WO2011065087A1 - オゾンガス供給システム - Google Patents

オゾンガス供給システム Download PDF

Info

Publication number
WO2011065087A1
WO2011065087A1 PCT/JP2010/065209 JP2010065209W WO2011065087A1 WO 2011065087 A1 WO2011065087 A1 WO 2011065087A1 JP 2010065209 W JP2010065209 W JP 2010065209W WO 2011065087 A1 WO2011065087 A1 WO 2011065087A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
gas
ozone gas
flow rate
supply system
Prior art date
Application number
PCT/JP2010/065209
Other languages
English (en)
French (fr)
Inventor
紀幸 中村
沖原 雄二郎
西津 徹哉
四元 初男
田畑 要一郎
伊藤 信之
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to EP14161976.7A priority Critical patent/EP2749528B1/en
Priority to US13/505,677 priority patent/US8778274B2/en
Priority to EP10832934.3A priority patent/EP2505549B1/en
Priority to CN201080053598.0A priority patent/CN102666372B/zh
Priority to KR1020127012928A priority patent/KR101378286B1/ko
Priority to JP2011543144A priority patent/JP5627027B2/ja
Publication of WO2011065087A1 publication Critical patent/WO2011065087A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/90Control of the process

Definitions

  • the present invention relates to an ozone gas supply system that improves the quality of supplied raw material gas, improves the quality of output ozone gas, and controls gas flow rate / concentration to supply stable ozone gas to a plurality of ozone treatment apparatuses.
  • each of the ozone generators When ozone gas is supplied to a multi-ozone treatment apparatus composed of a plurality of ozone treatment apparatuses, each of the ozone generators has a purity of 99.99% and a dew point of -70 corresponding to the plurality of ozone treatment apparatuses.
  • Ozone processing equipment that supplies raw material gases such as high-purity oxygen gas at °C or less, has a plurality of ozone generation mechanisms (means) including an ozone power source, a flow rate controller (MFC), etc., and each ozone generation mechanism corresponds independently It is generally considered to construct an ozone gas supply system that supplies ozone gas.
  • the ozone gas supply system supplies a raw material gas such as high-purity oxygen gas with a dew point of ⁇ 70 ° C. or less to an ozone generator, such as an MFC that controls the ozone power source, the ozone gas, or the raw material gas flow rate.
  • a raw material gas such as high-purity oxygen gas with a dew point of ⁇ 70 ° C. or less
  • an ozone generator such as an MFC that controls the ozone power source, the ozone gas, or the raw material gas flow rate.
  • Output from the ozone generator by means of pressure adjustment such as a raw material gas piping system supplied to the ozone generator via the flow rate adjusting means and an auto pressure controller (APC) for controlling the gas atmosphere pressure in the ozone generator.
  • APC auto pressure controller
  • the ozone gas detector which detects a density
  • each of the plurality of ozone treatment apparatuses includes an ozone generator, an ozone power source, a flow rate controller (MFC), etc. It is generally considered to construct an ozone gas supply system that supplies ozone gas to an ozone treatment device that each ozone generation mechanism independently supports.
  • MFC flow rate controller
  • the ozone gas supply system consists of an ozone generator, an ozone power source, a raw material gas piping system that supplies the ozone generator via an MFC that controls the flow rate of the raw material gas, an ozone concentration detector for the ozone gas output from the ozone generator Moreover, the output gas piping system etc. which had the ozone flow meter were provided for the number of systems of the multi-ozone treatment apparatus.
  • Patent Document 1 As an ozone supply method to a multi-ozone treatment apparatus, for example, as disclosed in Patent Document 1, a capacity of a single ozone generator is increased and a piping system that outputs ozone gas is used. There has been adopted an ozone gas supply system that separates a plurality of pipes and outputs ozone gas having a predetermined flow rate and concentration to each of the multiple ozone treatment apparatuses in a stepwise manner.
  • FIG. 24 is a block diagram showing an internal configuration of a conventional ozone gas supply system 70 assumed from the contents disclosed in Patent Document 1. As shown in FIG.
  • MFC flow rate controller
  • the output gas piping system after the output piping having the valve switch 61, the ozone concentration meter 75, and the ozone flow meter 67 for adjusting the opening and closing of the valve by the fluctuation of the pressure of the piping system and the ozone generator 71 is separated into a plurality of piping. ing.
  • the ozone gas supply system 70 is provided with individual ozone gas flow rate controllers (MFC) 68-1 to 68-n for each of the separated output gas piping systems, and a plurality of ozone gas supply systems 70 corresponding to the individual MFCs 68-1 to 68-n are provided.
  • the ozone treatment devices 12-1 to 12-n are configured to supply ozone gas independently. An amount of ozone gas exceeding the ozone gas supplied by each of the individual MFCs 68-1 to 68-n is discharged by the flow rate discharge unit 69.
  • a conventional ozone gas supply system for supplying ozone to a multi-ozone treatment apparatus is configured as described above, and supplies a raw material gas to an ozone generator, outputs ozone gas from one ozone generator 71, and outputs a piping system. Is configured to distribute piping. For this reason, the ozone gas flow rate and ozone concentration must be kept constant and supplied to the multiple ozone treatment devices (ozone treatment devices 12-1 to 12-n), and the ozone supply condition to each ozone treatment device is only one condition. The ozone gas flow rate and concentration cannot be variably controlled independently for each of the plurality of ozone treatment apparatuses.
  • the present invention has been made to solve the above-described problems, and can supply ozone gas to each ozone treatment apparatus by independently controlling the flow rate and concentration of ozone gas, and can supply ozone gas with high reliability.
  • the purpose is to obtain a simple ozone gas supply system.
  • the ozone gas supply system is an ozone gas supply system that controls the gas flow rate and concentration and supplies ozone gas to each of a plurality of ozone treatment apparatuses, comprising a plurality of ozone generation units, wherein the plurality of ozone generation units are An ozone generator that generates ozone gas; an ozone power source that controls power supplied to the ozone generator; a mass flow controller (MFC) that controls a flow rate of a raw material gas input to the ozone generator; and the ozone generator An auto pressure controller (APC) that automatically controls the internal pressure that is the internal pressure, an ozone concentration meter that detects the ozone concentration value of the ozone gas output from the ozone generator, and the ozone at a predetermined set power amount as an initial operation Drive the power supply, and the ozone concentration detected by the ozone concentration meter after a predetermined time
  • An ozone control unit that PID-controls the power supplied by the ozone power source
  • a plurality of ozone gas outputs are received, and one or a plurality of combinations of the plurality of ozone gas outputs are selectively used for any ozone treatment device among the plurality of ozone treatment devices by opening / closing operations of a plurality of ozone gas control valves provided therein.
  • the ozone gas output flow rate management unit capable of executing the ozone gas output flow rate control to output to the processing ozone gas event signal from the plurality of ozone processing devices, the output contents of the ozone gas of each of the plurality of ozone generation units are controlled,
  • the ozone gas output flow rate control is performed for the ozone gas output flow rate management unit.
  • Cormorants further comprising an ozone gas output flow management unit control unit.
  • the ozone gas supply system is configured to selectively output one or a combination of two or more of the plurality of ozone gas outputs to any one of the plurality of ozone processing apparatuses by opening / closing operations of the plurality of ozone gas control valves. It has an ozone gas output flow rate management unit that can be controlled.
  • the ozone gas flow rate / concentration can be independently controlled.
  • ozone gas with various gas flow rates and concentrations can be supplied by supplying a combination of two or more ozone gas outputs to one ozone processing apparatus.
  • the remaining ozone generation units that operate normally can supply ozone gas to any of the plurality of ozone treatment apparatuses, so that reliability is improved. High ozone gas supply can be realized.
  • FIG. 1 It is a block diagram which shows the structure of the ozone gas supply system which is Embodiment 1 of this invention. It is explanatory drawing which shows the internal structure of the ozone gas output flow volume management unit in the ozone gas supply system shown in FIG. 4 is an explanatory view schematically showing a display state of a main operation panel in the ozone gas supply system of Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the ozone control part in the ozone generation unit shown in FIG. It is explanatory drawing which shows typically the memory content of the data memory in the ozone generation unit shown in FIG. It is a graph which shows the output concentration control waveform which performed output concentration control with respect to the ozone generation unit shown in FIG.
  • FIG. 5 is a circuit diagram showing details of an internal configuration of an ozone power source provided in an ozone generation unit according to a second embodiment. It is a perspective view which shows typically the combined structure of the ozone generation unit of Embodiment 2.
  • FIG. 6 It is explanatory drawing which shows the internal structure of the ozone gas output flow volume management unit by Embodiment 3 in the ozone gas supply system shown in FIG. 6 is a perspective view schematically showing a combined structure of an ozone generation unit according to Embodiment 3.
  • FIG. 5 is a circuit diagram showing details of an internal configuration of an ozone power source provided in an ozone generation unit according to a second embodiment. It is a perspective view which shows typically the combined structure of the ozone generation unit of Embodiment 2.
  • FIG. 6 It is explanatory drawing which shows the internal structure of the ozone gas output flow volume management unit by Embodiment 3 in the ozone gas supply system shown in FIG. 6 is a perspective view schematically showing a combined structure
  • FIG. 1 It is a block diagram which shows the structure of the ozone gas supply system which is Embodiment 4 of this invention. It is a block diagram which shows the structure of the ozone gas supply system which is Embodiment 5 of this invention. It is a perspective view which shows typically the combined structure of the ozone generation unit of Embodiment 5.
  • FIG. It is a block diagram which shows the structure of the ozone gas supply system which is Embodiment 6 of this invention. It is a perspective view which shows typically the combined structure of the ozone generation unit of Embodiment 6.
  • FIG. It is a block diagram which shows the structure of the other aspect of the ozone gas supply system which is Embodiment 6 of this invention.
  • FIG. 10 is a perspective view schematically showing a combined structure of an ozone generation unit according to an eighth embodiment. It is a block diagram which shows the structure of the other aspect of the ozone gas supply system which is Embodiment 6 of this invention. It is a perspective view which shows typically the combined structure of the other aspect of the ozone generation unit of Embodiment 6.
  • FIG. 10 is a perspective view schematically showing a combined structure of an ozone generation unit according to an eighth embodiment. It is a block diagram which shows the structure of the other aspect of the ozone gas supply system which is Embodiment 6 of this invention. It is a perspective view which shows typically the combined structure of the other aspect of the ozone generation unit of Embodiment 6.
  • FIG. 1 It is a block diagram which shows the internal structure of the conventional ozone gas supply system. It is explanatory drawing which shows typically the conventional structure corresponding to the ozone generation unit of Embodiment 2. FIG. It is explanatory drawing which shows the relationship between the dew point of source gas, and the moisture content contained in source gas.
  • FIG. 1 is a block diagram showing a configuration of an ozone gas supply system according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing an internal configuration of an ozone gas output flow rate management unit in the ozone gas supply system shown in FIG.
  • FIG. 3 is an explanatory view schematically showing a display state of the main operation panel in the ozone gas supply system of the first embodiment.
  • FIG. 4 is a block diagram showing a configuration of an ozone control unit in the ozone generation unit shown in FIG. FIG.
  • FIG. 5 is an explanatory diagram schematically showing the storage contents of the data memory in the ozone generation unit shown in FIG. 1 (the concentration of the ozone generation unit, initial conditions for controlling the flow rate, etc.).
  • FIG. 6 is a graph showing an output concentration control waveform obtained by performing output concentration control on the ozone generation unit 7 shown in FIG.
  • the ozone gas supply system 10 has n ( ⁇ 2) ozone generation units 7-1 to 7-n inside.
  • n ⁇ 2 ozone generation units 7-1 to 7-n inside.
  • the ozone generation unit 7-2 will be taken up as a representative and the internal configuration thereof will be described with reference to FIG.
  • the inside of the ozone generator 1 is filled with a gas containing oxygen gas, and high frequency high voltages HV and LV are applied between the electrodes in the ozone generator 1 from the ozone power source 2 in the ozone gas supply system 10.
  • the ozone power source 2 includes a converter 2a, an inverter 2b, and a high voltage circuit unit 2c, which will be described in detail later.
  • the ozone generator 1 has been described with a silent discharge type ozone generator structure as a representative.
  • the ozone generation function includes an ozone generator structure using creeping discharge or glow discharge, or an ultra-high frequency.
  • an ozone generator structure using microwave discharge there is also an ozone generator using an electrolytic medium, and these ozone generators may be used.
  • a raw material gas having a predetermined raw material gas flow rate Q obtained from the raw material gas supply port 14 of the ozone gas supply system 10 and the raw material gas supply port 14-2 of the ozone generation unit 7-2 is supplied to ozone through a gas flow rate controller (MFC) 3.
  • Source gas is supplied to the generator 1 at a constant flow rate.
  • the pressure in the ozone generator 1 is adjusted by finely adjusting the means for detecting the gas pressure in the generator and the amount of ozone gas output to the detected generator.
  • the ozone generator system has a function to make it constant.
  • an automatic pressure regulator (APC) 4 that automatically adjusts the generator pressure to a predetermined pressure, and this automatic pressure regulator (APC) 4 is provided in the ozone gas output piping gas line of the ozone generator. ing.
  • the ozone concentration meter 5 and the generator pressure are automatically set.
  • the ozone (oxygenated) gas having a predetermined ozone concentration C is continuously supplied from the ozone gas output port 15-2 to the outside of the ozone generation unit 7-2 through an automatic pressure regulator (APC) 4 that adjusts the pressure to a predetermined pressure.
  • APC automatic pressure regulator
  • the ozone gas output piping gas line may be provided with an ozone gas flow rate controller (MFC) for outputting a constant output ozone gas flow rate.
  • MFC ozone gas flow rate controller
  • This gas flow rate controller (MFC) 3 controls the raw material gas flow rate supplied to the ozone generator to a constant value.
  • the APC 4 automatically controls the gas pressure of the ozone generator 1 to a constant value by controlling the pressure of the ozone gas flowing in the ozone gas output piping path of the ozone generator 1.
  • the ozone generation unit 7-2 includes an ozone generator 1 having means for generating ozone gas, an ozone power source 2 having means for supplying predetermined power to the ozone gas, and means for controlling the supplied raw material gas flow rate to a constant value.
  • MFC 3 having, APC 4 having means for controlling the pressure value in the ozone generator 1 to a constant value, gas filter 51 having means for trapping impurity gas of ozone gas to be output, ozone having means for detecting the ozone concentration value to be output
  • a plurality of functional means such as the densitometer 5 are integrated to constitute a unit package unit.
  • the configurations of the ozone generation units 7-1 to 7-n are all the same (other than 7-2 are not shown), and have the internal configuration described as a representative of the ozone generation unit 7-2.
  • a water leakage sensor 6 is provided on the bottom surface of each ozone generation unit 7 (ozone generation units 7-1 to 7-n), and the presence or absence of water leakage in each ozone generation unit 7 is monitored. That is, information obtained from the water leakage sensor 6 is obtained by the EMO circuit (emergency stop circuit) 81 in the system management unit 8 and monitored under the control of the system management control unit 84.
  • the system control unit 8 provided in the ozone gas supply system 10 receives detection information from the exhaust sensor 23 and the ozone leak sensor 24 for evacuating the apparatus from the exhaust duct 11 and monitoring it in a negative pressure state. Yes.
  • the system management control unit 84 instructs all the ozone generation units 7-1 to 7-n to stop.
  • Ozone generation unit control signals 86-1 to 86-n are given to stop the operation of the ozone generation units 7-1 to 7-n.
  • system management control unit 84 in the system overall management unit 8 receives processing ozone gas event signals 16-1 to 16-n including the required ozone flow rate Qs12 and the required ozone concentration Cs12 from the ozone processing devices 12-1 to 12-n. Is received via the user information I / F 83.
  • the system management control unit 84 sends the ozone generation unit control signals 86-1 to 86-n to the ozone generation units 7-1 to 7-n based on the instruction contents of the processing ozone gas event signals 16-1 to 16-n.
  • the control signal S8 is output to the ozone gas output flow rate management unit 9.
  • the flow rate and concentration of the ozone gas output from each of the ozone generation units 7-1 to 7-n are controlled, and the open / close control of the ozone gas control valve 9a and the like in the ozone gas output flow rate management unit 9 is performed, thereby processing ozone gas events. It is possible to supply ozone gas having a gas flow rate and concentration in accordance with the instruction contents of the signals 16-1 to 16-n to the ozone treatment apparatuses 12-1 to 12-n.
  • the system supervision management unit 8 will be described in more detail.
  • the system management unit 8 includes an EMO circuit 81 that performs an emergency stop of the apparatus, a unit information I / F 82, a user information I / F 83, a system management control unit 84, and a main operation panel 85.
  • the EMO circuit 81 is a circuit that monitors the abnormal signal of the system obtained from the water leakage sensor 6 of each ozone generation unit 7 as described above. Specifically, when the EMO circuit 81 receives the detection information of the water leakage abnormality from the water leakage sensor 6, the information is transmitted to the system management control unit 84, and the water leakage sensor 6 that has detected the water leakage abnormality is transmitted from the system management control unit 84. An ozone generation unit control signal 86 (any one of the ozone generation unit control signals 86-1 to 86-n) is given to the corresponding ozone generation unit 7, and the ozone generation unit 7 is stopped.
  • the unit information I / F 82 exchanges unit information signals 17-1 to 17-n from the ozone generation units 7-1 to 7-n.
  • the user information I / F 83 includes the processing ozone gas event signals 16-1 to 16-n (command ozone flow rate Qs12, request ozone concentration Cs12, command signals) from the ozone processing apparatuses 12-1 to 12-n. Instructing operation information Y, device number, etc.) is received.
  • the system management control unit 84 outputs a control signal S8 that is a command for opening and closing the ozone gas control valves (9a, 9b, 9c, 9ab, 9bc, 9ca) in the ozone gas output flow rate management unit 9, and the ozone gas output flow rate Performs overall control within the management unit 9.
  • the system management control unit 84 also exchanges information with the main operation panel 85.
  • the ozone gas supply system 10 has a cooling water inlet 13A and a cooling water outlet 13B. From the cooling water inlet 13A through the cooling water inlets 13a-1 to 13a-n, the ozone generating units 7-1 to 7-1. Cooling water from an external cooling device (not shown) is taken into 7-n, and the cooled water from the ozone generation units 7-1 to 7-n is discharged through the cooling water outlets 13b-1 to 13b-n. Output from 13B to the outside.
  • the ozone gas supply system 10 has a raw material gas supply port 14, and from the raw material gas supply port 14 through the raw material gas supply ports 14-1 to 14-n to the ozone generation units 7-1 to 7-n from the outside. Is taken in.
  • the ozone gas output ports 15-1 to 15-n of the ozone generation units 7-1 to 7-n are connected to the internal ozone gas output flow rate management unit 9, and the ozone gas output flow rate management unit 9 to the ozone gas output ports 25-1 to 25-
  • the ozone gas is output to the outside of the ozone gas supply system 10 through n.
  • the processing ozone gas event signals 16-1 to 16-n output from the n ozone processing apparatuses 12-1 to 12-n are taken into the system management control unit 84 via the user information I / F 83.
  • the processing ozone gas event signal 16 (16-1 to 16-n) indicates the required ozone flow rate Qs12, the raw material gas set concentration Cs12, the operation information Y, and the like.
  • the system management control unit 84 outputs ozone generation unit control signals 86-1 to 86-n for controlling the ozone generation units 7-1 to 7-n based on the processing ozone gas event signals 16-1 to 16-n.
  • Ozone generation units 7-1 to 7-n have ozone generation unit operation panels 85-1 to 85-n. Further, unit information signals 17-1 to 17-n are transmitted from the ozone generation units 7-1 to 7-n to the system management control unit 84 via the unit information I / F 82 of the system management unit 8.
  • the unit information signal 17 (17-1 to 17-n) is an information signal for instructing a failure or an operation / stopped state of the ozone generator 1 in each ozone generation unit 7.
  • the operation information Y included in the processing ozone gas event signal 16 corresponds to a user information signal indicating a failure or operation / stop state information signal of each ozone processing device 12 (12-1 to 12-n).
  • the information is taken into the user information I / F 83 in the system management unit 8.
  • the ozone generation units 7-1 to 7-n each have an ozone control unit 19.
  • the ozone control unit 19 outputs the set flow rate Qs of the raw material gas flow rate, the detected flow rate Q, the set pressure Ps of the generator pressure of the ozone generator 1, the detected pressure P, and the respective ozone generation units 7. It is a control unit that receives the ozone concentration C and controls the ozone power source 2 to control the ozone concentration, gas flow rate, etc. of the ozone gas generated from the ozone generator 1.
  • the ozone control unit 19 exchanges signals with the ozone concentration meter 5, the MFC 3, the APC 4, and the ozone power source 2.
  • the ozone gas output flow rate management unit 9 has ozone gas input ports 29-1 to 29-n corresponding to the output portions of the ozone generation units 7-1 to 7-n.
  • Ozone gas output ports 39-1 to 39-n are provided corresponding to the input portions 12-1 to 12-n.
  • the ozone gas on / off valves 22-1 to 22-n are provided between the ozone gas output ports 39-1 to 39-n (ozone gas output ports 25-1 to 25-n) and the ozone treatment devices 12-1 to 12-n. Is inserted.
  • the ozone treatment devices 12-1 to 12-n open the ozone gas on-off valves 22-1 to 22-n when supplying ozone gas.
  • This ozone gas supply system 10 is a system provided with n ozone gas output ports of ozone gas output ports 39-1 to 39-n, but the ozone gas output which is not output when the number of ozone treatment devices on the user side is less than n. This can be dealt with by using a pipe joint at the port 39 as a cap joint and plugging the output gas.
  • the ozone gas output flow rate management unit 9 has ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca inside, and the ozone gas control valves 9a, 9b, 9c are normally open (NO), the ozone gas control valves 9bc, 9ab and 9ca are normally closed (NC).
  • the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca electric valves or pneumatic valves that can be opened / closed by electricity or air pressure can be considered.
  • the ozone gas control valves 9a to 9c are inserted between the ozone gas input ports 29-1 to 29-n and the ozone gas output ports 39-1 to 39-n of the ozone generation units 7-1 to 7-n.
  • the ozone gas control valve 9ab is provided between the outputs of the ozone gas control valves 9a and 9b
  • the ozone gas control valve 9bc is provided between the outputs of the ozone gas control valves 9b and 9c
  • the ozone gas control valve 9ca is between the outputs of the ozone gas control valves 9c and 9a.
  • the open state and the closed state of the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca are controlled.
  • FIG. 2 among the ozone treatment apparatuses 12-1 to 12-n, only one ozone treatment apparatus 12-2 in which the ozone gas on-off valve 22-2 is opened (blacked out) is in operation.
  • the ozone gas flow rate for 12-2 shows the state of the ozone gas output flow rate management unit 9 when 30 SLM (L / min) ozone gas is supplied. That is, the ozone treatment device 12-2 instructs the ozone flow rate of 30 SLM by the required ozone flow rate Qs12 in the treatment ozone gas event signal 16-2.
  • the system management control unit 84 in the system management unit 8 controls the ozone generation unit control signals 86-1 to 86-n to supply 10 SLM ozone gas from the ozone generation units 7-1 to 7-n, respectively. .
  • the system management control unit 84 controls the open / closed state of the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca in the ozone gas output flow rate management unit 9 by the control signal S8.
  • the control signal S8 for opening the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab (blacked out) and closing the ozone gas control valve 9ca (white) is output to the ozone gas output flow rate management unit 9. To do.
  • the ozone treatment apparatus 12 that is not used is described as being closed by the ozone gas on-off valves 22-1 to 22-n.
  • the ozone treatment apparatus that is not used is not supplied with ozone gas 25-1 to 25- It may be forcibly plugged by a pipe joint at the portion n.
  • the system management control unit 84 supplies ozone gas at a flow rate of 10 SLM from the ozone generation units 7-1 to 7-n by the ozone generation unit control signals 86-1 to 86-n, and the ozone gas by the control signal S8.
  • ozone gas having a gas flow rate of 30 SLM (10 SLM ⁇ 3) can be supplied to the ozone treatment device 12-2.
  • an ozone gas control valve is associated with the ozone generation units 7-1 to 7-n and the ozone treatment devices 12-1 to 12-n.
  • the open / closed states of 9a, 9b, 9c, 9bc, 9ab, and 9ca are shown.
  • the required ozone flow rate Qs12 (SLM) and the required ozone concentration Cs12 (g / m 3 ) of the ozone treatment apparatuses 12-1 to 12-n are shown.
  • ozone gas with ozone flow rate 10 (SLM) and ozone concentration 280 (g / m 3 ) is output from the ozone generation units 7-1 to 7-n, respectively, and the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab are opened.
  • ozone gas control valve 9ca By closing the ozone gas control valve 9ca, ozone gas having an ozone flow rate of 30 (SLM) and an ozone concentration of 280 (g / m 3 ) can be supplied to the ozone treatment device 12-2.
  • the ozone control unit 19 As shown in FIG. 4, the ozone control unit 19 provided in each ozone generation unit 7 controls the ozone generation content (gas flow rate, ozone gas concentration) of the ozone generator 1 by controlling the ozone power source 2.
  • the ozone power source 2 includes a converter 2a that rectifies commercial AC voltages AC1 ⁇ to AC3 ⁇ , an inverter 2b that converts the DC voltage into a high frequency optimum for the ozone generator 1, controls the output voltage, and supplies predetermined power to the ozone generator 1
  • the high voltage circuit unit 2c and the current sensor 2d are used to boost the voltage output from the inverter 2b to a high voltage up to a voltage for generating discharge for generating the ozone generator 1.
  • the converter 2a, the inverter 2b, and the high voltage circuit unit 2c are connected in series, and a current sensor 2d is interposed between the converter 2a and the inverter 2b.
  • the ozone control unit 19 controls the ozone gas content (gas flow rate Q, ozone concentration C) generated in the ozone generator 1 by using the high frequency / high voltage HV and LV output from the high voltage circuit unit 2 c as the ozone generator 1.
  • the ozone gas having a predetermined ozone amount is generated from the oxygen gas as the raw material gas by a discharge phenomenon.
  • the ozone controller 19 inverts the source gas flow rate setting device 1S1, the selector 1S2, the ozone concentration setting device 1S3, the analog switches 1S4-A to 1S4-F that are controlled by turning on and off the respective control signals, and the respective control signals. Inverters 1S5-1 and 1S5-2 for converting signals are provided.
  • the ozone control unit 19 receives a signal of the raw material gas set flow rate Qs, the set concentration Cs and the set pressure Ps of the ozone generator 1 and stores a set power Ws necessary for generating an optimal ozone amount.
  • the current signal converter 1S7 converts the set power Ws into a current signal for injecting a current necessary for the ozone power source.
  • the ozone control unit 19 drives the inverter 2b with an initial current command, receives a source gas flow rate Q and a generated ozone concentration C that are actually flowing by the MFC 3 and the ozone concentration meter 5, and switches to PID control.
  • a PID control circuit 1S9 that performs PID control of the ozone concentration C and the gas set concentration Cs based on the comparison result is provided.
  • the ozone control unit 19 receives the ozone generation unit control signal 86 from the system management control unit 84, and based on the required ozone flow rate Qs8, the required ozone concentration Cs8, and the operation information Y8 indicated by the ozone generation unit control signal 86, An event adjuster 1S10 that adjusts the set flow rate Qs and the set ozone concentration Cs signal is provided.
  • the ozone control unit 19 includes an initial pulse width setting unit 1S12 that sets an initial pulse width for turning on the inverter 2b to control injection power based on the output current of the pressure setting unit 1S11, the current signal converter 1S7, and the ozone concentration.
  • a current converter that receives the ozone concentration C and the set ozone concentration Cs detected by the total 5 and converts them into a current signal for controlling the injection power of the inverter 2b based on the comparison result between the ozone concentration C and the raw material gas set concentration Cs. 1S13.
  • Data memory 1S6 As shown in FIG. 5, the data memory 1S6 that stores the initial conditions for controlling the ozone concentration and the ozone flow rate of the ozone generation unit 7 has a plurality of memory banks BK1 using the set pressure Ps of the ozone generator 1 as a parameter. (BK4 is shown for convenience of explanation in FIG. 5), and when the set pressure Ps of the ozone generator 1 is determined, the memory bank BKx (1 Any one of 4) is selected.
  • the selected memory bank BK is divided into a plurality of units for each ⁇ Q, with the horizontal axis (X axis) being the set flow rate Qs of the ozone gas flow rate.
  • the vertical axis (Y axis) is the set concentration Cs of ozone concentration, and is divided into a plurality for each ⁇ C.
  • the data memory 1S6 receives signals of the set flow rate Qs and the set concentration Cs that function as addresses on the horizontal axis (X axis) and the vertical axis (Y axis), and has a predetermined memory address determined by the X axis and Y axis addresses.
  • the set power amount W (A11 to A17,..., A61 to A67) necessary for generating the ozone amount is written, and the set power amount Ws is output to the current signal converter 1S7 in the ozone amount control 19 To do.
  • the current signal is converted into a current signal by the current signal converter 1S7, and the current signal is given to the initial pulse width setting unit 1S12 via the analog switch 1S4-E, and the set power amount Ws is realized by the initial pulse width setting unit 1S12.
  • a pulse signal Tw having a predetermined frequency and a predetermined pulse width is output to the inverter 2b.
  • the output concentration control waveform obtained by performing the output concentration control of the ozone generation unit 7 is defined by the set time To corresponding to the operation command signal (included in the operation information Y8) to the ozone generation unit 7.
  • the injected power of the inverter 2b is set based on the set power amount Ws from the data memory 1S6.
  • the PID control by the PID control circuit 1S9 is switched by the time control by the timer 1S8.
  • the PID control circuit 1S9 determines the pulse width of the pulse signal Tw based on the current signal of the current converter 1S13 (a signal determined based on the comparison result between the ozone gas concentration C (detected from the ozone concentration meter 5) and the gas set concentration Cs).
  • ⁇ Tw PID control of the injected power of the inverter 2b is executed.
  • the ozone concentration (C) generated from the ozone generator 1 shows the control response waveform shown in FIG.
  • the event adjuster 1S10 starts the timer 1S8 with the input of an operation command (not shown) as a trigger. At this time, the event adjuster 1S10 controls the source gas flow rate comparator 1S2 so as to select the source gas set flow rate Qs of the source gas flow rate setter 1S1, and the analog switches 1S4-A and 1S4-D are turned on. The switches 1S4-B and 1S4-C are turned off.
  • the timer 1S8 immediately after startup turns on the analog switch 1S4-E and turns off the analog switch 1S4-F.
  • the set pressure Ps is obtained from the pressure setter 1S11
  • the source gas set flow rate Qs is obtained from the source gas flow rate setter 1S1
  • the source gas set concentration Cs is obtained from the ozone concentration setter 1S3.
  • the set power amount Ws is output to the current signal converter 1S7.
  • the initial pulse width setting device 1S12 generates a pulse signal Tw having an initial pulse width.
  • On / off of the inverter 2b is controlled according to "H" and "L" of the pulse signal Tw.
  • the initial control based on the set power amount Ws of the data memory 1S6 is executed within the set time To when the timer 1S8 is in the operating state.
  • the PID control circuit 1S9 reflects the comparison result between the ozone concentration C and the gas set concentration Cs obtained from the ozone concentration meter 5 based on the current signal from the current converter 1S13, and sets the pulse width of the pulse signal Tw.
  • PID control mainly for making a minute displacement ( ⁇ Tw) is performed on the ozone power source 2.
  • the PID control circuit 1S9 varies the minute deviation ⁇ Tw also by the detection current I of the current sensor 2d.
  • the operation is switched to PID control (W).
  • the event adjuster 1S10 starts the timer 1S8 with the input of the ozone generation unit control signal 86 indicating the required ozone flow rate Qs8, the required ozone concentration Cs8 and the operation information Y8 as a trigger.
  • the analog switches 1S4-A and 1S4-D are turned off, and the analog switches 1S4-B and 1S4-C are turned on.
  • the timer 1S8 immediately after starting turns on the analog switch 1S4-E and turns off the analog switch 1S4-F.
  • the required ozone flow rate Qs8 and the required ozone concentration Cs8 are based on the required ozone flow rate Qs12 and the required ozone concentration Cs12 indicated by the processing ozone gas event signals 16-1 to 16-n from the ozone processing apparatuses 12-1 to 12-n. This is determined by the system management control unit 84.
  • the set pressure Ps, the required ozone flow rate Qs8 and the required ozone concentration Cs8 indicated by the ozone generation unit control signal 86 are obtained from the pressure setter 1S11 as the set flow rate Qs and the set concentration Cs.
  • the set power amount Ws is output to the current signal converter 1S7.
  • the initial pulse width setting device 1S12 generates a pulse signal Tw having an initial pulse width.
  • the initial control based on the set power amount Ws of the data memory 1S6 is executed within the set time To when the timer 1S8 is in the operating state.
  • the PID control circuit 1S9 performs PID control mainly on the ozone power source 2 based on the current signal from the current converter 1S13, which mainly shifts the pulse width of the pulse signal Tw ( ⁇ Tw).
  • FIG. 7 is a graph showing the received power of the ozone power source 2 of 2.5 KW of one ozone generation unit 7 and the ozone concentration characteristics generated by the ozone generator 1.
  • the generated ozone concentration can be variably set from about 0 g / m 3 to 360 g / m 3 .
  • the ozone concentration characteristic L12 indicates the ozone concentration characteristic when the ozone gas flow rate Q is 2.5 SLM.
  • the generated ozone concentration can be variably set from about 0 g / m 3 to 360 g / m 3 .
  • the ozone concentration characteristic L13 is an ozone concentration characteristic when the ozone gas flow rate Q is 5.0 SLM
  • the ozone concentration characteristic L14 is an ozone concentration characteristic when the ozone gas flow rate Q is 7.5 SLM
  • the ozone concentration characteristic L15 is The ozone concentration characteristic when the ozone gas flow rate Q is supplied at 10 SLM
