WO2022030579A1 - 通信制御方法 - Google Patents

通信制御方法 Download PDF

Info

Publication number
WO2022030579A1
WO2022030579A1 PCT/JP2021/029111 JP2021029111W WO2022030579A1 WO 2022030579 A1 WO2022030579 A1 WO 2022030579A1 JP 2021029111 W JP2021029111 W JP 2021029111W WO 2022030579 A1 WO2022030579 A1 WO 2022030579A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
base station
data
control method
communication control
Prior art date
Application number
PCT/JP2021/029111
Other languages
English (en)
French (fr)
Inventor
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2022541726A priority Critical patent/JP7492011B2/ja
Publication of WO2022030579A1 publication Critical patent/WO2022030579A1/ja
Priority to US18/164,533 priority patent/US20230180338A1/en
Priority to JP2024080423A priority patent/JP2024105612A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a communication control method used in a mobile communication system.
  • the 3GPP (Third Generation Partnership Project) standard, which is a standardization project for mobile communication systems, defines early data transmission (EDT) for transmitting and receiving data during a random access procedure (see, for example, Non-Patent Document 1). ).
  • MO-EDT Mobile Originated-EDT
  • MT-EDT Mobile Terminated-EDT
  • MO-EDT is an EDT for transmitting uplink data.
  • the upper layer of the user device requests the establishment or resumption of RRC (Radio Resource Control) connection for the data originating from the user device, and the size of the uplink data is indicated by the system information. It starts when it becomes less than the block (TB) size.
  • RRC Radio Resource Control
  • TB block
  • MT-EDT is an EDT for transmitting downlink data.
  • the user device receives a paging message including the MT-EDT instruction from the base station, a random access procedure is performed and the downlink data is received from the base station at the timing of receiving the downlink data in the MO-EDT. ..
  • PUR Preconfigured Uplink Resource
  • uplink transmission is performed from the RRC idle (RRC_IDLE) state using a preset uplink resource without performing a random access channel.
  • the user device in the RRC connected (RRC_CONNECTED) state sends a PUR setting request (PUR Connection Request) message to the base station, and receives an RRC Connection Release message including the PUR resource from the base station.
  • the RRC connection release message includes information necessary for PUR setting, such as a resource used for data transmission (hereinafter, may be referred to as “PUR resource”).
  • the user device in the RRC idle state can use the PUR resource to transmit data to the base station together with the RRC Connection Resume Request message. Further, the user device in the RRC idle state can optionally receive the downlink data together with the RRC connection release message after the RRC connection restart message.
  • the communication control method is a communication control method in a mobile communication system in which wireless communication is performed between a user device and a base station device.
  • the communication control method is that the user device in the RRC (Radio Reference Control) connected state transmits the first preference information to the base station device, and the base station device uses the first device. It has to receive reference information.
  • the first reference information is the first data transmission in which the user device in the RRC inactive state transmits data using a message of a random access procedure, and data is transmitted using a preset radio resource. This is information for which at least one of the second data transmissions to be transmitted is desired.
  • the communication control method is a second plurality of base station devices and user devices having a first plurality of cells, or the base station device and another base station device having at least one cell each. It is a communication control method in a mobile communication system in which wireless communication is performed between the base station device and the other base station device in which a cell is configured and the user device.
  • the base station device transmits setting information to the user device in the RRC (Radio Resource Control) connected state, and the user device in the RRC connected state transmits the setting information.
  • the setting information is information for the user device in the RRC inactive state to transmit the data in the first or second plurality of cells using the preset radio resource.
  • the communication control method is a communication control method in a mobile communication system in which wireless communication is performed between a base station device and a user device.
  • the base station device transmits setting information to the user device in the RRC (Radio Resource Control) connected state, and the user device in the RRC connected state transmits the setting information.
  • the user apparatus in the RRC inactive state uses the first data transmission and the preset radio resource for transmitting data using the message of the random access procedure based on the setting information.
  • At least one of the second data transmissions used to transmit data is performed by at least one of carrier aggregation, dual connectivity, and PDCP (Packet Data Convergence Procedure) duplication.
  • PDCP Packet Data Convergence Procedure
  • the communication control method is a communication control method in a user device that performs wireless communication with a base station device.
  • the communication control method is that the user device in the RRC (Radio Memory Control) inactive state transmits data using a message of a random access procedure, or transmits data using a preset radio resource.
  • RRC Radio Memory Control
  • the information about the failure is stored in the memory of the user device, and the information about the failure stored in the memory by the user device in the RRC inactive state or the user device in the RRC connected state is stored. To transmit to the base station device.
  • FIG. 8A is a diagram showing an operation example of EDT
  • FIG. 8B is a diagram showing an operation example of PUR.
  • FIG. 9 (A) and 9 (B) are diagrams showing an operation example using a UE context acquisition message.
  • FIG. 10 is a diagram showing an operation example using a handover request message.
  • FIG. 11A is a diagram showing an example in which two cells are present in one gNB, and FIG. 11B is a diagram showing an example in the case where one cell is present in each gNB.
  • 12 (A) and 12 (B) are diagrams showing an example of a PUR area.
  • FIG. 13 is a diagram showing an operation example of the second embodiment.
  • 14 (A) and 14 (B) are diagrams showing an example of CA.
  • 15 (A) is a diagram showing an example of DC
  • FIG. 15 (B) is a diagram showing an example of PDCP duplication.
  • FIG. 16 is a diagram showing an operation example of the third embodiment.
  • 17 (A) and 17 (B) are diagrams showing an operation example of SD procedure failure.
  • FIG. 18 is a diagram showing an operation example of the
  • the mobile communication system according to one embodiment is a 5G system of 3GPP, but LTE (Long Term Evolution) may be applied to the mobile communication system at least partially.
  • LTE Long Term Evolution
  • FIG. 1 is a diagram showing a configuration of a mobile communication system according to an embodiment.
  • mobile communication systems include a user device (UE: User Equipment) 100, a 5G radio access network (NG-RAN: Next Generation Radio Access Network) 10, and a 5G core network (5GC: 5G). It has Core Network) 20.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5GC 5G core network
  • the UE100 is a movable device.
  • the UE 100 may be any device as long as it is a device used by the user.
  • the UE 100 may be a mobile phone terminal (including a smartphone), a tablet terminal, a notebook PC, or a communication module (communication card or communication card).
  • a device capable of wireless communication such as a sensor (including a chipset), a sensor or a device provided on the sensor, a vehicle or a device provided on the vehicle (Vehicle UE), or a vehicle or a device provided on the vehicle (Arial UE).
  • the NG-RAN 10 includes a base station apparatus (referred to as "gNB” in a 5G system) 200.
  • the gNB 200 may also be referred to as an NG-RAN node.
  • the gNB 200 are connected to each other via the Xn interface, which is an interface between base stations.
  • the gNB 200 manages one or more cells.
  • the gNB 200 performs wireless communication with the UE 100 that has established a connection with its own cell.
  • the gNB 200 has a radio resource management (RRM) function, a routing function for user data (hereinafter, simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term to indicate the smallest unit of a wireless communication area.
  • the term “cell” is also used to indicate a function or resource for wireless communication with the UE 100.
  • One cell belongs to one carrier frequency.
  • the gNB 200 may be connected to the LTE core network EPC (Evolved Packet Core), or the LTE base station may be connected to the 5GC20. Further, the LTE base station (referred to as “eNB” in the LTE system) and gNB may be connected via an interface between base stations.
  • EPC Evolved Packet Core
  • 5GC20 includes AMF (Access and Mobility Management Function) and UPF (User Plane Function) 300-1,300-2.
  • the AMF performs various mobility controls and the like for the UE 100.
  • the AMF manages information on the area in which the UE 100 is located by communicating with the UE 100 using NAS (Non-Access Stratum) signaling.
  • UPF controls data transfer.
  • the AMF and UPF are connected to the gNB 200 via the NG interface, which is an interface between the base station and the core network.
  • FIG. 2 is a diagram showing a configuration of a UE 100 (user device) according to an embodiment.
  • the UE 100 includes a receiving unit 110, a transmitting unit 120, and a control unit 130.
  • the receiving unit 110 performs various receptions under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts (down-converts) the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmitter 120 includes an antenna and a transmitter.
  • the transmitter converts (up-converts) a baseband signal (transmission signal) output by the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls on the UE 100.
  • the control unit 130 includes at least one processor and at least one memory electrically connected to the processor.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor modulates / demodulates and encodes / decodes the baseband signal.
  • the CPU executes a program stored in the memory to perform various processes.
  • FIG. 3 is a diagram showing the configuration of gNB200 (base station) according to one embodiment.
  • the gNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmitter 210 includes an antenna and a transmitter.
  • the transmitter converts (up-converts) a baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various receptions under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts (down-converts) the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 230.
  • the control unit 230 performs various controls on the gNB 200.
  • the control unit 230 includes at least one processor and at least one memory electrically connected to the processor.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor modulates / demodulates and encodes / decodes the baseband signal.
  • the CPU executes a program stored in the memory to perform various processes. Instead of the CPU, it may be a processor or controller such as a DSP (Digital Signal Processor) or an FPGA (Field Programmable Gate Array).
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the backhaul communication unit 240 is connected to an adjacent base station via an interface between base stations.
  • the backhaul communication unit 240 is connected to the AMF / UPF300-1,300-2 via the base station-core network interface.
  • the gNB 200 is composed of a CU (Central Unit) and a DU (Distributed Unit) (that is, the functions are divided), and both units may be connected by an F1 interface.
  • FIG. 4 is a diagram showing a configuration of a protocol stack of a wireless interface of a user plane that handles data.
  • the wireless interface protocol of the user plane includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. It has an SDAP (Service Data Adjustment Protocol) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adjustment Protocol
  • the PHY layer performs coding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the gNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the gNB 200 via the transport channel.
  • the MAC layer of gNB200 includes a scheduler. The scheduler determines the transport format (transport block size, modulation / coding method (MCS)) of the upper and lower links and the resource block allocated to the UE 100.
  • MCS modulation / coding method
  • the RLC layer transmits data to the receiving RLC layer by using the functions of the MAC layer and the PHY layer. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the gNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the SDAP layer maps the IP flow, which is a unit for performing QoS control by the core network, with the wireless bearer, which is a unit for performing QoS control by AS (Access Stratum).
  • AS Access Stratum
  • FIG. 5 is a diagram showing a configuration of a protocol stack of a wireless interface of a control plane that handles signaling (control signal).
  • the protocol stack of the radio interface of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer in place of the SDAP layer shown in FIG.
  • RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of gNB200.
  • the RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers.
  • RRC connection connection between the RRC of the UE 100 and the RRC of the gNB 200
  • the UE 100 is in the RRC connected state.
  • RRC connection no connection between the RRC of the UE 100 and the RRC of the gNB 200
  • the UE 100 is in the RRC idle state. Further, when the RRC connection is suspended, the UE 100 is in the RRC inactive state.
  • the NAS layer located above the RRC layer performs session management, mobility management, etc.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the AMF300-1,300-2.
  • the UE 100 has an application layer and the like in addition to the wireless interface protocol.
  • EDT the UE 100 in the RRC idle state can send and receive data by using the message of the random access procedure.
  • EDT includes MO-EDT and MT-EDT.
  • uplink data is transmitted. Further, in MO-EDT, downlink data transmission following uplink data transmission is also possible during a random access procedure.
  • the upper layer of the UE 100 requests the establishment or resumption of the RRC connection for the data of the UE origin (MO: Mobile Originated), and the size of the uplink data is less than or equal to the transport block (TB) size indicated in the system information.
  • MO Mobile Originated
  • TB transport block
  • EDT is started.
  • the UE 100 transmits uplink data using Msg3 in the random access procedure.
  • MT-EDT downlink data is transmitted.
  • the UE 100 receives a paging message including an MT-EDT instruction from an eNB (evolved NodeB: LTE base station)
  • the UE 100 executes a random access procedure.
  • the UE 100 can receive the downlink data by using the random access procedure Msg4.
  • EDT User Plane Optimization
  • DTCH user data
  • CCCH RRC message
  • User Plane Optimization is applicable when the UE 100 is in the RRC inactive state.
  • the context information of the UE 100 is maintained in the gNB 200.
  • the RRC message constituting Msg3 is an RRC connection restart request (RRC Connection Request Request) message
  • the RRC message constituting Msg4 is basically an RRC connection release message.
  • the UE 100 Upon receiving the RRC connection release message, the UE 100 terminates the random access procedure while maintaining the RRC inactive state.
  • User Plane Optimization will be described as an example.
  • PUR is a communication method that performs uplink transmission from the RRC idle state using a preset uplink radio resource (hereinafter, may be referred to as "PUR resource") without using a random access procedure.
  • PUR resource a preset uplink radio resource
  • the series of processes in PUR is, for example, as follows.
  • the UE 100 transmits a PUR setting request (PUR Configuration Request) message to the gNB 200 when it is in the RRC connected state.
  • the PUR setting request message includes the number of PUR opportunities, the cycle of PUR opportunities and the offset time to the first PUR opportunity, the transport block size, the necessity of ACK, and the like.
  • the gNB 200 Upon receiving the PUR setting request message, the gNB 200 decides to shift the UE 100 to the RRC idle state and supplies the PUR resource for the UE 100. Then, the gNB 200 transmits an RRC Connection Release message to the UE 100.
  • the RRC connection release message includes information indicating the details of the PUR configuration (PUR Configuration) such as the PUR resource.
  • the UE 100 receives the RRC connection release message and shifts to the RRC idle state.
  • the UE 100 in the RRC idle state transmits data to the gNB 200 using the preset uplink resource included in the RRC connection release message.
  • the UE 100 multiplexes the RRC connection request message and the uplink data and transmits them to the gNB 200.
  • PUR transmission from the RRC inactive state is possible.
  • the UE 100 that has transitioned to the RRC inactive state instead of the above RRC idle state can also multiplex the RRC connection restart request (RRC Connection Request Request) message and the uplink data and send the message to the gNB 200.
  • RRC Connection Request Request RRC Connection Request
  • the UE 100 multiplexes the RRC early data request (RRC Early Data Request) message, which is a message for CP-EDT (Control Plane-Early Data Transfer), and the uplink data, instead of the RRC connection restart request message. , Can also be sent to gNB200.
  • RRC Early Data Request is a message for CP-EDT (Control Plane-Early Data Transfer)
  • CP-EDT Control Plane-Early Data Transfer
  • PUR can also send downlink data as an option. That is, after the RRC connection restart request message, the downlink data is multiplexed with the RRC connection release message (or the RRC Early Data Complete message) transmitted from the gNB 200, and the RRC idle. The UE 100 in the state receives downlink data together with the RRC connection release message.
  • the gNB 200 executes a connection resumption procedure with the UE 100, and the UE 100 shifts to the RRC connected state and transmits the uplink data that could not be transmitted.
  • the above-mentioned process is an example when the UE 100 is in the RRC idle state.
  • PUR transmission is possible even when the UE 100 is in the RRC inactive state.
  • the RRC idle state can be replaced with the RRC inactive state.
  • EDT and PUR may be collectively referred to as SDT (Small Data Transmission).
  • the data transmitted using the SDT may be data of a predetermined size or less (or small data or small data), and may be a size that can be transmitted in the data transmitted using the EDT or PUR. ..
  • EDT transmission first data transmission
  • PUR transmission second data transmission
  • SDT transmission SDT transmission
  • the UE 100 in the RRC connected state transmits the preference information to the gNB 200.
  • the preference information here refers to the fact that the UE 100 in the RRC inactive state transmits data using a message of a random access procedure and transmission of data using a preset uplink resource. Preferences information for which you want at least one. Hereinafter, such preference information may be referred to as SDT preference information.
  • SDT preference information When the UE 100 transmits the SDT preference information to the gNB 200, the gNB 200 can grasp the information necessary for the PUR transmission or the EDT transmission when the UE 100 shifts to the RRC inactive state, and can perform the subsequent processing. It is possible to improve efficiency.
  • FIG. 6 is a diagram showing an operation example in the first embodiment.
  • step S101 the UE 100 is in the gNB200 and the RRC connected state.
  • step S102 the UE 100 transmits data to the gNB 200 and receives the data transmitted from the gNB 200.
