WO2012139260A1 - 气提式外置管式膜生物反应器净化装置 - Google Patents

气提式外置管式膜生物反应器净化装置 Download PDF

Info

Publication number
WO2012139260A1
WO2012139260A1 PCT/CN2011/001098 CN2011001098W WO2012139260A1 WO 2012139260 A1 WO2012139260 A1 WO 2012139260A1 CN 2011001098 W CN2011001098 W CN 2011001098W WO 2012139260 A1 WO2012139260 A1 WO 2012139260A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tubular membrane
pneumatic valve
pump
bioreactor
Prior art date
Application number
PCT/CN2011/001098
Other languages
English (en)
French (fr)
Inventor
金振忠
金丽
金洪义
Original Assignee
Jin Zhenzhong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Zhenzhong filed Critical Jin Zhenzhong
Publication of WO2012139260A1 publication Critical patent/WO2012139260A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a tubular membrane bioreactor for organic wastewater treatment.
  • a typical external membrane bioreactor is to place the membrane device outside the biochemical pool.
  • the raw water of the biochemical pool is continuously connected to the biochemical tank through the feed water pump and the circulation pump.
  • the permeate is transferred to the clear water tank, and the concentrated water is returned to the biochemical pool due to the high concentration of suspended solids in the mixture in the biochemical tank.
  • the external membrane bioreactor In order to prevent fouling of the membrane module, the external membrane bioreactor must be subjected to solid-liquid separation in a large cross-flow form.
  • the ratio of circulating water to water production is usually 10:1. That is, the production of 1 ton of permeate requires 10 tons of raw water circulating water.
  • the power consumption of this large cross-flow usually reaches 1-3 kWh/ton of water, which is obviously high energy consumption.
  • the tubular membrane module (P4) is a vertical barrel-shaped casing (5) plus and a lower head (6,
  • the membrane tube (10) is composed of a base film and a surface film; the base film is sintered by ultra-high molecular weight polyethylene prepared by a sintering method, and the surface film is polyvinylidene fluoride.
  • the bottom of the tubular membrane module (P4) is equipped with a gas distributor (P5) sintered with ultra high molecular weight polyethylene.
  • Figure 1 is a front cross-sectional view of a tubular membrane module of the present invention
  • Figure 2 is a cross-sectional view taken along line AA of Figure 1 of the present invention:
  • Figure 3 is a structural view of the system of the present invention.
  • Figure 4 is a graph of system parameter comparison of the present invention.
  • the invention comprises a bioreactor (Pl), a feed water pump (P2), a circulation pump (P3), a tubular membrane module (P4), a gas distributor (P5), an air compressor (P6), a backwash pump (P7) , dosing pump (P8) and multiple sets of pneumatic tricks (Vl, V2 ⁇ V8 ); bioreactor (P1) biologically treated water through feed pump (P2) - circulation pump (P3 ) ⁇ Pneumatic valve (VI) ⁇ Inlet (1) ⁇ Water hole (13) ⁇ Film tube (10) ⁇ Water production port (4) ⁇ Pneumatic valve (V8)—Clean water pool; Water outlet/outlet (3) ⁇ Pneumatic valve (V6) ⁇ bioreactor (P1), emptying device; water inlet (1) pneumatic valve (V5) - backwashing sewage pipe - bioreactor (P1); air compressed by air compressor (P6) ⁇ Pneumatic valve (V2) ⁇ Inlet port (2) of tubular membrane module (P4), all the way ⁇ Pneumatic valve ⁇
  • the membrane tube (10) is composed of a base film and a surface film; the base film is sintered by an ultrahigh molecular weight polyethylene prepared by a sintering method, and the surface film is polyvinylidene fluoride.
  • the bottom of the tubular membrane module (P4) is equipped with an air distributor (P5) sintered with ultra high molecular weight polyethylene material.
  • the base film and the film form a strong bond, so that the film tube (10) can withstand a high backwashing pressure (0.5 MPa), and both materials have the ability to withstand strong oxidation, strong acid, and strong alkali.
  • the membrane tube (1) facilitates rapid on-line cleaning, thereby maintaining continuous and stable operation in high-concentration, high-viscosity water filtration.
  • Gastric membrane module (P4) stripping formation and gas supply volume The design of the gas distributor (P5) must be based on the packing density of the tubular membrane inner membrane tube. The bubbles formed are not as small as possible, and the bubbles must be suitably capable of scrubbing between the gaps of the membrane tubes (10).
  • the gas supply of each tubular membrane module (P4) is 0-20I1 ⁇ 23/h ; the stripping pressure is preferably 0.05 MPa.
  • the feed water pump (2) feeds the mixed liquid in the biochemical reactor (1) to the tubular membrane module (P4), and the feed water pump (P2) is used to maintain a constant influent flow rate through the circulation pump (P3). Increase the flow rate from the bottom of the tubular membrane module (P4) to the top; the compressed air is compressed by the air compressor (P6) and the air is evenly fed into the cavity of the tubular membrane module (P4) via the bottom air distributor (P5). . As the air rises, the mixture and suspended solids rise, and a certain flow rate (l-3m/ s ) is maintained on the surface of the membrane tube (10). The air is agitated to scrub the surface of the membrane, and the suspended particles that easily cause membrane fouling and clogging are taken away.
  • the mixed liquid flows in a cross-flow form, and the particles and solute larger than the pores of the membrane are trapped on the surface of the membrane, and the pores are permeable to the membrane wall to purify the water, thereby achieving solid-liquid separation.
  • the purified produced water enters the clear water pool through the product water outlet (4) and the pneumatic valve (V8). Because of the cross-flow filtration, the concentrated water returns to the biochemical reactor (Pl) through the pneumatic valve (V6), so that the sludge concentration in the biochemical reactor (PI) is continuously increased, which is beneficial to further degrading the hardly decomposable organic matter, thereby improving biochemistry. Effect; air circulation
  • the empty pipe is empty.
  • the air compressor (P6) is turned on, the oil-free compressed air passes through the pneumatic valve (V4), and the product water outlet (4) enters the cavity of the tubular membrane module (P4) from the opposite direction of membrane filtration.
  • the punching pressure is 0.5MPa, and the continuous pulse type backwashing is 2-3 times, each time is 2 - 3 seconds.
  • the process is: Backwashing pump (P7) pumping water from the clear water tank from the water production outlet (4) into the tubular membrane Inside the chamber of the component (P4), it flows out from the water inlet (1) and returns to the biochemical reactor (Pl) through the backwashing drain pipe.
  • the tubular membrane module (P4) is subjected to chemical treatment by a metering pump (8). Immersion and cleaning of 15mi n . Generally, during the 30-45 days, a thorough chemical cleaning of the tubular membrane module (P4) is required to restore the original passage of the tubular membrane module (P4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