  • the ozone concentration characteristic L16 is the ozone concentration characteristic when the ozone gas flow rate Q is supplied at 20 SLM
  • the ozone concentration characteristic L17 is the case when the ozone gas flow rate Q is supplied at 30 SLM. Ozone concentration characteristics are shown.
  • the maximum ozone concentration generated at a received power of 2.5 kW is 280 g / m 3 (see ozone concentration characteristic L15), and ozone gas with an ozone gas flow rate Q of 20 SLM is supplied.
  • the maximum ozone concentration generated at a received power of 2.5 kW is 180 g / m 3 (see ozone concentration characteristic L16).
  • the maximum ozone concentration generated at a received power of 2.5 kW Is only 140 g / m 3 (see ozone concentration characteristic L17).
  • the maximum flow rate that can be supplied by one ozone generator 1 is 10 SLM
  • the ozone concentration of one ozone generator 1 satisfies 280 g / m 3 , it is not possible to supply a gas flow rate of ozone gas flow rate of 10 SLM or more.
  • the ozone gas supply system 10 of the present embodiment uses the ozone gas output flow rate management unit 9 to combine one or a plurality of combinations of n ozone gas outputs supplied from the n ozone generation units 7-1 to 7-n.
  • An output ozone gas output control system that can selectively output to any ozone treatment device 12 among the ozone treatment devices 12-1 to 12-n is employed.
  • the open / close control of the ozone gas control valves 9ab, 9bc, 9ca in the ozone gas output flow rate management unit 9 provided between the units provided in the ozone gas output flow rate management unit 9 is performed. 2 and 3, all the ozone gas generated from the n ozone generating units 7-1 to 7-n can be supplied to one ozone processing apparatus 12-2. Therefore, by outputting ozone gas having a gas flow rate of 10 SLM and an ozone gas concentration of 280 g / m 3 from the ozone generation units 7-1 to 7-n, the ozone treatment apparatus 12-2 has an ozone A gas with a gas flow rate of 30 SLM.
  • the ozone concentration at that time can be increased up to 280 g / m 3 .
  • the use of the current ozone generator has the effect of significantly improving the processing speed, performance improvement, and the like, which are the processing capabilities of the ozone processing apparatus.
  • the ozone generation unit 7 can output only a maximum ozone concentration of 280 g / m 3 with 10 SLM source gas
  • the ozone gas control valves 9ab, 9bc, 9ca provided between the units provided in the ozone gas output flow rate management unit 9 If the open / close control is used, the ozone concentration can be increased.
  • the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, and 9ca are controlled to open and close, and the gas flow rates supplied from the three ozone generation units 7 to 3.3 SLM, respectively. If this is done, the output concentration is increased to the maximum value of the ozone concentration of 3.3 SLM, and as shown in the imaginary point P3, ozone gas of a total of 10 SLM can be supplied at an ozone concentration of about 330 g / m 3 , and the ozone treatment device receives the ozone gas It has the effect of increasing the ozone treatment capacity of 12-2.
  • the ozone generation units 7-1 to 7-7 -N will not fail and the corresponding ozone treatment device 12 will not be usable, and the ozone gas output from the non-failed ozone generation unit 7 is opened and closed by opening and closing the ozone gas control valves 9ab, 9bc, 9ca.
  • An ozone gas supply system that can be supplied and has higher ozone gas supply reliability can be obtained.
  • the ozone gas supplied from the ozone generation unit 7-1 is changed to ozone gas control valves 9a, 9ab, ozone gas on-off valve 22-2. Can be opened and supplied to the ozone treatment device 12-2.
  • the operation information Y of the treatment ozone gas event signal 16 is taken in, and the ozone generation unit control signal 86 is immediately used.
  • the operation of the ozone generation unit 7 that supplies ozone gas to the failed ozone treatment device 12 can be stopped.
  • one ozone gas supply system 10 includes a plurality of ozone generation units 7-1 to 7-n, and each ozone generation unit 7 controls the ozone generator 1 and the power supplied to the ozone generation.
  • An ozone power source 2 that performs the control, an MFC 3 that controls the ozone gas flow rate Q, an APC 4 that automatically controls the pressure P in the ozone generator 1, and an ozone concentration meter 5 that detects the ozone concentration value C to be output are mounted.
  • the ozone gas supply system 10 is provided with open / close valves (ozone gas control valves 9a to 9c) corresponding to the output ozone gas pipes from the respective ozone generators 1 and is also opened and closed between the output ozone gas pipes of the respective ozone generators 1.
  • An ozone gas output flow rate management unit 9 provided with valves (9bc, 9ab, 9ca) is provided.
  • the ozone gas supply system 10 outputs from the ozone generation units 7-1 to 7-n by opening / closing operations of the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca in the ozone gas output flow rate management unit 9.
  • a system management unit 8 ozone gas output flow rate management unit capable of performing ozone gas output flow rate control for selectively outputting one or a combination of two or more ozone gases to any one of the ozone treatment devices 12-1. Have.
  • the ozone gas control valves 9a, 9b, and 9c are opened, the ozone gas control valves 9ab, 9bc, and 9ca are closed, and the ozone gas on / off valves 22-1 to 22-n are opened.
  • the ozone gas treatment apparatus 12-1 to 12- n can be controlled independently.
  • ozone treatment device 12-2 by supplying a combination of two or more ozone gas outputs to one ozone treatment device (ozone treatment device 12-2), ozone gases having various gas flow rates and concentrations can be obtained. Can be supplied.
  • the remaining ozone generation unit 7 that operates normally causes the ozone gas to be emitted to any of the ozone treatment apparatuses 12-1 to 12-n. Therefore, highly reliable ozone gas supply can be realized.
  • the ozone gas supply system 10 controls the ozone gas output flow rate management unit 9 by the control signal S8 from the system management control unit 84, and combines the ozone gas output from the ozone generation units 7-1 to 7-n. Selection processing is performed so that ozone gas having a desired gas flow rate and ozone gas concentration can be output to the ozone processing apparatus 12.
  • the ozone gas supply system 10 of Embodiment 1 includes an electric valve or an empty valve that can open and close the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca provided in the ozone gas output flow rate management unit 9 by electricity or air pressure.
  • the pressure valve By using the pressure valve, the gas flow rate and ozone gas concentration of the ozone gas output from the ozone generator 1 in each ozone generation unit 7 to the outside can be centrally managed under the control of the control signal S8.
  • system management unit 8 includes the water leakage sensor 6, the EMO circuit 81, the unit information I / F 82, the system management control unit 84, etc., so that any of the ozone generation units 7-1 to 7-n can be emergency stopped. When a water leak is detected, the corresponding ozone generation unit can be stopped.
  • the ozone gas supply system 10 is provided with a safety stop function when each ozone generation unit 7 is abnormal or when the ozone gas supply system 10 as a whole is abnormal, thereby realizing a highly safe system. be able to.
  • FIG. 8 is a circuit diagram showing details of the internal configuration of the ozone power source 2.
  • FIG. 9 is a perspective view schematically showing a combined structure of the ozone generation unit 7X of the second embodiment.
  • the ozone generation unit 7X means one unit of ozone generation unit configured as each of the ozone generation units 7-1 to 7-n of the first embodiment.
  • the MFC 3 for realizing the downsizing of the ozone power source unit 2 and the ozone generator 1 and controlling the raw material gas flow rate in addition to the compacted ozone power source unit 2 and the ozone generator 1,
  • the ozone gas filter 51, the ozone concentration meter 5, and the APC 4 are integrated and packaged to realize one unit of ozone generation unit 7X.
  • the ozone generation unit 7X is made smaller by packaging the gas piping system.
  • ozone generation units 7X are mounted as ozone generation units 7-1 to 7-n as in the ozone gas supply system 10 of the first embodiment, the function is improved without increasing the size of the entire apparatus. And an ozone gas supply system with improved reliability.
  • FIG. 8 shows a circuit configuration that is made compact by realizing integration of main components of the ozone generator 1 and the ozone power supply unit 2.
  • the ozone generator 1 needs a necessary area as a discharge area for generating ozone in order to obtain a required ozone generation amount. Therefore, in order to reduce the area occupied by the generator, the ozone generator 1 is configured as a multi-layered electrode cell type by forming a thin electrode cell and reducing the cross sectional area of one electrode cell, The ozone generator 1 with a small occupation area is realized.
  • the ozone power source 2 outputs from a converter 2a that rectifies commercial AC voltage, converts the DC voltage into a high frequency that is optimal for the ozone generator, controls output voltage, and supplies predetermined power to the ozone generator.
  • the converter 2a is composed of a rectifier circuit 2a1, a capacitor bank 2a2, a smoothing reactor 2a3, a chopper circuit unit 2a4 and a chopper control circuit unit 2a5, and the inverter 2b is composed of an inverter circuit 2b1 and an inverter control circuit 2b2.
  • the parts of the converter 2a and the inverter 2b of the ozone power source 2 are classified and the parts are modularized to realize a miniaturized circuit configuration.
  • the DC / smoothing circuit unit 2ax obtained by modularizing the rectifier circuit 2a1, the capacitor bank 2a2, and the smoothing reactor 2a3 as a unit has been reduced in size, and the quality of parts has been improved.
  • the chopper circuit portion 2a4 constituting the converter 2a and the inverter circuit 2b1 constituting the inverter 2b are both composed of power semiconductors such as FET elements and IGBT elements and need to be cooled by cooling fins, the chopper circuit portion 2a4 and the inverter The power element portion 2p that is effectively reduced in size is realized by modularizing the circuit 2b1 as one semiconductor module.
  • the chopper control circuit 2a5 of the converter 2a and the inverter control circuit 2b2 of the inverter 2b realize a very miniaturized power supply control board 2q by forming a single board or an integrated IC.
  • the high voltage circuit unit 2c includes a series reactor L0 that limits the inverter output current, a high voltage transformer Tr that boosts the voltage to a high voltage, and a parallel reactor Lb for power factor improvement, and each component is a large and heavy component.
  • the series reactor L0 and the parallel reactor Lb are integrated into a high-voltage transformer Tr so as to incorporate a function into a special transformer.
  • the transformer is designed so that the series reactor L0 can be integrated with the primary leakage inductance of the high-voltage transformer.
  • the parallel reactor Lb is designed as a transformer that can increase the exciting inductance of the transformer, and the parallel reactor Lb can incorporate the function in the transformer.
  • this high-voltage transformer Tr is formed with a ferrite core that is light and has good high-frequency characteristics, and the transformer Tr has a reduced installation area and has a predetermined capacity.
  • a very small high-voltage circuit unit 2c was realized by installing a plurality of transformers (three in the figure) in a vertical shape so that a plurality of small transformers were formed in parallel connection.
  • the series reactor L0 that limits the output current of the inverter may not be integrated with the transformer but may be formed by an independent small reactor L0.
  • FIG. 9 shows one unit of ozone generation unit 7X in which the ozone generator 1, the ozone power source 2, the MFC 3, the gas filter 51, the ozone concentration meter 5, the APC 4, and the gas pipe integrated block 30 are integrated.
  • the ozone control unit 19 is connected to the ozone generator 1 and the ozone power source 2 (blocks BL1 and BL2) provided in an integrated manner, and electrical signals to the MFC 3, the ozone concentration meter 5, and the APC 4.
  • the direction in which the operation panel 85-i exists will be described as the front surface of the ozone generation unit 7X.
  • the ozone generator 1 and the ozone power source 2 are modularized as shown in FIG. 8 to reduce the number of components, reduce the size of each component, and reduce the installation area.
  • the direct current / smoothing circuit portion 1Ax of the ozone power supply 2, the power element portion 2p, and the power supply control board are arranged as one block BL1 on the front, and several units These small transformers are stacked vertically, and the high voltage circuit portion 2c is formed as a block BL2, which is distributed and arranged for integration.
  • Gas supply piping system including MFC 3 for supplying raw material gas to the ozone generator 1, gas filter 51 for outputting generated ozone gas to the outside, ozone concentration meter 5, ozone gas output piping system via APC 4, and ozone generator
  • a cooling piping system (cooling water inlet 13A, cooling water outlet 13B) for cooling one electrode is required. Since these piping systems must be arranged three-dimensionally, connecting each part with existing gas piping, cooling piping, etc. increases the number of connecting joints between the piping and the parts. A very large space is required to connect these piping systems.
  • a piping unit different from the ozone generation unit is provided on the back surface, for example, and the generator unit and piping connection are performed on the back surface. Therefore, it was difficult to integrate the ozone generation unit, the gas supply piping system, the ozone gas output piping system, and the cooling piping systems 13A and 13B together.
  • the gas piping integrated block 30 has a three-dimensional structure, and the ozone generator 1, MFC 3, gas filter 51, ozone concentration meter 5, APC 4 (hereinafter collectively referred to as “ozone generator 1 etc.”) on each surface. May be placed next to each other.
  • the ozone generator 1 is kept airtight by securing screws with an O-ring at the connecting portion between the ozone generator 1 and the gas piping integrated block 30 and a highly accurate piping path is secured.
  • Etc. and the gas pipe integrated block 30 are integrated. Moreover, attachment and removal of each component such as the ozone generator 1 are improved, and maintenance is improved.
  • the ozone generator 1 and the like are closely attached to the gas pipe integrated block 30.
  • the gas piping integrated block 30 has piping paths R30a to 30f inside, and a cooling water inlet 13A, a cooling water outlet 13B, a raw material gas supply port 14 and an ozone gas output port 15 are attached to the side surface, and an ozone generator It has a structure in which the ozone generator 1 is attached using the mounting bolts Bt1 to Bt4.
  • the MFC 3 is sandwiched between the MFC mounting blocks 33 and 33 and attached to the gas piping integrated block 30, the APC 4 is sandwiched between the APC mounting blocks 34 and 34 and attached to the gas piping integrated block 30, and the ozone concentration meter is mounted.
  • the ozone densitometer 5 is mounted by being sandwiched between the blocks 35 and 35 for use.
  • In-block channels B3 to B5 for securing a piping path are also formed in these mounting blocks 33 to 35.
  • the gas filter 51 is mounted on the gas pipe integrated block 30 using the gas filter mounting block 31.
  • the raw material gas input piping path from the raw material gas supply port 14 to which the raw material gas Gm is supplied to the ozone generator input part ET1 of the ozone generator 1 through the MFC 3 is the raw material gas supply port 14, the piping route R30a, and the flow in the block It is comprised by the path
  • a portion provided around the ozone generator input portion ET1 of the ozone generator 1 is attached to the gas pipe integrated block 30 by the ozone generator mounting bolt Bt1. In this way, an input piping path for the source gas Gm is formed using the gas piping integrated block 30.
  • the ozone gas output pipe that is output from the ozone gas output port 15 through the gas filter 51, the ozone concentration meter 5, and the APC 4 from the ozone generator output unit EX1 that receives the ozone gas output from the ozone generator 1 is an ozone generator output.
  • Part EX1, piping path R30c, gas filter mounting block 31, gas filter 51, gas filter mounting block 31, piping path R30d, block flow path B5, ozone concentration meter 5, block flow path B5, piping path R30e, in-block flow path B4, APC4, in-block flow path B4, piping path R30f, and ozone gas output port 15 are configured in this order.
  • a portion provided around the ozone generator output part EX1 of the ozone generator 1 is attached to the gas pipe integrated block 30 by the ozone generator mounting bolt Bt2. In this way, an ozone gas output piping path is formed using the gas piping integrated block 30.
  • FIG. 25 is an explanatory diagram schematically showing a conventional configuration corresponding to the ozone generation unit 7X.
  • the configuration corresponding to the ozone generation unit 7X is generally separated by a gas control unit 400, an inverter control unit 500, and an ozone generation unit 600.
  • the gas control unit 400 includes an MFC 73, an APC 74, an ozone concentration meter 75, and a gas filter 91 inside.
  • the inverter control unit 500 includes a converter 2a, an inverter 2b, an ozone control unit 79, an operation panel 85-i, a series reactor L0, and the like.
  • the ozone generation unit 600 includes an ozone generator 71, a high-pressure transformer Tr, and a parallel reactor Lb.
  • the converter 2a includes a rectifier circuit 2a1, a capacitor bank 2a2, a smoothing reactor 2a3, a chopper circuit unit 2a4, and a chopper control circuit unit 2a5, and the inverter 2b includes an inverter circuit 2b1 and an inverter control circuit 2b2. Note that description of connection relations and operation contents is omitted.
  • the gas control unit 400, the inverter control unit 500 corresponding to the ozone power source, and the ozone generation unit 600 are divided into three blocks. 9 can only be connected by electrical connection or gas piping, and the structure shown in FIG. 9 cannot be realized.
  • the ozone generation unit 7 ⁇ / b> X aggregates these three units (400, 500, 600) and realizes a significant reduction in size as compared with the configuration shown in FIG. 25.
  • the ozone generation units 7-1 to 7-n include the ozone generator 1, the ozone power source 2, the MFC 3, the APC 4, the ozone concentration meter 5, and the gas filter 51 as the ozone generation unit 7X of the second embodiment. It has a structure that is integrated into one and packaged into one unit.
  • a plurality of ozone generation units 7X can be mounted inside, and the output piping of the ozone generation unit 7X is connected to each other by the gas control valve 9, thereby enabling the embodiment.
  • ozone gas is distributedly supplied to the ozone treatment devices 12 of the ozone treatment devices 12-1 to 12-n, or a large amount of ozone gas or high-concentration ozone gas is selectively supplied to one ozone treatment device 12. Or can be supplied.
  • the ozone generation unit 7X of the second embodiment includes the ozone generator 1, the ozone power source 2, the MFC 3, the gas filter 51, the APC 4, the ozone concentration meter 5, the raw material gas supply port 14, the ozone gas output port 15, and the cooling water.
  • the gas pipe integrated block 30 in the ozone generation unit 7X has a plurality of pipe paths R30a to R30f that are internal pipe paths, the pipe paths R30a to R30f, the ozone generator 1, the MFC 3, and the gas filter 51, the APC 4, the ozone concentration meter 5, the raw material gas supply port 14, the ozone gas output port 15, and the cooling water inlets / outlets 13A and 13B are connected to each other, so that the raw material gas Gm input piping route and the ozone gas output piping route are Therefore, it is possible to effectively reduce the size including these piping paths.
  • the ozone generation units 7-1 to 7-n are respectively reduced in size as the ozone generation unit 7X of the second embodiment, thereby realizing the ozone gas supply system 10 shown in the first embodiment at a practical level. Can be possible.
  • a plurality of ozone generation units 7X can be mounted inside, and the output piping of the ozone generation unit 7X is connected to each other by the gas control valve 9, thereby enabling the embodiment.
  • ozone gas is distributedly supplied to the ozone treatment devices 12 of the ozone treatment devices 12-1 to 12-n, or a large amount of ozone gas or high-concentration ozone gas is selectively supplied to one ozone treatment device 12. Or can be supplied.
  • the third embodiment is characterized by focusing on one unit of the ozone generation unit 7 and reducing the size of the ozone generation unit 7 that also combines the ozone gas output flow rate management unit 9.
  • FIG. 10 is an explanatory diagram showing an internal configuration of an ozone gas output flow rate management unit by the ozone gas supply system 20 of the third embodiment, corresponding to the ozone gas supply system 10 shown in FIG.
  • the ozone gas output flow rate management unit 9Y of the third embodiment corresponding to the ozone gas output flow rate management unit 9 of the first embodiment has portions corresponding to the ozone generation units 7-1 to 7-n. It is formed integrally.
  • ozone gas control valves 9a to 9c are integrally provided, and mounting blocks 93a to 93c are provided in close contact with the ozone gas control valves 9a to 9c.
  • An ozone gas control valve 9ab, an ozone gas control valve 9bc, and an ozone gas control valve 9ca are provided on one path side (upper side in the drawing) of the mounting blocks 93a, 93b, and 93c.
  • the ozone gas control valve 9ab on the one path side of the mounting block 93a is connected to the other path (lower side in the figure) of the mounting block 93ab via the pipe joint 98u, the inter-unit ozone gas pipe 95ab, and the pipe joint 98d.
  • the ozone gas control valve 9ab on one path side of the mounting block 93ab is connected to the other path of the mounting block 93ac via the pipe joint 98u, the inter-unit ozone gas pipe 95bc, and the pipe joint 98d.
  • the ozone gas control valve 9ca is connected to the other path of the mounting block 93a through the pipe joint 98u, the inter-unit ozone gas pipe 95ca and the pipe joint 98d.
  • the ozone gas output flow rate management unit 9Y has the same ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca as the circuit configuration of the ozone gas output flow rate management unit 9.
  • the ozone gas on / off valves 22-1 to 22-n are inserted between the ozone gas output ports 25-1 to 25-n and the ozone treatment devices 12-1 to 12-n.
  • the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca constituting the ozone gas output flow rate management unit 9Y are normally open type (NO), ozone gas control valves 9bc, 9ab, 9ca. Is normally closed type (NC).
  • a control signal S8a from the system management control unit 84 of the system control unit 8 is given to the ozone gas control valve 9a and the ozone gas control valve 9ab, and a control signal S8b is given to the ozone gas control valve 9b and the ozone gas control valve 9bc.
  • the signal S8c is given to the ozone gas control valve 9c and the ozone gas control valve 9ca.
  • FIG. 10 only one ozone treatment device 12-2 is operating among the ozone treatment devices 12-1 to 12-n (the ozone gas on-off valve 22-2 is open).
  • the ozone gas on-off valve 22-2 is open.
  • the state of the ozone gas output flow rate management unit 9Y when 30 SLM ozone gas is supplied is shown.
  • 10 SLM ozone gas is output from the ozone generation units 7-1 to 7-n by the ozone generation unit control signals 86-1 to 86-n from the system management control unit 84, respectively, and the ozone gas control valves 9a, 9b, 9c, 9bc and 9ab are opened (blacked out), and the ozone gas control valve 9ca is closed (outlined).
  • the output ozone gas is plugged with either 98u or 98d that is a pipe joint as a pipe cap joint. Needless to say, it shuts off.
  • the ozone generation units 7-1 to 7-n and the ozone gas output flow rate management unit 9Y are controlled to output ozone gas having a flow rate of 10 SLM from the ozone generation units 7-1 to 7-n, respectively.
  • Ozone gas with a gas flow rate of 30 SLM can be supplied to the ozone treatment device 12-2 via the output flow rate management unit 9.
  • FIG. 11 is a perspective view schematically showing a combined structure of one unit ozone generation unit according to the second embodiment.
  • the ozone generation unit 7Y of the second embodiment includes an ozone generator 1, an ozone power source 2, an MFC 3, an ozone concentration meter 5, a gas filter 51, an ozone concentration meter 5, an APC 4, and a gas piping integrated block.
  • the components of the ozone gas output flow rate management unit 9 are also integrated.
  • the block main bodies 930a and 930b (corresponding to any of the mounting blocks 93a to 93c in FIG. 10) are mainly used.
  • the ozone gas control valve storage portions 931 and 932, the ozone gas output portion 933, and the ozone gas branch portions 934 and 935 are provided.
  • the ozone gas control valve storage unit 931 stores therein an ozone gas control valve 90x (corresponding to any of the ozone gas control valves 9a to 9c), and the ozone gas control valve storage unit 932 includes an ozone gas control valve 90xy (ozone gas control valve 9ab). , 9bc and 9ca).
  • the ozone gas output unit 933 corresponds to the ozone gas output port 15 of the ozone generation unit 7X of Embodiment 2 shown in FIG. 9, and is connected to the ozone gas output port 25 of FIG.
  • the ozone gas branch portion 934 functions as a branch portion (inter-unit ozone gas pneumatic valve pipe connection port) connected to the pipe joint 98u shown in FIG. 10, and the ozone gas branch section 935 is connected to the pipe joint 98d shown in FIG. It functions as a branch part on the other side of the road (inter-unit ozone gas pneumatic valve pipe connection port).
  • the gas supply piping system, the ozone gas output piping system, and the cooling piping systems 13A, 13B are all integrated into one gas piping integrated block 30, and the ozone gas output flow rate management unit 9Y Combining the constituent parts, the gas piping integrated block 30 incorporates gas supply piping, ozone gas output piping, and cooling piping.
  • the raw material gas input piping from the raw material gas supply port 14 to which the raw material gas Gm is supplied to the ozone generator input unit ET1 of the ozone generator 1 through the MFC 3 is substantially the same as the ozone generation unit 7X of the second embodiment.
  • the ozone gas output pipe from the ozone generator output part EX1 of the ozone generator 1 to the block main body 930b via the gas filter 51, the ozone concentration meter 5, and the APC 4 is an ozone generator output part EX1, a pipe route R30c, a gas filter Inside mounting block 31, gas filter 51, inside gas filter mounting block 31, piping path R30d, in-block channel B5, ozone concentration meter 5, in-block channel B5, piping channel R30e, in-block channel B4, APC4 , Block internal flow path B4, piping path R30f, block body 930a (inner part), ozone gas control valve 90x, piping path R30g, block body 930b (outer part) are formed in this order.
  • the block main bodies 930a and 930b may be configured integrally and formed through the gas pipe integrated block 30.
  • the plurality of ozone gas control valve storage portions 931 and 932 each storing the ozone gas control valves 90x and 90xy, are in close contact with the gas pipe integrated block 30 in the corresponding ozone generation unit 7Y. It is attached and inserted on the output piping path of the ozone gas.
  • the combined structure of the ozone gas output flow rate management unit 9Y and the ozone generation units 7-1 to 7-n can be reduced in size.
  • the ozone generation unit 7Y of the third embodiment is integrated with most of the constituent parts of the ozone gas output flow rate management unit 9 and the gas piping integrated block 30 in addition to the features of the ozone generation unit 7X of the second embodiment.
  • the size can be further reduced as compared with the case where the ozone generation unit 7X and the ozone gas output flow rate management unit 9 of the second embodiment are separately configured.
  • FIG. 12 is a block diagram showing a configuration of an ozone gas supply system according to Embodiment 4 (basic configuration: first mode) of the present invention.
  • the ozone gas supply system 101 has n ( ⁇ 2) ozone generation units 7-1 to 7-n inside, and is common among the ozone generation units 7-1 to 7-n.
  • One moisture removal filter 59 is provided.
  • the moisture removal filter 59 has a function of trapping (removing) a small amount of moisture contained in the source gas supplied from the source gas supply port 14.
  • the ozone gas supply system 101 of the fourth embodiment allows the source gas supplied from the source gas supply port 14 to pass through the moisture removal filter 59 and then the source gas of the ozone generation units 7-1 to 7-n. Supplying to the supply ports 14-1 to 14-n.
  • the ozone generation unit 7-2 will be taken up as a representative and the internal configuration will be described with reference to FIG.
  • the raw material gas is supplied from the raw material gas supply port 14 of the ozone gas supply system 101 through the moisture removal filter 59 to the ozone generator 1 in the ozone generation unit 7-2 through the raw material gas supply port 14-2 and the MFC 3. Is done.
  • the inside of the ozone generator 1 is filled with high-purity gas (raw material gas) containing oxygen gas, and high-frequency high voltages HV and LV are supplied between the electrodes in the ozone generator 1 from the ozone power supply 2 in the ozone gas supply system 101.
  • the ozone power source 2 includes a converter 2a, an inverter 2b, and a high voltage circuit unit 2c, which will be described in detail later.
  • M of Formula (2) means the 3rd body of a 3 body collision.
  • Ozone gas (O 3 ) is generated by the chemical reaction represented by the above formulas (1) and (2) by silent discharge with the source gas oxygen gas (O 2 ).
  • impurities such as nitrogen gas (N 2 ) are contained in an amount of about 1 to 2 PPM (10 14 / cm 3 ).
  • N 2 nitrogen gas
  • 26 is an explanatory diagram showing the relationship between the dew point of the raw material gas and the amount of water contained in the raw material gas.
  • nitrogen gases and moisture are also dissociated by silent discharge, and molecular gases are dissociated, and gases such as nitrogen oxides, hydrogen oxides, and hydrazine (N 2 H 4 ) compounds, which are nitrogen and hydrogen compounds, are also generated in the ozone gas generator. And output together with ozone gas.
  • gases such as nitrogen oxides, hydrogen oxides, and hydrazine (N 2 H 4 ) compounds, which are nitrogen and hydrogen compounds, are also generated in the ozone gas generator. And output together with ozone gas.
  • the nitric acid cluster gas (HNO 3 ) is generated from the water splitting reaction, and through the chemical reactions of the formulas (5) to (7), OH radical gas is generated.
  • the nitric acid cluster gas, OH radical, OH radical ion, etc. are very active, and the gas with a relatively long life is ozone. It produces
  • Impurities such as nitrogen gas and the amount of moisture contained in the raw material gas are determined by the amount of gas components under normal conditions, but in actual operating equipment, at the start of equipment operation or during transients such as maintenance Nitrogen gas and moisture are also attached to the piping surface of the gas supply unit, etc. If these adhering materials are released together with the raw material gas, the amount of impurities exceeding 1 to 2 PPM and the amount of moisture are generated by ozone.
  • the gas that enters the vessel 1 and has the above-mentioned adverse effects is mixed with ozone gas and output.
  • the moisture in the source gas supplied in the vicinity of the source gas supply port 14 in the ozone gas supply system 101 is very effective to provide a moisture removal filter 59 for removing water by adsorption or the like.
  • the moisture removal filter 59 is realized by a configuration using silica gel for adsorption or heater heating.
  • the moisture removal filter 59 capable of reducing the amount of moisture contained in the raw material gas to less than 300 PPB was particularly suitable.
  • the ozone generator 1 has been described with a silent discharge type ozone generator structure as a representative.
  • the ozone generation function includes an ozone generator structure using creeping discharge or glow discharge, or an ultra-high frequency.
  • an ozone generator structure using microwave discharge there is also an ozone generator using an electrolytic medium, and these ozone generators may be used.
  • the gas type of the raw material gas supplied to the ozone generator 1 in particular, to suppress the amount of moisture contained in the raw material gas, as well as the flow rate value and the gas pressure in the ozone generator.
  • the function of adjusting the environmental conditions such as the water temperature and the amount of water for cooling the electrodes and the water is important.
  • the moisture removal filter 59 is used to suppress the amount of moisture contained in the source gas
  • the MFC 3 is used to adjust the flow rate value
  • the APC 3 is used to adjust the gas pressure in the ozone generator 1, and the electrodes are cooled.
  • a cooling function using cooling water from the cooling water inlets 13a-1 to 13a-n is used to make the environmental conditions such as the water temperature and the amount of water constant. Control means (MFC3, APC4, ozone concentration meter 5 and gas filter 51) having such a function will be described below.
  • a raw material gas having a predetermined raw material gas flow rate Q obtained from the raw material gas supply port 14, the moisture removal filter 59 of the ozone gas supply system 101, and the raw material gas supply port 14-2 of the ozone generation unit 7-2 is a gas flow rate controller (MFC). 3 is supplied to the ozone generator 1 at a constant flow rate.
  • MFC gas flow rate controller
  • the pressure in the ozone generator 1 is adjusted by finely adjusting the means for detecting the gas pressure in the generator and the amount of ozone gas output to the detected generator.
  • the ozone generator system has a function to make it constant.
  • an automatic pressure regulator (APC) 4 that automatically adjusts the generator pressure to a predetermined pressure, and this automatic pressure regulator (APC) 4 is provided in the ozone gas output piping gas line of the ozone generator. ing.
  • the ozone concentration meter 5 and the generator pressure are automatically set to a predetermined pressure.
  • An ozone (oxygenated) gas having a predetermined ozone concentration C is continuously output from the ozone gas output port 15-2 to the outside of the ozone generation unit 7-2 via an automatic pressure regulator (APC) 4 that adjusts to Yes.
  • APC automatic pressure regulator
  • the ozone gas output piping gas line may be provided with an ozone gas flow rate controller (MFC) for outputting a constant output ozone gas flow rate.
  • MFC ozone gas flow rate controller
  • This gas flow rate controller (MFC) 3 controls the raw material gas flow rate supplied to the ozone generator to a constant value.
  • the APC 4 automatically controls the gas pressure of the ozone generator 1 to a constant value by controlling the pressure of the ozone gas flowing in the ozone gas output piping path of the ozone generator 1.
  • the ozone generation unit 7-2 includes an ozone generator 1 having means for generating ozone gas, an ozone power source 2 having means for supplying predetermined power to the ozone gas, and means for controlling the supplied raw material gas flow rate to a constant value.
  • MFC 3 having, APC 4 having means for controlling the pressure value in the ozone generator 1 to a constant value, gas filter 51 having means for trapping impurity gas of ozone gas to be output, ozone having means for detecting the ozone concentration value to be output
  • a plurality of functional means such as the densitometer 5 are integrated to constitute a unit package unit.
  • the configurations of the ozone generation units 7-1 to 7-n are all the same (other than 7-2 are not shown), and have the internal configuration described as a representative of the ozone generation unit 7-2.
  • MFC3, APC4, ozone concentration meter 5 and gas filter 51 constitute control means related to the ozone generator 1.
  • the control means it is desirable that at least two of the MFC 3, APC 4, ozone concentration meter 5, and gas filter 51 are provided in terms of supplying stable ozone gas.
  • a water leakage sensor 6 is provided on the bottom surface of each ozone generation unit 7 (ozone generation units 7-1 to 7-n), and the presence or absence of water leakage in each ozone generation unit 7 is monitored. That is, information obtained from the water leakage sensor 6 is obtained by the EMO circuit (emergency stop circuit) 81 in the system management unit 8 and monitored under the control of the system management control unit 84.
  • the system management unit 8 provided in the ozone gas supply system 101 receives detection information from the exhaust sensor 23 and the ozone leak sensor 24 for evacuating the apparatus from the exhaust duct 11 and monitoring the negative pressure state. Yes.
  • the system management control unit 84 instructs all the ozone generation units 7-1 to 7-n to stop.
  • Ozone generation unit control signals 86-1 to 86-n are given to stop the operation of the ozone generation units 7-1 to 7-n.
  • system management control unit 84 in the system overall management unit 8 receives processing ozone gas event signals 16-1 to 16-n including the required ozone flow rate Qs12 and the required ozone concentration Cs12 from the ozone processing devices 12-1 to 12-n. Is received via the user information I / F 83.
  • the system management control unit 84 sends the ozone generation unit control signals 86-1 to 86-n to the ozone generation units 7-1 to 7-n based on the instruction contents of the processing ozone gas event signals 16-1 to 16-n.
  • the control signal S8 is output to the ozone gas output flow rate management unit 9.