  • step S103 when the UE 100 wishes to transmit data by EDT or PUR, it transmits SDT preference information to gNB200. For example, if the control unit 130 determines that there is such a desire, it generates SDT preference information and transmits it to the gNB 200 via the transmission unit 120.
  • the SDT preference information may be included in, for example, a UE Assistance Information message and transmitted.
  • the UE assistance information message is, for example, a message for the UE 100 in the RRC connected state to convey a desire or request regarding the setting of its own RRC connection.
  • the UE assistance information message includes, for example, the preference of the power saving of the UE 100, the SPS (Semi Persistence Scheduling) auxiliary information, and the like.
  • FIG. 7 is a diagram showing an example of a UE assistance information message including SDT preference information.
  • the UE assistance information message includes an information element (“sdtpreference-r17”, (Y) in FIG. 7) indicating that the SDT preference information is included.
  • the information element includes each item of "EDT”, “MO-EDT-Only”, “MT-EDT-Only”, “PUR”, and “EDT-and-PUR” (FIG. 7). (Z)).
  • EDT when the UE 100 desires EDT, "EDT" is included in the information element shown in FIG. 7 (Y). If the UE 100 desires MO-EDT (only), it is “MO-EDT-Only”, if it wants MT-EDT (only), it is “MT-EDT-Only”, and if it wants PUR. Will include “PUR” in (Y) of FIG. 7, respectively. Further, if EDT and PUR are desired, "EDT-and-PUR” will be included in the information element shown in FIG. 7 (Y). When the UE 100 desires EDT or PUR, it may be indicated by the information element of "EDT-or-PUR", or only "SDT setting request" may be included in the information element and notified.
  • the SDT preference information may be linked with the information element "relasePreference-r16" of the UE assistance information message shown in FIG. 7.
  • the "releasePreference-r16” is an information element used when, for example, the UE 100 desires to open the RRC connection.
  • the "relasePresense-r16” includes each element of "Idle”, “Inactive”, and "Connected”. For example, it may be linked as follows.
  • the UE 100 may notify (or transmit) SDT preference information when "relasePreference-r16" includes “Inactive” (only). Alternatively, the UE 100 may not transmit SDT preference information when "Idle” is included in "releasePreference-r16". Alternatively, even if the UE 100 transmits the UE assistance information message including the SDT preference information even when the "releasePreference-r16" includes "Idle", the gNB 200 still uses the SDT preference information included in the UE assistance information message. You can ignore it.
  • SDT preference information is included in the UE assistance information message.
  • SDT preference information may be included in other (RRC) messages.
  • the UE 100 may transmit the packet information to the gNB 200 together with the SDT preference information.
  • the packet information may include, for example, the size of the packet including the data transmitted by the UE 100 by the SDT, the cycle of the packet, and / or the timing of occurrence.
  • the packet information may include a service type.
  • Service types include, for example, "delay tolerant” (delay tolerance), "mission critical” (mission critical), “normal data” (data), “signalling” (signaling), and the like.
  • Such a service type may be represented by QoS (Quality of Service), 5QI (5G QoS Indicator), or NSSAI (Network Sense Selection Assistance Information).
  • the UE 100 information regarding such a service type may be notified from the NAS (Non Access Stratum) layer or the application layer.
  • the service type may be estimated in the AS (Access Stratum) layer based on the transmission history in the UE 100 and the like.
  • the UE 100 may add frequency preference information (hereinafter referred to as "frequency preference information") to the SDT preference information and transmit the information.
  • the frequency preference information is, for example, preference information regarding a frequency desired to be used when the UE 100 transmits data (or SDT transmission).
  • the frequency preference information may be, for example, a carrier number desired by the UE 100, a BWP (Bandwidth Part), a bandwidth, or the like.
  • the UE 100 may add information on whether or not a multi-cell PUR is desired to the SDT preference information and transmit it to the gNB 200.
  • the multi-cell PUR will be described in (Example 2).
  • the UE 100 may transmit the SDT preference information including information on the movement state of the UE 100 itself.
  • the information regarding such a movement state may include information about the current movement state (geographically fixed, low-speed movement, high-speed movement, etc.), or may include a predicted value of future movement of the UE 100. ..
  • the UE 100 may transmit information on whether or not to stay in the current serving cell (or serving gNB200) in the future by including the information in the SDT preference information.
  • the SDT preference information, additional information, UE assistance information message, etc. described above may be generated in the control unit 130 and transmitted to the gNB 200 via the transmission unit 120.
  • the gNB 200 when the gNB 200 receives the SDT preference information, it makes a setting determination in step S104. That is, the gNB 200 sets the UE 100 based on the SDT preference information. For example, gNB200 makes the following settings.
  • the gNB 200 sets the ON or OFF of ROHC (Robust Header Compression), which is a header compression technology in the PDCP layer, or sets the NCC (Next Hop Changing Counter) value used for data encryption or the like to SDT (that is, that is). , EDT or PUR transmission).
  • the gNB 200 may set an uplink radio resource of an appropriate size. Such radio resources are particularly used as PUR resources.
  • the gNB 200 may set information necessary for the UE 100 to perform transmission by SDT. The setting determination as described above may be performed by the control unit 230.
  • the gNB 200 transmits an RRC connection release message to the UE 100.
  • the gNB 200 includes the information set in step S104 in the RRC connection release message and transmits the information.
  • the RRC connection release message is described in Suspend Config. May include. That is, the RRC connection release message may include setting information for SDT transmission, which is used when the UE 100 in the RRC inactive state performs SDT transmission.
  • the setting information may include setting information of both the case where the EDT is performed and the case where the PUR is performed in the UE 100. Then, in the UE 100 that has received both setting information, for example, the following processing may be performed.
  • the UE 100 may decide to execute either the EDT or the PUR according to a predetermined condition, and execute the EDT or the PUR using the setting information about the determined EDT or PUR.
  • predetermined conditions for example, A) the UE 100 executes the SDT notified by the SDT preference information, B) the PUR is executed when the UE 100 is in the same cell, and the cell is moved to another cell.
  • Execute EDT C) Execute PUR when TA (Timing Advance) is enabled, UE100 executes EDT when it is disabled, D) Judge by wireless status (threshold value may be set from gNB200) ) Or E) UE100 implementation dependency.
  • the "wireless state” in D) above is the received signal quality, for example, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), SINR (Signal to Interference Plus), etc.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal to Interference Plus
  • the UE 100 may preferentially execute the PUR transmission. For example, when the PUR transmission is feasible (B), C), or D) may be determined, the UE 100 executes the PUR transmission. The UE 100 executes the EDT when the PUR transmission cannot be executed.
  • the UE 100 may execute the EDT when the setting information of both the EDT and the PUR is received and the PUR transmission is executed and the PUR transmission fails. For example, when the UE 100 tries to transmit a packet by PUR but does not receive a response from gNB200, it falls back to EDT execution and transmits the packet in Msg3 or MsgA.
  • the UE 100 may receive the setting information of both the EDT and the PUR, and if either the EDT or the PUR transmission is successful, the EDT and / or the PUR setting may be discarded.
  • the UE 100 will be described as executing EDT or PUR in consideration of predetermined conditions.
  • control unit 230 may generate an RRC connection release message and transmit it via the transmission unit 210. Further, the determination and execution as described above may be performed by the control unit 230 in the gNB 200 and by the control unit 130 in the UE 100, respectively.
  • step S106 the UE 100 transitions to the RRC inactive state.
  • the control unit 130 receives the RRC connection release message via the reception unit 110, the control unit 130 shifts the UE 100 to the RRC inactive state according to the information contained in the message.
  • the RRC inactive state is, for example, a state in which the connection between the RRC of the UE 100 and the RRC of the gNB 200 is suspended.
  • the UE context is maintained in the UE100, gNB200, and the network. Therefore, the UE 100 can reduce the number of signals required for the procedure for returning from the RRC inactive state to the RRC connected state. Further, since the UE 100 in the RRC inactive state is the same as in the RRC idle state, it is possible to save power of the UE 100.
  • an IoT Internet Of Things
  • step S107 the UE 100 transmits data by SDT according to the setting by gNB200 (step S105).
  • FIG. 8A is a diagram showing an operation example of data transmission by EDT.
  • step S1070 when data is generated (S1070), the UE 100 sends and receives a series of messages by a random access procedure (steps S1071 to S1074).
  • step S1071 the UE 100 transmits Msg1 (random access preamble) to the gNB 200.
  • Msg random access preamble
  • Msg is an abbreviation for a message.
  • step S1072 the gNB 200 transmits Msg2 (random access response) including scheduling information indicating the resources in the uplink assigned to the UE 100 to the UE 100.
  • Msg2 random access response
  • Msg3 is, for example, an RRC connection restart request (RRC Connection Request Request) message.
  • RRC Connection Request Request RRC Connection Request Request
  • the UE 100 multiplexes and transmits an RRC connection restart request message and data (DTCH) in one MAC PDU in the MAC layer.
  • DTCH data
  • uplink EDT is performed.
  • the UE 100 may encapsulate the data in the RRC connection restart request message at the RRC layer.
  • gNB200 transmits Msg4 to UE100.
  • Msg4 is, for example, an RRC Connection Release message.
  • the gNB 200 may multiplex or encapsulate the downlink data in Msg4 and transmit the data. As a result, downlink EDT is performed.
  • the UE 100 Upon receiving the RRC connection release message, the UE 100 terminates the random access procedure while maintaining the RRC inactive state.
  • Msg1 and Msg3 and the multiplexing of data may be performed by the control unit 130
  • the generation of Msg2 and Msg4 and the multiplexing of data may be performed by the control unit 230.
  • MsgA may be generated by the control unit 130
  • MsgB may be generated by the control unit 230.
  • FIG. 8B is a diagram showing an example of data transmission by PUR.
  • step S1075 the UE 100 transmits, for example, an RRC connection restart request (RRC Connection Request Request) message to the gNB 200 using the set PUR resource.
  • RRC Connection Request Request RRC Connection Request Request
  • the UE 100 multiplexes and transmits the RRC connection restart request message and the data to one MAC PDU in the MAC layer.
  • uplink PUR is performed.
  • the UE 100 may encapsulate the data in the RRC connection restart request message at the RRC layer.
  • the RRC connection release request message and the user data segment are transmitted to the gNB 200 using the PUR resource. After that, the legacy RRC connection restart procedure is started, and data transmission is performed after the RRC connection.
  • step S1076 the gNB 200 transmits an RRC connection release message to the UE 100.
  • the gNB 200 may multiplex or encapsulate the downlink data into an RRC connection open message and transmit the downlink data as in the case of the EDT, whereby the downlink PUR is performed.
  • Example 1 both EDT and PUR can be implemented.
  • the procedure shown in FIG. 8 (B) can be performed, and vice versa.
  • the UE assistance information message shown in FIG. 7 includes "EDT-and-PUR" in the information element "sdtPreference-r17”, such a procedure may be performed.
  • Example 1-1 is an example in which the gNB 200 that has received the preference information associates it with the UE context and transmits the SDT preference information to another gNB.
  • the UE 100 in the RRC inactive state can perform cell selection and cell reselection in the same manner as in the RRC idle state. For example, the UE 100 may select a cell of another gNB different from the gNB 200 that transmitted the SDT preference information and transmit the data to such a gNB. In this case, if the other gNB does not have the SDT preference information of the UE 100, the UE 100 will transmit the SDT preference information to the other gNB again. In this case, the power saving of the UE 100 cannot be achieved, and the processing efficiency cannot be improved.
  • the gNB 200 that has received the preference information transmits the received SDT preference information to another gNB to save power and improve the processing efficiency of the UE 100. ..
  • FIGS. 9 (A) and 9 (B) show an operation example when the UE context acquisition message is used.
  • FIG. 9A is an example of a procedure for transitioning from the RRC inactive state of the UE 100 trigger to the RRC connected state (UE Triggered transition from RRC_IAACTIVE to RRC CONNECTED).
  • FIG. 9 (B) is an example of an RRC Restablishment procedure.
  • the gNB that received the SDT preference information from the UE 100 is represented as the last serving gNB200-2.
  • step S201 the UE 100 in the RRC inactive state transmits an RRC connection restart request message to gNB200-1, which is different from the gNB200-2 that transmitted the SDT preference information in step S202.
  • the message includes an I-RNTI (Inactive-Radio Network Temperature Idea) supplied by the UE 100 from the last serving gNB200-2.
  • step S203 when gNB200-1 can solve the identification information of gNB contained in I-RNTI, it sends a UE context acquisition request (Retrieve UE Contact Request) message to the gNB, that is, the last serving gNB200-2. Send.
  • I-RNTI Inactive-Radio Network Temperature Idea
  • step S204 the last serving gNB200-2 transmits a UE context recovery response (Retrieve UE Reply Response) message to the gNB200-1.
  • the UE context recovery response message includes the SDT preference information received from the UE 100 along with the UE context data.
  • the gNB200-1 that has received the RRC restart request from the UE 100 can acquire the SDT preference information from the last serving gNB200-2.
  • steps S205 and S206 a series of transition procedures are performed.
  • an RRC connection release message may be transmitted in addition to the RRC connection restart message.
  • FIG. 9B is also the gNB in which the last serving gNB200-2 has received the SDT preference information from the UE 100, as in the case of FIG. 9A.
  • step S210 the UE 100 in the RRC connected state transmits an RRC reset request (RRC Rerestative Request) message to gNB200-1 in step S211.
  • the RRC reset request message includes UE identification information (PCI (Physical Cell Idea) and C-RNTI (Cell-RNTI)).
  • gNB200-1 transmits a UE context acquisition request (Retrieve UE Contact Request) message to the last serving gNB200-2 when the UE context is not available locally.
  • step S213 the last serving gNB200-2 transmits a UE context acquisition response (Retrieve UE Reply Response) message to the gNB200-1.
  • the UE context acquisition response message includes the UE context of the UE 100 and the SDT preference information acquired from the UE 100.
  • step S214 a series of resetting procedures are performed.
  • FIG. 10 is a diagram showing an operation example in which SDT preference information is transmitted using a handover request message.
  • the source gNB200-1 is the gNB that has received the SDT preference information from the UE 100.
  • step S220 the UE 100 and the source gNB200-1 perform measurement control and measurement report.
  • step S221 the source gNB200-1 decides to perform a handover.
  • step S222 the source gNB200-1 transmits a handover request (HO Request) message to the target gNB200-2 (S222).
  • the source gNB200-1 includes the SDT preference information received from the UE 100 in the handover request message together with the UE context of the UE 100, and transmits the SDT preference information to the target gNB200-2.
  • steps S223 and S224 a series of handover processes are performed.
  • the series of processes shown in FIGS. 9 (A) to 10 may be performed by, for example, the control unit 230 and may be transmitted to another gNB via the backhaul communication unit 240.
  • Example 2 is an example in which PUR is supported in a plurality of cells. Such a PUR may be referred to as a "multi-cell PUR".
  • the PUR setting (PUR Configuration) is released in the UE 100 and (ng-) eNB. (Released) (3GPP TS 36.300 V16.2.0 (2020-07)).
  • FIG. 11A and 11 (B) are diagrams for explaining an example of such a situation.
  • FIG. 11A is an example in which one gNB200 has two cells
  • FIG. 11B is a case in which each gNB200-1 and 200-2 have one cell each.
  • the UE 100 transmits a PUR setting request (PUR Configuration Request) message to the gNB 200 or gNB 200-1 in cell # 1, and sends a PUR setting (PUR Configuration) message from the gNB 200 or gNB 200-1. I'm receiving.
  • PUR Configuration Request PUR Configuration Request
  • PUR Configuration PUR Configuration
  • FIGS. 11A and 11B when the UE 100 moves to the cell # 2 and accesses the gNB200 or the gNB200-2 in the cell # 2, the PUR setting included in the PUR setting message is included. Is released.
  • the PUR setting is supported by a plurality of cells (or multi-cells, hereinafter may be referred to as "multi-cells"). That is, in the multi-cell PUR, the setting information used when transmitting data using the preset uplink radio resource can be used in a plurality of cells. As a result, even if the UE 100 moves to a cell other than the cell that received the PUR setting message, the PUR setting included in the PUR setting message is used as it is, and data transmission by the PUR is performed in the other cell. It becomes possible. Therefore, the UE 100 can reduce power consumption and improve processing efficiency on the network side as compared with the case where a series of procedures related to PUR setting is performed every time the cell is moved.
  • an area in which the PUR setting is effective (hereinafter, may be referred to as a "PUR area”) is set.
  • FIG. 12 (A) and 12 (B) are diagrams showing an example of a PUR area.
  • the example of FIG. 12A is an example in which two cells # 1 and # 2 exist in one gNB 200, and a PUR area is set for the two cells # 1 and # 2.
  • FIG. 12B is an example in which cells # 1 and # 2 are present in each of the two gNB200-1 and 200-2.
  • the UE 100 represents an example in which the UE 100 receives the PUR setting in the cell # 1 and moves to the cell # 2. In either case, the UE 100 is capable of PUR transmission in cell # 2 using the PUR setting set in cell # 1. That is, the UE 100 can transmit PUR from any cell in the PUR area with the same PUR setting.
  • the information in the PUR area includes, for example, even if there are a plurality of cells in one gNB200, there is at least one cell in each of the plurality of gNB200-1 and 200-2, and the plurality of cells are present. Even in the case of configuration, it is sufficient that the plurality of cells include area information indicating an area in which the PUR setting information is valid.
  • FIG. 13 is a diagram showing an operation example of the second embodiment.
  • the example of FIG. 13 is an example in which cells # 1 and # 2 are present in each of the two gNBs 200-1 and 200-2.
  • step S300 the UE 100 is in the gNB200-1 and RRC connected state.
  • step S301 the UE 100 transmits a PUR setting request (PUR Configuration Request) message to gNB200-1.
  • PUR Configuration Request PUR Configuration Request
