WO2012137916A1 - 有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法とその製造方法に用いる有機発光素子製造用塗液 - Google Patents

有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法とその製造方法に用いる有機発光素子製造用塗液 Download PDF

Info

Publication number
WO2012137916A1
WO2012137916A1 PCT/JP2012/059492 JP2012059492W WO2012137916A1 WO 2012137916 A1 WO2012137916 A1 WO 2012137916A1 JP 2012059492 W JP2012059492 W JP 2012059492W WO 2012137916 A1 WO2012137916 A1 WO 2012137916A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
light emitting
organic light
organic
Prior art date
Application number
PCT/JP2012/059492
Other languages
English (en)
French (fr)
Inventor
荒谷 介和
石原 慎吾
俊一郎 信木
広貴 佐久間
佐々木 洋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011084998A external-priority patent/JP5637917B2/ja
Priority claimed from JP2011152455A external-priority patent/JP5707258B2/ja
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012137916A1 publication Critical patent/WO2012137916A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/30Organic light-emitting transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/86Series electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic light emitting device, a light source device using the organic light emitting device, a method of manufacturing them, and a coating liquid for manufacturing an organic light emitting device used in the method of manufacturing the same.
  • organic LEDs have features of thinness, lightness, surface emission, and flexibility, various developments have been made as surface emission light sources.
  • an organic LED is used as a surface emitting light source, particularly when used as an organic LED element with a large area, if the organic LED element is short-circuited due to the influence of foreign matter or the like, the entire surface becomes unlit.
  • Patent Document 1 reports that organic LEDs can be connected in series and in parallel to obtain stable light emission.
  • Patent Document 2 discloses organic electroluminescence having at least a first pixel electrode, an organic functional layer formed on the first pixel electrode, and a second pixel electrode formed on the organic functional layer.
  • a substrate having a pixel electrode region and a non-pixel electrode region is disposed between a nozzle electrode and a lower electrode of an electrostatic attraction type droplet discharge device, and a predetermined voltage is applied between the nozzle electrode and the lower electrode.
  • the organic functional layer coating liquid is selectively applied to the pixel electrode region from the nozzle electrode due to the difference in electric field intensity between the nozzle electrode and the lower electrode.
  • a method of manufacturing an organic electroluminescent device characterized in that it is ejected.
  • the organic layer and the upper electrode needed to be formed into a film partially. Therefore, although a mask or the like is used to perform film formation patterning, there is a problem that the process becomes complicated because alignment is required. That is, since it is necessary to perform alignment (alignment) of an organic layer and an upper electrode before film forming, there existed a problem that manufacturing time was required.
  • An object of the present invention is to provide an organic light emitting element capable of suppressing an increase in production time due to alignment, a light source device using the organic light emitting element, a method for producing them and a coating liquid for producing an organic light emitting element used in the producing method. is there.
  • a method of manufacturing an organic light emitting device wherein an organic layer and an insulating layer are formed without alignment on a substrate on which a first electrode and a second electrode are formed.
  • a first organic light emitting element having a first lower electrode, a pixel formation layer, a mixed layer, an electrode connection layer and a first upper electrode, and a second organic EL device having a second lower electrode and a second upper electrode
  • An organic light-emitting element light source comprising: an organic light-emitting element light source comprising: a first lower electrode, a pixel formation layer, and a first upper electrode formed in this order on a substrate; The lower electrode and the electrode connection layer are sequentially formed, and the surface energy of the first lower electrode and the surface energy of the second lower electrode are different, and the second lower electrode and the first electrode are formed by the electrode connection layer.
  • the upper electrode is electrically connected, and the mixed layer is formed at the boundary between the pixel formation layer and the electrode connection layer, and the mixed layer includes the component of the pixel formation layer and the component of the electrode connection layer,
  • the pixel forming layer is a host and a light emitting diode.
  • a light source device using the organic light-emitting device comprising a cement.
  • a method of manufacturing an organic light emitting device light source comprising the steps of: preparing; and applying the coating solution to the first lower electrode and the second lower electrode.
  • the said coating liquid contains at least 3 types of solvent in which boiling points differ, The boiling point of one solvent of said 3 types of solvents is Coating liquid for organic light emitting element manufacture lower than the boiling point of two other solvents.
  • an organic light emitting device which can be manufactured by suppressing the alignment time, a light source device using the organic light emitting device, and a method of manufacturing them. Problems, configurations, and effects other than those described above will be clarified by the description of the embodiments below.
  • FIG. 1 is a top view of an organic light emitting device according to an embodiment of the present invention.
  • the substrate 1 is, for example, a resin film.
  • the substrate 1 is not limited to a resin film, and may be a glass substrate or a metal substrate. In the case where the substrate 1 is a resin film, it is necessary that an appropriate moisture permeability reduction process be performed.
  • a film having a reflective function may be formed as the substrate 1. Examples of the film having a reflection function include laminated films of metal and polymer. In that case, a so-called top emission type element can be formed.
  • the light extraction function may be provided on the substrate 1. In that case, more efficient light emission can be obtained.
  • the sealing film and the light extraction film may be used in some cases, and the organic light emitting device can be simplified. In the present embodiment, a film having a reflection function was used as the substrate 1.
  • the first electrode 2 is, for example, a cathode.
  • the first electrode 2 is not limited to the cathode, but can also be used as an anode.
  • the second electrode 3 is an anode.
  • the second electrode 3 is formed to face the first electrode 2.
  • the second electrode 3 is not limited to the anode, but can also be used as a cathode.
  • the third electrode 4 is formed to face the second electrode 3.
  • the third electrode 4 is insulated from the first electrode 2.
  • the fourth electrode 5 is formed to face the third electrode 4.
  • the fourth electrode 5 is insulated from the second electrode 3. Only the first electrode 2 and the second electrode 3 may be provided on the substrate 1 without providing the third electrode 4 and the fourth electrode 5 on the substrate 1, or the number of electrodes may be increased.
  • FIG. 1 The top view of FIG. 1 does not accurately represent the laminated structure of the organic light emitting device. In order to make the shapes of the components of the organic light emitting element easy to see, the laminated structure of FIG. 1 is a schematic explanatory view different from the laminated structure of FIG.
  • the first electrode 2, the second electrode 3, the third electrode 4 and the fourth electrode 5 have a comb shape when viewed from the normal direction of the substrate 1.
  • the comb teeth portion of the comb electrode may have a shape in which a point electrode and a ring electrode are combined.
  • Materials that can be used as the first electrode 2, second electrode 3, third electrode 4 and fourth electrode 5 are metals such as Cr, Mo, Al, Ag, or reflectivity such as AlNi, CrAu, MgAu, etc. It is a material, or a transparent material such as ITO or IZO.
  • Cr is desirable from the viewpoint of having a work function that is stable and can inject holes and electrons. In this example, Cr was used as an electrode material.
  • the width of the comb portion (a in FIG. 1) is preferably 10 ⁇ m or less.
  • the light emitting portion can be expanded.
  • tip of a comb-tooth part, and the connection part of a comb-tooth 10 micrometers or less are desirable.
  • the light emitting portion can be enlarged by narrowing the distance between the tip of the comb teeth portion and the connection portion of the comb teeth to 10 ⁇ m or less.
  • the first electrode 2 and the third electrode 4, the second electrode 3 and the fourth electrode 5 may be integrally formed.
  • the electrode and the power source forming the end organic light emitting element can be easily made It can connect.
  • the electrode width of the comb-like electrodes is 10 ⁇ m, and the distance between the facing electrodes is 15 ⁇ m.
  • the organic layer 6 is a layer including the hole transport layer 10, the light emitting layer 11, and the electron transport layer 12. Electrons and holes are injected into the organic layer 6 from the opposing electrode, and are recombined in the light emitting layer 11 to emit light.
  • the insulating layer 7 is a layer for applying an electric field to the organic layer 6.
  • the first electrode 2, the second electrode 3, the organic layer 6, and the insulating layer 7 constitute a first organic light emitting element LE1.
  • the second electrode 3, the third electrode 4, the organic layer 6 and the insulating layer 7 constitute a second organic light emitting element LE 2.
  • the third electrode 4, the fourth electrode 5, the organic layer 6 and the insulating layer 7 constitute a third organic light emitting element LE 3.
  • the first organic light emitting element LE1, the second organic light emitting element LE2, and the third organic light emitting element LE3 are connected in series.
  • the organic light emitting element is provided with a driving device or the like for driving the organic light emitting element, thereby forming a light source device.
  • FIG. 2 is a cross-sectional view taken along the line AA 'of FIG. 1 and is a cross-sectional view of one embodiment of the organic light emitting device according to the present invention.
  • a hole transport layer 10 is formed on the first electrode 2, the second electrode 3, the third electrode 4 and the fourth electrode 5.
  • the electrodes have a comb shape, it is desirable to make the heights of the adjacent comb portions as uniform as possible. Thereby, the electric field strength between the electrodes can be increased.
  • Another layer may be interposed between the first electrode 2, the second electrode 3, the third electrode 4 and the fourth electrode 5, and the hole transport layer 10 or may be in contact therewith.
  • an electron transport layer 12 described later may be formed.
  • the hole transport layer 10 is formed on the light emitting layer 11. Forming the hole transport layer 10 on the first electrode 2, the second electrode 3, the third electrode 4 and the fourth electrode 5 is preferable in that the range of material selection is expanded. In FIG. 2, the hole transport layer 10 is formed so as to cover the comb teeth of the electrode. The thickness of the hole transport layer 10 may be smaller than the height of the comb teeth portion of the electrode, and the light emitting layer 11 may cover the comb teeth of the electrode.
  • the hole transport layer 10 is a layer that transports holes from the second electrode 3 to the organic layer 6.
  • a homopolymer or copolymer of fluorene, carbazole, arylamine or the like is used.
  • materials having a thiophene type or a pyrrole type as a skeleton can also be used.
  • polymers having a skeleton such as fluorene, carbazole, arylamine, thiophene or pyrrole in the side chain can also be used.
  • the polymer is not limited, and a starburst amine compound, an arylamine compound, a stilbene derivative, a hydrazone derivative, a thiophene derivative and the like can be used.
  • polymers containing the above materials may be used.
  • the present invention is not limited to these materials, and two or more of these materials may be used in combination.
  • a polymer material is used as the material of the hole transport layer 10.
  • the hole transport layer 10 was formed into a film by the slit coat method in which the printing width can be defined by the nozzle width without the alignment step.
  • the light emitting layer 11 is formed on the hole transport layer 10. Another layer may be interposed between the hole transport layer 10 and the light emitting layer 11, or may be in contact therewith.
  • the light emitting layer 11 is a layer in which holes and electrons injected from the opposite electrode recombine and emit light.
  • [Formula 1] as a host material As the material of the light emitting layer 11, [Formula 2] as a blue dopant, and [Formula 3] as a red dopant can be used.
  • a host material of the light emitting layer 11 it is preferable to use a carbazole derivative other than [Chemical formula 1], a fluorene derivative, an arylsilane derivative or the like.
  • binder polymers such as polycarbonate, polystyrene, acrylic resin, and polyamide can also be used in combination.
  • polymer materials having a skeleton such as carbazole or fullleon can also be used.
  • the excitation energy of the host be sufficiently larger than the excitation energy of the blue dopant. Excitation energy is measured using the emission spectrum.
  • Ir complexes other than those represented by the formula 2 are also used. Further, various metal complexes such as Pd, Pt and Al, and organic materials such as styrylamines can also be used.
  • red dopant material of the light emitting layer 11 Ir complexes other than those represented by the formula 3 are also used.
  • various metal complexes such as Pd, Pt, Al, Zn, DCM ([2-[(E) -4- (dimethylamino) styryl] -6-methyl-4H-pyran-4-ylidene] malononitrile), etc.
  • Organic materials can also be used.
  • [Chemical formula 1] was used as the host material
  • [chemical formula 2] was used as the blue dopant
  • the light emitting layer 11 was formed into a film by the slit coat method which can prescribe
  • the configuration of the light emitting layer 11 is not limited to this configuration.
  • the configuration including the blue dopant, the green dopant, and the red dopant has a wider emission spectrum range, and can produce an organic light emitting device having excellent color rendering.
  • the light emitting layer 11 may contain any one of blue dopant, green dopant and red dopant.
  • An Ir complex can be used as the green dopant.
  • various metal complexes such as Pd, Pt, and Al, coumarin dyes, and organic materials such as quinacridone can also be used.
  • a charge transport material such as an electron transport material or a hole transport material can be additionally used in the light emitting layer 11.
  • An oxadiazole derivative etc. can be used for an electron transport material.
  • a triphenylamine derivative etc. can be used for a positive hole transport material.
  • An electron transport layer 12 is formed on the light emitting layer 11. Another layer may be interposed between or in contact with the light emitting layer 11 and the electron transporting layer 12.
  • the electron transport layer 12 may be provided in a single layer or a plurality of layers.
  • the electron transport layer 12 is a layer that supplies electrons to the light emitting layer 11.
  • the material of [Chemical formula 4] can be used as the electron transport layer 12.
  • the material of the electron transport layer 12 for example, bis (2-methyl-8-quinolinolato) -4- (phenylphenolato) aluminum (hereinafter, BAlq) or tris (8-quinolinolato) aluminum (other than the chemical formula 4)
  • BAlq phenylphenolato aluminum
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • UGH2 1,4-bis (triphenylsilyl) benzene
  • oxadiazole derivative triazole derivative, fullerene derivative, phenanthroline derivative, quinoline derivative and the like
  • [Chemical formula 4] was used as the material of the electron transport layer 12.
  • the electron transport layer 12 was formed into a film by the vapor deposition method which defined the vapor deposition area
  • An insulating layer 7 is formed on the electron transport layer 12. Another layer may be interposed between the electron transport layer 12 and the insulating layer 7 or may be in contact therewith.
  • the insulating layer 7 is a layer that applies an electric field to the organic layer 6 by polarization in the layer. An electric field is applied in the lateral direction between the first electrode 2 and the second electrode 3 formed in a comb shape. It is difficult for the charge to flow in the light emitting layer 11 only by the electric field in that direction. Due to the presence of the insulating film 7, the electric field generated between the first electrode 2 and the second electrode 3 is distorted, a charge flows to the light emitting layer 11, and a charge is recombined in the light emitting layer 11. .
  • the film thickness of the insulating layer 7 is about several hundred nm to several ⁇ m.
  • polyurea of the formula 5 can be used as the insulating layer 7, for example.
  • Polyurea is prepared by co-evaporation of diaminofluorene and 4,4'-diphenylmethane diisocyanate.
  • the undercoat film orients the insulating layer 7 formed of polyurea.
  • oxygen appears on the surface of the base film on the side where the insulating film 7 is present.
  • oxides of Mn, V, W and Si can be mentioned.
  • Polyurea forms a polarization because orientation occurs in the film. The occurrence of this orientation can be confirmed from angle-dependent measurements such as infrared absorption.
  • the insulating layer 7 exhibiting polarization in addition to polyurea, polyimide films, benzimidazole derivatives such as Alq 3 and [Chemical formula 6], 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) And the like), and oxadiazole derivatives such as 1,3-bis (2- (4-tert-butylphenyl) -1,3,4-oxadiazo-5-yl) benzene (OXD-7).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • oxadiazole derivatives such as 1,3-bis (2- (4-tert-butylphenyl) -1,3,4-oxadiazo-5-yl) benzene (OXD-7).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • OXD-7 oxadiazole derivatives
  • a protective layer 8 is formed on the insulating layer 7.
  • the protective layer 8 is a layer for suppressing the moisture permeability and protecting the organic light emitting element. As shown in FIG. 1, by making the area of the protective layer 8 larger than the areas of the organic layer 6 and the insulating layer 7 when viewed in the normal direction of the substrate 1, moisture can be prevented from entering from the in-plane direction of the substrate 1. .
  • a laminated film the plastic film etc. which have a structure which laminated
  • the protective layer 8 in the present embodiment can be attached continuously to the top of the insulating layer 7 and manufactured continuously.
  • the protective layer 8 may be provided with a layer having a light extraction function. As a result, more light emitted from the organic light emitting element can be emitted to the outside.
  • the first electrode 2, the second electrode 3, the third electrode 4, and the fourth electrode 5 are formed on the substrate 1 in advance.
  • the first electrode 2, the second electrode 3, the third electrode 4, and the fourth electrode 5 are formed using photolithography.
  • the hole transport layer 10 and the light emitting layer 11 are slit coat methods in which the printing width can be defined by the nozzle width, and can be produced without alignment.
  • the advancing direction of the substrate 1 at the time of film formation is the long side direction of FIG. If it is the method of forming into a film continuously, it will not be limited to the slit coat method, It can form into a film also by the roll-coating method, a spray method, etc.
  • the electron transport layer 12 and the insulating layer 7 can be formed without alignment by an evaporation method in which an evaporation region is defined by a mask.
  • FIG. 3 is a circuit diagram showing an embodiment of the organic light emitting device in the present invention shown in FIG.
  • the organic light emitting elements connected in parallel are connected in series, and stable light emission can be obtained.
  • a voltage was applied between the first electrode 2 and the fourth electrode 5
  • light emission was observed from the protective layer 8 side, and stable light emission was obtained.
  • FIG. 4 is a top view of an embodiment of the organic light emitting device in the present invention.
  • the substrate 21 is a film. A film having a reflective function was used as the substrate 21.
  • the first electrode 22 is a cathode. Cr was used as the first electrode 22.
  • the second electrode 23 is an anode. Cr was used as the second electrode 23.
  • the second electrode 23 is formed to face the first electrode 22.
  • the third electrode 24 is formed to face the second electrode 23.
  • the third electrode 24 is insulated from the first electrode 22.
  • Cr was used as the third electrode 24.
  • the fourth electrode 25 is formed to face the third electrode 24. Cr was used as the fourth electrode 25.
  • An organic layer 26 is formed on the electrode.