说 明 书 气提式外置管式膜生物反应器净化装置
技术领域: 本发明涉及有机废水处理回用管式膜生物反应装置。
背景技术: 目前的膜生物反应器绝大多釆用 "浸没式中空纤维膜组件"膜组 件安放在生化池内, 采取抽吸式过滤, 通过自吸泵或真空抽吸, 源水 透过中空纤维膜而实现固液分离净化, 由于抽吸式工作变量控制小, 只有 8-12L/m2 * h, 流量相对较低, 且由于膜组件长 0†间浸泡在拥有 大量微生物的污水中, 具有生成生物污染的风险, 化学清洗时, 只能 离线进行, 这不利于大规模连续稳定运行, 膜组件寿命短, 一般只有 1-2年。
一般的外置式膜生物反应器是将膜装置于生化池外放置。生化池 的原水通过给水泵和循环泵使膜装置与生化池连续在一起。透过液至 清水池,浓水返回生化池,由于生化池中的混合液悬浮固体浓度很高。 为防止膜组件污堵,这种外置式膜生物反应器必须采用大错流形式进 行固液分离, 为达到每秒 1-3米的过滤速度, 通常循环水量和产水量 的比例达到 10: 1 , 即生产 1吨透过液, 需要 10吨的原水循环水量, 这种大错流的电耗通常要达到 1-3度电 /吨水, 明显的是高能耗。
发明内容: 本发明的目的在于提供一种气提式外置管式膜生物反应器净化 装置。 它包括生物反应器(Pl)、 给水泵(P2)、 循环泵(P3)、 管式膜 组件(P4)、 布气器(P5)、 空气压缩机(P6)、 反洗泵(P7)、 加药泵
(P8)和多组气动阀门 (Vl、 V2 -"… V8); 生物反应器 (P1) 中经生 物处理后的水经给水泵(P2 )→循环泵 (P3)→气动阀门(VI)→进水口
(1)一布水孔 U3) 膜管(10)→产水口(4)→气动阀门(V8) → 清水池; 出水 /出气口(3)→气动阀门(V6) 生物反应器(P1), 排空 装置; 进水口( 1 )→气动阀门(V5) 反洗排污管→生物反应器( P1 ); 空气经空气压缩机(P6)压缩一路 气动阀门 2)→管式膜组件(?4) 的进气口(2), 一路→气动阀门( 4)→气动阀门(V3、 V7、 V8) →产水 出口(4); 清水池—反洗泵(P7)→气动阀门 (V3); 加药箱→加药泵
(P8) 气动阀门 (V7)。 管式膜组件( P4 )是一个竖直的圆桶形外壳(5)加上、 下封头 (6、
7)用上、 下密封 (8、 9)密闭的整体; 上封头 (6)设置产水出口(4)和出 水 /出气口(3); 下封头(7)设置进水口(1)和进气口(2); 外壳(5)内纵 向设置布气板 (15)、 布气孔(14)和膜管(10), 横向设置若干布水 /布 气孔(12)和布水孔(13), 中间设置堵头(11)。
膜管(10)由基膜和表膜组成;基膜由烧结法制备的超高分子量聚 乙烯烧结而成, 表膜为聚偏氟乙烯。 管式膜组件 (P4)底部装有一个用超高分子量聚乙烯材料烧结成 型的布气器 (P5)。 附图说明:
附图 1是本发明管式膜组件的主视剖面图; 附图 2是本发明图 1的 A-A向剖面图:
附图 3是本发明的系统结构图;
附图 4是本发明的系统参数对比图表。
具体实施方式:
本发明包括生物反应器(Pl)、 给水泵(P2)、 循环泵(P3)、 管 式膜组件(P4)、 布气器(P5)、 空气压缩机(P6)、 反洗泵(P7)、 加 药泵(P8)和多组气动闽门 (Vl、 V2 ······ V8 ); 生物反应器(P1) 中 经生物处理后的水经给水泵(P2 )—循环泵 (P3)→气动阀门(VI)→进 水口(1)→布水孔(13)→膜管(10)→产水口(4)→气动阀门(V8) —清水池; 出水 /出气口(3)→气动阀门(V6) →生物反应器(P1), 排 空装置;进水口( 1 ) 气动阀门(V5)—反洗排污管―生物反应器 ( P1 ); 空气经空气压缩机( P6 )压缩一路→气动阀门(V2)→管式膜组件( P4 ) 的进气口(2), 一路→气动阀门 ^4)→气动阀门(V3、 V7、 V8) →产水 出口(4); 清水池—反洗泵(P7) →气动阀门(V3); 加药箱→加药泵 (P8) —气动阀门 (V7); 管式膜组件(P4)是一个竖直的圆桶形外 壳(5)加上、 下封头 (6、 7)用上、 下密封 (8、 9)密闭的整体; 上封头 (6)设置产水出口(4)和出水 /出气口(3); 下封头(7)设置进水口(1) 和进气口(2); 外壳(5)内纵向设置布气板 (15)、 布气孔(14)和膜管
(10), 横向设置若干布水 /布气孔(12)和布水孔(13), 中间设置堵头
(11)。膜管(10)由基膜和表膜组成;基膜由烧结法制备的超高分子量 聚乙烯烧结而成,表膜为聚偏氟乙烯。管式膜组件 (P4)底部装有一个 用超高分子量聚乙烯材料烧结成型的布气器 (P5)。 基膜与表膜形成牢固的结合,使膜管(10)能耐受较高的反冲洗压 力 (0. 5MPa ), 同时, 上述两种材料都具有耐强氧化、 强酸、 强碱的 能力。 综合上述优点, 膜管(1)有利于快速在线清洗, 从而在高浓度、 高粘度的水体过滤中, 始终保持连续稳定运行。
管式膜组件 (P4)气提的形成和气提供气量: 布气器(P5 )的设计 必须依据管式膜内膜管的装填密度而定。 所形成的气泡不是越小越 好, 气泡必须适当能在膜管(10)空隙之间起到擦洗作用。每个管式膜 组件(P4)的供气量在 0- 20I½3/h; 气提压力 < 0. 05MPa为宜。
管式膜组件 (P4)工作状态:
1、 过滤:
在过滤时, 给水泵(2 )将生化反应器(1 )中的混合液送入管式 膜组件( P4 ),给水泵( P2 )用于保持恒定的进水流量,经循环泵( P3 ) 提高流速从管式膜组件(P4 )底部流向顶部; 压缩空气经过空气压缩 机(P6 )压缩后经底部的布气器(P5 )将空气均匀送入管式膜组件(P4 ) 的腔体中。 由于空气的上升驱动, 带动混合液和悬浮固体上升, 在膜 管 (10 )表面保持一定的流速(l-3m/S ), 空气搅动擦洗膜表面, 带 走容易造成膜污染和堵塞的悬浮顆粒和胶体, 混合液以错流形式流 动, 大于膜孔的颗粒和溶质被截留在膜表面, 而小于膜孔的透过膜壁 而使得水得到净化, 实现固液分离。 净化后的产水经产水出口 (4 ), 气动阀门(V8 )进入清水池。 由于是错流过滤, 浓水经气动阀门(V6 ) 回到生化反应器(Pl ), 使得生化反应器(PI )中污泥浓度不断增加, 有利于进一步将难分解的有机物降解, 从而提高生化效果; 空气经排 空管路排空。
2、 反洗:
在设备运行过程中, 污泥聚积在管式膜组件(P4)的内腔、 膜管 (10)的表面和膜孔内, 为保持系统的正常运行。 这些污染物必须定 期通过反冲洗排出。
反洗过程中, 开启空气压缩机(P6), 无油压缩空气经气动阀门 (V4), 产水出口 (4)从膜过滤的反方向进入管式膜组件(P4)的腔 内, 其反冲压力 0.5MPa, 连续脉冲式反冲洗 2-3次,每次时间是 2 - 3 秒。 气反冲后, 再开启反洗泵(P7)用清水池中的产水反洗 1-2πΰη, 过程是: 反洗泵(P7)从清水池抽水从产水出口 (4)进入管式膜组 件(P4) 的腔内, 从进水口 (1)流出, 经反洗排污管回到生化反应 器(Pl)。 在正常气反冲、 水反洗 15-20个周期后, 需进行加强反洗, 即在水反洗中, 通过计量泵(8)投加化学药剂对管式膜组件(P4) 进行 10- 15min的浸泡和清洗。 一般在 30-45天期间, 还需对管式膜 组件(P4)进行彻底的化学清洗, 以恢复管式膜组件(P4)的原始通