  • step S302 the gNB 200-1 transmits an RRC Connection Release message including information on the PUR setting (PUR Connection) to the UE 100.
  • gNB200-1 includes the information of the PUR area in the information related to the PUR setting, and transmits the information of the PUR area to the UE 100. Specific examples of the information in the PUR area include the following.
  • the information in the PUR area may be information that lists cells for which the PUR setting is valid.
  • the information in the PUR area is information in which "cell # 1" and "cell # 2" are listed.
  • the PUR area information may be an ID (Identification) that identifies the PUR area. It is assumed that such an ID is defined in advance in which PUR area and which ID, and the information is shared between the UE 100 and gNB200-1,200-2. For example, when the PUR area shown in FIG. 12A has an ID of "PUR area # 1", this "PUR area # 1" is the information of the PUR area.
  • the PUR area may be the same as RNA (Ran-based Notification Area).
  • RNA Rad-based Notification Area
  • such a definition may be made and shared by the UE 100 and gNB200-1,200-2.
  • gNB200-1 does not have to explicitly set the PUR area, and the information of the PUR area may not be included in the PUR setting.
  • gNB200-1 may notify UE100 that the PUR area is identical to RNA.
  • the setting information may be different for each cell in the cell # 1 and the cell # 2. Then, in such a case, gNB200-1 transmits an RRC connection release message including information on PUR settings different for each cell to the UE 100.
  • gNB200-1 may send a PUR setting notification message including PUR setting to gNB200-2.
  • gNB200-1 may send a PUR setting notification message using the Xn interface, or send the message to gNB200-2 using the NG interface via AMF300-1,300-2. You may.
  • the gNB200-2 may return a response message to the gNB200-1 in response to the PUR setting notification message.
  • the response message may include information on whether or not the PUR setting notification message in step S303 is acceptable. That is, gNB200-2 returns an acknowledgment (ACK) message if it is acceptable and a negative response (NACK) message if it is unacceptable.
  • ACK acknowledgment
  • NACK negative response
  • gNB200-1 transmits the PUR setting notification message after transmitting the RRC release message, but before transmitting the RRC release message (or before performing the PUR setting), PUR is performed.
  • a setting notification message may be sent to gNB200-2.
  • step S304 the UE 100 transitions to the RRC inactive state, and in step S305, it moves from cell # 1 to cell # 2. Then, in step S306, the UE 100 performs PUR transmission to the gNB 200-2 having the cell # 2 according to the PUR setting. Specifically, for example, the following operations are performed.
  • the UE 100 determines whether or not the cell in the area is a cell included in the PUR area based on the information of the PUR area included in the PUR setting. Then, if it is determined that the cell is in a valid area included in the information of the UE 100 and the PUR area, PUR transmission is performed in step S306. On the other hand, if the UE 100 determines that the area in the area is not a cell included in the PUR area, the UE 100 does not perform PUR transmission. At this time, the UE 100 may discard the information regarding the PUR setting received in step S302.
  • the information about the PUR area is included in the information about the PUR setting, and is transmitted to the UE 100 by using the RRC connection release message.
  • gNB200-1 and 200-2 may notify information about a PUR area such as a PUR area ID by using SIB (System Information Block).
  • SIB System Information Block
  • gNB200-1 and 200-2 may notify information indicating that PUR by multi-cell is supported by using SIB.
  • gNB200-1 may notify the TA (Timing Advance) value applied in the adjacent cell # 2.
  • TA Timing Advance
  • the timing may be corrected by using such a TA value, and PUR transmission may be performed in step S306.
  • the above-mentioned example is an operation example using FIG. 12 (B) as an example, but as shown in FIG. 12 (A), for example, it can be applied even when two cells exist in one gNB 200. Further, the above-mentioned example can be applied even when there are three or more cells in one gNB 200. Further, the above-mentioned example can be applied even when a plurality of cells are present in each gNB200-1 and 200-2.
  • Example 3 utilizes at least one of carrier aggregation (hereinafter, may be referred to as “CA”), dual connectivity (hereinafter, may be referred to as “DC”), and PDCP duplication. , This is an example in which SDT transmission is performed.
  • CA carrier aggregation
  • DC dual connectivity
  • PDCP duplication PDCP duplication
  • the SDT is for transmitting data other than a predetermined size, and is expected to be used in the IoT field using various sensors.
  • the requirements of various use cases expected in 5G such as low latency and high reliability requirements, by using CA, DC, or PDCP duplication. be.
  • CA 14 (A) and 14 (B) are diagrams showing an example of CA.
  • CA is, for example, wireless communication using a plurality of frequency bands.
  • FIG. 14A shows an example in which the UE 100 transmits data to one gNB 200 by using CC (Component Carrier) # 1 and CC # 2.
  • CC Component Carrier
  • a cell may be configured for each CC.
  • the UE 100 uses CC # 1 in the cell # 1 and CC # 2 in the cell # 2 to perform wireless communication with the gNB 200.
  • FIG. 14B is an example in which gNB200-1 has a PCell (Primary Cell) and gNB200-2 has a SCell (Secondary Cell).
  • the UE 100 represents an example in which CC # 1 is used for wireless communication with gNB200-1 in Pcell and CC # 2 is used for gNB200-2 in SCell.
  • the UE 100 can transmit data by SDT. Details will be described later.
  • FIG. 15A is a diagram showing an example of DC.
  • the gNB200-1 may be an MN (Master Node) that maintains a communication connection between the UE 100 and the network
  • the gNB200-2 may be an SN (Secondary Node) that further provides wireless resources to the UE 100.
  • the group including the serving cell (cell # 1) of MeNB (gNB200-1) is the master cell group (MCG)
  • the group including the serving cell (cell # 2) of SeNB (gNB200-2) is the secondary cell group (SCG).
  • SCG secondary cell group
  • FIG. 15B is a diagram showing an example of PDCP duplication.
  • the radio bearer for PDCP duplication is configured by RRC
  • at least one secondary RLC entity is added to the radio bearer to handle the duplicated PDU PDU.
  • the logical channel corresponding to the primary RLC entity is the primary logical channel (Primary LCH)
  • the logical channel corresponding to the secondary RLC entity is the secondary logical channel (Entityary LCH).
  • the secondary logical channel can be activated or deactivated by MAC CE (MAC Control Element), which makes it possible to duplicate PDCP or not to duplicate it.
  • the UE 100 represents an example in which the same PDCP PDU # 1 is transmitted to the two gNB200-1 and 200-2.
  • FIG. 16 is a diagram showing an operation example of the third embodiment.
  • the example shown in FIG. 16 is an example in which gNB200-1 has cell # 1 and gNB200-2 has cell # 2.
  • the UE 100 is an example of performing SDT transmission using at least one of CA, DC, and PDCP duplication.
  • step S400 the UE 100 is in the gNB200-1 and RRC connected state.
  • step S401 gNB200-1 transmits an RRC Connection Release message to the UE 100.
  • gNB200-1 transmits an RRC connection release message including setting information necessary for SDT transmission (hereinafter, may be referred to as “SDT setting information”).
  • SDT setting information includes, for example, the following information.
  • the SDT setting information may include PUR setting information for each cell. Specifically, for each cell, the radio resource used for PUR transmission, the cycle and / or time of PUR transmission, PUR-RNTI which is the identification information of each PUR, the RSRP threshold value used for determining whether or not to perform PUR transmission, etc. May be included.
  • the PUR setting information may be in the form of a list for each cell. For example, there is a case where the radio resource or the like in the cell # 1 and the radio resource or the like in the cell # 2 have a list shape.
  • the SDT setting information may include EDT setting information for each cell.
  • each cell may include a ROHC setting or an NCC value.
  • the list shape may be formed for each cell.
  • the SDT setting information may include the setting information associated with the cell. Specifically, when CA is performed in the UE 100, which cell is used, or when DC is performed, which cell is used. In the case of FIG. 14 (B) or FIG. 15 (A), the cells used are two cells, but may be three or more.
  • the SDT setting information may include the corresponding Bella ID (or logical channel ID (LCID)).
  • LCID logical channel ID
  • the ID or ID of each bearer of each logical channel so set is SDT. It may be included in the setting information.
  • the SDT setting information may include setting information as to whether or not to perform PDCP duplication.
  • this setting may be referred to. That is, the bearer ID or the logical channel ID used for PDCP duplication may be referred to, and that fact may be included in the SDT setting information.
  • the SDT setting information may include information regarding the PUR area described in the second embodiment.
  • the PUR area includes a plurality of cells (plural cells in FIGS. 14 (A) to 15 (B))
  • the UE 100 uses the same PUR setting in the plurality of cells, and CA, DC, and so on. It is also possible to perform PUR transmission by using at least one of PDCP duplication and PDCP duplication.
  • gNB200-1 may generate SDT setting information based on the preference information described in the first embodiment and transmit it to the UE 100.
  • the generation of the SDT setting information as described above is performed by the control unit 230, and may be transmitted from the transmission unit 210.
  • step S402 the UE 100 transitions to the RRC inactive state.
  • step S403 and step S404 the UE 100 executes SDT using a plurality of cells.
  • step S403 and step S404 may be performed at the same timing.
  • the same data may be transmitted or different data may be transmitted.
  • PDCP duplication is used, but PDCP duplication and CA or DC may be combined.
  • different data are transmitted, it may be CA or DC, or it may be a combination of CA and DC.
  • the UE 100 may transmit, for example, the following information to the gNB200-1 in addition to the data.
  • the UE 100 may transmit information indicating that a plurality of cells are used in the cell # 1 (MCG or PCell).
  • MCG or PCell a plurality of cells are used in the cell # 1 (MCG or PCell).
  • MCG or PCell a plurality of cells are used in the cell # 1 (MCG or PCell).
  • the information indicating that a plurality of cells are used may be, for example, the ID of the cell being used, the bearer ID, the logical channel ID (LCID), the entry number of the SDT setting information, or the like.
  • the UE 100 may include information indicating that a plurality of cells are used in the data # 1 and transmit it, or may separately include it in a signaling (control signal) and transmit it.
  • the UE 100 may transmit using RRC or may transmit using MAC CE.
  • the UE 100 may transmit information as to whether or not PDCP duplication is performed.
  • FIG. 16 shows an example in which the UE 100 performs SDT transmission in steps S403 and S404 after transitioning to the RRC inactive state without any particular determination.
  • the UE 100 may make a specific determination to determine whether or not to perform SDT transmission.
  • the UE 100 has a plurality of cells (in the example of FIG. 15A) based on the amount of transmitted data, the service type (delay sensitive, etc.), the radio condition between the UE 100 and the gNB200-1 (or gNB200-2), and the like. Even if it is determined whether to execute SDT using cell # 1 and cell # 2) or to execute SDT using a single cell (cell # 1 in the example of FIG. 15A) in a plurality of cells. good. For such a determination, the UE 100 may use the threshold value transmitted from gNB200-1.
  • the execution control of such SDT transmission in the UE 100 and the generation of information to be transmitted to the gNB 200-1 may be performed by, for example, the control unit 130, and according to such control, data, various information, and the like are transmitted from the transmission unit 120. It may be sent.
  • step S405 when the gNB200-1 succeeds in receiving the data (or signaling) transmitted from the UE 100, the gNB 200-1 transmits a response (ACK) signal (or message) to the UE 100. Further, in step S406, the gNB 200-2 also transmits a response (ACK) signal when the data (or signaling) is successfully received. In either case, gNB200-1,200-2 may transmit a response (NACK) signal (or message) if reception is unsuccessful.
  • ACK response
  • NACK response
  • the UE 100 receives a response (ACK) signal from at least one cell (gNB200-1 (or 200-2) having) among a plurality of cells (cells # 1 and # 2). Is received, it is determined that the corresponding data (or signaling) has been successfully transmitted. On the other hand, if the UE 100 does not receive a response (ACK) from any cell (or gNB200-1,200-2), it determines that the data transmission has failed. If the UE 100 determines in this way, the SDT is executed again, or the RRC connection restart request message is transmitted to transition to the RRC connected state and attempt to retransmit the data.
  • ACK response
  • Example 4 Next, Example 4 will be described.
  • the fourth embodiment is an example in which the UE 100, which has failed to transmit by the SDT, reports the SDT Failure indicating the failure to the network.
  • the network side does not know whether the procedure for sending the SDT has failed and then the UE 100 has sent the RRC connection restart message, or whether the UE 100 has sent the RRC connection restart message without performing the procedure for sending the SDT. In some cases.
  • SON Self Organization Networks
  • the UE 100 reports the SDT Failure to the network side.
  • the network side can grasp that the SDT transmission has failed in the UE 100, and by collecting such information or the like, it becomes possible to realize SON.
  • FIGS. 17 (A) and 17 (B) show an example of a pattern in which the procedure fails in the case of EDT.
  • the UE 100 is in the RRC inactive state.
  • the case where the random access procedure is 4-step and the case where the random access procedure is 2-step are included.
  • a series of procedures for example, FIG. 8A or FIG. 8B performed in SDT transmission may be referred to as “SDT procedure”.
  • step S500 the UE 100 transmits Msg1 to gNB200, and in step S501, gNB200 transmits Msg2 including fall back information.
  • the fall back information is, for example, information instructing the random access procedure to be restarted from the beginning.
  • the UE 100 receives the fall back information, it confirms that the SDT procedure has failed in step S502. Further, in step S501, the UE 100 can confirm the failure of the SDT procedure in step S502 even when Msg2 cannot be received.
  • step S500 the UE 100 transmits MsgA, and in step S501, gNB200 transmits MsgA including fall back information. Again, in step S502, the UE 100 confirms that the SDT procedure has failed. Further, even if the UE 100 cannot receive MsgB in step S501, the failure of the SDT procedure is confirmed in step S502.
  • FIG. 17B is an example in which transmission and reception of Msg1 and Msg2 (steps S510 and S511) are successful, and transmission or reception of Msg3 is unsuccessful. That is, in the case of 4-step, in step S512, the UE 100 transmits Msg3 and data, but if Msg4 cannot be received from gNB200, the failure of the STD procedure is confirmed in step S513. Also in the case of 2-Step, in step S512, the UE 100 transmits MsgA and data, but if MsgB cannot be received, the failure of the SDT procedure is confirmed in step S513.
  • the failure of the SDT procedure in PUR is, for example, when the UE 100 in the RRC inactive state sends data to the gNB 200 using the PUR resource, but does not receive a response (for example, an RRC connection release message). Is.
  • the UE 100 when the SDT procedure fails, the UE 100 records (or saves) information about the failure.
  • FIG. 18 is a diagram showing an operation example in the fourth embodiment.
  • the UE 100 Upon confirming the SDT procedure failure in step S502 (FIG. 17 (A)) or step S513 (FIG. 17 (B)), the UE 100 records the failed information in step S520.
  • the control unit 130 generates information about the failure and records the information in the memory in the control unit 130.
  • Information about the failure includes, for example:
  • the information regarding the failure may be the information included in the normal MDT (Minimation of Drive Tests).
  • the information included in the MDT header includes a time stamp, latitude / longitude altitude, radio measurement result, and the like.
  • the information regarding the failure may be the type of the executed procedure.
  • the type of procedure executed is, for example, whether EDT was performed, PUR was performed, 4-step RACH was performed, or 2-step-RACH was performed. You may.
  • 4-step RACH or 2-step RACH is indicated as the type of procedure, it can be applied not only to the presence or absence of EDT implementation but also to a normal RACH other than EDT. In this case, it is possible to distinguish whether or not it is 2-step with respect to the existing RACH Failure report.
  • the information regarding the failure may be the information of the selected resource.
  • Such information includes, for example, a time resource, a frequency resource, a PRB (Physical Resource Block), or a BWP.
  • PRB Physical Resource Block
  • the failure distinction information is, for example, information indicating which response was not returned. In the example of FIG. 17A, Msg2 or MsgB was not returned, so in this case, "Msg2" or "MsgB" is used as an example of the information.
  • the failure distinction information may include a specific reason for failure (or a special reason for failure). For example, cell selection was performed in EDT or PUR.
  • the information regarding the failure may be the executed SFN (System Frame Number) and / or the subframe information. That is, when the data transmission fails, which SFN or subframe failed, or the SFN or subframe information used for the failed data transmission is represented by this information.
  • SFN System Frame Number
  • the number of failures or the retry count identifier may be used.
  • the number of failures may include the number of retries related to the same data transmission.
  • the information regarding the failure it may be the data size information of the failed data. Further, the information regarding the failure may be information on the delay time from the generation of data to the completion of data transmission.
  • the UE 100 transmits information regarding the failure to the gNB 200.
  • the UE 100 may be included in the Msg5 (RRC Connection Setup Complete message or RRC Connection Restart Complete message) for transmission.
  • the UE 100 may transmit the Msg 5 including the information indicating the existence of the log to the gNB 200, and then transmit the information regarding the failure to the gNB 200 in response to the log acquisition request from the gNB 200. Generation of such messages and information is performed, for example, by the control unit 130 and transmitted via the transmission unit 120.
  • a program may be provided that causes the computer to execute each process performed by the UE 100 or the gNB 200.
  • the program may be recorded on a computer-readable medium.
  • Computer-readable media can be used to install programs on a computer.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
  • a circuit that executes each process performed by the UE 100 or the gNB 200 may be integrated, and at least a part of the UE 100 or the gNB 200 may be configured as a semiconductor integrated circuit (chipset, SoC).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一実施形態に係る通信制御方法は、ユーザ装置と基地局装置とを有し、前記ユーザ装置と前記基地局装置との間で無線通信が行われる移動通信システムにおける通信制御方法である。前記通信制御方法は、RRC(Radio Resource Control)コネクティッド状態にある前記ユーザ装置が、第1のプレファレンス情報を前記基地局装置へ送信することと、前記基地局装置が、前記第1のプレファレンス情報を受信すること、とを有する。前記第1のプレファレンス情報は、RRCインアクティブ状態にある前記ユーザ装置が、ランダムアクセスプロシージャのメッセージを用いてデータを送信すること、及び予め設定された無線リソースを用いてデータを送信することのうち少なくともいずれか1つを希望する情報である。