  • the organic layer 26 is a layer including the hole transport layer 40, the light emitting layer 41, and the electron transport layer 42. Electrons and holes are injected from the opposite electrode, and recombine in the light emitting layer 41 to emit light.
  • An insulating layer 27 is formed on the organic layer 26.
  • the insulating layer 27 is a layer for applying an electric field to the organic layer 26.
  • a polarization forming electrode 28 is formed on the insulating layer 27.
  • the polarization forming electrode 28 is an electrode for forming a polarization in the insulating layer 27.
  • the top view of FIG. 4 does not accurately represent the laminated structure of the organic light emitting device. Unlike the laminated structure of FIG. 5, the laminated structure of FIG. 4 is a schematic explanatory view in order to make the shapes of the constituent elements of the organic light emitting device easy to see.
  • FIG. 5 is a cross-sectional view taken along the line AA 'of FIG. 4 and is a cross-sectional view of one embodiment of the organic light emitting device according to the present invention.
  • a hole transport layer 40 is formed on the first electrode 22, the second electrode 23, the third electrode 24 and the fourth electrode 25. Another layer may be interposed between the first electrode 22, the second electrode 23, the third electrode 24 and the fourth electrode 25 and the hole transport layer 40, or may be in contact with the other layer. Instead of the hole transport layer 40, an electron transport layer 42 described later may be formed.
  • the hole transport layer 40 is a layer that transports holes from the second electrode 23 to the organic layer 26. In the present embodiment, a polymer material is used as the hole transport layer 40.
  • the light emitting layer 41 is formed on the hole transport layer 40. Another layer may be interposed between the hole transport layer 40 and the light emitting layer 41, or may be in contact therewith.
  • the light emitting layer 41 is a layer in which holes and electrons injected from the opposite electrode recombine and emit light.
  • [Formula 1] was used as a host material
  • [Formula 2] was used as a blue dopant
  • [Formula 3] was used as a red dopant.
  • An electron transport layer 42 is formed on the light emitting layer 41. Another layer may be interposed between or in contact with the light emitting layer 41 and the electron transporting layer 42.
  • the electron transport layer 42 is a layer that supplies electrons to the light emitting layer 41.
  • the material of [Chemical formula 4] was used as the electron transport layer 42.
  • An insulating layer 27 is formed on the electron transport layer 42. Another layer may be interposed between the electron transport layer 42 and the insulating layer 27 or may be in contact therewith.
  • the insulating layer 27 is a layer for insulating the polarization forming electrode 28 and the organic layer 26 in the upper part and applying an electric field to the organic layer 26.
  • a material obtained by mixing polymethyl methacrylate (PMMA) with an ionic substance of the formula 7 was used. PMMA disperses ionic substances.
  • PMMA polymethyl methacrylate
  • a voltage can be initially applied to form polarization in the insulating layer 27. This eliminates the need to apply an electric field to the polarization forming electrode 28 each time.
  • ionic substance in addition to [Chemical formula 7], BF 4 ⁇ salts and PF 6 ⁇ salts of amine compounds are considered.
  • the glass transition temperature of the ionic substance is desirably 100 ° C. or less.
  • a thin SiOx film was inserted between the insulating layer 27 and the electron transport layer 42 which are the PMMA dispersed film.
  • the polarization forming electrode 28 was used for the polarization forming electrode 28.
  • the polarization forming electrode 28 may be a transparent electrode such as ITO.
  • a reflective electrode of Cr, Mo, Al, Ag, AlNi, CrAu, MgAu or the like can be mentioned.
  • a terminal for applying an electric field on the outside by making the size of the polarization forming electrode 28 larger than the sizes of the organic layer 26, the insulating layer 27 and the protective layer 29 in the in-plane long axis direction of the substrate 21. You can take
  • a protective layer 29 is formed on the polarization forming electrode 28.
  • the protective layer 29 is a layer that suppresses moisture permeability and protects the organic light emitting device.
  • the film which laminated the layer which controls moisture permeability was used.
  • the first electrode 22, the second electrode 23, the third electrode 24, and the fourth electrode 25 were formed in advance on the substrate 21 by a photolithography method.
  • the hole transport layer 40 and the light emitting layer 41 were produced without alignment by the slit coat method in which the printing width can be defined by the nozzle width.
  • the electron transport layer 42 was formed without alignment by an evaporation method in which the evaporation region was defined by a mask.
  • the insulating layer 27 was produced by the slit coat method which can prescribe
  • the polarization forming electrode 28 was formed without alignment by the sputtering method in which the film formation area was limited by a mask.
  • the organic light emitting elements of this embodiment are also connected in series with light emitting diodes connected in parallel, and stable light emission can be obtained.
  • a voltage is applied to the polarization forming electrode 28 to polarize the insulating layer 27, a voltage is applied between the first electrode 22 and the fourth electrode 25, and light emission from the polarization forming electrode 28 side is confirmed. , Stable light emission was obtained.
  • the distortion of the electric field is more reliably formed by the polarization forming electrode 28 than in Example 1, and recombination in the light emitting layer 41 is likely to occur.
  • Example 3 was prepared in the same manner as the organic light emitting device of Example 2 except for using the HfO 2 film on the insulating layer 27.
  • the HfO 2 film was formed by sputtering without using the alignment step.
  • the first electrode 2, the second electrode 3, the third electrode 4, and the fourth electrode 5 are formed of ITO using a film having no reflective function as the substrate 1, and the protective function is applied to the protective layer 8. It produced similarly to Example 1 except having used the film which has. As a result, light emission was observed from the substrate 1 side, and stable light emission was obtained.
  • An organic light emitting device having a second electrode facing the first electrode, and an insulating layer applying an electric field to the organic layer by polarization in the insulating layer.
  • the polarization forming electrode is formed on the insulating layer, and the polarization forming electrode forms the polarization in the insulating layer.
  • the insulating layer contains an ionic substance.
  • an organic light emitting element in which an electrode constituting the terminal organic light emitting element of the plurality of organic light emitting elements extends to an end portion of the terminal organic light emitting element.
  • an organic light emitting device in which the first electrode and the second electrode are metal.
  • the first electrode and the second electrode are transparent electrodes, a protective layer is formed on the insulating layer, and the protective layer has a reflective function.
  • the first electrode and the second electrode have a comb-like shape, and the width of the comb teeth of the comb electrode is 10 ⁇ m or less.
  • the organic light emitting element whose distance is 10 ⁇ m or less.
  • a light source device including a substrate, the organic light emitting device according to (1), and a driving device for driving the organic light emitting device.
  • first and second electrodes formed on the substrate, an organic layer formed on the first and second electrodes, and an insulating layer formed on the organic layer And the second electrode is opposed to the first electrode, the insulating layer applies an electric field to the organic layer by polarization in the insulating layer, and the first electrode And a method of manufacturing an organic light emitting device in which an organic layer and an insulating layer are formed without alignment on a substrate on which a second electrode is formed.
  • FIG. 6 is a cross-sectional view of one embodiment of the organic light emitting element light source according to the present invention.
  • a plurality of organic light emitting elements are connected in series.
  • the driving voltage of one organic light emitting element is about several volts, whereas the voltage of a general commercial power source is 100 to 200 volts.
  • FIG. 6 shows a bottom emission type organic light emitting element which emits light from the first lower electrode 101 side. It may be a top emission type in which light is emitted from the first upper electrode 102 side as an organic light emitting element.
  • the first lower electrode 101, the bank 105, the pixel formation layer 103, the electrode connection layer 104, the first upper electrode 102, the resin layer 106, and the sealing substrate 107 are disposed in this order on the substrate 100. ing. Further, the light extraction layer 108 is formed on the rear surface of the substrate in the light extraction direction.
  • the drive circuit includes a power supply regulator such as an AC-DC converter or a half wave rectifier.
  • the first organic light emitting element 302 includes the first lower electrode 101, the pixel formation layer 103, the mixed layer 150 (see FIG. 7), the electrode connection layer 104, and the first upper electrode 102.
  • the second organic light emitting element 303 includes a second lower electrode 2021, a pixel formation layer 103, a mixed layer 150 (see FIG. 7), an electrode connection layer 104, and a second upper electrode 2022.
  • a bank 105 is provided between the first organic light emitting element 302 and the second organic light emitting element 303.
  • the bank 105 may be included as a component of the first organic light emitting element 302 and the second organic light emitting element 303.
  • the first lower electrode 101 is an anode.
  • the first lower electrode 101 may be a cathode.
  • the first lower electrode 101 is formed by patterning by photolithography.
  • the first upper electrode 102 When the first lower electrode 101 is an anode, the first upper electrode 102 is a cathode. When the first lower electrode 101 is a cathode, the first upper electrode 102 is an anode.
  • the first upper electrode 102 When the first upper electrode 102 is ITO or IZO, when ITO or IZO is formed by a sputtering method, a buffer is formed between the pixel formation layer 103 and the first upper electrode 102 in order to reduce damage caused by sputtering. Layers may be provided. For the buffer layer, a metal oxide such as molybdenum oxide or vanadium oxide is used.
  • the first upper electrode 102 is connected to the second lower electrode 2021 of the second organic light emitting element 303 by the electrode connection layer 104. Thereby, the light emitting units can be connected in series.
  • the banks 105 formed on the side surfaces of the first organic light emitting element 302 and the second organic light emitting element 303 are reversely tapered so that the first upper electrode 102 and the second upper electrode 2022 do not conduct. Used for The bank 105 insulates the first upper electrode 102 from the second upper electrode 2022. After forming by coating, the bank 105 is formed by developing and exposing using a predetermined photomask. The surface of the bank 105 on the side where the pixel formation layer 103 and the electrode connection layer 104 are present may be subjected to liquid repellency treatment. For example, the surface of the bank 105 is plasma-treated with a fluorine-based gas, and the surface of the bank 105 is fluorinated to perform liquid repelling treatment.
  • a liquid repellent layer is formed on the surface of the bank 105. It is preferable to use a negative photoresist as the bank 105. Further, as the bank 105, an acrylic resin, a polyimide resin, a novolac resin, a phenol resin, a non-photosensitive material or the like can be used.
  • the resin layer 106 is formed on the first upper electrode 102 and the bank 105.
  • the resin layer 106 is used to seal the first upper electrode 102 and the bank 105, and is used to prevent the entry of gas and moisture that cause deterioration of the organic light emitting element.
  • various polymers such as epoxy resin can be used.
  • an inorganic passivation film on the first upper electrode 102 can also be used as the resin layer 106.
  • the sealing substrate 107 is formed on the resin layer 106.
  • the sealing substrate 107 is a glass substrate. However, other than the glass substrate, a plastic substrate having an appropriate gas barrier film can also be used.
  • the light extraction layer 108 is formed on the substrate 100.
  • the light extraction layer 108 is used to efficiently extract the light emitted from the pixel formation layer 103.
  • a structure such as a microlens or a film having scattering property and diffuse reflection property is used.
  • FIG. 7 is a cross-sectional view of an organic light emitting device according to an embodiment of the present invention.
  • a mixed layer 150 of both exists at the boundary between the pixel formation layer 103 and the electrode connection layer 104.
  • the mixed layer 150 contains the components of the pixel formation layer 103 and the components of the electrode connection layer 104.
  • the mixed layer 150 may be composed only of the component of the pixel formation layer 103 and the component of the electrode connection layer 104, but may contain other components.
  • the mixed layer 150 is formed on the side surface of the second lower electrode 201, the present invention is not limited to this, and the mixed layer 150 may be formed on the second lower electrode 201.
  • the pixel formation layer 103 is disposed on the first lower electrode 101, and the electrode connection layer 104 is formed on the second lower electrode 201.
  • the substrate 100, the first lower electrode 101, the pixel formation layer 103, and the first upper electrode 102 are arranged in this order from the lower side, and the organic light emitting device of FIG. Bottom emission type in which light emitted from the pixel formation layer 103 is extracted.
  • the first lower electrode 101 is a transparent electrode to be an anode
  • the first upper electrode 102 is a reflective electrode to be a cathode.
  • the pixel formation layer 103 contains a light emitting layer formation material.
  • the pixel formation layer 103 may contain a layer other than the light emitting layer formation material.
  • layers other than the light emitting layer any one or more of an electron injection layer, an electron transport layer, a hole transport layer and a hole injection layer may be mentioned.
  • the light emitting layer forming material includes a host and a first dopant. Electrons and holes are recombined in the pixel formation layer 103, and the pixel formation layer 103 emits light.
  • the first dopant examples include fluorescent compounds and phosphorescent compounds.
  • the first dopant one or more of a red dopant, a green dopant, a blue dopant and the like can be mentioned.
  • a second dopant may be contained as a material for forming a light emitting layer. In that case, it is desirable that the emission color of the second dopant be different from the emission color of the first dopant. "Emission color is different" means that the wavelength showing the maximum intensity in the PL spectrum of each dopant is different.
  • a third dopant may be contained as a light emitting layer forming material.
  • the emission color of the third dopant be different from the emission color of the first dopant and the emission color of the second dopant.
  • the first dopant, the second dopant and the third dopant are a red dopant, a green dopant and a blue dopant, white light is emitted from the organic light emitting element in a single pixel formation layer 103.
  • the electrode connection layer 104 electrically connects the first upper electrode 102 and the second lower electrode 201 of the organic light emitting element to form a series structure.
  • the electrode connection layer 104 may be on the side surface of the pixel formation layer 103 as shown in FIG. 7, but may be present to cover the pixel formation layer 103 as shown in FIG.
  • the electrode connection layer 104 can be used as a charge injection layer or an electrode, as shown in FIG.
  • the number of steps can be reduced by forming the element. By forming the organic light emitting element as shown in FIG. 7, unnecessary layers can be reduced as compared with FIG. 8.
  • the charge transport layer 160 may be formed between the pixel formation layer 103 and the first lower electrode 101. It does not have to be.
  • Examples of the charge transport layer 160 include a hole transport layer and an electron transport layer described later.
  • the electrode connection layer 104 contains a conductive polymer or metal fine particles.
  • the electrode connection layer 104 may be made of only a conductive polymer or metal fine particles, but may contain other components.
  • a conductive polymer that can lower the drying (baking) temperature by using a conductive polymer for the electrode connection layer 104 PEDOT (poly (3,4-ethylenedioxythiophene)): PSS (polystyrene sulfonate) , Polythiophene, polypyrrole, polyaniline and the like. These materials may be used alone or in combination of two or more as the electrode connection layer 104.
  • silver etc. are mentioned to a metal microparticle.
  • the same material may be used for the electrode connection layer 104 and the first upper electrode 102.
  • the electrode connection layer 104 doubles as the first upper electrode 102, and the number of steps can be reduced.
  • the mixed layer 150 is formed so as to be mixed to some extent even when the compatibility between the two constituent materials is low.
  • the boundary between the two layers can be planarized, and disconnection of the first upper electrode 102 or the first upper electrode 102
  • the occurrence of a short circuit or the like of the lower electrode 101 can be suppressed.
  • the presence of the mixed layer 150 can be confirmed by evaluating the distribution of each constituent material by TOF-SIMS measurement of the element cross section or the like.
  • FIG. 9 is a cross-sectional view of one embodiment of the organic light emitting source in the present invention.
  • the first organic light emitting element 302 and the second organic light emitting element 303 are divided by the bank 105.
  • a diffusion plate 301 is disposed in the direction in which light is extracted from the first organic light emitting element 302 and the second organic light emitting element 303.
  • the arrangement of the organic light emitting elements may be a zigzag as well as a stripe as shown in FIG.
  • a diffusion plate 301 may be attached to the top of the light extraction surface of the organic light emitting element in order to obtain good white light.
  • the diffusion plate 301 one in which a scatterer is dispersed in resin or glass, one in which a concavo-convex structure is formed on the surface, and the like can be considered.
  • a host is a material used to immobilize a dopant, which emits light after an excited state is formed by an electric field, and in general, the difference (band gap) between HOMO and LUMO is wider than that of the dopant. It is preferable to use a carbazole derivative, a fluorene derivative or an arylsilane derivative as a host.
  • the excitation energy of the host be sufficiently larger than the excitation energy of the blue dopant.
  • the excitation energy is measured using an emission spectrum.
  • a substituent capable of lowering surface energy such as a fluoroalkyl group having 3 or more carbon atoms is introduced as a dopant into the auxiliary ligand of the surface dopant of the metal complex, and the dopant is in the pixel forming layer 103 A concentration distribution can be formed, and the concentration can be increased above the pixel formation layer 103.
  • a material having a substituent capable of reducing surface energy is referred to as a surface dopant.
  • the molar concentration of the surface dopant on the opposite side of the pixel formation layer 103 to the substrate at the time of formation of the pixel formation layer 103 is the average molar concentration (calculated from the amount of materials mixed when preparing the light emitting layer coating solution Higher than the molar concentration). By doing so, white light emission can be realized without finely adjusting the dopant concentration.
  • the surface of the substance is different from the inside of the substance, and since the same kind of molecule does not exist on one side, the attractive force does not work and the energy is high and unstable. Therefore, in order to reduce the surface energy, a force (surface tension) that acts to reduce the surface area acts.
  • a force surface tension
  • the surface energy is reduced and stabilized by exposing the functional group to the surface.
  • the surfactant in the case of water and a surfactant (amphiphilic molecule), the surfactant has a hydrophobic group which is a functional group with low surface energy in the molecule, and brings the hydrophobic group out of the water surface as a single molecule on the water surface The formation of a film reduces the surface energy of the water surface.
  • the surface dopant in the present invention has a functional group with low surface energy such as fluoroalkyl group in the molecule. Sites such as benzene rings in dopants have higher surface energy than functional groups with low surface energy.