  • the flow rate and concentration of the ozone gas output from each of the ozone generation units 7-1 to 7-n are controlled, and the open / close control of the ozone gas control valve 9a and the like in the ozone gas output flow rate management unit 9 is performed, thereby processing ozone gas events. It is possible to supply ozone gas having a gas flow rate and concentration in accordance with the instruction contents of the signals 16-1 to 16-n to the ozone treatment apparatuses 12-1 to 12-n.
  • the system supervision management unit 8 will be described in more detail.
  • the system management unit 8 includes an EMO circuit 81 that performs an emergency stop of the apparatus, a unit information I / F 82, a user information I / F 83, a system management control unit 84, and a main operation panel 85.
  • the EMO circuit 81 is a circuit that monitors the abnormal signal of the system obtained from the water leakage sensor 6 of each ozone generation unit 7 as described above. Specifically, when the EMO circuit 81 receives the detection information of the water leakage abnormality from the water leakage sensor 6, the information is transmitted to the system management control unit 84, and the water leakage sensor 6 that has detected the water leakage abnormality is transmitted from the system management control unit 84. An ozone generation unit control signal 86 (any one of the ozone generation unit control signals 86-1 to 86-n) is given to the corresponding ozone generation unit 7, and the ozone generation unit 7 is stopped.
  • the unit information I / F 82 has a function of transmitting / receiving unit information signals 17-1 to 17-n from the ozone generation units 7-1 to 7-n.
  • the user information I / F 83 includes the processing ozone gas event signals 16-1 to 16-n (command ozone flow rate Qs12, request ozone concentration Cs12, command signals) from the ozone processing apparatuses 12-1 to 12-n.
  • the operation information Y, the device number, etc. are received).
  • the system management control unit 84 outputs a control signal S8 that is a command for opening and closing the ozone gas control valves (9a, 9b, 9c, 9ab, 9bc, 9ca) in the ozone gas output flow rate management unit 9, and the ozone gas output flow rate Performs overall control within the management unit 9.
  • the system management control unit 84 has a function of exchanging information with the main operation panel 85.
  • the ozone gas supply system 101 has a cooling water inlet 13A and a cooling water outlet 13B, and the ozone generating units 7-1 to 7-1 through the cooling water inlet 13A through the cooling water inlets 13a-1 to 13a-n. Cooling water from an external cooling device (not shown) is taken into 7-n, and the cooled water from the ozone generation units 7-1 to 7-n is discharged through the cooling water outlets 13b-1 to 13b-n. Output from 13B to the outside.
  • the amount and temperature of the cooling water from the external cooling device are controlled so as to be supplied with a constant value.
  • the ozone gas supply system 101 has a raw material gas supply port 14, passes through a moisture removal filter 59 from the raw material gas supply port 14, and further passes through the raw material gas supply ports 14-1 to 14-n to generate ozone generation units 7-1 to 7-1.
  • the raw material gas is taken into 7-n from the outside.
  • the ozone gas output ports 15-1 to 15-n of the ozone generation units 7-1 to 7-n are connected to the internal ozone gas output flow rate management unit 9, and the ozone gas output flow rate management unit 9 to the ozone gas output ports 25-1 to 25-
  • the ozone gas is output to the outside of the ozone gas supply system 101 via n.
  • the processing ozone gas event signals 16-1 to 16-n output from the n ozone processing apparatuses 12-1 to 12-n are taken into the system management control unit 84 via the user information I / F 83.
  • the processing ozone gas event signal 16 (16-1 to 16-n) indicates the required ozone flow rate Qs12, the raw material gas set concentration Cs12, the operation information Y, and the like.
  • the system management control unit 84 has a function of outputting ozone generation unit control signals 86-1 to 86-n for controlling the ozone generation units 7-1 to 7-n based on the processing ozone gas event signals 16-1 to 16-n. Have.
  • Ozone generation units 7-1 to 7-n have ozone generation unit operation panels 85-1 to 85-n. Further, unit information signals 17-1 to 17-n are transmitted from the ozone generation units 7-1 to 7-n to the system management control unit 84 via the unit information I / F 82 of the system management unit 8.
  • the unit information signal 17 (17-1 to 17-n) is an information signal for instructing a failure or an operation / stopped state of the ozone generator 1 in each ozone generation unit 7.
  • the operation information Y included in the processing ozone gas event signal 16 corresponds to a user information signal indicating a failure or operation / stop state information signal of each ozone processing device 12 (12-1 to 12-n).
  • the information is taken into the user information I / F 83 in the system management unit 8.
  • the ozone generation units 7-1 to 7-n each have an ozone control unit 19.
  • the ozone control unit 19 outputs the set flow rate Qs of the raw material gas flow rate, the detected flow rate Q, the set pressure Ps of the generator pressure of the ozone generator 1, the detected pressure P, and the respective ozone generation units 7. It is a control unit that receives the ozone concentration C and controls the ozone power source 2 to control the ozone concentration, gas flow rate, etc. of the ozone gas generated from the ozone generator 1.
  • the ozone control unit 19 exchanges signals with the ozone concentration meter 5, the MFC 3, the APC 4, and the ozone power source 2.
  • the configuration and operation of the ozone gas output flow rate management unit 9 of the ozone gas supply system 101 are the same as those of the ozone gas output flow rate management unit 9 in the ozone gas supply system 10 of the first embodiment shown in FIG.
  • the main operation panel 85 of the ozone gas supply system 101 is the same as the main operation panel 85 in the ozone gas supply system 10 of the first embodiment shown in FIG.
  • the configuration and operation of the ozone control unit 19 in the ozone gas supply system 101 includes the internal data memory 1S6, and the case of the ozone control unit 19 and the data memory 1S6 in the ozone gas supply system 10 of the first embodiment shown in FIGS. The description is omitted as appropriate.
  • the moisture removal filter 59 is attached to the source gas supply port 14, and one ozone gas supply system 101 is provided with a plurality of ozone generation units 7-1 to 7-n.
  • Ozone generator 1 having means for generating ozone gas
  • ozone power source 2 having means for supplying and controlling the power supplied to ozone generation
  • MFC 3 having means for controlling raw material gas or ozone gas flow rate Q to a constant value
  • ozone generation The automatic control APC 4 having means for controlling the pressure P in the vessel 1 to be constant and the ozone concentration meter 5 having means for detecting the concentration value C of the ozone gas to be output are mounted.
  • the ozone gas supply system 101 is provided with open / close valves (ozone gas control valves 9a to 9c) corresponding to the output ozone gas pipes from the respective ozone generators 1, and is also opened and closed between the output ozone gas pipes of the respective ozone generators 1.
  • An ozone gas output flow rate management unit 9 provided with valves (9bc, 9ab, 9ca) is provided.
  • the ozone gas supply system 101 outputs from the ozone generation units 7-1 to 7-n by opening / closing operations of the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca in the ozone gas output flow rate management unit 9.
  • a system management unit 8 ozone gas output flow rate management unit capable of performing ozone gas output flow rate control for selectively outputting one or a combination of two or more ozone gases to any one of the ozone treatment devices 12-1. Have.
  • the moisture removal filter 59 provided in the ozone gas supply system 101 allows the source gas supplied from the source gas supply port 14 to have a moisture content of about 1 to 10 PPM in the source gas up to about 10 to 100 PPB. Therefore, it is possible to reduce active gases such as nitric acid clusters (HNO 3 ), OH radical gas, OH radical ion gas, and HO 3 + ions generated by moisture, impurities, and silent discharge, along with ozone generation.
  • active gases such as nitric acid clusters (HNO 3 ), OH radical gas, OH radical ion gas, and HO 3 + ions generated by moisture, impurities, and silent discharge, along with ozone generation.
  • APC4, MFC3, ozone concentration meter 5 (ozone monitor), gas open / close valve (valve), and ozone treatment devices 12-1 to 12-n provided in the ozone gas output section of the ozone generator 1 are connected to nitrate ion clusters (HNO). 3 ), consumption and failure due to an active gas such as OH radical gas or HO 3 + ion can be suppressed.
  • HNO nitrate ion clusters
  • ozone gas to be output it is possible to provide a nitric acid cluster (HNO 3) and OH radical gas and metal contamination Ne Deployment higher with less quality ozone gas.
  • the ozone generator is provided by providing the moisture removal filter 59 having a function of trapping a minute amount of moisture contained in the source gas supplied to the source gas supply port 14.
  • the raw material gas supplied to 1 has an effect that the moisture removal filter 59 can reduce the amount of water contained in the raw material gas to 300 PPB or less and supply high-quality ozone gas.
  • the moisture removal filter 59 is attached. As a result, not only can ozone gas with a higher dew point be provided, but the attached moisture removal filter 59 can remove the amount of moisture, so the time for flowing the purge gas before generating ozone gas can be greatly reduced. There is an effect that the start-up time of the apparatus can be greatly shortened.
  • the ozone gas control valves 9a, 9b, and 9c are opened, the ozone gas control valves 9ab, 9bc, and 9ca are closed, and the ozone gas on / off valves 22-1 to 22-n are opened.
  • the gas flow rate and ozone gas concentration of the supplied ozone are changed to the ozone treatment apparatuses 12-1 to 12-12. -N can be controlled independently.
  • the ozone gas supply system 101 has a combination of two or more ozone gas outputs as one ozone treatment device (ozone treatment device 12-) as shown in FIGS.
  • ozone treatment device 12- ozone treatment device 12-
  • ozone gas having various gas flow rates and concentrations can be supplied.
  • the remaining ozone generation unit 7 that operates normally causes the ozone gas to be emitted to any of the ozone treatment apparatuses 12-1 to 12-n. Therefore, it is possible to provide a highly reliable ozone gas supply and to provide a high-quality ozone gas with less active gas contained in the output ozone gas.
  • the ozone gas supply system 101 controls the ozone gas output flow rate management unit 9 by the control signal S8 from the system management control unit 84 in the same manner as the ozone gas supply system 10 according to the first embodiment.
  • a combination / selection process of ozone gas output from the generation units 7-1 to 7-n is performed so that ozone gas having a desired gas flow rate and ozone gas concentration can be output to the ozone processing apparatus 12.
  • the ozone gas supply system 101 of the fourth embodiment includes an electric valve or an empty valve that can open and close the ozone gas control valves 9a, 9b, 9c, 9bc, 9ab, 9ca provided in the ozone gas output flow rate management unit 9 by electricity or air pressure.
  • the pressure valve By using the pressure valve, the gas flow rate and ozone gas concentration of the ozone gas output from the ozone generator 1 in each ozone generation unit 7 to the outside can be centrally managed under the control of the control signal S8.
  • system management unit 8 includes the water leakage sensor 6, the EMO circuit 81, the unit information I / F 82, the system management control unit 84, etc., so that any of the ozone generation units 7-1 to 7-n can be emergency stopped. When a water leak is detected, the corresponding ozone generation unit can be stopped.
  • the ozone gas supply system 101 (first aspect) according to the fourth embodiment is provided with a safety stop function when each ozone generation unit 7 is abnormal or when the ozone gas supply system 101 is abnormal. High system can be realized.
  • the second mode of the fourth embodiment realizes downsizing of the ozone power supply unit 2 and the ozone generator 1 and supplies compact power.
  • the ozone power supply unit 2 having means for controlling the electric energy
  • the ozone generator 1 having means for generating ozone gas
  • the MFC 3 having means for controlling the raw material gas flow rate, and means for removing impurities from the ozone gas
  • the gas filter 51 provided, the ozone concentration meter 5 having means for detecting the ozone gas concentration to be output, and the APC 4 having means for controlling the gas pressure in the ozone generator to a constant value are integrated and packaged to make the structure 1
  • a unit ozone generation unit 7X can be realized.
  • the ozone generator 1, the ozone power source 2, the MFC 3, the gas filter 51, the ozone concentration meter 5, the APC 4, and the gas pipe integrated block 30 are integrated as in the first embodiment shown in FIG.
  • One unit of ozone generation unit 7X can be realized.
  • the gas control unit 400, the inverter control unit 500 corresponding to the ozone power source, and the ozone generation units 600 and 3 Each block divided into two can only be connected electrically or by gas piping, and the structure shown in FIG. 9 cannot be realized.
  • the source gas was designed to supply the source gas in the installed utility directly to the ozone gas supply system, there is no means for suppressing the amount of water contained in the source gas supplied to the ozone generator, The failure rate of the gas control equipment installed in the ozone gas output section was high.
  • the ozone generation unit 7X collects these three units (400, 500, 600), Compared to the configuration shown in Fig. 25, the gas control provided in the ozone gas output unit is greatly reduced in size and the moisture removal filter 59 is attached to the source gas supply port 14 of the ozone gas supply system 101 shown in Fig. 12. Equipment failure rate can be reduced, and high quality ozone gas can be provided.
  • the ozone generation units 7-1 to 7-n are similar to the first embodiment in that the ozone generation unit 7X includes the ozone generator 1, the ozone power source 2, the MFC 3, the APC 4, and the ozone concentration meter. It is a structure in which 5 is integrated into one unit and packaged into one unit.
  • a plurality of ozone generation units 7X can be mounted inside, and the output piping of the ozone generation unit 7X is connected to each other by the gas control valve 9, so that the embodiment As described in FIG. 4, ozone gas is dispersedly supplied to the ozone treatment devices 12 of the ozone treatment devices 12-1 to 12-n, or a large amount of ozone gas or high-concentration ozone gas is selectively supplied to one ozone treatment device 12. Or can be supplied.
  • an ozone generation unit combining one unit of ozone generation unit 7 and an ozone gas output flow rate management unit 9 as well. 7 can also be reduced in size.
  • the ozone gas supply system 20 of FIG. 10 shown in the third embodiment can be realized as a third aspect of the fourth embodiment as a configuration corresponding to the ozone gas supply system 101 shown in FIG.
  • each of the ozone generation units 7-1 to 7-n of the ozone gas supply system 101 is configured and realized as the third mode of the fourth embodiment. can do.
  • FIG. 13 is a block diagram showing a configuration of an ozone gas supply system according to Embodiment 5 of the present invention.
  • Removal filters 59-1 to 59-n are provided.
  • the moisture removal filters 59-1 to 59-n are provided in one-to-one correspondence with the ozone generation units 7-1 to 7-n, and the raw materials for the ozone generation units 7-1 to 7-n are provided. It is provided in the vicinity of the gas supply unit inlet.
  • the moisture removal filters 59-1 to 59-n suppress the moisture content of the raw material gas supplied into the ozone generation units 7-1 to 7-n, respectively, so that each of the ozone generation units 7-1 to 7-n It is characterized by improving the quality of the generated ozone gas.
  • the ozone gas supply system 102 allows the source gas supplied from the source gas supply port 14 to pass through the moisture removal filters 59-1 to 59-n, and then the ozone generation units 7-1 to 7-1. The gas is supplied to 7-n source gas supply ports 14-1 to 14-n.
  • each of the ozone generation units 7-1 to 7-n according to Embodiment 5 has a moisture removal filter 59 (moisture removal) that traps moisture contained in the gas at the raw material gas inlet of the ozone generation unit 7 of one unit.
  • a moisture removal filter 59 moisture removal
  • One of the filters 59-1 to 59-n) is attached, and the ozone generation unit 7 combined in the same way as in the second embodiment is miniaturized.
  • FIG. 14 is a perspective view schematically showing a combined structure of one unit of ozone generation unit 7X2 according to the fifth embodiment.
  • the moisture removal filters 59 (59-1 to 59-59) are placed at positions where the raw material gas inlets 14-1 to 14-n of the ozone generation units 7-1 to 7-n are easily replaced. -N) is attached and formed integrally.
  • this moisture is a gas also contained in the air
  • the moisture is immediately adsorbed on the piping surface. Therefore, when the raw material gas is flowed through the raw material gas pipe to which the water is adsorbed, not only the amount of water contained in the high-purity raw material gas but also the water adhering to the pipe is separated and supplied by flowing the gas. As shown in FIG. 26, the dew point of the source gas is increased, and the amount of water contained in the source gas may be increased to, for example, 10 PPM or more.
  • the source gas contains impurity gases such as nitrogen gas, carbon gas, sulfide gas, and moisture, not only ozone gas but also N radical and OH radical gas are generated by discharge.
  • impurity gases such as nitrogen gas, carbon gas, sulfide gas, and moisture
  • the molecular gas in the form of cluster as nitric acid gas or OH radical is also included in the ozone gas and output.
  • the nitric acid and OH radical cluster molecular gas is a very active gas, it reacts with metal surfaces such as gas piping and valves that output ozone gas, and the piping surface corrodes, This causes generation of corroded metal impurities (metal contamination) in the output ozone gas.
  • water removal filters 59-1 to 59-n for the purpose of removing water are attached to the source gas supply unit.
  • moisture removal filters 59-1 to 59-n are provided at the positions where the raw material gas inlets 14-1 to 14-n of the ozone generation units 7-1 to 7-n are easily replaced, The raw material gas was supplied to the ozone generator 1 after removing water.
  • the ozone treatment units 12-1 to 12-12 are provided by the ozone generation unit 7 equipped with the remaining moisture removal filter 59 that operates normally. Since ozone gas can be supplied to any of -n, highly reliable ozone gas supply can be realized and high-quality ozone gas with less active gas contained in output ozone gas can be provided.
  • one moisture removal filter 59-1 to 59-n is provided corresponding to the ozone generation units 7-1 to 7-n.
  • a plurality of gas filters are provided in series in multiple stages depending on the type of impurity gas.
  • a gas filter for impurity gas and a gas filter for moisture trap may be connected in series.
  • the gas pipe integrated block structure in which the source gas pipe (source gas supply port 14 + moisture removal filter 59) and the output gas pipe system (ozone gas output port 15) are integrated into the gas pipe integrated block 30 is achieved.
  • the ozone generator 1, the ozone power source 2, and the gas piping system are packaged to make the ozone generation unit 7X2 smaller.
  • the source gas supply port 14 and the moisture removal filter 59 are connected to each other.
  • the raw material gas input piping path from the raw material gas supply port 14 to which the raw material gas Gm is supplied to the ozone generator input unit ET1 of the ozone generator 1 via the MFC 3 is the raw material gas supply port 14, the moisture removal filter 59, and the piping route.
  • a portion provided around the ozone generator input portion ET1 of the ozone generator 1 is attached to the gas pipe integrated block 30 by the ozone generator mounting bolt Bt1. In this way, an input piping path for the source gas Gm is formed using the gas piping integrated block 30.
  • a moisture removal filter 59 moisture removal filters 59-1 to 59 is provided in the portion that can be easily replaced. -N
  • the attached moisture removal filter 59 can remove the amount of moisture, so the time for flowing the purge gas before generating ozone gas can be greatly reduced. There is an effect that the start-up time of the apparatus can be greatly shortened.
  • FIG. 15 is a block diagram showing a configuration of an ozone gas supply system according to Embodiment 6 of the present invention.
  • “one unit ozone generation unit 7 corresponding to each of the ozone generation units 7-1 to 7-n is focused on and the ozone generation unit 7 is miniaturized” in the second embodiment. It is.
  • the MFC 3 provided at the input part of the raw material gas of the ozone generator 1 according to the fifth embodiment is removed, and instead, the MFC 53 as a flow rate control means is arranged at the output part of the ozone gas generated by the ozone generator 1.
  • the ozone generation unit 7 is reduced in size.
  • FIG. 15 corresponds to the ozone gas supply system 101 according to the fourth embodiment shown in FIG.
  • FIG. 16 is a perspective view schematically showing a combined structure of one unit ozone generation unit according to the sixth embodiment.
  • the sixth embodiment functionally uses MFC3, which is a means for controlling the gas flow rate shown in the first, fourth, and fifth embodiments, as a raw material gas.
  • MFC3 is a means for controlling the gas flow rate shown in the first, fourth, and fifth embodiments, as a raw material gas.
  • the MFC 53 is moved as the MFC 53 to the generated ozone gas piping system. That is, when comparing the ozone gas supply system 103 of the sixth embodiment with the ozone gas supply system 101 of the fourth embodiment shown in FIG. 12, the MFC 53 is newly added between the ozone concentration meter 5 and the APC 4 except for the MFC 3. Another difference is that the water removal filter 59 is not provided. Note that the operation of the apparatus is substantially the same as in the first, fourth, and fifth embodiments, and a description thereof will be omitted.
  • the ozone generator 1 and the like are closely attached to the gas pipe integrated block 30.
  • the gas piping integrated block 30 has piping paths R30c to 30f inside, and a cooling water inlet 13A, a cooling water outlet 13B, a raw material gas supply port 14 and an ozone gas output port 15 are attached to the side surface, and an ozone generator It has a structure in which the ozone generator 1 is attached using the mounting bolts Bt1 to Bt4.
  • the APC 4 is sandwiched between the APC mounting blocks 34 and 34 and attached to the gas piping integrated block 30, and the MFC 53 is sandwiched between the APC mounting block 34 and the MFC mounting block 153 to be attached to the gas piping integrated block 30.
  • the ozone concentration meter 5 is mounted between the ozone concentration meter mounting blocks 35 and 35.
  • in-block flow paths B3, B4, B153, and B5 for securing a piping path are also formed.
  • the gas filter 51 is mounted on the gas pipe integrated block 30 using the gas filter mounting block 31.
  • the raw material gas supply port 14 to which the raw material gas Gm is supplied is provided directly in the ozone generator input part ET1 of the ozone generator 1, and the input piping path is in the order of the raw material gas supply port 14 and the ozone generator input part ET1. It is composed of paths that are formed.
  • a portion provided around the ozone generator input portion ET1 of the ozone generator 1 is attached to the gas pipe integrated block 30 by the ozone generator mounting bolt Bt1. In this way, an input piping path for the source gas Gm is formed using the gas piping integrated block 30.
  • the ozone gas output pipe that is output from the ozone gas output port 15 through the gas filter 51, the ozone concentration meter 5, the MFC 53, and the APC 4 from the ozone generator output unit EX1 that receives the ozone gas output from the ozone generator 1 is an ozone generator.
  • the path R30e, the intra-block flow path B53, the MFC 53, the intra-block flow path B4, the APC4, the intra-block flow path B4, the piping path R30f, and the ozone gas output port 15 are configured in this order.
  • a portion provided around the ozone generator output part EX1 of the ozone generator 1 is attached to the gas pipe integrated block 30 by the ozone generator mounting bolt Bt2. In this way, an ozone gas output piping path is formed using the gas piping integrated block 30.
  • the output ozone amount of the generated ozone gas itself is controlled by the MFC 53, it is possible to control the flow rate of the ozone gas to be output accurately, and to control the output ozone amount accurately.
  • the source gas (input) piping system need only be directly connected to the source gas supply port 14 without attaching any peripheral parts to the piping.
  • the ozone gas output piping section is connected to the gas filter 51, the MFC 53, the ozone concentration meter 5, and the APC4. Gas piping parts are installed in a batch. For this reason, as a result of the fact that only the output gas piping system can be configured as an integrated piping configuration of piping, the piping can be made more compact, the number of parts of the integrated integrated piping configuration can be reduced, and parts can be replaced more easily.
  • water removal filters 59-1 to 59-n are provided in the vicinity of the source gas supply ports 14-1 to 14-n of the ozone generation units 7-1 to 7-n. You may employ
  • a raw material gas supply port 14 and a water removal filter 59 are provided in series in the ozone generator input unit ET1. That is, as shown in FIG. 18, the gas pipe integrated block structure in which the source gas pipe (source gas supply port 14 + moisture removal filter 59) and the output gas pipe system (ozone gas output port 15) are integrated with the gas pipe integrated block 30.
  • the ozone generation unit 7X4 can be obtained.
  • FIG. 19 is a block diagram showing a configuration of an ozone gas supply system according to the seventh embodiment (first aspect) of the present invention.
  • the ozone gas supply system 104 has n ( ⁇ 2) ozone generation units 7-1 to 7-n inside, and is common among the ozone generation units 7-1 to 7-n.
  • the gas filter 52 gas filter for source gas
  • the gas filter 52 is controlled to remove a small amount of impurities and impurity gas contained in the source gas supplied from the source gas supply port 14 and stabilize the purity of the source gas by the gas filter 52. Except for the point that the water removal filter 59 is replaced with the gas filter 52, the configuration is the same as that of the ozone gas supply system 101 according to the fourth embodiment shown in FIG.
  • the ozone gas supply system 104 has a raw material gas supply port 14, passes through the gas filter 52 from the raw material gas supply port 14, and further passes through the raw material gas supply ports 14-1 to 14-n to generate ozone generation units 7-1 to 7-7.
  • -Source gas is taken in from outside. That is, a gas filter 52 for removing a small amount of impurities and impurity gas in the raw material gas is provided at the raw material gas supply port 14 which is an inlet of the external raw material gas, and is controlled so as to stabilize the purity of the raw material gas. ing.
  • the gas filter 52 provided in the ozone gas supply system 104 of Embodiment 7 can reduce the impurities and impurity gases contained in the source gas from the source gas supplied from the source gas supply port 14. Along with the generation of ozone, it is possible to reduce active gases such as nitric acid clusters (HNO 3 ), OH radical gas, OH radical ion gas, and HO 3 + ions generated by moisture, impurities and silent discharge.
  • active gases such as nitric acid clusters (HNO 3 ), OH radical gas, OH radical ion gas, and HO 3 + ions generated by moisture, impurities and silent discharge.
  • the APC4, MFC3, ozone concentration meter 5, gas open / close valve, and ozone treatment devices 12-1 to 12-n provided in the ozone gas output section of the ozone generator 1 are connected to nitrate ion clusters (HNO 3 >) and OH radical gas. Consumption and failure due to active gas such as HO 3 + ions can be suppressed.
  • ozone gas to be output it is possible to provide a nitric acid cluster (HNO 3) and OH radical gas and metal contamination Ne Deployment higher with less quality ozone gas.
  • an ozone generator is provided by providing the gas filter 52 having a function of trapping impurities and impurity gas contained in the source gas supplied to the source gas supply port 14.
  • the source gas supplied to 1 has an effect that the gas filter 52 can reduce the impurity gas contained in the source gas and supply high-quality ozone gas.
  • the second mode of the seventh embodiment realizes downsizing of the ozone power supply unit 2 and the ozone generator 1 and supplies compact power.
  • the ozone power supply unit 2 having means for controlling the electric energy
  • the ozone generator 1 having means for generating ozone gas
  • the MFC 3 having means for controlling the raw material gas flow rate, and means for removing impurities from the ozone gas
  • the gas filter 51 provided, the ozone concentration meter 5 having means for detecting the ozone gas concentration to be output, and the APC 4 having means for controlling the gas pressure in the ozone generator to a constant value are integrated and packaged to make the structure 1
  • a unit ozone generation unit 7X can be realized.
  • the ozone generator 1, the ozone power source 2, the MFC 3, the gas filter 51, the ozone concentration meter 5, the APC 4, and the gas pipe integrated block 30 are integrated as in the first embodiment shown in FIG.
  • One unit of ozone generation unit 7X can be realized.
  • Embodiment 7 As a third aspect of the seventh embodiment, as in the third embodiment shown in FIG. 10 and FIG. 11, paying attention to one unit of ozone generation unit 7, an ozone generation unit combined with an ozone gas output flow rate management unit 9 7 can also be reduced in size.
  • the ozone gas supply system 20 of FIG. 10 shown in the third embodiment can be realized as a third aspect of the seventh embodiment as a configuration corresponding to the ozone gas supply system 104 shown in FIG.
  • each of the ozone generation units 7-1 to 7-n of the ozone gas supply system 104 is configured and realized as the third mode of the seventh embodiment. can do.
  • FIG. 20 is a block diagram showing a configuration of an ozone gas supply system according to the eighth embodiment of the present invention.
  • the ozone gas supply system 105 of the eighth embodiment as in the ozone gas supply system 104 of the seventh embodiment, impurities and impurity gases contained in the source gas supplied from the source gas supply port 14 are trapped in the configuration of the ozone gas supply system 105.
  • the target (for source gas) gas filters 52-1 to 52-n are provided. However, the gas filters 52-1 to 52-n are provided in one-to-one correspondence with the ozone generation units 7-1 to 7-n, and the respective raw material gases of the ozone generation units 7-1 to 7-n. Provided near the inlet of the supply section.
  • the gas filters 52-1 to 52-n increase the purity of the ozone gas generated in the ozone gas supply system 105 by increasing the purity of the raw material gas supplied into the ozone generation units 7-1 to 7-n, respectively. It is said.
  • each of the ozone generation units 7-1 to 7-n in the eighth embodiment is similar to the second embodiment in that impurities and impurity gases contained in the gas are introduced into the raw material gas inlet of the one unit ozone generation unit 7. It is characterized in that the combined ozone generation unit 7 is miniaturized by mounting a gas filter 52 for trapping.
  • FIG. 21 is a perspective view schematically showing a combined structure of one unit of ozone generation unit 7X5 according to the eighth embodiment.
  • the gas filters 52 are connected to the raw material gas inlets 14-1 to 14-n of the ozone generation units 7-1 to 7-n, respectively, so that they can be easily replaced. ⁇ 52-n) are attached and formed integrally.
  • FIG. 26 is an explanatory diagram showing the relationship between the dew point of the source gas and the amount of water contained in the source gas.
  • the raw material gas supplied to the ozone gas supply system 104 generally uses a high-purity raw material gas of 99.99% or more.
  • the high-purity raw material gas includes nitrogen-based gas, carbon as a gas other than the raw material gas.
  • An impurity gas such as a system gas or a sulfide gas is contained in an amount of about 0.1 to several PPM, and the amount of water contained in the gas is also contained in one to several PPM (see FIG. 26).
  • the source gas supplied to the ozone gas supply system 105 generally uses a high-purity source gas of 99.99% or more.
  • a high-purity source gas as a gas other than the source gas, nitrogen-based gas, carbon
  • An impurity gas such as a system gas or a sulfide gas is contained in an amount of about 0.1 to several PPM, and the amount of water contained in the gas also contains one to several PPM.
  • impurity gases and moisture are also contained in the air, as soon as a part of the piping of the source gas piping path is opened to the atmosphere, impurity gases such as moisture and nitrogen gas are immediately formed on the piping surface. Adsorbed.
  • the source gas when the source gas is allowed to flow through the source gas pipe to which the impurity gas has been adsorbed, not only the impurity gas and moisture contained in the high-purity source gas but also the impurity gas adhering to the pipe is separated by flowing the gas. As a result, the purity of the supplied raw material gas may deteriorate.
  • the source gas contains impurity gases such as nitrogen gas, carbon gas, sulfide gas, and moisture
  • impurity gases such as nitrogen gas, carbon gas, sulfide gas, and moisture
  • ozone gas not only ozone gas but also N radical and OH radical gas are generated by discharge.
  • ozone is also output as a clustered molecular gas such as nitric acid or hydrogen peroxide solution.
  • the cluster molecular gas of nitric acid and hydrogen peroxide water is a very active gas
  • the piping surface corrodes by chemically reacting with metal surfaces such as gas piping and valves that output ozone gas.
  • metal impurities metal contamination
  • gas filters 52-1 to 52-n are provided in the raw material gas inlets 14-1 to 14-n of the ozone generation units 7-1 to 7-n at positions where they can be easily replaced, and impurities. The gas was removed.
  • one gas filter 52-1 to 52-n is provided, but depending on the type of impurity gas, a plurality of gas filters may be provided in series, or a gas filter for impurity gas and a gas filter for moisture trap. Or a multi-stage configuration in series.
  • a source gas pipe source gas supply port 14 + gas filter 52
  • an output gas pipe system ozone gas output port 15
  • the ozone generator 1, the ozone power source 2, and the gas piping system are packaged to make the ozone generation unit 7X5 smaller.
  • the source gas supply port 14 and the gas filter 52 are connected to each other.
  • the gas filter 52 (gas filters 52-1 to 52-n) is attached to the easily replaceable portion of the raw material gas supply port 14 on the back of the ozone generation units 7-1 to 7-n.
  • the impurity gas can be removed by the attached gas filter 52, so that the time for flowing the purge gas before generating the ozone gas can be greatly shortened. There is an effect that can be done.
  • a gas having a function of trapping impurities contained in the source gas supplied from the source gas supply port 14 as in the seventh embodiment as shown in FIG. A filter 52 may be added.
  • gas filters 52-1 to 52-n are provided in the vicinity of the source gas supply ports 14-1 to 14-n of the ozone generation units 7-1 to 7-n. You may implement
  • the raw material gas supply port 14 and the gas filter 52 are provided in series in the ozone generator input unit ET1. That is, as shown in FIG. 23, ozone having a gas pipe integrated block structure in which a source gas pipe (source gas supply port 14 + gas filter 52) and an output gas pipe system (ozone gas output port 15) are integrated with a gas pipe integrated block 30.
  • the generation unit 7X6 can be obtained.
  • the ozone treatment apparatus mainly uses a large amount of ozone gas used in semiconductor manufacturing apparatuses that require ozone with an ozone generation amount of about several tens of g / h to 500 g / h.
  • a system for supplying ozone gas having a predetermined ozone flow rate and ozone concentration in the processing apparatus has been described.
  • the required amount of ozone gas is a larger pulp ozone bleaching device, pool water ozone treatment device, water treatment ozone treatment device, chemical plant ozone treatment device, Also good.
  • a plurality of ozone generation units 7-1 to 7-n are included in the ozone gas supply system 10 (20, 101 to 105). It is relatively inexpensive and easy to supply output ozone gas between ozone generation units 7-1 to 7-n and supply it to a single ozone treatment device. There is an effect of increasing the field of use of the system.
  • the present invention relates to an ozone generation unit to which a function having a plurality of means for supplying ozone gas and an ozone gas supply system for supplying ozone gas to a plurality of ozone treatment apparatuses, and a plurality of ozone gas output systems for outputting ozone gas. It is an object of the present invention to obtain an ozone generation unit and an ozone generation unit in which an ozone generator unit to which a function having means is added is miniaturized.
  • the gas generation unit other than ozone gas and the generated gas are also supplied to a plurality of gas processing apparatuses, and the moisture removal filter 59 for removing moisture contained in the source gas and the impurity gas contained in the source gas are removed.
  • the gas filter 52 By attaching the gas filter 52, it is possible to improve the gas quality when the gas generated by the generator is output.
  • a gas generator unit having a function including a plurality of means for outputting gas to reduce the size, and to install a plurality of gas generation units to construct a gas generation system. It is clear that there is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