Description

通信制御方法
 本発明は、移動通信システムに用いる通信制御方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)の規格において、ランダムアクセスプロシージャ中にデータの送信や受信を行うアーリーデータ伝送(EDT)が規定されている(例えば、非特許文献1参照)。
 EDTには、MO-EDT(Mobille Originated-EDT)と、MT-EDT(Mobile Terminated-EDT)とがある。
 MO-EDTは、上りリンクデータを送信するためのEDTである。MO-EDTでは、ユーザ装置の上位レイヤがユーザ装置起点のデータのためのRRC(Radio Resource Control)接続の確立又は再開を要求し、且つ、上りリンクデータのサイズがシステム情報で示されたトランスポートブロック(TB)サイズ以下になると、開始される。なお、MO-EDTでは、ランダムアクセスプロシージャ中に、上りリンクデータ送信に続く下りリンクデータ送信も可能である。
 他方、MT-EDTは、下りリンクデータ送信を行うためのEDTである。MT-EDTでは、ユーザ装置がMT-EDT指示を含むページングメッセージを基地局から受信すると、ランダムアクセスプロシージャを行い、MO-EDTにおける下りリンクデータを受信するタイミングで基地局から下りリンクデータを受信する。
 また、3GPPでは、PUR(Preconfigured Uplink Resource)も規定されている。PURでは、ランダムアクセスチャネルを行うことなく、予め設定された(preconfigured)上りリンクリソースを用いて、RRCアイドル(RRC_IDLE)状態から上りリンク送信が行われる。
 RRCコネクティッド(RRC_CONNECTED)状態にあるユーザ装置は、PUR設定要求(PUR Configuration Request)メッセージを基地局へ送信し、PURリソースを含むRRC接続開放(RRC Connection Release)メッセージを基地局から受信する。RRC接続開放メッセージには、データ送信に用いるリソース(以下、「PURリソース」という場合がある。)など、PUR設定に必要な情報が含まれている。
 RRCアイドル状態にあるユーザ装置は、PURリソースを用いて、RRC接続再開(RRC Connection Resume Request)メッセージとともにデータを、基地局へ送信することができる。また、RRCアイドル状態にあるユーザ装置は、オプションとして、RRC接続再開メッセージ後のRRC接続開放(RRC Connection Release)メッセージとともに下りデータを受信することも可能である。
3GPP TS 38.300 V16.2.0 (2020-07)
 第1の態様に係る通信制御方法は、ユーザ装置と基地局装置との間で無線通信が行われる移動通信システムにおける通信制御方法である。前記通信制御方法は、RRC(Radio Resource Control)コネクティッド状態にある前記ユーザ装置が、第1のプレファレンス情報を前記基地局装置へ送信することと、前記基地局装置が、前記第1のプレファレンス情報を受信すること、とを有する。前記第1のプレファレンス情報は、RRCインアクティブ状態にある前記ユーザ装置が、ランダムアクセスプロシージャのメッセージを用いてデータを送信する第1データ送信と、及び予め設定された無線リソースを用いてデータを送信する第2データ送信とのうち少なくともいずれか1つを希望する情報である。
 第2の態様に係る通信制御方法は、第1の複数のセルを有する基地局装置とユーザ装置、又は各々少なくとも1つのセルを有する前記基地局装置及び他の基地局装置により第2の複数のセルが構成された前記基地局装置及び前記他の基地局装置と前記ユーザ装置との間で無線通信が行われる移動通信システムにおける通信制御方法である。前記通信制御方法は、前記基地局装置が、RRC(Radio Resource Control)コネクティッド状態にある前記ユーザ装置へ設定情報を送信することと、RRCコネクティッド状態にある前記ユーザ装置が、前記設定情報を受信することと、RRCインアクティブ状態にある前記ユーザ装置が、前記設定情報に基づいて、前記第1又は第2の複数のセルにおいて、予め設定された無線リソースを用いてデータを送信することと、を有する。前記設定情報は、RRCインアクティブ状態にある前記ユーザ装置が、前記第1又は第2の複数のセルにおいて、予め設定された前記無線リソースを用いて前記データを送信するための情報である。
 第3の態様に係る通信制御方法は、基地局装置とユーザ装置との間で無線通信が行われる移動通信システムにおける通信制御方法である。前記通信制御方法は、前記基地局装置が、RRC(Radio Resource Control)コネクティッド状態にある前記ユーザ装置へ設定情報を送信することと、RRCコネクティッド状態にある前記ユーザ装置が、前記設定情報を受信することと、を有する。また、前記通信制御方法は、RRCインアクティブ状態である前記ユーザ装置が、前記設定情報に基づいて、ランダムアクセスプロシージャのメッセージを用いてデータを送信する第1データ送信及び予め設定された無線リソースを用いてデータを送信する第2データ送信のうち少なくともいずれか1つを、キャリアアグリゲーション、デュアルコネクティビティ、及びPDCP(Packet Data Convergence Protocol)デュプリケーションのうち少なくともいずれか1つにより行うことを有する。
 第4の態様に係る通信制御方法は、基地局装置と無線通信を行うユーザ装置における通信制御方法である。前記通信制御方法は、RRC(Radio Resource Control)インアクティブ状態である前記ユーザ装置が、ランダムアクセスプロシージャのメッセージを用いてデータを送信、又は予め設定された無線リソースを用いてデータを送信することを失敗したとき、失敗に関する情報を前記ユーザ装置のメモリに記憶することと、RRCインアクティブ状態にある前記ユーザ装置又はRRCコネクティッド状態にある前記ユーザ装置が、前記メモリに記憶した前記失敗に関する情報を前記基地局装置へ送信することと、を有する。
一実施形態に係る移動通信システムの構成を示す図である。 一実施形態に係るユーザ装置の構成を示す図である。 一実施形態に係る基地局の構成を示す図である。 ユーザプレーンのプロトコルスタックの構成例を示す図である。 制御プレーンのプロトコルスタックの構成例を示す図である。 実施例1の動作例を表す図である。 UEアシスタント情報の例を表す図である。 図8(A)はEDT、図8(B)はPURの動作例をそれぞれ表す図である。 図9(A)と図9(B)はUEコンテキスト取得メッセージを用いた動作例を表す図である。 図10はハンドオーバ要求メッセージを用いた動作例を表す図である。 図11(A)は1つのgNBに2つのセルが存在する場合の例、図11(B)は各gNBに各々1つのセルが存在する場合の例をそれぞれ表す図である。 図12(A)と図12(B)はPURエリアの例を表す図である。 図13は実施例2の動作例を表す図である。 図14(A)と図14(B)はCAの例を表す図である。 図15(A)はDC、図15(B)はPDCPデュプリケーションの例をそれぞれ表す図である。 図16は実施例3の動作例を表す図である。 図17(A)と図17(B)はSDプロシージャ失敗の動作例を表す図である。 図18は、実施例4の動作例を表す図である。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (移動通信システムの構成)
 まず、一実施形態に係る移動通信システムの構成について説明する。一実施形態に係る移動通信システムは3GPPの5Gシステムであるが、移動通信システムには、LTE(Long Term Evolution)が少なくとも部分的に適用されてもよい。
 図1は、一実施形態に係る移動通信システムの構成を示す図である。
 図1に示すように、移動通信システムは、ユーザ装置(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。
 UE100は、移動可能な装置である。UE100は、ユーザにより利用される装置であればどのような装置であっても構わないが、例えば、UE100は、携帯電話端末(スマートフォンを含む)やタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、飛行体若しくは飛行体に設けられる装置(Aerial UE)など、無線通信が可能な装置である。
 NG-RAN10は、基地局装置(5Gシステムにおいて「gNB」と呼ばれる)200を含む。gNB200は、NG-RANノードと呼ばれることもある。gNB200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200は、1又は複数のセルを管理する。gNB200は、自セルとの接続を確立したUE100との無線通信を行う。gNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
 なお、gNB200がLTEのコアネットワークであるEPC(Evolved Packet Core)に接続されてもよいし、LTEの基地局が5GC20に接続されてもよい。また、LTEの基地局(LTEシステムでは「eNB」と呼ばれる)とgNBとが基地局間インターフェイスを介して接続されてもよい。
 5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300-1,300-2を含む。AMFは、UE100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100が在圏するエリアの情報を管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してgNB200と接続される。
 図2は、一実施形態に係るUE100(ユーザ装置)の構成を示す図である。
 図2に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換(ダウンコンバート)して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換(アップコンバート)してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、少なくとも1つのプロセッサと、プロセッサと電気的に接続された少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 図3は、一実施形態に係るgNB200(基地局)の構成を示す図である。
 図3に示すように、gNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換(アップコンバート)してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換(ダウンコンバート)して制御部230に出力する。
 制御部230は、gNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサと、プロセッサと電気的に接続された少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUと、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。CPUに代えて、DSP(Digital Signal Processor)やFPGA(Field Programmable Gate Array)などのプロセッサやコントローラであってもよい。
 バックホール通信部240は、基地局間インターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスを介してAMF/UPF300-1,300-2と接続される。なお、gNB200は、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間がF1インターフェイスで接続されてもよい。
(プロトコルスタックについて)
 図4は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図4に示すように、ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 SDAPレイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
 図5は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図5に示すように、制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)レイヤを有する。
 UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドル状態にある。また、RRC接続が中断(サスペンド)されている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとAMF300-1,300-2のNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
(EDTについて)
 次に、EDTについて説明する。以下において、LTEのEDTを5Gシステム(NR)に導入する実施形態について説明する。
 EDTでは、RRCアイドル状態にあるUE100が、ランダムアクセスプロシージャのメッセージを利用して、データを送信したり、受信したりすることができる。上述したように、EDTには、MO-EDTとMT-EDTがある。
 MO-EDTでは、上りリンクデータ送信が行われる。また、MO-EDTでは、ランダムアクセスプロシージャ中に、上りリンクデータ送信に続く下りリンクデータ送信も可能である。UE100の上位レイヤがUE起点(MO:Mobile Originated)のデータのためのRRC接続の確立又は再開を要求し、且つ、上りリンクデータのサイズがシステム情報で示されたトランスポートブロック(TB)サイズ以下になると、EDTが開始される。MO-EDTでは、UE100は、ランダムアクセスプロシージャにおけるMsg3を利用して上りリンクデータを送信する。
 一方、MT-EDTでは、下りリンクデータ送信が行われる。UE100は、eNB(evolved NodeB:LTE基地局)から、MT-EDTの指示を含むページングメッセージを受信すると、ランダムアクセスプロシージャを実行する。そして、UE100は、ランダムアクセスプロシージャのMsg4を利用して、下りデータを受信することができる。
 EDTには、User Plane Optimisationと、Control Plane Optimisationの2種類がある。User Plane Optimisationでは、EDTにおいて、ユーザデータをRRCメッセージに含めずに、MACレイヤにおいてユーザデータ(DTCH)とRRCメッセージ(CCCH)とを1つのMAC PDUに多重化して送信する。一方で、Control Plane Optimisationでは、EDTにおいて、ユーザデータをRRCメッセージに含める。
 User Plane Optimisationは、UE100がRRCインアクティブ状態である場合に適用可能である。RRCインアクティブ状態では、UE100のコンテキスト情報がgNB200において維持される。User Plane Optimisationでは、Msg3を構成するRRCメッセージがRRC接続再開要求(RRC Connection Resume Request)メッセージであり、Msg4を構成するRRCメッセージが基本的にはRRC接続開放(RRC Connection Release)メッセージである。UE100は、RRC接続開放メッセージを受信すると、RRCインアクティブ状態を維持したままランダムアクセスプロシージャを終了する。本実施の形態では、User Plane Optimisationを例にして説明する。
(PURについて)
 PURは、ランダムアクセスプロシージャを用いることなく、予め設定された上りリンクの無線リソース(以下では、「PURリソース」という場合がある。)を用いて、RRCアイドル状態から上りリンク送信を行う通信方法である。PURにおける一連の処理は、例えば、以下となる。
 すなわち、UE100は、RRCコネクティッド状態にあるときに、PUR設定要求(PUR Configuration Request)メッセージを、gNB200へ送信する。PUR設定要求メッセージには、PUR機会の回数、PUR機会の周期と最初のPUR機会までのオフセット時間、トランスポートブロックサイズ、ACK要否などを含む。
 gNB200は、PUR設定要求メッセージを受信すると、UE100をRRCアイドル状態へ移行させることを決定し、PURリソースをUE100のために供給する。そして、gNB200は、RRC接続開放(RRC Connection Release)メッセージをUE100へ送信する。RRC接続開放メッセージには、PURリソースなど、PUR設定(PUR Configuration)の詳細を表す情報が含まれる。
