1~7-nそれぞれに相当する、1単位の窒素添加レス・オゾン発生ユニット7に着目し、窒素添加レス・オゾン発生ユニット7の小型化を図ったことを特徴としている。
 図12はオゾン電源2の内部構成の詳細を示す回路図である。図13は実施の形態1の窒素添加レス・オゾン発生ユニット7Xの組合せ構造を模式的に示す斜視図である。
 以下、図12,図13を参照して窒素添加レス・オゾン発生ユニット7Xの小型化について説明する。なお、窒素添加レス・オゾン発生ユニット7Xは実施の形態1の窒素添加レス・オゾン発生ユニット7-1~7-nそれぞれとして構成される、1単位のオゾン発生ユニットを意味する。
 図13に示す窒素添加レス・オゾン発生ユニット7Xにおいて、オゾン電源部2、窒素添加レス・オゾン発生器1それぞれの小型化を実現させ、コンパクト化した電力を供給し、電力量を制御する手段を有したオゾン電源部2、オゾンガスを発生する手段を有した窒素添加レス・オゾン発生器1に加え、原料ガス流量を制御する手段を有したMFC3、オゾンガスの不純物を取り除く手段を有したガスフィルター51、出力するオゾンガス濃度を検知する手段を有したオゾン濃度計5、オゾン発生器内のガス圧力を一定値に制御する手段を有したAPC4を集約しパッケージ化して構造上も1単位の窒素添加レス・オゾン発生ユニット7Xを実現している。
 さらに、原料ガス配管(原料ガス供給口14)および出力ガス配管系(オゾンガス出力口15)をガス配管集積ブロック30に一体化したガス配管集積ブロック構造することにより、窒素添加レス・オゾン発生器1、オゾン電源2、ガス配管系をパッケージ化して窒素添加レス・オゾン発生ユニット7Xをより小型にしている。
 このため、実施の形態1のオゾンガス供給システム10のように、複数台の窒素添加レス・オゾン発生ユニット7Xを窒素添加レス・オゾン発生ユニット7-1~7-nとして搭載しても、装置全体を大きくすることなく、機能アップ、および信頼性を向上させたオゾンガス供給システムに実現できる。
 (オゾン電源2のコンパクト化)
 図12は、窒素添加レス・オゾン発生器1およびオゾン電源部2のメイン部品の一体化を実現させてコンパクト化した回路構成を示している。
 窒素添加レス・オゾン発生器1は、所要のオゾン発生量を得るためには、オゾンを生成するための放電面積として必要面積が必要である。そのため、発生器の占有面積を小さくするため、薄い電極セルを形成し、かつ1つの電極セルの断面積を小さくして、多段積層した電極セルタイプにしてオゾン発生器1を構成したため、非常に占有面積の小さいオゾン発生器1を実現している。
 オゾン電源2は、商用交流電圧を整流するコンバータ2a、直流電圧を窒素添加レス・オゾン発生器に最適な高周波に変換し、出力電圧を制御して所定電力をオゾン発生器に供給するインバータ2b、インバータ2bから出力された電圧を窒素添加レス・オゾン発生器1用に生成するための放電を発生させる電圧まで高電圧に昇圧させるための高電圧回路部2cを有しており、オゾン制御部19によってオゾン電源の注入電力が制御される。
 コンバータ2aは、整流回路2a1、コンデンサバンク2a2、平滑リアクトル2a3、チョッパー回路部2a4及びチョッパー制御回路部2a5の直列接続で構成され、インバータ2bはインバータ回路2b1とインバータ制御回路2b2とで構成されており、このオゾン電源2のコンバータ2aとインバータ2bの各部品の分類分けし、各部品をモジュール化して回路構成の小型化を実現している。
 すなわち、整流回路2a1、コンデンサバンク2a2、及び平滑リアクトル2a3を一体としてモジュール化した直流・平滑回路部2axとして回路構成の小型化を図り、部品品質を高めた。
 さらに、コンバータ2aを構成するチョッパー回路部2a4とインバータ2bを構成するインバータ回路2b1はともにFET素子やIGBT素子等のパワー半導体で構成され冷却フィンで冷却させる必要があるため、チョッパー回路部2a4とインバータ回路2b1とを1つの半導体モジュールとしてモジュール化することにより効果的に小型化されたパワー素子部2pを実現する。コンバータ2aのチョッパー制御回路2a5とインバータ2bのインバータ制御回路2b2とは、1つの基板化もしくは集積IC化することで、非常に小型化された電源制御基板2qを実現している。
 高電圧回路部2cは、インバータ出力電流を限流する直列リアクトルL0、高圧に昇圧する高圧トランスTrおよび力率改善用の並列リアクトルLbで構成されており、各部品が大きく重量の重い部品であるが、直列リアクトルL0と並列リアクトルLbとを一体で高圧トランスTrに機能を組み込めるようにした特殊トランスにした。つまり、直列リアクトルL0は高圧トランスの1次漏れインダクタンスを利用して一体構成を形成できるようにトランスを設計した。また並列リアクトルLbは、トランスの励磁インダクタンスを大きくとれるトランス設計にし、並列リアクトルLbがトランスに機能が盛り込めるようにした。
 さらに、この高圧トランスTrを数十kHzで高周波化することで、軽く、高周波特性の良いフェライトコアーでトランスを形成し、トランスTrは設置面積を小さくして、所定容量を確保したトランスにするため、小さなトランスを複数台並列接続で形成するようにして、複数台(図中3台)のトランスを縦型に設置することで、非常に小さい高電圧回路部2cを実現させた。但し、インバータの出力電流を制限する直列リアクトルL0についてはトランスと一体化せず、独立した小さいリアクトルL0で形成しても良い。
 (オゾン発生ユニットの組合せ構造)
 図13は、窒素添加レス・オゾン発生器1、オゾン電源2、MFC5、ガスフィルター51、オゾン濃度計5、APC4、およびガス配管集積ブロック30を集約した1単位の窒素添加レス・オゾン発生ユニット7Xを示している。
 同図において、前面(図中左側)に操作パネル85-i(i=1~nのいずれか)が設けられており、その背面に集積されたオゾン制御部19(図示せず)が存在し、このオゾン制御部19は、集約して設けられた窒素添加レス・オゾン発生器1及びオゾン電源2(ブロックBL1,BL2)、並びにMFC3、オゾン濃度計5、及びAPC4との電気信号でつながっている。以降、操作パネル85-iが存在する方向を窒素添加レス・オゾン発生ユニット7Xの前面として説明する。
 窒素添加レス・オゾン発生器1とオゾン電源2は図8で示したように各部品をモジュール化等にすることで、部品点数を減らし、それぞれの部品をコンパクト化と設置面積を小さくし、図9に示すように、1つの窒素添加レス・オゾン発生ユニット7Xにおいて窒素添加レス・オゾン発生器1を中心にして、オゾン電源2の直流・平滑回路部1Ax、パワー素子部2p、電源制御基板を1つのブロックBL1とし前面に配置し、数台の小型トランスを縦に積層し高電圧回路部2cをブロックBL2として形成して分散配置して集積化を図っている。
 窒素添加レス・オゾン発生器1に対し、原料ガスを供給するMFC3を含んだガス供給配管系、生成したオゾンガスを外部に出力するガスフィルター51、オゾン濃度計5、APC4を介したオゾンガス出力配管系および窒素添加レス・オゾン発生器1の電極を冷却する冷却配管系(冷却水入口13A,冷却水出口13B)が必要となる。これらの配管系は立体配置しなければならないため、既存のガス配管、冷却配管等で各部品を接続すると、配管と部品間の接続継手が多くなり、その継手を接続するためには接続スペースを確保しなければならず、これらの配管系を接続するには非常に大きなスペースが必要となる。
 従来は、窒素添加レス・オゾン発生ユニット(窒素添加レス・オゾン発生器)とは別の配管ユニットを例えば背面に設け、発生器ユニットと配管接続を背面で行っていた。そのため、窒素添加レス・オゾン発生ユニットとガス供給配管系、オゾンガス出力配管系および冷却配管系13A、13Bをまとめて一体化させることは困難であった。
 実施の形態2においては、それらの配管系を全て1つのガス配管集積ブロック30に集約し、このガス配管集積ブロック30内にガス供給配管、オゾンガス出力配管、冷却配管用の配管経路を組み込み、このガス配管集積ブロック30を立体構造にし、それぞれの面に、窒素添加レス・オゾン発生器1、MFC3、ガスフィルター51、オゾンモニタ5、APC4(以下、これらを総称して「窒素添加レス・オゾン発生器1等」と略する場合あり)を隣接配置する。そして、窒素添加レス・オゾン発生器1等とガス配管集積ブロック30との接続部部分においてOリングを介したネジ止め等を施すことにより気密を保持し精度の高い配管経路を確保することにより、窒素添加レス・オゾン発生器1等とガス配管集積ブロック30との一体化配置を実現させている。またオゾン発生器1等の各部品の取り付け、取り外しが良くなり、メンテナンス性も向上させている。
 このように、実施の形態2の窒素添加レス・オゾン発生ユニット7Xは、ガス配管集積ブロック30に窒素添加レス・オゾン発生器1等を密接して装着している。以下、図13で示すガス配管集積ブロック30を利用した窒素添加レス・オゾン発生ユニット7Xの配管経路について説明する。ガス配管集積ブロック30は内部に配管経路R30a~30fを有しており、冷却水入口13A、冷却水出口13B、原料ガス供給口14及びオゾンガス出力口15が側面に取り付けられており、オゾン発生器装着用ボルトBt1~Bt4を用いて窒素添加レス・オゾン発生器1を取り付ける構造を呈している。
 また、MFC装着用ブロック33,33によりMFC3を挟みこんでガス配管集積ブロック30に装着し、APC装着用ブロック34,34によりAPC4を挟みこんでガス配管集積ブロック30に装着し、オゾン濃度計装着用ブロック35,35により挟みこんでオゾン濃度計5を装着している。これら装着用ブロック33~35内にも配管経路を確保するためのブロック内流路B3~B5が形成されている。また、ガスフィルター装着用ブロック31を用いてガスフィルター51をガス配管集積ブロック30に装着している。
 原料ガスGmが供給される原料ガス供給口14からMFC3を介した窒素添加レス・オゾン発生器1のオゾン発生器入力部ET1への原料ガス入力配管経路は、原料ガス供給口14、配管経路R30a、ブロック内流路B3、MFC3、ブロック内流路B3、配管経路R30b、及びオゾン発生器入力部ET1の順で形成される経路で構成される。この際、窒素添加レス・オゾン発生器1のオゾン発生器入力部ET1の周辺に設けられた部分がオゾン発生器装着用ボルトBt1によりガス配管集積ブロック30に取り付けられる。このように、ガス配管集積ブロック30を用いて原料ガスGmの入力配管経路が形成される。
 窒素添加レス・オゾン発生器1から出力されるオゾンガスを受けるオゾン発生器出力部EX1から、ガスフィルター51、オゾン濃度計5、及びAPC4を介してオゾンガス出力口15から出力されるオゾンガス出力配管は、窒素添加レス・オゾン発生器出力部EX1、配管経路R30c、ガスフィルター装着用ブロック31内、ガスフィルター51、ガスフィルター装着用ブロック31内、配管経路R30d、ブロック内流路B5、オゾン濃度計5、ブロック内流路B5、配管経路R30e、ブロック内流路B4、APC4、ブロック内流路B4、配管経路R30f、及びオゾンガス出力口15の順で形成される経路で構成される。この際、窒素添加レス・オゾン発生器1のオゾン発生器出力部EX1の周辺に設けられた部分がオゾン発生器装着用ボルトBt2によりガス配管集積ブロック30に取り付けられる。このように、ガス配管集積ブロック30を用いてオゾンガスの出力配管経路が形成される。
 図24は窒素添加レス・オゾン発生ユニット7Xに対応する従来の構成を模試的に示す説明図である。同図に示すように、従来は、窒素添加レス・オゾン発生ユニット7Xに対応する構成は、ガス制御ユニット400、インバータ制御ユニット500、オゾン発生ユニット600によって分離構成されるのが一般的であった。
 ガス制御ユニット400は内部にMFC73、APC74、オゾン濃度計75及びガスフィルター91を有している。インバータ制御ユニット500は内部にコンバータ2a、インバータ2b、オゾン制御部79、操作パネル85-i、直列リアクトルL0等を有している。オゾン発生ユニット600はオゾン発生器71及び高圧トランスTr,並列リアクトルLbから構成される。
 また、コンバータ2a内は整流回路2a1、コンデンサバンク2a2、平滑リアクトル2a3、チョッパー回路部2a4、チョッパー制御回路部2a5により構成され、インバータ2bはインバータ回路2b1及びインバータ制御回路2b2により構成される。なお、接続関係、動作内容の説明は省略する。
 従来のオゾンガス供給システムや、従来のオゾン発生装置では、図24に示すように、ガス制御ユニット400、オゾン電源に相当するインバータ制御ユニット500、及びオゾン発生ユニット600と3つに分割した各ブロック間において電気的接続やガス配管による接続することしかできず、図13で示す構造は実現不可能であった。
 図13に示すように、窒素添加レス・オゾン発生ユニット7Xは、これらの3つのユニット(400,500,600)を集約して、図24で示した構成に比べ、大幅に小型化を実現させている。
 このように、実施の形態2の窒素添加レス・オゾン発生ユニット7Xは、窒素添加レス・オゾン発生器1、オゾン電源2、MFC3、ガスフィルター51、APC4、オゾン濃度計5、原料ガス供給口14、オゾンガス出力口15、冷却水入口13A及び冷却水出口13Bを集約して一体化構造で形成することにより、従来の同様な構成に比べ、大幅な小型化を図ることができる。
 加えて、窒素添加レス・オゾン発生ユニット7Xにおけるガス配管集積ブロック30は、複数の内部配管経路である配管経路R30a~R30fを有しているため、配管経路R30a~R30fと、オゾン発生器1、MFC3、ガスフィルター51、APC4、オゾン濃度計5、原料ガス供給口14、オゾンガス出力口15並びに冷却水入出口13A及び13Bそれぞれとが繋がることにより、上記原料ガスGmの入力配管経路及び上記オゾンガスの出力配管経路が形成されるため、これらの配管経路を含めた小型化を効果的に図ることができる。
 このように、窒素添加レス・オゾン発生ユニット7-1~7-nは、それぞれ実施の形態1の窒素添加レス・オゾン発生ユニット7Xとして小型化を図ることにより、実施の形態1で示したオゾンガス供給システム10を実用レベルで実現可能にすることができる。
 その結果、実施の形態2のオゾンガス供給システムは、実施の形態1のオゾンガス供給システム10のように、内部に窒素添加レス・オゾン発生ユニット7Xを複数台搭載でき、窒素添加レス・オゾン発生ユニット7Xの出力配管同士をガス制御弁9で接続することにより、実施の形態1で述べたように、オゾン処理装置12-1~12-nの各オゾン処理装置12にオゾンガスを分散供給したり、1つのオゾン処理装置12に多量のオゾンガスや高濃度のオゾンガスを選択的に供給したりすることができる。
 さらに、実施の形態2のオゾンガス供給システムは、窒素添加レス・オゾン発生システム部分を一体化した窒素添加レス・オゾン発生ユニットにすることにより、実施例2の効果の高純度で高濃度のオゾンガスを独立したパラメータ量条件で、複数のオゾン処理装置へ供給することが可能になり、「半導体製造分野における複数のオゾン処理工程のオゾンガス量、オゾン濃度の管理をこの装置で一括管理でき、オゾン処理工場の省力化」の効果とともに、オゾンガス供給システム自身のコンパクト化および安価にできる効果がある。
 <実施の形態3>
 実施の形態3では実施の形態2と同様、1単位の窒素添加レス・オゾン発生ユニット7に着目し、オゾンガス出力流量管理ユニット9をも組み合わせた窒素添加レス・オゾン発生ユニット7の小型化を図ったことを特徴としている。
 (オゾンガス出力流量管理ユニットの制御)
 図14は図5で示したオゾンガス供給システム10に相当する、実施の形態3のオゾンガス供給システム20によるオゾンガス出力流量管理ユニットの内部構成を示す説明図である。
 図14に示すように、実施の形態1のオゾンガス出力流量管理ユニット9に相当する実施の形態2のオゾンガス出力流量管理ユニット9Yは、窒素添加レス・オゾン発生ユニット7-1~7-nそれぞれと対応する部分が一体的に形成される。以下、図14では、説明の都合上、n=3の場合を例に挙げて説明する。
 窒素添加レス・オゾン発生ユニット7-1~7-nに対応してオゾンガス制御弁9a~9cが一体的に設けられ、オゾンガス制御弁9a~9cに密接して装着ブロック93a~93cが設けられる。装着ブロック93a、93b、及び93cの一方経路側(図中上方)にはオゾンガス制御弁9ab、オゾンガス制御弁9bc及びオゾンガス制御弁9caを設けている。
 そして、装着ブロック93aの一方経路側のオゾンガス制御弁9abが配管継手98u、ユニット間オゾンガス配管95ab、配管継手98dを介して装着ブロック93abの他方経路(図中下方)と繋がる。同様にして、装着ブロック93abの一方経路側のオゾンガス制御弁9abが配管継手98u、ユニット間オゾンガス配管95bc、及び配管継手98dを介して装着ブロック93acの他方経路と繋がり、装着ブロック93acの一方経路側のオゾンガス制御弁9caが配管継手98u、ユニット間オゾンガス配管95ca及び配管継手98dを介して装着ブロック93aの他方経路と繋がる。
 さらに、装着ブロック93a~93cの出力部(図中右方)からオゾンガス出力口25-1~25-nを介して実施の形態2のオゾンガス供給システム20の外部に出力される。
 したがって、オゾンガス出力流量管理ユニット9Yはオゾンガス出力流量管理ユニット9と回路構成として同様なオゾンガス制御弁9a,9b,9c,9bc,9ab,9caを有している。
 そして、オゾンガス出力口25-1~25-nとオゾン処理装置12-1~12-nとの間にオゾンガス開閉弁22-1~22-nが介挿される。
 オゾンガス出力流量管理ユニット9Yを構成するオゾンガス制御弁9a,9b,9c,9bc,9ab,9caにおいて、オゾンガス制御弁9a,9b,9cはノーマリオープンタイプ(NO),オゾンガス制御弁9bc,9ab,9caはノーマリクローズタイプ(NC)である。
 そして、システム統括管理ユニット8のシステム管理制御部84からの制御信号S8aがオゾンガス制御弁9a及びオゾンガス制御弁9abに与えられ、制御信号S8bがオゾンガス制御弁9b及びオゾンガス制御弁9bcに与えられ、制御信号S8cがオゾンガス制御弁9c、及びオゾンガス制御弁9caに与えられる。
 このように、システム統括管理ユニット8のシステム管理制御部84からの制御信号S8(S8a~S8c)に基づき、オゾンガス出力流量管理ユニット9Yのオゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開状態、閉状態が制御される。
 図14では、オゾン処理装置12-1~12-nのうち、オゾン処理装置12-2の1台のみ運転しており(オゾンガス開閉弁22-2が開状態)、オゾン処理装置12-2に対するオゾンガス流量としては、30SLMのオゾンガスを供給した場合のオゾンガス出力流量管理ユニット9Yの状態を示している。
 すなわち、システム管理制御部84からのオゾン発生ユニット制御信号86-1~86-nによりオゾン発生ユニット7-1~7-nからそれぞれ10SLMのオゾンガスを出力させ、オゾンガス制御弁9a,9b,9c,9bc,9abを開状態(黒塗り潰し)にして、オゾンガス制御弁9caを閉状態(白抜き)にしている。
 一方、前述したように、オゾンガス開閉弁22-1~22-nのうち、オゾンガス開閉弁22-2のみを開状態にし、オゾンガス開閉弁22-1及び22-nを閉状態としている。オゾン処理装置12-2のみ使用して他のオゾン処理装置12は使用しない場合オゾンガス開閉弁22を閉にするようにしたが、全くオゾン処理装置がない場合は使用していないオゾンガス出口である25-1、25-nの配管部分を強制的に配管キャップ継手で栓をしてもよい。さらにオゾンガス供給システム10内の各オゾン発生ユニット間接続配管95ab、95bc、95caのいずれかを配管しない場合は配管継手である98u、98dのいずれかを配管キャップ継手にして栓することで、出力オゾンガスを遮断することは言うまでもない。
 このように、窒素添加レス・オゾン発生ユニット7-1~7-n及びオゾンガス出力流量管理ユニット9Yを制御して、窒素添加レス・オゾン発生ユニット7-1~7-nからそれぞれ10SLMの流量のオゾンガスを出力させることにより、オゾンガス出力流量管理ユニット9を介してオゾン処理装置12-2に対してガス流量30SLMのオゾンガスを供給することができる。
 (オゾン発生ユニットの組合せ構造)
 図15は実施の形態3の1単位の窒素添加レス・オゾン発生ユニットの組合せ構造を模式的に示す斜視図である。図15に示すように、実施の形態3の窒素添加レス・オゾン発生ユニット7Yは、窒素添加レス・オゾン発生器1、オゾン電源2、MFC5、ガスフィルター51、オゾン濃度計5、APC4、およびガス配管集積ブロック30に加え、オゾンガス出力流量管理ユニット9の構成部分をも集約している。
 図15に示すように、オゾンガス出力流量管理ユニット9の構成部分をガス配管集積ブロック30に装着すべく、ブロック本体930a及び930b(図10の装着ブロック93a~93cのいずれかに相当)を中心にして、オゾンガス制御弁収納部931,932、オゾンガス出力部933、オゾンガス分岐部934,935を設けている。
 オゾンガス制御弁収納部931は内部にオゾンガス制御弁90x(オゾンガス制御弁9a~9cのいずれかに相当)を収納しており、オゾンガス制御弁収納部932は内部にオゾンガス制御弁90xy(オゾンガス制御弁9ab,9bc及び9caのいずれかに相当)を収納している。オゾンガス出力部933は、図13で示した実施の形態1のオゾン発生ユニット7Xのオゾンガス出力口15に相当し、図14のオゾンガス出力口25に繋がる。オゾンガス分岐部934が図10で示した配管継手98uに繋がる一方経路側の分岐部(ユニット間オゾンガス空圧弁配管接続口)として機能し、オゾンガス分岐部935は図14で示した配管継手98dに繋がる他方形路側の分岐部(ユニット間オゾンガス空圧弁配管接続口)として機能する。
 実施の形態3においては、実施の形態2と同様、ガス供給配管系、オゾンガス出力配管系および冷却配管系13A、13Bを全て1つのガス配管集積ブロック30に集約し、オゾンガス出力流量管理ユニット9Yの構成部分を組み合わせて、ガス配管集積ブロック30内にガス供給配管、オゾンガス出力配管、冷却配管それぞれの配管経路を組み込んでいる。
 原料ガスGmが供給される原料ガス供給口14からMFC3を介した窒素添加レス・オゾン発生器1のオゾン発生器入力部ET1への原料ガス入力配管は、実施の形態2のオゾン発生ユニット7Xとほぼ同様に、原料ガス供給口14、配管経路R30a、ブロック内流路B3、MFC3、ブロック内流路B3、配管経路R30b、及びオゾン発生器入力部ET1の順で形成される経路で構成される。
 窒素添加レス・オゾン発生器1のオゾン発生器出力部EX1から、ガスフィルター51、オゾン濃度計5、及びAPC4を介してブロック本体930bまでのオゾンガス出力配管は、オゾン発生器出力部EX1、配管経路R30c、ガスフィルター装着用ブロック31内、ガスフィルター51、ガスフィルター装着用ブロック31内、配管経路R30d、ブロック内流路B5、オゾン濃度計5、ブロック内流路B5、配管経路R30e、ブロック内流路B4、APC4、ブロック内流路B4、配管経路R30f、ブロック本体930a(内側部分)、オゾンガス制御弁90x、配管経路R30g、ブロック本体930b(外側部分)の順で形成される経路で構成される。なお、ブロック本体930a及び930bを一体的に構成し、ガス配管集積ブロック30内を貫通して形成しても良い。
 ブロック本体930b内において、オゾンガス制御弁90xyを介してオゾンガス分岐部934に繋がる一方分岐経路と、オゾンガス分岐部935に繋がる他方分岐経路と、上記一方及び他方分岐経路と上記オゾンガス出力配管とが合流した後、オゾンガス出力部933から出力される合流経路が形成される。
 なお、他の構成及び配管経路等は、図13で示した窒素添加レス・オゾン発生ユニット7Xと同様であるため、説明を省略する。
 実施の形態3のオゾンガス供給システム20において、各々がオゾンガス制御弁90x,90xyを収納する複数のオゾンガス制御弁収納部931,932はそれぞれ対応する窒素添加レス・オゾン発生ユニット7Yにおけるガス配管集積ブロック30に密着して装着され、上記オゾンガスの出力配管経路上に介挿されている。
 このため、オゾンガス供給システム20内において、オゾンガス出力流量管理ユニット9Y及び窒素添加レス・オゾン発生ユニット7-1~7-nの組合せ構造の小型化を図ることができる効果を奏する。
 このように、実施の形態3の窒素添加レス・オゾン発生ユニット7Yは、実施の形態2の窒素添加レス・オゾン発生ユニット7Xの特徴に加え、オゾンガス出力流量管理ユニット9の構成部分の大半とガス配管集積ブロック30との一体化を図ることにより、実施の形態2の窒素添加レス・オゾン発生ユニット7Xとオゾンガス出力流量管理ユニット9とを別途構成する場合に比べ、より一層の小型化を図ることができる。
 <実施の形態4>
 実施の形態4では実施の形態2のオゾンガス供給システム構成内に原料ガス供給部に原料ガスに含まれる水分をトラップするガスフィルターである超高純度水分除去器を装着して、装置内に供給する原料ガスの純度を増すことで、装置内で生成するオゾンガスに付随して生成される活性ガスを抑制できるようにしたことを特徴としている。
 特に、実施の形態2と同様、1単位の窒素添加レス・オゾン発生ユニット7の原料ガス入り口部に、ガス中に含まれる水分をトラップする超高純度水分除去器を装着するようにして、組み合わせた窒素添加レス・オゾン発生ユニット7の小型化と窒素添加レス・オゾン発生器自身の性能や品質アップを図ったことを特徴としている。
 (原料ガスのガス純度管理)
 従来の窒素が数千ppm以上添加したオゾン発生器では、発生器内で生成される二酸化窒素NO2の触媒作用で、酸素分子の解離が促進され、酸素分子と解離した酸素原子との三体結合で、高濃度のオゾン化ガスが生成されていた。この場合は、二酸化窒素NO2はガスであるため、原料ガスの水分露点が-50℃(水分量約100ppm)以下であれば、ほとんどオゾン濃度低下の影響がなかった。そのため、従来のオゾン発生器では、原料ガスに含まれる水分量を除去は、水分露点が-50℃以下を確保できる簡易水分除去器で十分であった(図28参照)。
 それに対し、本願の発明の窒素添加レス・オゾン発生器では、オゾンガスを生成する触媒作用が光触媒作用で、放電面に光触媒物質を塗布して、高純度酸素ガスによる高純度の高濃度オゾン発生する装置である。そのため、原料ガス中に含まれる水分量が数十ppmの微量の水分であっても、ガス中に含まれる水分を放電面に塗布した光触媒物質が吸着して、水分が蓄積される。そうすると、水分を蓄積された放電面においては、無声放電によって水分が水素H原子やOH分子に解離され、塗布した光触媒物質との化学反応結合で光触媒物質自身を改質させてしまい、窒素添加レス・オゾン発生器のオゾン生成能力を低下させたり、劣化を促進させたりすることがあきらかになって来た。さらに、窒素添加レス・オゾン発生器に水分が含まれると、解離された水素H原子やOH分子が含まれたオゾンガスをオゾン処理装置に提供することになり、半導体製造工程の成膜品質を悪くする原因になっていた。
 そのため、本願の発明の窒素添加レス・オゾン発生器では、3000ppb以上の微量の水分が含まれる原料ガスを数百ppb以下(望ましくは、300ppb以下)までに水分量を取り除く超高純度水分除去器を搭載したことである。
 この超高純度水分除去器を設けることで、水分だけでなく、CO2、COや極微量の不純物も除去出来、より高純度のオゾンガスを得るのに効果がある。
 図16は図5で示したオゾンガス供給システム10に相当する、実施の形態4のオゾンガス供給システム101による原料ガスの微量の水分量を抑制するための内部構成を示す説明図である。
 図17は実施の形態4の1単位の窒素添加レス・オゾン発生ユニットの組合せ構造を模式的に示す斜視図である。
 図16、図17に示すように、実施の形態1の窒素添加レス・オゾン発生ユニット7-1~7-nそれぞれの原料ガス入り口14-1~14-nに、交換が容易な位置に超高純度水分除去器(ガスフィルター)59-1~59-nを装着して、一体的に形成される。以下、図16では、説明の都合上、n=3の場合を例に挙げて説明する。
 図17に示すように、原料ガス配管(原料ガス供給口14+超高純度水分除去器599)および出力ガス配管系(オゾンガス出力口15)をガス配管集積ブロック30に一体化したガス配管集積ブロック構造することにより、オゾン発生器1、オゾン電源2、ガス配管系をパッケージ化してオゾン発生ユニット7X2をより小型にしている。なお、原料ガス供給口14及び超高純度水分除去器59は互いに連結して構成される。
 オゾンガス供給システム10に供給される原料ガスは、一般に99.99%以上の高純度原料ガスを使用しているが、この高純度原料ガスには、原料ガス以外のガスとして、窒素系ガス、炭素系ガス、硫化ガス等の不純物ガスが0.1~数ppm程度含まれており、また、ガス中に含まれる水分量も1~数ppm含んでいる。また、これらの不純物ガスや水分は空気中にも含まれるガスであるため、原料ガス配管経路の一部の配管を大気に開放すると、すぐに、配管面に水分や窒素ガス等の不純物ガスが吸着される。そのため、この不純物ガスが吸着された原料ガス配管に原料ガスを流すと、高純度原料ガスに含まれる不純物ガスや水分量だけでなく、配管に付着した不純物ガスも、ガスを流すことにより、離脱して、供給する原料ガスの純度が悪くなる場合がある。
 原料ガスに、窒素系ガス、炭素系ガス、硫化ガス等の不純物ガスや微量の水分が含まれるとオゾンガスの生成だけでなく、放電によってNラジカルやOHラジカルガスも生成されるため、これらのラジカルガスと水分が結合することで、硝酸や過酸化水素水としてクラスタ状の分子状のガスもオゾンガスに含んで出力される。そのため、これらの硝酸や過酸化水素水のクラスタ分子ガス等は非常に活性の強いガスであるため、オゾンガスを出力するガス配管やバルブ等の金属表面と化学反応をして、配管面が腐食して、出力するオゾンガスに腐食した金属不純物(金属コンタミ)を発生させる原因になる。
 出力するオゾンガスに含まれる金属不純物(金属コンタミ)量が高まると、オゾンガスを利用して半導体の酸化膜処理をしている酸化膜等の成膜性能を劣化させる原因になる。
 上記のことから、原料ガスに不純物ガスや微量の水分が含まれると、出力するオゾンガスの品質が悪くなることが、試験で確かめられた。そのため、原料ガスの供給部に不純物ガスをトラップや微量の水分除去を目的とした超高純度水分除去器(ガスフィルター)を装着するようにした。特に、実施の形態4では窒素添加レス・オゾン発生ユニット7-1~7-nそれぞれの原料ガス入り口14-1~14-nに、交換が容易な位置に超高純度水分除去器59-1~59-nを設け、不純物ガスや微量の水分を除去した。
 具体的には、超高純度水分除去器59-1~59-nの通過前の原料ガス供給口14から供給される原料ガスは、3000ppb以上の水分を含む場合、超高純度水分除去器59-1~59-nはそれぞれ上記原料ガス内の水分を300ppb以下まで低減する水分除去能力を有している。
 このように、実施の形態4のオゾンガス供給システム101では、オゾン発生ユニット7-1~7-nそれぞれの原料ガス入り口14-1~14-nに、超高純度水分除去器59-1~59-nを設けることにより、不純物の含まない高品質のオゾンを高い濃度で得ることができる。
 ここでは、超高純度水分除去器59-1~59-nを窒素添加レス・オゾン発生ユニット7-1~7-nに対応して1つ設ける構成にしたが、不純物ガス種によって、ガスフィルターを複数個多段に設けたり、微量の水分トラップ用のガスフィルター構成にしたりしても良い。
 なお、他の構成及び配管経路等は、図13で示した窒素添加レス・オゾン発生ユニット7Xと同様であるため、説明を省略する。
 実施の形態4のように、窒素添加レス・オゾン発生ユニット7-1~7-nの背面の原料ガス供給口14に交換が容易な部分に超高純度水分除去器を装着するようにしたため、より高純度の高いオゾンガスを提供するだけでなく、装着した超高純度水分除去器で、微量の水分量を取り除くことができるため、オゾンガスを発生させる前のパージガスを流す時間を大幅に短縮させることができる効果を奏する。
 なお、実施の形態4では、窒素添加レス・オゾン発生ユニット7-1~7-nに対応して超高純度水分除去器59-1~59-nを設けたが、原料ガス供給口14から供給される原料ガスに含まれる微量の水分をトラップできる機能を有する、窒素添加レス・オゾン発生ユニット7-1~7-n間共用の超高純度水分除去器59を一つ追加するように構成することもできる。この場合、一の超高純度水分除去器59の通過前の原料ガス供給口14から供給される原料ガスが3000ppb以上の水分を含む場合、超高純度水分除去器59は上記原料ガス内の水分を300ppb以下まで低減する水分除去能力を有している。
 <実施の形態5>
 実施の形態5では、実施の形態2の「窒素添加レス・オゾン発生ユニット7-1~7-nそれぞれに相当する、1単位の窒素添加レス・オゾン発生ユニット7に着目し、窒素添加レス・オゾン発生ユニット7の小型化を図ったもの」の他の実施の形態を示す。特に、実施の形態2の原料ガスの流量コントロール手段であるMFC3の変わりに、発生させたオゾンガスの出力ガス部に流量コントロール手段であるMFC53を配置し、窒素添加レス・オゾン発生ユニット7の小型化を図ったものである。
 (オゾンガス流量コントロール)
 図18は図5で示したオゾンガス供給システム10に相当する、実施の形態5のオゾンガス供給システム102によるオゾンガス流量コントロールするための内部構成を示す説明図である。図19は実施の形態4の1単位の窒素添加レス・オゾン発生ユニットの組合せ構造を模式的に示す斜視図である。
 図18、図19に示すように、実施の形態5は、機能的には、実施の形態1および実施の形態2で示したガス流量を制御する手段であるMFC3を原料ガス供給部に設けていたものを、発生したオゾンガス配管系に移動した実施の形態であるため、装置の動作等については、実施の形態1および実施の形態2と同様であるため、説明は省略する。
 実施の形態5では、発生したオゾンガス自身の出力するオゾン量をMFC53によって制御するため、正確な出力するオゾンガス流量を制御が出来、出力するオゾン量を正確に制御している効果を奏する。
 また、原料ガス配管系には、配管周辺部品は付けずに直接配管をするだけで済み、オゾンガス出力配管部にガスフィルター51、MFC53、オゾン濃度計5、APC4にガス配管部品を一括装着する構成にするため、出力ガス配管系のみ、配管の集積配管構成ができるため、配管がよりコンパクト化ができ、一体化した集積配管構成の部品数を減らせ、部品の交換がより容易になる。
 <実施の形態6>
 図20は本発明の実施の形態6であるオゾンガス供給システムの構成を示すブロック図である。図17に示すように、オゾンガス供給システム103は、原料ガス供給口14から供給される原料ガスに含まれる微量の水分を超高純度にトラップできる機能を有する一つの超高純度水分除去器59を、窒素添加レス・オゾン発生ユニット7-1~7-n間で共用されるように追加している。
 また、図16で示した実施の形態4と同様に、オゾン発生ユニット7-1~7-nの原料ガス供給口14-1~14-nの近傍に超高純度水分除去器59-1~59-nを設けた構成(図示せず)を採用しても良い。
 この場合、図21に示すように、オゾン発生器入力部ET1に原料ガス供給口14及び超高純度水分除去器59(超高純度水分除去器59-1~59-nのいずれか)が直列に設けられる。すなわち、図21に示すように、原料ガス配管(原料ガス供給口14+水分除去フィルター59)および出力ガス配管系(オゾンガス出力口15)をガス配管集積ブロック30に一体化したガス配管集積ブロック構造のオゾン発生ユニット7X4を得ることができる。
 <実施の形態7>
 図22は本発明の実施の形態7であるオゾンガス供給システムの構成を示すブロック図である。
 実施の形態7のオゾンガス供給システム104内に原料ガス供給口14より供給される原料ガスに含まれる不純物や不純物ガスもしくは水分をトラップする目的の(原料ガス用)ガスフィルター52-1~52-nを設けている。ただし、ガスフィルター52-1~52-nは、オゾン発生ユニット7-1~7-nに1対1に対応して設けられており、オゾン発生ユニット7-1~7-nそれぞれの原料ガス供給部入口近傍に設けられる。ガスフィルター52-1~52-nはそれぞれオゾン発生ユニット7-1~7-n内に供給する原料ガスの純度を増やすことで、オゾンガス供給システム105内で生成するオゾンガスの純度を高めることを特徴としている。
 特に、実施の形態7のオゾン発生ユニット7-1~7-nそれぞれは、実施の形態2と同様、1単位のオゾン発生ユニット7の原料ガス入り口部に、ガス中に含まれる不純物や不純物ガスもしくは水分をトラップするガスフィルター52を装着するようにして、組み合わせたオゾン発生ユニット7の小型化を図ったことを特徴としている。
 (原料ガスのガス純度管理)
 図23は実施の形態7の1単位のオゾン発生ユニット7X5の組合せ構造を模式的に示す斜視図である。
 図22、図23に示すように、オゾン発生ユニット7-1~7-nそれぞれの原料ガス入り口14-1~14-nに連結して、交換が容易な位置にガスフィルター52(52-1~52-n)を装着して、一体的に形成される。以下、図20では、説明の都合上、n=3の場合を例に挙げて説明する。
 図25は原料ガスの露点と原料ガスに含まれる水分量との関係を示す説明図である。オゾンガス供給システム104に供給される原料ガスは、一般に99.99%以上の高純度原料ガスを使用しているが、この高純度原料ガスには、原料ガス以外のガスとして、窒素系ガス、炭素系ガス、硫化ガス等の不純物ガスが0.1~数PPM程度含まれており、また、ガス中に含まれる水分量も1~数PPM含んでいる(図25参照)。
 また、これらの不純物ガスや水分は空気中にも含まれるガスであるため、原料ガス配管経路の一部の配管を大気に開放すると、すぐに、配管面に水分や窒素ガス等の不純物ガスが吸着される。そのため、この不純物ガスが吸着された原料ガス配管に原料ガスを流すと、高純度原料ガスに含まれる不純物ガスや水分量だけでなく、配管に付着した不純物ガスも、ガスを流すことにより、離脱して、供給する原料ガスの純度が悪くなる場合がある。
 原料ガスに、窒素系ガス、炭素系ガス、硫化ガス等の不純物ガスや水分が含まれるとオゾンガスの生成だけでなく、放電によってNラジカルやOHラジカルガスも生成されるため、これらのラジカルガスと水分が結合することで、硝酸や過酸化水素水としてクラスタ状の分子状のガスもオゾンガスに含んで出力される。
 そのため、これらの硝酸や過酸化水素水のクラスタ分子ガス等は非常に活性の強いガスであるため、オゾンガスを出力するガス配管やバルブ等の金属表面と化学反応をして、配管面が腐食して、出力するオゾンガスに腐食した金属不純物(金属コンタミ)を発生させる原因になる。
 出力するオゾンガスに含まれる金属不純物(金属コンタミ)量が高まると、オゾンガスを利用して半導体の酸化膜処理をしている酸化膜等の成膜性能を劣化させる原因になる。
 上記のことから、原料ガスに不純物ガスや水分が含まれると、出力するオゾンガスの品質が悪くなることが、試験で確かめられた。そのため、原料ガスの供給部に不純物ガスもしくは水分のトラップを目的としたガスフィルターを装着するようにした。特に、実施の形態7ではオゾン発生ユニット7-1~7-nそれぞれの原料ガス入り口14-1~14-nに、交換が容易な位置にガスフィルター52-1~52-nを設け、不純物ガスもしくは水分を除去した。
 ここでは、ガスフィルター52-1~52-nを1つ設ける構成にしたが、不純物ガス種によって、ガスフィルターを複数個直列多段に設けたり、不純物ガス用のガスフィルターと水分トラップ用のガスフィルターとを直列多段構成にしたりしても良い。
 なお、他の構成及び配管経路等は、超高純度水分除去器59がガスフィルター52に置き換わった点を除き、図14で示したオゾン発生ユニット7X2と同様であるため、説明を省略する。
 図23に示すように、原料ガス配管(原料ガス供給口14+ガスフィルター52)および出力ガス配管系(オゾンガス出力口15)をガス配管集積ブロック30に一体化したガス配管集積ブロック構造することにより、オゾン発生器1、オゾン電源2、ガス配管系をパッケージ化してオゾン発生ユニット7X5をより小型にしている。なお、原料ガス供給口14及びガスフィルター52は互いに連結して構成される。
 実施の形態7のように、オゾン発生ユニット7-1~7-nの背面の原料ガス供給口14に交換が容易な部分にガスフィルター52(ガスフィルター52-1~52-n)を装着するようにしたため、より高純度の高いオゾンガスを提供するだけでなく、装着したガスフィルター52によって、不純物ガスを取り除くことができるため、オゾンガスを発生させる前のパージガスを流す時間を大幅に短縮させることができる効果を奏する。
 <その他>
 以上、実施の形態1~実施の形態7では、オゾン処理装置として、主に、オゾン発生量が数十g/h~500g/h程度のオゾンを必要とする半導体製造装置で用いられるオゾンガスの多処理装置における所定のオゾン流量、オゾン濃度のオゾンガスを供給するシステムについて述べてきた。
 上述したオゾン処理装置12に代えて、必要とするオゾンガス量が、もっと大きな、パルプのオゾン漂白装置やプールの水のオゾン処理装置、上下水のオゾン処理装置、化学プラントのオゾン処理装置であっても良い。例えば、1kg/h~数kg/hのオゾンガスを必要とする処理装置であれば、上述したオゾンガス供給システム10(101~104)内に複数台の窒素添加レス・オゾン発生ユニット7-1~7-nを搭載して、窒素添加レス・オゾン発生ユニット7-1~7-n間で出力オゾンガスをまとめて1つのオゾン処理装置に供給することが、比較的安価、かつ容易に行え、メンテナンス性が非常に良いオゾンガス供給システムの利用分野が高められる効果を奏する。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 この発明は、オゾンガスを供給するための複数の手段を有した機能を付加させた窒素添加レス・オゾン発生ユニット及びオゾンガスを複数のオゾン処理装置にオゾンガス供給システムに関する発明であり、オゾンガスを出力するための複数の手段を有した機能を付加させた窒素添加レス・オゾン発生器ユニットの小型化を図った窒素添加レス・オゾン発生ユニットを得ることを目的としているが、オゾンガス以外のガス発生ユニット及び発生ガスを複数のガス処理装置にガス供給システムにおいても、ガスを出力するための複数の手段を有した機能を付加させたガス発生器ユニットを一体化し、小型化して、ガス発生ユニットを複数台搭載してガス発生システムを構築することは好適であることは明らかなことである。

Claims (9)

  1.  所定の供給流量、濃度に設定したオゾンガスをオゾン処理装置に供給する窒素添加レス・オゾン発生ユニット(7X,7Y)であって、
     放電面にオゾンを生成するための光触媒物質を塗布し、オゾンガスを発生する窒素添加レス・オゾン発生器(1)と、
     前記窒素添加レス・オゾン発生器に供給する電力を制御するオゾン電源(2)と、
     前記オゾン発生器に関連した制御手段(3~5、51)とを備え、
     前記制御手段は、
     前記窒素添加レス・オゾン発生器に入力される原料ガス流量(Q)を制御するマスフローコントローラ(MFC)(3)を含む流量検出・流量調整手段、
     前記窒素添加レス・オゾン発生器が出力するオゾンガスに対して不純物や異物を除去する処理を行うガスフィルター(51)手段、
     前記窒素添加レス・オゾン発生器内の圧力である内部圧力を自動制御するオートプレッシャコントローラ(APC)(4)を含む圧力検出・圧力調整手段、及び
     前記窒素添加レス・オゾン発生器が出力するオゾンガスのオゾン濃度値を検出するオゾン濃度計(5)を含むオゾン濃度検知手段のうち、少なくとも2つの手段を有し、
     前記窒素添加レス・オゾン発生器に外部から原料ガスを供給するための原料ガス供給口(14)と、
     前記窒素添加レス・オゾン発生器から前記制御手段の少なくとも一部を介して得られるオゾンガスを外部に出力するオゾンガス出力口(15)と、
     外部から得られる冷却水を前記窒素添加レス・オゾン発生器に供給及び排出するための冷却水入出口(13A,13B)とをさらに備え、
     前記窒素添加レス・オゾン発生ユニットは、
     前記窒素添加レス・オゾン発生器、前記オゾン電源、前記制御手段、前記原料ガス供給口、前記オゾンガス出力口及び前記冷却水入出口を集約して一体化構造で形成したことを特徴とする、
    窒素添加レス・オゾン発生ユニット。
  2.  請求項1記載の窒素添加レス・オゾン発生ユニットであって、
     前記原料ガス供給口(14(14-1~14-n))から供給される前記原料ガスに含まれる微量の水分を除去して、前記窒素添加レス・オゾン発生ユニット内に供給する超高純度水分除去器(59(59-1~59-n))をさらに備え、
     前記窒素添加レス・オゾン発生ユニットは、前記超高純度水分除去器をも集約して一体構造で形成したことを特徴とする、
    窒素添加レス・オゾン発生ユニット。
  3.  請求項1記載の窒素添加レス・オゾン発生ユニットであって、
     前記原料ガス供給口(14(14-1~14-n))から供給される前記原料ガスに含まれる不純物ガスを除去して、前記窒素添加レス・オゾン発生ユニット内に供給する原料ガス用ガスフィルター(52(52-1~52-n))をさらに備え、
     前記窒素添加レス・オゾン発生ユニットは、前記原料ガス用ガスフィルターをも集約して一体構造で形成したことを特徴とする、
    窒素添加レス・オゾン発生ユニット。
  4.  請求項1ないし請求項3のうち、いずれか1項に記載の窒素添加レス・オゾン発生ユニットであって、
     前記オゾン電源の初期動作として所定の設定電力量(Ws)で前記オゾン電源を駆動させ、所定時間後に前記オゾン濃度計で検知したオゾン濃度(C)と設定したオゾン濃度(Cs)との比較に基づき、前記オゾン電源が供給する電力をPID制御するオゾン制御部(19)をさらに備えたことを特徴とする、
    窒素添加レス・オゾン発生ユニット。
  5.  請求項1ないし請求項3のうち、いずれか1項に記載の窒素添加レス・オゾン発生ユニットであって、
     前記制御手段は、前記流量検出・流量調整手段、前記ガスフィルター手段、前記圧力検出・圧力調整手段及びオゾン濃度検知手段を含み、
     前記窒素添加レス・オゾン発生器、前記流量検出・流量調整手段、前記ガスフィルター手段、前記圧力検出・圧力調整手段、前記オゾン濃度検知手段、前記原料ガス供給口、前記オゾンガス出力口及び前記冷却水入出口それぞれを密接して装着するガス配管集積ブロック(30)をさらに備え、
     前記ガス配管集積ブロックは複数の内部配管経路(R30a~R30f)を有し、
     前記複数の内部配管経路と、前記オゾン発生器、前記流量検出・流量調整手段、前記ガスフィルター手段、前記圧力検出・圧力調整手段、前記オゾン濃度検知手段、前記原料ガス供給口、及び前記オゾンガス出力口とが繋がることにより、前記原料ガス供給口から前記流量検出および流量調整手段を介して前記窒素添加レス・オゾン発生器に至る原料ガス入力配管経路、及び前記窒素添加レス・オゾン発生器から前記ガスフィルター手段、前記オゾン濃度検知手段、前記オゾン発生器内の圧力検出および圧力調整手段を介して前記オゾンガス出力口に至るオゾンガス出力配管経路が形成されることを特徴とする、
    窒素添加レス・オゾン発生ユニット。
  6.  複数の窒素添加レス・オゾン発生ユニット(7-1~7-n)を有し、所定の供給流量、濃度に設定したオゾンガスを複数のオゾン処理装置に供給するオゾンガス供給システム(20)であって、
     前記複数のオゾン発生ユニットはそれぞれ請求項5記載の窒素添加レス・オゾン発生ユニットを含み、
     前記オゾンガス供給システムは、
     前記複数の窒素添加レス・オゾン発生ユニット内の複数の前記窒素添加レス・オゾン発生器からの複数のオゾンガス出力を受け、内部に設けた複数のオゾンガス制御弁(9a,9b,9c,9bc,9ab,9ca)の開閉動作によって、前記複数のオゾンガス出力の1または複数の組合せを、前記複数のオゾン処理装置のうち任意のオゾン処理装置に選択的に出力するオゾンガス出力流量制御が実行可能なオゾンガス出力流量管理ユニット(9)と、
     前記複数のオゾン処理装置からの処理オゾンガスイベント信号(16)に基づき、前記複数の窒素添加レス・オゾン発生ユニットそれぞれの前記オゾンガスの出力内容を制御し、前記オゾンガス出力流量管理ユニットに対し前記オゾンガス出力流量制御を行う、オゾンガス出力流量管理ユニット制御部(8)とをさらに備える、
    オゾンガス供給システム。
  7.  請求項6記載のオゾンガス供給システムであって、
     前記複数のオゾンガス制御弁は、電気もしくはエアー圧力によって開閉できる電動バルブもしくは空圧弁を含み、
     前記オゾンガス出力流量管理ユニット制御部は、前記複数のオゾン処理装置それぞれに供給するオゾン流量、オゾン濃度を所望の値になるように、前記制御信号を出力する、
    オゾンガス供給システム。
  8.  請求項6のオゾンガス供給システムであって、
     前記オゾンガス出力流量管理ユニットは、
     前記複数のオゾンガス制御弁(90x,90xy)に対応する複数のオゾンガス制御弁収納部(931,932)をさらに備え、
     前記複数のオゾンガス制御弁(90x,90xy)はそれぞれ対応する前記オゾンガス制御弁収納部(931,932)内に設けられ、
     前記複数のオゾンガス制御弁収納部はそれぞれ対応する前記窒素添加レス・オゾン発生ユニットにおける前記ガス配管集積ブロックに密着して装着され、前記オゾンガス出力配管経路上に介挿される、
    オゾンガス供給システム。
  9.  所定の供給流量、濃度に設定したオゾンガスをオゾン処理装置に供給する窒素添加レス・オゾン発生ユニット(7X,7Y)であって、
     放電面にオゾンを生成するための光触媒物質を塗布し、オゾンガスを発生する窒素添加レス・オゾン発生器(1)と、
     前記窒素添加レス・オゾン発生器に供給する電力を制御するオゾン電源(2)と、
     前記オゾン発生器に関連した制御手段(4、5、51,53)とを備え、
     前記制御手段は、
     前記窒素添加レス・オゾン発生器から出力されるオゾンガス流量を制御するマスフローコントローラ(MFC)(53)を含む流量検出・流量調整手段、
     前記窒素添加レス・オゾン発生器が出力するオゾンガスに対して不純物や異物を除去する処理を行うガスフィルター(51)手段と、
     前記窒素添加レス・オゾン発生器内の圧力である内部圧力を自動制御するオートプレッシャコントローラ(APC)(4)を含む圧力検出・圧力調整手段、及び
     前記窒素添加レス・オゾン発生器が出力するオゾンガスのオゾン濃度値を検出するオゾン濃度計(5)を含むオゾン濃度検知手段のうち、少なくとも2つの手段を有し、
     前記窒素添加レス・オゾン発生器に外部から原料ガスを供給するための原料ガス供給口(14)と、
     前記窒素添加レス・オゾン発生器から前記制御手段の少なくとも一部を介して得られるオゾンガスを外部に出力するオゾンガス出力口(15)と、
     外部から得られる冷却水を前記窒素添加レス・オゾン発生器に供給及び排出するための冷却水入出口(13A,13B)とをさらに備え、
     前記窒素添加レス・オゾン発生ユニットは、
     前記窒素添加レス・オゾン発生器、前記オゾン電源、前記制御手段、前記原料ガス供給口、前記オゾンガス出力口及び前記冷却水入出口を集約して一体化構造で形成したことを特徴とする、
    窒素添加レス・オゾン発生ユニット。
PCT/JP2011/059164 2011-04-13 2011-04-13 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム WO2012140747A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011515616A JP5524201B2 (ja) 2011-04-13 2011-04-13 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム
US14/110,828 US9067789B2 (en) 2011-04-13 2011-04-13 Nitrogen-free ozone generation unit and ozone gas supply system
CN201180070004.1A CN103459308B (zh) 2011-04-13 2011-04-13 无氮添加臭氧产生单元及臭氧气体供给系统
EP11863582.0A EP2698343A4 (en) 2011-04-13 2011-04-13 NITROGEN FREE OZONE GENERATOR AND OZONE GAS SUPPLY SYSTEM
PCT/JP2011/059164 WO2012140747A1 (ja) 2011-04-13 2011-04-13 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム
KR1020137024284A KR101522483B1 (ko) 2011-04-13 2011-04-13 질소 첨가리스·오존 발생 유닛 및 오존 가스 공급 시스템
TW100121781A TWI449660B (zh) 2011-04-13 2011-06-22 無添加氮之臭氧產生單元及臭氧氣體供給系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059164 WO2012140747A1 (ja) 2011-04-13 2011-04-13 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム

Publications (1)

Publication Number Publication Date
WO2012140747A1 true WO2012140747A1 (ja) 2012-10-18

Family

ID=47008954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059164 WO2012140747A1 (ja) 2011-04-13 2011-04-13 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム

Country Status (7)

Country Link
US (1) US9067789B2 (ja)
EP (1) EP2698343A4 (ja)
JP (1) JP5524201B2 (ja)
KR (1) KR101522483B1 (ja)
CN (1) CN103459308B (ja)
TW (1) TWI449660B (ja)
WO (1) WO2012140747A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160798A (ja) * 2014-02-28 2015-09-07 日野自動車株式会社 オゾン発生装置
JP2018193265A (ja) * 2017-05-16 2018-12-06 東芝三菱電機産業システム株式会社 オゾンガス発生装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594944B (zh) * 2014-02-26 2017-08-11 財團法人工業技術研究院 臭氧監控模組、方法及臭氧產生裝置
KR101913985B1 (ko) * 2014-10-29 2018-10-31 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 라디칼 가스 발생 시스템