Claims

权 利 要 求 书
1、 一种气提式外置管式膜生物反应器净化装置, 它包括生物反 应器(Pl)、 给水泵(P2)、 循环泵(P3)、 管式膜组件(P4)、 布气器
(P5)、 空气压缩机(P6)、 反洗泵(P7)、 加药泵(P8)和多组气动 阀门 (Vl、 V2…… V8), 其特征在于: 生物反应器(P1) 中经生物处 理后的水经给水泵(P2)→循环泵 (?3)→气动阀门(Vl)→进水口 (1) —布水孔(13) 膜管(10) →产水口 (4) —气动阀门(V8) →清水 池; 出水 /出气口(3)→气动阀门(V6) →生物反应器(P1),排空装置; 进水口 (1)→气动阀门(V5) 反洗排污管→生物反应器(P1); 空气 经空气压缩机(P6)压缩一路→气动阀门(V2)—管式膜组件(P4)的 进气口(2), 一路→气动阀门 ^4)→气动阀门(V3、 V7、 V8) →产水出 口(4);清水池—反洗泵(?7)→气动阀门(V3);加药箱→加药泵(P8) —气动阈门 (V7
2、如权利要求 1所述的气提式外置管式膜生物反应器净化装置, 其特征在于: 管式膜组件(P4)是一个竖直的圆桶形外壳(5)加上、 下封头(6、 7)用上、 下密封 (8、 9)密闭的整体; 上封头(6)设置产水 出口(4)和出水 /出气口(3); 下封头(7)设置进水口(1)和进气口 (2); 外壳(5)内纵向设置布气板(15)、 布气孔(14)和膜管(10), 横向设置 若干布水 /布气孔(12)和布水孔(13), 中间设置堵头(11)。
3、 如杈利要求 1或 2所述的气提式外置管式膜生物反应器净化 装置, 其特征在于: 膜管(10)由基膜和表膜组成; 基膜由烧结法制备 的超高分子量聚乙烯烧结而成, 表膜为聚偏氟乙烯。
4、 如权利要求 1或 2所述的气提式外置管式膜生物反应器净化 装置, 其特征在于: 管式膜组件 (P4)底部装有一个用超高分子量聚乙 烯材料烧结成型的布气器 (P5)。
PCT/CN2011/001098 2011-04-11 2011-07-04 气提式外置管式膜生物反应器净化装置 WO2012139260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100891962A CN102730816A (zh) 2011-04-11 2011-04-11 气提式外置管式膜生物反应器净化装置
CN201110089196.2 2011-04-11

Publications (1)

Publication Number Publication Date
WO2012139260A1 true WO2012139260A1 (zh) 2012-10-18

Family

ID=46987221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001098 WO2012139260A1 (zh) 2011-04-11 2011-07-04 气提式外置管式膜生物反应器净化装置

Country Status (2)

Country Link
CN (1) CN102730816A (zh)
WO (1) WO2012139260A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566767B (zh) * 2013-11-22 2015-11-18 厦门理工学院 一种用于管式烧结膜过滤器的气水反吹洗装置
CN104743656B (zh) * 2015-04-14 2016-11-23 江南大学 一种用于处理高含盐高污泥浓度废水的垂直型管式mbr
CN106365257A (zh) * 2016-11-14 2017-02-01 河南锦源环保科技有限公司 一种无机膜全气动自动控制系统
CN106379963A (zh) * 2016-11-14 2017-02-08 河南锦源环保科技有限公司 一种管式膜气液谐振过滤装置及其使用方法
CN108310834A (zh) * 2017-01-18 2018-07-24 黄学锋 三级反冲洗系统和冲洗方法
CN107226522A (zh) * 2017-07-20 2017-10-03 金科水务工程(北京)有限公司 一种分体式气提膜反应器处理装置
CN110228834B (zh) * 2019-05-31 2022-01-11 苏州英特工业水处理工程有限公司 可反冲洗的自流式水处理系统
CN111408273A (zh) * 2020-04-17 2020-07-14 武汉市天牧云科技有限公司 一种有机管式膜、管式膜组件以及管式膜机组
CN113877423B (zh) * 2021-11-10 2024-04-02 第一环保(深圳)股份有限公司 耐高温陶瓷碳化硅膜处理高有机废液方法
CN116078163A (zh) * 2023-04-11 2023-05-09 东莞市华清环保工程有限公司 一种超滤膜组件
CN117504763A (zh) * 2023-11-09 2024-02-06 多氟多海纳新材料有限责任公司 一种基于微通道反应器的六氟磷酸锂生产系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347752A (zh) * 2001-09-18 2002-05-08 天津膜天膜工程技术有限公司 中空纤维膜分离装置及其运行方法
CN1415558A (zh) * 2001-10-29 2003-05-07 金振忠 中水连续微滤净化系统
CN101250011A (zh) * 2008-03-25 2008-08-27 东华大学 一种深度处理印染废水的组合式过滤系统和方法
CN101422699A (zh) * 2008-12-02 2009-05-06 孟广祯 气提内循环膜过滤器及液体膜过滤方法
CN101450831A (zh) * 2007-11-30 2009-06-10 孟广祯 气提循环式膜生物反应装置及污水处理方法
CN101785973A (zh) * 2010-02-10 2010-07-28 金振忠 管式复合膜超、微滤膜组件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2755081Y (zh) * 2004-12-20 2006-02-01 天津膜天膜工程技术有限公司 外置式中空纤维膜生物反应器
CN100486681C (zh) * 2005-06-02 2009-05-13 中国科学院生态环境研究中心 外置式气升循环膜分离设备
TW200925126A (en) * 2007-12-07 2009-06-16 Ind Tech Res Inst Sequencing batch membrane bioreactor dealing device and method thereof
CN101274810B (zh) * 2008-05-20 2013-10-16 北京汉青天朗水处理科技有限公司 一种污水处理装置
CN101284213B (zh) * 2008-05-30 2011-08-03 北京汉青天朗水处理科技有限公司 一种清洗膜分离设备的方法及装置
CN201437073U (zh) * 2009-03-06 2010-04-14 东莞市红树林环保科技有限公司 一种管式复合膜组件
CN201634496U (zh) * 2010-03-04 2010-11-17 上海德宏生物医学科技发展有限公司 外置气水混合膜生物反应器组件
CN202089817U (zh) * 2011-04-11 2011-12-28 金振忠 气提式外置管式膜生物反应器净化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347752A (zh) * 2001-09-18 2002-05-08 天津膜天膜工程技术有限公司 中空纤维膜分离装置及其运行方法
CN1415558A (zh) * 2001-10-29 2003-05-07 金振忠 中水连续微滤净化系统
CN101450831A (zh) * 2007-11-30 2009-06-10 孟广祯 气提循环式膜生物反应装置及污水处理方法
CN101250011A (zh) * 2008-03-25 2008-08-27 东华大学 一种深度处理印染废水的组合式过滤系统和方法
CN101422699A (zh) * 2008-12-02 2009-05-06 孟广祯 气提内循环膜过滤器及液体膜过滤方法
CN101785973A (zh) * 2010-02-10 2010-07-28 金振忠 管式复合膜超、微滤膜组件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Also Published As

Publication number Publication date
CN102730816A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
WO2012139260A1 (zh) 气提式外置管式膜生物反应器净化装置
CN102030390B (zh) 一种处理废水的膜精密过滤装置及其应用
CN101205109B (zh) 厌氧法处理化纤废水装置
CN201433143Y (zh) 一种外压式超滤膜净水装置
CN105600880B (zh) 一种含氮杂环化合物化工尾水的深度处理装置及其组合工艺
CN104108830B (zh) 中水深度处理及回用系统
CN201080449Y (zh) 一种超滤反洗水回收装置
CN205635294U (zh) 用于处理高浓度聚氨酯合成皮革废水的处理系统
CN202089817U (zh) 气提式外置管式膜生物反应器净化装置
JP2015077530A (ja) 造水方法および造水装置
CN105481164A (zh) 一种烟草废水处理工艺
US20220234930A1 (en) Method for Purifying Contaminated Water
CN102976555A (zh) 一体化气浮-膜生物反应器
CN114262052A (zh) 一种厌氧膜生物反应器和有机污水处理的方法
CN205061690U (zh) 一种厌氧-好氧一体化污水处理装置
CN210150897U (zh) 一种中水回用装置
CN106746077A (zh) 工业废水深度处理自动化设备系统
CN105668952A (zh) 一种智能双膜一体化污水处理系统
CN206915909U (zh) 中央纯水系统
KR20200000056A (ko) 세라믹 분리막을 이용한 가축분뇨, 축산폐수 또는 축산세척수의 처리방법 및 처리장치
CN210796097U (zh) 一种集装箱式垃圾渗滤液处理系统
RU2547498C1 (ru) Физико-химический мембранный биореактор
CN203794712U (zh) 一种高效水处理装置
CN202988904U (zh) 一种微污染水处理设备
CN207294435U (zh) 高级氧化双膜法污水回用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863408

Country of ref document: EP

Kind code of ref document: A1