 UE100は、RRC接続開放メッセージを受信して、RRCアイドル状態に移行する。RRCアイドル状態にあるUE100は、RRC接続開放メッセージに含まれる、予め設定された上りリンクのリソースを用いて、データをgNB200へ送信する。このとき、UE100は、RRC接続要求(RRC Connection Request)メッセージと上りデータとを多重化して、gNB200へ送信する。なお、本実施の形態では、後述するように、RRCインアクティブ状態からのPUR送信が可能である。上記のRRCアイドル状態に代えて、RRCインアクティブ状態に移行したUE100は、RRC接続再開要求(RRC Connection Resume Request)メッセージと上りデータとを多重化して、gNB200へ送信することもできる。また、UE100は、RRC接続再開要求メッセージに代えて、CP-EDT(Control Plane-Early Data Transfer)用のメッセージである、RRCアーリーデータ要求(RRC Early Data Request)メッセージと上りデータとを多重化して、gNB200へ送信することもできる。
 なお、PURは、オプションとして下りデータの送信も可能である。すなわち、RRC接続再開要求メッセージの後、gNB200から送信されるRRC接続開放(RRC Connection Release)メッセージ(又はRRCアーリーデータ完了(RRC Early Data Complete)メッセージ)に下りデータが多重化されており、RRCアイドル状態にあるUE100は、RRC接続開放メッセージとともに下りデータを受信する。
 また、RRCアイドル状態にあるUE100は、PURリソースを用いて送信するには大きすぎるデータを送信する場合、RRC接続再開要求メッセージとデータのセグメントとをPURリソースを用いてgNB200へ送信する。以後、gNB200はUE100との間で接続再開プロシージャを実行して、UE100は、RRCコネクティッド状態へ移行し、送信できなかった上りデータを送信する。
 上述した処理は、UE100がRRCアイドル状態の場合の例である。本実施の形態では、UE100がRRCインアクティブ状態においても、PUR送信が可能である。上述した例において、RRCアイドル状態を、RRCインアクティブ状態に代えて、実施することが可能である。
(SDTについて)
 本実施形態においては、EDTとPURとをまとめてSDT(Small Data Transmission)と称する場合がある。SDTを利用して送信されるデータは、所定サイズ以下のデータ(又はスモールデータ、或いは小データ)であればよく、EDT又はPURを利用して送信されるデータにおいて送信可能なサイズであればよい。
 なお、以下では、EDTを利用したデータ送信をEDT送信(第1データ送信)、PURを利用したデータ送信をPUR送信(第2データ送信)、SDTを利用したデータ送信をSDT送信という場合がある。
(実施例1)
 本実施1における通信制御方法では、RRCコネクティッド状態にあるUE100が、プレファレンス情報をgNB200へ送信する。ここでいうプレファレンス情報は、RRCインアクティブ状態にあるUE100が、ランダムアクセスプロシージャのメッセージを用いてデータを送信すること、及び予め設定された上りリンクのリソースを用いてデータを送信することのうち少なくとも一方を希望するプレファレンス情報である。以下では、このようなプレファレンス情報を、SDTプレファレンス情報と称する場合がある。UE100が、SDTプレファレンス情報をgNB200へ送信することにより、gNB200では、UE100をRRCインアクティブ状態に移行させるとき、PUR送信又はEDT送信に必要な情報などを把握することができ、その後の処理の効率化を図ることが可能となる。
 次に、本実施例1における動作例について説明する。図6は、本実施例1における動作例を表す図である。
 図6に示すように、ステップS101において、UE100は、gNB200とRRCコネクティッド状態にある。
 ステップS102において、UE100は、gNB200へデータを送信し、gNB200から送信されたデータを受信する。
 ステップS103において、UE100は、EDT又はPURによるデータ送信を希望する場合、SDTプレファレンス情報をgNB200へ送信する。例えば、制御部130はこのような希望があると判断すると、SDTプレファレンス情報を生成し、送信部120を介してgNB200へ送信する。
 SDTプレファレンス情報は、例えば、UEアシスタンス情報(UE Assistance Information)メッセージに含まれて送信されてもよい。UEアシスタンス情報メッセージは、例えば、RRCコネクティッド状態にあるUE100が、自身のRRC接続の設定に関する希望又は要求を伝えるためのメッセージである。UEアシスタンス情報メッセージには、例えば、UE100のパワーセービングのプレファレンス、及びSPS(Semi Persistance Scheduling)補助情報などが含まれる。
 図7は、SDTプレファレンス情報を含むUEアシスタンス情報メッセージの例を表す図である。図7に示すように、UEアシスタンス情報メッセージには、SDTプレファレンス情報が含まれることを示す情報要素(「sdtpreference-r17」、図7の(Y))が含まれる。そして、その情報要素には、「EDT」、「MO-EDT-Only」、「MT-EDT-Only」、「PUR」、及び「EDT-and-PUR」の各項目が含まれる(図7の(Z))。
 すなわち、UE100がEDTを希望する場合は「EDT」が、図7の(Y)に示す情報要素に含まれることになる。また、UE100が、MO-EDT(のみ)を希望する場合は、「MO-EDT-Only」、MT-EDT(のみ)を希望する場合は、「MT-EDT-Only」、PURを希望する場合は「PUR」がそれぞれ図7の(Y)に含まれることになる。さらに、EDTとPURを希望する場合は、「EDT-and-PUR」が図7の(Y)に示す情報要素に含まれることになる。UE100がEDTもしくはPURを希望する場合、「EDT-or-PUR」の情報要素で示されてもよく、もしくは、「SDT設定希望」のみが情報要素に含まれて通知されてもよい。
 なお、SDTプレファレンス情報は、図7に示すUEアシスタンス情報メッセージの情報要素「releasePreference-r16」と連動してもよい。「releasePreference-r16」は、例えば、UE100がRRC接続の開放を希望する場合に利用される情報要素である。「releasePreference-r16」には、「Idle」、「Inactive」、「Connected」の各要素が含まれる。例えば、以下のように連動してもよい。
 すなわち、UE100は、「releasePreference-r16」に「Inactive」が含まれる場合(のみ)、SDTプレファレンス情報を通知(又は送信)してもよい。または、UE100は、「releasePreference-r16」に「Idle」が含まれる場合、SDTプレファレンス情報を送信してはいけないようしてもよい。または、UE100が「releasePreference-r16」に「Idle」が含まれる場合でもSDTプレファレンス情報を含めてUEアシスタンス情報メッセージを送信しても、gNB200は、UEアシスタンス情報メッセージに含まれるSDTプレファレンス情報を無視してもよい。
 上述した例は、SDTプレファレンス情報がUEアシスタンス情報メッセージに含まれる例を説明した。SDTプレファレンス情報は、他の(RRC)メッセージに含まれてもよい。
 また、UE100は、SDTプレファレンス情報とともに、パケット情報を、gNB200へ送信してもよい。パケット情報には、例えば、UE100がSDTにより送信するデータが含まれるパケットのサイズ、パケットの周期及び/又は発生タイミングなどが含まれもよい。また、パケット情報には、サービス種別が含まれてもよい。サービス種別としては、例えば、「delay tolerant」(遅延耐性)、「mission critical」(ミッションクリティカル)、「normal data」(データ)、「signalling」(シグナリング)などがある。このようなサービス種別が、QoS(Quality of Service)、5QI(5G QoS Indicator)、又はNSSAI(Network Slice Selection Assistance Information)で表されてもよい。また、UE100においては、このようなサービス種別に関する情報がNAS(Non Access Stratum)層又はアプリケーション層から通知されてもよい。もしくは、サービス種別は、UE100における送信履歴などをベースにして、AS(Access Stratum)層で推定されてもよい。
 さらに、UE100は、SDTプレファレンス情報に、周波数のプレファレンス情報(以下、「周波数プレファレンス情報」という。)を追加して送信してもよい。周波数プレファレンス情報は、例えば、UE100がデータ送信(又はSDT送信)する際に用いることを希望する周波数に関するプレファレンス情報である。周波数プレファレンス情報としては、例えば、UE100が希望するキャリア番号、BWP(Bandwidth Part)、又は帯域幅などであってもよい。
 さらに、UE100は、SDTプレファレンス情報に、マルチセルPURを希望するか否かの情報を追加して、gNB200へ送信してもよい。マルチセルPURについては、(実施例2)において説明する。さらに、UE100は、SDTプレファレンス情報に、UE100自身の移動状態に関する情報を含ませて送信してもよい。このような移動状態に関する情報には、現在の移動状態(地理的に固定、低速移動、高速移動など)に関する情報が含まれてもよく、UE100の今後の移動の予測値が含まれてもよい。さらに、UE100は、将来的に現在のサービングセル(又はサービングgNB200)内に留まるか否かの情報をSDTプレファレンス情報に含めて送信してもよい。
 以上説明したSDTプレファレンス情報、追加情報、及びUEアシスタンス情報メッセージなどなどは、制御部130において生成され、送信部120を介して、gNB200へ送信されてもよい。
 図6に戻り、gNB200は、SDTプレファレンス情報を受信すると、ステップS104において、設定判断を行う。すなわち、gNB200は、SDTプレファレンス情報に基づいて、UE100に対する設定を行う。例えば、gNB200は、以下のような設定を行う。
 すなわち、gNB200は、PDCPレイヤにおけるヘッダ圧縮技術であるROHC(Robust Header Compression)のON又はOFFの設定、又はデータの暗号化などに用いられるNCC(Next Hop Changing Counter))値などを、SDT(すなわち、EDTもしくはPUR送信)のために設定してもよい。また、gNB200は、適切なサイズの上りリンクの無線リソースを設定してもよい。このような無線リソースは、とくにPURリソースとして用いられる。gNB200は、PURリソース以外にも、UE100がSDTによる送信を行う場合に必要な情報を設定してもよい。以上のような設定判断は、制御部230で行われてもよい。
 ステップS105において、gNB200は、RRC接続開放メッセージをUE100へ送信する。この場合、gNB200は、ステップS104で設定した情報をRRC接続開放メッセージに含めて送信する。また、当該RRC接続開放メッセージは、Suspend Config.を含んでもよい。すなわち、RRC接続開放メッセージには、RRCインアクティブ状態にあるUE100がSDT送信を行う際に利用される、SDT送信のための設定情報が含まれてもよい。この場合、例えば、設定情報には、UE100においてEDTが行われる場合とPURが行われる場合の双方の設定情報が含まれてもよい。そして、双方の設定情報を受信したUE100では、例えば、以下のような処理が行われてもよい。
 すなわち、UE100は、所定の条件に従って、EDT又はPURのいずれかを実行することを決定し、決定したEDT又はPURについての設定情報を用いてEDT又はPURを実行してもよい。所定の条件としては、例えば、A)UE100がSDTプレファレンス情報で通知したSDTを実行する、B)UE100が同一セル内に在圏する場合はPURを実行し、他のセルへ移動した場合はEDTを実行する、C)TA(Timing Advance)が有効な場合はPURを実行し、無効になったらUE100がEDTを実行する、D)無線状態によって判断する(閾値はgNB200から設定されてもよい)、又は、E)UE100の実装依存、がある。
 なお、上記D)の「無線状態」とは、受信信号品質であり、例えば、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)などである。
 また、UE100は、EDTとPURとの双方の設定情報を受信していた場合、PUR送信の実行を優先的に行ってもよい。例えば、UE100は、PUR送信が実行可能である場合(上記したB)、C)、又はD)による判定を行ってもよい)、PUR送信を実行する。UE100は、PUR送信が実行不可である場合、EDTを実行する。
 或いは、UE100は、EDTとPURとの双方の設定情報を受信しており、かつ、PUR送信を実行した場合であって、当該PUR送信が失敗した場合、EDTを実行してもよい。例えば、UE100は、パケット送信をPURで試みたが、gNB200から応答がなかった場合、EDT実行へフォールバックを行い、Msg3もしくはMsgAにおいて当該パケットを送信する。
 或いは、UE100は、EDTとPURとの双方の設定情報を受信しており、EDTもしくはPUR送信のいずれか一方が成功した場合、当該EDT及び/又はPUR設定を破棄してもよい。
 なお、以下では、UE100は、所定の条件を考慮して、EDT又はPURを実行するものとして説明する。
 例えば、制御部230においてRRC接続開放メッセージを生成して、送信部210を介して送信してもよい。また、上記のような決定や実行などは、gNB200においては制御部230、UE100においては制御部130でそれぞれ行われてもよい。
 ステップS106において、UE100は、RRCインアクティブ状態へ遷移する。例えば、制御部130は、受信部110を介してRRC接続開放メッセージを受信すると、当該メッセージに含まれる情報に従って、UE100をRRCインアクティブ状態へ遷移させる。
 RRCインアクティブ状態とは、例えば、UE100のRRCとgNB200のRRCとの接続が中断(サスペンド)されている状態である。RRCインアクティブ状態では、UE100、gNB200、ネットワークにおいてUEコンテキストが保持される。このため、UE100は、RRCインアクティブ状態からRRCコネクティッド状態へ復帰するための手順にかかる信号数の削減を図ることができる。また、RRCインアクティブ状態のUE100は、RRCアイドル状態と同様であるため、UE100の省電力化を図ることも可能である。RRCインアクティブ状態により、例えば、IoT(Internet Of Things)のシナリオが考慮され、SDT通信に適したRRC接続状態を設定することが可能となる。
 ステップS107において、UE100は、gNB200による設定(ステップS105)に従って、SDTによるデータ送信を行う。
 図8(A)は、EDTによるデータ送信の動作例を表す図である。
 ステップS1070において、UE100は、データが発生すると(S1070)、ランダムアクセスプロシージャによる一連のメッセージを送受信する(ステップS1071~S1074)。
 すなわち、ステップS1071において、UE100は、Msg1(ランダムアクセスプリアンブル)をgNB200へ送信する。なお、「Msg」はメッセージの略である。
 ステップS1072において、gNB200は、UE100に割り当てた上りリンクにおけるリソースを示すスケジューリング情報を含むMsg2(ランダムアクセス応答)をUE100へ送信する。
 ステップS1073において、UE100は、スケジューリング情報に従って、Msg3をgNB200へ送信する。Msg3は、例えば、RRC接続再開要求(RRC Connection Resume Request)メッセージである。UE100は、MACレイヤにおいて、RRC接続再開要求メッセージとデータ(DTCH)とを1つのMAC PDUに多重化して送信する。これにより、上りリンクのEDTが行われる。もしくは、UE100は、RRCレイヤにおいて、RRC接続再開要求メッセージの中にデータをカプセル化してもよい。
 ステップS1074において、gNB200は、Msg4をUE100へ送信する。Msg4は、例えば、RRC接続開放(RRC Connection Release)メッセージである。gNB200は、下りリンクのデータをMsg4に多重化もしくはカプセル化して送信してもよい。これにより、下りリンクのEDTが行われる。UE100は、RRC接続開放メッセージを受信すると、RRCインアクティブ状態を維持したまま、ランダムアクセスプロシージャを終了する。
 例えば、Msg1とMsg3の生成やデータの多重化などは、制御部130で行われ、Msg2とMsg4の生成やデータの多重化などは制御部230で行われてもよい。2-step RACHの場合は、例えば、MsgAの生成などが制御部130で行われ、MsgBの生成などは制御部230で行われてもよい。
 図8(B)は、PURによるデータ送信の例を表す図である。
 ステップS1070において、データが発生すると、ステップS1075において、UE100は設定されたPURリソースを用いて、例えば、RRC接続再開要求(RRC Connection Resume Request)メッセージをgNB200へ送信する。EDTの場合と同様に、UE100は、MACレイヤにおいて、RRC接続再開要求メッセージとデータとを1つのMAC PDUに多重化して送信する。これにより、上りリンクのPURが行われる。もしくは、UE100は、RRCレイヤにおいて、RRC接続再開要求メッセージの中にデータをカプセル化してもよい。
 なお、UE100では、PURリソースを用いて送信するにはデータが大きすぎる場合、RRC接続開放要求メッセージとユーザデータのセグメントとをPURリソースを用いてgNB200へ送信する。以後、レガシーRRC接続再開プロシージャが開始され、RRC接続後にデータ送信が行われる。
 ステップS1076において、gNB200は、RRC接続開放メッセージをUE100へ送信する。gNB200は、EDTの場合と同様に、下りリンクのデータをRRC接続開放メッセージに多重化もしくはカプセル化して送信してもよい、これにより、下りリンクのPURが行われる。
 なお、実施例1においては、EDTとPURの双方を実施することも可能である。例えば、図8(A)に示すプロシージャを行った後、図8(B)に示すプロシージャを行うこともできるし、その逆も可能である。例えば、図7に示すUEアシスタンス情報メッセージに情報要素「sdtPreference-r17」に「EDT-and-PUR」が含まれる場合は、このようなプロシージャが行われてもよい。
(実施例1-1)
 次に、実施例1-1について説明する。実施例1-1は、プレファレンス情報を受信したgNB200がUEコンテキストと紐づけして、SDTプレファレンス情報を他のgNBへ送信する例である。
 RRCインアクティブ状態にあるUE100は、RRCアイドル状態と同様に、セル選択やセル再選択を行うことができる。例えば、UE100は、SDTプレファレンス情報を送信したgNB200とは異なる他のgNBのセルを選択して、そのようなgNBへデータを送信することも可能である。この場合、他のgNBにUE100のSDTプレファレンス情報がないと、UE100は、他のgNBへ改めてSDTプレファレンス情報を送信することになる。これでは、UE100の省電力化を図ることができず、また、処理の効率化を図ることもできない。
 そこで、本実施例1-1では、プレファレンス情報を受信したgNB200が他のgNBへ受信したSDTプレファレンス情報を送信することで、UE100の省電力化と処理の効率化を図るようにしている。
 具体的には、XnインターフェイスのUEコンテキスト取得(UE Context Retrival)メッセージを利用した場合と、ハンドオーバ要求(Handover Request)メッセージを利用した場合との、2つの場合がある。
 図9(A)と図9(B)は、UEコンテキスト取得メッセージを用いた場合における動作例を表す。このうち、図9(A)は、UE100トリガーのRRCインアクティブ状態からRRCコネクティッド状態への移行(UE Triggered transition from RRC_IACTIVE to RRC CONNECTED)プロシージャの例である。一方、図9(B)は、RRC再確立(Reestablishment)プロシージャの例である。
 図9(A)の例では、UE100からSDTプレファレンス情報を受信したgNBは、ラストサービングgNB200-2として表されている。
 ステップS201において、RRCインアクティブ状態にあるUE100は、ステップS202において、SDTプレファレンス情報を送信したgNB200-2とは異なるgNB200-1へ、RRC接続再開要求メッセージを送信する。当該メッセージには、UE100がラストサービングgNB200-2から供給されたI-RNTI(Inactive-Radio Network Tempolary Identifier)が含まれる。ステップS203において、gNB200-1は、I-RNTIに含まれるgNBの識別情報を解くことができると、そのgNB、すなわち、ラストサービングgNB200-2へ、UEコンテキスト取得要求(Retrieve UE Context Request)メッセージを送信する。ステップS204において、ラストサービングgNB200-2は、UEコンテキスト復旧応答(Retrieve UE Context Response)メッセージをgNB200-1へ送信する。UEコンテキスト復旧応答メッセージには、UEコンテキストデータとともに、UE100から受信したSDTプレファレンス情報が含まれる。これにより、UE100からRRC再開要求を受けたgNB200-1は、ラストサービングgNB200-2からSDTプレファレンス情報を取得できる。以後、ステップS205とS206において、一連の移行手順が行われる。なお、図9(A)の例では、ステップS205において、RRC接続再開メッセージに加え、RRC接続開放メッセージが送信されてもよい。
 図9(B)の例も、図9(A)と同様に、ラストサービングgNB200-2がUE100からSDTプレファレンス情報を受信したgNBである。
 ステップS210において、RRCコネクティッド状態にあるUE100は、ステップS211において、RRC再設定要求(RRC Reestablishment Request)メッセージを、gNB200-1へ送信する。RRC再設定要求メッセージには、UEの識別情報(PCI(Physical Cell Identifier)とC-RNTI(Cell-RNTI))が含まれる。ステップS212において、gNB200-1は、UEコンテキストがローカルに利用できない場合、ラストサービングgNB200-2へ、UEコンテキスト取得要求(Retrieve UE Context Request)メッセージを送信する。ステップS213において、ラストサービングgNB200-2は、UEコンテキスト取得応答(Retrieve UE Context Response)メッセージをgNB200-1へ送信する。UEコンテキスト取得応答メッセージには、UE100のUEコンテキストとともに、UE100から取得したSDTプレファレンス情報が含まれる。以後、ステップS214において、一連の再設定手順が行われる。
 図10は、ハンドオーバ要求メッセージを利用して、SDTプレファレンス情報が送信される動作例を表す図である。図10の例では、ソースgNB200-1がUE100からSDTプレファレンス情報を受信したgNBとなる。
 ステップS220において、UE100とソースgNB200-1は、測定制御及び測定報告を行う。ステップS221において、ソースgNB200-1は、ハンドオーバを行うことを決定する。ステップS222において、ソースgNB200-1は、ハンドオーバ要求(HO Request)メッセージをターゲットgNB200-2へ送信する(S222)。このとき、ソースgNB200-1は、UE100のUEコンテキストとともに、UE100から受信したSDTプレファレンス情報をハンドオーバ要求メッセージに含めて、ターゲットgNB200-2へ送信する。以後は、ステップS223とS224において、ハンドオーバの一連の処理が行われる。
 図9(A)から図10に示す一連の処理は、例えば、制御部230で行われ、バックホール通信部240を介して、他のgNBへ送信してもよい。
(実施例2)
 実施例2は、複数のセルにおいてPURがサポートされる例である。このようなPURのことを、「マルチセルPUR」という場合がある。
 現状の3GPPでは、UE100があるセルにおいて基地局からPUR設定を受け、そのセルとは異なる他のセルにおいてUE100がアクセスしたとき、UE100と(ng-)eNBにおいて、PUR設定(PUR Configuration)が開放(release)される(3GPP TS 36.300 V16.2.0(2020-07))。
 図11(A)と図11(B)では、そのような状況の例を説明するための図である。このうち、図11(A)は、1つのgNB200が2つのセルを有する場合の例であり、図11(B)は、各gNB200-1,200-2が各々1つずつのセルを有する場合の例である。いずれの場合も、UE100は、セル#1において、gNB200又はgNB200-1に対して、PUR設定要求(PUR Configuration Request)メッセージを送信し、gNB200又はgNB200-1から、PUR設定(PUR Configuration)メッセージを受信している。そして、図11(A)と図11(B)に示すように、UE100がセル#2へ移動して、セル#2において、gNB200又はgNB200-2へアクセスすると、PUR設定メッセージに含まれるPUR設定が開放される。
 本実施例2では、PUR設定が複数のセル(又はマルチセル。以下、「マルチセル」という場合がある。)でサポートされるようにする例である。すなわち、マルチセルPURでは、予め設定された上りリンクの無線リソースを用いてデータを送信する場合に用いられる設定情報が複数のセルで利用することができる。これにより、UE100は、PUR設定メッセージを受信したセル以外の他のセルへ移動しても、そのPUR設定メッセージに含まれるPUR設定をそのまま使用して、他のセルにおいて、PURによるデータ送信を行うことが可能となる。したがって、UE100は、セルを移動する度にPUR設定に関する一連のプロシージャを行う場合と比較して、消費電力の削減を図るとともに、ネットワーク側でも処理の効率化を図ることができる。
 本実施例2では、マルチセルPURを実現するために、PUR設定が有効なエリア(以下では、「PURエリア」という場合がある。)が設定される。
 図12(A)と図12(B)は、PURエリアの例を表す図である。図12(A)の例は、1つのgNB200に2つのセル#1,#2が存在し、2つのセル#1,#2に対してPURエリアが設定される例である。
 また、図12(B)の例は、2つのgNB200-1,200-2に各々、1つずつセル#1,#2が存在する例である。
 いずれの場合も、UE100は、セル#1でPUR設定を受けて、セル#2へ移動する例を表している。そして、いずれの場合も、UE100は、セル#2において、セル#1で設定されたPUR設定を用いて、PUR送信が可能である。すなわち、UE100は、PURエリア内であればどのセルからも同一のPUR設定でPUR送信が可能となる。このように、PURエリアの情報は、例えば、1つのgNB200で複数セルが存在する場合でも、複数のgNB200-1,200-2の各々で少なくとも1つずつのセルが存在して複数のセルが構成される場合でも、複数のセルにおいて、PURの設定情報が有効なエリアを示すエリア情報が含まれていればよい。
 図13は、本実施例2の動作例を表す図である。図13の例は、2つのgNB200-1,200-2に各々1つずつセル#1,#2が存在する場合の例である。
 図13に示すように、ステップS300において、UE100は、gNB200-1とRRCコネクティッド状態となっている。
 ステップS301において、UE100は、PUR設定要求(PUR Configuration Request)メッセージをgNB200-1へ送信する。
 ステップS302において、gNB200-1は、PUR設定(PUR Configuration)に関する情報を含むRRC接続開放(RRC Connection Release)メッセージをUE100へ送信する。このとき、gNB200-1は、PURエリアの情報をPUR設定に関する情報に含ませて、PURエリアの情報をUE100へ送信する。PURエリアの情報としては、具体的には、例えば、以下のようなものがある。
 すなわち、PURエリアの情報として、PUR設定が有効なセルをリスト化した情報であってもよい。例えば、図12(A)の例では、PURエリアの情報は、「セル#1」と「セル#2」とがリスト化された情報となる。
 または、PURエリアの情報として、PURエリアを識別するID(Identification)であってもよい。このようなIDは、どのPURエリアでどのIDとなっているかが予め定義され、UE100とgNB200-1,200-2で情報が共有されているものとする。例えば、図12(A)に示すPURエリアが「PURエリア#1」というIDの場合、この「PURエリア#1」がPURエリアの情報となる。
 または、PURエリアがRNA(Ran-based Notification Area)と同一であってもよい。この場合、例えば、そのような定義がなされ、UE100とgNB200-1,200-2で共有されていればよい。そして、この場合、gNB200-1は、明示的にPURエリアを設定しなくてもよく、PURエリアの情報がPUR設定に含まれなくてもよい。あるいは、gNB200-1は、PURエリアがRNAと同一であることをUE100に通知してもよい。
 なお、PUR設定については、PURエリアの情報以外については、セル毎に異なる設定がなされてもよい。例えば、図12(A)の例では、セル#1とセル#2とでは、セル毎に異なる設定情報となっていてもよい。そして、そのような場合、gNB200-1は、セル毎に異なるPUR設定に関する情報を含むRRC接続開放メッセージをUE100へ送信する。
 図13に戻り、ステップS303において、gNB200-1は、gNB200-2へ、PUR設定を含むPUR設定通知メッセージを送信してもよい。例えば、gNB200-1は、Xnインターフェイスを利用してPUR設定通知メッセージを送信してもよいし、AMF300-1,300-2経由で、NGインターフェイスを利用して、当該メッセージをgNB200-2へ送信してもよい。gNB200-2は、当該PUR設定通知メッセージに対して、応答メッセージをgNB200-1へ返送してもよい。当該応答メッセージには、ステップS303のPUR設定通知メッセージが受け入れ可能であるか否かの情報を含んでもよい。すなわち、gNB200-2は、受け入れ可能である場合は肯定応答(ACK)メッセージ、受け入れ不可である場合は否定応答(NACK)メッセージをそれぞれ返送する。
 なお、図13の例では、gNB200-1は、RRC開放メッセージを送信した後に、PUR設定通知メッセージを送信しているが、RRC開放メッセージを送信する前(又はPUR設定を行う前)に、PUR設定通知メッセージをgNB200-2へ送信してもよい。
 ステップS304において、UE100は、RRCインアクティブ状態へ遷移し、ステップS305において、セル#1からセル#2へ移動する。そして、ステップS306において、UE100は、セル#2を有するgNB200-2に対して、PUR設定に従って、PUR送信を行う。具体的には、例えば、以下のような動作を行う。
 すなわち、UE100は、PUR設定に含まれるPURエリアの情報に基づいて、在圏するセルがPURエリアに含まれるセルか否かを判断する。そして、UE100、PURエリアの情報に含まれる有効なエリア内のセルであると判断すると、ステップS306において、PUR送信を行う。一方、UE100は、在圏するエリアがPURエリアに含まれるセルではないと判断すると、PUR送信は行わない。このとき、UE100は、ステップS302で受信したPUR設定に関する情報を破棄してもよい。
 なお、上述した例では、PURエリアに関する情報は、PUR設定に関する情報に含まれて、RRC接続開放メッセージを利用してUE100へ送信されるものとして説明した。例えば、gNB200-1,200-2は、PURエリアIDなどのPURエリアに関する情報を、SIB(System Information Block)を用いて報知してもよい。または、gNB200-1,200-2は、マルチセルによるPURをサポートしている旨を示す情報を、SIBを用いて報知してもよい。
 また、上述した例において、セル#1とセル#2とが隣接する場合、gNB200-1は、隣接するセル#2において適用されるTA(Timing Advance)値を報知してもよい。UE100は、例えば、セル#2においてgNB200-2(又はgNB200-1)とアクセスする場合、このようなTA値を用いて、タイミングを補正して、ステップS306において、PUR送信を行ってもよい。或いは、gNB200-1は、セル#2においても、UE100がセル#1で適用しているTA値をそのまま適用する旨、又は、TA=0(又は許容可能なTA値)を適用する旨に関する情報を報知してもよい。
 上述した例は、図12(B)を例にした動作例であるが、例えば、図12(A)に示すように、1つのgNB200に2つのセルが存在する場合でも適用可能である。また、上述した例は、1つのgNB200に3つ以上のセルが存在する場合でも適用可能である。さらに、上述した例は、各gNB200-1,200-2に各々複数のセルが存在する場合でも適用可能である。
(実施例3)
 次に実施例3について説明する。実施例3は、キャリアアグリゲーション(以下、「CA」という場合がある。)、デュアルコネクティビティ(以下、「DC」という場合がある)、及びPDCPデュプリケーション(duplication)のうち少なくとも1つを利用して、SDT送信が行われる例である。
 5Gでは、超高速(EeMBB(Enhanced Mobile Broad Band))、多数同時接続(mMTC(Massive Machine Type Communication))、低遅延及び高信頼性(URLLC(Ultra-Reliable and Low Latency Communications))など、様々なユースケースが想定されている。他方、SDTは、例えば、所定サイズ以外のデータ送信を行うものであって、各種センサを用いたIoT分野でのユースケースが想定される。しかし、SDTであっても、CA、DC、又はPDCPデュプリケーションを利用することで、低遅延及び高信頼性の要求など、5Gで想定される様々なユースケースの要件に合致させることも可能である。
 図14(A)と図14(B)はCAの例を表す図である。CAは、例えば、複数の周波数帯域を用いた無線通信のことである。
 図14(A)の例は、UE100は、CC(Component Carrier)#1とCC#2とを用いて、1つのgNB200に対して、データ送信を行っている例を表している。CCごとにセルが構成されてもよい。この場合、UE100はセル#1においてCC#1、セル#2においてCC#2を用いて、gNB200と無線通信を行うことになる。
 図14(B)は、gNB200-1がPCell(Primaly Cell)を有し、gNB200-2がSCell(Secondary Cell)を有している例である。この例では、UE100は、PcellにおいてCC#1を利用してgNB200-1と、SCellにおいてCC#2を利用してgNB200-2と無線通信を行っている例を表す。
 図14(A)と図14(B)のいずれの場合でも、本実施例3では、UE100はSDTによるデータ送信が可能である。詳細は後述する。
 図15(A)はDCの例を表す図である。例えば、UE100が2つのgNB200-1,200-2と同時に無線通信を行うことがDCである。gNB200-1は、UE100とネットワークとの通信の接続を維持するMN(Master Node)、gNB200-2は、さらにUE100に対して無線リソースを提供するSN(Secondary Node)であってもよい。この場合、MeNB(gNB200-1)のサービングセル(セル#1)を含むグループがマスターセルグループ(MCG)、SeNB(gNB200-2)のサービングセル(セル#2)を含むグループがセカンダリセルグループ(SCG)となる。なお、図15(A)の例ではgNBは2つであるが、3つ以上あってもよい。
 図15(B)はPDCPデュプリケーションの例を表す図である。RRCによってPDCPデュプリケーション用の無線ベアラが設定されると、複製されたPDP PDUをハンドルするために少なくとも1つのセカンダリRLCエンティティが無線ベアラに追加される。プライマリRLCエンティティに対応する論理チャネルがプライマリ論理チャネル(Primary LCH)、セカンダリRLCエンティティに対応する論理チャネルがセカンダリ論理チャネル(Secondary LCH)となる。PDCPでの複製によって、同一のPDCP PDUが複数回送信されることで、その信頼性が向上する。セカンダリ論理チャネルは、MAC CE(MAC Control Element)によって、アクティブにさせたり、非アクティブにさせることが可能で、これにより、PDCPの複製を行ったり、複製をしなかったりすることが可能となる。図15(B)の例では、UE100は、同一のPDCP PDU#1を2つのgNB200-1,200-2へ送信している例を表している。
 図16は、本実施例3の動作例を表す図である。図16に示す例は、gNB200-1がセル#1、gNB200-2がセル#2を有する例である。また、UE100が、CA、DC、及びPDCPデュプリケーションのうち少なくとも1つを用いて、SDT送信を行う例である。
 図16に示すように、ステップS400において、UE100は、gNB200-1とRRCコネクティッド状態にある。ステップS401において、gNB200-1は、RRC接続開放(RRC Connection Release)メッセージをUE100へ送信する。このとき、gNB200-1は、SDT送信に必要な設定情報(以下、「SDT設定情報」という場合がある。)を含むRRC接続開放メッセージを送信する。ただし、gNB200-1は、SDT設定情報を他のメッセージに含めて送信してもよい。SDT設定情報としては、例えば、以下のような情報がある。
 すなわち、SDT設定情報には、セル毎のPUR設定情報が含まれてもよい。具体的には、セル毎に、PUR送信で用いる無線リソース、PUR送信の周期及び/又は時間、各PURの識別情報であるPUR-RNTI、PUR送信を行うか否かの判断に用いるRSRP閾値などが含まれてもよい。この場合、PUR設定情報は、セル毎にリスト形状となっていてもよい。例えば、セル#1における無線リソース等と、セル#2における無線リソース等がリスト形状となっている場合である。
 また、SDT設定情報には、セル毎のEDT設定情報が含まれてもよい。具体的には、セル毎に、ROHC設定又はNCC値が含まれてもよい。この場合も、セル毎にリスト形状となっていてもよい。
 さらに、SDT設定情報には、セルと紐づけられた設定情報が含まれてもよい。具体的には、UE100においてCAが行われる場合、どのセルを用いて行われるのか、又は、DCが行われる場合、どのセルを用いて行われるのかなどである。用いられるセルは、図14(B)又は図15(A)の場合、2つのセルとなるが、3つ以上であってもよい。
 さらに、SDT設定情報には、対応するベラID(又は論理チャネルID(LCID))が含まれてもよい。例えば、PDCUデュプリケーションでは、プライマリ論理チャネルとセカンダリ論理チャネルの2つのチャネル(又は2つのベアラ)が設定されるが、そのように設定された各論理チャネルのID(又は各ベアラのID)がSDT設定情報に含まれてもよい。
 さらに、SDT設定情報には、PDCPデュプリケーションを行うか否かの設定情報が含まれてもよい。この場合、既に、PDCPデュプリケーション設定に利用されるベアラ(論理チャネル)があれば、この設定を参照してもよい。すなわち、PDCPデュプリケーションに利用されるベアラID又は論理チャネルIDを参照するようにしてもよく、その旨がSDT設定情報に含まれてもよい。
 さらに、SDT設定情報には、実施例2で説明したPURエリアに関する情報が含まれてもよい。例えば、PURエリアに複数のセル(図14(A)から図15(B)における複数のセル)が含まれる場合、UE100は、当該複数のセルにおいて、同一のPUR設定を用い、CA、DC、及びPDCPデュプリケーションのうち少なくともいずれか1つを利用して、PUR送信を行うことも可能である。
 さらに、gNB200-1は、実施例1で説明したプレファレンス情報に基づいて、SDT設定情報を生成し、UE100へ送信してもよい。
 以上のようなSDT設定情報の生成は、制御部230で行われ、送信部210から送信されてもよい。
 ステップS402において、UE100は、RRCインアクティブ状態へ遷移する。
 ステップS403とステップS404において、UE100は、複数セルを用いたSDTを実行する。なお、図16において、ステップS403とステップS404は同じタイミングで行われてよい。また、ステップS403とステップS404は、同じデータが送信されてもよいし、異なるデータが送信されてもよい。同じデータが送信される場合は、PDCPデュプリケーションが用いられるが、PDCPデュプリケーションとCA又はDCとが組み合わされてもよい。異なるデータが送信される場合は、CA又はDCであってもよいし、CAとDCの組み合わされてもよい。
 ステップS403においては、UE100は、データ以外にも、例えば、以下のような情報をgNB200-1へ送信してもよい。
 すなわち、UE100は、セル#1(MCG又はPCell)において、複数セルを用いていることを示す情報を送信してもよい。これにより、例えば、CAやDCにおいて異なるデータを受信したgNB200において、このような情報を用いて、データの合成に利用することができる。
 複数セルを用いていることを示す情報としては、例えば、使用しているセルのID、ベアラID、論理チャネルID(LCID)、上記SDT設定情報のエントリ番号などであってもよい。この場合、UE100は、複数セルを用いていることを示す情報を、データ#1に含めて送信してもよいし、別途、シグナリング(制御信号)に含めて送信してもよい。或いは、UE100は、RRCを利用して送信してもよいし、MAC CEを利用して送信してもよい。
 また、UE100は、PDCPデュプリケーションを行っているか否かの情報を送信してもよい。
 なお、図16の例では、UE100は、RRCインアクティブ状態へ遷移後、とくに判断することなく、ステップS403とS404において、SDT送信を行っている例を表している。例えば、UE100は、特定の判断を行って、SDT送信を行うか否かを判断してもよい。
 例えば、UE100は、送信データ量、サービス種別(delay sensitive等)、UE100とgNB200-1(又はgNB200-2)との間の無線状況などに基づいて、複数セル(図15(A)の例ではセル#1とセル#2)を用いたSDTを実行するか、複数セル内における単一セル(図15(A)の例ではセル#1)を用いたSDTを実行するかを判断してもよい。このような判断のために、UE100は、gNB200-1から送信された閾値を用いてもよい。
 UE100におけるこのようなSDT送信の実行制御やgNB200-1へ送信する情報の生成は、例えば、制御部130で行われてもよく、そのような制御に従って、送信部120からデータや各種情報などが送信されてもよい。
 ステップS405において、gNB200-1は、UE100から送信されたデータ(又はシグナリング)の受信に成功した場合、応答(ACK)信号(又はメッセージ)をUE100へ送信する。また、ステップS406において、gNB200-2も、データ(又はシグナリング)の受信に成功した場合、応答(ACK)信号を送信する。いずれも場合も、gNB200-1,200-2は、受信に成功しなかった場合、応答(NACK)信号(又はメッセージ)を送信してもよい。
 なお、UE100は、PDCPデュプリケーションを行った場合、複数のセル(セル#1,#2)のうち、少なくとも1つのセル(を有するgNB200-1(又は200-2))から応答(ACK)信号を受信した場合、対応するデータ(又はシグナリング)の送信に成功したと判定する。他方、UE100は、いずれのセル(又はgNB200-1,200-2)からも応答(ACK)を受信しなかった場合、データ送信に失敗したと判定する。UE100は、このように判定した場合、再度、SDTを実施する、又はRRC接続再開要求メッセージを送信してRRCコネクティッド状態へ遷移してデータの再送信を試みることになる。
(実施例4)
 次に、実施例4について説明する。実施例4は、SDTによる送信に失敗したUE100が、失敗したことを示すSDT Failureをネットワークに報告する例である。
 例えば、EDT又はPURを問わず、RRC接続再開メッセージの送信によって、RRCコネクティッド状態へ遷移した場合を考える。この場合、SDT送信のプロシージャに失敗して、その後、UE100がRRC接続再開メッセージを送信したのか、或いは、SDT送信のプロシージャを行うことなくUE100がRRC接続再開メッセージを送信したのか、ネットワーク側はわからない場合がある。
 このように、ネットワーク側からみて、状況がわからない場合、情報を収集及び分析し、自律的にネットワークを最適化するSON(Self Organizing Networks)を実現することが困難な場合がある。
 そこで、本実施例4では、UE100がSDT Failureをネットワーク側へ報告するようにしている。これにより、例えば、ネットワーク側は、UE100においてSDT送信が失敗したことを把握することができ、そのような情報を収集等することで、SONの実現を図ることが可能となる。
 図17(A)と図17(B)は、EDTの場合においてプロシージャが失敗するパターンの例を表している。図17(A)と図17(B)は、ともに、UE100がRRCインアクティブ状態にある。また、ランダムアクセスプロシージャが4-stepの場合と2-stepの場合が含まれる。なお、SDT送信において行われる一連のプロシージャ(例えば図8(A)又は図8(B))のことを、以下では、「SDTプロシージャ」という場合がある。
 図17(A)に示すように、4-stepの場合、ステップS500において、UE100はMsg1をgNB200へ送信し、ステップS501において、gNB200は、fall back情報を含むMsg2を送信する。fall back情報は、例えば、ランダムアクセスプロシージャを最初からやり直すことを指示する情報である。UE100は、fall back情報を受信した場合、ステップS502において、SDTプロシージャが失敗したことを確認する。また、ステップS501において、UE100は、Msg2を受信できなかった場合も、ステップS502でSDTプロシージャの失敗を確認することができる。
 また、図17(A)に示すように、2-stepの場合、ステップS500において、UE100がMsgAを送信し、ステップS501において、gNB200が、fall back情報を含むMsgA送信する。この場合も、ステップS502において、UE100は、SDTプロシージャの失敗を確認する。また、ステップS501において、UE100が、MsgBを受信できなかった場合も、ステップS502において、SDTプロシージャの失敗を確認する。
 図17(B)は、Msg1とMsg2(ステップS510とステップS511)の送信及び受信は成功し、Msg3において送信又は受信に失敗した場合の例である。すなわち、4-stepの場合、ステップS512において、UE100は、Msg3とデータとを送信するが、gNB200からMsg4を受信できなかった場合、ステップS513において、STDプロシージャの失敗を確認する。2-Sstepの場合も、ステップS512において、UE100は、MsgAとデータとを送信するが、MsgBを受信できなかった場合、ステップS513において、SDTプロシージャの失敗を確認する。
 一方、PURにおけるSDTプロシージャの失敗は、例えば、RRCインアクティブ状態にあるUE100が、PURリソースを用いて、gNB200へデータを送信したものの、レスポンス(例えば、RRC接続開放メッセージ)を受信しなかった場合である。
 このように、本実施例4においては、UE100は、SDTプロシージャに失敗した場合、失敗に関する情報を記録(又は保存)するようにしている。
 図18は、本実施例4における動作例を表す図である。ステップS502(図17(A))又はステップS513(図17(B))で、UE100は、SDTプロシージャ失敗を確認すると、ステップS520において、失敗した情報を記録する。例えば、制御部130は、失敗に関する情報を生成し、その情報を制御部130内のメモリに記録する。失敗に関する情報としては、例えば、以下がある。
 すなわち、失敗に関する情報としては、通常のMDT(Minimization of Drive Tests)に含まれる情報であってもよい。MDTヘッダに含まれる情報としては、タイムスタンプ、緯度経度高度、無線測定結果などがある。
 また、失敗に関する情報としては、実行したプロシージャの種類であってもよい。実行したプロシージャの種類としては、例えば、EDTが行われたのか又はPURが行われたのか、或いは、4-step RACHが行われたのか又は2-step-RACHが行われたのか、などであってもよい。なお、プロシージャの種類として、4-step RACH又は2-tep RACHが示される場合、EDT実施の有無に限らず、EDTではない通常のRACHの場合でも適用可能である。この場合、既存のRACH Failure reportに対して、2-stepであるか否かを区別することが可能である。
 さらに、失敗に関する情報として、選択したリソースの情報であってもよい。このような情報としては、例えば、時間リソース、周波数リソース、PRB(Physical Resouce Block)、又はBWPがある。
 さらに、失敗に関する情報として、失敗の区別情報であってもよい。失敗の区別情報は、例えば、どのレスポンスが返信されなかったのかを示す情報である。図17(A)の例では、Msg2又はMsgBが返信されなかったので、この場合は、その情報の例として、「Msg2」または「MsgB」となる。また、失敗の区別情報には、失敗した特定の理由(又は特別な失敗の理由)が含まれてもよい。例えば、EDTやPURにおいて、セル再選択(cell reselection)を行った、などである。
 さらに、失敗に関する情報として、実行したSFN(System Frame Number)及び/又はサブフレーム情報であってもよい。すなわち、データ送信に失敗したとき、どのSFN又はサブフレームで失敗したのか、又は失敗したデータ送信に用いたSFN又はサブフレーム情報がこの情報により表されている。
 さらに、失敗に関する情報として、失敗した回数、又、リトライカウント識別子であってもよい。例えば、失敗した回数には、同一データ送信に係るリトライ回数が含まれてもよい。
 さらに、失敗に関する情報として、失敗したデータのデータサイズ情報であってもよい。さらに、失敗に関する情報として、データ発生からデータ送信完了までの遅延時間の情報であってもよい。
 図18に戻り、ステップS521において、UE100は、失敗に関する情報をgNB200へ送信する。UE100は、図18に示すように、Msg5(RRC接続セットアップ完了(RRC Connection Setup Complete)メッセージ又はRRC接続再開完了(RRC Connection Resume Complete)メッセージ)に含めて送信してもよい。又は、UE100は、ログが存在する旨を示す情報を含むMsg5をgNB200へ送信し、その後のgNB200からのログ取得要求に対して、失敗に関する情報をgNB200へ送信してもよい。このようなメッセージ及び情報の生成は、例えば、制御部130で行われ、送信部120を介して送信される。
 (その他の実施形態)
 UE100又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 また、UE100又はgNB200が行う各処理を実行する回路を集積化し、UE100又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
 以上、図面を参照して一実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。また、矛盾しない範囲で、各実施例の全部又は一部を組み合わせることも可能である。
 本願は、日本国特許出願第2020-133859号(2020年8月6日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。

Claims (36)

  1.  ユーザ装置と基地局装置との間で無線通信が行われる移動通信システムにおける通信制御方法であって、
     RRC(Radio Resource Control)コネクティッド状態にある前記ユーザ装置が、第1のプレファレンス情報を前記基地局装置へ送信することと、
     前記基地局装置が、前記第1のプレファレンス情報を受信すること、とを有し、
     前記第1のプレファレンス情報は、RRCインアクティブ状態にある前記ユーザ装置が、ランダムアクセスプロシージャのメッセージを用いてデータを送信する第1データ送信と、及び予め設定された無線リソースを用いてデータを送信する第2データ送信とのうち少なくともいずれか1つを希望する情報である通信制御方法。
  2.  前記ユーザ装置は、前記ユーザ装置自身のRRC接続の設定に関する希望又は要求を前記基地局装置へ伝えるUE(User Equipment)アシスタンス情報メッセージに前記第1のプレファレンス情報を含めて、前記UEアシスタンス情報メッセージを前記基地局装置へ送信する請求項1記載の通信制御方法。
  3.  前記UEアシスタンス情報メッセージには、前記ユーザ装置がRRC接続開放を希望する第2のプレファレンス情報が含まれ、
     前記第2のプレファレンス情報がRRCインアクティブ状態を示す場合、前記第1のプレファレンス情報は送信され、
     前記第2のプレファレンス情報がRRCアイドル状態を示す場合は前記第1のプレファレンス情報は送信されないか、送信されても前記基地局装置で破棄される請求項2記載の通信制御方法。
  4.  前記ユーザ装置は、前記第1のプレファレンス情報と、前記データが含まれるパケットに関する情報とを、前記基地局装置へ送信する請求項1記載の通信制御方法。
  5.  前記ユーザ装置は、前記第1のプレファレンス情報と、前記ユーザ装置が前記データを送信する際に利用することを希望する周波数に関する第3のプレファレンス情報とを、前記基地局装置へ送信する請求項1記載の通信制御方法。
  6.  前記ユーザ装置は、前記第1のプレファレンス情報と、前記第2データ送信に用いられる設定情報が複数のセルで利用することを希望するか否かの情報とを、前記基地局装置へ送信する請求項1記載の通信制御方法。
  7.  さらに、前記基地局装置は、前記第1のプレファレンス情報に基づいて、前記ユーザ装置に対する設定を行うことを含む
     請求項1記載の通信制御方法。
  8.  さらに、前記基地局装置は、前記第1のプレファレンス情報を他の基地局装置へ送信することを含む
     請求項1記載の通信制御方法。
  9.  前記基地局装置は、XnインターフェイスのUEコンテキスト取得(UE Context Retrival)メッセージ又はハンドオーバ要求(Handover Request)メッセージを利用して前記第1のプレファレンス情報を前記他の基地局装置へ送信する請求項8記載の通信制御方法。
  10.  前記ユーザ装置は、前記第1データ送信のための第1設定情報と、前記第2データ送信のための第2設定情報との双方を前記基地局装置から設定された場合、前記第1データ送信よりも前記第2データ送信を優先して実行することを含む請求項1記載の通信制御方法。
  11.  第1の複数のセルを有する基地局装置とユーザ装置、又は各々少なくとも1つのセルを有する前記基地局装置及び他の基地局装置により第2の複数のセルが構成された前記基地局装置及び前記他の基地局装置と前記ユーザ装置との間で無線通信が行われる移動通信システムにおける通信制御方法であって、
     前記基地局装置が、RRC(Radio Resource Control)コネクティッド状態にある前記ユーザ装置へ設定情報を送信することと、
     RRCコネクティッド状態にある前記ユーザ装置が、前記設定情報を受信することと、
     RRCインアクティブ状態にある前記ユーザ装置が、前記設定情報に基づいて、前記第1又は第2の複数のセルにおいて、予め設定された無線リソースを用いてデータを送信することと、を有し、
     前記設定情報は、RRCインアクティブ状態にある前記ユーザ装置が、前記第1又は第2の複数のセルにおいて、予め設定された前記無線リソースを用いて前記データを送信するための情報である通信制御方法。
  12.  前記設定情報には、前記第1の複数のセル又は前記第2の複数のセルで前記設定情報が有効であるエリアを示すエリア情報が含まれる請求項11記載の通信制御方法。
  13.  前記エリア情報は、前記セルのリスト、又は前記エリアの識別情報で示されることを特徴とする請求項12記載の通信制御方法。
  14.  前記エリアは、RNA(Rand-based Notification Area)と同一であることを特徴とする請求項12記載の通信制御方法。
  15.  前記設定情報は、セル毎に異なることを特徴とする請求項11記載の通信制御方法。
  16.  さらに、前記基地局装置が、前記設定情報を他の基地局装置へ送信することを含む
     請求項11記載の通信制御方法。
  17.  前記基地局装置は、前記設定情報を前記ユーザ装置に送信する前に、前記設定情報を前記他の基地局装置へ送信する請求項16記載の通信制御方法。
  18.  RRCインアクティブ状態にある前記ユーザ装置は、在圏するセルが前記エリア情報に含まれるエリア内のセルの場合、予め設定された前記無線リソースを用いて前記データを送信し、在圏するセルが前記エリア情報に含まれるエリア内のセルではない場合、前記データの送信を行わない請求項12記載の通信制御方法。
  19.  さらに、前記基地局装置が、前記エリアの識別情報、又は複数のセルで前記設定情報が有効であることをサポートしている情報をSIB(Sysytem Information Block)を用いて報知することを含む
     請求項12記載の通信制御方法。
  20.  さらに、前記基地局装置が、前記ユーザ装置が在圏するセルに隣接するセルにおいて適用されるTA(Timing Advance)値を報知することを含む
     請求項11記載の通信制御方法。
  21.  基地局装置とユーザ装置との間で無線通信が行われる移動通信システムにおける通信制御方法であって、
     前記基地局装置が、RRC(Radio Resource Control)コネクティッド状態にある前記ユーザ装置へ設定情報を送信することと、
     RRCコネクティッド状態にある前記ユーザ装置が、前記設定情報を受信することと、
     RRCインアクティブ状態である前記ユーザ装置が、前記設定情報に基づいて、ランダムアクセスプロシージャのメッセージを用いてデータを送信する第1データ送信及び予め設定された無線リソースを用いてデータを送信する第2データ送信のうち少なくともいずれか1つを、キャリアアグリゲーション、デュアルコネクティビティ、及びPDCP(Packet Data Convergence Protocol)デュプリケーションのうち少なくともいずれか1つにより行うこと、とを有することを特徴とする通信制御方法。
  22.  前記基地局装置が第1の複数のセルを有し、又は各々少なくとも1つのセルを有する前記基地局装置と他の基地局装置とによって第2の複数のセルが構成される場合において、
     前記ユーザ装置が前記キャリアアグリゲーションを行う場合は、前記第1の複数のセルにおいて前記基地局装置と前記キャリアアグリゲーションを行い、又は前記第2の複数のセルにおいて前記基地局装置及び前記他の基地局装置とに対して前記キャリアアグリゲーションを行い、
     前記ユーザ装置が前記デュアルコネクティビティを行う場合は、前記第2の複数のセルにおいて前記基地局装置及び前記他の基地局装置と前記デュアルコネクティビティを行い、
     前記ユーザ装置が前記PDCPデュプリケーションを行う場合は、前記第2の複数のセルにおいて前記基地局装置及び前記他の基地局装置と前記PDCPデュプリケーションを行う請求項21記載の通信制御方法。
  23.  前記第1データ送信のための前記設定情報、又は前記第2データ送信のための前記設定情報は、セル毎に異なる請求項22記載の通信制御方法。
  24.  前記設定情報には、前記キャリアアグリゲーション又は前記デュアルコネクティビティに用いたセルの情報が含まれる請求項22記載の通信制御方法。
  25.  前記設定情報には、ベアラID又は論理チャネルIDが含まれる請求項21記載の通信制御方法。
  26.  前記設定情報には、前記PDCPデュプリケーションを行うか否かの情報が含まれる請求項21記載の通信制御方法。
  27.  さらに、RRCコネクティッド状態にある前記ユーザ装置は、第1のプレファレンス情報を前記基地局装置へ送信することを含み、
     前記第1のプレファレンス情報は、RRCインアクティブ状態にある前記ユーザ装置が、前記第1データ送信及び前記第2データ送信のうち少なくともいずれか1つを希望する情報であり、
     前記基地局装置は、前記第1のプレファレンス情報に基づいて前記設定情報を設定し、設定した前記設定情報を前記ユーザ装置へ送信する請求項21記載の通信制御方法。
  28.  さらに、RRCインアクティブ状態にある前記ユーザ装置は、複数のセルを用いて前記データを送信することを示す情報を前記基地局装置へ送信することを含む、
     請求項22記載の通信制御方法。
  29.  さらに、RRCインアクティブ状態にある前記ユーザ装置は、PDCPデュプリケーションを行っているか否かの情報を前記基地局装置へ送信することを含む
     請求項22記載の通信制御方法。
  30.  RRCインアクティブ状態にある前記ユーザ装置は、前記データのデータ量、サービス種別、前記ユーザ装置と前記基地局装置との間の無線状況に基づいて、前記第1又は第2の複数セルにおける前記データの送信を行うか、又は前記第1又は第2の複数セル内の単一のセルにおける前記データの送信を行うかを判定して、前記データを送信する請求項22記載の通信制御方法。
  31.  さらに、前記基地局装置が、前記ユーザ装置から送信された前記データの受信に成功した場合、前記ユーザ装置に対して応答信号又は応答メッセージを送信することを含む
     請求項21記載の通信制御方法。
  32.  さらに、RRCインアクティブ状態にある前記ユーザ装置が、前記PDCPデュプリケーションによる前記データ送信を行った場合において、前記第2の複数のセルを構成する前記基地局装置と前記他の基地局装置のうち、少なくとも1つから応答信号又は応答メッセージを受信した場合、前記データ送信が成功したと判定することを含む
     前記請求項22記載の通信制御方法。
  33.  前記ユーザ装置は、前記基地局装置と前記他の基地局装置のいずれからも前記応答信号又は前記応答メッセージを受信できなかった場合、RRCインアクティブ状態において再度データ送信を行うか、RRCコネクティッド状態へ遷移して、前記データを再送信する請求項32記載の通信制御方法。
  34.  基地局装置と無線通信を行うユーザ装置における通信制御方法であって、
     RRC(Radio Resource Control)インアクティブ状態である前記ユーザ装置が、ランダムアクセスプロシージャのメッセージを用いてデータを送信、又は予め設定された無線リソースを用いてデータを送信することを失敗したとき、失敗に関する情報を前記ユーザ装置のメモリに記憶することと、
     RRCインアクティブ状態にある前記ユーザ装置又はRRCコネクティッド状態にある前記ユーザ装置が、前記メモリに記憶した前記失敗に関する情報を前記基地局装置へ送信することと、
     を有する通信制御方法。
  35.  前記失敗に関する情報には、MDT(Minimization of Drive Tests)ヘッダに含まれる情報、実行したプロシージャの種類を表す情報、選択した無線リソースの情報、どのメッセージを受信できなかったのかを表す情報、特定の失敗理由を表す情報、失敗したデータ送信に用いたSFN(System Frame Number)及び/又はサブフレーム情報、失敗した回数又はリトライカウント識別子、失敗したデータのデータサイズ情報、又はデータ発生からデータ送信完了まで遅延時間の情報が含まれる請求項34記載の通信制御方法。
  36.  前記ユーザ装置は、Msg5を利用して、前記失敗に関する情報を前記基地局装置へ送信、又は、前記Msg5を利用してログが存在することを示す情報を前記基地局装置へ送信し、前記基地局装置からのログ取得要求に対して、前記失敗に関する情報を前記基地局装置へ送信する請求項34記載の通信制御方法。
PCT/JP2021/029111 2020-08-06 2021-08-05 通信制御方法 WO2022030579A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022541726A JP7492011B2 (ja) 2020-08-06 2021-08-05 通信制御方法、ユーザ装置及びプロセッサ
US18/164,533 US20230180338A1 (en) 2020-08-06 2023-02-03 Communication control method
JP2024080423A JP2024105612A (ja) 2020-08-06 2024-05-16 通信制御方法、ユーザ装置、プロセッサ及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-133859 2020-08-06
JP2020133859 2020-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/164,533 Continuation US20230180338A1 (en) 2020-08-06 2023-02-03 Communication control method

Publications (1)

Publication Number Publication Date
WO2022030579A1 true WO2022030579A1 (ja) 2022-02-10

Family

ID=80118096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029111 WO2022030579A1 (ja) 2020-08-06 2021-08-05 通信制御方法

Country Status (3)

Country Link
US (1) US20230180338A1 (ja)
JP (2) JP7492011B2 (ja)
WO (1) WO2022030579A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023231632A1 (zh) * 2022-05-31 2023-12-07 荣耀终端有限公司 Sdt事件记录方法、装置及存储介质
WO2023238388A1 (ja) * 2022-06-10 2023-12-14 富士通株式会社 無線通信装置及び第2無線通信装置
WO2024025451A1 (en) * 2022-07-25 2024-02-01 Telefonaktiebolaget Lm Ericsson (Publ) Small data transmissions in a wireless network
EP4418720A1 (en) * 2023-02-15 2024-08-21 Nokia Technologies Oy Failure reporting in small data transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220416990A1 (en) * 2021-06-24 2022-12-29 FG Innovation Company Limited Method and device for performing small data transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140024357A1 (en) * 2011-04-11 2014-01-23 Nokia Corporation Method and apparatus for cell type specific measurement configuration
US20190257916A1 (en) * 2016-11-04 2019-08-22 Intel IP Corporation Reference signal time difference (rstd) measurements for observed time difference of arrival (otdoa) positioning
US20200137760A1 (en) * 2018-10-31 2020-04-30 Asustek Computer Inc. Method and apparatus for transmission using preconfigured uplink resources in a wireless communication system
US20200245334A1 (en) * 2019-01-25 2020-07-30 Qualcomm Incorporated Preconfigured uplink resource techniques in wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140024357A1 (en) * 2011-04-11 2014-01-23 Nokia Corporation Method and apparatus for cell type specific measurement configuration
US20190257916A1 (en) * 2016-11-04 2019-08-22 Intel IP Corporation Reference signal time difference (rstd) measurements for observed time difference of arrival (otdoa) positioning
US20200137760A1 (en) * 2018-10-31 2020-04-30 Asustek Computer Inc. Method and apparatus for transmission using preconfigured uplink resources in a wireless communication system
US20200245334A1 (en) * 2019-01-25 2020-07-30 Qualcomm Incorporated Preconfigured uplink resource techniques in wireless communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA ALCATEL-LUCENT SHANGHAI BELL: "Duplication Impacts to PDCP", 3GPP DRAFT; R2-1702642 DUPLICATION IMPACTS TO PDCP, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 24 March 2017 (2017-03-24), XP051253625 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023231632A1 (zh) * 2022-05-31 2023-12-07 荣耀终端有限公司 Sdt事件记录方法、装置及存储介质
WO2023238388A1 (ja) * 2022-06-10 2023-12-14 富士通株式会社 無線通信装置及び第2無線通信装置
WO2024025451A1 (en) * 2022-07-25 2024-02-01 Telefonaktiebolaget Lm Ericsson (Publ) Small data transmissions in a wireless network
EP4418720A1 (en) * 2023-02-15 2024-08-21 Nokia Technologies Oy Failure reporting in small data transmission

Also Published As

Publication number Publication date
JP2024105612A (ja) 2024-08-06
US20230180338A1 (en) 2023-06-08
JP7492011B2 (ja) 2024-05-28
JPWO2022030579A1 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
WO2022030579A1 (ja) 通信制御方法
EP3649814B1 (en) Methods and devices for scheduling group uplink communication
CN112218332B (zh) 基站发起的用于支持补充链路的控制机制
US10979942B2 (en) Data transmission method, network device, and terminal device
EP2039211B1 (en) Performing handover in a wireless communication system
CN112534897A (zh) 通信系统、通信终端及基站
JP6687452B2 (ja) 移動通信システム、ユーザ端末、プロセッサ、記憶媒体及びプログラム
JP6062088B2 (ja) ユーザ端末、及びプロセッサ
KR20150053721A (ko) 무선 링크 실패 취급 방법
JP6132840B2 (ja) 通信制御方法、ユーザ端末、プロセッサ、及び記憶媒体
US11533136B2 (en) Discard of PDCP PDU submitted for transmission
JP5905575B2 (ja) 通信制御方法及び基地局
EP2861009A1 (en) Mobile communication system and user terminal
JP7305684B2 (ja) 通信制御方法
US20220201794A1 (en) Communication control method
CN111713057A (zh) 用于处置通信的传送装置和其中执行的方法
JPWO2019194296A1 (ja) 通信制御方法
US20220070920A1 (en) Infrastructure equipment, communications device and methods
JP6140014B2 (ja) ユーザ端末、基地局、及びプロセッサ
WO2021056521A1 (zh) 链路状态的处理方法和装置
CN116648993A (zh) 用于在mr-dc场景中去激活及激活scg的方法及设备
JP7419562B2 (ja) 通信制御方法
US20230076165A1 (en) Base station and control method of base station
WO2020241426A1 (ja) 無線測定収集方法及びユーザ装置
JP7426383B2 (ja) 通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21854395

Country of ref document: EP

Kind code of ref document: A1