  • a force acts to bring out a functional group with low surface energy to the surface.
  • molecules having a functional group with low surface energy move to the film surface, a concentration distribution of surface dopants is formed, and pseudo phase separation of the pixel forming layer 103 is formed.
  • Examples of surface dopants used in one embodiment of the present invention include compounds represented by the following general formula, Formula (8), and the like.
  • X1 represents an aromatic heterocycle containing N.
  • X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.
  • X3 represents an acetylacetonate derivative, a picolinate derivative or a tetrakis pyrazolyl borate derivative.
  • Y1 represents a substituent capable of lowering the surface energy, and is a substituent selected from one or more of a fluoroalkyl group, a perfluoroalkyl group, an alkyl group (the number of C is 10 or more), a perfluoropolyether group and a siloxy group Represents
  • the above-described substituent may be provided only to a single dopant of two or more dopants.
  • the above-mentioned substituent may be imparted to a plurality of dopants among the dopants of two or more colors.
  • the pixel formation layer 103 contains a blue dopant and a green dopant or a red dopant, it is desirable to include the above substituent in the green dopant or the red dopant in consideration of the energy transfer of the blue dopant.
  • the blue dopant has a maximum intensity of PL spectrum at room temperature between 400 nm and 500 nm.
  • the main skeleton of the blue dopant include perylene and iridium complexes (such as Bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)): FIrpic and the like.
  • the iridium complex represented by [Chemical Formula 9] is more preferable in terms of light emission characteristics.
  • an element of Groups 8, 9 or 10 in the periodic table, specifically, Pt or Pd can be used.
  • X1 represents an aromatic heterocycle containing N.
  • X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.
  • Examples of the aromatic heterocycle represented by X 1 include quinoline ring, isoquinoline ring, pyridine ring, quinoxaline ring, thiazole ring, pyrimidine ring, benzothiazole ring, oxazole ring, benzoxazole ring, indole ring, isoindole ring and the like.
  • Examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by X2 include benzene ring, naphthalene ring, anthracene ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, fluorene ring and the like.
  • X3 includes acetylacetonate derivatives, picolinate derivatives, tetrakis pyrazolyl borate derivatives and the like. Also, X3 may be the same as X1-X2.
  • the concentration of the blue dopant in the pixel formation layer 103 is preferably 10 wt% or more with respect to the host.
  • the weight average molecular weight of the blue dopant is preferably 500 or more and 3,000 or less.
  • Green dopant> The green dopant has a maximum intensity of PL spectrum at room temperature between 500 nm and 590 nm.
  • the main skeleton of the green dopant include coumarin and derivatives thereof, and iridium complexes (Tris (2-phenylpyridine) iridium (III): hereinafter Ir (ppy) 3, etc.).
  • the iridium complex represented by [Chemical formula 8] is more preferable in terms of light emission characteristics.
  • X1 represents an aromatic heterocycle containing N
  • X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.
  • Examples of the aromatic heterocycle represented by X 1 include quinoline ring, isoquinoline ring, pyridine ring, quinoxaline ring, thiazole ring, pyrimidine ring, benzothiazole ring, oxazole ring, benzoxazole ring, indole ring, isoindole ring and the like.
  • Examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by X2 include benzene ring, naphthalene ring, anthracene ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, fluorene ring and the like.
  • Examples of X3 include acetylacetonate derivatives and the same as X1-X2.
  • the concentration of the green dopant in the pixel formation layer 103 is preferably 1 wt% or less with respect to the host.
  • the weight average molecular weight of the green dopant is preferably 500 or more and 3,000 or less.
  • the red dopant has a maximum intensity of PL spectrum at room temperature between 590 nm and 780 nm.
  • red dopants examples include rubrene, (E) -2- (2- (4- (dimethylamino) styryl) -6-methyl-4H-pyran-4-ylidene) malononitrile (DCM) and derivatives thereof, iridium Complexes (Bis (1-phenylisoquinoline) (acetylacetonate) iridium (III) and the like), osmium complexes, europium complexes, etc. may be mentioned.
  • the iridium complex represented by [Chemical formula 8] is more preferable in terms of light emission characteristics.
  • X1 represents an aromatic heterocycle containing N
  • X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.
  • Examples of the aromatic heterocycle represented by X 1 include quinoline ring, isoquinoline ring, pyridine ring, quinoxaline ring, thiazole ring, pyrimidine ring, benzothiazole ring, oxazole ring, benzoxazole ring, indole ring, isoindole ring and the like.
  • Examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by X2 include benzene ring, naphthalene ring, anthracene ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, fluorene ring and the like.
  • X3 is preferably an acetylacetonate derivative or the like.
  • the concentration of the red dopant in the pixel formation layer 103 is preferably 1 wt% or less with respect to the host.
  • the weight average molecular weight of the red dopant is preferably 500 or more and 3,000 or less.
  • the hole injection layer is used for the purpose of improving the luminous efficiency and the lifetime. Further, although not particularly essential, it is used for the purpose of alleviating the irregularities of the anode.
  • the hole injection layer may be provided as a single layer or a plurality of layers.
  • the hole injection layer is preferably a conductive polymer such as PEDOT (poly (3,4-ethylenedioxythiophene)): PSS (polystyrene sulfonate).
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonate
  • polypyrrole-based and triphenylamine-based polymer materials can be used.
  • phthalocyanine compounds and starburst amine compounds which are often used in combination with a low molecular weight (weight average molecular weight of 10000 or less) material system are also applicable.
  • the hole transport layer is a layer that supplies holes to the light emitting layer. In a broad sense, the hole injection layer and the electron blocking layer are also included in the hole transport layer.
  • the hole transport layer may be provided as a single layer or a plurality of layers.
  • a starburst amine compound, stilbene derivative, hydrazone derivative, thiophene derivative, fluorene derivative or the like can be used. Further, the present invention is not limited to these materials, and two or more of these materials may be used in combination.
  • An electron accepting material may be added to the hole transport layer in order to lower the resistance of the hole transport layer and lower the driving voltage.
  • the electron accepting material refers to a material that easily receives electrons from molecules other than the electron accepting material. Examples of the electron accepting material include 7,7,8,8-tetracyanoquinodimethane (TCNQ) derivatives and the like.
  • An electron transport layer is a layer which supplies an electron to a light emitting layer.
  • the electron injection layer and the hole blocking layer are also included in the electron transport layer.
  • the electron transporting layer may be provided in a single layer or a plurality of layers.
  • Examples of the material of the electron transport layer include bis (2-methyl-8-quinolinolato) -4- (phenylphenolato) aluminum (BAlq), tris (8-quinolinolato) aluminum (Alq3), and Tris (2, 4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane (3TPYMB), 1,4-bis (triphenylsilyl) benzene (UGH2), oxadiazole derivative, triazole derivative, fullerene derivative, phenanthroline derivative, quinoline Derivatives, silole derivatives and the like can be used.
  • An electron donating material may be added to the electron transport layer to lower the resistance of the electron transport layer and lower the drive voltage of the device.
  • the electron accepting material refers to a material which is easy to emit electrons (easily passed to molecules other than the electron accepting material).
  • the electron donating material for example, N-ethyl-1,10-phenanthrolium (NEP) derivative, Methyltriphenylphosphonium (MTPP) derivative, N, N, N, N, N-tetramethyl-p-phenylenenimine (TMPD) derivative, rhodamine B chloride derivative And pyronin B chloride derivatives and 8-hydroxyquinolinolato-lithium (Liq) derivatives.
  • NEP N-ethyl-1,10-phenanthrolium
  • MTPP Methyltriphenylphosphonium
  • TMPD Methyltriphenylphosphonium
  • TMPD Methyltriphenylphosphonium
  • TMPD Methyltriphenylphosphonium
  • TMPD Methyltriphenylphosphonium
  • TMPD
  • the substrate 100 include a glass substrate, a metal substrate, and a plastic substrate on which an inorganic material such as SiO 2 , SiN x , Al 2 O 3 or the like is formed.
  • metal substrate materials include alloys such as stainless steel and 42 alloy.
  • plastic substrate materials include polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polysulfone, polycarbonate, polyimide and the like.
  • any material having a high work function can be used.
  • the material that can be used as the transparent electrode include conductive oxides such as ITO and IZO, and metals having a large work function such as thin Ag.
  • a reflective electrode one obtained by laminating ITO on Al, an ITO / Ag / ITO laminated film, Cr, Mo and the like can be mentioned.
  • the electrode pattern formation may be performed by using photolithography or the like on the substrate such as glass generally in the case of the lower electrode, and by using a metal mask in the film formation in the case of the upper electrode. it can.
  • the cathode material is preferably a metal having a low work function.
  • a laminated body of LiF and Al, a Mg: Ag alloy, etc. are suitably used as a material to be used as a reflective electrode.
  • a transparent cathode a thin Mg: Ag alloy, a thin Mg: Ag alloy laminated on ITO, a laminate of LiF and IZO, etc. may be mentioned.
  • a Cs compound, a Ba compound, a Ca compound etc. can be used instead of LiF.
  • the patterning of the electrodes can be performed in the same manner as the anode.
  • the first lower electrode 101 and the second lower electrode 201 needs to change the transparency of the material or light.
  • the material of the first lower electrode 101 and the material of the second lower electrode 201 are different from each other, surface energy control using the presence or absence of hydroxyl groups on the electrode surface and the difference in light transmittance can be easily performed.
  • the first lower electrode 101 and the second lower electrode 201 may be separately formed by laminating Au, Al or the like on ITO.
  • the boundary between the first lower electrode 101 and the second lower electrode 201 may not be provided below the bank 105, and the second lower electrode 201 may be formed on the first lower electrode 101.
  • the form is not limited.
  • a vacuum evaporation method, a sputtering method, a plating method or the like can be used as a method of forming the first lower electrode 101 and the second lower electrode 201.
  • a surface treatment material having different surface energy is used, or light is irradiated from the back surface or the surface of the substrate. Do the processing.
  • Surface treatment can be performed using a SAM film or the like. At that time, patterning of the surface treatment can be performed by making a difference in the type of the first lower electrode 101 and the second lower electrode 201 or the light transmittance in advance.
  • the SAM film-forming material examples include a silane coupling agent and a material having a thiol group (SH group) at the end.
  • a silane coupling agent having a hydrophobic group such as an alkyl group or a fluoroalkyl group
  • a photoisomerization site such as an azo group or a photoleaving group such as a nitrobenzyl group in its molecule is preferable.
  • the light to be irradiated may be ultraviolet light, visible light or infrared light, but it needs to be a wavelength at which photoisomerization or photodetachment reaction occurs.
  • a mercury lamp, a xenon lamp, or the like can be used as a light source.
  • the coating solution is obtained by dissolving the material for forming the pixel formation layer 103 and the material for formation of the electrode connection layer 104 in an appropriate solvent.
  • the SP values of the material for forming the pixel forming layer 103 and the material for forming the electrode connection layer 104 are largely different, it is preferable to use a plurality of solvents having SP values close to the respective SP values.
  • a solvent having an intermediate SP value between the two solvents may be added as a third solvent.
  • the boiling point of the third solvent needs to be lower than the boiling points of the first solvent and the second solvent.
  • solvents having small SP values such as aromatic solvents such as toluene and xylene and hydrocarbon solvents such as hexane may be mentioned as the first solvent, and solvents having large SP values such as water may be mentioned as the second solvent.
  • the third solvent includes low boiling alcohol solvents such as methanol and ethanol.
  • Examples of coating methods for forming the pixel formation layer 103 and the electrode connection layer 104 include cast method, screen printing method, inkjet printing method, slit coating method, capillary coating method and the like.
  • the pixel formation layer 103 and the electrode connection layer 104 are formed using one or more of these methods.
  • ⁇ Production procedure> The following two methods can be mentioned as an example of a method of manufacturing an organic light emitting device.
  • the surface of the region where the first lower electrode 101 and the substrate 100 are exposed is hydrophobized, and the surface of the second lower electrode 201 is hydrophilized.
  • a coating solution containing the material for forming the pixel formation layer 103, the material for formation of the electrode connection layer 104, the first solvent, and the second solvent is applied. Since the first and second solvents are not compatible, they are separated on the substrate. Due to the difference in surface energy on the substrate after separation, the material for forming the pixel formation layer 103 is moved onto the first lower electrode 101, and the material for formation of the electrode connection layer 104 is moved onto the second lower electrode 201, Form.
  • first upper electrode 102 by forming the first upper electrode 102 by a vapor deposition method, a sputtering method, a printing method, or the like, organic light emitting elements having a serial structure can be manufactured without alignment.
  • This method has the merit of being able to reduce the number of applications.
  • only one of the first lower electrode 101 and the second lower electrode 201 may be surface-treated.
  • (2) Multiple Coating The first lower electrode 101, the second lower electrode 201 and the bank 105 are formed on the substrate 100.
  • the substrate 100 is coated with a material capable of changing water repellency and hydrophilicity by light irradiation.
  • Light is irradiated from the back of the substrate 100 to hydrophilize the region other than the second lower electrode 201 and to hydrophobize the surface of the second lower electrode 201.
  • a coating solution containing the material for forming the pixel formation layer 103 and the first solvent is applied to form the pixel formation layer 103 in the region other than the second lower electrode 201.
  • a plurality of pixel formation layers 103 may be applied.
  • light is irradiated from the surface of the substrate 100 to make the surface of the second lower electrode 201 hydrophilic.
  • the first upper electrode 102 can be formed by a vapor deposition method, a sputtering method, a printing method, or the like. According to the above procedure, organic light emitting elements having a serial structure can be formed without alignment. In this method, it is possible to form the pixel formation layer 103 in multiple layers, and a highly efficient element configuration can be obtained.
  • An organic light emitting device having a structure shown in FIG. 7 was produced as an example of the present invention.
  • ITO as a transparent electrode was used as the first lower electrode 101, and Au was used as the second lower electrode 201.
  • a silane coupling agent was applied as a surface treatment.
  • Silane coupling agents form monomolecular films on ITO and glass substrates with OH groups on the surface, but they are not formed on Au, so the surface energy on ITO and glass is small and that on Au is large. It remains.
  • PVK as a host and FIrpic as a blue dopant
  • Ir (ppy) 2acac as a green dopant
  • Ir (piq) 2acac as a red dopant
  • a conductive polymer as a material for forming the electrode connection layer 104 as a material for forming the pixel forming layer 103 (PEDOT: PSS)
  • a coating solution containing toluene as a first solvent, water as a second solvent, and ethanol as a third solvent was applied.
  • An organic light emitting device having a structure shown in FIG. 8 was manufactured as an example of the present invention.
  • ITO serving as a transparent electrode
  • Al serving as an opaque electrode was used.
  • a surface treatment it was immersed in a fluorine-based solution (0.1 wt.%) Of a silane coupling agent having a perfluoroalkyl group at the end. Thereafter, it was rinsed with a fluorine-based solvent and dried at 120 ° C. for 10 minutes. As a result, the surface of the substrate 100 becomes a surface having water repellency such that the contact angle with water is 90 ° or more.
  • a coating liquid containing a thermosetting hole transporting layer material as a material for forming the pixel forming layer 103 and toluene as a first solvent is applied, and a hole transporting layer 160 is formed in a region other than the second lower electrode 201. Be done. Then it is insolubilized in the solvent by heat curing.
  • a light emitting layer is formed by applying a coating solution containing mCP (host material), Ir (ppy) 2acac (green dopant) as a material for forming the pixel forming layer 103, and toluene as a first solvent. Furthermore, a pixel region except the first upper electrode 102 and the second upper electrode 202 can be formed by applying an electron transport layer forming material dissolved in an alcohol solvent. Next, ultraviolet light is irradiated from the surface of the substrate 100 to hydrophilize the surface of the second lower electrode 201.
  • mCP host material
  • Ir (ppy) 2acac green dopant
  • a coating liquid containing a conductive polymer (PEDOT: PSS) as a material for forming the electrode connection layer 104 and water as a second solvent is applied, and the electrode connection layer 104 is formed on the second lower electrode 201 and the electron transport layer.
  • PEDOT conductive polymer
  • an Al film is formed as a first upper electrode 102 and a second upper electrode 202 by vacuum evaporation to form an OLED having a series structure.
  • a first organic light emitting device having a first lower electrode, a pixel formation layer, a mixed layer, an electrode connection layer, and a first upper electrode
  • a second organic EL device having a second lower electrode and a second upper electrode And a first lower electrode, a pixel formation layer, and a first upper electrode are formed in this order on a substrate, and a second lower electrode and an electrode are formed on the substrate.
  • the surface energy of the first lower electrode and the surface energy of the second lower electrode are different, and the second lower electrode and the first upper electrode are electrically connected by the electrode connection layer, and the pixel is formed.
  • a mixed layer is formed at the boundary between the formed layer and the electrode connection layer, the mixed layer contains a component of the pixel formed layer and a component of the electrode connected layer, and the pixel formed layer contains a host and a light emitting dopant.
  • an organic light emitting element light source in which the first lower electrode and the second lower electrode are formed of different materials.
  • an organic light emitting element light source in which the upper electrode and the electrode connection layer are formed of the same material.
  • an organic substance including a bank which insulates the first upper electrode and the second upper electrode, wherein the boundary between the first lower electrode and the second lower electrode is provided under the bank Light emitting element light source.
  • An organic light emitting element light source containing a conductive polymer as a material for forming an electrode connection layer in the above (1).
  • auxiliary ligand of the light emitting dopant one of fluoroalkyl group, perfluoroalkyl group, alkyl group (the number of C is 10 or more), perfluoropolyether group and siloxy group as the auxiliary ligand
  • the surface energy of the first lower electrode and the second electrode are treated by performing surface treatment on the first lower electrode or the second lower electrode using a surface treatment material having different surface energy.
  • a manufacturing method including the step of making the surface energy of the lower electrode different.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 アライメントによる製膜の中断なしに製造することが可能な有機発光素子を提供する。 基板(1)上に形成された第一の電極(2)および第二の電極(3)と、第一の電極および第二の電極の上に形成された有機層(6)と、有機層の上に形成された絶縁層(7)と、を有する有機発光素子であって、第二の電極は第一の電極に対向しており、絶縁層は、絶縁層内の分極により有機層に電界を印加する有機発光素子であり、有機層および絶縁層がアライメントなしで製膜される有機発光素子とその製造方法。

Description

有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法とその製造方法に用いる有機発光素子製造用塗液
 本発明は、有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法とその製造方法に用いる有機発光素子製造用塗液に関する。
 有機LEDは薄型・軽量,面発光,フレキシブル化可能などの特長を有するため、面発光光源として、さまざまな開発がなされている。有機LEDを面発光光源として用いる場合、特に大面積の有機LED素子として用いる場合、もし異物等の影響で有機LED素子が短絡すると、全面が非点灯となる。そのような問題を回避するため、有機LEDを直列及び並列に接続し、安定した発光を得ることができることが特許文献1に報告されている。
 また、特許文献2には、少なくとも、第1画素電極と、該第1画素電極上に形成された有機機能層と、該有機機能層上に形成された第2画素電極とを有する有機エレクトロルミネッセンス素子の製造方法において、静電吸引型液滴吐出装置のノズル電極と下部電極間に、画素電極領域と非画素電極領域を有する基板を裁置し、ノズル電極と下部電極間に所定電圧を掛けた状態で、該基板もしくは液滴吐出装置のいずれかを相対的に移動させながら、ノズル電極と下部電極間の電界強度差により、画素電極領域に選択的に有機機能層塗布液をノズル電極より吐出させることを特徴とする有機エレクトロルミネッセンス素子の製造方法が開示されている。
特開2004-234868号公報 特開2007-42430号公報
 従来の有機発光素子では、直列接続した素子を作製する際、有機層および上部電極を部分的に製膜する必要があった。そのため、成膜のパターニングを行うためにマスクなどを用いるが、アライメントを必要とするため工程が複雑になるという課題がある。すなわち、有機層および上部電極の位置合わせ(アライメント)を製膜前に行う必要があるため、製造時間がかかるという問題があった。
 本発明の目的は、アライメントによる製造時間の増大を抑制できる有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法とその製造方法に用いる有機発光素子製造用塗液を提供することである。
 上記課題を解決するための本発明の第一から第五の発明の要点は以下の通りである。
 (1)基板上に形成された第一の電極および第二の電極と、第一の電極および第二の電極の上に形成された有機層と、有機層の上に形成された絶縁層と、を有する有機発光素子であって、第二の電極は第一の電極に対向しており、絶縁層は、絶縁層内の分極により有機層に電界を印加する有機発光素子およびその有機発光素子を用いた光源装置。
 (2)基板上に形成された第一の電極および第二の電極と、第一の電極および第二の電極の上に形成された有機層と、有機層の上に形成された絶縁層と、を有する有機発光素子の製造方法であって、第二の電極は第一の電極に対向して形成され、絶縁層は、絶縁層内の分極により有機層に電界を印加するように形成され、第一の電極および第二の電極が形成された基板に対して、有機層および絶縁層がアライメントなしで製膜される有機発光素子の製造方法。
 (3)第一の下部電極,画素形成層,混合層,電極接続層および第一の上部電極を有する第一の有機発光素子と、第二の下部電極および第二の上部電極を有する第二の有機発光素子と、を有する有機発光素子光源であって、基板上に前記第一の下部電極,前記画素形成層,前記第一の上部電極の順に形成され、前記基板上に前記第二の下部電極,前記電極接続層の順に形成され、前記第一の下部電極の表面エネルギーおよび前記第二の下部電極の表面エネルギーは異なり、前記電極接続層により前記第二の下部電極と前記第一の上部電極が電気的に接続され、前記画素形成層と前記電極接続層との境界に前記混合層が形成され、前記混合層は前記画素形成層の成分と前記電極接続層の成分とを含み、前記画素形成層はホストおよび発光ドーパントを含む有機発光素子を用いた光源装置。
 (4)上記(3)の有機発光素子光源の製造方法であって、前記画素形成層,前記電極接続層および前記混合層の形成材料をSP値の異なる複数の溶媒に溶解させ、塗液を作製する工程と、前記塗液を前記第一の下部電極および前記第二の下部電極に塗布する工程とを含む有機発光素子光源の製造方法。
 (5)上記(4)の製造方法に用いられる塗液であって、前記塗液には沸点の異なる少なくとも三種類の溶媒が含まれ、前記三種類の溶媒の内の一つの溶媒の沸点が他の二つの溶媒の沸点より低い有機発光素子製造用塗液。
 本発明により、アライメントする時間を抑制して製造できる有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法を提供できる。上記した以外の課題,構成及び効果は以下の実施形態の説明により明らかにされる。
本発明における有機発光素子光源装置の一実施の形態における上面図である。 本発明における有機発光素子の一実施の形態における断面図である。 図1で示した光源装置の回路図である。 本発明における有機発光素子光源装置の他の実施の形態における上面図である。 本発明における有機発光素子の他の実施の形態における断面図である。 本発明における有機発光素子の別の実施の形態における断面図である。 本発明における有機発光素子の別の実施の形態における断面図である。 本発明における有機発光素子のさらに別の実施の形態における断面図である。 本発明における有機発光素子光源装置の別の実施の形態における斜視図である。
 以下、図面等により本発明を詳細に説明する。以下の説明は本願発明の内容の具体例を示すものであり、本願発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 従来の直列接続型有機発光素子は、有機層及び上部電極を部分的に形成する必要があるため、製膜前にアライメントを行う必要があった。
 図1は、本発明における有機発光素子の一実施の形態における上面図である。基板1は例えば樹脂フィルムである。基板1として、樹脂フィルムに限るものではなく、ガラス基板や金属基板などでもよい。基板1が樹脂フィルムの場合には、適切な透湿度低下処理が施されていることが必要である。また、基板1として、反射機能を有する膜を形成されていてもよい。反射機能を有する膜としては、金属とポリマの積層膜などがあげられる。その場合は所謂トップエミッション型素子が形成できる。
 基板1側から光を取り出すボトムエミッション型素子の場合には、光取出し機能を基板1に設けてもよい。その場合、より効率の高い発光が得られる。トップエミッション型素子であれば、封止膜と光取出し膜を兼用できる場合があり、有機発光素子を簡略化できる。本実施例では、基板1として反射機能を有するフィルムを用いた。
 図1において、第一の電極2は、例えば陰極である。第一の電極2は陰極に限るものではなく、陽極としても用いることができる。第二の電極3は、陽極である。第二の電極3は、第一の電極2に対して対向して形成されている。第二の電極3は、陽極に限るものではなく、陰極としても用いることができる。第三の電極4は、第二の電極3に対向して形成されている。第三の電極4は、第一の電極2とは絶縁されている。第四の電極5は、第三の電極4に対向して形成されている。第四の電極5は、第二の電極3とは絶縁されている。基板1上に第三の電極4および第四の電極5を設けず、基板1上に第一の電極2および第二の電極3のみを設けてもよく、電極の数を増やしても良い。櫛歯状電極の上に有機層6が形成されている。有機層6の上に絶縁層7が形成されている。絶縁層7の上に保護層8が形成されている。図1の上面図は有機発光素子の積層構造を正確に表現したものではない。有機発光素子の構成要素の形状を見やすくするために、図1の積層構造は図2の積層構造とは異なり、模式的な説明図にしている。
 第一の電極2,第二の電極3,第三の電極4および第四の電極5は、基板1法線方向から見たときに櫛歯状になっている。電極構造として、櫛歯状電極の櫛歯部分を点電極とリング電極とを合わせた形状としてもよい。第一の電極2,第二の電極3,第三の電極4,第四の電極5として使用できる材料は、金属であればCr,Mo,Al,AgやAlNi,CrAu,MgAuなどの反射性材料や、ITO,IZOなどの透明性材料である。電極として、安定で、正孔,電子とも注入可能な仕事関数を持つという観点で、Crが望ましい。本実施例では、電極材料としてCrを用いた。
 電極が櫛歯状である場合、櫛歯部分の幅(図1中のa)は10μm以下が望ましい。櫛歯部分の幅を10μm以下のように狭くすることにより、発光部分を拡大できる。櫛歯部分の先端と櫛歯の連結部分との距離(図1中のc)は10μm以下が望ましい。櫛歯部分の先端と櫛歯の連結部分との距離を10μm以下のように狭くすることにより、発光部分を拡大できる。第一の電極2および第三の電極4,第二の電極3および第四の電極5は一体形成されていても良い。直列接続されている有機発光素子の末端の有機発光素子を構成する電極を図1のように有機発光素子の端部に伸ばすことで、末端の有機発光素子を構成する電極と電源とを容易に接続できる。本実施例では、櫛歯状電極の電極幅は10μm、対向している部分の電極間距離を15μmとした。
 図2において、有機層6は、正孔輸送層10,発光層11,電子輸送層12を含む層である。対向する電極から有機層6に電子及び正孔が注入され、発光層11で再結合し、発光する。絶縁層7は、有機層6に電界を印加するための層である。
 第一の電極2,第二の電極3,有機層6および絶縁層7で第一の有機発光素子LE1が構成されている。第二の電極3,第三の電極4,有機層6および絶縁層7で第二の有機発光素子LE2が構成されている。第三の電極4,第四の電極5,有機層6および絶縁層7で第三の有機発光素子LE3が構成されている。第一の有機発光素子LE1,第二の有機発光素子LE2および第三の有機発光素子LE3が直列に接続されている。有機発光素子に有機発光素子を駆動する駆動装置等が備えられることで光源装置となる。
 図2は、図1のA-A′における断面図であり、本発明における有機発光素子の一実施の形態における断面図である。第一の電極2,第二の電極3,第三の電極4および第四の電極5の上に正孔輸送層10が形成されている。電極が櫛歯状である場合、隣接する櫛歯部分の高さをできるだけ揃える方が望ましい。これにより、電極間の電界強度を大きくできる。第一の電極2,第二の電極3,第三の電極4および第四の電極5と正孔輸送層10との間に他の層が介在してもよく、接していてもよい。正孔輸送層10の代わりに後述する電子輸送層12を形成しても良い。電子輸送層12を形成した場合は、発光層11の上に正孔輸送層10が形成されることになる。第一の電極2,第二の電極3,第三の電極4および第四の電極5の上に正孔輸送層10を形成したほうが、材料選択の幅が広がるという点で好ましい。図2では、正孔輸送層10が電極の櫛歯間を覆うように形成されている。正孔輸送層10の膜厚を電極の櫛歯部分の高さよりも小さくして、発光層11により電極の櫛歯間を覆っても良い。正孔輸送層10は、正孔を第二の電極3から有機層6に輸送する層である。
 正孔輸送層10として、フルオレン,カルバゾール,アリールアミンなどの単独あるいは共重合体が用いられる。その共重合体としては、チオフェン系,ピロール系を骨格に有する材料でも用いることができる。また、側鎖にフルオレン,カルバゾール,アリールアミン,チオフェン,ピロールなどの骨格を有するポリマも用いることができる。また、ポリマに限ることはなく、スターバーストアミン系化合物やアリールアミン系化合物,スチルベン誘導体,ヒドラゾン誘導体,チオフェン誘導体なども用いることができる。また、上記の材料を含むポリマを用いてもよい。また、これらの材料に限られるものではなく、これらの材料を2種以上併用しても差し支えない。本実施例では、正孔輸送層10の材料として高分子材料を用いた。正孔輸送層10は、印刷幅をノズル幅で規定できるスリットコート法でアライメント工程なしで製膜した。
 正孔輸送層10の上に発光層11が形成されている。正孔輸送層10と発光層11との間に他の層が介在してもよく、接していてもよい。発光層11は、対向する電極から注入された正孔及び電子が再結合し発光する層である。発光層11の材料には、ホスト材料に〔化1〕、青色ドーパントに〔化2〕、赤色ドーパントに〔化3〕を用いることができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 発光層11のホスト材料として、〔化1〕以外のカルバゾール誘導体、フルオレン誘導体またはアリールシラン誘導体などを用いることが好ましい。また、ポリカーボネート、ポリスチレン、アクリル樹脂、ポリアミドなどのバインダポリマも合わせて用いることができる。また、カルバゾール、フルレオンなどの骨格を有するポリマ材料も用いることができる。効率の良い発光を得るためには青色ドーパントの励起エネルギーよりも、ホストの励起エネルギーが十分大きいことが好ましい。励起エネルギーは発光スペクトルを用いて測定される。
 発光層11の青色ドーパント材料として、〔化2〕以外のIr錯体も用いられる。また、Pd,Pt,Alなどの各種金属錯体やスチリルアミン系などの有機材料も用いることができる。
 発光層11の赤色ドーパント材料として、〔化3〕以外のIr錯体も用いられる。また、Pd,Pt,Al,Znなどの各種金属錯体やDCM([2-[(E)-4-(ジメチルアミノ)スチリル]-6-メチル-4H-ピラン-4-イリデン]マロノニトリル)などの有機材料も用いることができる。本実施例では、ホスト材料に〔化1〕、青色ドーパントに〔化2〕、赤色ドーパントに〔化3〕を用いた。発光層11は、印刷幅をノズル幅で規定できるスリットコート法でアライメント工程なしで製膜した。
 本実施例の発光層11は青色ドーパント及び赤色ドーパントを含む構成であるが、発光層11の構成はこの構成に限定されない。青色ドーパント,緑色ドーパント,赤色ドーパントを含む構成の方が、発光スペクトル範囲が広くなり、演色性に優れた有機発光素子を作製することができる。発光層11に青色ドーパント,緑色ドーパントおよび赤色ドーパントのいずれか一つだけが含まれていても良い。
 緑色ドーパントとしては、Ir錯体を用いることができる。また、Pd,Pt,Alなどの各種金属錯体やクマリン色素,キナクリドンなどの有機材料も用いることができる。
 発光層11には、電子輸送材料や正孔輸送材料などの電荷輸送材料を追加して用いることもできる。電子輸送材料には、オキサジアゾール誘導体などを用いることができる。正孔輸送材料には、トリフェニルアミン誘導体などを用いることができる。
 発光層11の上に電子輸送層12が形成されている。発光層11と電子輸送層12との間に他の層が介在してもよく、接していてもよい。電子輸送層12は単層もしくは複数層設けてもよい。電子輸送層12は、電子を発光層11に供給する層である。電子輸送層12として〔化4〕の材料を用いることができる。
Figure JPOXMLDOC01-appb-C000004
 電子輸送層12の材料として、〔化4〕以外に例えば、ビス(2-メチル-8-キノリノラト)-4-(フェニルフェノラト)アルミニウム(以下、BAlq)や、トリス(8-キノリノラト)アルミニウム(以下、Alq3)、1,4-Bis(triphenylsilyl)benzene(以下、UGH2),オキサジアゾール誘導体,トリアゾール誘導体,フラーレン誘導体,フェナントロリン誘導体,キノリン誘導体などを用いることができる。本実施例では、電子輸送層12の材料として〔化4〕を用いた。電子輸送層12は蒸着領域をマスクで規定した蒸着法で、アライメント工程なしで製膜した。
 電子輸送層12の上に絶縁層7が形成されている。電子輸送層12と絶縁層7との間に他の層が介在してもよく、接していてもよい。絶縁層7は、層内の分極により有機層6に電界を印加する層である。櫛歯状に形成された第一の電極2と第二の電極3の間に横方向に電界が印加される。その方向の電界だけでは発光層11に電荷が流れにくい。絶縁膜7があることによって、第一の電極2と第二の電極3との間に発生する電界がゆがみ、発光層11に電荷が流れ、発光層11中で電荷が再結合するようになる。
 絶縁層7の膜厚は、数100nmから数μm程度である。図1、図2のように、絶縁膜7を有機層6の上に全面に形成することにより、絶縁膜7をパターニングする工程を省略できる。
 絶縁層7として、例えば〔化5〕のポリ尿素を用いることができる。ポリ尿素は、ジアミノフルオレンと4,4′-ジフェニルメタンジイソシアネートを同時に蒸着して作製される。ポリ尿素を用いる場合、絶縁層7と電子輸送層12の間には薄い下地膜を挿入した方がよい。下地膜はポリ尿素で形成された絶縁層7を配向させる。下地膜としては、下地膜の絶縁膜7が存在する側の表面に酸素が現れているものが望ましい。具体的には、Mn,V,W,Siの酸化物などが挙げられる。ポリ尿素は膜内で配向が起こっているために分極を形成している。この配向が起こっていることは、赤外吸収等の角度依存性測定から確認可能である。
Figure JPOXMLDOC01-appb-C000005
 分極を示す絶縁層7の材料として、ポリ尿素以外に、ポリイミド膜や、Alq3,〔化6〕などのベンズイミダゾール誘導体、2,9-ジメチル-4、7-ジフェニル-1、10-フェナントロリン(BCP)などのフェナントロリン誘導体、1,3-ビス(2-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾ-5-イル)ベンゼン(OXD-7)などのオキサジアゾール誘導体を用いることができる。上記材料において配向して大きな分極を作り易い点を考慮して、ポリイミドが望ましく、ポリ尿素がさらに望ましい。本実施例では、絶縁層7の材料として〔化5〕を用いた。絶縁層7は蒸着領域をマスクで規定した蒸着法で、アライメント工程なしで製膜した。
Figure JPOXMLDOC01-appb-C000006
 絶縁層7の上に保護層8が形成されている。保護層8は、透湿性を抑制し、有機発光素子を保護するための層である。図1のように、基板1法線方向から見た時に保護層8の面積を有機層6や絶縁層7の面積よりも大きくすることにより、水分が基板1の面内方向から入ることを防げる。保護層8として、透湿性を抑制する層を積層したフィルムが用いられる。積層フィルムとして、例えば、無機層と有機層を交互積層した構造を有するプラスティックフィルムなどが挙げられる。本実施例では、保護層8として透湿性を抑制する層を積層したフィルムを用いた。
 本実施例における保護層8は、絶縁層7の上部に張り付けて、連続的に製造できる。保護層8に光取出し機能を有する層を付与してもよい。そのことにより、有機発光素子の発光光をより多く外部に出すことができる。
 上記の有機発光素子の作製では、あらかじめ基板1に第一の電極2,第二の電極3,第三の電極4,第四の電極5を形成する。第一の電極2,第二の電極3,第三の電極4,第四の電極5はホトリソグラフィを用いて形成される。正孔輸送層10,発光層11は印刷幅をノズル幅で規定できるスリットコート法で、アライメントなしで作製できる。製膜時の基板1の進行方向は、図1の長辺方向である。連続的に製膜できる方法であれば、スリットコート法に限定されず、ロールコート法やスプレー法などでも製膜可能である。また、電子輸送層12と絶縁層7は蒸着領域をマスクで規定した蒸着法で、アライメントなしで形成できる。
 図3は、図1で示した本発明における有機発光素子の一実施の形態を回路図で表したものである。並列接続された有機発光素子が直列に接続される構造となっており、安定した発光が得られるようになっている。第一の電極2と第四の電極5の間に電圧を印加したところ、保護層8側から発光が観測され、安定した発光が得られた。
 図4は、本発明における有機発光素子の一実施の形態における上面図である。基板21はフィルムである。基板21として反射機能を有するフィルムを用いた。
 第一の電極22は陰極である。第一の電極22としてCrを用いた。第二の電極23は陽極である。第二の電極23としてCrを用いた。第二の電極23は、第一の電極22に対して対向して形成されている。第三の電極24は、第二の電極23に対向して形成されている。第三の電極24は、第一の電極22とは絶縁されている。第三の電極24としてCrを用いた。第四の電極25は、第三の電極24に対向して形成されている。第四の電極25としてCrを用いた。
 電極上に有機層26が形成されている。有機層26は正孔輸送層40,発光層41,電子輸送層42を含む層である。対向する電極から電子及び正孔が注入され、発光層41で再結合し、発光する。有機層26上に絶縁層27が形成されている。絶縁層27は、有機層26に電界を印加するための層である。絶縁層27上に分極形成電極28が形成されている。分極形成電極28は絶縁層27に分極を形成するための電極である。図4の上面図は有機発光素子の積層構造を正確に表現したものではない。有機発光素子の構成要素の形状を見やすくするために、図4の積層構造は図5の積層構造とは異なり、模式的な説明図にしている。
 図5は、図4のA-A′における断面図であり、本発明における有機発光素子の一実施の形態における断面図である。第一の電極22,第二の電極23,第三の電極24および第四の電極25の上に正孔輸送層40が形成されている。第一の電極22,第二の電極23,第三の電極24および第四の電極25と正孔輸送層40との間に他の層が介在してもよく、接していてもよい。正孔輸送層40の代わりに後述する電子輸送層42を形成しても良い。正孔輸送層40は、正孔を第二の電極23から有機層26に輸送する層である。本実施例では、正孔輸送層40として高分子系材料を用いた。
 正孔輸送層40の上に発光層41が形成されている。正孔輸送層40と発光層41との間に他の層が介在してもよく、接していてもよい。発光層41は、対向する電極から注入された正孔及び電子が再結合し発光する層である。発光層41の材料には、ホスト材料に〔化1〕、青色ドーパントに〔化2〕、赤色ドーパントに〔化3〕を用いた。
 発光層41の上に電子輸送層42が形成されている。発光層41と電子輸送層42との間に他の層が介在してもよく、接していてもよい。電子輸送層42は、電子を発光層41に供給する層である。本実施例では、電子輸送層42として〔化4〕の材料を用いた。
 電子輸送層42の上に絶縁層27が形成されている。電子輸送層42と絶縁層27との間に他の層が介在してもよく、接していてもよい。絶縁層27は上部の分極形成電極28と有機層26を絶縁し、有機層26に電界を印加するための層である。本実施例では、ポリメタクリル酸メチル(PMMA)に〔化7〕のイオン性物質を混合した材料を用いた。PMMAはイオン性物質を分散させる。絶縁層27にイオン性物質を含めることにより、初期的に電圧を印加して絶縁層27中に分極を形成できるため、毎回分極形成電極28に電界を印加する必要がなくなる。イオン性物質として、〔化7〕以外にアミン化合物のBF4-塩やPF6-塩などが考えられる。イオン性物質のガラス転移温度は、100℃以下であることが望ましい。このPMMA分散膜である絶縁層27と電子輸送層42の間には薄いSiOx膜を挿入した。
Figure JPOXMLDOC01-appb-C000007
 分極形成電極28にはIZOを用いた。トップエミッションの場合、分極形成電極28としてITOなどの透明電極でもよい。ボトムエミッションの場合、分極形成電極28としてCr,Mo,Al,AgやAlNi,CrAu,MgAuなどの反射電極が挙げられる。図4のように、基板21の面内長軸方向において分極形成電極28の大きさを有機層26,絶縁層27および保護層29の大きさより大きくすることで、外側で電界をかけるための端子をとることができる。
 分極形成電極28上に保護層29が形成されている。保護層29は透湿性を抑制し、有機発光素子を保護するための層である。透湿性を抑制する層を積層したフィルムを用いた。
 上記の有機発光素子の作製では、あらかじめ基板21に第一の電極22,第二の電極23,第三の電極24,第四の電極25をフォトグラフィ法で形成した。正孔輸送層40,発光層41は、印刷幅をノズル幅で規定できるスリットコート法で、アライメントなしで作製した。また、電子輸送層42は、蒸着領域をマスクで規定した蒸着法で、アライメントなしで形成した。また、絶縁層27は、印刷幅をノズル幅で規定できるスリットコート法で作製した。分極形成電極28は、マスクで製膜エリアを制限したスパッタ法で、アライメントなしで製膜した。
 本実施例の有機発光素子も並列接続された発光ダイオードが直列に接続される構造となっており、安定した発光が得られるようになっている。分極形成電極28に電圧を印加し、絶縁層27を分極させたのち、第一の電極22と第四の電極25の間に電圧を印加したところ、分極形成電極28側からの発光が確認され、安定した発光が得られた。分極形成電極28により電界のゆがみが実施例1より確実に形成され、発光層41中での再結合がおこりやすくなる。
 実施例3は絶縁層27にHfO2膜を用いた以外は実施例2と同様に有機発光素子を作製した。HfO2膜はスパッタ法を用いてアライメント工程なしで製膜して作製した。
 得られた有機発光素子は分極形成電極28に電極を印加しながら、第一の電極22と第四の電極25の間に電圧を印加したところ、分極形成電極28側から発光が確認され、安定した発光が得られた。絶縁層27にHfO2膜を用いることにより、発光層で再結合させるために必要な電界のゆがみが確実につけられる。
 実施例4は基板1に反射機能のないフィルムを用い、第一の電極2,第二の電極3,第三の電極4,第四の電極5をITOで形成し、保護層8に反射機能を有するフィルムを用いた以外は実施例1と同様に作製した。その結果、基板1側から発光が観察され、安定した発光が得られた。
 以上において、図1から図5において詳述した本発明の実施の形態での特徴点を、種々の観点から列挙すると以下の通りである。
 (1)基板上に形成された第一の電極および第二の電極と、第一の電極および第二の電極の上に形成された有機層と、有機層の上に形成された絶縁層と、を有する有機発光素子であって、第二の電極は第一の電極に対向しており、絶縁層は、絶縁層内の分極により有機層に電界を印加する有機発光素子。
 (2)上記(1)において、有機発光素子が複数形成され、複数の有機発光素子が直列に接続されている有機発光素子。
 (3)上記(1)において、絶縁層の上に分極形成電極が形成され、分極形成電極は絶縁層に分極を形成する有機発光素子。
 (4)上記(1)において、絶縁層がポリ尿素を含み、絶縁層の有機層が存在する側の表面に下地層が形成され、下地層は絶縁層を配向させる有機発光素子。
 (5)上記(1)において、絶縁層はイオン性物質を含む有機発光素子。
 (6)上記(1)において、複数の有機発光素子の末端の有機発光素子を構成する電極が末端の有機発光素子の端部まで伸びている有機発光素子。
 (7)上記(1)において、第一の電極および第二の電極が金属である有機発光素子。
 (8)上記(1)において、基板が反射性物質を含む有機発光素子。
 (9)上記(1)において、第一の電極および第二の電極が透明電極であり、絶縁層上に保護層が形成され、保護層は反射機能を有する有機発光素子。
 (10)上記(1)において、第一の電極および第二の電極は櫛歯状であり、櫛歯電極の櫛歯の幅は10μm以下であり、櫛歯の先端と櫛歯の連結部分との距離は10μm以下である有機発光素子。
 (11)基板と、上記(1)に記載の有機発光素子と、有機発光素子を駆動する駆動装置と、を有する光源装置。
 (12)基板上に形成された第一の電極および第二の電極と、第一の電極および第二の電極の上に形成された有機層と、有機層の上に形成された絶縁層と、を有する第一の有機発光素子と、基板上に形成された第二の電極および第三の電極と、第二の電極および第三の電極の上に形成された有機層と、絶縁層と、を有する第二の有機発光素子と、を有し、第一の電極,第二の電極および第三の電極は櫛歯状に形成され、絶縁層は、絶縁層内の分極により有機層に電界を印加し、第一の電極および第三の電極は絶縁され、第二の電極は第一の電極に対向しており、第三の電極は第二の電極に対向している有機発光素子。
 (13)基板上に形成された第一の電極および第二の電極と、第一の電極および第二の電極の上に形成された有機層と、有機層の上に形成された絶縁層と、を有する有機発光素子の製造方法であって、第二の電極は第一の電極に対向しており、絶縁層は、絶縁層内の分極により有機層に電界を印加し、第一の電極および第二の電極が形成された基板に対して、有機層および絶縁層がアライメントなしで製膜される有機発光素子の製造方法。
 次に、図6から図9を用いて本発明の別の実施の形態について説明する。
 図6は、本発明における有機発光素子光源の一実施の形態における断面図である。図6では複数の有機発光素子が直列接続された構造となっている。一つの有機発光素子の駆動電圧は数V程度であるのに対し、一般的な商用電源の電圧は100~200Vである。複数の有機発光素子を直列接続し光源の端子間電圧を商用電源の電圧程度まで高くすることで、交流-直流変換器の効率向上などが期待できるため、有機発光素子光源には直列構造が適している。図6は第一の下部電極101側から発光を取り出すボトムエミッション型の有機発光素子である。有機発光素子として第一の上部電極102側から発光を取り出すトップエミッション型でも構わない。図6では、基板100上に第一の下部電極101,バンク105,画素形成層103,電極接続層104,第一の上部電極102,樹脂層106,封止基板107が上記の順で配置されている。また、光取出し層108が光取り出し方向である基板背面に形成されている。図6に図示されていない駆動回路および筐体などが備えられることで有機発光素子光源となる。駆動回路には交流-直流変換器や半波整流器などの電源調整器が含まれる。第一の有機発光素子302は、第一の下部電極101,画素形成層103,混合層150(図7参照),電極接続層104,第一の上部電極102で構成される。第二の有機発光素子303は、第二の下部電極2021,画素形成層103,混合層150(図7参照),電極接続層104,第二の上部電極2022で構成される。第一の有機発光素子302と第二の有機発光素子303の間にバンク105が設けられている。第一の有機発光素子302と第二の有機発光素子303の構成要素としてバンク105を含めても良い。
 第一の下部電極101は陽極である。第一の下部電極101として陰極でも良い。第一の下部電極101はホトリソグラフィーによりパターニングして形成される。
 第一の下部電極101が陽極の場合、第一の上部電極102は陰極となる。第一の下部電極101が陰極の場合、第一の上部電極102は陽極となる。第一の上部電極102がITOまたはIZOであるとき、ITOまたはIZOをスパッタ法で形成する際には、スパッタによるダメージを緩和するため、画素形成層103および第一の上部電極102の間にバッファ層を設けることがある。バッファ層には、酸化モリブデン,酸化バナジウムなどの金属酸化物を用いる。第一の上部電極102は第二の有機発光素子303の第二の下部電極2021と電極接続層104により接続される。これにより、発光部を直列接続することができる。
 第一の有機発光素子302,第二の有機発光素子303の側面に形成されたバンク105は逆テーパとなっており、第一の上部電極102と第二の上部電極2022が導通しないようにするために用いられる。バンク105により第一の上部電極102と第二の上部電極2022とが絶縁される。塗布で形成した後、所定のフォトマスクを用いて現像露光することにより、バンク105が形成される。バンク105の画素形成層103および電極接続層104が存在する側の表面には撥液処理を施してもよい。例えば、バンク105の表面にフッ素系ガスのプラズマ処理を行い、バンク105の表面をフッ素化することで撥液処理を行う。これにより、バンク105の表面には撥液層が形成される。バンク105として、ネガ型フォトレジストを用いることが好ましい。また、バンク105として、アクリル樹脂,ポリイミド樹脂,ノボラック樹脂,フェノール樹脂,非感光性材料なども用いることができる。
 樹脂層106は、第一の上部電極102およびバンク105の上に形成される。樹脂層106は、第一の上部電極102やバンク105を封止するため、有機発光素子の劣化の要因となるガスや水分の浸入を防ぐために用いられる。樹脂層106として、エポキシ樹脂などの各種ポリマーを用いることができる。封止性能を向上させるために、樹脂層106として第一の上部電極102上の無機パッシベーション膜を用いることもできる。
 封止基板107は樹脂層106の上に形成される。封止基板107はガラス基板である。但し、ガラス基板以外でも、適切なガスバリア膜を有するプラスチック基板も用いることができる。
 光取出し層108は基板100に形成される。光取出し層108は、画素形成層103で発光した光を効率よく取出すために用いられる。光取出し層108として、例えば、マイクロレンズなどの構造体や、散乱性,拡散反射性を有するフィルムが用いられる。
 図7は、本発明の一実施形態に係る有機発光素子の断面図である。画素形成層103と電極接続層104の境界には両者の混合層150が存在する。混合層150は画素形成層103の成分と電極接続層104の成分とを含む。混合層150として、画素形成層103の成分および電極接続層104の成分のみから構成されていても良いが、他の成分を含んでいても良い。第二の下部電極201の側面にも混合層150が形成されているが、これに限られず、第二の下部電極201上に混合層150が形成されていてもよい。
 第一の下部電極101上に画素形成層103が配置され、第二の下部電極201上に電極接続層104が形成されている。図7の構造では下側から基板100,第一の下部電極101,画素形成層103,第一の上部電極102の順に配置されており、図7の有機発光素子は第一の下部電極101側から画素形成層103からの発光を取り出すボトムエミッション型である。第一の下部電極101は陽極となる透明電極、第一の上部電極102は陰極となる反射電極である。
 画素形成層103には発光層形成用材料が含まれる。画素形成層103として、発光層形成用材料以外の層が含まれていても構わない。発光層以外の層としては、電子注入層,電子輸送層,正孔輸送層及び正孔注入層のいずれか一つ以上が挙げられる。
 発光層形成用材料にはホスト,第一のドーパントが含まれる。画素形成層103内で電子及び正孔が再結合して、画素形成層103が発光する。
 第一のドーパントとして、蛍光性化合物,リン光性化合物等が挙げられる。また、第一のドーパントとして、赤色ドーパント,緑色ドーパント又は青色ドーパントの一種以上等が挙げられる。
 発光層形成用材料として第二のドーパントが含まれていても構わない。その場合、第二のドーパントの発光色は第一のドーパントの発光色と異なることが望ましい。「発光色が異なる」とは、各ドーパントのPLスペクトルにおいて最大強度を示す波長が異なることを言う。
 さらに、発光層形成用材料として第三のドーパントが含まれていても構わない。その場合、第三のドーパントの発光色は第一のドーパントの発光色および第二のドーパントの発光色と異なることが望ましい。例えば、第一のドーパント,第二のドーパントおよび第三のドーパントを、赤色ドーパント,緑色ドーパントおよび青色ドーパントとすれば、単一の画素形成層103で有機発光素子から白色光が出射される。
 電極接続層104は有機発光素子の第一の上部電極102と第二の下部電極201を電気的に接続し、直列構造を形成する。電極接続層104は図7のように画素形成層103の側面にあってもよいが、図8のように画素形成層103を覆うように存在しても構わない。例えば、第一の上部電極102が陽極であり、電極接続層104がPEDOTなどの場合であれば、電極接続層104を電荷注入層や電極として用いることができるので、図8のように有機発光素子を形成することで工程数を低減できる。図7のように有機発光素子を形成することで、図8に比べて不要な層を削減できる。図8のように電極接続層104が画素形成層103を覆う場合、画素形成層103と第一の下部電極101との間に電荷輸送層160を形成しても良いし、電荷輸送層160がなくてもよい。電荷輸送層160としては、後述の正孔輸送層や電子輸送層などが挙げられる。
 電極接続層104には導電性高分子または金属微粒子が含まれる。電極接続層104として、導電性高分子や金属微粒子のみから構成されていても良いが、他の成分を含んでいても良い。電極接続層104に導電性高分子を用いることで、乾燥(焼成)温度を低くできる、導電性高分子としては、PEDOT(ポリ(3,4-エチレンジオキシチオフェン)):PSS(ポリスチレンスルホネート),ポリチオフェン,ポリピロール,ポリアニリンなどが挙げられる。電極接続層104として、これらの材料を単独または二種以上用いても良い。また金属微粒子は銀などが挙げられる。
 電極接続層104と第一の上部電極102に同種の材料を用いてもかまわない。電極接続層104と第一の上部電極102に同一の材料を用いることにより、電極接続層104が第一の上部電極102を兼ね、工程数を削減できる。
 混合層150は塗布法で画素形成層103および電極接続層104を形成すると、両者の構成材料の相溶性が低い場合においても、ある程度混合するため形成される。画素形成層103と電極接続層104の境界にこの混合層150が形成されることで、両層の境界を平坦化でき、第一の上部電極102の断線や第一の上部電極102と第一の下部電極101の短絡等の発生を抑えることができる。混合層150の存在の確認は、素子断面のTOF-SIMS測定などによって、各構成材料の分布を評価することで行うことができる。
 図9は、本発明における有機発光光源の一実施の形態における断面図である。第一の有機発光素子302および第二の有機発光素子303はバンク105で分割されている。第一の有機発光素子302および第二の有機発光素子303から光が取り出される方向には、拡散板301が配置されている。第一および第二の有機発光素子の発光色が異なる場合、各有機発光素子の配置は、図4に示すようなストライプ状のほかに千鳥格子状でもかまわない。
 異なる色の素子を組み合わせた場合には、良好な白色光を得るために、図9のように、有機発光素子の光取り出し面の上部に拡散板301を取り付けてもかまわない。拡散板301としては、樹脂やガラス中に散乱体を分散させたものや、表面に凹凸構造を形成したものなどが考えられる。
 本発明の有機発光素子の有機層、正孔輸送層、発光層(ホスト、ド―パント)、電子輸送層、絶縁層、保護層、電極等を構成する構成材料に関して、前述の実施形態での説明で詳述したが、再度、以下に詳述する。
<ホスト>
 ホストとは、電界により励起状態を形成した後に光を発する、ドーパントを固定化するために用いられる材料であり、一般にドーパントよりもHOMOとLUMOの差(バンドギャップ)が広い。ホストとして、カルバゾール誘導体,フルオレン誘導体またはアリールシラン誘導体などを用いることが好ましい。またポリビニルカルバゾール誘導体やポリフェニレンビニレン誘導体など高分子材料でも構わない。効率の良い発光を得るためには青色ドーパントの励起エネルギーよりも、ホストの励起エネルギーが十分大きいことが好ましい。なお、励起エネルギーは発光スペクトルを用いて測定される。
<表面エネルギーに関連するドーパント>
 本発明の一実施形態では、ドーパントに炭素数3以上のフルオロアルキル基などの表面エネルギーを下げられる置換基を金属錯体の表面ドーパントの補助配位子に導入し、ドーパントが画素形成層103中で濃度分布を形成し、画素形成層103上部で濃度を高くすることができる。以下、表面エネルギーを下げられる置換基を有する材料を表面ドーパントと称する。その場合、画素形成層103において画素形成層103形成時の基板とは反対側に、表面ドーパントのモル濃度が平均のモル濃度(発光層塗液を作製する際に混合した材料の量から計算されるモル濃度)より高い領域が形成される。そのようにすることにより、ドーパント濃度の微妙な調整をすることなしに、白色発光を実現することができる。
 物質の表面は、一般に物質の内部と異なり、片側に同種の分子が存在しないため、引力が働かずエネルギーが高く不安定である。そのため、表面エネルギーを低下させるために表面積を小さくするように変形させる力(表面張力)が働く。また、物質内に表面エネルギーの低い官能基を有する分子がある場合には、その官能基を表面に出すことで表面エネルギーを低下させ安定化する。
 例えば、水と界面活性剤(両親媒性分子)の場合、界面活性剤は表面エネルギーの低い官能基である疎水基を分子内に有し、その疎水基を水面から出す形で水面に単分子膜を形成することで水面の表面エネルギーを低下させている。
 本発明における表面ドーパントは、分子内にフルオロアルキル基などの表面エネルギーが低い官能基を有している。ドーパント中のベンゼン環などの部位は、表面エネルギーが低い官能基よりも表面エネルギーが高い。
 画素形成層103が形成される際には、表面エネルギーを小さくするために、表面エネルギーの低い官能基を表面に出すように力が働く。この作用により、表面エネルギーの低い官能基を有する分子が膜表面に移動することとなり、表面ドーパントの濃度分布が形成され、画素形成層103の擬似的な相分離が形成される。
 本発明の一実施形態に用いられる表面ドーパントとしては、以下の一般式、化(8)で表される化合物などがあげられる。
Figure JPOXMLDOC01-appb-C000008
 式(1)中X1はNを含む芳香族ヘテロ環を表す。X2は芳香族炭化水素環または芳香族ヘテロ環を表す。X3はアセチルアセトナート誘導体,ピコリネート誘導体またはテトラキスピラゾリルボレート誘導体を表す。Y1は表面エネルギーを下げられる置換基を表し、フルオロアルキル基,パーフルオロアルキル基,アルキル基(Cの数は10以上),パーフルオロポリエーテル基及びシロキシ基のうちから1つ以上選ばれる置換基を表す。
 画素形成層103に赤色ドーパント,緑色ドーパント及び青色ドーパントのうちいずれか二色以上のドーパントが含まれている場合、二色以上のドーパントのうち単独のドーパントのみに上記置換基が付与されていてもよいし、二色以上のドーパントのうち複数のドーパントに上記置換基が付与されていてもよい。画素形成層103に青色ドーパントと、緑色ドーパントまたは赤色ドーパントが含まれている場合、青色ドーパントのエネルギー移動を考慮して、緑色ドーパントまたは赤色ドーパントに上記置換基を含ませることが望ましい。
<青色ドーパント>
 青色ドーパントは400nmから500nmの間に室温におけるPLスペクトルの最大強度が存在する。青色ドーパントの主骨格としては例えばペリレン,イリジウム錯体(Bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III)):FIrpicなど)があげられる。中でも発光特性の面で[化9]で示されるイリジウム錯体がより好ましい。錯体としてイリジウム以外にも、周期律表における第8,9または10族の元素、具体的にはPtやPdなどを用いることができる。化(9)中X1はNを含む芳香族ヘテロ環を表す。X2は芳香族炭化水素環または芳香族ヘテロ環を表す。
Figure JPOXMLDOC01-appb-C000009
 X1で表わされる芳香族ヘテロ環としては、キノリン環,イソキノリン環,ピリジン環,キノキサリン環,チアゾール環,ピリミジン環,ベンゾチアゾール環,オキサゾール環,ベンゾオキサゾール環,インドール環,イソインドール環などがあげられる。X2で表わされる芳香族炭化水素環または芳香族ヘテロ環としては、ベンゼン環,ナフタレン環,アントラセン環,チオフェン環,ベンゾチオフェン環,フラン環,ベンゾフラン環,フルオレン環などがあげられる。式中X3はアセチルアセトナート誘導体,ピコリネート誘導体,テトラキスピラゾリルボレート誘導体などが挙げられる。また、X3はX1-X2と同様でもかまわない。
 発光効率やキャリア伝導の観点から、画素形成層103中での青色ドーパントの濃度はホストに対し10wt%以上が好ましい。青色ドーパントの重量平均分子量は500以上3000以下が望ましい。
<緑色ドーパント>
 緑色ドーパントは500nmから590nmの間に室温におけるPLスペクトルの最大強度が存在する。緑色ドーパントの主骨格としては、例えばクマリンおよびその誘導体,イリジウム錯体(Tris(2-phenylpyridine)iridium(III):以下Ir(ppy)3、など)があげられる。中でも発光特性の面で[化8]で示されるイリジウム錯体がより好ましい。式中X1はNを含む芳香族ヘテロ環を表し、X2は芳香族炭化水素環または芳香族ヘテロ環を表す。
 X1で表わされる芳香族ヘテロ環としては、キノリン環,イソキノリン環,ピリジン環,キノキサリン環,チアゾール環,ピリミジン環,ベンゾチアゾール環,オキサゾール環,ベンゾオキサゾール環,インドール環,イソインドール環などがあげられる。X2で表わされる芳香族炭化水素環または芳香族ヘテロ環としては、ベンゼン環,ナフタレン環,アントラセン環,チオフェン環,ベンゾチオフェン環,フラン環,ベンゾフラン環,フルオレン環などがあげられる。X3はアセチルアセトナート誘導体、X1-X2と同様のものなどが挙げられる。
 発光効率,青色ドーパントからのエネルギー移動の抑制およびキャリア伝導の観点から、画素形成層103中での緑色ドーパントの濃度はホストに対し1wt%以下が好ましい。緑色ドーパントの重量平均分子量は500以上3000以下が望ましい。
<赤色ドーパント>
 赤色ドーパントは590nmから780nmの間に室温におけるPLスペクトルの最大強度が存在する。赤色ドーパントの主骨格としては、例えばルブレン、(E)-2-(2-(4-(dimethylamino)styryl)-6-methyl-4H-pyran-4-ylidene)malononitrile(DCM)およびその誘導体,イリジウム錯体(Bis(1-phenylisoquinoline)(acetylacetonate)iridium(III)など)、オスミウム錯体,ユーロピウム錯体があげられる。中でも発光特性の面で[化8]で示されるイリジウム錯体がより好ましい。式中X1はNを含む芳香族ヘテロ環を表し、X2は芳香族炭化水素環または芳香族ヘテロ環を表す。
 X1で表わされる芳香族ヘテロ環としては、キノリン環,イソキノリン環,ピリジン環,キノキサリン環,チアゾール環,ピリミジン環,ベンゾチアゾール環,オキサゾール環,ベンゾオキサゾール環,インドール環,イソインドール環などがあげられる。X2で表わされる芳香族炭化水素環または芳香族ヘテロ環としては、ベンゼン環,ナフタレン環,アントラセン環,チオフェン環,ベンゾチオフェン環,フラン環,ベンゾフラン環,フルオレン環などがあげられる。X3はアセチルアセトナート誘導体などが好ましい。
 青色ドーパントからのエネルギー移動の抑制およびキャリア伝導の観点から、画素形成層103中での赤色ドーパントの濃度はホストに対し1wt%以下が好ましい。赤色ドーパントの重量平均分子量は500以上3000以下が望ましい。
<正孔注入層>
 正孔注入層とは発光効率や寿命を改善する目的で使用される。また、特に必須ではないが、陽極の凹凸を緩和する目的で使用される。正孔注入層を単層もしくは複数層設けてもよい。正孔注入層としては、PEDOT(ポリ(3,4-エチレンジオキシチオフェン)):PSS(ポリスチレンスルホネート)等の導電性高分子が好ましい。その他にも、ポリピロール系やトリフェニルアミン系のポリマー材料を用いることができる。また、低分子(重量平均分子量10000以下)材料系と組合せてよく用いられる、フタロシアニン類化合物やスターバーストアミン系化合物も適用可能である。
<正孔輸送層>
 正孔輸送層は発光層に正孔を供給する層である。広い意味で正孔注入層,電子阻止層も正孔輸送層に含まれる。正孔輸送層を単層もしくは複数層設けてもよい。正孔輸送層としては、スターバーストアミン系化合物やスチルベン誘導体,ヒドラゾン誘導体,チオフェン誘導体,フルオレン誘導体などを用いることができる。また、これらの材料に限られるものではなく、これらの材料を2種以上併用しても差し支えない。正孔輸送層を低抵抗化し駆動電圧を低下させるために、正孔輸送層中に電子受容性材料を添加しても良い。電子受容性材料とは、電子を電子受容性材料以外の分子から受け取りやすい材料をいう。電子受容性材料としては、例えば7,7,8,8-tetracyanoquinodimethane(TCNQ)誘導体などが挙げられる。
<電子輸送層>
 電子輸送層は発光層に電子を供給する層である。広い意味で電子注入層,正孔阻止層も電子輸送層に含まれる。電子輸送層を単層もしくは複数層設けてもよい。この電子輸送層の材料としては、例えば、ビス(2-メチル-8-キノリノラト)-4-(フェニルフェノラト)アルミニウム(BAlq)や、トリス(8-キノリノラト)アルミニウム(Alq3)、Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane(3TPYMB)、1,4-Bis(triphenylsilyl)benzene(UGH2)、オキサジアゾール誘導体,トリアゾール誘導体,フラーレン誘導体,フェナントロリン誘導体,キノリン誘導体,シロール誘導体などを用いることができる。電子輸送層を低抵抗化し素子の駆動電圧を低下させるために、電子輸送層中に電子供与性材料を添加しても良い。電子受容性材料とは、電子を放出しやすい(電子受容性材料以外の分子に渡しやすい)材料をいう。電子供与性材料としては、例えばN-ethyl-1,10-phenanthrolium(NEP)誘導体、Methyltriphenylphosphonium(MTPP)誘導体、N,N,N,N-tetramethyl-p-phenylenendiamine(TMPD)誘導体、rhodamine B chloride誘導体、pyronin B chloride誘導体、8-Hydroxyquinolinolato-lithium(Liq)誘導体などが挙げられる。
<電子注入層>
 電子注入層は陰極から電子輸送層への電子注入効率を向上させる。具体的には、弗化リチウム,弗化マグネシウム,弗化カルシウム,弗化ストロンチウム,弗化バリウム,酸化マグネシウム,酸化アルミニウムが望ましい。また、もちろんこれらの材料に限られるわけではなく、また、これらの材料を2種以上併用しても差し支えない。
<基板>
 基板100として、ガラス基板,金属基板,SiO2,SiNx,Al23等の無機材料を形成したプラスチック基板等が挙げられる。金属基板材料としては、ステンレス,42アロイなどの合金が挙げられる。プラスチック基板材料としては、ポリエチレンテレフタレート,ポリエチレンナフタレート,ポリメチルメタクリレート,ポリサルフォン,ポリカーボネート,ポリイミド等が挙げられる。
<陽極>
 陽極材料としては、高い仕事関数を有する材料であれば用いることができる。具体的には、透明電極として用いることができる材料としてはITO,IZOなどの導電性酸化物や、薄いAgなどの仕事関数の大きい金属が挙げられる。また、反射電極としては、Al上にITOを積層したものや、ITO/Ag/ITO積層膜,Cr,Moなどが挙げられる。電極のパターン形成は、下部電極であれば一般的にはガラス等の基板上にホトリソグラフィーなどを用いることで、また、上部電極である場合には成膜時にメタルマスクを用いることで行うことができる。
<陰極>
 陰極材料は、仕事関数が小さい金属が好ましい。具体的には、反射電極をして用いる材料としてはLiFとAlの積層体やMg:Ag合金などが好適に用いられる。透明陰極としては薄いMg:Ag合金やITO上に薄いMg:Ag合金を積層したもの、LiFとIZOの積層体などが挙げられる。また、これらの材料に限定されるものではなく、例えばLiFの代わりとして、Cs化合物,Ba化合物,Ca化合物などを用いることができる。電極のパターニングは陽極と同様に行うことができる。
<下部電極>
 画素形成層103や電極接続層104の成膜時に第一の下部電極101および第二の下部電極201表面の表面エネルギーに差を持たせるために、第一の下部電極101および第二の下部電極201は材料または光の透過性を変える必要がある。第一の下部電極101の材料および第二の下部電極201の材料を異なるものにした場合、電極表面の水酸基の有無や光の透過性の差を利用する表面エネルギー制御がやりやすくなる。
 例えば、シランカップリング剤が作用する電極としない電極の組み合わせ(ITO,AlとAu,Pt)や透明電極と不透明電極の組み合わせ(ITO,IZOとAl)などがあげられる。また、ITO上にAu,Alなどを積層することで、第一の下部電極101および第二の下部電極201を作り分けてもよい。第一の下部電極101および第二の下部電極201の境界をバンク105の下に設けることにより、表面エネルギー制御への影響を低減できる。第一の下部電極101および第二の下部電極201の境界をバンク105の下に設けず、第一の下部電極101上に第二の下部電極201を形成してもよく、二つの電極の接続形態は限定されない。第一の下部電極101および第二の下部電極201の形成法は真空蒸着法,スパッタ法,メッキ法などを用いることができる。
<表面処理>
 画素形成層103形成部と電極接続層104形成部の表面エネルギーに差を持たせるために、表面エネルギーが異なる表面処理材料を用いたり、基板の背面または表面から光を照射したりして、表面処理を行う。表面処理はSAM膜などを用いて行うことができる。その際、あらかじめ第一の下部電極101および第二の下部電極201の種類または、光の透過性に差をつけておくことで表面処理のパターニングを行うことができる。
 SAM膜形成材料としてはシランカップリング剤や末端にチオール基(SH基)を有する材料などが挙げられる。また、その中でも光照射により親水,疎水性が切り替えられるものが好ましい。例えば末端に疎水基(アルキル基,フルオロアルキル基など)を有し、分子内にアゾ基などの光異性化部位またはニトロベンジル基などの光脱離基を有するシランカップリング剤などが好ましい。照射する光は紫外,可視,赤外光のいずれでもかまわないが、光異性化または光脱離反応が生じる波長である必要がある。光源としては、水銀ランプやキセノンランプなどを用いることができる。
<塗液>
 塗液は画素形成層103形成材料および電極接続層104形成材料を適切な溶媒に溶解させたものである。しかしながら画素形成層103形成材料と電極接続層104形成材料のSP値が大きく異なるため、それぞれのSP値に近いSP値を有する複数の溶媒を用いることが好ましい。このような溶媒を用いた塗液では、溶媒が分離してしまい塗布が困難になる。そのため、ホモジナイザーなどを用いて両者の分散液としたものを塗液としてもよい。また、両者の溶媒の中間のSP値を持つ溶媒を第三の溶媒として加えてもよい。その場合には第三の溶媒の沸点は第一の溶媒,第二の溶媒の沸点よりも低い必要がある。例えば第一の溶媒としてトルエン,キシレンなどの芳香族溶媒やヘキサンなどの炭化水素系溶媒などSP値の小さな溶媒が挙げられ、また第二の溶媒としては水などSP値の大きな溶媒が挙げられる。また、第三の溶媒としては、メタノール,エタノールなどの低沸点アルコール系溶媒などが挙げられる。
 画素形成層103および電極接続層104を成膜するための塗布法としては、キャスト法,スクリーン印刷法,インクジェット印刷法,スリットコート法,キャピラリコート法などを挙げることができる。これらの方法のうち1つ以上の方法を用いて、画素形成層103および電極接続層104を形成する。
<作製手順>
 有機発光素子の作製方法の例として以下に2つの方法が挙げられる。
(1)1回塗布
 基板100上には第一の下部電極101,第二の下部電極201およびバンク105を形成しておく。
 まず、第一の下部電極101および基板100が露出している領域の表面を疎水化、第二の下部電極201表面を親水化する処理を行う。次に画素形成層103形成材料,電極接続層104形成材料,第一の溶媒および第二の溶媒を含む塗液を塗布する。第一と第二の溶媒は相溶性が無いため、基板上で分離する。分離後基板上の表面エネルギーの差により、画素形成層103形成材料は第一の下部電極101上に、電極接続層104形成材料は第二の下部電極201上へと移動し、それぞれの層を形成する。その後第一の上部電極102を蒸着法,スパッタ法,印刷法などで形成することで直列構造を有する有機発光素子をアライメントフリーで作製できる。この方法では、塗布回数を低減できるメリットがある。1回塗布の場合は、第一の下部電極101または第二の下部電極201の一方のみを表面処理してもよい。
(2)複数回塗布
 基板100上には第一の下部電極101,第二の下部電極201およびバンク105を形成しておく。
 基板100上に光照射によって撥水,親水性を変化させることができる材料をコートする。基板100背面から光照射を行い、第二の下部電極201以外の領域を親水化、第二の下部電極201表面を疎水化する。その後画素形成層103形成材料および第一の溶媒を含む塗液を塗布し、第二の下部電極201以外の領域に画素形成層103を形成する。なお、画素形成層103は複数層塗布しても構わない。画素形成層103形成後、基板100表面から光照射を行い、第二の下部電極201表面を親水化する。その後、電極接続層104形成材料および第二の溶媒を含む塗液を塗布し、電極接続層104を形成する。第一の上部電極102は蒸着法,スパッタ法,印刷法などで形成できる。以上の手順により直列構造を有する有機発光素子をアライメントフリーで形成できる。この方法では、画素形成層103を多層形成することが可能であり、高効率な素子構成とすることができる。
 以下に、さらに具体的な実施例を示して、本願発明の実施の形態の内容をさらに詳細に説明する。
 本発明の実施例として図7に示す構造の有機発光素子を作製した。第一の下部電極101として透明電極となるITO、第二の下部電極201としてAuを用いた。表面処理としてシランカップリング剤を塗布した。シランカップリング剤は末端にアルキル鎖(CnH2n+1;n=18)を有するものを用いた。シランカップリング剤は表面にOH基が存在するITOおよびガラス基板上には単分子膜を形成されるが、Au上には形成されないため、ITOおよびガラス上の表面エネルギーが小さく、Au上は大きいままである。その後画素形成層103形成材料としてホストであるPVKと青色ドーパントであるFIrpic、緑色ドーパントであるIr(ppy)2acac、赤色ドーパントであるIr(piq)2acac、電極接続層104形成材料として導電性高分子(PEDOT:PSS)、第一の溶媒としてトルエン、第二の溶媒として水、第三の溶媒としてエタノールを含む塗液を塗布した。基板上でエタノールが揮発することで水とトルエンが分離し、表面エネルギーが小さいITOおよびガラス基板上にトルエン溶液が、表面エネルギーが大きいAu上には水分散液が移動する。その後乾燥させることで所定の領域に画素形成層103および電極接続層104が形成される。その後、第一の上部電極102,第二の上部電極202としてAlを真空蒸着法によって形成することで、直列構造を有するOLED素子が形成される。作製した素子に電圧を印加すると複数の素子が同時に点灯し、直列構造が印刷時のアライメント無しに形成できた。
 本発明の実施例として図8に示す構造の有機発光素子を作製した。第一の下部電極101には透明電極となるITO、第二の下部電極201には不透明電極となるAlを用いた。表面処理として末端にパーフルオロアルキル基を有するシランカップリング剤のフッ素系溶液(0.1wt.%)に浸漬した。その後フッ素系溶媒でリンスし120℃、10分間乾燥させた。これにより基板100表面はすべて水に対する接触角が90°以上となる撥水性を有する表面となる。その後、紫外光(~254nm)を基板100背面より30分間照射することで、不透明である第二の下部電極201以外の領域が露光され、フルオロアルキル鎖が外れ表面が親水性となる。ここに、画素形成層103形成材料として熱硬化型正孔輸送層材料と第一の溶媒としてトルエンを含む塗液を塗布し、第二の下部電極201以外の領域に正孔輸送層160が形成される。その後熱硬化することで溶媒に対し不溶化させる。さらに画素形成層103形成材料として、mCP(ホスト材料),Ir(ppy)2acac(緑色ドーパント),第一の溶媒としてトルエンを含む塗液を塗布することで発光層が形成される。さらにアルコール系溶媒に溶解させた電子輸送層形成材料を塗布することで第一の上部電極102,第二の上部電極202を除く画素領域が形成できる。次に、基板100表面から紫外光を照射することで第二の下部電極201表面を親水化する。その後、電極接続層104形成材料として導電性高分子(PEDOT:PSS)、第二の溶媒として水を含む塗液を塗布し、第二の下部電極201上および電子輸送層上に電極接続層104を形成する。その後、第一の上部電極102,第二の上部電極202としてAl膜を真空蒸着法で形成することで直列構造を有するOLEDが形成できる。作製した素子に電圧を印加すると複数の素子が同時に点灯し、直列構造が印刷時のアライメント無しに形成できた。
 以上において、図6から図9において詳述した本発明の実施の形態での特徴点を種々の観点から列挙すると以下の通りである。
 (1)第一の下部電極,画素形成層,混合層,電極接続層および第一の上部電極を有する第一の有機発光素子と、第二の下部電極および第二の上部電極を有する第二の有機発光素子と、を有する有機発光素子用光源であって、基板上に第一の下部電極,画素形成層,第一の上部電極の順に形成され、基板上に第二の下部電極,電極接続層の順に形成され、第一の下部電極の表面エネルギーおよび第二の下部電極の表面エネルギーは異なり、電極接続層により第二の下部電極と第一の上部電極が電気的に接続され、画素形成層と電極接続層との境界に混合層が形成され、混合層は画素形成層の成分と電極接続層の成分とを含み、画素形成層はホストおよび発光ドーパントを含む有機発光素子光源。
 (2)上記(1)において、第一の下部電極および第二の下部電極が異なる材料で形成されている有機発光素子光源。
 (3)上記(1)において、上部電極と電極接続層が同一の材料で形成されている有機発光素子光源。
 (4)上記(1)において、第一の上部電極および第二の上部電極を絶縁するバンクを含み、 第一の下部電極および第二の下部電極の境界がバンクの下に設けられている有機発光素子光源。
 (5)上記(1)において、電極接続層を形成する材料として導電性高分子を含む有機発光素子光源。
 (6)上記(1)において、発光ドーパントの補助配位子にフルオロアルキル基,パーフルオロアルキル基,アルキル基(Cの数は10以上),パーフルオロポリエーテル基及びシロキシ基のうちから1つ以上選ばれる置換基が含まれる有機発光素子光源。
 (7)上記(1)の有機発光素子光源の製造方法であって、画素形成層,電極接続層および混合層の形成材料をSP値の異なる複数の溶媒に溶解させ、塗液を作製する工程と、塗液を第一の下部電極および第二の下部電極に塗布する工程と、を含む有機発光素子光源の製造方法。
 (8)上記(7)において、第一の下部電極または第二の下部電極を表面エネルギーが異なる表面処理材料を用いて表面処理を行うことで、第一の下部電極の表面エネルギーおよび第二の下部電極の表面エネルギーを異ならせる工程を含む製造方法。
 (9)上記(8)において、基板の背面または表面から光を照射することで、第一の下部電極の表面エネルギーおよび第二の下部電極の表面エネルギーを異ならせる工程を含む製造方法。
 (10)上記(9)の有機発光素子光源の製造方法に用いられる塗液であって、塗液には沸点の異なる少なくとも三種類の溶媒が含まれ、三種類の溶媒の内の一つの溶媒の沸点が他の二つの溶媒の沸点より低い塗液。
 1,21 基板
 2,22 第一の電極
 3,23 第二の電極
 4,24 第三の電極
 5,25 第四の電極
 6,26 有機層
 7,27 絶縁層
 8,29 保護層
 10,40 正孔輸送層
 11,41 発光層
 12,42 電子輸送層
 28 分極形成電極
 LE1 第一の有機発光素子
 LE2 第二の有機発光素子
 LE3 第三の有機発光素子
 100 基板
 101 第一の下部電極
 102 第一の上部電極
 103 画素形成層
 104 電極接続層
 105 バンク
 106 樹脂層
 107 封止基板
 108 光取出し層
 150 混合層
 201 第二の下部電極
 202 第二の上部電極
 301 拡散板
 302 第一の有機発光素子
 303 第二の有機発光素子

Claims (24)

  1.  基板上に形成された第一の電極および第二の電極と、
     前記第一の電極および前記第二の電極の上に形成された有機層と、
     前記有機層の上に形成された絶縁層と、を有する有機発光素子であって、
     前記第二の電極は前記第一の電極に対向しており、
     前記絶縁層は、前記絶縁層内の分極により前記有機層に電界を印加する有機発光素子。
  2.  請求項1において、
     前記有機発光素子が複数形成され、
     前記複数の前記有機発光素子が直列に接続されている有機発光素子。
  3.  請求項1または2において、
     前記絶縁層の上に分極形成電極が形成され、
     前記分極形成電極は前記絶縁層に分極を形成する有機発光素子。
  4.  請求項1乃至3のいずれかにおいて、
     前記絶縁層はポリ尿素を含み、
     前記絶縁層の前記有機層が存在する側の表面に下地層が形成され、
     前記下地層は前記絶縁層を配向させる有機発光素子。
  5.  請求項1乃至4のいずれかにおいて、
     前記絶縁層はイオン性物質を含む有機発光素子。
  6.  請求項2において、
     前記複数の有機発光素子の末端の有機発光素子を構成する電極が前記末端の有機発光素子の端部まで伸びている有機発光素子。
  7.  請求項1乃至6のいずれかにおいて、
     前記第一の電極および前記第二の電極が金属である有機発光素子。
  8.  請求項1乃至7のいずれかにおいて、
     前記基板が反射性物質を含む有機発光素子。
  9.  請求項1乃至8のいずれかにおいて、
     前記第一の電極および前記第二の電極が透明電極であり、
     前記絶縁層上に保護層が形成され、
     前記保護層は反射機能を有する有機発光素子。
  10.  請求項1乃至9のいずれかにおいて、
     前記第一の電極および前記第二の電極は櫛歯状であり、
     前記櫛歯電極の櫛歯の幅は10μm以下であり、
     前記櫛歯の先端と前記櫛歯の連結部分との距離は10μm以下である有機発光素子。
  11.  前記基板と、
     請求項1乃至10のいずれかに記載の前記有機発光素子と、
     前記有機発光素子を駆動する駆動装置と、を有する光源装置。
  12.  基板上に形成された第一の電極および第二の電極と、
     前記第一の電極および前記第二の電極の上に形成された有機層と、
     前記有機層の上に形成された絶縁層と、を有する第一の有機発光素子と、
     前記基板上に形成された前記第二の電極および第三の電極と、
     前記第二の電極および前記第三の電極の上に形成された前記有機層と、
     前記絶縁層と、を有する第二の有機発光素子と、を有し、
     前記第一の電極、前記第二の電極および前記第三の電極は櫛歯状に形成され、
     前記絶縁層は、前記絶縁層内の分極により前記有機層に電界を印加し、
     前記第一の電極および前記第三の電極は絶縁され、
     前記第二の電極は前記第一の電極に対向しており、
     前記第三の電極は前記第二の電極に対向している有機発光素子。
  13.  基板上に形成された第一の電極および第二の電極と、
     前記第一の電極および前記第二の電極の上に形成された有機層と、
     前記有機層の上に形成された絶縁層と、を有する有機発光素子の製造方法であって、
     前記第二の電極は前記第一の電極に対向しており、
     前記絶縁層は、前記絶縁層内の分極により前記有機層に電界を印加し、
     前記第一の電極および前記第二の電極が形成された前記基板に対して、前記有機層および前記絶縁層がアライメントなしで製膜される有機発光素子の製造方法。
  14.  第一の下部電極,画素形成層,混合層,電極接続層および第一の上部電極を有する第一の有機発光素子と、
     第二の下部電極および第二の上部電極を有する第二の有機発光素子と、を有する有機発光素子用光源であって、
     基板上に前記第一の下部電極,前記画素形成層,前記第一の上部電極の順に形成され、
     前記基板上に前記第二の下部電極,前記電極接続層の順に形成され、
     前記第一の下部電極の表面エネルギーおよび前記第二の下部電極の表面エネルギーは異なり、
     前記電極接続層により前記第二の下部電極と前記第一の上部電極が電気的に接続され、
     前記画素形成層と前記電極接続層との境界に前記混合層が形成され、
     前記混合層は前記画素形成層の成分と前記電極接続層の成分とを含み、
     前記画素形成層はホストおよび発光ドーパントを含む有機発光素子。
  15.  請求項14において、
     前記第一の下部電極および前記第二の下部電極が異なる材料で形成されている有機発光素子。
  16.  請求項14において、
     前記上部電極と前記電極接続層が同一の材料で形成されている有機発光素子。
  17.  請求項14において、
     前記第一の上部電極および前記第二の上部電極を絶縁するバンクを含み、
     前記第一の下部電極および第二の下部電極の境界が前記バンクの下に設けられている有機発光素子。
  18.  請求項14において、
     前記電極接続層を形成する材料として導電性高分子を含む有機発光素子。
  19.  請求項14において、
     前記発光ドーパントの補助配位子にフルオロアルキル基,パーフルオロアルキル基,アルキル基(Cの数は10以上),パーフルオロポリエーテル基及びシロキシ基のうちから1つ以上選ばれる置換基が含まれる有機発光素子。
  20.  請求項14ないし19のいずれかに記載の有機発光素子と、前記有機発光素子を駆動する駆動装置と、を有する光源装置
  21.  請求項14の有機発光素子の製造方法であって、
     前記画素形成層,前記電極接続層および前記混合層の形成材料をSP値の異なる複数の溶媒に溶解させ、塗液を作製する工程と、
     前記塗液を前記第一の下部電極および前記第二の下部電極に塗布する工程と、を含む有機発光素子の製造方法。
  22.  請求項21において、
     前記第一の下部電極または前記第二の下部電極を表面エネルギーが異なる表面処理材料を用いて表面処理を行うことで、前記第一の下部電極の表面エネルギーおよび前記第二の下部電極の表面エネルギーを異ならせる工程を含む有機発光素子の製造方法。
  23.  請求項21において、
     前記基板の背面または表面から光を照射することで、前記第一の下部電極の表面エネルギーおよび前記第二の下部電極の表面エネルギーを異ならせる工程を含む製造方法。
  24.  請求項21乃至23のいずれかの有機発光素子の製造方法に用いられる塗液であって、
     前記塗液には沸点の異なる少なくとも三種類の溶媒が含まれ、
     前記三種類の溶媒の内の一つの溶媒の沸点が他の二つの溶媒の沸点より低い有機発光素子製造用塗液。
PCT/JP2012/059492 2011-04-07 2012-04-06 有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法とその製造方法に用いる有機発光素子製造用塗液 WO2012137916A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-084998 2011-04-07
JP2011084998A JP5637917B2 (ja) 2011-04-07 2011-04-07 有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法
JP2011-152455 2011-07-11
JP2011152455A JP5707258B2 (ja) 2011-07-11 2011-07-11 有機発光素子用塗液,有機発光素子,有機発光素子光源、およびそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2012137916A1 true WO2012137916A1 (ja) 2012-10-11

Family

ID=46969304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059492 WO2012137916A1 (ja) 2011-04-07 2012-04-06 有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法とその製造方法に用いる有機発光素子製造用塗液

Country Status (1)

Country Link
WO (1) WO2012137916A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210054217A1 (en) * 2018-03-13 2021-02-25 Industry-University Cooperation Founddation Hanyang University Method of manufacturing highly conductive polymer thin film including plurality of conductive treatments

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029404A (ja) * 1998-07-10 2000-01-28 Toppan Printing Co Ltd 有機エレクトロルミネッセンス表示素子およびその製造方法
WO2007129643A1 (ja) * 2006-05-09 2007-11-15 Japan Advanced Institute Of Science And Technology 有機半導体材料を用いた電界効果トランジスタおよびその製造方法
WO2009099205A1 (ja) * 2008-02-08 2009-08-13 National University Corporation Kyoto Institute Of Technology 発光デバイスの駆動方法及び駆動装置
WO2009125704A1 (ja) * 2008-04-10 2009-10-15 出光興産株式会社 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ
JP2010287562A (ja) * 2009-05-13 2010-12-24 Canon Inc 表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029404A (ja) * 1998-07-10 2000-01-28 Toppan Printing Co Ltd 有機エレクトロルミネッセンス表示素子およびその製造方法
WO2007129643A1 (ja) * 2006-05-09 2007-11-15 Japan Advanced Institute Of Science And Technology 有機半導体材料を用いた電界効果トランジスタおよびその製造方法
WO2009099205A1 (ja) * 2008-02-08 2009-08-13 National University Corporation Kyoto Institute Of Technology 発光デバイスの駆動方法及び駆動装置
WO2009125704A1 (ja) * 2008-04-10 2009-10-15 出光興産株式会社 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ
JP2010287562A (ja) * 2009-05-13 2010-12-24 Canon Inc 表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210054217A1 (en) * 2018-03-13 2021-02-25 Industry-University Cooperation Founddation Hanyang University Method of manufacturing highly conductive polymer thin film including plurality of conductive treatments
US11708499B2 (en) * 2018-03-13 2023-07-25 Industry—University Cooperation Foundation Hanyang University Method of manufacturing highly conductive polymer thin film including plurality of conductive treatments

Similar Documents

Publication Publication Date Title
JP5560996B2 (ja) 正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法
US7656084B2 (en) Method of producing laminated type organic electroluminescent element and display apparatus
JP4723555B2 (ja) 電子デバイスの製造方法及びその製造方法に適した塗布液
JP6796065B2 (ja) 有機薄膜積層体及び有機エレクトロルミネッセンス素子
JP5638629B2 (ja) 有機発光素子及びこれを用いた光源装置並びに有機発光層材料及び有機発光層形成用塗布液並びに当該素子の製造方法
KR20140024307A (ko) 조명용 유기 전자 소자
Liu et al. Coffee-ring-free ultrasonic spray coating single-emission layers for white organic light-emitting devices and their energy-transfer mechanism
JP6549434B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
KR20190087655A (ko) 금속 나노입자의 국소 표면 플라즈몬을 사용한 스펙트럼 발광 변경
JP5624932B2 (ja) 有機発光装置及びこれを用いた光源装置
WO2013161515A1 (ja) 有機発光素子
JP5753854B2 (ja) 有機発光素子、有機発光素子形成用塗液、有機発光素子形成用材料及び当該有機発光素子を用いた光源装置並びに当該有機発光素子の製造方法
US9954193B2 (en) Material for forming organic light-emitting layer, coating liquid for forming organic light-emitting element, organic light-emitting element and light source device, and method for manufacturing same
JP5656765B2 (ja) 有機発光素子、有機発光素子を用いた光源装置およびそれらの製造方法
JP5668071B2 (ja) 有機発光素子および有機発光素子の製造方法
JP5707258B2 (ja) 有機発光素子用塗液,有機発光素子,有機発光素子光源、およびそれらの製造方法
WO2012090560A1 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
WO2012137916A1 (ja) 有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法とその製造方法に用いる有機発光素子製造用塗液
JP6492565B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンス照明装置の製造方法
JP6503699B2 (ja) 有機エレクトロルミネッセンス素子、及びその製造方法、並びに有機エレクトロルミネッセンス照明装置
Forrest et al. OLED with minimal plasmonic losses
WO2013011883A1 (ja) 有機発光層材料及び有機発光素子
JP2015028947A (ja) 有機電界発光装置の製造方法及び有機電界発光装置
JP2015038867A (ja) 有機elデバイス、照明装置、及び有機elデバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12767322

Country of ref document: EP

Kind code of ref document: A1