 本発明は、各オゾン処理装置に対し、オゾンガス流量・濃度を独立に制御してオゾンガスを供給するとともに、信頼性が高いオゾンガス供給が可能なオゾンガス供給システムを得ることを目的とする。そして、本発明は、複数のオゾン発生ユニット(7-1~7-n)からの複数のオゾンガス出力を受け、内部に設けた複数のオゾンガス制御弁(9a,9b,9c,9bc,9ab,9ca)の開閉動作によって、複数のオゾンガス出力の1または複数の組合せを、複数のオゾン処理装置(12-1~12-n)のうち任意のオゾン処理装置に選択的に出力するオゾンガス出力流量制御が実行可能なオゾンガス出力流量管理ユニット(9)を有している。

Description

オゾンガス供給システム
 この発明は、供給する原料ガスの品質を高め、出力するオゾンガスの品質を高め、かつ、ガス流量・濃度を制御して複数のオゾン処理装置に安定したオゾンガスを供給するオゾンガス供給システムに関する。
 複数のオゾン処理装置より構成される多オゾン処理装置に対してオゾンガスを供給する場合、複数のオゾン処理装置に対応して、各々がオゾン発生器に純度が99.99%で、露点が-70℃以下の高純度酸素ガス等の原料ガスを供給し、オゾン電源、流量コントローラ(MFC)等を含む複数のオゾン発生機構(手段)を設け、各オゾン発生機構が独立して対応するオゾン処理装置に対してオゾンガス供給するオゾンガス供給システムを構築することが一般的に考えられる。
 すなわち、オゾンガス供給システムは、オゾン発生器に99.99%で、露点が-70℃以下の高純度酸素ガス等の原料ガスを供給し、オゾン電源、オゾンガスもしくは原料ガス流量をコントロールするMFC等の流量調整手段を介してオゾン発生器に供給する原料ガス配管系統、オゾン発生器内のガス雰囲気圧力をコントロールするオートプレッシャコントローラ(APC)等の圧力調整する手段を有して、オゾン発生器から出力されるオゾンガスに対し濃度を検知するオゾン濃度検知器、オゾン流量計を有した出力ガス配管系統等を、多オゾン処理装置の系統数分、設けていた。
 複数のオゾン処理装置より構成される多オゾン処理装置に対してオゾンガスを供給する場合、複数のオゾン処理装置に対応して、各々がオゾン発生器、オゾン電源、流量コントローラ(MFC)等を含む複数のオゾン発生機構を設け、各オゾン発生機構が独立して対応するオゾン処理装置に対してオゾンガス供給するオゾンガス供給システムを構築することが一般的に考えられる。
 すなわち、オゾンガス供給システムは、オゾン発生器、オゾン電源、原料ガス流量をコントロールするMFC等を介してオゾン発生器に供給する原料ガス配管系統、オゾン発生器から出力されるオゾンガスに対しオゾン濃度検知器、オゾン流量計を有した出力ガス配管系統等を、多オゾン処理装置の系統数分、設けていた。
 このような多オゾン処理装置に対応するオゾン発生システムを構築するのに非常に大きなスペースを要し、さらに、多オゾン処理装置に対し統合的な制御を行って、オゾンガスを供給するシステムを構築する場合、さらに大きなシステム構成になり、コスト面や配置スペース等の問題点があり実用上不利な点が多々あった。
 そのため、従来は、多オゾン処理装置へのオゾン供給方式としては、例えば、特許文献1に開示されているように、1式のオゾン発生器の容量を大きくして、オゾンガスを出力する配管系統を複数配管に分離させ、多オゾン処理装置へそれぞれへの所定流量、濃度のオゾンガスをステップ的に出力させる方式のオゾンガス供給システムが採用されて来ていた。
 図24は特許文献1で開示された内容から想定される従来のオゾンガス供給システム70の内部構成を示すブロック図である。
 図24において、1つのオゾン発生器71、オゾン電源72、原料ガス流量をコントロールする流量コントローラ(MFC)73、発生器の圧力を監視する圧力計62を介してオゾン発生器71に供給する原料ガス配管系統とオゾン発生器71の圧力の変動によってバルブの開閉調整をするバルブ開閉器61、オゾン濃度計75、オゾン流量計67を有した出力配管の後の出力ガス配管系統を複数配管に分離している。さらに、オゾンガス供給システム70は、分離した出力ガス配管系統それぞれに個別オゾンガス流量コントローラ(MFC)68-1~68-nを設け、個別MFC68-1~68-nに対応して設けられた複数のオゾン処理装置12-1~12-nにオゾンガスを独立に供給するように構成している。各個別MFC68-1~68-nで供給するオゾンガスを超える量のオゾンガスは、流量排出ユニット69で排出する構成になっている。
特表2009-500855号公報(図2,図3,図5)
 従来の多オゾン処理装置へのオゾン供給するオゾンガス供給システムは以上のように構成されており、原料ガスをオゾン発生器に供給し、1つのオゾン発生器71からオゾンガスを出力し、出力する配管系統を分配配管させる構成にしている。このため、オゾンガス流量やオゾン濃度は一定の状態で多オゾン処理装置(オゾン処理装置12-1~12-n)へ供給しなければならず、各オゾン処理装置へのオゾン供給条件は1条件のみで共通化され、オゾンガス流量や濃度を複数のオゾン処理装置それぞれを独立して可変制御することが不可能であるという問題点があった。
 また、1つのオゾン発生器から多オゾン処理装置へオゾンガスを供給しているため、オゾン発生器が故障すると、供給対象の全てのオゾン処理装置へのオゾンガスが停止すること等、オゾンガス供給に関する信頼性が低いという問題点があった。
 この発明は上記のような課題を解決するためになされたものであり、各オゾン処理装置に対し、オゾンガス流量・濃度を独立に制御してオゾンガスを供給するとともに、信頼性が高いオゾンガス供給が可能なオゾンガス供給システムを得ることを目的とする。
 この発明に係るオゾンガス供給システムは、ガス流量、濃度を制御してオゾンガスを複数のオゾン処理装置それぞれに供給するオゾンガス供給システムであって、複数のオゾン発生ユニットを備え、前記複数のオゾン発生ユニットは、オゾンガスを発生するオゾン発生器と、前記オゾン発生器に供給する電力を制御するオゾン電源と、前記オゾン発生器に入力される原料ガス流量を制御するマスフローコントローラ(MFC)と、前記オゾン発生器内の圧力である内部圧力を自動制御するオートプレッシャコントローラ(APC)と、前記オゾン発生器が出力するオゾンガスのオゾン濃度値を検出するオゾン濃度計と、初期動作として所定の設定電力量で前記オゾン電源を駆動させ、所定時間後に前記オゾン濃度計で検知したオゾン濃度と設定したオゾン濃度との比較に基づき、前記オゾン電源が供給する電力をPID制御するオゾン制御部とを備え、前記オゾンガス供給システムは、前記複数のオゾン発生ユニット内の複数の前記オゾン発生器からの複数のオゾンガス出力を受け、内部に設けた複数のオゾンガス制御弁の開閉動作によって、前記複数のオゾンガス出力の1または複数の組合せを、前記複数のオゾン処理装置のうち任意のオゾン処理装置に選択的に出力するオゾンガス出力流量制御が実行可能なオゾンガス出力流量管理ユニットと、前記複数のオゾン処理装置からの処理オゾンガスイベント信号に基づき、前記複数のオゾン発生ユニットそれぞれの前記オゾンガスの出力内容を制御し、前記オゾンガス出力流量管理ユニットに対し前記オゾンガス出力流量制御を行う、オゾンガス出力流量管理ユニット制御部とをさらに備える。
 この発明におけるオゾンガス供給システムは、複数のオゾンガス制御弁の開閉動作によって、前記複数のオゾンガス出力の1または2以上の組合せを、前記複数のオゾン処理装置のいずれかに選択的に出力するオゾンガス出力流量制御が実行可能なオゾンガス出力流量管理ユニットを有している。
 したがって、複数のオゾンガス出力をそれぞれ複数のオゾン処理装置のうち対応するオゾン処理装置に供給することにより、オゾンガス流量・濃度を複数のオゾン処理装置それぞれ独立に制御することができる。
 加えて、2以上のオゾンガス出力の組合せをひとつのオゾン処理装置に供給することにより、多様なガス流量及び濃度のオゾンガスを供給することができる。
 さらに、複数のオゾン発生ユニットのうち一部に異常が発生しても、正常動作する残りのオゾン発生ユニットによって、複数のオゾン処理装置のいずれにもオゾンガスを供給することができるため、信頼性が高いオゾンガス供給が実現できる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1であるオゾンガス供給システムの構成を示すブロック図である。 図1で示したオゾンガス供給システムにおけるオゾンガス出力流量管理ユニットの内部構成を示す説明図である。 実施の形態1のオゾンガス供給システムにおけるメイン操作パネルの表示状態を模式的に示す説明図である。 図1で示したオゾン発生ユニット内のオゾン制御部の構成を示すブロック図である。 図1で示したオゾン発生ユニット内のデータメモリの記憶内容を模式的に示す説明図である。 図1で示したオゾン発生ユニットに対し出力濃度制御を行った出力濃度制御波形を示すグラフである。 1台のオゾン発生ユニットにおけるオゾン電源の受電電力とオゾン発生器で発生するオゾン濃度特性を示すグラフである。 実施の形態2のオゾン発生ユニット内に設けられるオゾン電源の内部構成の詳細を示す回路図である。 実施の形態2のオゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 図1で示したオゾンガス供給システムにおける、実施の形態3によるオゾンガス出力流量管理ユニットの内部構成を示す説明図である。 実施の形態3のオゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 本発明の実施の形態4であるオゾンガス供給システムの構成を示すブロック図である。 本発明の実施の形態5であるオゾンガス供給システムの構成を示すブロック図である。 実施の形態5のオゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 本発明の実施の形態6であるオゾンガス供給システムの構成を示すブロック図である。 実施の形態6のオゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 本発明の実施の形態6であるオゾンガス供給システムの他の態様の構成を示すブロック図である。 実施の形態6のオゾン発生ユニットの他の態様の組合せ構造を模式的に示す斜視図である。 本発明の実施の形態7であるオゾンガス供給システムの構成を示すブロック図である。 本発明の実施の形態8であるオゾンガス供給システムの構成を示すブロック図である。 実施の形態8のオゾン発生ユニットの組合せ構造を模式的に示す斜視図である。 本発明の実施の形態6であるオゾンガス供給システムの他の態様の構成を示すブロック図である。 実施の形態6のオゾン発生ユニットの他の態様の組合せ構造を模式的に示す斜視図である。 従来のオゾンガス供給システム70の内部構成を示すブロック図である。 実施の形態2のオゾン発生ユニットに対応する従来の構成を模試的に示す説明図である。 原料ガスの露点と原料ガスに含まれる水分量との関係を示す説明図である。
 <実施の形態1>
 以下、この発明の実施の形態1を図1から図6に基づいて説明する。以下、図1~図6の概要は以下の通りである。図1は本発明の実施の形態1であるオゾンガス供給システムの構成を示すブロック図である。図2は図1で示したオゾンガス供給システムにおけるオゾンガス出力流量管理ユニットの内部構成を示す説明図である。図3は実施の形態1のオゾンガス供給システムにおけるメイン操作パネルの表示状態を模式的に示す説明図である。図4は図1で示したオゾン発生ユニット内のオゾン制御部の構成を示すブロック図である。図5は図1で示したオゾン発生ユニット内のデータメモリの記憶内容(オゾン発生ユニットの濃度、流量制御を行うための初期条件等)を模式的に示す説明図である。図6は図1で示したオゾン発生ユニット7に対し出力濃度制御を行った出力濃度制御波形を示すグラフである。
 (全体構成)
 図1に示すように、オゾンガス供給システム10は内部にn(≧2)個のオゾン発生ユニット7-1~7-nを有している。以下、オゾン発生ユニット7-1~7-nのうちオゾン発生ユニット7-2を代表して取り上げその内部構成を図1中心に参照して説明する。
 オゾン発生器1の内部は酸素ガスを含んだガスが充満されており、オゾンガス供給システム10内のオゾン電源2から高周波高電圧HV,LVがオゾン発生器1内の電極間に印加され、この電極間で誘電体バリア放電(無声放電)をすることにより、放電空間のガスが放電によってオゾンガスを生成している。なお、オゾン電源2は後に詳述するがコンバータ2a、インバータ2b及び高電圧回路部2cにより構成される。
 本実施の形態はオゾン発生器1として無声放電方式によるオゾン発生器構造のものを代表して説明したが、オゾン発生させる機能としては、沿面放電やグロー放電を利用したオゾン発生器構造や超高周波やマイクロ波放電を利用したオゾン発生器構造もあり、さらに電解媒質を利用したオゾン発生器もあり、これらのオゾン発生器であっても良い。
 オゾンガス供給システム10の原料ガス供給口14、オゾン発生ユニット7-2の原料ガス供給口14-2から得られる所定の原料ガス流量Qの原料ガスが、ガス流量コントローラ(MFC)3を介してオゾン発生器1に一定流量で原料ガスが供給される。
 オゾン発生器1内の圧力を一定する手段として、発生器内のガス圧力を検出する手段と、この検出した発生器に出力するオゾンガス量を微調整することで、オゾン発生器1内の圧力を一定にする機能をオゾン発生器システムには保有している。この1つの方法として、発生器圧力を自動で所定圧力に調整する自動圧力調整器(APC)4があり、この自動圧力調整器(APC)4がオゾン発生器のオゾンガス出力配管ガスラインに設けられている。
 オゾンガス出力配管ガスラインの具体的な構成としては、オゾン発生器1内で生成したオゾンガスから不純物(ガス)や異物を除去するガスフィルター51に通した後、オゾン濃度計5、発生器圧力を自動で所定圧力に調整する自動圧力調整器(APC)4を介して連続的に所定のオゾン濃度Cを有するオゾン(化酸素)ガスをオゾンガス出力口15-2からオゾン発生ユニット7-2の外部に出力している。
 オゾンガス出力配管ガスラインには、出力オゾンガス流量を一定出力するためのオゾンガス流量コントローラ(MFC)を設ける場合もある。この実施の形態では、このオゾンガス流量コントローラ(MFC)は設けていない。
 したがって、出力したオゾンガスの流量Qxは、原料ガス流量Qからオゾンに変換したオゾン流量Qcと変換されなかった原料酸素流量Qnの和となる。つまり、オゾン(化酸素)ガスの流量Qxは、原料(酸素)ガス流量Q、オゾン濃度Cに基づく式(A){Qx=F(Q,C)・・・(A)}により決定する。
 このガス流量コントローラ(MFC)3で、オゾン発生器に供給する原料ガス流量を一定値に制御している。
 なお、APC4は、オゾン発生器1のオゾンガスの出力配管経路内を流れるオゾンガスの圧力を制御することによりオゾン発生器1のガス圧力を自動的に一定値に制御している。
 オゾン発生ユニット7-2は、オゾンガスを発生する手段を有したオゾン発生器1、オゾンガスに所定の電力を供給する手段を有したオゾン電源2、供給する原料ガス流量を一定値に制御する手段を有するMFC3、オゾン発生器1内の圧力値を一定値に制御する手段を有するAPC4、出力するオゾンガスの不純物ガスをトラップする手段を有するガスフィルター51、出力するオゾン濃度値を検出する手段を有するオゾン濃度計5等の複数個の機能手段を集約し1単位のパッケージユニットとして構成されている。オゾン発生ユニット7-1~7-nそれぞれの構成は全て同じであり(7-2以外は図示省略)、オゾン発生ユニット7-2を代表して説明した内部構成を呈している。
 各オゾン発生ユニット7(オゾン発生ユニット7-1~7-n)の底面に漏水センサ6を設け、各オゾン発生ユニット7の漏水の有無を監視している。すなわち、漏水センサ6から得られる情報がシステム統括管理ユニット8内のEMO回路(非常停止回路)81により得られ、システム管理制御部84の制御下で監視される。
 また、オゾンガス供給システム10内に設けられるシステム統括管理ユニット8は、装置内を排気ダクト11から真空引きし負圧状態に監視するための排気センサ23、オゾン漏洩センサ24それぞれの検出情報を受けている。そして、システム統括管理ユニット8は、排気センサ23による排気異常、オゾン漏洩センサ24による漏洩異常を受けると、システム管理制御部84より全てのオゾン発生ユニット7-1~7-nに停止を指示するオゾン発生ユニット制御信号86-1~86-nを与え、オゾン発生ユニット7-1~7-nの運転を停止させる。
 また、システム統括管理ユニット8内のシステム管理制御部84は、オゾン処理装置12-1~12-nから、要求オゾン流量Qs12及び要求オゾン濃度Cs12を含む処理オゾンガスイベント信号16-1~16-nをユーザ情報I/F83を介して受ける。
 そして、システム管理制御部84は、処理オゾンガスイベント信号16-1~16-nの指示内容に基づき、オゾン発生ユニット制御信号86-1~86-nをオゾン発生ユニット7-1~7-nに出力するとともに、制御信号S8をオゾンガス出力流量管理ユニット9に出力する。
 その結果、オゾン発生ユニット7-1~7-nそれぞれから出力するオゾンガスの流量、濃度が制御されるともに、オゾンガス出力流量管理ユニット9におけるオゾンガス制御弁9a等の開閉制御が行われ、処理オゾンガスイベント信号16-1~16-nの指示内容に沿ったガス流量、濃度のオゾンガスをオゾン処理装置12-1~12-nに供給することができる。以下、システム統括管理ユニット8についてさらに詳述する。
 システム統括管理ユニット8は、装置の非常停止を行うEMO回路81、ユニット情報I/F82、ユーザ情報I/F83、システム管理制御部84及びメイン操作パネル85を有している。
 EMO回路81は、前述したように、各オゾン発生ユニット7の漏水センサ6から得られるシステムの異常信号を監視する回路である。具体的には、EMO回路81が漏水センサ6より漏水異常の検出情報を受けると、当該情報をシステム管理制御部84に伝達し、システム管理制御部84より、漏水異常を検出した漏水センサ6に対応するオゾン発生ユニット7にオゾン発生ユニット制御信号86(オゾン発生ユニット制御信号86-1~86-nのいずれか)を与え、当該オゾン発生ユニット7を停止させる。
 ユニット情報I/F82は、オゾン発生ユニット7-1~7-nからユニット情報信号17-1~17-nの授受を行う。
 ユーザ情報I/F83は、前述したように、オゾン処理装置12-1~12-nからの指令信号である処理オゾンガスイベント信号16-1~16-n(要求オゾン流量Qs12、要求オゾン濃度Cs12、運転情報Y、装置No.等を指示)を受信する。
 システム管理制御部84は、オゾンガス出力流量管理ユニット9内のオゾンガス制御弁(9a、9b、9c、9ab、9bc、9ca)を開閉制御するための指令である制御信号S8を出力し、オゾンガス出力流量管理ユニット9内の統括制御を行う。システム管理制御部84はメイン操作パネル85との情報の授受も行う。
 図1に示すように、オゾンガス供給システム10は冷却水入口13A及び冷却水出口13Bを有し、冷却水入口13Aから冷却水入口13a-1~13a-nを介してオゾン発生ユニット7-1~7-n内に図示しない外部の冷却装置からの冷却水を取り込み、オゾン発生ユニット7-1~7-nから冷却後の水を冷却水出口13b-1~13b-nを介して冷却水出口13Bから外部に出力している。
 オゾンガス供給システム10は原料ガス供給口14を有し、原料ガス供給口14から原料ガス供給口14-1~14-nを介してオゾン発生ユニット7-1~7-n内に外部から原料ガスを取り込んでいる。
 オゾン発生ユニット7-1~7-nのオゾンガス出力口15-1~15-nは内部のオゾンガス出力流量管理ユニット9に接続され、オゾンガス出力流量管理ユニット9からオゾンガス出力口25-1~25-nを介してオゾンガス供給システム10の外部にオゾンガスが出力される。
 n台のオゾン処理装置12-1~12-nから出力される処理オゾンガスイベント信号16-1~16-nはユーザ情報I/F83を介してシステム管理制御部84に取り込まれる。処理オゾンガスイベント信号16(16-1~16-n)は要求オゾン流量Qs12、原料ガス設定濃度Cs12及び運転情報Y等を指示している。システム管理制御部84は処理オゾンガスイベント信号16-1~16-nに基づき、オゾン発生ユニット7-1~7-nを制御するオゾン発生ユニット制御信号86-1~86-nを出力する。
 オゾン発生ユニット7-1~7-nはオゾン発生ユニット用操作パネル85-1~85-nを有している。また、オゾン発生ユニット7-1~7-nからユニット情報信号17-1~17-nがシステム統括管理ユニット8のユニット情報I/F82を介してシステム管理制御部84に伝達される。ユニット情報信号17(17-1~17-n)は、各オゾン発生ユニット7におけるオゾン発生器1の故障や運転/停止状態を指示する情報信号である。
 処理オゾンガスイベント信号16に含まれる運転情報Yは、各オゾン処理装置12(12-1~12-n)の故障や運転/停止状態情報信号を示すユーザ情報信号に相当し、前述したように、システム統括管理ユニット8内のユーザ情報I/F83に取り込まれる。
 また、オゾン発生ユニット7-1~7-nはそれぞれオゾン制御部19を有している。オゾン制御部19は、後に詳述するように、原料ガス流量の設定流量Qs、検出流量Q,オゾン発生器1の発生器圧力の設定圧力Ps、検出圧力P及び各オゾン発生ユニット7から出力するオゾン濃度Cを受信し、オゾン電源2を制御してオゾン発生器1から発生するオゾンガスのオゾン濃度、ガス流量等を制御する制御部である。また、オゾン制御部19は、オゾン濃度計5、MFC3、APC4及びオゾン電源2との間で信号授受を行っている。
 (オゾンガス出力流量管理ユニットの制御)
 図2に示すように、オゾンガス出力流量管理ユニット9はオゾン発生ユニット7-1~7-nの出力部に対応してオゾンガス入力口29-1~29-nを有しており、オゾン処理装置12-1~12-nの入力部に対応してオゾンガス出力口39-1~39-nを有している。そして、オゾンガス出力口39-1~39-n(オゾンガス出力口25-1~25-n)とオゾン処理装置12-1~12-nとの間にオゾンガス開閉弁22-1~22-nが介挿される。オゾン処理装置12-1~12-nはオゾンガス供給時にオゾンガス開閉弁22-1~22-nを開状態にする。本オゾンガス供給システム10はオゾンガス出力口39-1~39-nのn個のオゾンガス出力口を設けたシステムにしているが、ユーザ側のオゾン処理装置数がn個より少ない場合は出力しないオゾンガス出力口39部分の配管継手をキャップ継手にし、出力ガスを栓することで対応することもできる。
 オゾンガス出力流量管理ユニット9は内部にオゾンガス制御弁9a,9b,9c,9bc,9ab,9caを有しており、オゾンガス制御弁9a,9b,9cはノーマリオープン(NO),オゾンガス制御弁9bc,9ab,9caはノーマリクローズ(NC)である。なお、説明の都合上、図2ではn=3の場合で具体化して示している。なお、オゾンガス制御弁9a,9b,9c,9bc,9ab,9caとして、電気もしくはエアー圧力によって開閉できる電動バルブもしくは空圧弁が考えられる。
 オゾンガス制御弁9a~9cはオゾン発生ユニット7-1~7-nのオゾンガス入力口29-1~29-nとオゾンガス出力口39-1~39-nとの間に介挿される。オゾンガス制御弁9abはオゾンガス制御弁9a,9bの出力間に設けられ、オゾンガス制御弁9bcはオゾンガス制御弁9b,9cの出力間に設けられ、オゾンガス制御弁9caはオゾンガス制御弁9c,9aの出力間に設けられる。
 そして、システム統括管理ユニット8のシステム管理制御部84からの制御信号S8に基づき、オゾンガス制御弁9a,9b,9c,9bc,9ab,9caそれぞれの開状態、閉状態が制御される。
 図2では、オゾン処理装置12-1~12-nのうち、オゾンガス開閉弁22-2を開状態(黒塗り潰し)としたオゾン処理装置12-2の1台のみ運転しており、オゾン処理装置12-2に対するオゾンガス流量としては、30SLM(L/min)のオゾンガスを供給した場合のオゾンガス出力流量管理ユニット9の状態を示している。すなわち、オゾン処理装置12-2は処理オゾンガスイベント信号16-2内の要求オゾン流量Qs12により30SLMのオゾン流量を指示している。
 システム統括管理ユニット8内のシステム管理制御部84は、オゾン発生ユニット制御信号86-1~86-nにより、オゾン発生ユニット7-1~7-nよりそれぞれ10SLMのオゾンガスを供給するように制御する。
 さらに、システム管理制御部84は制御信号S8により、オゾンガス出力流量管理ユニット9内のオゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開閉状態を制御する。具体的には、オゾンガス制御弁9a,9b,9c,9bc,9abを開状態(黒塗り潰し)、オゾンガス制御弁9caを閉状態(白抜き)にする制御信号S8をオゾンガス出力流量管理ユニット9に出力する。
 一方、前述したように、オゾンガス開閉弁22-1~22-nのうち、オゾンガス開閉弁22-2のみが開状態であり、オゾンガス開閉弁22-1及び22-nが閉状態である。ここでは、使用しないオゾン処理装置12をオゾンガス開閉弁22-1~22-nで閉状態にする方式で説明したが、使用しないオゾン処理装置にはオゾンガスが供給されないように25-1~25-nの部分で、配管継手により、強制的に栓させてもよい。
 このように、システム管理制御部84はオゾン発生ユニット制御信号86-1~86-nによりオゾン発生ユニット7-1~7-nからそれぞれ10SLMの流量のオゾンガスを供給させ、かつ制御信号S8によりオゾンガス出力流量管理ユニット9を制御することにより、オゾン処理装置12-2に対してガス流量30SLM(10SLM×3)のオゾンガスを供給することができる。
 (メイン操作パネル)
 図3に示すように、オゾンガス供給システム10のメイン操作パネル85の表示面において、オゾン発生ユニット7-1~7-n及びオゾン処理装置12-1~12-nに対応づけて、オゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開閉状態を示している。さらに、オゾン処理装置12-1~12-nの要求オゾン流量Qs12(SLM)、要求オゾン濃度Cs12(g/m3)が示されている。
 図3に示す例では、オゾン処理装置12-2のみ要求オゾン流量Qs12=30SLM、要求オゾン濃度Cs12=280(g/m3)を要求している。
 したがって、オゾン発生ユニット7-1~7-nからそれぞれオゾン流量10(SLM)、オゾン濃度280(g/m3)のオゾンガスを出力させ、オゾンガス制御弁9a,9b,9c,9bc,9abを開状態、オゾンガス制御弁9caを閉状態にすることにより、オゾン処理装置12-2に対し、オゾン流量30(SLM)、オゾン濃度280(g/m3)のオゾンガスを供給することができる。
 (オゾン制御部)
 図4に示すように、各オゾン発生ユニット7内に設けられるオゾン制御部19は、オゾン電源2を制御することによりオゾン発生器1のオゾン発生内容(ガス流量、オゾンガス濃度)を制御する。
 オゾン電源2は、商用交流電圧AC1φ~AC3φを整流するコンバータ2a、直流電圧をオゾン発生器1に最適な高周波に変換し、出力電圧を制御して所定電力をオゾン発生器1に供給するインバータ2b、インバータ2bから出力された電圧を、オゾン発生器1を生成するための放電を発生させる電圧まで高電圧に昇圧させるための高電圧回路部2c及び電流センサ2dから構成されている。コンバータ2a、インバータ2b及び高電圧回路部2cの順で直列に接続され、コンバータ2a,インバータ2b間に電流センサ2dが介挿される。
 オゾン制御部19は、オゾン発生器1で発生するオゾンガス内容(ガス流量Q、オゾン濃度C)を制御するため、高電圧回路部2cの出力である高周波・高電圧HV,LVをオゾン発生器1に印加させ、原料ガスである酸素ガスから放電現象によって所定のオゾン量のオゾンガスを生成させている。
 オゾン制御部19は原料ガス流量設定器1S1、セレクタ1S2、オゾン濃度設定器1S3、それぞれの制御信号をON-OFFして制御するアナログスイッチ1S4-A~1S4-F、及びそれぞれの制御信号を反転信号にする反転器1S5-1,1S5-2を有している。
 さらに、オゾン制御部19は、原料ガス設定流量Qs,設定濃度Csおよびオゾン発生器1の設定圧力Psの信号を受けて最適なオゾン量を生成に必要な設定電力Wsを記憶させたデータメモリ1S6、設定電力Wsからオゾン電源に必要な電流を注入するための電流信号に変換する電流信号変換器1S7を有している。
 加えて、オゾン制御部19は、初期電流指令でインバータ2bを駆動させ、MFC3及びオゾン濃度計5によって実際に流れている原料ガス流量Q及び生成オゾン濃度Cを受けてPID制御に切り替えるタイマ1S8、オゾン濃度Cとガス設定濃度Csとを比較結果に基づいてPID制御するPID制御回路1S9を有している。
 さらに、オゾン制御部19は、システム管理制御部84よりオゾン発生ユニット制御信号86を受けて、オゾン発生ユニット制御信号86が指示する要求オゾン流量Qs8、要求オゾン濃度Cs8、及び運転情報Y8に基づき、設定流量Qs,設定オゾン濃度Cs信号を調整するイベント調整器1S10を有している。
 また、オゾン制御部19は、圧力設定器1S11、電流信号変換器1S7の出力電流に基づき注入電力を制御するためインバータ2bのONする初期パルス幅を設定する初期パルス幅設定器1S12、及びオゾン濃度計5に検出されたオゾン濃度C及び設定オゾン濃度Cs受け、オゾン濃度Cと原料ガス設定濃度Csとの比較結果に基づき、インバータ2bの注入電力を制御するための電流信号に変換させる電流変換器1S13を有している。
 (データメモリ1S6)
 オゾン発生ユニット7のオゾン濃度、オゾン流量制御を行うための初期条件を記憶したデータメモリ1S6は、図5に示すように、オゾン発生器1の設定圧力Psをパラメータとして、複数個のメモリバンクBK1~BK4を有しており(図5では説明の都合上、4個の場合を示している)、オゾン発生器1の設定圧力Psが決れば、設定圧力Psに対応するメモリバンクBKx(1~4のいずれか)が選び出される。
 選択された1つのメモリバンクBKには、図5で示すように、横軸(X軸)をオゾンガス流量の設定流量Qsを番地とし、ΔQ毎に複数分割されている。縦軸(Y軸)をオゾン濃度の設定濃度Csを番地とし、ΔC毎に複数分割されている。
 データメモリ1S6は、この横軸(X軸)、縦軸(Y軸)の番地として機能する設定流量Qs,設定濃度Csの信号を受け、X軸とY軸の番地で決るメモリ番地に所定のオゾン量を発生させるに必要な設定電力量W(A11~A17,・・・,A61~A67)が書き込まれており、その設定電力量Wsをオゾン量制御19内の電流信号変換器1S7に出力する。その結果、電流信号変換器1S7で電流信号に変換されて、アナログスイッチ1S4-Eを介して初期パルス幅設定器1S12に電流信号が付与され、初期パルス幅設定器1S12により設定電力量Wsを実現するための所定周波数、所定パルス幅のパルス信号Twがインバータ2bに出力される。
 図6に示すように、オゾン発生ユニット7の出力濃度制御を行った出力濃度制御波形はオゾン発生ユニット7への運転指令信号(運転情報Y8に含まれる)に対応して、設定時間Toで規定される初期状態時は、データメモリ1S6からの設定電力量Wsに基づく、インバータ2bの注入電力を設定する。
 そして、設定時間To経過後にタイマ1S8による時間制御によってPID制御回路1S9によるPID制御に切り替わる。PID制御回路1S9は、電流変換器1S13の電流信号(オゾンガス濃度C(オゾン濃度計5より検出)とガス設定濃度Csとの比較結果に基づき決定される信号)に基づき、パルス信号Twのパルス幅ΔTwを微小変化させることにより、インバータ2bの注入電力のPID制御が実行される。その結果、オゾン発生器1から発生するオゾン濃度(C)は、同図(a)で示す制御応答性波形を示す。
 以下、図6で示す濃度制御について詳述する。まず、オゾン発生ユニット制御信号86に基づかないオゾン発生ユニット7単体の動作について説明する。
 イベント調整器1S10は図示しない運転指令の入力をトリガとしてタイマ1S8を起動する。このとき、イベント調整器1S10は、原料ガス流量設定器1S1の原料ガス設定流量Qsを選択するように原料ガス流量比較器1S2を制御し、アナログスイッチ1S4-A,1S4-Dをオン状態,アナログスイッチ1S4-B,1S4-Cをオフ状態にする。一方、起動直後のタイマ1S8はアナログスイッチ1S4-Eをオン、アナログスイッチ1S4-Fをオフ状態にする。
 すると、データメモリ1S6には、圧力設定器1S11より設定圧力Ps、原料ガス流量設定器1S1より原料ガス設定流量Qs、オゾン濃度設定器1S3より原料ガス設定濃度Csが得られる結果、前述したように設定電力量Wsを電流信号変換器1S7に出力する。その結果、初期パルス幅設定器1S12により初期パルス幅のパルス信号Twが発生される。このパルス信号Twの“H”,“L”に応じてインバータ2bのオン,オフが制御される。
 このように、タイマ1S8が動作状態となる設定時間To内において、データメモリ1S6の設定電力量Wsに基づく初期制御が実行される。
 そして、タイマ1S8が起動後、設定時間To経過すると初期状態を終え、アナログスイッチ1S4-Eをオフ状態、アナログスイッチ1S4-Fをオン状態に切り換える。
 すると、PID制御回路1S9は、電流変換器1S13からの電流信号に基づき、オゾン濃度計5より得られるオゾン濃度Cとガス設定濃度Csとの比較結果を反映して、パルス信号Twのパルス幅を微小偏位(ΔTw)させることを主としたPID制御をオゾン電源2に対して行う。なお、PID制御回路1S9は電流センサ2dの検出電流Iによっても微小偏位ΔTwを変動させる。このように、運転指令から設定時間To経過後はPID制御(W)に切り替わる。
 次に、オゾン発生ユニット制御信号86に基づくオゾン発生ユニット7単体の動作について説明する。
 イベント調整器1S10は要求オゾン流量Qs8、要求オゾン濃度Cs8及び運転情報Y8を指示するオゾン発生ユニット制御信号86の入力をトリガとしてタイマ1S8を起動する。このとき、アナログスイッチ1S4-A,1S4-Dをオフ,アナログスイッチ1S4-B,1S4-Cをオン状態にする。さらに、起動直後のタイマ1S8はアナログスイッチ1S4-Eをオン、アナログスイッチ1S4-Fをオフ状態にする。
 なお、要求オゾン流量Qs8及び要求オゾン濃度Cs8は、オゾン処理装置12-1~12-nからの処理オゾンガスイベント信号16-1~16-nが指示する要求オゾン流量Qs12及び要求オゾン濃度Cs12に基づき、システム管理制御部84により決定される。
 すると、データメモリ1S6には、圧力設定器1S11より設定圧力Ps、オゾン発生ユニット制御信号86が指示する要求オゾン流量Qs8及び要求オゾン濃度Cs8が設定流量Qs及び設定濃度Csとして得られる結果、前述したように設定電力量Wsを電流信号変換器1S7に出力する。その結果、初期パルス幅設定器1S12により初期パルス幅のパルス信号Twが発生する。
 このように、オゾン発生ユニット制御信号86の入力によっても、タイマ1S8が動作状態となる設定時間To内において、データメモリ1S6の設定電力量Wsに基づく初期制御が実行される。
 そして、タイマ1S8が起動後、設定時間To経過すると初期状態を終え、アナログスイッチ1S4-Eをオフ状態、アナログスイッチ1S4-Fをオン状態に切り換える。
 すると、PID制御回路1S9は、電流変換器1S13からの電流信号に基づき、パルス信号Twのパルス幅を微小偏位(ΔTw)させることを主としたPID制御をオゾン電源2に対して行う。
 このように、オゾン制御部19はオゾン電源2に対する初期制御、PID制御を行う。図7は、1台のオゾン発生ユニット7の2.5KWのオゾン電源2の受電電力とオゾン発生器1で発生するオゾン濃度特性を示すグラフである。
 図7において、オゾン濃度特性L11は、オゾンガス流量Qが1.25L/min(=1.25SLM)を供給した場合の発生するオゾン濃度特性を示す。この場合は受電電力を100W~1.0kWで可変にすれば、発生するオゾン濃度は約0g/m3~360g/m3まで可変設定できる。
 同様に、オゾン濃度特性L12は、オゾンガス流量Qが2.5SLMを供給した場合のオゾン濃度特性を示す。この場合は受電電力を100W~2.0kWで可変にすれば、発生するオゾン濃度は約0g/m3~360g/m3まで可変設定できる。
 オゾン濃度特性L13は、オゾンガス流量Qが5.0SLMを供給した場合のオゾン濃度特性、オゾン濃度特性L14は、オゾンガス流量Qが7.5SLMを供給した場合のオゾン濃度特性、オゾン濃度特性L15は、オゾンガス流量Qが10SLMを供給した場合のオゾン濃度特性、オゾン濃度特性L16は、オゾンガス流量Qが20SLMを供給した場合のオゾン濃度特性、オゾン濃度特性L17は、オゾンガス流量Qが30SLMを供給した場合のオゾン濃度特性を示す。
 オゾンガス流量Qが5SLMのオゾンガスを1台のオゾン発生ユニット7から供給した場合は、受電電力2.5kWで最大発生するオゾン濃度は350g/m3(オゾン濃度特性L13参照)、オゾンガス流量Qが7.5SLMのオゾンガスを供給した場合は、受電電力2.5kWで最大発生するオゾン濃度は300g/m3(オゾン濃度特性L14参照)となる。
 また、オゾンガス流量Qが10SLMのオゾンガスを供給した場合は、受電電力2.5kWで最大発生するオゾン濃度は280g/m3(オゾン濃度特性L15参照)、オゾンガス流量Qが20SLMのオゾンガスを供給した場合は、受電電力2.5kWで最大発生するオゾン濃度は180g/m3(オゾン濃度特性L16参照)、オゾンガス流量Qが30SLMのオゾンガスを供給した場合は、受電電力2.5kWで最大発生するオゾン濃度は140g/m3(オゾン濃度特性L17参照)しか得られない。
 受電電力が2.5KWのオゾン電源2であるオゾン発生ユニット7において、280g/m3のオゾン濃度を維持する場合、1台のオゾン発生器1が供給可能な最大流量は10SLMであり、すなわち、1台のオゾン発生器1からオゾン濃度を280g/m3を満足させる場合、オゾンガス流量10SLM以上のガス流量を供給することはできない。
 一方、本実施の形態のオゾンガス供給システム10は、オゾンガス出力流量管理ユニット9により、n台オゾン発生ユニット7-1~7-nから供給されるn個のオゾンガス出力の1または複数の組合せを、オゾン処理装置12-1~12-nのうち任意のオゾン処理装置12に選択的に出力することができる、出力オゾンガス出力制御方式を採用している。
 このため、実施の形態1のオゾンガス供給システム10では、オゾンガス出力流量管理ユニット9に設けた各ユニット間に設けたオゾンガス出力流量管理ユニット9内のオゾンガス制御弁9ab、9bc、9caの開閉制御を、図2及び図3に示すように行えば、n台のオゾン発生ユニット7-1~7-nから発生するオゾンガス全てを1台のオゾン処理装置12-2に供給することができる。したがって、オゾン発生ユニット7-1~7-nからそれぞれガス流量:10SLM、オゾンガス濃度280g/m3のオゾンガスを出力させることにより、オゾン処理装置12-2に対し、ガス流量:30SLMのオゾンAガスを供給でき、その際のオゾン濃度は280g/m3まで高くすることができる。結果として、現状オゾン発生器の利用でオゾン処理装置の処理能力である処理速度、性能向上等を大幅に向上できる効果がある。
 また、オゾン発生ユニット7で10SLMの原料ガスでは、最大280g/m3のオゾン濃度しか出力できないが、オゾンガス出力流量管理ユニット9に設けた各ユニット間に設けたオゾンガス制御弁9ab、9bc、9caの開閉制御を利用すれば、オゾン濃度を高めることもできる。
 例えば、図2及び図3に示すようにオゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開閉制御を行って、3台のオゾン発生ユニット7からそれぞれ供給するガス流量を3.3SLMにすれば、3.3SLMのオゾン濃度の最大値まで出力濃度が高められ、仮想点P3に示すように約330g/m3のオゾン濃度で総計10SLMのオゾンガスが供給でき、オゾンガス供給を受けるオゾン処理装置12-2のオゾン処理能力を高められる効果がある。
 また、n台のオゾン発生ユニット7を搭載して、オゾンガス出力流量管理ユニット9で構成した出力オゾンガス出力制御方式を採用した本実施の形態のオゾンガス供給システム10では、オゾン発生ユニット7-1~7-nのいずれかが故障して、それに対応するオゾン処理装置12が使えなくなることはなくなり、故障していないオゾン発生ユニット7から出力されるオゾンガスをオゾンガス制御弁9ab、9bc、9caを開閉して供給することができ、よりオゾンガス供給の信頼性が高いオゾンガス供給システムを得ることができる。
 例えば、オゾン処理装置12-2に対応するオゾン発生ユニット7-2が故障している場合、オゾン発生ユニット7-1より供給されるオゾンガスを、オゾンガス制御弁9a,9ab、オゾンガス開閉弁22-2を開状態にしてオゾン処理装置12-2に供給することができる。
 さらに、n台のオゾン処理装置12-1~12-nのいずれかが故障や運転停止しても、処理オゾンガスイベント信号16の運転情報Yを取り込むことで、即座にオゾン発生ユニット制御信号86により、故障したオゾン処理装置12にオゾンガスを供給しているオゾン発生ユニット7の動作を停止させることができる。
 (効果等)
 上述した実施の形態1では、1つのオゾンガス供給システム10に複数のオゾン発生ユニット7-1~7-nを備え、各オゾン発生ユニット7は、オゾン発生器1、オゾン発生に供給する電力を制御するオゾン電源2、オゾンガス流量Qを制御するMFC3、オゾン発生器1内の圧力Pを自動制御するAPC4、及び出力するオゾン濃度値Cを検出するオゾン濃度計5を搭載している。
 そして、オゾンガス供給システム10は、各オゾン発生器1から出力オゾンガス配管に対応して開閉弁(オゾンガス制御弁9a~9c)を設け、かつ、上記各オゾン発生器1の出力オゾンガス配管間にも開閉弁(9bc,9ab,9ca)を設けたオゾンガス出力流量管理ユニット9を設けている。
 実施の形態1のオゾンガス供給システム10は、オゾンガス出力流量管理ユニット9内のオゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開閉動作によって、オゾン発生ユニット7-1~7-nから出力される複数のオゾンガスの1または2以上の組合せを、オゾン処理装置12-1のいずれかに選択的に出力するオゾンガス出力流量制御が実行可能なシステム統括管理ユニット8(オゾンガス出力流量管理ユニット)を有している。
 したがって、オゾンガス制御弁9a,9b,9cを開状態、オゾンガス制御弁9ab,9bc、9caを閉状態にし、オゾンガス開閉弁22-1~22-nを開状態にすることにより、1対1に対応するオゾン発生ユニット7-1~7-nからオゾン処理装置12-1~12-nにオゾンガスを供給することにより、供給されるオゾンのガス流量・オゾンガス濃度をオゾン処理装置12-1~12-nそれぞれ独立に制御することができる。
 加えて、図2及び図3で示したように、2以上のオゾンガス出力の組合せをひとつのオゾン処理装置(オゾン処理装置12-2)に供給することにより、多様なガス流量及び濃度のオゾンガスを供給することができる。
 さらに、オゾン発生ユニット7-1~7-nのうち一部に異常が発生しても、正常動作する残りのオゾン発生ユニット7によって、オゾン処理装置12-1~12-nのいずれにもオゾンガスを供給することができるため、信頼性が高いオゾンガス供給が実現できる。
 このように、オゾンガス供給システム10は、システム管理制御部84からの制御信号S8によりオゾンガス出力流量管理ユニット9を制御して、オゾン発生ユニット7-1~7-nから出力されるオゾンガスの組合せ・選択処理を行い、所望のガス流量、オゾンガス濃度のオゾンガスをオゾン処理装置12に出力できるようにしている。
 また、実施の形態1のオゾンガス供給システム10は、オゾンガス出力流量管理ユニット9内に設けられたオゾンガス制御弁9a,9b,9c,9bc,9ab,9caを電気もしくはエアー圧力によって開閉できる電動バルブもしくは空圧弁にして、制御信号S8の制御下で各オゾン発生ユニット7内のオゾン発生器1から外部に出力するオゾンガスのガス流量、オゾンガス濃度を集中管理することができる。
 また、システム統括管理ユニット8は、漏水センサ6、EMO回路81、ユニット情報I/F82、システム管理制御部84等を備えることにより、オゾン発生ユニット7-1~7-nのいずれかに非常停止、漏水が検知された場合、対応する前記オゾン発生ユニットを停止させることができる。
 さらに、排気センサ23、オゾン漏洩センサ24、システム管理制御部84等を備えることにより、システム全体として排気異常、オゾン漏洩異常を検出したとき、オゾン発生ユニット7-1~7-nを全て停止させることができる。
 このように、実施の形態1のオゾンガス供給システム10は、各オゾン発生ユニット7の異常時、オゾンガス供給システム10全体の異常時等における安全停止機能を備えることにより、安全性の高いシステムを実現することができる。
 <実施の形態2>
 実施の形態2ではオゾンガス供給システム10内におけるオゾン発生ユニット7-1~7-nそれぞれに相当する、1単位のオゾン発生ユニット7に着目し、オゾン発生ユニット7の小型化を図ったことを特徴としている。
 図8はオゾン電源2の内部構成の詳細を示す回路図である。図9は実施の形態2のオゾン発生ユニット7Xの組合せ構造を模式的に示す斜視図である。
 以下、図8,図9を参照してオゾン発生ユニット7Xの小型化について説明する。なお、オゾン発生ユニット7Xは実施の形態1のオゾン発生ユニット7-1~7-nそれぞれとして構成される、1単位のオゾン発生ユニットを意味する。
 図9に示すオゾン発生ユニット7Xにおいて、オゾン電源部2、オゾン発生器1それぞれの小型化を実現させ、コンパクト化したオゾン電源部2、オゾン発生器1に加え、原料ガス流量を制御するMFC3、オゾンガスフィルター51、オゾン濃度計5、APC4を集約しパッケージ化して構造上も1単位のオゾン発生ユニット7Xを実現している。
 さらに、原料ガス配管(原料ガス供給口14)および出力ガス配管系(オゾンガス出力口15)をガス配管集積ブロック30に一体化したガス配管集積ブロック構造することにより、オゾン発生器1、オゾン電源2、ガス配管系をパッケージ化してオゾン発生ユニット7Xをより小型にしている。
 このため、実施の形態1のオゾンガス供給システム10のように、複数台のオゾン発生ユニット7Xをオゾン発生ユニット7-1~7-nとして搭載しても、装置全体を大きくすることなく、機能アップ、および信頼性を向上させたオゾンガス供給システムに実現できる。
 (オゾン電源2のコンパクト化)
 図8は、オゾン発生器1およびオゾン電源部2のメイン部品の一体化を実現させてコンパクト化した回路構成を示している。
 オゾン発生器1は、所要のオゾン発生量を得るためには、オゾンを生成するための放電面積として必要面積が必要である。そのため、発生器の占有面積を小さくするため、薄い電極セルを形成し、かつ1つの電極セルの断面積を小さくして、多段積層した電極セルタイプにしてオゾン発生器1を構成したため、非常に占有面積の小さいオゾン発生器1を実現している。
 オゾン電源2は、商用交流電圧を整流するコンバータ2a、直流電圧をオゾン発生器に最適な高周波に変換し、出力電圧を制御して所定電力をオゾン発生器に供給するインバータ2b、インバータ2bから出力された電圧をオゾン発生器1用に生成するための放電を発生させる電圧まで高電圧に昇圧させるための高電圧回路部2cを有しており、オゾン制御部19によってオゾン電源の注入電力が制御される。
 コンバータ2aは、整流回路2a1、コンデンサバンク2a2、平滑リアクトル2a3、チョッパー回路部2a4及びチョッパー制御回路部2a5の直列接続で構成され、インバータ2bはインバータ回路2b1とインバータ制御回路2b2とで構成されており、このオゾン電源2のコンバータ2aとインバータ2bの各部品の分類分けし、各部品をモジュール化して回路構成の小型化を実現している。
 すなわち、整流回路2a1、コンデンサバンク2a2、及び平滑リアクトル2a3を一体としてモジュール化した直流・平滑回路部2axとして回路構成の小型化を図り、部品品質を高めた。
 さらに、コンバータ2aを構成するチョッパー回路部2a4とインバータ2bを構成するインバータ回路2b1はともにFET素子やIGBT素子等のパワー半導体で構成され冷却フィンで冷却させる必要があるため、チョッパー回路部2a4とインバータ回路2b1とを1つの半導体モジュールとしてモジュール化することにより効果的に小型化されたパワー素子部2pを実現する。コンバータ2aのチョッパー制御回路2a5とインバータ2bのインバータ制御回路2b2とは、1つの基板化もしくは集積IC化することで、非常に小型化された電源制御基板2qを実現している。
 高電圧回路部2cは、インバータ出力電流を限流する直列リアクトルL0、高圧に昇圧する高圧トランスTrおよび力率改善用の並列リアクトルLbで構成されており、各部品が大きく重量の重い部品であるが、直列リアクトルL0と並列リアクトルLbとを一体で高圧トランスTrに機能を組み込めるようにした特殊トランスにした。つまり、直列リアクトルL0は高圧トランスの1次漏れインダクタンスを利用して一体構成を形成できるようにトランスを設計した。また並列リアクトルLbは、トランスの励磁インダクタンスを大きくとれるトランス設計にし、並列リアクトルLbがトランスに機能が盛り込めるようにした。
 さらに、この高圧トランスTrを数十kHzで高周波化することで、軽く、高周波特性の良いフェライトコアーでトランスを形成し、トランスTrは設置面積を小さくして、所定容量を確保したトランスにするため、小さなトランスを複数台並列接続で形成するようにして、複数台(図中3台)のトランスを縦型に設置することで、非常に小さい高電圧回路部2cを実現させた。但し、インバータの出力電流を制限する直列リアクトルL0についてはトランスと一体化せず、独立した小さいリアクトルL0で形成しても良い。
 (オゾン発生ユニットの組合せ構造)
 図9は、オゾン発生器1、オゾン電源2、MFC3、ガスフィルター51、オゾン濃度計5、APC4、およびガス配管集積ブロック30を集約した1単位のオゾン発生ユニット7Xを示している。
 同図において、前面(図中左側)に操作パネル85-i(i=1~nのいずれか)が設けられており、その背面に集積されたオゾン制御部19(図示せず)が存在し、このオゾン制御部19は、集約して設けられたオゾン発生器1及びオゾン電源2(ブロックBL1,BL2)、並びにMFC3、オゾン濃度計5、及びAPC4との電気信号でつながっている。以降、操作パネル85-iが存在する方向をオゾン発生ユニット7Xの前面として説明する。
 オゾン発生器1とオゾン電源2は図8で示したように各部品をモジュール化等にすることで、部品点数を減らし、それぞれの部品をコンパクト化と設置面積を小さくし、図9に示すように、1つのオゾン発生ユニット7Xにおいてオゾン発生器1を中心にして、オゾン電源2の直流・平滑回路部1Ax、パワー素子部2p、電源制御基板を1つのブロックBL1とし前面に配置し、数台の小型トランスを縦に積層し高電圧回路部2cをブロックBL2として形成して分散配置して集積化を図っている。
 オゾン発生器1に対し、原料ガスを供給するMFC3を含んだガス供給配管系、生成したオゾンガスを外部に出力するガスフィルター51、オゾン濃度計5、APC4を介したオゾンガス出力配管系およびオゾン発生器1の電極を冷却する冷却配管系(冷却水入口13A,冷却水出口13B)が必要となる。これらの配管系は立体配置しなければならないため、既存のガス配管、冷却配管等で各部品を接続すると、配管と部品間の接続継手が多くなり、その継手を接続するためには接続スペースを確保しなければならず、これらの配管系を接続するには非常に大きなスペースが必要となる。
 従来は、オゾン発生ユニット(オゾン発生器)とは別の配管ユニットを例えば背面に設け、発生器ユニットと配管接続を背面で行っていた。そのため、オゾン発生ユニットとガス供給配管系、オゾンガス出力配管系および冷却配管系13A、13Bをまとめて一体化させることは困難であった。
 実施の形態2においては、それらの配管系を全て1つのガス配管集積ブロック30に集約し、このガス配管集積ブロック30内にガス供給配管、オゾンガス出力配管、冷却配管用の配管経路を組み込み、このガス配管集積ブロック30を立体構造にし、それぞれの面に、オゾン発生器1、MFC3、ガスフィルター51、オゾン濃度計5、APC4(以下、これらを総称して「オゾン発生器1等」と略する場合あり)を隣接配置する。そして、オゾン発生器1等とガス配管集積ブロック30との接続部部分においてOリングを介したネジ止め等を施すことにより気密を保持し精度の高い配管経路を確保することにより、オゾン発生器1等とガス配管集積ブロック30との一体化配置を実現させている。またオゾン発生器1等の各部品の取り付け、取り外しが良くなり、メンテナンス性も向上させている。
 このように、実施の形態2のオゾン発生ユニット7Xは、ガス配管集積ブロック30にオゾン発生器1等を密接して装着している。以下、図9で示すガス配管集積ブロック30を利用したオゾン発生ユニット7Xの配管経路について説明する。ガス配管集積ブロック30は内部に配管経路R30a~30fを有しており、冷却水入口13A、冷却水出口13B、原料ガス供給口14及びオゾンガス出力口15が側面に取り付けられており、オゾン発生器装着用ボルトBt1~Bt4を用いてオゾン発生器1を取り付ける構造を呈している。
 また、MFC装着用ブロック33,33によりMFC3を挟みこんでガス配管集積ブロック30に装着し、APC装着用ブロック34,34によりAPC4を挟みこんでガス配管集積ブロック30に装着し、オゾン濃度計装着用ブロック35,35により挟みこんでオゾン濃度計5を装着している。これら装着用ブロック33~35内にも配管経路を確保するためのブロック内流路B3~B5が形成されている。また、ガスフィルター装着用ブロック31を用いてガスフィルター51をガス配管集積ブロック30に装着している。
 原料ガスGmが供給される原料ガス供給口14からMFC3を介したオゾン発生器1のオゾン発生器入力部ET1への原料ガス入力配管経路は、原料ガス供給口14、配管経路R30a、ブロック内流路B3、MFC3、ブロック内流路B3、配管経路R30b、及びオゾン発生器入力部ET1の順で形成される経路で構成される。この際、オゾン発生器1のオゾン発生器入力部ET1の周辺に設けられた部分がオゾン発生器装着用ボルトBt1によりガス配管集積ブロック30に取り付けられる。このように、ガス配管集積ブロック30を用いて原料ガスGmの入力配管経路が形成される。
 オゾン発生器1から出力されるオゾンガスを受けるオゾン発生器出力部EX1から、ガスフィルター51、オゾン濃度計5、及びAPC4を介してオゾンガス出力口15から出力されるオゾンガス出力配管は、オゾン発生器出力部EX1、配管経路R30c、ガスフィルター装着用ブロック31内、ガスフィルター51、ガスフィルター装着用ブロック31内、配管経路R30d、ブロック内流路B5、オゾン濃度計5、ブロック内流路B5、配管経路R30e、ブロック内流路B4、APC4、ブロック内流路B4、配管経路R30f、及びオゾンガス出力口15の順で形成される経路で構成される。この際、オゾン発生器1のオゾン発生器出力部EX1の周辺に設けられた部分がオゾン発生器装着用ボルトBt2によりガス配管集積ブロック30に取り付けられる。このように、ガス配管集積ブロック30を用いてオゾンガスの出力配管経路が形成される。
 図25はオゾン発生ユニット7Xに対応する従来の構成を模試的に示す説明図である。同図に示すように、従来は、オゾン発生ユニット7Xに対応する構成は、ガス制御ユニット400、インバータ制御ユニット500、オゾン発生ユニット600によって分離構成されるのが一般的であった。
 ガス制御ユニット400は内部にMFC73、APC74、オゾン濃度計75及びガスフィルター91を有している。インバータ制御ユニット500は内部にコンバータ2a、インバータ2b、オゾン制御部79、操作パネル85-i、直列リアクトルL0等を有している。オゾン発生ユニット600はオゾン発生器71及び高圧トランスTr,並列リアクトルLbから構成される。
 また、コンバータ2a内は整流回路2a1、コンデンサバンク2a2、平滑リアクトル2a3、チョッパー回路部2a4、チョッパー制御回路部2a5により構成され、インバータ2bはインバータ回路2b1及びインバータ制御回路2b2により構成される。なお、接続関係、動作内容の説明は省略する。
 従来のオゾンガス供給システムや、従来のオゾン発生装置では、図25に示すように、ガス制御ユニット400、オゾン電源に相当するインバータ制御ユニット500、及びオゾン発生ユニット600と3つに分割した各ブロック間において電気的接続やガス配管による接続することしかできず、図9で示す構造は実現不可能であった。
 図9に示すように、オゾン発生ユニット7Xは、これらの3つのユニット(400,500,600)を集約して、図25で示した構成に比べ、大幅に小型化を実現させている。
 このように、オゾン発生ユニット7-1~7-nは、それぞれ実施の形態2のオゾン発生ユニット7Xとして、オゾン発生器1、オゾン電源2、MFC3、APC4、オゾン濃度計5及びガスフィルター51を1つに集約して1単位にパッケージ化した構造を呈している。
 その結果、実施の形態1のオゾンガス供給システム10のように、内部にオゾン発生ユニット7Xを複数台搭載でき、オゾン発生ユニット7Xの出力配管同士をガス制御弁9で接続することにより、実施の形態1で述べたように、オゾン処理装置12-1~12-nの各オゾン処理装置12にオゾンガスを分散供給したり、1つのオゾン処理装置12に多量のオゾンガスや高濃度のオゾンガスを選択的に供給したりすることができる。
 このように、実施の形態2のオゾン発生ユニット7Xは、オゾン発生器1、オゾン電源2、MFC3、ガスフィルター51、APC4、オゾン濃度計5、原料ガス供給口14、オゾンガス出力口15、冷却水入口13A及び冷却水出口13Bを集約して一体化構造で形成することにより、従来の同様な構成に比べ、大幅な小型化を図ることができる。
 加えて、オゾン発生ユニット7Xにおけるガス配管集積ブロック30は、複数の内部配管経路である配管経路R30a~R30fを有しているため、配管経路R30a~R30fと、オゾン発生器1、MFC3、ガスフィルター51、APC4、オゾン濃度計5、原料ガス供給口14、オゾンガス出力口15並びに冷却水入出口13A及び13Bそれぞれとが繋がることにより、上記原料ガスGmの入力配管経路及び上記オゾンガスの出力配管経路が形成されるため、これらの配管経路を含めた小型化を効果的に図ることができる。
 このように、オゾン発生ユニット7-1~7-nは、それぞれ実施の形態2のオゾン発生ユニット7Xとして小型化を図ることにより、実施の形態1で示したオゾンガス供給システム10を実用レベルで実現可能にすることができる。
 その結果、実施の形態1のオゾンガス供給システム10のように、内部にオゾン発生ユニット7Xを複数台搭載でき、オゾン発生ユニット7Xの出力配管同士をガス制御弁9で接続することにより、実施の形態1で述べたように、オゾン処理装置12-1~12-nの各オゾン処理装置12にオゾンガスを分散供給したり、1つのオゾン処理装置12に多量のオゾンガスや高濃度のオゾンガスを選択的に供給したりすることができる。
 <実施の形態3>
 実施の形態3では実施の形態2と同様、1単位のオゾン発生ユニット7に着目し、オゾンガス出力流量管理ユニット9をも組み合わせたオゾン発生ユニット7の小型化を図ったことを特徴としている。
 (オゾンガス出力流量管理ユニットの制御)
 図10は図1で示したオゾンガス供給システム10に相当する、実施の形態3のオゾンガス供給システム20によるオゾンガス出力流量管理ユニットの内部構成を示す説明図である。
 図10に示すように、実施の形態1のオゾンガス出力流量管理ユニット9に相当する実施の形態3のオゾンガス出力流量管理ユニット9Yは、オゾン発生ユニット7-1~7-nそれぞれと対応する部分が一体的に形成される。以下、図10では、説明の都合上、n=3の場合を例に挙げて説明する。
 オゾン発生ユニット7-1~7-nに対応してオゾンガス制御弁9a~9cが一体的に設けられ、オゾンガス制御弁9a~9cに密接して装着ブロック93a~93cが設けられる。装着ブロック93a、93b、及び93cの一方経路側(図中上方)にはオゾンガス制御弁9ab、オゾンガス制御弁9bc及びオゾンガス制御弁9caを設けている。
 そして、装着ブロック93aの一方経路側のオゾンガス制御弁9abが配管継手98u、ユニット間オゾンガス配管95ab、配管継手98dを介して装着ブロック93abの他方経路(図中下方)と繋がる。同様にして、装着ブロック93abの一方経路側のオゾンガス制御弁9abが配管継手98u、ユニット間オゾンガス配管95bc、及び配管継手98dを介して装着ブロック93acの他方経路と繋がり、装着ブロック93acの一方経路側のオゾンガス制御弁9caが配管継手98u、ユニット間オゾンガス配管95ca及び配管継手98dを介して装着ブロック93aの他方経路と繋がる。
 さらに、装着ブロック93a~93cの出力部(図中右方)からオゾンガス出力口25-1~25-nを介して実施の形態3のオゾンガス供給システム20の外部に出力される。
 したがって、オゾンガス出力流量管理ユニット9Yはオゾンガス出力流量管理ユニット9と回路構成として同様なオゾンガス制御弁9a,9b,9c,9bc,9ab,9caを有している。
 そして、オゾンガス出力口25-1~25-nとオゾン処理装置12-1~12-nとの間にオゾンガス開閉弁22-1~22-nが介挿される。
 オゾンガス出力流量管理ユニット9Yを構成するオゾンガス制御弁9a,9b,9c,9bc,9ab,9caにおいて、オゾンガス制御弁9a,9b,9cはノーマリオープンタイプ(NO),オゾンガス制御弁9bc,9ab,9caはノーマリクローズタイプ(NC)である。
 そして、システム統括管理ユニット8のシステム管理制御部84からの制御信号S8aがオゾンガス制御弁9a及びオゾンガス制御弁9abに与えられ、制御信号S8bがオゾンガス制御弁9b及びオゾンガス制御弁9bcに与えられ、制御信号S8cがオゾンガス制御弁9c、及びオゾンガス制御弁9caに与えられる。
 このように、システム統括管理ユニット8のシステム管理制御部84からの制御信号S8(S8a~S8c)に基づき、オゾンガス出力流量管理ユニット9Yのオゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開状態、閉状態が制御される。
 図10では、オゾン処理装置12-1~12-nのうち、オゾン処理装置12-2の1台のみ運転しており(オゾンガス開閉弁22-2が開状態)、オゾン処理装置12-2に対するオゾンガス流量としては、30SLMのオゾンガスを供給した場合のオゾンガス出力流量管理ユニット9Yの状態を示している。
 すなわち、システム管理制御部84からのオゾン発生ユニット制御信号86-1~86-nによりオゾン発生ユニット7-1~7-nからそれぞれ10SLMのオゾンガスを出力させ、オゾンガス制御弁9a,9b,9c,9bc,9abを開状態(黒塗り潰し)にして、オゾンガス制御弁9caを閉状態(白抜き)にしている。
 一方、前述したように、オゾンガス開閉弁22-1~22-nのうち、オゾンガス開閉弁22-2のみを開状態にし、オゾンガス開閉弁22-1及び22-nを閉状態としている。オゾン処理装置12-2のみ使用して他のオゾン処理装置12は使用しない場合オゾンガス開閉弁22を閉にするようにしたが、全くオゾン処理装置がない場合は使用していないオゾンガス出口である25-1、25-nの配管部分を強制的に配管キャップ継手で栓をしてもよい。さらにオゾンガス供給システム10内の各オゾン発生ユニット間接続配管95ab、95bc、95caのいずれかを配管しない場合は配管継手である98u、98dのいずれかを配管キャップ継手にして栓することで、出力オゾンガスを遮断することは言うまでもない。
 このように、オゾン発生ユニット7-1~7-n及びオゾンガス出力流量管理ユニット9Yを制御して、オゾン発生ユニット7-1~7-nからそれぞれ10SLMの流量のオゾンガスを出力させることにより、オゾンガス出力流量管理ユニット9を介してオゾン処理装置12-2に対してガス流量30SLMのオゾンガスを供給することができる。
 (オゾン発生ユニットの組合せ構造)
 図11は実施の形態2の1単位のオゾン発生ユニットの組合せ構造を模式的に示す斜視図である。図11に示すように、実施の形態2のオゾン発生ユニット7Yは、オゾン発生器1、オゾン電源2、MFC3、オゾン濃度計5、ガスフィルター51、オゾン濃度計5、APC4、およびガス配管集積ブロック30に加え、オゾンガス出力流量管理ユニット9の構成部分をも集約している。
 図11に示すように、オゾンガス出力流量管理ユニット9の構成部分をガス配管集積ブロック30に装着すべく、ブロック本体930a及び930b(図10の装着ブロック93a~93cのいずれかに相当)を中心にして、オゾンガス制御弁収納部931,932、オゾンガス出力部933、オゾンガス分岐部934,935を設けている。
 オゾンガス制御弁収納部931は内部にオゾンガス制御弁90x(オゾンガス制御弁9a~9cのいずれかに相当)を収納しており、オゾンガス制御弁収納部932は内部にオゾンガス制御弁90xy(オゾンガス制御弁9ab,9bc及び9caのいずれかに相当)を収納している。オゾンガス出力部933は、図9で示した実施の形態2のオゾン発生ユニット7Xのオゾンガス出力口15に相当し、図10のオゾンガス出力口25に繋がる。オゾンガス分岐部934が図10で示した配管継手98uに繋がる一方経路側の分岐部(ユニット間オゾンガス空圧弁配管接続口)として機能し、オゾンガス分岐部935は図10で示した配管継手98dに繋がる他方形路側の分岐部(ユニット間オゾンガス空圧弁配管接続口)として機能する。
 実施の形態3においては、実施の形態2と同様、ガス供給配管系、オゾンガス出力配管系および冷却配管系13A、13Bを全て1つのガス配管集積ブロック30に集約し、オゾンガス出力流量管理ユニット9Yの構成部分を組み合わせて、ガス配管集積ブロック30内にガス供給配管、オゾンガス出力配管、冷却配管それぞれの配管経路を組み込んでいる。
 原料ガスGmが供給される原料ガス供給口14からMFC3を介したオゾン発生器1のオゾン発生器入力部ET1への原料ガス入力配管は、実施の形態2のオゾン発生ユニット7Xとほぼ同様に、原料ガス供給口14、配管経路R30a、ブロック内流路B3、MFC3、ブロック内流路B3、配管経路R30b、及びオゾン発生器入力部ET1の順で形成される経路で構成される。
 オゾン発生器1のオゾン発生器出力部EX1から、ガスフィルター51、オゾン濃度計5、及びAPC4を介してブロック本体930bまでのオゾンガス出力配管は、オゾン発生器出力部EX1、配管経路R30c、ガスフィルター装着用ブロック31内、ガスフィルター51、ガスフィルター装着用ブロック31内、配管経路R30d、ブロック内流路B5、オゾン濃度計5、ブロック内流路B5、配管経路R30e、ブロック内流路B4、APC4、ブロック内流路B4、配管経路R30f、ブロック本体930a(内側部分)、オゾンガス制御弁90x、配管経路R30g、ブロック本体930b(外側部分)の順で形成される経路で構成される。なお、ブロック本体930a及び930bを一体的に構成し、ガス配管集積ブロック30内を貫通して形成しても良い。
 ブロック本体930b内において、オゾンガス制御弁90xyを介してオゾンガス分岐部934に繋がる一方分岐経路と、オゾンガス分岐部935に繋がる他方分岐経路と、上記一方及び他方分岐経路と上記オゾンガス出力配管とが合流した後、オゾンガス出力部933から出力される合流経路が形成される。
 なお、他の構成及び配管経路等は、図9で示したオゾン発生ユニット7Xと同様であるため、説明を省略する。
 実施の形態3のオゾンガス供給システム20において、各々がオゾンガス制御弁90x,90xyを収納する複数のオゾンガス制御弁収納部931,932はそれぞれ対応するオゾン発生ユニット7Yにおけるガス配管集積ブロック30に密着して装着され、上記オゾンガスの出力配管経路上に介挿されている。
 このため、オゾンガス供給システム20内において、オゾンガス出力流量管理ユニット9Y及びオゾン発生ユニット7-1~7-nの組合せ構造の小型化を図ることができる効果を奏する。
 このように、実施の形態3のオゾン発生ユニット7Yは、実施の形態2のオゾン発生ユニット7Xの特徴に加え、オゾンガス出力流量管理ユニット9の構成部分の大半とガス配管集積ブロック30との一体化を図ることにより、実施の形態2のオゾン発生ユニット7Xとオゾンガス出力流量管理ユニット9とを別途構成する場合に比べ、より一層の小型化を図ることができる。
 <実施の形態4(基本構成:第1の態様)>
 図12は本発明の実施の形態4(基本構成:第1の態様)であるオゾンガス供給システムの構成を示すブロック図である。
 (全体構成)
 図12に示すように、オゾンガス供給システム101は内部にn(≧2)個のオゾン発生ユニット7-1~7-nを有しており、オゾン発生ユニット7-1~7-n間で共通の水分除去フィルター59を1個有している。水分除去フィルター59は、原料ガス供給口14から供給される原料ガスに含まれる微量の水分をトラップ(除去)できる機能を有している。このように、実施の形態4のオゾンガス供給システム101は、原料ガス供給口14から供給される原料ガスを水分除去フィルター59を通過させた後、オゾン発生ユニット7-1~7-nの原料ガス供給口14-1~14-nに供給している。
 以下、オゾン発生ユニット7-1~7-nのうちオゾン発生ユニット7-2を代表して取り上げその内部構成を図12中心に参照して説明する。
 オゾンガス供給システム101の原料ガス供給口14から水分除去フィルター59を介して、原料ガスが、原料ガス供給口14-2及びMFC3を経由してオゾン発生ユニット7-2内のオゾン発生器1に供給される。オゾン発生器1の内部は酸素ガスを含んだ高純度ガス(原料ガス)が充満されており、オゾンガス供給システム101内のオゾン電源2から高周波高電圧HV,LVがオゾン発生器1内の電極間に印加され、この電極間で誘電体バリア放電(無声放電)をすることにより、放電空間のガスが放電によって酸素ガスが解離され、酸素原子になり、この酸素原子と酸素ガス(酸素分子)との化学結合で、以下の式(1),式(2)に示すようにオゾンガスを生成される。なお、オゾン電源2は後に詳述するがコンバータ2a、インバータ2b及び高電圧回路部2cにより構成される。また、式(2)のMは、三体衝突の第三体を意味する。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 原料ガスの酸素ガス(O2)と無声放電で、上記のような式(1),式(2)で示す化学反応でオゾンガス(O3)が生成されるが、原料ガスには、酸素ガス以外に窒素ガス(N2)などの不純物が1~2PPM程度(1014個/cm3)含まれる。また、原料ガスに含まれる水分量は、通常ガスの露点が-70℃程度に管理されているため、図26に示すように、1PPM(1014個/cm3)~10PPM(1015個/cm3)程度含まれる。なお、図26原料ガスの露点と原料ガスに含まれる水分量との関係を示す説明図である。これらの窒素ガスや水分も無声放電によって、分子ガスが解離して、窒素酸化物や水素酸化物や窒素と水素化合物であるヒドラジン(N24)化合物等のガスもオゾンガス発生器内で生成され、オゾンガスとともに出力される。
 これらの化合物ガスで、特に以下の式(3)~式(7)に示すような過程を経て活性ガスが生成されると、非常に活性なガスであるため、オゾンガスを取り出すための配管経路やAPC4やMFC3やガス開閉バルブ(弁)等のオゾンガスとの接触部分で、金属表面で腐食化学反応をして、部品の発熱や金属腐食が生じ、上記の部品等の故障の原因になっていた。さらに出力するオゾンガス自身も金属腐食の結果生じる金属コンタミネション(金属コンタミ)が多量に含まれるガスになり、オゾンガスの品質も悪くなっていた。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 上記のように、式(3)及び式(4)の化学反応を経て、水分解反応から硝酸クラスターガス(HNO3)が生成され、式(5)~式(7)の化学反応を経て、OHラジカルガスが生成される。
 原料ガス中に含まれる水分によって、上記の化学式(3)~(7)で示すような、硝酸クラスターガス、OHラジカル、OHラジカルイオン等は非常に活性であり、比較的寿命の長いガスがオゾン発生器1内で生成され、生成したオゾンガスとともに出力される。このため、配管経路やAPCやMFCやガス開閉バルブ等のオゾンガスとの接触部分で、金属表面で腐食化学反応をして、部品の発熱や金属腐食を生じ、上記の部品等の故障の原因になっていたことが、実験等で明らかになった。そのため、これらの活性ガスの生成量を減らすには、オゾンガスに供給される原料ガス中に含まれる水分量を減らすことが重要であることが明らかになった。
 この原料ガス中に含まれる窒素ガス等の不純物や水分量は、正常時は、ガスの成分量で決まるが、実際の稼動している装置では、装置の運転開始時やメンテナンス等の過渡時においては、ガス供給部等の配管面にも、窒素ガスや水分が付着しており、これらの付着したものが、原料ガスとともに放出されれば、1~2PPMを超える不純物量や水分量がオゾン発生器1に入り込み、上記の悪影響を及ぼすガスが、オゾンガスに混じって出力されることになる。
 上記の点を考慮して、オゾン発生器1に供給される原料ガスに含まれる水分を取り除くためには、オゾンガス供給システム101内の原料ガス供給口14の近傍に供給される原料ガス中の水分を吸着等による除去する水分除去フィルター59を設けることが、非常に効果的であることが分かった。なお、水分除去フィルター59は吸着用にシリカゲルを用いたり、ヒーター加熱を利用したりする構成によって実現される。
 水分除去フィルター59の性能としては、特に、原料ガスに含まれる水分量を300PPB未満にすることのできる水分除去フィルター59が好適な結果となった。
 本実施の形態はオゾン発生器1として無声放電方式によるオゾン発生器構造のものを代表して説明したが、オゾン発生させる機能としては、沿面放電やグロー放電を利用したオゾン発生器構造や超高周波やマイクロ波放電を利用したオゾン発生器構造もあり、さらに電解媒質を利用したオゾン発生器もあり、これらのオゾン発生器であっても良い。
 オゾンを安定出力するには、オゾン発生器1に供給する原料ガスのガス種の限定、特に、原料ガスに含まれる水分量の抑制が重要であるとともに、流量値やオゾン発生器内のガス圧力や電極を冷却する水温、水量等の環境条件を一定に調整する機能が重要である。
 すなわち、原料ガスに含まれる水分量の抑制に水分除去フィルター59を用い、上記流量値の調整にMFC3が用いられ、オゾン発生器1内のガス圧力の調整にAPC3が用いられ、電極を冷却する水温、水量等の環境条件を一定にするために冷却水入口13a-1~13a-nからの冷却水による冷却機能が用いられている。このような機能を有する制御手段(MFC3、APC4、オゾン濃度計5及びガスフィルター51)を下記に記する。
 オゾンガス供給システム101の原料ガス供給口14、水分除去フィルター59、オゾン発生ユニット7-2の原料ガス供給口14-2から得られる所定の原料ガス流量Qの原料ガスが、ガス流量コントローラ(MFC)3を介してオゾン発生器1に一定流量で原料ガスが供給される。
 オゾン発生器1内の圧力を一定する手段として、発生器内のガス圧力を検出する手段と、この検出した発生器に出力するオゾンガス量を微調整することで、オゾン発生器1内の圧力を一定にする機能をオゾン発生器システムには保有している。この1つの方法として、発生器圧力を自動で所定圧力に調整する自動圧力調整器(APC)4があり、この自動圧力調整器(APC)4がオゾン発生器のオゾンガス出力配管ガスラインに設けられている。
 オゾンガス出力配管ガスラインの具体的な構成としては、オゾン発生器1内で生成したオゾンガスから不純物や異物を除去するガスフィルター51に通した後、オゾン濃度計5、発生器圧力を自動で所定圧力に調整する自動圧力調整器(APC)4を介して連続的に所定のオゾン濃度Cを有するオゾン(化酸素)ガスをオゾンガス出力口15-2からオゾン発生ユニット7-2の外部に出力している。
 オゾンガス出力配管ガスラインには、出力オゾンガス流量を一定出力するためのオゾンガス流量コントローラ(MFC)を設ける場合もある。この実施の形態では、このオゾンガス流量コントローラ(MFC)は設けていない。
 したがって、出力したオゾンガスの流量Qxは、原料ガス流量Qからオゾンに変換したオゾン流量Qcと変換されなかった原料酸素流量Qnの和となる。つまり、オゾン(化酸素)ガスの流量Qxは、原料(酸素)ガス流量Q、オゾン濃度Cに基づく式(A){Qx=F(Q,C)・・・(A)}により決定する。
 このガス流量コントローラ(MFC)3で、オゾン発生器に供給する原料ガス流量を一定値に制御している。
 なお、APC4は、オゾン発生器1のオゾンガスの出力配管経路内を流れるオゾンガスの圧力を制御することによりオゾン発生器1のガス圧力を自動的に一定値に制御している。
 オゾン発生ユニット7-2は、オゾンガスを発生する手段を有したオゾン発生器1、オゾンガスに所定の電力を供給する手段を有したオゾン電源2、供給する原料ガス流量を一定値に制御する手段を有するMFC3、オゾン発生器1内の圧力値を一定値に制御する手段を有するAPC4、出力するオゾンガスの不純物ガスをトラップする手段を有するガスフィルター51、出力するオゾン濃度値を検出する手段を有するオゾン濃度計5等の複数個の機能手段を集約し1単位のパッケージユニットとして構成されている。オゾン発生ユニット7-1~7-nそれぞれの構成は全て同じであり(7-2以外は図示省略)、オゾン発生ユニット7-2を代表して説明した内部構成を呈している。
 これらMFC3、APC4、オゾン濃度計5及びガスフィルター51によりオゾン発生器1に関連した制御手段を構成する。制御手段としてはMFC3、APC4、オゾン濃度計5及びガスフィルター51のうち、少なくとも2つの手段を有することが安定したオゾンガスを供給する点で望ましい。
 各オゾン発生ユニット7(オゾン発生ユニット7-1~7-n)の底面に漏水センサ6を設け、各オゾン発生ユニット7の漏水の有無を監視している。すなわち、漏水センサ6から得られる情報がシステム統括管理ユニット8内のEMO回路(非常停止回路)81により得られ、システム管理制御部84の制御下で監視される。
 また、オゾンガス供給システム101内に設けられるシステム統括管理ユニット8は、装置内を排気ダクト11から真空引きし負圧状態に監視するための排気センサ23、オゾン漏洩センサ24それぞれの検出情報を受けている。そして、システム統括管理ユニット8は、排気センサ23による排気異常、オゾン漏洩センサ24による漏洩異常を受けると、システム管理制御部84より全てのオゾン発生ユニット7-1~7-nに停止を指示するオゾン発生ユニット制御信号86-1~86-nを与え、オゾン発生ユニット7-1~7-nの運転を停止させる。
 また、システム統括管理ユニット8内のシステム管理制御部84は、オゾン処理装置12-1~12-nから、要求オゾン流量Qs12及び要求オゾン濃度Cs12を含む処理オゾンガスイベント信号16-1~16-nをユーザ情報I/F83を介して受ける。
 そして、システム管理制御部84は、処理オゾンガスイベント信号16-1~16-nの指示内容に基づき、オゾン発生ユニット制御信号86-1~86-nをオゾン発生ユニット7-1~7-nに出力するとともに、制御信号S8をオゾンガス出力流量管理ユニット9に出力する。
 その結果、オゾン発生ユニット7-1~7-nそれぞれから出力するオゾンガスの流量、濃度が制御されるともに、オゾンガス出力流量管理ユニット9におけるオゾンガス制御弁9a等の開閉制御が行われ、処理オゾンガスイベント信号16-1~16-nの指示内容に沿ったガス流量、濃度のオゾンガスをオゾン処理装置12-1~12-nに供給することができる。以下、システム統括管理ユニット8についてさらに詳述する。
 システム統括管理ユニット8は、装置の非常停止を行うEMO回路81、ユニット情報I/F82、ユーザ情報I/F83、システム管理制御部84及びメイン操作パネル85を有している。
 EMO回路81は、前述したように、各オゾン発生ユニット7の漏水センサ6から得られるシステムの異常信号を監視する回路である。具体的には、EMO回路81が漏水センサ6より漏水異常の検出情報を受けると、当該情報をシステム管理制御部84に伝達し、システム管理制御部84より、漏水異常を検出した漏水センサ6に対応するオゾン発生ユニット7にオゾン発生ユニット制御信号86(オゾン発生ユニット制御信号86-1~86-nのいずれか)を与え、当該オゾン発生ユニット7を停止させる。
 ユニット情報I/F82は、オゾン発生ユニット7-1~7-nからユニット情報信号17-1~17-nの授受を行う機能を有している。
 ユーザ情報I/F83は、前述したように、オゾン処理装置12-1~12-nからの指令信号である処理オゾンガスイベント信号16-1~16-n(要求オゾン流量Qs12、要求オゾン濃度Cs12、運転情報Y、装置No.等を指示)を受信する機能を有している。
 システム管理制御部84は、オゾンガス出力流量管理ユニット9内のオゾンガス制御弁(9a、9b、9c、9ab、9bc、9ca)を開閉制御するための指令である制御信号S8を出力し、オゾンガス出力流量管理ユニット9内の統括制御を行う。システム管理制御部84はメイン操作パネル85との情報の授受も行う機能を有している。
 図12に示すように、オゾンガス供給システム101は冷却水入口13A及び冷却水出口13Bを有し、冷却水入口13Aから冷却水入口13a-1~13a-nを介してオゾン発生ユニット7-1~7-n内に図示しない外部の冷却装置からの冷却水を取り込み、オゾン発生ユニット7-1~7-nから冷却後の水を冷却水出口13b-1~13b-nを介して冷却水出口13Bから外部に出力している。
 ここでは、詳細を記載しないが、外部の冷却装置からの冷却水の水量および水温は、一定値のものを供給されるように制御されている。
 オゾンガス供給システム101は原料ガス供給口14を有し、原料ガス供給口14から水分除去フィルター59を通し、さらに、原料ガス供給口14-1~14-nを介してオゾン発生ユニット7-1~7-n内に外部から原料ガスを取り込んでいる。
 オゾン発生ユニット7-1~7-nのオゾンガス出力口15-1~15-nは内部のオゾンガス出力流量管理ユニット9に接続され、オゾンガス出力流量管理ユニット9からオゾンガス出力口25-1~25-nを介してオゾンガス供給システム101の外部にオゾンガスが出力される。
 n台のオゾン処理装置12-1~12-nから出力される処理オゾンガスイベント信号16-1~16-nはユーザ情報I/F83を介してシステム管理制御部84に取り込まれる。処理オゾンガスイベント信号16(16-1~16-n)は要求オゾン流量Qs12、原料ガス設定濃度Cs12及び運転情報Y等を指示している。システム管理制御部84は処理オゾンガスイベント信号16-1~16-nに基づき、オゾン発生ユニット7-1~7-nを制御するオゾン発生ユニット制御信号86-1~86-nを出力する機能を有している。
 オゾン発生ユニット7-1~7-nはオゾン発生ユニット用操作パネル85-1~85-nを有している。また、オゾン発生ユニット7-1~7-nからユニット情報信号17-1~17-nがシステム統括管理ユニット8のユニット情報I/F82を介してシステム管理制御部84に伝達される。ユニット情報信号17(17-1~17-n)は、各オゾン発生ユニット7におけるオゾン発生器1の故障や運転/停止状態を指示する情報信号である。
 処理オゾンガスイベント信号16に含まれる運転情報Yは、各オゾン処理装置12(12-1~12-n)の故障や運転/停止状態情報信号を示すユーザ情報信号に相当し、前述したように、システム統括管理ユニット8内のユーザ情報I/F83に取り込まれる。
 また、オゾン発生ユニット7-1~7-nはそれぞれオゾン制御部19を有している。オゾン制御部19は、後に詳述するように、原料ガス流量の設定流量Qs、検出流量Q,オゾン発生器1の発生器圧力の設定圧力Ps、検出圧力P及び各オゾン発生ユニット7から出力するオゾン濃度Cを受信し、オゾン電源2を制御してオゾン発生器1から発生するオゾンガスのオゾン濃度、ガス流量等を制御する制御部である。また、オゾン制御部19は、オゾン濃度計5、MFC3、APC4及びオゾン電源2との間で信号授受を行っている。
 (オゾンガス出力流量管理ユニットの制御)
 オゾンガス供給システム101のオゾンガス出力流量管理ユニット9の構成及び動作は、図2で示した実施の形態1のオゾンガス供給システム10におけるオゾンガス出力流量管理ユニット9と同様であるため、説明を省略する。
 (メイン操作パネル)
 オゾンガス供給システム101のメイン操作パネル85は、図3で示した実施の形態1のオゾンガス供給システム10におけるメイン操作パネル85と同様であるため、説明を省略する。
 (オゾン制御部(データメモリ1S6))
 オゾンガス供給システム101におけるオゾン制御部19の構成及び動作は内部のデータメモリ1S6を含め、図4~図7で示した実施の形態1のオゾンガス供給システム10におけるオゾン制御部19及びデータメモリ1S6の場合と同様であるため、説明を適宜省略する。
 (効果等)
 上述した実施の形態4では、原料ガス供給口14に水分除去フィルター59を装着し、1つのオゾンガス供給システム101に複数のオゾン発生ユニット7-1~7-nを備え、各オゾン発生ユニット7は、オゾンガスを発生させる手段を有するオゾン発生器1、オゾン発生に供給する電力を供給と制御する手段を有するオゾン電源2、原料ガスもしくはオゾンガス流量Qを一定値に制御する手段を有するMFC3、オゾン発生器1内の圧力Pを一定に制御する手段を有する自動制御するAPC4、及び出力するオゾンガスの濃度値Cを検出する手段を有するオゾン濃度計5を搭載している。
 そして、オゾンガス供給システム101は、各オゾン発生器1から出力オゾンガス配管に対応して開閉弁(オゾンガス制御弁9a~9c)を設け、かつ、上記各オゾン発生器1の出力オゾンガス配管間にも開閉弁(9bc,9ab,9ca)を設けたオゾンガス出力流量管理ユニット9を設けている。
 実施の形態4のオゾンガス供給システム101は、オゾンガス出力流量管理ユニット9内のオゾンガス制御弁9a,9b,9c,9bc,9ab,9caの開閉動作によって、オゾン発生ユニット7-1~7-nから出力される複数のオゾンガスの1または2以上の組合せを、オゾン処理装置12-1のいずれかに選択的に出力するオゾンガス出力流量制御が実行可能なシステム統括管理ユニット8(オゾンガス出力流量管理ユニット)を有している。
 したがって、オゾンガス供給システム101内に設けた水分除去フィルター59によって、原料ガス供給口14から供給される原料ガスを原料ガス中に含まれる水分量が1~10PPM程度のものが、10~100PPB程度まで下げられため、オゾン生成とともに、水分と不純物と無声放電によって生成される硝酸クラスター(HNO3)やOHラジカルガスやOHラジカルイオンガスやHO3 +イオン等の活性ガスを減少させることができる。このため、オゾン発生器1のオゾンガス出力部に設けたAPC4、MFC3、オゾン濃度計5(オゾンモニタ)やガス開閉バルブ(弁)やオゾン処理装置12-1~12-nが硝酸イオンクラスター(HNO3)やOHラジカルガスやHO3 +イオン等の活性ガスによる消耗や故障を抑制できる。
 また、出力するオゾンガスとして、硝酸クラスター(HNO3)やOHラジカルガスや金属コンタミネションが少ない品質の高いオゾンガスを提供することができる。
 このように、実施の形態4におけるオゾンガス供給システム101では、原料ガス供給口14に供給する原料ガスに含まれる微量の水分をトラップできる機能を有した水分除去フィルター59を設けることで、オゾン発生器1に供給する原料ガスは、水分除去フィルター59によって、原料ガスに含まれる水分量を300PPB以下にして品質の高いオゾンガスを供給することができる効果を奏する。
 上述したように、実施の形態5のオゾンガス供給システム101では、水分除去フィルター59を装着するようにしている。その結果、より露点の高いオゾンガスを提供するだけでなく、装着した水分除去フィルター59で、水分量を取り除くことができるため、オゾンガスを発生させる前のパージガスを流す時間を大幅に短縮させることができ、装置の立ち上げ時間を大幅に短縮できる効果を奏する。
 加えて、オゾンガス制御弁9a,9b,9cを開状態、オゾンガス制御弁9ab,9bc、9caを閉状態にし、オゾンガス開閉弁22-1~22-nを開状態にすることにより、1対1に対応するオゾン発生ユニット7-1~7-nからオゾン処理装置12-1~12-nにオゾンガスを供給することにより、供給されるオゾンのガス流量・オゾンガス濃度をオゾン処理装置12-1~12-nそれぞれ独立に制御することができる。
 そして、実施の形態4のオゾンガス供給システム101は、実施の形態1と同様、図2及び図3で示したように、2以上のオゾンガス出力の組合せをひとつのオゾン処理装置(オゾン処理装置12-2)に供給することにより、多様なガス流量及び濃度のオゾンガスを供給することができる。
 さらに、オゾン発生ユニット7-1~7-nのうち一部に異常が発生しても、正常動作する残りのオゾン発生ユニット7によって、オゾン処理装置12-1~12-nのいずれにもオゾンガスを供給することができるため、信頼性が高いオゾンガス供給が実現できるとともに出力オゾンガスに含まれる活性ガスの少ない品質の高いオゾンガスを提供できる。
 このように、実施の形態4のオゾンガス供給システム101は、実施の形態1のオゾンガス供給システム10と同様、システム管理制御部84からの制御信号S8によりオゾンガス出力流量管理ユニット9を制御して、オゾン発生ユニット7-1~7-nから出力されるオゾンガスの組合せ・選択処理を行い、所望のガス流量、オゾンガス濃度のオゾンガスをオゾン処理装置12に出力できるようにしている。