JP6616910B2 (ja) * 2016-12-19 2019-12-04 東芝三菱電機産業システム株式会社 ガス発生装置
CN110997556B (zh) * 2017-08-09 2023-06-13 东芝三菱电机产业系统株式会社 臭氧气体利用系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025104A (ja) * 1996-07-10 1998-01-27 Mitsubishi Electric Corp オゾン発生装置
JP2003089508A (ja) * 2001-09-17 2003-03-28 Toshiba Corp オゾン発生システム
JP2003212517A (ja) * 2002-01-17 2003-07-30 Mitsubishi Electric Corp ガス供給システム及びガス供給方法
JP2005080263A (ja) 2003-09-04 2005-03-24 Nikon Corp 黒レベル補正装置、及び電子カメラ
WO2005080263A1 (ja) * 2004-02-25 2005-09-01 Toshiba Mitsubishi-Electric Industrial Systems Corporation オゾン発生装置およびオゾン発生方法
JP2009500855A (ja) 2005-07-07 2009-01-08 エム ケー エス インストルメンツ インコーポレーテッド マルチ・チャンバ・ツールのためのオゾン・システム
WO2011065088A1 (ja) * 2009-11-26 2011-06-03 東芝三菱電機産業システム株式会社 オゾンガス供給システム
WO2011065087A1 (ja) * 2009-11-26 2011-06-03 東芝三菱電機産業システム株式会社 オゾンガス供給システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954321A (en) 1989-02-24 1990-09-04 Scott Jensen Industries, Inc. Method and apparatus for ozone generation
EP1109210A1 (en) * 1999-05-28 2001-06-20 Tokyo Electron Limited Ozone treatment device of semiconductor process system
CN101142022B (zh) * 2005-07-15 2011-06-15 东芝三菱电机产业系统株式会社 光催化材料生产方法和光催化材料生产设备
WO2008004278A1 (fr) 2006-07-04 2008-01-10 Toshiba Mitsubishi-Electric Industrial Systems Corporation Procédé et dispositif de concentration / dilution de gaz spécifique
CN101878182B (zh) 2007-11-30 2013-01-09 三菱电机株式会社 臭氧浓缩装置
EP2690062B1 (en) * 2011-03-24 2017-08-09 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ozone gas supply system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025104A (ja) * 1996-07-10 1998-01-27 Mitsubishi Electric Corp オゾン発生装置
JP2003089508A (ja) * 2001-09-17 2003-03-28 Toshiba Corp オゾン発生システム
JP2003212517A (ja) * 2002-01-17 2003-07-30 Mitsubishi Electric Corp ガス供給システム及びガス供給方法
JP2005080263A (ja) 2003-09-04 2005-03-24 Nikon Corp 黒レベル補正装置、及び電子カメラ
WO2005080263A1 (ja) * 2004-02-25 2005-09-01 Toshiba Mitsubishi-Electric Industrial Systems Corporation オゾン発生装置およびオゾン発生方法
JP2009500855A (ja) 2005-07-07 2009-01-08 エム ケー エス インストルメンツ インコーポレーテッド マルチ・チャンバ・ツールのためのオゾン・システム
WO2011065088A1 (ja) * 2009-11-26 2011-06-03 東芝三菱電機産業システム株式会社 オゾンガス供給システム
WO2011065087A1 (ja) * 2009-11-26 2011-06-03 東芝三菱電機産業システム株式会社 オゾンガス供給システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698343A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160798A (ja) * 2014-02-28 2015-09-07 日野自動車株式会社 オゾン発生装置
JP2018193265A (ja) * 2017-05-16 2018-12-06 東芝三菱電機産業システム株式会社 オゾンガス発生装置

Also Published As

Publication number Publication date
CN103459308B (zh) 2016-02-10
US9067789B2 (en) 2015-06-30
EP2698343A1 (en) 2014-02-19
TWI449660B (zh) 2014-08-21
JPWO2012140747A1 (ja) 2014-07-28
TW201240910A (en) 2012-10-16
KR101522483B1 (ko) 2015-05-21
JP5524201B2 (ja) 2014-06-18
KR20130129284A (ko) 2013-11-27
US20140030152A1 (en) 2014-01-30
EP2698343A4 (en) 2014-10-15
CN103459308A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5588974B2 (ja) オゾンガス供給システム
KR101392683B1 (ko) 오존 발생 유닛 및 오존 가스 공급 시스템
WO2011065087A1 (ja) オゾンガス供給システム
JP5524201B2 (ja) 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム
JP2014122157A (ja) オゾン発生ユニット及びオゾンガス供給システム
JP5627028B2 (ja) オゾン発生ユニット及びオゾンガス供給システム
JP5627027B2 (ja) オゾンガス供給システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011515616

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137024284

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011863582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011863582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14110828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE