WO2012139464A1 - 一种无线链路失败的处理方法和设备 - Google Patents
一种无线链路失败的处理方法和设备 Download PDFInfo
- Publication number
- WO2012139464A1 WO2012139464A1 PCT/CN2012/073136 CN2012073136W WO2012139464A1 WO 2012139464 A1 WO2012139464 A1 WO 2012139464A1 CN 2012073136 W CN2012073136 W CN 2012073136W WO 2012139464 A1 WO2012139464 A1 WO 2012139464A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- uplink
- network side
- preset
- resource
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000011084 recovery Methods 0.000 claims abstract description 22
- 230000000737 periodic effect Effects 0.000 claims description 45
- 238000001514 detection method Methods 0.000 claims description 26
- 238000012545 processing Methods 0.000 claims description 25
- 230000011664 signaling Effects 0.000 claims description 7
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 claims 2
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 claims 2
- 238000005259 measurement Methods 0.000 description 15
- 230000006854 communication Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0654—Management of faults, events, alarms or notifications using network fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0006—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/04—Arrangements for maintaining operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/18—Management of setup rejection or failure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a method and a device for processing a radio link failure. Background technique
- a communication link on a wireless side is divided into two directions: an uplink and a downlink, a downlink direction is a link for a base station to transmit data to a terminal, and an uplink direction is a terminal for transmitting data to a base station. link.
- the LTE (Long Term Evolution) system is taken as an example to illustrate the communication process between the terminal and the network and the link state detection process.
- the terminal when a terminal needs to initiate a service, the terminal first establishes a communication connection with the network, and then sends uplink data through the uplink radio resource, and receives downlink data through the downlink radio resource, and the uplink and downlink resources are all It is assigned by the network.
- the network releases the connection of the terminal and reclaims various resources allocated for the terminal for communication.
- the quality of the communication link between the terminal and the network also changes.
- the signal quality of the terminal is required to be higher than a certain threshold. Therefore, the LTE system is configured with a common guide.
- the frequency signal is used by the terminal to detect the quality of the downlink signal in real time.
- the process of detecting the wireless link by the terminal includes: the terminal uses the constants ⁇ 310, N311, and the timer T310 to detect whether the air link of the air interface has a problem; when the terminal is in the connected state, the physical layer continuously performs the downlink channel quality of the serving cell. Perform measurement, send to the upper layer when detecting that the channel quality is below a certain threshold.
- the "out-of-sync" indication sends an "in-sync" indication to the upper layer when it is detected that the channel quality is above a certain threshold.
- the terminal when the terminal detects that the signal quality is lower than a certain threshold and sends an "out-of-sync" to the upper layer, the terminal cannot send and receive data normally. If the base station still allocates resources in the uplink or downlink direction to the terminal, This will result in wasted resources.
- the base station needs to take measures for detecting the quality of the link of the terminal.
- the link quality is detected to be lower than a certain threshold, the terminal is not scheduled.
- the current method is to configure periodic uplink resources for the terminal and detect periodic uplinks.
- the quality of the resource is used to determine whether the terminal link is abnormal.
- the network determines whether the wireless link fails by configuring the periodic uplink resource and detecting the quality thereof.
- the available resources are limited, and the user is not guaranteed to configure the period for each connected user.
- the uplink resource or even if the periodic uplink resource is configured, if the user enters the uplink out-of-synchronization state without data transmission and reception for a long time, the periodic uplink resource is automatically released, that is, the quality of the terminal link cannot be effectively detected in the prior art.
- the embodiments of the present invention provide a method and a device for processing a radio link failure, so as to effectively detect the quality of the terminal link.
- an embodiment of the present invention provides a radio link failure. Processing methods, including:
- the network side requests the terminal to send an uplink signal by using a preset first period, and performs the first signal quality detection;
- the network side requests the terminal to send the uplink signal by using the preset second period, and performs the second signal quality detection;
- the network side releases the network resource corresponding to the uplink radio link.
- the embodiment of the invention provides a network side device, including:
- a first processing module configured to request the terminal to send an uplink signal by using a preset first period, and perform first signal quality detection
- the second processing module is configured to: when the first signal quality is detected to be lower than the preset first threshold within the first preset number of consecutive presets, request the terminal to send the uplink signal by using the preset second period, and perform the second signal quality detection. ;
- a third processing module configured to release network resources corresponding to the uplink wireless link according to when the uplink radio link recovery of the terminal fails to be determined when the second signal quality is determined.
- the embodiment of the invention has at least the following advantages:
- the network side sends the uplink signal by the active requesting terminal, and performs signal quality detection, which can accurately know the wireless link state of the terminal, solves the problem of determining the state of the terminal link, and can effectively avoid the erroneous operation caused by the misjudgment, thereby improving the system. Reliability. DRAWINGS
- FIG. 1 is a schematic diagram of a cellular mobile communication system in the prior art
- FIG. 3 is a schematic flowchart of a method for processing a radio link failure according to Embodiment 1 of the present invention
- FIG. 4 is a schematic flowchart of a method for processing a radio link failure according to Embodiment 2 of the present invention
- FIG. 5 is a schematic structural diagram of a network side device according to Embodiment 3 of the present invention. detailed description
- an embodiment of the present invention provides a method and a device for processing a radio link failure.
- the network detects the link state of the terminal to solve the invalid scheduling caused by the link abnormality and improve system resource utilization.
- the first embodiment of the present invention provides a method for processing a radio link failure, which is used to detect a radio link of a terminal, where the network side can detect the link link status in real time, and can also detect the terminal link in a trigger manner.
- the status for example, triggers the detection of the terminal link status only when the data needs to be sent or received.
- the method includes the following steps:
- Step 301 The network side requests the terminal to send an uplink signal by using a preset first period (such as the period T1), and performs the first signal quality detection.
- a preset first period such as the period T1
- the network side can detect whether the terminal is in an uplink synchronization state, and when the terminal is not in the uplink synchronization state, request the terminal to send an uplink signal by using a preset first period; (2) the network side can detect whether the terminal is configured with a period
- the uplink resource includes but is not limited to: an uplink dedicated pilot SRS (Sounding Reference Symbol), and an uplink dedicated resource used by the terminal to feed back downlink channel quality information), and no periodic uplink is configured in the terminal.
- the terminal is requested to send an uplink signal by using a preset first period;
- the network side can detect the period of the terminal.
- the terminal is requested to send the uplink signal by using the preset first period; (4) the network side can Detecting whether the terminal is in the uplink synchronization state, and detecting whether the terminal is configured with the periodic uplink resource when the terminal is in the uplink synchronization state, and detecting the signal quality of the periodic uplink resource of the terminal when the terminal is configured with the periodic uplink resource;
- the signal quality of the periodic uplink resource is lower than the preset third threshold, and the preset first period is adopted.
- the requesting terminal sends an uplink signal.
- Step 302 If the first signal quality is detected to be lower than the preset first threshold in the first preset number of times (such as M1 times), the network side requests the terminal to send the uplink signal by using the preset second period (such as the period T2). And perform a second signal quality check.
- the preset second period is greater than the preset first period.
- the network side if the signal quality is detected to be lower than the first preset threshold in consecutive M1 times, the network side initially determines that the terminal link is in an abnormal state, and enters a stage of waiting for the terminal link to recover. During the waiting process, the network side will use a large period T2 (because it has been initially determined that the terminal link is in an abnormal state, it does not need to detect the terminal link frequently, so a larger period can be set). The uplink signal is detected and the signal quality is detected to determine if the terminal link is back to normal.
- the network side when the first signal quality is lower than the preset first threshold within the first preset number of consecutive presets, the network side allocates resources for determining the terminal link and the terminal for restoring the terminal connection. Signaling.
- the network side when detecting that the first signal quality is lower than the preset first threshold, determining that the terminal is in a link abnormal state, and waiting for the terminal link recovery phase, in addition to allocating necessary resources for determining the terminal link and necessary
- the network side can no longer allocate other resources to avoid waste of resources.
- DRX discontinuous reception
- measurement gap is used for terminal to perform inter-frequency or hetero-system measurement.
- the system stipulates that the terminal does not transmit any uplink signal during the measurement period of the DRX silent period and the measurement gap, and thus the embodiment of the present invention In the uplink signal quality detection, the detection result of the DRX silent period and the measurement period in the measurement gap should be ignored, that is, the detection is to be completed at the time when the terminal is allowed to transmit the uplink signal.
- Step 303 If it is determined that the uplink radio link recovery of the terminal fails according to the second signal quality, the network side releases the network resource corresponding to the uplink radio link (that is, the network side deletes the uplink radio link of the terminal, and reclaims various types allocated thereto. Internet resources).
- the uplink radio link recovery failure of the terminal is specifically as follows: The uplink radio link recovery of the terminal is not successful; the success of the uplink radio link recovery of the terminal is specifically as follows: if the second preset number is consecutively preset (such as continuous M2 times) When the second signal quality is greater than the second threshold, the uplink radio link of the terminal is successfully restored. Alternatively, when the network side receives the connection reestablishment message from the terminal and successfully reestablishes, the uplink radio link of the terminal is successfully restored.
- the next loop of detecting the link state of the terminal is entered as needed.
- the process of requesting the terminal (by requesting the first period request or by the preset second period request) to send the uplink signal includes, but is not limited to, one or any combination of the following:
- the network side allocates a preamble preamble to the terminal by using a non-contention random access method to request the terminal to send a corresponding preamble on the first designated resource.
- the first signal quality detection is: detecting whether the terminal is in the established resource. The corresponding preamble is sent on it.
- the network side scheduling terminal sends a downlink CQI (Channel Quality Information) to request the terminal to feed back the CQI information on the second designated resource.
- the first signal quality detection is: detecting whether the terminal feedbacks on the established resource. CQI (suitable for terminal synchronization status).
- the network side allocates a downlink resource to the terminal, and requests the terminal to perform a positive ACK (Acknowledgement Character)/Negative Acknowledgement (NACK) feedback at the corresponding uplink resource location.
- the first signal quality detection is performed as follows: The corresponding uplink resource location was carried out. ACK/NACK feedback (suitable for terminal synchronization status).
- the second embodiment of the present invention provides a method for processing a radio link failure. As shown in FIG. 4, the method includes the following steps:
- Step 401 The network side determines whether the terminal is in an uplink synchronization state. If yes, go to step 402. Otherwise, go to step 405.
- Step 402 The network side determines whether the terminal is configured with periodic uplink resources. If yes, go to step 403. Otherwise, go to step 405.
- the periodic uplink resource may be an uplink sounding pilot SRS or an uplink dedicated resource used by the terminal to feed back the downlink channel quality information (for the LTE system, the PUCCH [physical uplink control channel] resource).
- Step 403 The network side detects a signal quality of a periodic uplink resource of the terminal.
- Step 404 The network side determines whether the signal quality of the periodic uplink resource is lower than the preset third threshold in a consecutive preset third number (such as consecutive N1 times). If yes, go to step 405; otherwise, continue to perform the step. 403.
- Step 405 The network side requests the terminal to send an uplink signal by using a preset first period, and performs first signal quality detection.
- Step 406 The network side determines whether the first signal quality is lower than the preset first threshold in the first preset number of times (such as M1 times), and if yes, step 407 is performed, otherwise, step 405 is performed.
- step 405 when the process proceeds from step 404 to step 405, since the detection of the uplink signal quality has been performed, a smaller M1 value may be set to complete the confirmation of the terminal link state as soon as possible.
- Step 407 The network side requests the terminal to send an uplink signal by using a preset second period (such as the period T2), and performs second signal quality detection.
- the preset second period is greater than the preset first period.
- the network side when detecting that the first signal quality is lower than the preset first threshold, determining that the terminal is in a link abnormal state, while waiting for the terminal link recovery phase, In addition to allocating the necessary resources for judging the terminal link and the necessary signaling (ie, signaling for restoring the terminal connection), the network side may no longer allocate other resources to avoid waste of resources.
- DRX discontinuous reception
- measurement gap is used for terminal to perform inter-frequency or hetero-system measurement.
- the system stipulates that the terminal does not send any uplink signal during the measurement period of the DRX silent period and the measurement gap. Therefore, in the embodiment of the present invention, the detection result of the DRX silent period and the measurement period in the measurement gap should be ignored when performing uplink signal quality detection, that is, The detection is to be completed at the moment when the terminal is allowed to send an uplink signal.
- Step 408 The network side determines, according to the second signal quality, whether the uplink radio link of the terminal is successfully restored. If yes, enter the next loop of detecting the link state of the terminal as needed. Otherwise, step 409 is performed.
- Step 409 The network side releases the network resource corresponding to the uplink wireless link, that is, the network side deletes the terminal uplink wireless link, and reclaims various network resources allocated thereto.
- the success of the uplink radio link recovery of the terminal is specifically as follows: if the second signal quality is detected to be greater than the second threshold in the second preset number (for example, consecutive M2 times), the uplink radio link of the terminal is successfully restored; or When the network side receives the connection reestablishment message from the terminal and successfully rebuilds, the uplink radio link of the terminal is successfully restored.
- the third embodiment of the present invention further provides a network side device.
- the device includes:
- the first processing module 11 is configured to request the terminal to send an uplink signal by using a preset first period, and perform first signal quality detection;
- the second processing module 12 is configured to: when the first signal quality is detected to be lower than the preset first threshold within the first preset number of consecutive presets, request the terminal to send the uplink signal by using the preset second period, and perform the second signal quality. Detecting; the preset second period is greater than the preset first period;
- the third processing module 13 is configured to release the network resource corresponding to the uplink wireless link according to when the uplink radio link recovery of the terminal fails to be determined when the second signal quality is determined.
- the process of requesting the terminal to send the uplink signal includes one or any combination of the following: the network side allocates the preamble preamble to the terminal by using the method of non-contention random access, to request the terminal to send the corresponding preamble on the first designated resource;
- the network side scheduling terminal sends the downlink channel quality information CQI to request the terminal to feed back the CQI information on the second designated resource;
- the network side allocates downlink resources to the terminal to request the terminal to perform positive character ACK/negative character NACK feedback at the corresponding uplink resource location.
- the uplink radio link recovery failure of the terminal is specifically: the uplink radio link recovery of the terminal is unsuccessful;
- the success of the uplink radio link recovery of the terminal is specifically as follows: if the second signal quality is detected to be greater than the second threshold within the second predetermined number of consecutive times, the uplink radio link of the terminal is successfully recovered; or, the network side receives When the connection reestablishment message from the terminal is successfully reconstructed, the uplink radio link of the terminal is successfully restored.
- the device further includes: an allocating module 14 configured to allocate, by the terminal, a terminal link for determining that the first signal quality is lower than a preset first threshold within a preset preset number of times Resources and signaling used to restore terminal connections.
- an allocating module 14 configured to allocate, by the terminal, a terminal link for determining that the first signal quality is lower than a preset first threshold within a preset preset number of times Resources and signaling used to restore terminal connections.
- the first processing module 11 is specifically configured to detect whether the terminal is in an uplink synchronization state, and request the terminal to send an uplink signal by using a preset first period when the terminal is not in the uplink synchronization state.
- the first processing module 11 is specifically configured to detect whether the terminal is configured with a periodic uplink resource, and when the terminal does not configure the periodic uplink resource, request the terminal to send the uplink signal by using the preset first period.
- the first processing module 11 is specifically configured to detect the signal quality of the periodic uplink resource of the terminal, and if the signal quality of the periodic uplink resource is detected to be lower than the preset third threshold within the third preset consecutively, the preset The first period requests the terminal to send an uplink signal.
- the first processing module 11 is specifically configured to detect whether the terminal is in an uplink synchronization state, and detect whether the terminal is configured with a period when the terminal is in an uplink synchronization state.
- the signal quality of the periodic uplink resource is lower than the preset third threshold, and the first The periodic requesting terminal sends the uplink uplink resource of the uplink signal, including: an uplink sounding pilot SRS, and an uplink dedicated resource used by the terminal to feed back downlink channel quality information.
- modules of the device of the present invention may be integrated or may be deployed separately.
- the above modules can be combined into one module, or they can be further split into multiple sub-modules.
- the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
- the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
- modules in the apparatus of the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or the corresponding changes may be located in one or more apparatuses different from the embodiment.
- the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种无线链路失败的处理方法和设备,该方法包括:网络侧通过预设第一周期请求终端发送上行信号,并进行第一信号质量检测;如果连续预设第一次数内检测到第一信号质量低于预设第一门限时,网络侧通过预设第二周期请求终端发送上行信号,并进行第二信号质量检测;如果根据第二信号质量确定所述终端的上行无线链路恢复失败时,网络侧释放所述上行无线链路对应的网络资源。本发明实施例中,网络侧通过主动请求终端发送上行信号,并进行信号质量检测,可准确获知终端的无线链路状态,解决了终端链路状态的判断问题,并可有效避免误判导致的错误操作,提升了系统的可靠性。
Description
一种无线链路失败的处理方法和设备 本申请要求于 2011 年 4 月 13 日提交中国专利局, 申请号为 201110092360.5 , 发明名称为 "一种无线链路失败的处理方法和设 备"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种无线链路失败的处 理方法和设备。 背景技术
如图 1 所示, 在蜂窝移动通信系统中, 将无线侧的通信链路 分为上行和下行两个方向, 下行方向为基站向终端发送数据的链 路, 上行方向为终端向基站发送数据的链路。 下面以 LTE ( Long Term Evolution , 长期演进) 系统为例说明终端与网络之间的通信 过程以及链路状态检测过程。
在 LTE系统中, 当终端有业务需要发起时, 终端首先与网络 建立通信连接, 之后通过上行链路无线资源发送上行数据, 并通 过下行链路无线资源接收下行数据, 上下行链路的资源均由网络 负责分配。 当终端结束服务后, 网络释放终端的连接, 并回收之 前为终端分配的用于通信的各种资源。
随着终端的移动或环境的变化, 终端与网络之间的通信链路 质量也会不断变化, 为了保持终端处于正常通信状态, 要求终端 收发信号质量高于一定门限, 因此 LTE系统配置了公共导频信号, 供终端实时检测下行信号的质量。
具体的,终端检测无线链路的过程包括: 终端使用常量 Ν310、 N311 和定时器 T310来检测空中接口无线链路是否出现问题; 当 终端处于连接状态时, 物理层不断对服务小区的下行信道质量进 行测量, 当检测到信道质量低于某一门限时, 向高层发送
"out-of-sync" 指示, 当检测到信道质量高于某一门限时, 向高层 发送 "in-sync" 指示。
如图 2所示, 当收到 N310个连续的 "out-of-sync" 指示, 则 判断此时无线链路质量暂时出现问题, 开启定时器 T310, 定时器 T310 用于控制无线链路质量恢复的最大允许时间; 当收到 N311 个连续的 "in-sync" 指示, 且定时器 T310已经开启时, 终端高层 判断无线链路质量已经得到恢复, 停止定时器 T310; 如果该定时 器 T310超时, 则表明无线链路已经失败, 终端发起连接重建立过 程, 试图恢复连接, 如果恢复失败则回退到空闲状态。
需要注意的是, 当终端检测到信号质量低于一定门限并向高 层发送 "out-of-sync" 时, 终端已经无法正常收发数据, 此时如果 基站仍然为终端分配上行或下行方向的资源, 则将导致资源浪费。
为了解决上述问题, 基站需要采取检测终端链路质量的措施, 当检测到链路质量低于一定门限时, 不再调度终端; 目前做法是 为终端配置周期性上行资源, 并通过检测周期性上行资源的质量 来判断终端链路是否发生异常。
在实现本发明的过程中, 发明人发现现有技术中至少存在以 下问题:
现有技术中, 网络通过配置周期上行资源并对其质量进行检 测的方式判断无线链路是否失败, 然而在实际系统中受到可用资 源的限制, 并不能保证为每个处于连接状态的用户配置周期上行 资源, 或者即使配置了周期上行资源, 如果用户长时间没有数据 收发而进入上行失步状态, 也会自动释放周期上行资源, 即现有 技术中并不能有效地检测终端链路质量。 发明内容
本发明实施例提供一种无线链路失败的处理方法和设备, 以 有效地检测终端链路质量。
为了达到上述目的, 本发明实施例提供一种无线链路失败的
处理方法, 包括:
网络侧通过预设第一周期请求终端发送上行信号, 并进行第 一信号质量检测;
如果连续预设第一次数内检测到第一信号质量低于预设第一 门限时, 网络侧通过预设第二周期请求终端发送上行信号, 并进 行第二信号质量检测;
如果根据第二信号质量确定所述终端的上行无线链路恢复失 败时, 网络侧释放所述上行无线链路对应的网络资源。
本发明实施例提供一种网络侧设备, 包括:
第一处理模块, 用于通过预设第一周期请求终端发送上行信 号, 并进行第一信号质量检测;
第二处理模块, 用于如果连续预设第一次数内检测到第一信 号质量低于预设第一门限时, 通过预设第二周期请求终端发送上 行信号, 并进行第二信号质量检测;
第三处理模块, 用于根据当第二信号质量确定所述终端的上 行无线链路恢复失败时, 释放所述上行无线链路对应的网络资源。
与现有技术相比, 本发明实施例至少具有以下优点:
网络侧通过主动请求终端发送上行信号, 并进行信号质量检 测, 可准确获知终端的无线链路状态, 解决了终端链路状态的判 断问题, 并可有效避免误判导致的错误操作, 提升了系统的可靠 性。 附图说明
图 1是现有技术中蜂窝移动通信系统的示意图;
图 2是现有技术中无线链路检测的示意图;
图 3 是本发明实施例一提供的一种无线链路失败的处理方法流程 示意图;
图 4是本发明实施例二提供的一种无线链路失败的处理方法流程 示意图;
图 5是本发明实施例三提供的一种网络侧设备结构示意图。 具体实施方式
在移动通信系统中, 往往只规定终端检测无线链路的行为, 当终端检测到无线链路失败后试图与网络恢复重建, 若此时网络 未检测到终端链路异常, 仍然正常调度用户, 则可能造成无线资 源的浪费。 针对上述问题, 本发明实施例提供一种无线链路失败 的处理方法和设备, 由网络检测终端链路状态, 以解决由于链路 异常导致的无效调度, 提升系统资源利用率。
下面将结合本发明中的附图, 对本发明中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明的一部分 实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域 普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例, 都属于本发明保护的范围。
实施例一
本发明实施例一提供一种无线链路失败的处理方法, 以对终 端的无线链路进行检测, 其中, 网络侧可以实时的进行终端链路 状态的检测, 也可以以触发方式检测终端链路状态, 例如只有当 数据需要收发时才触发检测终端链路状态。 如图 3 所示, 该方法 包括以下步骤:
步骤 301 , 网络侧通过预设第一周期 (如周期 T1 )请求终端 发送上行信号, 并进行第一信号质量检测。
其中, ( 1 ) 网络侧可检测终端是否处于上行同步状态, 并在 终端不处于上行同步状态时, 通过预设第一周期请求终端发送上 行信号; (2 ) 网络侧可检测终端是否配置了周期性上行资源 (周 期性上行资源包括但不限于: 上行探测导频 SRS ( Sounding Reference Symbol ,探测导频)、终端用于反馈下行信道质量信息的 上行专用资源), 并在终端没有配置周期性上行资源时, 通过预设 第一周期请求终端发送上行信号; (3 ) 网络侧可检测终端的周期
性上行资源的信号质量, 如果连续预设第三次数内检测到周期性 上行资源的信号质量低于预设第三门限, 通过预设第一周期请求 终端发送上行信号; (4 ) 网络侧可检测终端是否处于上行同步状 态, 并在终端处于上行同步状态时, 检测终端是否配置了周期性 上行资源, 并在终端配置了周期性上行资源时, 检测终端的周期 性上行资源的信号质量; 在终端不处于上行同步状态、 或者终端 没有配置周期性上行资源、 或者连续预设第三次数内检 'j到周期 性上行资源的信号质量低于预设第三门限时, 通过预设第一周期 请求终端发送上行信号。
步骤 302, 如果连续预设第一次数(如 Ml次) 内检测到第一 信号质量低于预设第一门限时, 网络侧通过预设第二周期 (如周 期 T2 )请求终端发送上行信号, 并进行第二信号质量检测。 其中, 预设第二周期大于预设第一周期。
本发明实施例中,如果连续 Ml次检测到信号质量低于第一预 设门限, 则网络侧初步认定终端链路处于异常状态, 并进入等待 终端链路恢复的阶段。 在等待过程中, 网络侧将以较大的周期 T2 (由于已经初步认定终端链路处于异常状态, 则不需要频繁的对 终端链路进行检测, 因此可以设置一个较大的周期) 请求终端发 送上行信号, 并检测信号质量, 以便确定终端链路是否恢复正常。
本发明实施例中, 在连续预设第一次数内检测到第一信号质 量低于预设第一门限时, 网络侧为终端分配用于判断终端链路的 资源和用于恢复终端连接的信令。 其中, 检测到第一信号质量低 于预设第一门限时, 则确定终端处于链路异常状态, 在等待终端 链路恢复阶段时, 除分配必要的用于判断终端链路的资源及必要 的信令外, 网络侧可不再分配其它资源, 以避免资源浪费。
具体到 LTE 系统, 引入了非连续接收(DRX, Discontinuous Reception )和测量 gap的概念,其中 DRX用于终端节电,测量 gap 用于终端执行异频或异系统测量。 系统规定在 DRX静默期以及测 量 gap 中的测量期终端不发送任何上行信号, 因此本发明实施例
中, 进行上行信号质量检测时应忽略 DRX静默期以及测量 gap中 的测量期的检测结果, 即检测要保证在终端允许发送上行信号的 时刻完成。
步骤 303 ,如果根据第二信号质量确定终端的上行无线链路恢 复失败时, 网络侧释放上行无线链路对应的网络资源 (即网络侧 删除终端上行无线链路, 并收回为其分配的各种网络资源)。
其中, 终端的上行无线链路恢复失败具体为: 终端的上行无 线链路恢复没有成功; 终端的上行无线链路恢复成功具体为: 如 果连续预设第二次数(如连续 M2次)内检测到第二信号质量大于 第二门限时, 终端的上行无线链路恢复成功; 或者, 网络侧收到 来自终端的连接重建消息且成功重建时, 终端的上行无线链路恢 复成功。
进一步的, 如果根据第二信号质量确定终端的上行无线链路 恢复成功时, 则根据需要进入下一个检测终端链路状态的循环。
本发明实施例中, 请求终端 (通过预设第一周期请求或者通 过预设第二周期请求) 发送上行信号的过程, 包括但不限于以下 之一或任意组合:
网络侧采用非竟争随机接入的方式为终端分配前导码 preamble, 以请求终端在第一指定资源上发送对应的前导码; 此时 进行第一信号质量检测具体为: 检测终端是否在既定资源上发送 了对应的前导码。
网络侧调度终端发送下行 CQI ( Channel Quality Information, 信道质量信息), 以请求终端在第二指定资源上反馈 CQI信息; 此 时进行第一信号质量检测具体为: 检测终端是否在既定资源上反 馈了 CQI (适合于终端同步状态)。
网络侧为终端分配下行资源, 以请求终端在对应的上行资源 位置进行肯定字符 ACK ( Acknowledgement Character ) /否定字符 NACK ( Negative Acknowledgement Character )反馈; 此时进行第 一信号质量检测具体为: 检测终端在对应的上行资源位置进行了
ACK/NACK反馈(适合于终端同步状态)。
实施例二
本发明实施例二提供一种无线链路失败的处理方法, 如图 4 所示, 该方法包括以下步骤:
步骤 401 , 网络侧判断终端是否处于上行同步状态, 如果是, 执行步骤 402, 否则, 执行步骤 405。
步骤 402, 网络侧判断终端是否配置了周期性上行资源, 如果 是, 执行步骤 403 , 否则, 执行步骤 405。
其中, 周期性上行资源可以是上行探测导频 SRS或者终端用 于反馈下行信道质量信息的上行专用资源 (对 LTE系统来说, 即 为 PUCCH [physical uplink control channel, 物理上行控制信道]资 源)。
步骤 403 , 网络侧检测终端的周期性上行资源的信号质量。 步骤 404, 网络侧判断是否在连续预设第三次数(如连续 N1 次) 内检测到周期性上行资源的信号质量低于预设第三门限, 如 果是, 执行步骤 405 , 否则, 继续执行步骤 403。
步骤 405 , 网络侧通过预设第一周期请求终端发送上行信号, 并进行第一信号质量检测。
步骤 406, 网络侧判断是否在连续预设第一次数(如 Ml次 ) 内检测到第一信号质量低于预设第一门限,如果是,执行步骤 407, 否则, 执行步骤 405。
本发明实施例中, 当从步骤 404转到步骤 405时, 由于已经 进行过上行信号质量的检测, 则可以设置较小的 Ml值, 以尽快完 成终端链路状态的确认。
步骤 407, 网络侧通过预设第二周期 (如周期 T2 )请求终端 发送上行信号, 并进行第二信号质量检测。 其中, 预设第二周期 大于预设第一周期。
本发明实施例中, 在检测到第一信号质量低于预设第一门限 时, 即确定终端处于链路异常状态, 在等待终端链路恢复阶段时,
除分配必要的用于判断终端链路的资源及必要的信令 (即用于恢 复终端连接的信令) 外, 网络侧可不再分配其它资源, 以避免资 源浪费。
具体到 LTE系统, 引入了非连续接收(DRX ) 和测量 gap的 概念, 其中 DRX用于终端节电, 测量 gap用于终端执行异频或异 系统测量。 系统规定在 DRX静默期以及测量 gap中的测量期终端 不发送任何上行信号, 因此本发明实施例中, 进行上行信号质量 检测时应忽略 DRX静默期以及测量 gap中的测量期的检测结果, 即检测要保证在终端允许发送上行信号的时刻完成。
步骤 408, 网络侧根据第二信号质量判断终端的上行无线链路 是否恢复成功, 如果是, 根据需要进入下一个检测终端链路状态 的循环, 否则, 执行步骤 409。
步骤 409, 网络侧释放上行无线链路对应的网络资源, 即网络 侧删除终端上行无线链路, 并收回为其分配的各种网络资源。
其中, 终端的上行无线链路恢复成功具体为: 如果连续预设 第二次数(如连续 M2次)内检测到第二信号质量大于第二门限时, 终端的上行无线链路恢复成功; 或者, 网络侧收到来自终端的连 接重建消息且成功重建时, 终端的上行无线链路恢复成功。
实施例三
基于与上述方法同样的发明构思, 本发明实施例三中还提供 了一种网络侧设备, 如图 5所示, 该设备包括:
第一处理模块 11 , 用于通过预设第一周期请求终端发送上行 信号, 并进行第一信号质量检测;
第二处理模块 12, 用于如果连续预设第一次数内检测到第一 信号质量低于预设第一门限时, 通过预设第二周期请求终端发送 上行信号, 并进行第二信号质量检测; 所述预设第二周期大于所 述预设第一周期;
第三处理模块 13 , 用于根据当第二信号质量确定所述终端的 上行无线链路恢复失败时, 释放所述上行无线链路对应的网络资
请求终端发送上行信号的过程, 包括以下之一或任意组合: 网络侧采用非竟争随机接入的方式为终端分配前导码 preamble, 以请求终端在第一指定资源上发送对应的前导码;
网络侧调度终端发送下行信道质量信息 CQI,以请求终端在第 二指定资源上反馈 CQI信息;
网络侧为终端分配下行资源, 以请求终端在对应的上行资源 位置进行肯定字符 ACK/否定字符 NACK反馈。
所述终端的上行无线链路恢复失败具体为: 所述终端的上行 无线链路恢复没有成功;
所述终端的上行无线链路恢复成功具体为: 如果连续预设第 二次数内检测到第二信号质量大于第二门限时, 所述终端的上行 无线链路恢复成功; 或者, 网络侧收到来自终端的连接重建消息 且成功重建时, 所述终端的上行无线链路恢复成功。
本发明实施例中, 该设备还包括: 分配模块 14, 用于在连续 预设第一次数内检测到第一信号质量低于预设第一门限时, 为终 端分配用于判断终端链路的资源和用于恢复终端连接的信令。
所述第一处理模块 11 , 具体用于检测终端是否处于上行同步 状态, 并在终端不处于上行同步状态时, 通过预设第一周期请求 终端发送上行信号。
所述第一处理模块 11 , 具体用于检测终端是否配置了周期性 上行资源, 并在终端没有配置周期性上行资源时, 通过预设第一 周期请求终端发送上行信号。
所述第一处理模块 11 , 具体用于检测终端的周期性上行资源 的信号质量, 如果连续预设第三次数内检测到周期性上行资源的 信号质量低于预设第三门限, 通过预设第一周期请求终端发送上 行信号。
所述第一处理模块 11 , 具体用于检测终端是否处于上行同步 状态, 并在终端处于上行同步状态时, 检测终端是否配置了周期
性上行资源, 并在终端配置了周期性上行资源时, 检测终端的周 期性上行资源的信号质量;
在终端不处于上行同步状态、 或者终端没有配置周期性上行 资源、 或者连续预设第三次数内检 'j到周期性上行资源的信号质 量低于预设第三门限时, 通过预设第一周期请求终端发送上行信 周期性上行资源包括: 上行探测导频 SRS、 终端用于反馈下 行信道质量信息的上行专用资源。
其中, 本发明装置的各个模块可以集成于一体, 也可以分离 部署。 上述模块可以合并为一个模块, 也可以进一步拆分成多个 子模块。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地 了解到本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基 于这样的理解, 本发明的技术方案本质上或者说对现有技术做出 贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品 存储在一个存储介质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各 个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意 图, 附图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例的装置中的模块可以按照实 施例描述进行分布于实施例的装置中, 也可以进行相应变化位于 不同于本实施例的一个或多个装置中。 上述实施例的模块可以合 并为一个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 非局限于此, 任何本领域的技术人员能思之的变化都应落入本发 明的保护范围。
Claims
1、 一种无线链路失败的处理方法, 其特征在于, 包括: 网络侧按照第一周期请求终端发送上行信号,并对终端的上行信 号的质量进行检测;
如果网络侧在连续预设第一次数内检测到终端的上行信号质量 低于第一门限, 则按照第二周期请求终端发送上行信号, 并对终端的 上行信号进行质量检测,并当根据终端的上行信号质量确定所述终端 的上行无线链路恢复失败时,释放所述终端的无线链路对应的网络资 源; 其中, 所述第二周期大于所述第一周期。
2、 如权利要求 1所述的方法, 其特征在于, 请求终端发送上行 信号的过程, 包括以下之一或任意组合:
网络侧采用非竟争随机接入的方式为终端分配前导码 preamble, 以请求终端在第一指定资源上发送对应的前导码;
网络侧调度终端发送下行信道质量信息 CQI,以请求终端在第二 指定资源上反馈 CQI信息;
网络侧为终端分配下行资源,以请求终端在对应的上行资源位置 进行肯定字符 ACK/否定字符 NACK反馈。
3、 如权利要求 1所述的方法, 其特征在于, 根据终端的上行信 号质量确定所述终端的上行无线链路恢复失败, 具体为: 如果连续预 设第二次数内检测到终端的上行信号质量大于第二门限,则所述终端 的上行无线链路恢复成功;否则,所述终端的上行无线链路恢复失败; 或者, 网络侧收到来自终端的连接重建消息且成功重建时, 所述终端 的上行无线链路恢复成功。
4、 如权利要求 1所述的方法, 其特征在于, 在连续预设第一次 数内检测到终端的上行信号质量低于第一门限时, 所述方法还包括: 网络侧为终端分配用于判断终端链路的资源和用于恢复终端连 接的信令。
5、 如权利要求 1所述的方法, 其特征在于, 网络侧按照预设第 一周期请求终端发送上行信号, 包括:
网络侧检测终端是否处于上行同步状态,并在终端不处于上行同 步状态时, 按照第一周期请求终端发送上行信号。
6、 如权利要求 1所述的方法, 其特征在于, 网络侧按照第一周 期请求终端发送上行信号, 包括:
网络侧检测终端是否配置了周期性上行资源,并在终端没有配置 周期性上行资源时, 按照第一周期请求终端发送上行信号。
7、 如权利要求 1所述的方法, 其特征在于, 网络侧按照第一周 期请求终端发送上行信号, 包括:
网络侧检测终端的周期性上行资源的信号质量,如果连续预设第 三次数内检测到周期性上行资源的信号质量低于第三门限,则按照第 一周期请求终端发送上行信号。
8、 如权利要求 1所述的方法, 其特征在于, 网络侧按照第一周 期请求终端发送上行信号, 包括:
网络侧检测终端是否处于上行同步状态,并在终端处于上行同步 状态时,检测终端是否配置了周期性上行资源, 并在终端配置了周期 性上行资源时, 检测终端的周期性上行资源的信号质量;
在终端不处于上行同步状态、 或者终端没有配置周期性上行资 源、或者连续预设第三次数内检测到周期性上行资源的信号质量低于 第三门限时, 网络侧按照第一周期请求终端发送上行信号。
9、 如权利要求 6-8任一项所述的方法, 其特征在于, 周期性上 行资源包括: 上行探测导频 SRS、终端用于反馈下行信道质量信息的 上行专用资源。
10、 一种网络侧设备, 其特征在于, 包括:
第一处理模块, 用于通过预设第一周期请求终端发送上行信号, 并进行第一信号质量检测;
第二处理模块,用于如果连续预设第一次数内检测到第一信号质 量低于预设第一门限时, 通过预设第二周期请求终端发送上行信号, 并进行第二信号质量检测; 第三处理模块,用于如果根据第二信号质量确定所述终端的上行 无线链路恢复失败时,释放所述上行无线链路对应的网络资源;其中, 所述预设第二周期大于所述预设第一周期。
11、 如权利要求 10所述的网络侧设备, 其特征在于, 请求终端 发送上行信号的过程, 包括以下之一或任意组合:
网络侧采用非竟争随机接入的方式为终端分配前导码 preamble, 以请求终端在第一指定资源上发送对应的前导码;
网络侧调度终端发送下行信道质量信息 CQI,以请求终端在第二 指定资源上反馈 CQI信息;
网络侧为终端分配下行资源,以请求终端在对应的上行资源位置 进行肯定字符 ACK/否定字符 NACK反馈。
12、 如权利要求 10所述的网络侧设备, 其特征在于, 所述终端 的上行无线链路恢复失败具体为:所述终端的上行无线链路恢复没有 成功;
所述终端的上行无线链路恢复成功具体为:如果连续预设第二次 数内检测到第二信号质量大于第二门限,则所述终端的上行无线链路 恢复成功;或者,网络侧收到来自终端的连接重建消息且成功重建时, 所述终端的上行无线链路恢复成功。
13、 如权利要求 10所述的网络侧设备, 其特征在于, 还包括: 分配模块,用于在连续预设第一次数内检测到第一信号质量低于 预设第一门限时,为终端分配用于判断终端链路的资源和用于恢复终 端连接的信令。
14、 如权利要求 10所述的网络侧设备, 其特征在于,
所述第一处理模块, 具体用于检测终端是否处于上行同步状态, 并在终端不处于上行同步状态时,通过预设第一周期请求终端发送上 行信号。
15、 如权利要求 10所述的网络侧设备, 其特征在于,
所述第一处理模块,具体用于检测终端是否配置了周期性上行资 源, 并在终端没有配置周期性上行资源时, 通过预设第一周期请求终 端发送上行信号。
16、 如权利要求 10所述的网络侧设备, 其特征在于,
所述第一处理模块,具体用于检测终端的周期性上行资源的信号 质量,如果连续预设第三次数内检测到周期性上行资源的信号质量低 于预设第三门限, 通过预设第一周期请求终端发送上行信号。
17、 如权利要求 10所述的网络侧设备, 其特征在于,
所述第一处理模块, 具体用于检测终端是否处于上行同步状态, 并在终端处于上行同步状态时, 检测终端是否配置了周期性上行资 源, 并在终端配置了周期性上行资源时,检测终端的周期性上行资源 的信号质量;
在终端不处于上行同步状态、 或者终端没有配置周期性上行资 源、或者连续预设第三次数内检测到周期性上行资源的信号质量低于 预设第三门限时, 通过预设第一周期请求终端发送上行信号。
18、 如权利要求 15-17所述的网络侧设备, 其特征在于, 周期性 上行资源包括: 上行探测导频 SRS、 终端用于反馈下行信道质量信息 的上行专用资源。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12771802.1A EP2699035B1 (en) | 2011-04-13 | 2012-03-27 | Method and device for handling wireless link failure |
US14/053,458 US9736015B2 (en) | 2011-04-13 | 2013-10-14 | Method and device for handling radio link failure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110092360.5 | 2011-04-13 | ||
CN201110092360.5A CN102143522B (zh) | 2011-04-13 | 2011-04-13 | 一种无线链路失败的处理方法和设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/053,458 Continuation US9736015B2 (en) | 2011-04-13 | 2013-10-14 | Method and device for handling radio link failure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012139464A1 true WO2012139464A1 (zh) | 2012-10-18 |
Family
ID=44410682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/073136 WO2012139464A1 (zh) | 2011-04-13 | 2012-03-27 | 一种无线链路失败的处理方法和设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9736015B2 (zh) |
EP (1) | EP2699035B1 (zh) |
CN (1) | CN102143522B (zh) |
WO (1) | WO2012139464A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017128816A1 (zh) * | 2016-01-26 | 2017-08-03 | 中兴通讯股份有限公司 | 一种信号发送方法和用户设备、存储介质 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102143522B (zh) | 2011-04-13 | 2015-02-18 | 电信科学技术研究院 | 一种无线链路失败的处理方法和设备 |
CN104145504A (zh) * | 2012-09-20 | 2014-11-12 | 华为技术有限公司 | 测量控制方法、用户设备、控制节点及系统 |
CN104980961A (zh) * | 2014-04-01 | 2015-10-14 | 中兴通讯股份有限公司 | 一种移动通信网络异常检测处理方法和装置 |
US9825828B2 (en) * | 2014-08-26 | 2017-11-21 | T-Mobile Usa, Inc. | Cross-layer link failure alerts |
US10700845B2 (en) | 2015-03-09 | 2020-06-30 | Comcast Cable Communications, Llc | Secondary cell deactivation in a wireless device and a base station |
US9820298B2 (en) | 2015-03-09 | 2017-11-14 | Ofinno Technologies, Llc | Scheduling request in a wireless device and wireless network |
US10182406B2 (en) | 2015-03-09 | 2019-01-15 | Comcast Cable Communications, Llc | Power headroom report for a wireless device and a base station |
US10327236B2 (en) | 2015-03-09 | 2019-06-18 | Comcast Cable Communications, Llc | Secondary cell in a wireless device and wireless network |
US9820264B2 (en) | 2015-03-09 | 2017-11-14 | Ofinno Technologies, Llc | Data and multicast signals in a wireless device and wireless network |
US9877334B2 (en) * | 2015-04-05 | 2018-01-23 | Ofinno Technologies, Llc | Cell configuration in a wireless device and wireless network |
US11641255B2 (en) | 2015-04-05 | 2023-05-02 | Comcast Cable Communications, Llc | Uplink control information transmission in a wireless network |
US9894681B2 (en) | 2015-06-12 | 2018-02-13 | Ofinno Technologies, Llc | Uplink scheduling in a wireless device and wireless network |
US10200177B2 (en) | 2015-06-12 | 2019-02-05 | Comcast Cable Communications, Llc | Scheduling request on a secondary cell of a wireless device |
US9948487B2 (en) | 2015-06-15 | 2018-04-17 | Ofinno Technologies, Llc | Uplink resource allocation in a wireless network |
WO2017026929A1 (en) * | 2015-08-07 | 2017-02-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and arrangement for requesting of resources |
CN106067853A (zh) * | 2016-07-04 | 2016-11-02 | 深圳羚羊极速科技有限公司 | 一种通过发送比确定网络链路质量的方法 |
KR20190085177A (ko) * | 2017-01-06 | 2019-07-17 | 엘지전자 주식회사 | 무선 통신 시스템에 관한 것으로, 특히, 무선 통신 시스템에서 다중 빔 동작의 무선 링크 모니터링 및 실패 절차를 수행하는 방법 및 그에 대한 장치 |
CN108631845B (zh) | 2017-03-24 | 2021-11-02 | 中兴通讯股份有限公司 | 波束恢复的处理和波束恢复的方法,基站和终端 |
CN107404713B (zh) * | 2017-06-09 | 2020-07-31 | 哈尔滨海能达科技有限公司 | 集群通信系统的时隙占用优化方法、控制装置及系统 |
CN109428687B (zh) * | 2017-07-21 | 2020-12-15 | 华为技术有限公司 | 触发无线链路失败rlf的方法和装置 |
CN110611921B (zh) * | 2018-06-15 | 2021-06-01 | 维沃移动通信有限公司 | 一种无线链路状态判断方法及终端 |
CN110944352B (zh) | 2018-09-25 | 2022-11-01 | 维沃移动通信有限公司 | 一种旁链路的链路失败检测方法及终端 |
CN109981164A (zh) * | 2019-04-19 | 2019-07-05 | 深圳星联天通科技有限公司 | 卫星终端掉网自动重连方法、装置、卫星终端及存储介质 |
CN110177353B (zh) | 2019-06-17 | 2021-11-05 | 腾讯科技(深圳)有限公司 | 用于车辆通信的副链路监测方法、装置、介质及电子设备 |
CN114287167B (zh) * | 2019-09-20 | 2024-05-28 | 上海诺基亚贝尔股份有限公司 | 无线系统中的故障检测 |
CN111130739B (zh) * | 2019-12-19 | 2022-07-08 | 中科南京移动通信与计算创新研究院 | 空口资源的处理方法、装置、终端及存储介质 |
CN112804706B (zh) * | 2020-12-31 | 2022-07-26 | 联想未来通信科技(重庆)有限公司 | 一种通信链路检测方法及装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7158790B1 (en) * | 2002-07-16 | 2007-01-02 | Verizon Corporate Services Group Inc. | Determining service coverage for metropolitan wireless networks |
CN101128002A (zh) * | 2006-08-17 | 2008-02-20 | 华为技术有限公司 | 一种实现无线链路同失步检测的方法 |
CN102143522A (zh) * | 2011-04-13 | 2011-08-03 | 电信科学技术研究院 | 一种无线链路失败的处理方法和设备 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5517674A (en) * | 1993-08-09 | 1996-05-14 | Telefonaktiebolaget Lm Ericsson | Low capacity mobile assisted handoff in a cellular communications network |
CA2327898A1 (en) * | 2000-12-08 | 2002-06-08 | Alcatel Canada Inc. | System and method for establishing a communication path associated with an mpls implementation on an atm platform |
KR100678179B1 (ko) | 2004-05-12 | 2007-02-02 | 삼성전자주식회사 | 이동통신 시스템에서 단절된 통신 링크를 복구하기 위한장치 및 방법 |
US8060098B2 (en) * | 2006-01-13 | 2011-11-15 | Research In Motion Limited | Handover methods and apparatus for mobile communication devices |
CN103874121A (zh) * | 2006-05-05 | 2014-06-18 | 广东新岸线计算机系统芯片有限公司 | 长期演进上行链路和下行链路中的无线电链路故障检测方法及其装置 |
CN101179825B (zh) | 2006-11-08 | 2010-09-29 | 华为技术有限公司 | 上行非连续传输的处理方法、终端、基站及系统 |
WO2008024357A2 (en) * | 2006-08-24 | 2008-02-28 | Interdigital Technology Corporation | Power control for improving link reliability in hsdpa |
CN101212775B (zh) | 2006-12-30 | 2011-04-20 | 华为技术有限公司 | 一种切换过程中无线链路失败的处理方法及其装置 |
US8131310B2 (en) * | 2007-05-18 | 2012-03-06 | Research In Motion Limited | Method and system for discontinuous reception de-synchronization detection |
US7756506B2 (en) * | 2007-05-18 | 2010-07-13 | Research In Motion Limited | Method and system for discontinuous reception de-synchronization detection and recovery |
US8396032B2 (en) * | 2007-06-19 | 2013-03-12 | Sharp Kabushiki Kaisha | Base station device, mobile station device, communication system and communication method |
KR101441138B1 (ko) * | 2007-09-28 | 2014-09-18 | 엘지전자 주식회사 | 무선통신 시스템에서 상향링크 시간 동기 수행 방법 |
JP5033923B2 (ja) * | 2007-10-29 | 2012-09-26 | インターデイジタル パテント ホールディングス インコーポレイテッド | Cell_fach状態での拡張専用チャネルを介した送信のための無線リンク失敗を検出するための方法 |
CN101978745B (zh) * | 2008-03-19 | 2014-09-24 | 爱立信电话股份有限公司 | 用于检测同步的丢失的方法和基站 |
CN102067655A (zh) * | 2008-06-19 | 2011-05-18 | 夏普株式会社 | 通信系统、基站装置以及移动台装置 |
EP2359630B1 (en) * | 2008-09-30 | 2013-07-17 | Telefonaktiebolaget L M Ericsson (PUBL) | Methods and apparatuses for detecting radio link failure in a telecommunications system |
US8787177B2 (en) * | 2008-11-03 | 2014-07-22 | Apple Inc. | Techniques for radio link problem and recovery detection in a wireless communication system |
KR101546751B1 (ko) * | 2008-11-05 | 2015-08-24 | 삼성전자주식회사 | 이동통신시스템에서 단말기의 라디오 링크 실패를 효율적으로 탐지하는 방법 |
US20110217973A1 (en) * | 2008-11-10 | 2011-09-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio Link Monitoring in DRX |
KR101652841B1 (ko) * | 2009-02-02 | 2016-08-31 | 삼성전자 주식회사 | 반송파 결합을 지원하는 셀룰러 무선 통신시스템을 위한 라디오 링크 제어 방법 및 장치 |
EP3761750A1 (en) * | 2009-03-12 | 2021-01-06 | Interdigital Patent Holdings, Inc. | Method and apparatus for monitoring for a radio link failure |
KR101617048B1 (ko) * | 2009-06-01 | 2016-05-02 | 엘지전자 주식회사 | 다중 반송파 시스템에서 요소 반송파의 실패를 처리하는 방법 및 장치 |
US20100329216A1 (en) | 2009-06-29 | 2010-12-30 | Yu-Chih Jen | Method of Handling Mobile Device Mobility and Related Communication Device |
EP2462776B1 (en) | 2009-08-07 | 2018-10-31 | HMD global Oy | Operation in case of radio link failure |
WO2011021152A1 (en) | 2009-08-17 | 2011-02-24 | Nokia Corporation | Discontinuous reception for multi-component carrier system |
CA2790535A1 (en) | 2010-02-22 | 2011-08-25 | Telefonaktiebolaget L M Ericsson (Publ) | Detection of radio link failure (rlf) for recovery |
US8917713B2 (en) * | 2010-07-13 | 2014-12-23 | Clearview IP Holdings LLC | Method and system for managing wireless links in a communication network |
US8792888B2 (en) | 2011-04-25 | 2014-07-29 | Apple Inc. | Dual network mobile device radio resource management |
-
2011
- 2011-04-13 CN CN201110092360.5A patent/CN102143522B/zh active Active
-
2012
- 2012-03-27 WO PCT/CN2012/073136 patent/WO2012139464A1/zh active Application Filing
- 2012-03-27 EP EP12771802.1A patent/EP2699035B1/en active Active
-
2013
- 2013-10-14 US US14/053,458 patent/US9736015B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7158790B1 (en) * | 2002-07-16 | 2007-01-02 | Verizon Corporate Services Group Inc. | Determining service coverage for metropolitan wireless networks |
CN101128002A (zh) * | 2006-08-17 | 2008-02-20 | 华为技术有限公司 | 一种实现无线链路同失步检测的方法 |
CN102143522A (zh) * | 2011-04-13 | 2011-08-03 | 电信科学技术研究院 | 一种无线链路失败的处理方法和设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017128816A1 (zh) * | 2016-01-26 | 2017-08-03 | 中兴通讯股份有限公司 | 一种信号发送方法和用户设备、存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN102143522B (zh) | 2015-02-18 |
CN102143522A (zh) | 2011-08-03 |
EP2699035A1 (en) | 2014-02-19 |
EP2699035A4 (en) | 2014-11-05 |
EP2699035B1 (en) | 2019-08-21 |
US20140036659A1 (en) | 2014-02-06 |
US9736015B2 (en) | 2017-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012139464A1 (zh) | 一种无线链路失败的处理方法和设备 | |
CN102036284B (zh) | 载波聚合场景下无线链路失败的处理方法和装置 | |
CN106470439B (zh) | 用户设备的pdcp控制pdu传输的方法 | |
US10187246B2 (en) | Method and apparatus for transmission mode conversion | |
JP2021508961A (ja) | 無線通信システムで帯域幅部分非活性タイマーをハンドリングする方法及び装置 | |
US20110003555A1 (en) | Method and Apparatus for PDCCH Monitoring | |
US20100302951A1 (en) | Method and Apparatus for Handling Radio Link Failure | |
EP3448100B1 (en) | Uplink information transmission method, base station, and user equipment | |
WO2009089782A1 (fr) | Procédé de gestion d'une liaison radio, et procédé et dispositif de communication utilisés après la défaillance d'une liaison radio | |
CN101959302B (zh) | 一种启动drx机制的方法、设备和系统 | |
KR20120093330A (ko) | 다중 반송파 시스템에서 요소 반송파를 활성화/비활성화시키기 위한 최적화 방법 및 시스템 | |
US11304081B2 (en) | Data transmission method and data transmission apparatus | |
WO2022030579A1 (ja) | 通信制御方法 | |
WO2015043471A1 (zh) | 一种无线链路失败的处理方法及装置 | |
US20210377758A1 (en) | Communication control method | |
US20220007259A1 (en) | Communication control method | |
US20220312279A1 (en) | Method for transmitting failure information and communications device | |
US10869354B2 (en) | Status detection of RRC connection | |
US20230397297A1 (en) | Methods and apparatuses for a scg deactivation mechanism and a scg activation mechanism in a mr-dc scenario | |
US20230189092A1 (en) | Method and apparatus for master cell group link recovery considering conditional handover and listen before talk | |
WO2011032319A1 (zh) | 小区无线链路失败处理方法和用户设备 | |
US20240205763A1 (en) | Methods and apparatuses for storing and reporting information relating to a pscell change procedure | |
CN116250366A (zh) | 新无线电非活跃状态下的数据传输方法和设备 | |
US20220046741A1 (en) | Communication control method | |
WO2023280230A1 (zh) | 一种条件主辅小区添加或改变的方法、装置和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12771802 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012771802 Country of ref document: EP |