 また、実施の形態4のオゾンガス供給システム101は、オゾンガス出力流量管理ユニット9内に設けられたオゾンガス制御弁9a,9b,9c,9bc,9ab,9caを電気もしくはエアー圧力によって開閉できる電動バルブもしくは空圧弁にして、制御信号S8の制御下で各オゾン発生ユニット7内のオゾン発生器1から外部に出力するオゾンガスのガス流量、オゾンガス濃度を集中管理することができる。
 また、システム統括管理ユニット8は、漏水センサ6、EMO回路81、ユニット情報I/F82、システム管理制御部84等を備えることにより、オゾン発生ユニット7-1~7-nのいずれかに非常停止、漏水が検知された場合、対応する前記オゾン発生ユニットを停止させることができる。
 さらに、排気センサ23、オゾン漏洩センサ24、システム管理制御部84等を備えることにより、システム全体として排気異常、オゾン漏洩異常を検出したとき、オゾン発生ユニット7-1~7-nを全て停止させることができる。
 このように、実施の形態4のオゾンガス供給システム101(第1の態様)は、各オゾン発生ユニット7の異常時、オゾンガス供給システム101全体の異常時等における安全停止機能を備えることにより、安全性の高いシステムを実現することができる。
 <実施の形態4の第2の態様>
 実施の形態4の第2の態様は、図8及び図9で示した実施の形態2と同様に、オゾン電源部2、オゾン発生器1それぞれの小型化を実現させ、コンパクト化した電力を供給し、電力量を制御する手段を有したオゾン電源部2、オゾンガスを発生する手段を有したオゾン発生器1に加え、原料ガス流量を制御する手段を有したMFC3、オゾンガスの不純物を取り除く手段を有したガスフィルター51、出力するオゾンガス濃度を検知する手段を有したオゾン濃度計5、オゾン発生器内のガス圧力を一定値に制御する手段を有したAPC4を集約しパッケージ化して構造上も1単位のオゾン発生ユニット7Xを実現することができる。
 (オゾン電源2のコンパクト化)
 実施の形態4においても、実施の形態1の図8で示した回路構成を採用することにより、オゾン発生器1およびオゾン電源部2のメイン部品の一体化を実現させてコンパクト化した回路構成を実現できる。
 (オゾン発生ユニットの組合せ構造)
 実施の形態4においも、図9で示した実施の形態1と同様、オゾン発生器1、オゾン電源2、MFC3、ガスフィルター51、オゾン濃度計5、APC4、およびガス配管集積ブロック30を集約した1単位のオゾン発生ユニット7Xを実現することができる。
 従来のオゾンガス供給システムや、従来のオゾン発生装置では、実施の形態1で説明した図25に示すように、ガス制御ユニット400、オゾン電源に相当するインバータ制御ユニット500、及びオゾン発生ユニット600と3つに分割した各ブロック間において電気的接続やガス配管による接続することしかできず、図9で示す構造は実現不可能であった。
 また、原料ガスは、設置されたユーティリティーにある原料ガスを直接オゾンガス供給システムに供給するようにしていたため、オゾン発生器に供給する原料ガス中に含まれる水分量を抑制する手段を有せず、オゾンガス出力部に設けたガス制御機器の故障率が高かった。
 実施の形態4の第2の態様においても、実施の形態1と同様、図9に示すように、オゾン発生ユニット7Xは、これらの3つのユニット(400,500,600)を集約して、図25で示した構成に比べ、大幅に小型化を実現させ、かつ、図12で示すオゾンガス供給システム101の原料ガス供給口14に水分除去フィルター59を装着したので、オゾンガス出力部に設けたガス制御機器の故障率が低減でき、品質の高いオゾンガスを提供できる。
 このように、実施の形態4のオゾン発生ユニット7-1~7-nは、実施の形態1と同様、オゾン発生ユニット7Xとして、オゾン発生器1、オゾン電源2、MFC3、APC4及びオゾン濃度計5を1つに集約して1単位にパッケージ化した構造を呈している。
 その結果、実施の形態4のオゾンガス供給システム101のように、内部にオゾン発生ユニット7Xを複数台搭載でき、オゾン発生ユニット7Xの出力配管同士をガス制御弁9で接続することにより、実施の形態4で述べたように、オゾン処理装置12-1~12-nの各オゾン処理装置12にオゾンガスを分散供給したり、1つのオゾン処理装置12に多量のオゾンガスや高濃度のオゾンガスを選択的に供給したりすることができる。
 <実施の形態4の第3の態様>
 実施の形態4の第3の態様として、図10及び図11で示した実施の形態3と同様、1単位のオゾン発生ユニット7に着目し、オゾンガス出力流量管理ユニット9をも組み合わせたオゾン発生ユニット7の小型化を図ることもできる。
 (オゾンガス出力流量管理ユニットの制御)
 実施の形態3で示した図10のオゾンガス供給システム20を、図12で示したオゾンガス供給システム101に相当する構成として、実施の形態4の第3の態様として実現することができる。
 (オゾン発生ユニットの組合せ構造)
 実施の形態3で示した図11のオゾン発生ユニット7Yのように、オゾンガス供給システム101のオゾン発生ユニット7-1~7-nそれぞれを構成して、実施の形態4の第3の態様として実現することができる。
 <実施の形態5>
 図13は本発明の実施の形態5であるオゾンガス供給システムの構成を示すブロック図である。
 実施の形態5のオゾンガス供給システム102では実施の形態4のオゾンガス供給システム101と同様、オゾンガス供給システム102構成内に原料ガス供給口14より供給される原料ガスに含まれる水分をトラップする目的の水分除去フィルター59-1~59-nを設けている。ただし、水分除去フィルター59-1~59-nは、オゾン発生ユニット7-1~7-nに1対1に対応して設けられており、オゾン発生ユニット7-1~7-nそれぞれの原料ガス供給部入口近傍に設けられる。水分除去フィルター59-1~59-nはそれぞれオゾン発生ユニット7-1~7-n内に供給する原料ガスの水分量を抑制することで、オゾン発生ユニット7-1~7-nそれぞれ内で生成するオゾンガスの品質を高めることを特徴としている。このように、実施の形態5のオゾンガス供給システム102は、原料ガス供給口14から供給される原料ガスを水分除去フィルター59-1~59-nを通過させた後、オゾン発生ユニット7-1~7-nの原料ガス供給口14-1~14-nに供給している。
 特に、実施の形態5のオゾン発生ユニット7-1~7-nそれぞれは、1単位のオゾン発生ユニット7の原料ガス入り口部に、ガス中に含まれる水分をトラップする水分除去フィルター59(水分除去フィルター59-1~59-nのいずれか)を装着するようにして、実施の形態2と同様の組み合わせたオゾン発生ユニット7の小型化を図ったことを特徴としている。
 (原料ガスのガス純度管理)
 図14は実施の形態5の1単位のオゾン発生ユニット7X2の組合せ構造を模式的に示す斜視図である。
 図13、図14に示すように、オゾン発生ユニット7-1~7-nそれぞれの原料ガス入り口14-1~14-nに、交換が容易な位置に水分除去フィルター59(59-1~59-n)を装着して、一体的に形成される。以下、図13では、説明の都合上、n=3の場合を例に挙げて説明する。
 また、この水分は空気中にも含まれるガスであるため、原料ガス配管経路の一部の配管を大気に開放すると、すぐに、配管面に水分が吸着される。そのため、この水が吸着された原料ガス配管に原料ガスを流すと、高純度原料ガスに含まれる水分量だけでなく、配管に付着した水分も、ガスを流すことにより、離脱して、供給する原料ガスの露点が、図26に示すように、高くなり、原料ガス中に含まれる水分量が例えば、10PPM以上に高くなる場合がある。
 原料ガスに、窒素系ガス、炭素系ガス、硫化ガス等の不純物ガスや水分が含まれるとオゾンガスの生成だけでなく、放電によってNラジカルやOHラジカルガスも生成されるため、これらのラジカルガスと水分が結合することで、硝酸ガスやOHラジカルとしてクラスター状の分子状のガスもオゾンガスに含んで出力される。
 そのため、これらの硝酸やOHラジカルのクラスター分子ガス等は非常に活性の強いガスであるため、オゾンガスを出力するガス配管やバルブ等の金属表面と化学反応をして、配管面が腐食して、出力するオゾンガスに腐食した金属不純物(金属コンタミ)を発生させる原因になる。
 出力するオゾンガスに含まれる金属不純物(金属コンタミ)量が高まると、オゾンガスを利用して半導体の酸化膜処理をしている酸化膜の性能劣化の原因になる。
 上記のことから、原料ガスに水分が多く含まれると、出力するオゾンガスの品質が悪くなることが、試験で確かめられた。そのため、原料ガスの供給部に水分除去を目的とした水分除去フィルター59-1~59-nを装着するようにした。特に、実施の形態5ではオゾン発生ユニット7-1~7-nそれぞれの原料ガス入り口14-1~14-nに、交換が容易な位置に水分除去フィルター59-1~59-nを設け、水分を除去してオゾン発生器1に原料ガスを供給するようにした。
 さらに、水分除去フィルター59-1~59-nのうち一部に異常が発生しても、正常動作する残りの水分除去フィルター59を装着したオゾン発生ユニット7によって、オゾン処理装置12-1~12-nのいずれにもオゾンガスを供給することができるため、信頼性が高いオゾンガス供給が実現できるとともに出力オゾンガスに含まれる活性ガスの少ない品質の高いオゾンガスを提供できる。
 ここでは、水分除去フィルター59-1~59-nをオゾン発生ユニット7-1~7-nに対応して1つ設ける構成にしたが、不純物ガス種によって、ガスフィルターを複数個直列多段に設けたり、不純物ガス用のガスフィルターと水分トラップ用のガスフィルター直列多段構成にしたりしても良い。
 なお、他の構成及び配管経路等は、図9で示した実施の形態2のオゾン発生ユニット7Xとほぼ同様であるため、説明を適宜省略し、オゾン発生ユニット7Xと異なる点を中心に簡単に説明する。
 図14に示すように、原料ガス配管(原料ガス供給口14+水分除去フィルター59)および出力ガス配管系(オゾンガス出力口15)をガス配管集積ブロック30に一体化したガス配管集積ブロック構造することにより、オゾン発生器1、オゾン電源2、ガス配管系をパッケージ化してオゾン発生ユニット7X2をより小型にしている。なお、原料ガス供給口14及び水分除去フィルター59は互いに連結して構成される。
 原料ガスGmが供給される原料ガス供給口14からMFC3を介したオゾン発生器1のオゾン発生器入力部ET1への原料ガス入力配管経路は、原料ガス供給口14、水分除去フィルター59、配管経路R30a、ブロック内流路B3、MFC3、ブロック内流路B3、配管経路R30b、及びオゾン発生器入力部ET1の順で形成される経路で構成される。この際、オゾン発生器1のオゾン発生器入力部ET1の周辺に設けられた部分がオゾン発生器装着用ボルトBt1によりガス配管集積ブロック30に取り付けられる。このように、ガス配管集積ブロック30を用いて原料ガスGmの入力配管経路が形成される。
 実施の形態5のように、オゾン発生ユニット7-1~7-nの背面の原料ガス供給口14に連結して、交換が容易な部分に水分除去フィルター59(水分除去フィルター59-1~59-n)を装着するようにしている。その結果、より露点の高いオゾンガスを提供するだけでなく、装着した水分除去フィルター59で、水分量を取り除くことができるため、オゾンガスを発生させる前のパージガスを流す時間を大幅に短縮させることができ、装置の立ち上げ時間を大幅に短縮できる効果を奏する。
  <実施の形態6>
 図15は本発明の実施の形態6であるオゾンガス供給システムの構成を示すブロック図である。
 実施の形態6では、実施の形態2の「オゾン発生ユニット7-1~7-nそれぞれに相当する、1単位のオゾン発生ユニット7に着目し、オゾン発生ユニット7の小型化を図ったもの」である。特に、実施の形態5のオゾン発生器1の原料ガスの入力部に設けたMFC3を除去し、その変わりに、オゾン発生器1で発生させたオゾンガスの出力部に流量コントロール手段であるMFC53を配置し、オゾン発生ユニット7の小型化を図ったものである。
 (オゾンガス流量コントロール)
 図15で示す実施の形態6のオゾンガス供給システム103は図12で示した実施の形態4のオゾンガス供給システム101に相当する。図16は実施の形態6の1単位のオゾン発生ユニットの組合せ構造を模式的に示す斜視図である。
 図15、図16に示すように、実施の形態6は、機能的には、実施の形態1,実施の形態4及び実施の形態5で示したガス流量を制御する手段であるMFC3を原料ガス供給部に設けていたものを、発生したオゾンガス配管系にMFC53として移動した実施の形態である。すなわち、実施の形態6のオゾンガス供給システム103と図12で示した実施の形態4のオゾンガス供給システム101とを比較した場合、MFC3を除き、新たにMFC53をオゾン濃度計5とAPC4との間に介挿し、さらに、水分除去フィルター59を設けない点が異なる。なお、装置の動作等については、実施の形態1,実施の形態4および実施の形態5とほぼ同様であるため、説明は省略する。
 このように、実施の形態6のオゾン発生ユニット7X3は、ガス配管集積ブロック30にオゾン発生器1等を密接して装着している。以下、図16で示すガス配管集積ブロック30を利用したオゾン発生ユニット7X3の配管経路について説明する。ガス配管集積ブロック30は内部に配管経路R30c~30fを有しており、冷却水入口13A、冷却水出口13B、原料ガス供給口14及びオゾンガス出力口15が側面に取り付けられており、オゾン発生器装着用ボルトBt1~Bt4を用いてオゾン発生器1を取り付ける構造を呈している。
 また、APC装着用ブロック34,34によりAPC4を挟みこんでガス配管集積ブロック30に装着し、APC装着用ブロック34,MFC装着用ブロック153によりMFC53を挟みこんでガス配管集積ブロック30に装着し、オゾン濃度計装着用ブロック35,35により挟みこんでオゾン濃度計5を装着している。これら装着用ブロック33~34,153,及び35内にも配管経路を確保するためのブロック内流路B3,B4,B153及びB5が形成されている。また、ガスフィルター装着用ブロック31を用いてガスフィルター51をガス配管集積ブロック30に装着している。
 原料ガスGmが供給される原料ガス供給口14が直接にオゾン発生器1のオゾン発生器入力部ET1に設けられ、入力配管経路は、原料ガス供給口14及びオゾン発生器入力部ET1の順で形成される経路で構成される。この際、オゾン発生器1のオゾン発生器入力部ET1の周辺に設けられた部分がオゾン発生器装着用ボルトBt1によりガス配管集積ブロック30に取り付けられる。このように、ガス配管集積ブロック30を用いて原料ガスGmの入力配管経路が形成される。
 オゾン発生器1から出力されるオゾンガスを受けるオゾン発生器出力部EX1から、ガスフィルター51、オゾン濃度計5、MFC53及びAPC4を介してオゾンガス出力口15から出力されるオゾンガス出力配管は、オゾン発生器出力部EX1、配管経路R30c、ガスフィルター装着用ブロック31内、ガスフィルター51、ガスフィルター装着用ブロック31内、配管経路R30d、ブロック内流路B5、オゾン濃度計5、ブロック内流路B5、配管経路R30e、ブロック内流路B53,MFC53,ブロック内流路B4、APC4、ブロック内流路B4、配管経路R30f、及びオゾンガス出力口15の順で形成される経路で構成される。この際、オゾン発生器1のオゾン発生器出力部EX1の周辺に設けられた部分がオゾン発生器装着用ボルトBt2によりガス配管集積ブロック30に取り付けられる。このように、ガス配管集積ブロック30を用いてオゾンガスの出力配管経路が形成される。
 実施の形態6では、発生したオゾンガス自身の出力オゾン量をMFC53によって制御するため、正確な出力するオゾンガス流量を制御が出来、出力するオゾン量を正確に制御している効果を奏する。
 また、原料ガス(入力)配管系には、配管周辺部品は付けずに直接原料ガス供給口14を配管するだけで済み、オゾンガス出力配管部にガスフィルター51、MFC53、オゾン濃度計5、APC4にガス配管部品を一括装着する構成にしている。このため、出力ガス配管系のみ、配管の集積配管構成ができる結果、配管がよりコンパクト化ができ、一体化した集積配管構成の部品数を減らせ、部品の交換がより容易になる。
 (他の態様)
 実施の形態6であるオゾンガス供給システムの他の態様として、図17に示すように実施の形態4と同様に原料ガス供給口14から供給される原料ガスに含まれる微量の水分をトラップできる機能を有する水分除去フィルター59を追加しても良い。
 また、図13で示した実施の形態5と同様に、オゾン発生ユニット7-1~7-nの原料ガス供給口14-1~14-nの近傍に水分除去フィルター59-1~59-nを設けた構成(図示せず)を採用しても良い。
 この場合、図18に示すように、オゾン発生器入力部ET1に原料ガス供給口14及び水分除去フィルター59(水分除去フィルター59-1~59-nのいずれか)が直列に設けられる。すなわち、図18に示すように、原料ガス配管(原料ガス供給口14+水分除去フィルター59)および出力ガス配管系(オゾンガス出力口15)をガス配管集積ブロック30に一体化したガス配管集積ブロック構造のオゾン発生ユニット7X4を得ることができる。
 <実施の形態7(基本構成:第1の態様)>
 図19は本発明の実施の形態7(第1の態様)であるオゾンガス供給システムの構成を示すブロック図である。
 (全体構成)
 図19に示すように、オゾンガス供給システム104は内部にn(≧2)個のオゾン発生ユニット7-1~7-nを有しており、オゾン発生ユニット7-1~7-n間で共通のガスフィルター52(原料ガス用ガスフィルター)を1個有している。ガスフィルター52は、原料ガス供給口14から供給される原料ガスに含まれる微量の不純物や不純物ガスを除去し、ガスフィルター52によって原料ガスの純度を安定するように制御されている。なお、水分除去フィルター59がガスフィルター52に置き換わった点を除き、図12で示した実施の形態4のオゾンガス供給システム101と同様であるため、構成及び動作の説明を適宜、省略する。
 オゾンガス供給システム104は原料ガス供給口14を有し、原料ガス供給口14からガスフィルター52を通し、さらに、原料ガス供給口14-1~14-nを介してオゾン発生ユニット7-1~7-n内に外部から原料ガスを取り込んでいる。すなわち、外部の原料ガスの入口である原料ガス供給口14に、原料ガス中の微量の不純物や不純物ガスを除去するためのガスフィルター52が設けられ、原料ガスの純度を安定するように制御されている。
 (効果等)
 したがって、実施の形態7のオゾンガス供給システム104内に設けたガスフィルター52によって、原料ガス供給口14から供給される原料ガスを原料ガス中に含まれる不純物や不純物ガスを低減することができるため、オゾン生成とともに、水分と不純物と無声放電によって生成される硝酸クラスター(HNO3)やOHラジカルガスやOHラジカルイオンガスやHO3 +イオン等の活性ガスを減少させることができる。このため、オゾン発生器1のオゾンガス出力部に設けたAPC4、MFC3、オゾン濃度計5やガス開閉バルブやオゾン処理装置12-1~12-nが硝酸イオンクラスター(HNO3>)やOHラジカルガスやHO3 +イオン等の活性ガスによる消耗や故障を抑制できる。
 また、出力するオゾンガスとして、硝酸クラスター(HNO3)やOHラジカルガスや金属コンタミネションが少ない品質の高いオゾンガスを提供することができる。
 このように、実施の形態7におけるオゾンガス供給システム104では、原料ガス供給口14に供給する原料ガスに含まれる不純物及び不純物ガスをトラップできる機能を有したガスフィルター52を設けることで、オゾン発生器1に供給する原料ガスは、ガスフィルター52によって、原料ガスに含まれる不純物ガス等を低減化して品質の高いオゾンガスを供給することができる効果を奏する。
 <実施の形態7の第2の態様>
 実施の形態7の第2の態様は、図8及び図9で示した実施の形態2と同様に、オゾン電源部2、オゾン発生器1それぞれの小型化を実現させ、コンパクト化した電力を供給し、電力量を制御する手段を有したオゾン電源部2、オゾンガスを発生する手段を有したオゾン発生器1に加え、原料ガス流量を制御する手段を有したMFC3、オゾンガスの不純物を取り除く手段を有したガスフィルター51、出力するオゾンガス濃度を検知する手段を有したオゾン濃度計5、オゾン発生器内のガス圧力を一定値に制御する手段を有したAPC4を集約しパッケージ化して構造上も1単位のオゾン発生ユニット7Xを実現することができる。
 (オゾン電源2のコンパクト化)
 実施の形態7においても、実施の形態1の図8で示した回路構成を採用することにより、オゾン発生器1およびオゾン電源部2のメイン部品の一体化を実現させてコンパクト化した回路構成を実現できる。
 (オゾン発生ユニットの組合せ構造)
 実施の形態7においても、図9で示した実施の形態1と同様、オゾン発生器1、オゾン電源2、MFC3、ガスフィルター51、オゾン濃度計5、APC4、およびガス配管集積ブロック30を集約した1単位のオゾン発生ユニット7Xを実現することができる。
 <実施の形態7の第3の態様>
 実施の形態7の第3の態様として、図10及び図11で示した実施の形態3と同様、1単位のオゾン発生ユニット7に着目し、オゾンガス出力流量管理ユニット9をも組み合わせたオゾン発生ユニット7の小型化を図ることもできる。
 (オゾンガス出力流量管理ユニットの制御)
 実施の形態3で示した図10のオゾンガス供給システム20を、図19で示したオゾンガス供給システム104に相当する構成として、実施の形態7の第3の態様として実現することができる。
 (オゾン発生ユニットの組合せ構造)
 実施の形態3で示した図11のオゾン発生ユニット7Yのように、オゾンガス供給システム104のオゾン発生ユニット7-1~7-nそれぞれを構成して、実施の形態7の第3の態様として実現することができる。
 <実施の形態8>
 図20は本発明の実施の形態8であるオゾンガス供給システムの構成を示すブロック図である。
 実施の形態8のオゾンガス供給システム105では実施の形態7のオゾンガス供給システム104と同様、オゾンガス供給システム105構成内に原料ガス供給口14より供給される原料ガスに含まれる不純物や不純物ガスをトラップする目的の(原料ガス用)ガスフィルター52-1~52-nを設けている。ただし、ガスフィルター52-1~52-nは、オゾン発生ユニット7-1~7-nに1対1に対応して設けられており、オゾン発生ユニット7-1~7-nそれぞれの原料ガス供給部入口近傍に設けられる。ガスフィルター52-1~52-nはそれぞれオゾン発生ユニット7-1~7-n内に供給する原料ガスの純度を増やすことで、オゾンガス供給システム105内で生成するオゾンガスの純度を高めることを特徴としている。
 特に、実施の形態8のオゾン発生ユニット7-1~7-nそれぞれは、実施の形態2と同様、1単位のオゾン発生ユニット7の原料ガス入り口部に、ガス中に含まれる不純物や不純物ガスをトラップするガスフィルター52を装着するようにして、組み合わせたオゾン発生ユニット7の小型化を図ったことを特徴としている。
 (原料ガスのガス純度管理)
 図21は実施の形態8の1単位のオゾン発生ユニット7X5の組合せ構造を模式的に示す斜視図である。
 図20、図21に示すように、オゾン発生ユニット7-1~7-nそれぞれの原料ガス入り口14-1~14-nに連結して、交換が容易な位置にガスフィルター52(52-1~52-n)を装着して、一体的に形成される。以下、図20では、説明の都合上、n=3の場合を例に挙げて説明する。
 図26は原料ガスの露点と原料ガスに含まれる水分量との関係を示す説明図である。オゾンガス供給システム104に供給される原料ガスは、一般に99.99%以上の高純度原料ガスを使用しているが、この高純度原料ガスには、原料ガス以外のガスとして、窒素系ガス、炭素系ガス、硫化ガス等の不純物ガスが0.1~数PPM程度含まれており、また、ガス中に含まれる水分量も1~数PPM含んでいる(図26参照)。
 オゾンガス供給システム105に供給される原料ガスは、一般に99.99%以上の高純度原料ガスを使用しているが、この高純度原料ガスには、原料ガス以外のガスとして、窒素系ガス、炭素系ガス、硫化ガス等の不純物ガスが0.1~数PPM程度含まれており、また、ガス中に含まれる水分量も1~数PPM含んでいる。また、これらの不純物ガスや水分は空気中にも含まれるガスであるため、原料ガス配管経路の一部の配管を大気に開放すると、すぐに、配管面に水分や窒素ガス等の不純物ガスが吸着される。そのため、この不純物ガスが吸着された原料ガス配管に原料ガスを流すと、高純度原料ガスに含まれる不純物ガスや水分量だけでなく、配管に付着した不純物ガスも、ガスを流すことにより、離脱して、供給する原料ガスの純度が悪くなる場合がある。
 原料ガスに、窒素系ガス、炭素系ガス、硫化ガス等の不純物ガスや水分が含まれるとオゾンガスの生成だけでなく、放電によってNラジカルやOHラジカルガスも生成されるため、これらのラジカルガスと水分が結合することで、硝酸や過酸化水素水としてクラスター状の分子状のガスもオゾンガスに含んで出力される。
 そのため、これらの硝酸や過酸化水素水のクラスター分子ガス等は非常に活性の強いガスであるため、オゾンガスを出力するガス配管やバルブ等の金属表面と化学反応をして、配管面が腐食して、出力するオゾンガスに腐食した金属不純物(金属コンタミ)を発生させる原因になる。
 出力するオゾンガスに含まれる金属不純物(金属コンタミ)量が高まると、オゾンガスを利用して半導体の酸化膜処理をしている酸化膜の性能劣化の原因になる。
 上記のことから、原料ガスに不純物ガスや水分が含まれると、出力するオゾンガスの品質が悪くなることが、試験で確かめられた。そのため、原料ガスの供給部に不純物ガスのトラップを目的としたガスフィルターを装着するようにした。特に、実施の形態8ではオゾン発生ユニット7-1~7-nそれぞれの原料ガス入り口14-1~14-nに、交換が容易な位置にガスフィルター52-1~52-nを設け、不純物ガスを除去した。
 ここでは、ガスフィルター52-1~52-nを1つ設ける構成にしたが、不純物ガス種によって、ガスフィルターを複数個直列多段に設けたり、不純物ガス用のガスフィルターと水分トラップ用のガスフィルターとを直列多段構成にしたりしても良い。
 なお、他の構成及び配管経路等は、水分除去フィルター59がガスフィルター52に置き換わった点を園素着、図14で示したオゾン発生ユニット7X2と同様であるため、説明を省略する。
 図21に示すように、原料ガス配管(原料ガス供給口14+ガスフィルター52)および出力ガス配管系(オゾンガス出力口15)をガス配管集積ブロック30に一体化したガス配管集積ブロック構造することにより、オゾン発生器1、オゾン電源2、ガス配管系をパッケージ化してオゾン発生ユニット7X5をより小型にしている。なお、原料ガス供給口14及びガスフィルター52は互いに連結して構成される。
 実施の形態8のように、オゾン発生ユニット7-1~7-nの背面の原料ガス供給口14に交換が容易な部分にガスフィルター52(ガスフィルター52-1~52-n)を装着するようにしたため、より高純度の高いオゾンガスを提供するだけでなく、装着したガスフィルター52によって、不純物ガスを取り除くことができるため、オゾンガスを発生させる前のパージガスを流す時間を大幅に短縮させることができる効果を奏する。
 <実施の形態6の他の態様(実施の形態7,実施の形態8関連)>
 実施の形態6であるオゾンガス供給システムの他の態様として、図22に示すように実施の形態7と同様に原料ガス供給口14から供給される原料ガスに含まれる不純物をトラップできる機能を有するガスフィルター52を追加しても良い。
 また、図20で示した実施の形態8と同様に、オゾン発生ユニット7-1~7-nの原料ガス供給口14-1~14-nの近傍にガスフィルター52-1~52-nを設けた構成(図示せず)で実現しても良い。
 この場合、図23に示すように、オゾン発生器入力部ET1に原料ガス供給口14及びガスフィルター52(ガスフィルター52-1~52-nのいずれか)が直列に設けられる。すなわち、図23に示すように、原料ガス配管(原料ガス供給口14+ガスフィルター52)および出力ガス配管系(オゾンガス出力口15)をガス配管集積ブロック30に一体化したガス配管集積ブロック構造のオゾン発生ユニット7X6を得ることができる。
 <その他>
 以上、実施の形態1~実施の形態8では、オゾン処理装置として、主に、オゾン発生量が数十g/h~500g/h程度のオゾンを必要とする半導体製造装置で用いられるオゾンガスの多処理装置における所定のオゾン流量、オゾン濃度のオゾンガスを供給するシステムについて述べてきた。
 上述したオゾン処理装置12に代えて、必要とするオゾンガス量が、もっと大きな、パルプのオゾン漂白装置やプールの水のオゾン処理装置、上下水のオゾン処理装置、化学プラントのオゾン処理装置であっても良い。例えば、1kg/h~数kg/hのオゾンガスを必要とする処理装置であれば、上述したオゾンガス供給システム10(20,101~105)内に複数台のオゾン発生ユニット7-1~7-nを搭載して、オゾン発生ユニット7-1~7-n間で出力オゾンガスをまとめて1つのオゾン処理装置に供給することが、比較的安価、かつ容易に行え、メンテナンス性が非常に良いオゾンガス供給システムの利用分野が高められる効果を奏する。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 <産業上の利用可能性>
 この発明は、オゾンガスを供給するための複数の手段を有した機能を付加させたオゾン発生ユニット及びオゾンガスを複数のオゾン処理装置にオゾンガス供給システムに関するこの発明であり、オゾンガスを出力するための複数の手段を有した機能を付加させたオゾン発生器ユニットの小型化を図ったオゾン発生ユニット及び上記オゾン発生ユニットを得ることを目的としている。
 しかし、オゾンガス以外のガス発生ユニット及び発生ガスを複数のガス処理装置にガス供給システムにおいても、原料ガス中に含まれる水分を除去する水分除去フィルター59や原料ガス中に含まれる不純物ガスを除去するガスフィルター52を装着することで、発生器で生成したガスを出力する際のガス品質を高めることは可能である。
 さらに、ガスを出力するための複数の手段を有した機能を付加させたガス発生器ユニットを一体化し、小型化して、ガス発生ユニットを複数台搭載してガス発生システムを構築することは好適であることは明らかなことである。

Claims (8)

  1.  ガス流量、濃度を制御してオゾンガスを複数のオゾン処理装置それぞれに供給するオゾンガス供給システム(10)であって、
     複数のオゾン発生ユニット(7-1~7-n)を備え、
     前記複数のオゾン発生ユニットは、
     オゾンガスを発生するオゾン発生器(1)と、
     前記オゾン発生器に供給する電力を制御するオゾン電源(2)と、
     前記オゾン発生器に入力される原料ガス流量(Q)を制御するマスフローコントローラ(MFC)(3)と、
     前記オゾン発生器内の圧力である内部圧力を自動制御するオートプレッシャコントローラ(APC)(4)と、
     前記オゾン発生器が出力するオゾンガスのオゾン濃度値を検出するオゾン濃度計(5)と、
     初期動作として所定の設定電力量(Ws)で前記オゾン電源を駆動させ、所定時間後に前記オゾン濃度計で検知したオゾン濃度(C)と設定したオゾン濃度(Cs)との比較に基づき、前記オゾン電源が供給する電力をPID制御するオゾン制御部(19)とを備え、
     前記オゾンガス供給システムは、
     前記複数のオゾン発生ユニット内の複数の前記オゾン発生器からの複数のオゾンガス出力を受け、内部に設けた複数のオゾンガス制御弁(9a,9b,9c,9bc,9ab,9ca)の開閉動作によって、前記複数のオゾンガス出力の1または複数の組合せを、前記複数のオゾン処理装置のうち任意のオゾン処理装置に選択的に出力するオゾンガス出力流量制御が実行可能なオゾンガス出力流量管理ユニット(9)と、
     前記複数のオゾン処理装置からの処理オゾンガスイベント信号(16)に基づき、前記複数のオゾン発生ユニットそれぞれの前記オゾンガスの出力内容を制御し、前記オゾンガス出力流量管理ユニットに対し前記オゾンガス出力流量制御を行う、オゾンガス出力流量管理ユニット制御部(8)とをさらに備える、
    オゾンガス供給システム。
  2.  請求項1記載のオゾンガス供給システムであって、
     所定の原料ガス供給口(14)から供給される前記原料ガスに含まれる水分を除去して、前記複数のオゾン発生ユニットそれぞれに供給する少なくとも一つの水分除去フィルター(59(59-1~59-n))をさらに備える、
    オゾンガス供給システム。
  3.  請求項2記載のオゾンガス供給システムであって、
     前記少なくとも一つの水分除去フィルター通過前の前記原料ガスは1000PPB以上の水分を有する原料ガスを含み、
     前記少なくとも一つの水分除去フィルターは前記原料ガス内の水分を300PPB以下に低減する水分除去能力を有する、
    オゾンガス供給システム。
  4.  請求項1記載のオゾンガス供給システムであって、
     所定の原料ガス供給口(14)から供給される前記原料ガスに含まれる不純物ガスを除去して、前記複数のオゾン発生ユニットそれぞれに供給する少なくとも一つの原料ガス用ガスフィルター(52(52-1~52-n))をさらに備える、
    オゾンガス供給システム。
  5.  請求項1記載のオゾンガス供給システムであって、
     前記複数のオゾンガス制御弁は、電気もしくはエアー圧力によって開閉できる電動バルブもしくは空圧弁を含み、
     前記オゾンガス出力流量管理ユニット制御部は、前記複数のオゾン処理装置それぞれに供給するオゾン流量、オゾン濃度を所望の値になるように、前記制御信号を出力する、
    オゾンガス供給システム。
  6.  請求項1ないし請求項5のうち、いずれか1項に記載のオゾンガス供給システムであって、
     前記複数のオゾン発生ユニットは、それぞれ
     前記オゾン発生器、前記オゾン電源、前記MFC、前記APC、前記オゾン濃度計を1つに集約して1単位にパッケージ化した構造を呈する、
    オゾンガス供給システム。
  7.  請求項1ないし請求項5のうち、いずれか1項に記載のオゾンガス供給システムであって、
     前記オゾンガス出力流量管理ユニット制御部は、
     前記複数のオゾン発生ユニットのいずれかに非常停止、漏水が検知された場合、対応する前記オゾン発生ユニットを停止させ、
     システム全体として排気異常、オゾン漏洩異常を検出したとき、複数のオゾン発生ユニットを全て停止させる安全停止機能(6,23,24,81,82,84)を備える、
    オゾンガス供給システム。
  8.  ガス流量、濃度を制御してオゾンガスを複数のオゾン処理装置それぞれに供給するオゾンガス供給システム(10)であって、
     複数のオゾン発生ユニット(7-1~7-n)を備え、
     前記複数のオゾン発生ユニットは、
     オゾンガスを発生するオゾン発生器(1)と、
     前記オゾン発生器に供給する電力を制御するオゾン電源(2)と、
     前記オゾン発生器から出力される原料ガス流量(Q)を制御するマスフローコントローラ(MFC)(3)と、
     前記オゾン発生器内の圧力である内部圧力を自動制御するオートプレッシャコントローラ(APC)(4)と、
     前記オゾン発生器が出力するオゾンガスのオゾン濃度値を検出するオゾン濃度計(5)と、
     初期動作として所定の設定電力量(Ws)で前記オゾン電源を駆動させ、所定時間後に前記オゾン濃度計で検知したオゾン濃度(C)と設定したオゾン濃度(Cs)との比較に基づき、前記オゾン電源が供給する電力をPID制御するオゾン制御部(19)とを備え、
     前記オゾンガス供給システムは、
     前記複数のオゾン発生ユニット内の複数の前記オゾン発生器からの複数のオゾンガス出力を受け、内部に設けた複数のオゾンガス制御弁(9a,9b,9c,9bc,9ab,9ca)の開閉動作によって、前記複数のオゾンガス出力の1または複数の組合せを、前記複数のオゾン処理装置のうち任意のオゾン処理装置に選択的に出力するオゾンガス出力流量制御が実行可能なオゾンガス出力流量管理ユニット(9)と、
     前記複数のオゾン処理装置からの処理オゾンガスイベント信号(16)に基づき、前記複数のオゾン発生ユニットそれぞれの前記オゾンガスの出力内容を制御し、前記オゾンガス出力流量管理ユニットに対し前記オゾンガス出力流量制御を行う、オゾンガス出力流量管理ユニット制御部(8)とをさらに備える、
    オゾンガス供給システム。
PCT/JP2010/065209 2009-11-26 2010-09-06 オゾンガス供給システム WO2011065087A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14161976.7A EP2749528B1 (en) 2009-11-26 2010-09-06 Ozone gas supply system
US13/505,677 US8778274B2 (en) 2009-11-26 2010-09-06 Ozone gas supply system
EP10832934.3A EP2505549B1 (en) 2009-11-26 2010-09-06 Ozone gas supply system
CN201080053598.0A CN102666372B (zh) 2009-11-26 2010-09-06 臭氧气体供给系统
KR1020127012928A KR101378286B1 (ko) 2009-11-26 2010-09-06 오존 가스 공급 시스템
JP2011543144A JP5627027B2 (ja) 2009-11-26 2010-09-06 オゾンガス供給システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2009/069953 2009-11-26
JP2009069953 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011065087A1 true WO2011065087A1 (ja) 2011-06-03

Family

ID=44066190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065209 WO2011065087A1 (ja) 2009-11-26 2010-09-06 オゾンガス供給システム

Country Status (5)

Country Link
US (1) US8778274B2 (ja)
EP (2) EP2505549B1 (ja)
KR (1) KR101378286B1 (ja)
CN (1) CN102666372B (ja)
WO (1) WO2011065087A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127670A1 (ja) * 2011-03-24 2012-09-27 東芝三菱電機産業システム株式会社 オゾンガス供給システム
WO2012140747A1 (ja) * 2011-04-13 2012-10-18 東芝三菱電機産業システム株式会社 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム
JP2018193265A (ja) * 2017-05-16 2018-12-06 東芝三菱電機産業システム株式会社 オゾンガス発生装置
KR20190082915A (ko) 2016-12-19 2019-07-10 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 가스 발생 장치
JP2021143092A (ja) * 2020-03-12 2021-09-24 東芝三菱電機産業システム株式会社 ガス生成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079575B (zh) * 2014-10-29 2020-08-04 东芝三菱电机产业系统株式会社 放电发生装置
CN106178034B (zh) * 2016-08-19 2019-03-08 北京农业智能装备技术研究中心 一种利用pid控制的温室集群臭氧智能消毒方法以及消毒装置
CN110997556B (zh) * 2017-08-09 2023-06-13 东芝三菱电机产业系统株式会社 臭氧气体利用系统
KR102206352B1 (ko) * 2019-03-29 2021-01-22 이승철 오존 발생 장치
KR102393049B1 (ko) * 2021-10-13 2022-05-02 주식회사 웰리스 오존 발생 장치 및 이의 구동 방법
KR102577281B1 (ko) * 2023-03-21 2023-09-12 주식회사 와이투에이치소프트테크 질소 산화물 저감을 위한 오존 발생기 농도 및 생산량 제어 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115689A (en) * 1978-02-28 1979-09-08 Sumitomo Precision Prod Co Ozone generator
JPS55126504A (en) * 1979-03-23 1980-09-30 Mitsubishi Electric Corp Ozonizer controlling system
JP2003089508A (ja) * 2001-09-17 2003-03-28 Toshiba Corp オゾン発生システム
JP2003212517A (ja) * 2002-01-17 2003-07-30 Mitsubishi Electric Corp ガス供給システム及びガス供給方法
JP2005126267A (ja) * 2003-10-22 2005-05-19 Sumitomo Precision Prod Co Ltd 発生オゾンの安定制御方法
WO2006035506A1 (ja) * 2004-09-29 2006-04-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation n相オゾン発生装置
JP2009500855A (ja) * 2005-07-07 2009-01-08 エム ケー エス インストルメンツ インコーポレーテッド マルチ・チャンバ・ツールのためのオゾン・システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495551B1 (ko) * 1999-05-28 2005-06-16 동경 엘렉트론 주식회사 반도체 처리 시스템의 오존 처리 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115689A (en) * 1978-02-28 1979-09-08 Sumitomo Precision Prod Co Ozone generator
JPS55126504A (en) * 1979-03-23 1980-09-30 Mitsubishi Electric Corp Ozonizer controlling system
JP2003089508A (ja) * 2001-09-17 2003-03-28 Toshiba Corp オゾン発生システム
JP2003212517A (ja) * 2002-01-17 2003-07-30 Mitsubishi Electric Corp ガス供給システム及びガス供給方法
JP2005126267A (ja) * 2003-10-22 2005-05-19 Sumitomo Precision Prod Co Ltd 発生オゾンの安定制御方法
WO2006035506A1 (ja) * 2004-09-29 2006-04-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation n相オゾン発生装置
JP2009500855A (ja) * 2005-07-07 2009-01-08 エム ケー エス インストルメンツ インコーポレーテッド マルチ・チャンバ・ツールのためのオゾン・システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127670A1 (ja) * 2011-03-24 2012-09-27 東芝三菱電機産業システム株式会社 オゾンガス供給システム
US8980189B2 (en) 2011-03-24 2015-03-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ozone gas supply system
WO2012140747A1 (ja) * 2011-04-13 2012-10-18 東芝三菱電機産業システム株式会社 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム
JP5524201B2 (ja) * 2011-04-13 2014-06-18 東芝三菱電機産業システム株式会社 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム
US9067789B2 (en) 2011-04-13 2015-06-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Nitrogen-free ozone generation unit and ozone gas supply system
KR20190082915A (ko) 2016-12-19 2019-07-10 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 가스 발생 장치
DE112016007528T5 (de) 2016-12-19 2019-09-26 Toshiba Mitsubishi-Electric Industrial Systems Corporation Gaserzeugungsvorrichtung
US10879085B2 (en) 2016-12-19 2020-12-29 Toshiba Mitsubishi-Electric Industrial Systems Corporation Gas generation apparatus
JP2018193265A (ja) * 2017-05-16 2018-12-06 東芝三菱電機産業システム株式会社 オゾンガス発生装置
JP2021143092A (ja) * 2020-03-12 2021-09-24 東芝三菱電機産業システム株式会社 ガス生成方法
JP7187124B2 (ja) 2020-03-12 2022-12-12 東芝三菱電機産業システム株式会社 ガス生成方法

Also Published As

Publication number Publication date
EP2505549A1 (en) 2012-10-03
CN102666372A (zh) 2012-09-12
US20120251395A1 (en) 2012-10-04
EP2749528B1 (en) 2019-05-15
EP2505549B1 (en) 2017-11-08
KR20120083488A (ko) 2012-07-25
EP2505549A4 (en) 2013-08-14
CN102666372B (zh) 2015-08-05
KR101378286B1 (ko) 2014-03-25
US8778274B2 (en) 2014-07-15
EP2749528A1 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
WO2011065087A1 (ja) オゾンガス供給システム
WO2011065088A1 (ja) オゾンガス供給システム
JP5588974B2 (ja) オゾンガス供給システム
JP5524201B2 (ja) 窒素添加レス・オゾン発生ユニット及びオゾンガス供給システム
JP2014122157A (ja) オゾン発生ユニット及びオゾンガス供給システム
JP5627028B2 (ja) オゾン発生ユニット及びオゾンガス供給システム
JP5627027B2 (ja) オゾンガス供給システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053598.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543144

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13505677

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010832934

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010832934

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127012928

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE